1 /******************************************************************************* 2 3 Copyright(c) 2006 Tundra Semiconductor Corporation. 4 5 This program is free software; you can redistribute it and/or modify it 6 under the terms of the GNU General Public License as published by the Free 7 Software Foundation; either version 2 of the License, or (at your option) 8 any later version. 9 10 This program is distributed in the hope that it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, write to the Free Software Foundation, Inc., 59 17 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 18 19 *******************************************************************************/ 20 21 /* This driver is based on the driver code originally developed 22 * for the Intel IOC80314 (ForestLake) Gigabit Ethernet by 23 * scott.wood@timesys.com * Copyright (C) 2003 TimeSys Corporation 24 * 25 * Currently changes from original version are: 26 * - porting to Tsi108-based platform and kernel 2.6 (kong.lai@tundra.com) 27 * - modifications to handle two ports independently and support for 28 * additional PHY devices (alexandre.bounine@tundra.com) 29 * - Get hardware information from platform device. (tie-fei.zang@freescale.com) 30 * 31 */ 32 33 #include <linux/module.h> 34 #include <linux/types.h> 35 #include <linux/interrupt.h> 36 #include <linux/net.h> 37 #include <linux/netdevice.h> 38 #include <linux/etherdevice.h> 39 #include <linux/ethtool.h> 40 #include <linux/skbuff.h> 41 #include <linux/spinlock.h> 42 #include <linux/delay.h> 43 #include <linux/crc32.h> 44 #include <linux/mii.h> 45 #include <linux/device.h> 46 #include <linux/pci.h> 47 #include <linux/rtnetlink.h> 48 #include <linux/timer.h> 49 #include <linux/platform_device.h> 50 #include <linux/gfp.h> 51 52 #include <asm/io.h> 53 #include <asm/tsi108.h> 54 55 #include "tsi108_eth.h" 56 57 #define MII_READ_DELAY 10000 /* max link wait time in msec */ 58 59 #define TSI108_RXRING_LEN 256 60 61 /* NOTE: The driver currently does not support receiving packets 62 * larger than the buffer size, so don't decrease this (unless you 63 * want to add such support). 64 */ 65 #define TSI108_RXBUF_SIZE 1536 66 67 #define TSI108_TXRING_LEN 256 68 69 #define TSI108_TX_INT_FREQ 64 70 71 /* Check the phy status every half a second. */ 72 #define CHECK_PHY_INTERVAL (HZ/2) 73 74 static int tsi108_init_one(struct platform_device *pdev); 75 static int tsi108_ether_remove(struct platform_device *pdev); 76 77 struct tsi108_prv_data { 78 void __iomem *regs; /* Base of normal regs */ 79 void __iomem *phyregs; /* Base of register bank used for PHY access */ 80 81 struct net_device *dev; 82 struct napi_struct napi; 83 84 unsigned int phy; /* Index of PHY for this interface */ 85 unsigned int irq_num; 86 unsigned int id; 87 unsigned int phy_type; 88 89 struct timer_list timer;/* Timer that triggers the check phy function */ 90 unsigned int rxtail; /* Next entry in rxring to read */ 91 unsigned int rxhead; /* Next entry in rxring to give a new buffer */ 92 unsigned int rxfree; /* Number of free, allocated RX buffers */ 93 94 unsigned int rxpending; /* Non-zero if there are still descriptors 95 * to be processed from a previous descriptor 96 * interrupt condition that has been cleared */ 97 98 unsigned int txtail; /* Next TX descriptor to check status on */ 99 unsigned int txhead; /* Next TX descriptor to use */ 100 101 /* Number of free TX descriptors. This could be calculated from 102 * rxhead and rxtail if one descriptor were left unused to disambiguate 103 * full and empty conditions, but it's simpler to just keep track 104 * explicitly. */ 105 106 unsigned int txfree; 107 108 unsigned int phy_ok; /* The PHY is currently powered on. */ 109 110 /* PHY status (duplex is 1 for half, 2 for full, 111 * so that the default 0 indicates that neither has 112 * yet been configured). */ 113 114 unsigned int link_up; 115 unsigned int speed; 116 unsigned int duplex; 117 118 tx_desc *txring; 119 rx_desc *rxring; 120 struct sk_buff *txskbs[TSI108_TXRING_LEN]; 121 struct sk_buff *rxskbs[TSI108_RXRING_LEN]; 122 123 dma_addr_t txdma, rxdma; 124 125 /* txlock nests in misclock and phy_lock */ 126 127 spinlock_t txlock, misclock; 128 129 /* stats is used to hold the upper bits of each hardware counter, 130 * and tmpstats is used to hold the full values for returning 131 * to the caller of get_stats(). They must be separate in case 132 * an overflow interrupt occurs before the stats are consumed. 133 */ 134 135 struct net_device_stats stats; 136 struct net_device_stats tmpstats; 137 138 /* These stats are kept separate in hardware, thus require individual 139 * fields for handling carry. They are combined in get_stats. 140 */ 141 142 unsigned long rx_fcs; /* Add to rx_frame_errors */ 143 unsigned long rx_short_fcs; /* Add to rx_frame_errors */ 144 unsigned long rx_long_fcs; /* Add to rx_frame_errors */ 145 unsigned long rx_underruns; /* Add to rx_length_errors */ 146 unsigned long rx_overruns; /* Add to rx_length_errors */ 147 148 unsigned long tx_coll_abort; /* Add to tx_aborted_errors/collisions */ 149 unsigned long tx_pause_drop; /* Add to tx_aborted_errors */ 150 151 unsigned long mc_hash[16]; 152 u32 msg_enable; /* debug message level */ 153 struct mii_if_info mii_if; 154 unsigned int init_media; 155 }; 156 157 /* Structure for a device driver */ 158 159 static struct platform_driver tsi_eth_driver = { 160 .probe = tsi108_init_one, 161 .remove = tsi108_ether_remove, 162 .driver = { 163 .name = "tsi-ethernet", 164 }, 165 }; 166 167 static void tsi108_timed_checker(struct timer_list *t); 168 169 #ifdef DEBUG 170 static void dump_eth_one(struct net_device *dev) 171 { 172 struct tsi108_prv_data *data = netdev_priv(dev); 173 174 printk("Dumping %s...\n", dev->name); 175 printk("intstat %x intmask %x phy_ok %d" 176 " link %d speed %d duplex %d\n", 177 TSI_READ(TSI108_EC_INTSTAT), 178 TSI_READ(TSI108_EC_INTMASK), data->phy_ok, 179 data->link_up, data->speed, data->duplex); 180 181 printk("TX: head %d, tail %d, free %d, stat %x, estat %x, err %x\n", 182 data->txhead, data->txtail, data->txfree, 183 TSI_READ(TSI108_EC_TXSTAT), 184 TSI_READ(TSI108_EC_TXESTAT), 185 TSI_READ(TSI108_EC_TXERR)); 186 187 printk("RX: head %d, tail %d, free %d, stat %x," 188 " estat %x, err %x, pending %d\n\n", 189 data->rxhead, data->rxtail, data->rxfree, 190 TSI_READ(TSI108_EC_RXSTAT), 191 TSI_READ(TSI108_EC_RXESTAT), 192 TSI_READ(TSI108_EC_RXERR), data->rxpending); 193 } 194 #endif 195 196 /* Synchronization is needed between the thread and up/down events. 197 * Note that the PHY is accessed through the same registers for both 198 * interfaces, so this can't be made interface-specific. 199 */ 200 201 static DEFINE_SPINLOCK(phy_lock); 202 203 static int tsi108_read_mii(struct tsi108_prv_data *data, int reg) 204 { 205 unsigned i; 206 207 TSI_WRITE_PHY(TSI108_MAC_MII_ADDR, 208 (data->phy << TSI108_MAC_MII_ADDR_PHY) | 209 (reg << TSI108_MAC_MII_ADDR_REG)); 210 TSI_WRITE_PHY(TSI108_MAC_MII_CMD, 0); 211 TSI_WRITE_PHY(TSI108_MAC_MII_CMD, TSI108_MAC_MII_CMD_READ); 212 for (i = 0; i < 100; i++) { 213 if (!(TSI_READ_PHY(TSI108_MAC_MII_IND) & 214 (TSI108_MAC_MII_IND_NOTVALID | TSI108_MAC_MII_IND_BUSY))) 215 break; 216 udelay(10); 217 } 218 219 if (i == 100) 220 return 0xffff; 221 else 222 return TSI_READ_PHY(TSI108_MAC_MII_DATAIN); 223 } 224 225 static void tsi108_write_mii(struct tsi108_prv_data *data, 226 int reg, u16 val) 227 { 228 unsigned i = 100; 229 TSI_WRITE_PHY(TSI108_MAC_MII_ADDR, 230 (data->phy << TSI108_MAC_MII_ADDR_PHY) | 231 (reg << TSI108_MAC_MII_ADDR_REG)); 232 TSI_WRITE_PHY(TSI108_MAC_MII_DATAOUT, val); 233 while (i--) { 234 if(!(TSI_READ_PHY(TSI108_MAC_MII_IND) & 235 TSI108_MAC_MII_IND_BUSY)) 236 break; 237 udelay(10); 238 } 239 } 240 241 static int tsi108_mdio_read(struct net_device *dev, int addr, int reg) 242 { 243 struct tsi108_prv_data *data = netdev_priv(dev); 244 return tsi108_read_mii(data, reg); 245 } 246 247 static void tsi108_mdio_write(struct net_device *dev, int addr, int reg, int val) 248 { 249 struct tsi108_prv_data *data = netdev_priv(dev); 250 tsi108_write_mii(data, reg, val); 251 } 252 253 static inline void tsi108_write_tbi(struct tsi108_prv_data *data, 254 int reg, u16 val) 255 { 256 unsigned i = 1000; 257 TSI_WRITE(TSI108_MAC_MII_ADDR, 258 (0x1e << TSI108_MAC_MII_ADDR_PHY) 259 | (reg << TSI108_MAC_MII_ADDR_REG)); 260 TSI_WRITE(TSI108_MAC_MII_DATAOUT, val); 261 while(i--) { 262 if(!(TSI_READ(TSI108_MAC_MII_IND) & TSI108_MAC_MII_IND_BUSY)) 263 return; 264 udelay(10); 265 } 266 printk(KERN_ERR "%s function time out\n", __func__); 267 } 268 269 static int mii_speed(struct mii_if_info *mii) 270 { 271 int advert, lpa, val, media; 272 int lpa2 = 0; 273 int speed; 274 275 if (!mii_link_ok(mii)) 276 return 0; 277 278 val = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_BMSR); 279 if ((val & BMSR_ANEGCOMPLETE) == 0) 280 return 0; 281 282 advert = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_ADVERTISE); 283 lpa = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_LPA); 284 media = mii_nway_result(advert & lpa); 285 286 if (mii->supports_gmii) 287 lpa2 = mii->mdio_read(mii->dev, mii->phy_id, MII_STAT1000); 288 289 speed = lpa2 & (LPA_1000FULL | LPA_1000HALF) ? 1000 : 290 (media & (ADVERTISE_100FULL | ADVERTISE_100HALF) ? 100 : 10); 291 return speed; 292 } 293 294 static void tsi108_check_phy(struct net_device *dev) 295 { 296 struct tsi108_prv_data *data = netdev_priv(dev); 297 u32 mac_cfg2_reg, portctrl_reg; 298 u32 duplex; 299 u32 speed; 300 unsigned long flags; 301 302 spin_lock_irqsave(&phy_lock, flags); 303 304 if (!data->phy_ok) 305 goto out; 306 307 duplex = mii_check_media(&data->mii_if, netif_msg_link(data), data->init_media); 308 data->init_media = 0; 309 310 if (netif_carrier_ok(dev)) { 311 312 speed = mii_speed(&data->mii_if); 313 314 if ((speed != data->speed) || duplex) { 315 316 mac_cfg2_reg = TSI_READ(TSI108_MAC_CFG2); 317 portctrl_reg = TSI_READ(TSI108_EC_PORTCTRL); 318 319 mac_cfg2_reg &= ~TSI108_MAC_CFG2_IFACE_MASK; 320 321 if (speed == 1000) { 322 mac_cfg2_reg |= TSI108_MAC_CFG2_GIG; 323 portctrl_reg &= ~TSI108_EC_PORTCTRL_NOGIG; 324 } else { 325 mac_cfg2_reg |= TSI108_MAC_CFG2_NOGIG; 326 portctrl_reg |= TSI108_EC_PORTCTRL_NOGIG; 327 } 328 329 data->speed = speed; 330 331 if (data->mii_if.full_duplex) { 332 mac_cfg2_reg |= TSI108_MAC_CFG2_FULLDUPLEX; 333 portctrl_reg &= ~TSI108_EC_PORTCTRL_HALFDUPLEX; 334 data->duplex = 2; 335 } else { 336 mac_cfg2_reg &= ~TSI108_MAC_CFG2_FULLDUPLEX; 337 portctrl_reg |= TSI108_EC_PORTCTRL_HALFDUPLEX; 338 data->duplex = 1; 339 } 340 341 TSI_WRITE(TSI108_MAC_CFG2, mac_cfg2_reg); 342 TSI_WRITE(TSI108_EC_PORTCTRL, portctrl_reg); 343 } 344 345 if (data->link_up == 0) { 346 /* The manual says it can take 3-4 usecs for the speed change 347 * to take effect. 348 */ 349 udelay(5); 350 351 spin_lock(&data->txlock); 352 if (is_valid_ether_addr(dev->dev_addr) && data->txfree) 353 netif_wake_queue(dev); 354 355 data->link_up = 1; 356 spin_unlock(&data->txlock); 357 } 358 } else { 359 if (data->link_up == 1) { 360 netif_stop_queue(dev); 361 data->link_up = 0; 362 printk(KERN_NOTICE "%s : link is down\n", dev->name); 363 } 364 365 goto out; 366 } 367 368 369 out: 370 spin_unlock_irqrestore(&phy_lock, flags); 371 } 372 373 static inline void 374 tsi108_stat_carry_one(int carry, int carry_bit, int carry_shift, 375 unsigned long *upper) 376 { 377 if (carry & carry_bit) 378 *upper += carry_shift; 379 } 380 381 static void tsi108_stat_carry(struct net_device *dev) 382 { 383 struct tsi108_prv_data *data = netdev_priv(dev); 384 u32 carry1, carry2; 385 386 spin_lock_irq(&data->misclock); 387 388 carry1 = TSI_READ(TSI108_STAT_CARRY1); 389 carry2 = TSI_READ(TSI108_STAT_CARRY2); 390 391 TSI_WRITE(TSI108_STAT_CARRY1, carry1); 392 TSI_WRITE(TSI108_STAT_CARRY2, carry2); 393 394 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXBYTES, 395 TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes); 396 397 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXPKTS, 398 TSI108_STAT_RXPKTS_CARRY, 399 &data->stats.rx_packets); 400 401 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFCS, 402 TSI108_STAT_RXFCS_CARRY, &data->rx_fcs); 403 404 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXMCAST, 405 TSI108_STAT_RXMCAST_CARRY, 406 &data->stats.multicast); 407 408 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXALIGN, 409 TSI108_STAT_RXALIGN_CARRY, 410 &data->stats.rx_frame_errors); 411 412 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXLENGTH, 413 TSI108_STAT_RXLENGTH_CARRY, 414 &data->stats.rx_length_errors); 415 416 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXRUNT, 417 TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns); 418 419 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJUMBO, 420 TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns); 421 422 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFRAG, 423 TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs); 424 425 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJABBER, 426 TSI108_STAT_RXJABBER_CARRY, &data->rx_long_fcs); 427 428 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXDROP, 429 TSI108_STAT_RXDROP_CARRY, 430 &data->stats.rx_missed_errors); 431 432 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXBYTES, 433 TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes); 434 435 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPKTS, 436 TSI108_STAT_TXPKTS_CARRY, 437 &data->stats.tx_packets); 438 439 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXDEF, 440 TSI108_STAT_TXEXDEF_CARRY, 441 &data->stats.tx_aborted_errors); 442 443 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXCOL, 444 TSI108_STAT_TXEXCOL_CARRY, &data->tx_coll_abort); 445 446 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXTCOL, 447 TSI108_STAT_TXTCOL_CARRY, 448 &data->stats.collisions); 449 450 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPAUSE, 451 TSI108_STAT_TXPAUSEDROP_CARRY, 452 &data->tx_pause_drop); 453 454 spin_unlock_irq(&data->misclock); 455 } 456 457 /* Read a stat counter atomically with respect to carries. 458 * data->misclock must be held. 459 */ 460 static inline unsigned long 461 tsi108_read_stat(struct tsi108_prv_data * data, int reg, int carry_bit, 462 int carry_shift, unsigned long *upper) 463 { 464 int carryreg; 465 unsigned long val; 466 467 if (reg < 0xb0) 468 carryreg = TSI108_STAT_CARRY1; 469 else 470 carryreg = TSI108_STAT_CARRY2; 471 472 again: 473 val = TSI_READ(reg) | *upper; 474 475 /* Check to see if it overflowed, but the interrupt hasn't 476 * been serviced yet. If so, handle the carry here, and 477 * try again. 478 */ 479 480 if (unlikely(TSI_READ(carryreg) & carry_bit)) { 481 *upper += carry_shift; 482 TSI_WRITE(carryreg, carry_bit); 483 goto again; 484 } 485 486 return val; 487 } 488 489 static struct net_device_stats *tsi108_get_stats(struct net_device *dev) 490 { 491 unsigned long excol; 492 493 struct tsi108_prv_data *data = netdev_priv(dev); 494 spin_lock_irq(&data->misclock); 495 496 data->tmpstats.rx_packets = 497 tsi108_read_stat(data, TSI108_STAT_RXPKTS, 498 TSI108_STAT_CARRY1_RXPKTS, 499 TSI108_STAT_RXPKTS_CARRY, &data->stats.rx_packets); 500 501 data->tmpstats.tx_packets = 502 tsi108_read_stat(data, TSI108_STAT_TXPKTS, 503 TSI108_STAT_CARRY2_TXPKTS, 504 TSI108_STAT_TXPKTS_CARRY, &data->stats.tx_packets); 505 506 data->tmpstats.rx_bytes = 507 tsi108_read_stat(data, TSI108_STAT_RXBYTES, 508 TSI108_STAT_CARRY1_RXBYTES, 509 TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes); 510 511 data->tmpstats.tx_bytes = 512 tsi108_read_stat(data, TSI108_STAT_TXBYTES, 513 TSI108_STAT_CARRY2_TXBYTES, 514 TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes); 515 516 data->tmpstats.multicast = 517 tsi108_read_stat(data, TSI108_STAT_RXMCAST, 518 TSI108_STAT_CARRY1_RXMCAST, 519 TSI108_STAT_RXMCAST_CARRY, &data->stats.multicast); 520 521 excol = tsi108_read_stat(data, TSI108_STAT_TXEXCOL, 522 TSI108_STAT_CARRY2_TXEXCOL, 523 TSI108_STAT_TXEXCOL_CARRY, 524 &data->tx_coll_abort); 525 526 data->tmpstats.collisions = 527 tsi108_read_stat(data, TSI108_STAT_TXTCOL, 528 TSI108_STAT_CARRY2_TXTCOL, 529 TSI108_STAT_TXTCOL_CARRY, &data->stats.collisions); 530 531 data->tmpstats.collisions += excol; 532 533 data->tmpstats.rx_length_errors = 534 tsi108_read_stat(data, TSI108_STAT_RXLENGTH, 535 TSI108_STAT_CARRY1_RXLENGTH, 536 TSI108_STAT_RXLENGTH_CARRY, 537 &data->stats.rx_length_errors); 538 539 data->tmpstats.rx_length_errors += 540 tsi108_read_stat(data, TSI108_STAT_RXRUNT, 541 TSI108_STAT_CARRY1_RXRUNT, 542 TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns); 543 544 data->tmpstats.rx_length_errors += 545 tsi108_read_stat(data, TSI108_STAT_RXJUMBO, 546 TSI108_STAT_CARRY1_RXJUMBO, 547 TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns); 548 549 data->tmpstats.rx_frame_errors = 550 tsi108_read_stat(data, TSI108_STAT_RXALIGN, 551 TSI108_STAT_CARRY1_RXALIGN, 552 TSI108_STAT_RXALIGN_CARRY, 553 &data->stats.rx_frame_errors); 554 555 data->tmpstats.rx_frame_errors += 556 tsi108_read_stat(data, TSI108_STAT_RXFCS, 557 TSI108_STAT_CARRY1_RXFCS, TSI108_STAT_RXFCS_CARRY, 558 &data->rx_fcs); 559 560 data->tmpstats.rx_frame_errors += 561 tsi108_read_stat(data, TSI108_STAT_RXFRAG, 562 TSI108_STAT_CARRY1_RXFRAG, 563 TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs); 564 565 data->tmpstats.rx_missed_errors = 566 tsi108_read_stat(data, TSI108_STAT_RXDROP, 567 TSI108_STAT_CARRY1_RXDROP, 568 TSI108_STAT_RXDROP_CARRY, 569 &data->stats.rx_missed_errors); 570 571 /* These three are maintained by software. */ 572 data->tmpstats.rx_fifo_errors = data->stats.rx_fifo_errors; 573 data->tmpstats.rx_crc_errors = data->stats.rx_crc_errors; 574 575 data->tmpstats.tx_aborted_errors = 576 tsi108_read_stat(data, TSI108_STAT_TXEXDEF, 577 TSI108_STAT_CARRY2_TXEXDEF, 578 TSI108_STAT_TXEXDEF_CARRY, 579 &data->stats.tx_aborted_errors); 580 581 data->tmpstats.tx_aborted_errors += 582 tsi108_read_stat(data, TSI108_STAT_TXPAUSEDROP, 583 TSI108_STAT_CARRY2_TXPAUSE, 584 TSI108_STAT_TXPAUSEDROP_CARRY, 585 &data->tx_pause_drop); 586 587 data->tmpstats.tx_aborted_errors += excol; 588 589 data->tmpstats.tx_errors = data->tmpstats.tx_aborted_errors; 590 data->tmpstats.rx_errors = data->tmpstats.rx_length_errors + 591 data->tmpstats.rx_crc_errors + 592 data->tmpstats.rx_frame_errors + 593 data->tmpstats.rx_fifo_errors + data->tmpstats.rx_missed_errors; 594 595 spin_unlock_irq(&data->misclock); 596 return &data->tmpstats; 597 } 598 599 static void tsi108_restart_rx(struct tsi108_prv_data * data, struct net_device *dev) 600 { 601 TSI_WRITE(TSI108_EC_RXQ_PTRHIGH, 602 TSI108_EC_RXQ_PTRHIGH_VALID); 603 604 TSI_WRITE(TSI108_EC_RXCTRL, TSI108_EC_RXCTRL_GO 605 | TSI108_EC_RXCTRL_QUEUE0); 606 } 607 608 static void tsi108_restart_tx(struct tsi108_prv_data * data) 609 { 610 TSI_WRITE(TSI108_EC_TXQ_PTRHIGH, 611 TSI108_EC_TXQ_PTRHIGH_VALID); 612 613 TSI_WRITE(TSI108_EC_TXCTRL, TSI108_EC_TXCTRL_IDLEINT | 614 TSI108_EC_TXCTRL_GO | TSI108_EC_TXCTRL_QUEUE0); 615 } 616 617 /* txlock must be held by caller, with IRQs disabled, and 618 * with permission to re-enable them when the lock is dropped. 619 */ 620 static void tsi108_complete_tx(struct net_device *dev) 621 { 622 struct tsi108_prv_data *data = netdev_priv(dev); 623 int tx; 624 struct sk_buff *skb; 625 int release = 0; 626 627 while (!data->txfree || data->txhead != data->txtail) { 628 tx = data->txtail; 629 630 if (data->txring[tx].misc & TSI108_TX_OWN) 631 break; 632 633 skb = data->txskbs[tx]; 634 635 if (!(data->txring[tx].misc & TSI108_TX_OK)) 636 printk("%s: bad tx packet, misc %x\n", 637 dev->name, data->txring[tx].misc); 638 639 data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN; 640 data->txfree++; 641 642 if (data->txring[tx].misc & TSI108_TX_EOF) { 643 dev_kfree_skb_any(skb); 644 release++; 645 } 646 } 647 648 if (release) { 649 if (is_valid_ether_addr(dev->dev_addr) && data->link_up) 650 netif_wake_queue(dev); 651 } 652 } 653 654 static int tsi108_send_packet(struct sk_buff * skb, struct net_device *dev) 655 { 656 struct tsi108_prv_data *data = netdev_priv(dev); 657 int frags = skb_shinfo(skb)->nr_frags + 1; 658 int i; 659 660 if (!data->phy_ok && net_ratelimit()) 661 printk(KERN_ERR "%s: Transmit while PHY is down!\n", dev->name); 662 663 if (!data->link_up) { 664 printk(KERN_ERR "%s: Transmit while link is down!\n", 665 dev->name); 666 netif_stop_queue(dev); 667 return NETDEV_TX_BUSY; 668 } 669 670 if (data->txfree < MAX_SKB_FRAGS + 1) { 671 netif_stop_queue(dev); 672 673 if (net_ratelimit()) 674 printk(KERN_ERR "%s: Transmit with full tx ring!\n", 675 dev->name); 676 return NETDEV_TX_BUSY; 677 } 678 679 if (data->txfree - frags < MAX_SKB_FRAGS + 1) { 680 netif_stop_queue(dev); 681 } 682 683 spin_lock_irq(&data->txlock); 684 685 for (i = 0; i < frags; i++) { 686 int misc = 0; 687 int tx = data->txhead; 688 689 /* This is done to mark every TSI108_TX_INT_FREQ tx buffers with 690 * the interrupt bit. TX descriptor-complete interrupts are 691 * enabled when the queue fills up, and masked when there is 692 * still free space. This way, when saturating the outbound 693 * link, the tx interrupts are kept to a reasonable level. 694 * When the queue is not full, reclamation of skbs still occurs 695 * as new packets are transmitted, or on a queue-empty 696 * interrupt. 697 */ 698 699 if ((tx % TSI108_TX_INT_FREQ == 0) && 700 ((TSI108_TXRING_LEN - data->txfree) >= TSI108_TX_INT_FREQ)) 701 misc = TSI108_TX_INT; 702 703 data->txskbs[tx] = skb; 704 705 if (i == 0) { 706 data->txring[tx].buf0 = dma_map_single(NULL, skb->data, 707 skb_headlen(skb), DMA_TO_DEVICE); 708 data->txring[tx].len = skb_headlen(skb); 709 misc |= TSI108_TX_SOF; 710 } else { 711 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1]; 712 713 data->txring[tx].buf0 = skb_frag_dma_map(NULL, frag, 714 0, 715 skb_frag_size(frag), 716 DMA_TO_DEVICE); 717 data->txring[tx].len = skb_frag_size(frag); 718 } 719 720 if (i == frags - 1) 721 misc |= TSI108_TX_EOF; 722 723 if (netif_msg_pktdata(data)) { 724 int i; 725 printk("%s: Tx Frame contents (%d)\n", dev->name, 726 skb->len); 727 for (i = 0; i < skb->len; i++) 728 printk(" %2.2x", skb->data[i]); 729 printk(".\n"); 730 } 731 data->txring[tx].misc = misc | TSI108_TX_OWN; 732 733 data->txhead = (data->txhead + 1) % TSI108_TXRING_LEN; 734 data->txfree--; 735 } 736 737 tsi108_complete_tx(dev); 738 739 /* This must be done after the check for completed tx descriptors, 740 * so that the tail pointer is correct. 741 */ 742 743 if (!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_QUEUE0)) 744 tsi108_restart_tx(data); 745 746 spin_unlock_irq(&data->txlock); 747 return NETDEV_TX_OK; 748 } 749 750 static int tsi108_complete_rx(struct net_device *dev, int budget) 751 { 752 struct tsi108_prv_data *data = netdev_priv(dev); 753 int done = 0; 754 755 while (data->rxfree && done != budget) { 756 int rx = data->rxtail; 757 struct sk_buff *skb; 758 759 if (data->rxring[rx].misc & TSI108_RX_OWN) 760 break; 761 762 skb = data->rxskbs[rx]; 763 data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN; 764 data->rxfree--; 765 done++; 766 767 if (data->rxring[rx].misc & TSI108_RX_BAD) { 768 spin_lock_irq(&data->misclock); 769 770 if (data->rxring[rx].misc & TSI108_RX_CRC) 771 data->stats.rx_crc_errors++; 772 if (data->rxring[rx].misc & TSI108_RX_OVER) 773 data->stats.rx_fifo_errors++; 774 775 spin_unlock_irq(&data->misclock); 776 777 dev_kfree_skb_any(skb); 778 continue; 779 } 780 if (netif_msg_pktdata(data)) { 781 int i; 782 printk("%s: Rx Frame contents (%d)\n", 783 dev->name, data->rxring[rx].len); 784 for (i = 0; i < data->rxring[rx].len; i++) 785 printk(" %2.2x", skb->data[i]); 786 printk(".\n"); 787 } 788 789 skb_put(skb, data->rxring[rx].len); 790 skb->protocol = eth_type_trans(skb, dev); 791 netif_receive_skb(skb); 792 } 793 794 return done; 795 } 796 797 static int tsi108_refill_rx(struct net_device *dev, int budget) 798 { 799 struct tsi108_prv_data *data = netdev_priv(dev); 800 int done = 0; 801 802 while (data->rxfree != TSI108_RXRING_LEN && done != budget) { 803 int rx = data->rxhead; 804 struct sk_buff *skb; 805 806 skb = netdev_alloc_skb_ip_align(dev, TSI108_RXBUF_SIZE); 807 data->rxskbs[rx] = skb; 808 if (!skb) 809 break; 810 811 data->rxring[rx].buf0 = dma_map_single(NULL, skb->data, 812 TSI108_RX_SKB_SIZE, 813 DMA_FROM_DEVICE); 814 815 /* Sometimes the hardware sets blen to zero after packet 816 * reception, even though the manual says that it's only ever 817 * modified by the driver. 818 */ 819 820 data->rxring[rx].blen = TSI108_RX_SKB_SIZE; 821 data->rxring[rx].misc = TSI108_RX_OWN | TSI108_RX_INT; 822 823 data->rxhead = (data->rxhead + 1) % TSI108_RXRING_LEN; 824 data->rxfree++; 825 done++; 826 } 827 828 if (done != 0 && !(TSI_READ(TSI108_EC_RXSTAT) & 829 TSI108_EC_RXSTAT_QUEUE0)) 830 tsi108_restart_rx(data, dev); 831 832 return done; 833 } 834 835 static int tsi108_poll(struct napi_struct *napi, int budget) 836 { 837 struct tsi108_prv_data *data = container_of(napi, struct tsi108_prv_data, napi); 838 struct net_device *dev = data->dev; 839 u32 estat = TSI_READ(TSI108_EC_RXESTAT); 840 u32 intstat = TSI_READ(TSI108_EC_INTSTAT); 841 int num_received = 0, num_filled = 0; 842 843 intstat &= TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH | 844 TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR | TSI108_INT_RXWAIT; 845 846 TSI_WRITE(TSI108_EC_RXESTAT, estat); 847 TSI_WRITE(TSI108_EC_INTSTAT, intstat); 848 849 if (data->rxpending || (estat & TSI108_EC_RXESTAT_Q0_DESCINT)) 850 num_received = tsi108_complete_rx(dev, budget); 851 852 /* This should normally fill no more slots than the number of 853 * packets received in tsi108_complete_rx(). The exception 854 * is when we previously ran out of memory for RX SKBs. In that 855 * case, it's helpful to obey the budget, not only so that the 856 * CPU isn't hogged, but so that memory (which may still be low) 857 * is not hogged by one device. 858 * 859 * A work unit is considered to be two SKBs to allow us to catch 860 * up when the ring has shrunk due to out-of-memory but we're 861 * still removing the full budget's worth of packets each time. 862 */ 863 864 if (data->rxfree < TSI108_RXRING_LEN) 865 num_filled = tsi108_refill_rx(dev, budget * 2); 866 867 if (intstat & TSI108_INT_RXERROR) { 868 u32 err = TSI_READ(TSI108_EC_RXERR); 869 TSI_WRITE(TSI108_EC_RXERR, err); 870 871 if (err) { 872 if (net_ratelimit()) 873 printk(KERN_DEBUG "%s: RX error %x\n", 874 dev->name, err); 875 876 if (!(TSI_READ(TSI108_EC_RXSTAT) & 877 TSI108_EC_RXSTAT_QUEUE0)) 878 tsi108_restart_rx(data, dev); 879 } 880 } 881 882 if (intstat & TSI108_INT_RXOVERRUN) { 883 spin_lock_irq(&data->misclock); 884 data->stats.rx_fifo_errors++; 885 spin_unlock_irq(&data->misclock); 886 } 887 888 if (num_received < budget) { 889 data->rxpending = 0; 890 napi_complete_done(napi, num_received); 891 892 TSI_WRITE(TSI108_EC_INTMASK, 893 TSI_READ(TSI108_EC_INTMASK) 894 & ~(TSI108_INT_RXQUEUE0 895 | TSI108_INT_RXTHRESH | 896 TSI108_INT_RXOVERRUN | 897 TSI108_INT_RXERROR | 898 TSI108_INT_RXWAIT)); 899 } else { 900 data->rxpending = 1; 901 } 902 903 return num_received; 904 } 905 906 static void tsi108_rx_int(struct net_device *dev) 907 { 908 struct tsi108_prv_data *data = netdev_priv(dev); 909 910 /* A race could cause dev to already be scheduled, so it's not an 911 * error if that happens (and interrupts shouldn't be re-masked, 912 * because that can cause harmful races, if poll has already 913 * unmasked them but not cleared LINK_STATE_SCHED). 914 * 915 * This can happen if this code races with tsi108_poll(), which masks 916 * the interrupts after tsi108_irq_one() read the mask, but before 917 * napi_schedule is called. It could also happen due to calls 918 * from tsi108_check_rxring(). 919 */ 920 921 if (napi_schedule_prep(&data->napi)) { 922 /* Mask, rather than ack, the receive interrupts. The ack 923 * will happen in tsi108_poll(). 924 */ 925 926 TSI_WRITE(TSI108_EC_INTMASK, 927 TSI_READ(TSI108_EC_INTMASK) | 928 TSI108_INT_RXQUEUE0 929 | TSI108_INT_RXTHRESH | 930 TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR | 931 TSI108_INT_RXWAIT); 932 __napi_schedule(&data->napi); 933 } else { 934 if (!netif_running(dev)) { 935 /* This can happen if an interrupt occurs while the 936 * interface is being brought down, as the START 937 * bit is cleared before the stop function is called. 938 * 939 * In this case, the interrupts must be masked, or 940 * they will continue indefinitely. 941 * 942 * There's a race here if the interface is brought down 943 * and then up in rapid succession, as the device could 944 * be made running after the above check and before 945 * the masking below. This will only happen if the IRQ 946 * thread has a lower priority than the task brining 947 * up the interface. Fixing this race would likely 948 * require changes in generic code. 949 */ 950 951 TSI_WRITE(TSI108_EC_INTMASK, 952 TSI_READ 953 (TSI108_EC_INTMASK) | 954 TSI108_INT_RXQUEUE0 | 955 TSI108_INT_RXTHRESH | 956 TSI108_INT_RXOVERRUN | 957 TSI108_INT_RXERROR | 958 TSI108_INT_RXWAIT); 959 } 960 } 961 } 962 963 /* If the RX ring has run out of memory, try periodically 964 * to allocate some more, as otherwise poll would never 965 * get called (apart from the initial end-of-queue condition). 966 * 967 * This is called once per second (by default) from the thread. 968 */ 969 970 static void tsi108_check_rxring(struct net_device *dev) 971 { 972 struct tsi108_prv_data *data = netdev_priv(dev); 973 974 /* A poll is scheduled, as opposed to caling tsi108_refill_rx 975 * directly, so as to keep the receive path single-threaded 976 * (and thus not needing a lock). 977 */ 978 979 if (netif_running(dev) && data->rxfree < TSI108_RXRING_LEN / 4) 980 tsi108_rx_int(dev); 981 } 982 983 static void tsi108_tx_int(struct net_device *dev) 984 { 985 struct tsi108_prv_data *data = netdev_priv(dev); 986 u32 estat = TSI_READ(TSI108_EC_TXESTAT); 987 988 TSI_WRITE(TSI108_EC_TXESTAT, estat); 989 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_TXQUEUE0 | 990 TSI108_INT_TXIDLE | TSI108_INT_TXERROR); 991 if (estat & TSI108_EC_TXESTAT_Q0_ERR) { 992 u32 err = TSI_READ(TSI108_EC_TXERR); 993 TSI_WRITE(TSI108_EC_TXERR, err); 994 995 if (err && net_ratelimit()) 996 printk(KERN_ERR "%s: TX error %x\n", dev->name, err); 997 } 998 999 if (estat & (TSI108_EC_TXESTAT_Q0_DESCINT | TSI108_EC_TXESTAT_Q0_EOQ)) { 1000 spin_lock(&data->txlock); 1001 tsi108_complete_tx(dev); 1002 spin_unlock(&data->txlock); 1003 } 1004 } 1005 1006 1007 static irqreturn_t tsi108_irq(int irq, void *dev_id) 1008 { 1009 struct net_device *dev = dev_id; 1010 struct tsi108_prv_data *data = netdev_priv(dev); 1011 u32 stat = TSI_READ(TSI108_EC_INTSTAT); 1012 1013 if (!(stat & TSI108_INT_ANY)) 1014 return IRQ_NONE; /* Not our interrupt */ 1015 1016 stat &= ~TSI_READ(TSI108_EC_INTMASK); 1017 1018 if (stat & (TSI108_INT_TXQUEUE0 | TSI108_INT_TXIDLE | 1019 TSI108_INT_TXERROR)) 1020 tsi108_tx_int(dev); 1021 if (stat & (TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH | 1022 TSI108_INT_RXWAIT | TSI108_INT_RXOVERRUN | 1023 TSI108_INT_RXERROR)) 1024 tsi108_rx_int(dev); 1025 1026 if (stat & TSI108_INT_SFN) { 1027 if (net_ratelimit()) 1028 printk(KERN_DEBUG "%s: SFN error\n", dev->name); 1029 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_SFN); 1030 } 1031 1032 if (stat & TSI108_INT_STATCARRY) { 1033 tsi108_stat_carry(dev); 1034 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_STATCARRY); 1035 } 1036 1037 return IRQ_HANDLED; 1038 } 1039 1040 static void tsi108_stop_ethernet(struct net_device *dev) 1041 { 1042 struct tsi108_prv_data *data = netdev_priv(dev); 1043 int i = 1000; 1044 /* Disable all TX and RX queues ... */ 1045 TSI_WRITE(TSI108_EC_TXCTRL, 0); 1046 TSI_WRITE(TSI108_EC_RXCTRL, 0); 1047 1048 /* ...and wait for them to become idle */ 1049 while(i--) { 1050 if(!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_ACTIVE)) 1051 break; 1052 udelay(10); 1053 } 1054 i = 1000; 1055 while(i--){ 1056 if(!(TSI_READ(TSI108_EC_RXSTAT) & TSI108_EC_RXSTAT_ACTIVE)) 1057 return; 1058 udelay(10); 1059 } 1060 printk(KERN_ERR "%s function time out\n", __func__); 1061 } 1062 1063 static void tsi108_reset_ether(struct tsi108_prv_data * data) 1064 { 1065 TSI_WRITE(TSI108_MAC_CFG1, TSI108_MAC_CFG1_SOFTRST); 1066 udelay(100); 1067 TSI_WRITE(TSI108_MAC_CFG1, 0); 1068 1069 TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATRST); 1070 udelay(100); 1071 TSI_WRITE(TSI108_EC_PORTCTRL, 1072 TSI_READ(TSI108_EC_PORTCTRL) & 1073 ~TSI108_EC_PORTCTRL_STATRST); 1074 1075 TSI_WRITE(TSI108_EC_TXCFG, TSI108_EC_TXCFG_RST); 1076 udelay(100); 1077 TSI_WRITE(TSI108_EC_TXCFG, 1078 TSI_READ(TSI108_EC_TXCFG) & 1079 ~TSI108_EC_TXCFG_RST); 1080 1081 TSI_WRITE(TSI108_EC_RXCFG, TSI108_EC_RXCFG_RST); 1082 udelay(100); 1083 TSI_WRITE(TSI108_EC_RXCFG, 1084 TSI_READ(TSI108_EC_RXCFG) & 1085 ~TSI108_EC_RXCFG_RST); 1086 1087 TSI_WRITE(TSI108_MAC_MII_MGMT_CFG, 1088 TSI_READ(TSI108_MAC_MII_MGMT_CFG) | 1089 TSI108_MAC_MII_MGMT_RST); 1090 udelay(100); 1091 TSI_WRITE(TSI108_MAC_MII_MGMT_CFG, 1092 (TSI_READ(TSI108_MAC_MII_MGMT_CFG) & 1093 ~(TSI108_MAC_MII_MGMT_RST | 1094 TSI108_MAC_MII_MGMT_CLK)) | 0x07); 1095 } 1096 1097 static int tsi108_get_mac(struct net_device *dev) 1098 { 1099 struct tsi108_prv_data *data = netdev_priv(dev); 1100 u32 word1 = TSI_READ(TSI108_MAC_ADDR1); 1101 u32 word2 = TSI_READ(TSI108_MAC_ADDR2); 1102 1103 /* Note that the octets are reversed from what the manual says, 1104 * producing an even weirder ordering... 1105 */ 1106 if (word2 == 0 && word1 == 0) { 1107 dev->dev_addr[0] = 0x00; 1108 dev->dev_addr[1] = 0x06; 1109 dev->dev_addr[2] = 0xd2; 1110 dev->dev_addr[3] = 0x00; 1111 dev->dev_addr[4] = 0x00; 1112 if (0x8 == data->phy) 1113 dev->dev_addr[5] = 0x01; 1114 else 1115 dev->dev_addr[5] = 0x02; 1116 1117 word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24); 1118 1119 word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) | 1120 (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24); 1121 1122 TSI_WRITE(TSI108_MAC_ADDR1, word1); 1123 TSI_WRITE(TSI108_MAC_ADDR2, word2); 1124 } else { 1125 dev->dev_addr[0] = (word2 >> 16) & 0xff; 1126 dev->dev_addr[1] = (word2 >> 24) & 0xff; 1127 dev->dev_addr[2] = (word1 >> 0) & 0xff; 1128 dev->dev_addr[3] = (word1 >> 8) & 0xff; 1129 dev->dev_addr[4] = (word1 >> 16) & 0xff; 1130 dev->dev_addr[5] = (word1 >> 24) & 0xff; 1131 } 1132 1133 if (!is_valid_ether_addr(dev->dev_addr)) { 1134 printk(KERN_ERR 1135 "%s: Invalid MAC address. word1: %08x, word2: %08x\n", 1136 dev->name, word1, word2); 1137 return -EINVAL; 1138 } 1139 1140 return 0; 1141 } 1142 1143 static int tsi108_set_mac(struct net_device *dev, void *addr) 1144 { 1145 struct tsi108_prv_data *data = netdev_priv(dev); 1146 u32 word1, word2; 1147 int i; 1148 1149 if (!is_valid_ether_addr(addr)) 1150 return -EADDRNOTAVAIL; 1151 1152 for (i = 0; i < 6; i++) 1153 /* +2 is for the offset of the HW addr type */ 1154 dev->dev_addr[i] = ((unsigned char *)addr)[i + 2]; 1155 1156 word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24); 1157 1158 word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) | 1159 (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24); 1160 1161 spin_lock_irq(&data->misclock); 1162 TSI_WRITE(TSI108_MAC_ADDR1, word1); 1163 TSI_WRITE(TSI108_MAC_ADDR2, word2); 1164 spin_lock(&data->txlock); 1165 1166 if (data->txfree && data->link_up) 1167 netif_wake_queue(dev); 1168 1169 spin_unlock(&data->txlock); 1170 spin_unlock_irq(&data->misclock); 1171 return 0; 1172 } 1173 1174 /* Protected by dev->xmit_lock. */ 1175 static void tsi108_set_rx_mode(struct net_device *dev) 1176 { 1177 struct tsi108_prv_data *data = netdev_priv(dev); 1178 u32 rxcfg = TSI_READ(TSI108_EC_RXCFG); 1179 1180 if (dev->flags & IFF_PROMISC) { 1181 rxcfg &= ~(TSI108_EC_RXCFG_UC_HASH | TSI108_EC_RXCFG_MC_HASH); 1182 rxcfg |= TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE; 1183 goto out; 1184 } 1185 1186 rxcfg &= ~(TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE); 1187 1188 if (dev->flags & IFF_ALLMULTI || !netdev_mc_empty(dev)) { 1189 int i; 1190 struct netdev_hw_addr *ha; 1191 rxcfg |= TSI108_EC_RXCFG_MFE | TSI108_EC_RXCFG_MC_HASH; 1192 1193 memset(data->mc_hash, 0, sizeof(data->mc_hash)); 1194 1195 netdev_for_each_mc_addr(ha, dev) { 1196 u32 hash, crc; 1197 1198 crc = ether_crc(6, ha->addr); 1199 hash = crc >> 23; 1200 __set_bit(hash, &data->mc_hash[0]); 1201 } 1202 1203 TSI_WRITE(TSI108_EC_HASHADDR, 1204 TSI108_EC_HASHADDR_AUTOINC | 1205 TSI108_EC_HASHADDR_MCAST); 1206 1207 for (i = 0; i < 16; i++) { 1208 /* The manual says that the hardware may drop 1209 * back-to-back writes to the data register. 1210 */ 1211 udelay(1); 1212 TSI_WRITE(TSI108_EC_HASHDATA, 1213 data->mc_hash[i]); 1214 } 1215 } 1216 1217 out: 1218 TSI_WRITE(TSI108_EC_RXCFG, rxcfg); 1219 } 1220 1221 static void tsi108_init_phy(struct net_device *dev) 1222 { 1223 struct tsi108_prv_data *data = netdev_priv(dev); 1224 u32 i = 0; 1225 u16 phyval = 0; 1226 unsigned long flags; 1227 1228 spin_lock_irqsave(&phy_lock, flags); 1229 1230 tsi108_write_mii(data, MII_BMCR, BMCR_RESET); 1231 while (--i) { 1232 if(!(tsi108_read_mii(data, MII_BMCR) & BMCR_RESET)) 1233 break; 1234 udelay(10); 1235 } 1236 if (i == 0) 1237 printk(KERN_ERR "%s function time out\n", __func__); 1238 1239 if (data->phy_type == TSI108_PHY_BCM54XX) { 1240 tsi108_write_mii(data, 0x09, 0x0300); 1241 tsi108_write_mii(data, 0x10, 0x1020); 1242 tsi108_write_mii(data, 0x1c, 0x8c00); 1243 } 1244 1245 tsi108_write_mii(data, 1246 MII_BMCR, 1247 BMCR_ANENABLE | BMCR_ANRESTART); 1248 while (tsi108_read_mii(data, MII_BMCR) & BMCR_ANRESTART) 1249 cpu_relax(); 1250 1251 /* Set G/MII mode and receive clock select in TBI control #2. The 1252 * second port won't work if this isn't done, even though we don't 1253 * use TBI mode. 1254 */ 1255 1256 tsi108_write_tbi(data, 0x11, 0x30); 1257 1258 /* FIXME: It seems to take more than 2 back-to-back reads to the 1259 * PHY_STAT register before the link up status bit is set. 1260 */ 1261 1262 data->link_up = 0; 1263 1264 while (!((phyval = tsi108_read_mii(data, MII_BMSR)) & 1265 BMSR_LSTATUS)) { 1266 if (i++ > (MII_READ_DELAY / 10)) { 1267 break; 1268 } 1269 spin_unlock_irqrestore(&phy_lock, flags); 1270 msleep(10); 1271 spin_lock_irqsave(&phy_lock, flags); 1272 } 1273 1274 data->mii_if.supports_gmii = mii_check_gmii_support(&data->mii_if); 1275 printk(KERN_DEBUG "PHY_STAT reg contains %08x\n", phyval); 1276 data->phy_ok = 1; 1277 data->init_media = 1; 1278 spin_unlock_irqrestore(&phy_lock, flags); 1279 } 1280 1281 static void tsi108_kill_phy(struct net_device *dev) 1282 { 1283 struct tsi108_prv_data *data = netdev_priv(dev); 1284 unsigned long flags; 1285 1286 spin_lock_irqsave(&phy_lock, flags); 1287 tsi108_write_mii(data, MII_BMCR, BMCR_PDOWN); 1288 data->phy_ok = 0; 1289 spin_unlock_irqrestore(&phy_lock, flags); 1290 } 1291 1292 static int tsi108_open(struct net_device *dev) 1293 { 1294 int i; 1295 struct tsi108_prv_data *data = netdev_priv(dev); 1296 unsigned int rxring_size = TSI108_RXRING_LEN * sizeof(rx_desc); 1297 unsigned int txring_size = TSI108_TXRING_LEN * sizeof(tx_desc); 1298 1299 i = request_irq(data->irq_num, tsi108_irq, 0, dev->name, dev); 1300 if (i != 0) { 1301 printk(KERN_ERR "tsi108_eth%d: Could not allocate IRQ%d.\n", 1302 data->id, data->irq_num); 1303 return i; 1304 } else { 1305 dev->irq = data->irq_num; 1306 printk(KERN_NOTICE 1307 "tsi108_open : Port %d Assigned IRQ %d to %s\n", 1308 data->id, dev->irq, dev->name); 1309 } 1310 1311 data->rxring = dma_zalloc_coherent(NULL, rxring_size, &data->rxdma, 1312 GFP_KERNEL); 1313 if (!data->rxring) 1314 return -ENOMEM; 1315 1316 data->txring = dma_zalloc_coherent(NULL, txring_size, &data->txdma, 1317 GFP_KERNEL); 1318 if (!data->txring) { 1319 pci_free_consistent(NULL, rxring_size, data->rxring, 1320 data->rxdma); 1321 return -ENOMEM; 1322 } 1323 1324 for (i = 0; i < TSI108_RXRING_LEN; i++) { 1325 data->rxring[i].next0 = data->rxdma + (i + 1) * sizeof(rx_desc); 1326 data->rxring[i].blen = TSI108_RXBUF_SIZE; 1327 data->rxring[i].vlan = 0; 1328 } 1329 1330 data->rxring[TSI108_RXRING_LEN - 1].next0 = data->rxdma; 1331 1332 data->rxtail = 0; 1333 data->rxhead = 0; 1334 1335 for (i = 0; i < TSI108_RXRING_LEN; i++) { 1336 struct sk_buff *skb; 1337 1338 skb = netdev_alloc_skb_ip_align(dev, TSI108_RXBUF_SIZE); 1339 if (!skb) { 1340 /* Bah. No memory for now, but maybe we'll get 1341 * some more later. 1342 * For now, we'll live with the smaller ring. 1343 */ 1344 printk(KERN_WARNING 1345 "%s: Could only allocate %d receive skb(s).\n", 1346 dev->name, i); 1347 data->rxhead = i; 1348 break; 1349 } 1350 1351 data->rxskbs[i] = skb; 1352 data->rxring[i].buf0 = virt_to_phys(data->rxskbs[i]->data); 1353 data->rxring[i].misc = TSI108_RX_OWN | TSI108_RX_INT; 1354 } 1355 1356 data->rxfree = i; 1357 TSI_WRITE(TSI108_EC_RXQ_PTRLOW, data->rxdma); 1358 1359 for (i = 0; i < TSI108_TXRING_LEN; i++) { 1360 data->txring[i].next0 = data->txdma + (i + 1) * sizeof(tx_desc); 1361 data->txring[i].misc = 0; 1362 } 1363 1364 data->txring[TSI108_TXRING_LEN - 1].next0 = data->txdma; 1365 data->txtail = 0; 1366 data->txhead = 0; 1367 data->txfree = TSI108_TXRING_LEN; 1368 TSI_WRITE(TSI108_EC_TXQ_PTRLOW, data->txdma); 1369 tsi108_init_phy(dev); 1370 1371 napi_enable(&data->napi); 1372 1373 timer_setup(&data->timer, tsi108_timed_checker, 0); 1374 mod_timer(&data->timer, jiffies + 1); 1375 1376 tsi108_restart_rx(data, dev); 1377 1378 TSI_WRITE(TSI108_EC_INTSTAT, ~0); 1379 1380 TSI_WRITE(TSI108_EC_INTMASK, 1381 ~(TSI108_INT_TXQUEUE0 | TSI108_INT_RXERROR | 1382 TSI108_INT_RXTHRESH | TSI108_INT_RXQUEUE0 | 1383 TSI108_INT_RXOVERRUN | TSI108_INT_RXWAIT | 1384 TSI108_INT_SFN | TSI108_INT_STATCARRY)); 1385 1386 TSI_WRITE(TSI108_MAC_CFG1, 1387 TSI108_MAC_CFG1_RXEN | TSI108_MAC_CFG1_TXEN); 1388 netif_start_queue(dev); 1389 return 0; 1390 } 1391 1392 static int tsi108_close(struct net_device *dev) 1393 { 1394 struct tsi108_prv_data *data = netdev_priv(dev); 1395 1396 netif_stop_queue(dev); 1397 napi_disable(&data->napi); 1398 1399 del_timer_sync(&data->timer); 1400 1401 tsi108_stop_ethernet(dev); 1402 tsi108_kill_phy(dev); 1403 TSI_WRITE(TSI108_EC_INTMASK, ~0); 1404 TSI_WRITE(TSI108_MAC_CFG1, 0); 1405 1406 /* Check for any pending TX packets, and drop them. */ 1407 1408 while (!data->txfree || data->txhead != data->txtail) { 1409 int tx = data->txtail; 1410 struct sk_buff *skb; 1411 skb = data->txskbs[tx]; 1412 data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN; 1413 data->txfree++; 1414 dev_kfree_skb(skb); 1415 } 1416 1417 free_irq(data->irq_num, dev); 1418 1419 /* Discard the RX ring. */ 1420 1421 while (data->rxfree) { 1422 int rx = data->rxtail; 1423 struct sk_buff *skb; 1424 1425 skb = data->rxskbs[rx]; 1426 data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN; 1427 data->rxfree--; 1428 dev_kfree_skb(skb); 1429 } 1430 1431 dma_free_coherent(0, 1432 TSI108_RXRING_LEN * sizeof(rx_desc), 1433 data->rxring, data->rxdma); 1434 dma_free_coherent(0, 1435 TSI108_TXRING_LEN * sizeof(tx_desc), 1436 data->txring, data->txdma); 1437 1438 return 0; 1439 } 1440 1441 static void tsi108_init_mac(struct net_device *dev) 1442 { 1443 struct tsi108_prv_data *data = netdev_priv(dev); 1444 1445 TSI_WRITE(TSI108_MAC_CFG2, TSI108_MAC_CFG2_DFLT_PREAMBLE | 1446 TSI108_MAC_CFG2_PADCRC); 1447 1448 TSI_WRITE(TSI108_EC_TXTHRESH, 1449 (192 << TSI108_EC_TXTHRESH_STARTFILL) | 1450 (192 << TSI108_EC_TXTHRESH_STOPFILL)); 1451 1452 TSI_WRITE(TSI108_STAT_CARRYMASK1, 1453 ~(TSI108_STAT_CARRY1_RXBYTES | 1454 TSI108_STAT_CARRY1_RXPKTS | 1455 TSI108_STAT_CARRY1_RXFCS | 1456 TSI108_STAT_CARRY1_RXMCAST | 1457 TSI108_STAT_CARRY1_RXALIGN | 1458 TSI108_STAT_CARRY1_RXLENGTH | 1459 TSI108_STAT_CARRY1_RXRUNT | 1460 TSI108_STAT_CARRY1_RXJUMBO | 1461 TSI108_STAT_CARRY1_RXFRAG | 1462 TSI108_STAT_CARRY1_RXJABBER | 1463 TSI108_STAT_CARRY1_RXDROP)); 1464 1465 TSI_WRITE(TSI108_STAT_CARRYMASK2, 1466 ~(TSI108_STAT_CARRY2_TXBYTES | 1467 TSI108_STAT_CARRY2_TXPKTS | 1468 TSI108_STAT_CARRY2_TXEXDEF | 1469 TSI108_STAT_CARRY2_TXEXCOL | 1470 TSI108_STAT_CARRY2_TXTCOL | 1471 TSI108_STAT_CARRY2_TXPAUSE)); 1472 1473 TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATEN); 1474 TSI_WRITE(TSI108_MAC_CFG1, 0); 1475 1476 TSI_WRITE(TSI108_EC_RXCFG, 1477 TSI108_EC_RXCFG_SE | TSI108_EC_RXCFG_BFE); 1478 1479 TSI_WRITE(TSI108_EC_TXQ_CFG, TSI108_EC_TXQ_CFG_DESC_INT | 1480 TSI108_EC_TXQ_CFG_EOQ_OWN_INT | 1481 TSI108_EC_TXQ_CFG_WSWP | (TSI108_PBM_PORT << 1482 TSI108_EC_TXQ_CFG_SFNPORT)); 1483 1484 TSI_WRITE(TSI108_EC_RXQ_CFG, TSI108_EC_RXQ_CFG_DESC_INT | 1485 TSI108_EC_RXQ_CFG_EOQ_OWN_INT | 1486 TSI108_EC_RXQ_CFG_WSWP | (TSI108_PBM_PORT << 1487 TSI108_EC_RXQ_CFG_SFNPORT)); 1488 1489 TSI_WRITE(TSI108_EC_TXQ_BUFCFG, 1490 TSI108_EC_TXQ_BUFCFG_BURST256 | 1491 TSI108_EC_TXQ_BUFCFG_BSWP | (TSI108_PBM_PORT << 1492 TSI108_EC_TXQ_BUFCFG_SFNPORT)); 1493 1494 TSI_WRITE(TSI108_EC_RXQ_BUFCFG, 1495 TSI108_EC_RXQ_BUFCFG_BURST256 | 1496 TSI108_EC_RXQ_BUFCFG_BSWP | (TSI108_PBM_PORT << 1497 TSI108_EC_RXQ_BUFCFG_SFNPORT)); 1498 1499 TSI_WRITE(TSI108_EC_INTMASK, ~0); 1500 } 1501 1502 static int tsi108_get_link_ksettings(struct net_device *dev, 1503 struct ethtool_link_ksettings *cmd) 1504 { 1505 struct tsi108_prv_data *data = netdev_priv(dev); 1506 unsigned long flags; 1507 1508 spin_lock_irqsave(&data->txlock, flags); 1509 mii_ethtool_get_link_ksettings(&data->mii_if, cmd); 1510 spin_unlock_irqrestore(&data->txlock, flags); 1511 1512 return 0; 1513 } 1514 1515 static int tsi108_set_link_ksettings(struct net_device *dev, 1516 const struct ethtool_link_ksettings *cmd) 1517 { 1518 struct tsi108_prv_data *data = netdev_priv(dev); 1519 unsigned long flags; 1520 int rc; 1521 1522 spin_lock_irqsave(&data->txlock, flags); 1523 rc = mii_ethtool_set_link_ksettings(&data->mii_if, cmd); 1524 spin_unlock_irqrestore(&data->txlock, flags); 1525 1526 return rc; 1527 } 1528 1529 static int tsi108_do_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1530 { 1531 struct tsi108_prv_data *data = netdev_priv(dev); 1532 if (!netif_running(dev)) 1533 return -EINVAL; 1534 return generic_mii_ioctl(&data->mii_if, if_mii(rq), cmd, NULL); 1535 } 1536 1537 static const struct ethtool_ops tsi108_ethtool_ops = { 1538 .get_link = ethtool_op_get_link, 1539 .get_link_ksettings = tsi108_get_link_ksettings, 1540 .set_link_ksettings = tsi108_set_link_ksettings, 1541 }; 1542 1543 static const struct net_device_ops tsi108_netdev_ops = { 1544 .ndo_open = tsi108_open, 1545 .ndo_stop = tsi108_close, 1546 .ndo_start_xmit = tsi108_send_packet, 1547 .ndo_set_rx_mode = tsi108_set_rx_mode, 1548 .ndo_get_stats = tsi108_get_stats, 1549 .ndo_do_ioctl = tsi108_do_ioctl, 1550 .ndo_set_mac_address = tsi108_set_mac, 1551 .ndo_validate_addr = eth_validate_addr, 1552 }; 1553 1554 static int 1555 tsi108_init_one(struct platform_device *pdev) 1556 { 1557 struct net_device *dev = NULL; 1558 struct tsi108_prv_data *data = NULL; 1559 hw_info *einfo; 1560 int err = 0; 1561 1562 einfo = dev_get_platdata(&pdev->dev); 1563 1564 if (NULL == einfo) { 1565 printk(KERN_ERR "tsi-eth %d: Missing additional data!\n", 1566 pdev->id); 1567 return -ENODEV; 1568 } 1569 1570 /* Create an ethernet device instance */ 1571 1572 dev = alloc_etherdev(sizeof(struct tsi108_prv_data)); 1573 if (!dev) 1574 return -ENOMEM; 1575 1576 printk("tsi108_eth%d: probe...\n", pdev->id); 1577 data = netdev_priv(dev); 1578 data->dev = dev; 1579 1580 pr_debug("tsi108_eth%d:regs:phyresgs:phy:irq_num=0x%x:0x%x:0x%x:0x%x\n", 1581 pdev->id, einfo->regs, einfo->phyregs, 1582 einfo->phy, einfo->irq_num); 1583 1584 data->regs = ioremap(einfo->regs, 0x400); 1585 if (NULL == data->regs) { 1586 err = -ENOMEM; 1587 goto regs_fail; 1588 } 1589 1590 data->phyregs = ioremap(einfo->phyregs, 0x400); 1591 if (NULL == data->phyregs) { 1592 err = -ENOMEM; 1593 goto phyregs_fail; 1594 } 1595 /* MII setup */ 1596 data->mii_if.dev = dev; 1597 data->mii_if.mdio_read = tsi108_mdio_read; 1598 data->mii_if.mdio_write = tsi108_mdio_write; 1599 data->mii_if.phy_id = einfo->phy; 1600 data->mii_if.phy_id_mask = 0x1f; 1601 data->mii_if.reg_num_mask = 0x1f; 1602 1603 data->phy = einfo->phy; 1604 data->phy_type = einfo->phy_type; 1605 data->irq_num = einfo->irq_num; 1606 data->id = pdev->id; 1607 netif_napi_add(dev, &data->napi, tsi108_poll, 64); 1608 dev->netdev_ops = &tsi108_netdev_ops; 1609 dev->ethtool_ops = &tsi108_ethtool_ops; 1610 1611 /* Apparently, the Linux networking code won't use scatter-gather 1612 * if the hardware doesn't do checksums. However, it's faster 1613 * to checksum in place and use SG, as (among other reasons) 1614 * the cache won't be dirtied (which then has to be flushed 1615 * before DMA). The checksumming is done by the driver (via 1616 * a new function skb_csum_dev() in net/core/skbuff.c). 1617 */ 1618 1619 dev->features = NETIF_F_HIGHDMA; 1620 1621 spin_lock_init(&data->txlock); 1622 spin_lock_init(&data->misclock); 1623 1624 tsi108_reset_ether(data); 1625 tsi108_kill_phy(dev); 1626 1627 if ((err = tsi108_get_mac(dev)) != 0) { 1628 printk(KERN_ERR "%s: Invalid MAC address. Please correct.\n", 1629 dev->name); 1630 goto register_fail; 1631 } 1632 1633 tsi108_init_mac(dev); 1634 err = register_netdev(dev); 1635 if (err) { 1636 printk(KERN_ERR "%s: Cannot register net device, aborting.\n", 1637 dev->name); 1638 goto register_fail; 1639 } 1640 1641 platform_set_drvdata(pdev, dev); 1642 printk(KERN_INFO "%s: Tsi108 Gigabit Ethernet, MAC: %pM\n", 1643 dev->name, dev->dev_addr); 1644 #ifdef DEBUG 1645 data->msg_enable = DEBUG; 1646 dump_eth_one(dev); 1647 #endif 1648 1649 return 0; 1650 1651 register_fail: 1652 iounmap(data->phyregs); 1653 1654 phyregs_fail: 1655 iounmap(data->regs); 1656 1657 regs_fail: 1658 free_netdev(dev); 1659 return err; 1660 } 1661 1662 /* There's no way to either get interrupts from the PHY when 1663 * something changes, or to have the Tsi108 automatically communicate 1664 * with the PHY to reconfigure itself. 1665 * 1666 * Thus, we have to do it using a timer. 1667 */ 1668 1669 static void tsi108_timed_checker(struct timer_list *t) 1670 { 1671 struct tsi108_prv_data *data = from_timer(data, t, timer); 1672 struct net_device *dev = data->dev; 1673 1674 tsi108_check_phy(dev); 1675 tsi108_check_rxring(dev); 1676 mod_timer(&data->timer, jiffies + CHECK_PHY_INTERVAL); 1677 } 1678 1679 static int tsi108_ether_remove(struct platform_device *pdev) 1680 { 1681 struct net_device *dev = platform_get_drvdata(pdev); 1682 struct tsi108_prv_data *priv = netdev_priv(dev); 1683 1684 unregister_netdev(dev); 1685 tsi108_stop_ethernet(dev); 1686 iounmap(priv->regs); 1687 iounmap(priv->phyregs); 1688 free_netdev(dev); 1689 1690 return 0; 1691 } 1692 module_platform_driver(tsi_eth_driver); 1693 1694 MODULE_AUTHOR("Tundra Semiconductor Corporation"); 1695 MODULE_DESCRIPTION("Tsi108 Gigabit Ethernet driver"); 1696 MODULE_LICENSE("GPL"); 1697 MODULE_ALIAS("platform:tsi-ethernet"); 1698