1 /******************************************************************************* 2 3 Copyright(c) 2006 Tundra Semiconductor Corporation. 4 5 This program is free software; you can redistribute it and/or modify it 6 under the terms of the GNU General Public License as published by the Free 7 Software Foundation; either version 2 of the License, or (at your option) 8 any later version. 9 10 This program is distributed in the hope that it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, write to the Free Software Foundation, Inc., 59 17 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 18 19 *******************************************************************************/ 20 21 /* This driver is based on the driver code originally developed 22 * for the Intel IOC80314 (ForestLake) Gigabit Ethernet by 23 * scott.wood@timesys.com * Copyright (C) 2003 TimeSys Corporation 24 * 25 * Currently changes from original version are: 26 * - porting to Tsi108-based platform and kernel 2.6 (kong.lai@tundra.com) 27 * - modifications to handle two ports independently and support for 28 * additional PHY devices (alexandre.bounine@tundra.com) 29 * - Get hardware information from platform device. (tie-fei.zang@freescale.com) 30 * 31 */ 32 33 #include <linux/module.h> 34 #include <linux/types.h> 35 #include <linux/init.h> 36 #include <linux/interrupt.h> 37 #include <linux/net.h> 38 #include <linux/netdevice.h> 39 #include <linux/etherdevice.h> 40 #include <linux/ethtool.h> 41 #include <linux/skbuff.h> 42 #include <linux/spinlock.h> 43 #include <linux/delay.h> 44 #include <linux/crc32.h> 45 #include <linux/mii.h> 46 #include <linux/device.h> 47 #include <linux/pci.h> 48 #include <linux/rtnetlink.h> 49 #include <linux/timer.h> 50 #include <linux/platform_device.h> 51 #include <linux/gfp.h> 52 53 #include <asm/system.h> 54 #include <asm/io.h> 55 #include <asm/tsi108.h> 56 57 #include "tsi108_eth.h" 58 59 #define MII_READ_DELAY 10000 /* max link wait time in msec */ 60 61 #define TSI108_RXRING_LEN 256 62 63 /* NOTE: The driver currently does not support receiving packets 64 * larger than the buffer size, so don't decrease this (unless you 65 * want to add such support). 66 */ 67 #define TSI108_RXBUF_SIZE 1536 68 69 #define TSI108_TXRING_LEN 256 70 71 #define TSI108_TX_INT_FREQ 64 72 73 /* Check the phy status every half a second. */ 74 #define CHECK_PHY_INTERVAL (HZ/2) 75 76 static int tsi108_init_one(struct platform_device *pdev); 77 static int tsi108_ether_remove(struct platform_device *pdev); 78 79 struct tsi108_prv_data { 80 void __iomem *regs; /* Base of normal regs */ 81 void __iomem *phyregs; /* Base of register bank used for PHY access */ 82 83 struct net_device *dev; 84 struct napi_struct napi; 85 86 unsigned int phy; /* Index of PHY for this interface */ 87 unsigned int irq_num; 88 unsigned int id; 89 unsigned int phy_type; 90 91 struct timer_list timer;/* Timer that triggers the check phy function */ 92 unsigned int rxtail; /* Next entry in rxring to read */ 93 unsigned int rxhead; /* Next entry in rxring to give a new buffer */ 94 unsigned int rxfree; /* Number of free, allocated RX buffers */ 95 96 unsigned int rxpending; /* Non-zero if there are still descriptors 97 * to be processed from a previous descriptor 98 * interrupt condition that has been cleared */ 99 100 unsigned int txtail; /* Next TX descriptor to check status on */ 101 unsigned int txhead; /* Next TX descriptor to use */ 102 103 /* Number of free TX descriptors. This could be calculated from 104 * rxhead and rxtail if one descriptor were left unused to disambiguate 105 * full and empty conditions, but it's simpler to just keep track 106 * explicitly. */ 107 108 unsigned int txfree; 109 110 unsigned int phy_ok; /* The PHY is currently powered on. */ 111 112 /* PHY status (duplex is 1 for half, 2 for full, 113 * so that the default 0 indicates that neither has 114 * yet been configured). */ 115 116 unsigned int link_up; 117 unsigned int speed; 118 unsigned int duplex; 119 120 tx_desc *txring; 121 rx_desc *rxring; 122 struct sk_buff *txskbs[TSI108_TXRING_LEN]; 123 struct sk_buff *rxskbs[TSI108_RXRING_LEN]; 124 125 dma_addr_t txdma, rxdma; 126 127 /* txlock nests in misclock and phy_lock */ 128 129 spinlock_t txlock, misclock; 130 131 /* stats is used to hold the upper bits of each hardware counter, 132 * and tmpstats is used to hold the full values for returning 133 * to the caller of get_stats(). They must be separate in case 134 * an overflow interrupt occurs before the stats are consumed. 135 */ 136 137 struct net_device_stats stats; 138 struct net_device_stats tmpstats; 139 140 /* These stats are kept separate in hardware, thus require individual 141 * fields for handling carry. They are combined in get_stats. 142 */ 143 144 unsigned long rx_fcs; /* Add to rx_frame_errors */ 145 unsigned long rx_short_fcs; /* Add to rx_frame_errors */ 146 unsigned long rx_long_fcs; /* Add to rx_frame_errors */ 147 unsigned long rx_underruns; /* Add to rx_length_errors */ 148 unsigned long rx_overruns; /* Add to rx_length_errors */ 149 150 unsigned long tx_coll_abort; /* Add to tx_aborted_errors/collisions */ 151 unsigned long tx_pause_drop; /* Add to tx_aborted_errors */ 152 153 unsigned long mc_hash[16]; 154 u32 msg_enable; /* debug message level */ 155 struct mii_if_info mii_if; 156 unsigned int init_media; 157 }; 158 159 /* Structure for a device driver */ 160 161 static struct platform_driver tsi_eth_driver = { 162 .probe = tsi108_init_one, 163 .remove = tsi108_ether_remove, 164 .driver = { 165 .name = "tsi-ethernet", 166 .owner = THIS_MODULE, 167 }, 168 }; 169 170 static void tsi108_timed_checker(unsigned long dev_ptr); 171 172 static void dump_eth_one(struct net_device *dev) 173 { 174 struct tsi108_prv_data *data = netdev_priv(dev); 175 176 printk("Dumping %s...\n", dev->name); 177 printk("intstat %x intmask %x phy_ok %d" 178 " link %d speed %d duplex %d\n", 179 TSI_READ(TSI108_EC_INTSTAT), 180 TSI_READ(TSI108_EC_INTMASK), data->phy_ok, 181 data->link_up, data->speed, data->duplex); 182 183 printk("TX: head %d, tail %d, free %d, stat %x, estat %x, err %x\n", 184 data->txhead, data->txtail, data->txfree, 185 TSI_READ(TSI108_EC_TXSTAT), 186 TSI_READ(TSI108_EC_TXESTAT), 187 TSI_READ(TSI108_EC_TXERR)); 188 189 printk("RX: head %d, tail %d, free %d, stat %x," 190 " estat %x, err %x, pending %d\n\n", 191 data->rxhead, data->rxtail, data->rxfree, 192 TSI_READ(TSI108_EC_RXSTAT), 193 TSI_READ(TSI108_EC_RXESTAT), 194 TSI_READ(TSI108_EC_RXERR), data->rxpending); 195 } 196 197 /* Synchronization is needed between the thread and up/down events. 198 * Note that the PHY is accessed through the same registers for both 199 * interfaces, so this can't be made interface-specific. 200 */ 201 202 static DEFINE_SPINLOCK(phy_lock); 203 204 static int tsi108_read_mii(struct tsi108_prv_data *data, int reg) 205 { 206 unsigned i; 207 208 TSI_WRITE_PHY(TSI108_MAC_MII_ADDR, 209 (data->phy << TSI108_MAC_MII_ADDR_PHY) | 210 (reg << TSI108_MAC_MII_ADDR_REG)); 211 TSI_WRITE_PHY(TSI108_MAC_MII_CMD, 0); 212 TSI_WRITE_PHY(TSI108_MAC_MII_CMD, TSI108_MAC_MII_CMD_READ); 213 for (i = 0; i < 100; i++) { 214 if (!(TSI_READ_PHY(TSI108_MAC_MII_IND) & 215 (TSI108_MAC_MII_IND_NOTVALID | TSI108_MAC_MII_IND_BUSY))) 216 break; 217 udelay(10); 218 } 219 220 if (i == 100) 221 return 0xffff; 222 else 223 return TSI_READ_PHY(TSI108_MAC_MII_DATAIN); 224 } 225 226 static void tsi108_write_mii(struct tsi108_prv_data *data, 227 int reg, u16 val) 228 { 229 unsigned i = 100; 230 TSI_WRITE_PHY(TSI108_MAC_MII_ADDR, 231 (data->phy << TSI108_MAC_MII_ADDR_PHY) | 232 (reg << TSI108_MAC_MII_ADDR_REG)); 233 TSI_WRITE_PHY(TSI108_MAC_MII_DATAOUT, val); 234 while (i--) { 235 if(!(TSI_READ_PHY(TSI108_MAC_MII_IND) & 236 TSI108_MAC_MII_IND_BUSY)) 237 break; 238 udelay(10); 239 } 240 } 241 242 static int tsi108_mdio_read(struct net_device *dev, int addr, int reg) 243 { 244 struct tsi108_prv_data *data = netdev_priv(dev); 245 return tsi108_read_mii(data, reg); 246 } 247 248 static void tsi108_mdio_write(struct net_device *dev, int addr, int reg, int val) 249 { 250 struct tsi108_prv_data *data = netdev_priv(dev); 251 tsi108_write_mii(data, reg, val); 252 } 253 254 static inline void tsi108_write_tbi(struct tsi108_prv_data *data, 255 int reg, u16 val) 256 { 257 unsigned i = 1000; 258 TSI_WRITE(TSI108_MAC_MII_ADDR, 259 (0x1e << TSI108_MAC_MII_ADDR_PHY) 260 | (reg << TSI108_MAC_MII_ADDR_REG)); 261 TSI_WRITE(TSI108_MAC_MII_DATAOUT, val); 262 while(i--) { 263 if(!(TSI_READ(TSI108_MAC_MII_IND) & TSI108_MAC_MII_IND_BUSY)) 264 return; 265 udelay(10); 266 } 267 printk(KERN_ERR "%s function time out\n", __func__); 268 } 269 270 static int mii_speed(struct mii_if_info *mii) 271 { 272 int advert, lpa, val, media; 273 int lpa2 = 0; 274 int speed; 275 276 if (!mii_link_ok(mii)) 277 return 0; 278 279 val = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_BMSR); 280 if ((val & BMSR_ANEGCOMPLETE) == 0) 281 return 0; 282 283 advert = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_ADVERTISE); 284 lpa = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_LPA); 285 media = mii_nway_result(advert & lpa); 286 287 if (mii->supports_gmii) 288 lpa2 = mii->mdio_read(mii->dev, mii->phy_id, MII_STAT1000); 289 290 speed = lpa2 & (LPA_1000FULL | LPA_1000HALF) ? 1000 : 291 (media & (ADVERTISE_100FULL | ADVERTISE_100HALF) ? 100 : 10); 292 return speed; 293 } 294 295 static void tsi108_check_phy(struct net_device *dev) 296 { 297 struct tsi108_prv_data *data = netdev_priv(dev); 298 u32 mac_cfg2_reg, portctrl_reg; 299 u32 duplex; 300 u32 speed; 301 unsigned long flags; 302 303 spin_lock_irqsave(&phy_lock, flags); 304 305 if (!data->phy_ok) 306 goto out; 307 308 duplex = mii_check_media(&data->mii_if, netif_msg_link(data), data->init_media); 309 data->init_media = 0; 310 311 if (netif_carrier_ok(dev)) { 312 313 speed = mii_speed(&data->mii_if); 314 315 if ((speed != data->speed) || duplex) { 316 317 mac_cfg2_reg = TSI_READ(TSI108_MAC_CFG2); 318 portctrl_reg = TSI_READ(TSI108_EC_PORTCTRL); 319 320 mac_cfg2_reg &= ~TSI108_MAC_CFG2_IFACE_MASK; 321 322 if (speed == 1000) { 323 mac_cfg2_reg |= TSI108_MAC_CFG2_GIG; 324 portctrl_reg &= ~TSI108_EC_PORTCTRL_NOGIG; 325 } else { 326 mac_cfg2_reg |= TSI108_MAC_CFG2_NOGIG; 327 portctrl_reg |= TSI108_EC_PORTCTRL_NOGIG; 328 } 329 330 data->speed = speed; 331 332 if (data->mii_if.full_duplex) { 333 mac_cfg2_reg |= TSI108_MAC_CFG2_FULLDUPLEX; 334 portctrl_reg &= ~TSI108_EC_PORTCTRL_HALFDUPLEX; 335 data->duplex = 2; 336 } else { 337 mac_cfg2_reg &= ~TSI108_MAC_CFG2_FULLDUPLEX; 338 portctrl_reg |= TSI108_EC_PORTCTRL_HALFDUPLEX; 339 data->duplex = 1; 340 } 341 342 TSI_WRITE(TSI108_MAC_CFG2, mac_cfg2_reg); 343 TSI_WRITE(TSI108_EC_PORTCTRL, portctrl_reg); 344 } 345 346 if (data->link_up == 0) { 347 /* The manual says it can take 3-4 usecs for the speed change 348 * to take effect. 349 */ 350 udelay(5); 351 352 spin_lock(&data->txlock); 353 if (is_valid_ether_addr(dev->dev_addr) && data->txfree) 354 netif_wake_queue(dev); 355 356 data->link_up = 1; 357 spin_unlock(&data->txlock); 358 } 359 } else { 360 if (data->link_up == 1) { 361 netif_stop_queue(dev); 362 data->link_up = 0; 363 printk(KERN_NOTICE "%s : link is down\n", dev->name); 364 } 365 366 goto out; 367 } 368 369 370 out: 371 spin_unlock_irqrestore(&phy_lock, flags); 372 } 373 374 static inline void 375 tsi108_stat_carry_one(int carry, int carry_bit, int carry_shift, 376 unsigned long *upper) 377 { 378 if (carry & carry_bit) 379 *upper += carry_shift; 380 } 381 382 static void tsi108_stat_carry(struct net_device *dev) 383 { 384 struct tsi108_prv_data *data = netdev_priv(dev); 385 u32 carry1, carry2; 386 387 spin_lock_irq(&data->misclock); 388 389 carry1 = TSI_READ(TSI108_STAT_CARRY1); 390 carry2 = TSI_READ(TSI108_STAT_CARRY2); 391 392 TSI_WRITE(TSI108_STAT_CARRY1, carry1); 393 TSI_WRITE(TSI108_STAT_CARRY2, carry2); 394 395 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXBYTES, 396 TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes); 397 398 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXPKTS, 399 TSI108_STAT_RXPKTS_CARRY, 400 &data->stats.rx_packets); 401 402 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFCS, 403 TSI108_STAT_RXFCS_CARRY, &data->rx_fcs); 404 405 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXMCAST, 406 TSI108_STAT_RXMCAST_CARRY, 407 &data->stats.multicast); 408 409 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXALIGN, 410 TSI108_STAT_RXALIGN_CARRY, 411 &data->stats.rx_frame_errors); 412 413 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXLENGTH, 414 TSI108_STAT_RXLENGTH_CARRY, 415 &data->stats.rx_length_errors); 416 417 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXRUNT, 418 TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns); 419 420 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJUMBO, 421 TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns); 422 423 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFRAG, 424 TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs); 425 426 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJABBER, 427 TSI108_STAT_RXJABBER_CARRY, &data->rx_long_fcs); 428 429 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXDROP, 430 TSI108_STAT_RXDROP_CARRY, 431 &data->stats.rx_missed_errors); 432 433 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXBYTES, 434 TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes); 435 436 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPKTS, 437 TSI108_STAT_TXPKTS_CARRY, 438 &data->stats.tx_packets); 439 440 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXDEF, 441 TSI108_STAT_TXEXDEF_CARRY, 442 &data->stats.tx_aborted_errors); 443 444 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXCOL, 445 TSI108_STAT_TXEXCOL_CARRY, &data->tx_coll_abort); 446 447 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXTCOL, 448 TSI108_STAT_TXTCOL_CARRY, 449 &data->stats.collisions); 450 451 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPAUSE, 452 TSI108_STAT_TXPAUSEDROP_CARRY, 453 &data->tx_pause_drop); 454 455 spin_unlock_irq(&data->misclock); 456 } 457 458 /* Read a stat counter atomically with respect to carries. 459 * data->misclock must be held. 460 */ 461 static inline unsigned long 462 tsi108_read_stat(struct tsi108_prv_data * data, int reg, int carry_bit, 463 int carry_shift, unsigned long *upper) 464 { 465 int carryreg; 466 unsigned long val; 467 468 if (reg < 0xb0) 469 carryreg = TSI108_STAT_CARRY1; 470 else 471 carryreg = TSI108_STAT_CARRY2; 472 473 again: 474 val = TSI_READ(reg) | *upper; 475 476 /* Check to see if it overflowed, but the interrupt hasn't 477 * been serviced yet. If so, handle the carry here, and 478 * try again. 479 */ 480 481 if (unlikely(TSI_READ(carryreg) & carry_bit)) { 482 *upper += carry_shift; 483 TSI_WRITE(carryreg, carry_bit); 484 goto again; 485 } 486 487 return val; 488 } 489 490 static struct net_device_stats *tsi108_get_stats(struct net_device *dev) 491 { 492 unsigned long excol; 493 494 struct tsi108_prv_data *data = netdev_priv(dev); 495 spin_lock_irq(&data->misclock); 496 497 data->tmpstats.rx_packets = 498 tsi108_read_stat(data, TSI108_STAT_RXPKTS, 499 TSI108_STAT_CARRY1_RXPKTS, 500 TSI108_STAT_RXPKTS_CARRY, &data->stats.rx_packets); 501 502 data->tmpstats.tx_packets = 503 tsi108_read_stat(data, TSI108_STAT_TXPKTS, 504 TSI108_STAT_CARRY2_TXPKTS, 505 TSI108_STAT_TXPKTS_CARRY, &data->stats.tx_packets); 506 507 data->tmpstats.rx_bytes = 508 tsi108_read_stat(data, TSI108_STAT_RXBYTES, 509 TSI108_STAT_CARRY1_RXBYTES, 510 TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes); 511 512 data->tmpstats.tx_bytes = 513 tsi108_read_stat(data, TSI108_STAT_TXBYTES, 514 TSI108_STAT_CARRY2_TXBYTES, 515 TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes); 516 517 data->tmpstats.multicast = 518 tsi108_read_stat(data, TSI108_STAT_RXMCAST, 519 TSI108_STAT_CARRY1_RXMCAST, 520 TSI108_STAT_RXMCAST_CARRY, &data->stats.multicast); 521 522 excol = tsi108_read_stat(data, TSI108_STAT_TXEXCOL, 523 TSI108_STAT_CARRY2_TXEXCOL, 524 TSI108_STAT_TXEXCOL_CARRY, 525 &data->tx_coll_abort); 526 527 data->tmpstats.collisions = 528 tsi108_read_stat(data, TSI108_STAT_TXTCOL, 529 TSI108_STAT_CARRY2_TXTCOL, 530 TSI108_STAT_TXTCOL_CARRY, &data->stats.collisions); 531 532 data->tmpstats.collisions += excol; 533 534 data->tmpstats.rx_length_errors = 535 tsi108_read_stat(data, TSI108_STAT_RXLENGTH, 536 TSI108_STAT_CARRY1_RXLENGTH, 537 TSI108_STAT_RXLENGTH_CARRY, 538 &data->stats.rx_length_errors); 539 540 data->tmpstats.rx_length_errors += 541 tsi108_read_stat(data, TSI108_STAT_RXRUNT, 542 TSI108_STAT_CARRY1_RXRUNT, 543 TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns); 544 545 data->tmpstats.rx_length_errors += 546 tsi108_read_stat(data, TSI108_STAT_RXJUMBO, 547 TSI108_STAT_CARRY1_RXJUMBO, 548 TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns); 549 550 data->tmpstats.rx_frame_errors = 551 tsi108_read_stat(data, TSI108_STAT_RXALIGN, 552 TSI108_STAT_CARRY1_RXALIGN, 553 TSI108_STAT_RXALIGN_CARRY, 554 &data->stats.rx_frame_errors); 555 556 data->tmpstats.rx_frame_errors += 557 tsi108_read_stat(data, TSI108_STAT_RXFCS, 558 TSI108_STAT_CARRY1_RXFCS, TSI108_STAT_RXFCS_CARRY, 559 &data->rx_fcs); 560 561 data->tmpstats.rx_frame_errors += 562 tsi108_read_stat(data, TSI108_STAT_RXFRAG, 563 TSI108_STAT_CARRY1_RXFRAG, 564 TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs); 565 566 data->tmpstats.rx_missed_errors = 567 tsi108_read_stat(data, TSI108_STAT_RXDROP, 568 TSI108_STAT_CARRY1_RXDROP, 569 TSI108_STAT_RXDROP_CARRY, 570 &data->stats.rx_missed_errors); 571 572 /* These three are maintained by software. */ 573 data->tmpstats.rx_fifo_errors = data->stats.rx_fifo_errors; 574 data->tmpstats.rx_crc_errors = data->stats.rx_crc_errors; 575 576 data->tmpstats.tx_aborted_errors = 577 tsi108_read_stat(data, TSI108_STAT_TXEXDEF, 578 TSI108_STAT_CARRY2_TXEXDEF, 579 TSI108_STAT_TXEXDEF_CARRY, 580 &data->stats.tx_aborted_errors); 581 582 data->tmpstats.tx_aborted_errors += 583 tsi108_read_stat(data, TSI108_STAT_TXPAUSEDROP, 584 TSI108_STAT_CARRY2_TXPAUSE, 585 TSI108_STAT_TXPAUSEDROP_CARRY, 586 &data->tx_pause_drop); 587 588 data->tmpstats.tx_aborted_errors += excol; 589 590 data->tmpstats.tx_errors = data->tmpstats.tx_aborted_errors; 591 data->tmpstats.rx_errors = data->tmpstats.rx_length_errors + 592 data->tmpstats.rx_crc_errors + 593 data->tmpstats.rx_frame_errors + 594 data->tmpstats.rx_fifo_errors + data->tmpstats.rx_missed_errors; 595 596 spin_unlock_irq(&data->misclock); 597 return &data->tmpstats; 598 } 599 600 static void tsi108_restart_rx(struct tsi108_prv_data * data, struct net_device *dev) 601 { 602 TSI_WRITE(TSI108_EC_RXQ_PTRHIGH, 603 TSI108_EC_RXQ_PTRHIGH_VALID); 604 605 TSI_WRITE(TSI108_EC_RXCTRL, TSI108_EC_RXCTRL_GO 606 | TSI108_EC_RXCTRL_QUEUE0); 607 } 608 609 static void tsi108_restart_tx(struct tsi108_prv_data * data) 610 { 611 TSI_WRITE(TSI108_EC_TXQ_PTRHIGH, 612 TSI108_EC_TXQ_PTRHIGH_VALID); 613 614 TSI_WRITE(TSI108_EC_TXCTRL, TSI108_EC_TXCTRL_IDLEINT | 615 TSI108_EC_TXCTRL_GO | TSI108_EC_TXCTRL_QUEUE0); 616 } 617 618 /* txlock must be held by caller, with IRQs disabled, and 619 * with permission to re-enable them when the lock is dropped. 620 */ 621 static void tsi108_complete_tx(struct net_device *dev) 622 { 623 struct tsi108_prv_data *data = netdev_priv(dev); 624 int tx; 625 struct sk_buff *skb; 626 int release = 0; 627 628 while (!data->txfree || data->txhead != data->txtail) { 629 tx = data->txtail; 630 631 if (data->txring[tx].misc & TSI108_TX_OWN) 632 break; 633 634 skb = data->txskbs[tx]; 635 636 if (!(data->txring[tx].misc & TSI108_TX_OK)) 637 printk("%s: bad tx packet, misc %x\n", 638 dev->name, data->txring[tx].misc); 639 640 data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN; 641 data->txfree++; 642 643 if (data->txring[tx].misc & TSI108_TX_EOF) { 644 dev_kfree_skb_any(skb); 645 release++; 646 } 647 } 648 649 if (release) { 650 if (is_valid_ether_addr(dev->dev_addr) && data->link_up) 651 netif_wake_queue(dev); 652 } 653 } 654 655 static int tsi108_send_packet(struct sk_buff * skb, struct net_device *dev) 656 { 657 struct tsi108_prv_data *data = netdev_priv(dev); 658 int frags = skb_shinfo(skb)->nr_frags + 1; 659 int i; 660 661 if (!data->phy_ok && net_ratelimit()) 662 printk(KERN_ERR "%s: Transmit while PHY is down!\n", dev->name); 663 664 if (!data->link_up) { 665 printk(KERN_ERR "%s: Transmit while link is down!\n", 666 dev->name); 667 netif_stop_queue(dev); 668 return NETDEV_TX_BUSY; 669 } 670 671 if (data->txfree < MAX_SKB_FRAGS + 1) { 672 netif_stop_queue(dev); 673 674 if (net_ratelimit()) 675 printk(KERN_ERR "%s: Transmit with full tx ring!\n", 676 dev->name); 677 return NETDEV_TX_BUSY; 678 } 679 680 if (data->txfree - frags < MAX_SKB_FRAGS + 1) { 681 netif_stop_queue(dev); 682 } 683 684 spin_lock_irq(&data->txlock); 685 686 for (i = 0; i < frags; i++) { 687 int misc = 0; 688 int tx = data->txhead; 689 690 /* This is done to mark every TSI108_TX_INT_FREQ tx buffers with 691 * the interrupt bit. TX descriptor-complete interrupts are 692 * enabled when the queue fills up, and masked when there is 693 * still free space. This way, when saturating the outbound 694 * link, the tx interrupts are kept to a reasonable level. 695 * When the queue is not full, reclamation of skbs still occurs 696 * as new packets are transmitted, or on a queue-empty 697 * interrupt. 698 */ 699 700 if ((tx % TSI108_TX_INT_FREQ == 0) && 701 ((TSI108_TXRING_LEN - data->txfree) >= TSI108_TX_INT_FREQ)) 702 misc = TSI108_TX_INT; 703 704 data->txskbs[tx] = skb; 705 706 if (i == 0) { 707 data->txring[tx].buf0 = dma_map_single(NULL, skb->data, 708 skb_headlen(skb), DMA_TO_DEVICE); 709 data->txring[tx].len = skb_headlen(skb); 710 misc |= TSI108_TX_SOF; 711 } else { 712 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1]; 713 714 data->txring[tx].buf0 = skb_frag_dma_map(NULL, frag, 715 0, 716 skb_frag_size(frag), 717 DMA_TO_DEVICE); 718 data->txring[tx].len = skb_frag_size(frag); 719 } 720 721 if (i == frags - 1) 722 misc |= TSI108_TX_EOF; 723 724 if (netif_msg_pktdata(data)) { 725 int i; 726 printk("%s: Tx Frame contents (%d)\n", dev->name, 727 skb->len); 728 for (i = 0; i < skb->len; i++) 729 printk(" %2.2x", skb->data[i]); 730 printk(".\n"); 731 } 732 data->txring[tx].misc = misc | TSI108_TX_OWN; 733 734 data->txhead = (data->txhead + 1) % TSI108_TXRING_LEN; 735 data->txfree--; 736 } 737 738 tsi108_complete_tx(dev); 739 740 /* This must be done after the check for completed tx descriptors, 741 * so that the tail pointer is correct. 742 */ 743 744 if (!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_QUEUE0)) 745 tsi108_restart_tx(data); 746 747 spin_unlock_irq(&data->txlock); 748 return NETDEV_TX_OK; 749 } 750 751 static int tsi108_complete_rx(struct net_device *dev, int budget) 752 { 753 struct tsi108_prv_data *data = netdev_priv(dev); 754 int done = 0; 755 756 while (data->rxfree && done != budget) { 757 int rx = data->rxtail; 758 struct sk_buff *skb; 759 760 if (data->rxring[rx].misc & TSI108_RX_OWN) 761 break; 762 763 skb = data->rxskbs[rx]; 764 data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN; 765 data->rxfree--; 766 done++; 767 768 if (data->rxring[rx].misc & TSI108_RX_BAD) { 769 spin_lock_irq(&data->misclock); 770 771 if (data->rxring[rx].misc & TSI108_RX_CRC) 772 data->stats.rx_crc_errors++; 773 if (data->rxring[rx].misc & TSI108_RX_OVER) 774 data->stats.rx_fifo_errors++; 775 776 spin_unlock_irq(&data->misclock); 777 778 dev_kfree_skb_any(skb); 779 continue; 780 } 781 if (netif_msg_pktdata(data)) { 782 int i; 783 printk("%s: Rx Frame contents (%d)\n", 784 dev->name, data->rxring[rx].len); 785 for (i = 0; i < data->rxring[rx].len; i++) 786 printk(" %2.2x", skb->data[i]); 787 printk(".\n"); 788 } 789 790 skb_put(skb, data->rxring[rx].len); 791 skb->protocol = eth_type_trans(skb, dev); 792 netif_receive_skb(skb); 793 } 794 795 return done; 796 } 797 798 static int tsi108_refill_rx(struct net_device *dev, int budget) 799 { 800 struct tsi108_prv_data *data = netdev_priv(dev); 801 int done = 0; 802 803 while (data->rxfree != TSI108_RXRING_LEN && done != budget) { 804 int rx = data->rxhead; 805 struct sk_buff *skb; 806 807 skb = netdev_alloc_skb_ip_align(dev, TSI108_RXBUF_SIZE); 808 data->rxskbs[rx] = skb; 809 if (!skb) 810 break; 811 812 data->rxring[rx].buf0 = dma_map_single(NULL, skb->data, 813 TSI108_RX_SKB_SIZE, 814 DMA_FROM_DEVICE); 815 816 /* Sometimes the hardware sets blen to zero after packet 817 * reception, even though the manual says that it's only ever 818 * modified by the driver. 819 */ 820 821 data->rxring[rx].blen = TSI108_RX_SKB_SIZE; 822 data->rxring[rx].misc = TSI108_RX_OWN | TSI108_RX_INT; 823 824 data->rxhead = (data->rxhead + 1) % TSI108_RXRING_LEN; 825 data->rxfree++; 826 done++; 827 } 828 829 if (done != 0 && !(TSI_READ(TSI108_EC_RXSTAT) & 830 TSI108_EC_RXSTAT_QUEUE0)) 831 tsi108_restart_rx(data, dev); 832 833 return done; 834 } 835 836 static int tsi108_poll(struct napi_struct *napi, int budget) 837 { 838 struct tsi108_prv_data *data = container_of(napi, struct tsi108_prv_data, napi); 839 struct net_device *dev = data->dev; 840 u32 estat = TSI_READ(TSI108_EC_RXESTAT); 841 u32 intstat = TSI_READ(TSI108_EC_INTSTAT); 842 int num_received = 0, num_filled = 0; 843 844 intstat &= TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH | 845 TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR | TSI108_INT_RXWAIT; 846 847 TSI_WRITE(TSI108_EC_RXESTAT, estat); 848 TSI_WRITE(TSI108_EC_INTSTAT, intstat); 849 850 if (data->rxpending || (estat & TSI108_EC_RXESTAT_Q0_DESCINT)) 851 num_received = tsi108_complete_rx(dev, budget); 852 853 /* This should normally fill no more slots than the number of 854 * packets received in tsi108_complete_rx(). The exception 855 * is when we previously ran out of memory for RX SKBs. In that 856 * case, it's helpful to obey the budget, not only so that the 857 * CPU isn't hogged, but so that memory (which may still be low) 858 * is not hogged by one device. 859 * 860 * A work unit is considered to be two SKBs to allow us to catch 861 * up when the ring has shrunk due to out-of-memory but we're 862 * still removing the full budget's worth of packets each time. 863 */ 864 865 if (data->rxfree < TSI108_RXRING_LEN) 866 num_filled = tsi108_refill_rx(dev, budget * 2); 867 868 if (intstat & TSI108_INT_RXERROR) { 869 u32 err = TSI_READ(TSI108_EC_RXERR); 870 TSI_WRITE(TSI108_EC_RXERR, err); 871 872 if (err) { 873 if (net_ratelimit()) 874 printk(KERN_DEBUG "%s: RX error %x\n", 875 dev->name, err); 876 877 if (!(TSI_READ(TSI108_EC_RXSTAT) & 878 TSI108_EC_RXSTAT_QUEUE0)) 879 tsi108_restart_rx(data, dev); 880 } 881 } 882 883 if (intstat & TSI108_INT_RXOVERRUN) { 884 spin_lock_irq(&data->misclock); 885 data->stats.rx_fifo_errors++; 886 spin_unlock_irq(&data->misclock); 887 } 888 889 if (num_received < budget) { 890 data->rxpending = 0; 891 napi_complete(napi); 892 893 TSI_WRITE(TSI108_EC_INTMASK, 894 TSI_READ(TSI108_EC_INTMASK) 895 & ~(TSI108_INT_RXQUEUE0 896 | TSI108_INT_RXTHRESH | 897 TSI108_INT_RXOVERRUN | 898 TSI108_INT_RXERROR | 899 TSI108_INT_RXWAIT)); 900 } else { 901 data->rxpending = 1; 902 } 903 904 return num_received; 905 } 906 907 static void tsi108_rx_int(struct net_device *dev) 908 { 909 struct tsi108_prv_data *data = netdev_priv(dev); 910 911 /* A race could cause dev to already be scheduled, so it's not an 912 * error if that happens (and interrupts shouldn't be re-masked, 913 * because that can cause harmful races, if poll has already 914 * unmasked them but not cleared LINK_STATE_SCHED). 915 * 916 * This can happen if this code races with tsi108_poll(), which masks 917 * the interrupts after tsi108_irq_one() read the mask, but before 918 * napi_schedule is called. It could also happen due to calls 919 * from tsi108_check_rxring(). 920 */ 921 922 if (napi_schedule_prep(&data->napi)) { 923 /* Mask, rather than ack, the receive interrupts. The ack 924 * will happen in tsi108_poll(). 925 */ 926 927 TSI_WRITE(TSI108_EC_INTMASK, 928 TSI_READ(TSI108_EC_INTMASK) | 929 TSI108_INT_RXQUEUE0 930 | TSI108_INT_RXTHRESH | 931 TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR | 932 TSI108_INT_RXWAIT); 933 __napi_schedule(&data->napi); 934 } else { 935 if (!netif_running(dev)) { 936 /* This can happen if an interrupt occurs while the 937 * interface is being brought down, as the START 938 * bit is cleared before the stop function is called. 939 * 940 * In this case, the interrupts must be masked, or 941 * they will continue indefinitely. 942 * 943 * There's a race here if the interface is brought down 944 * and then up in rapid succession, as the device could 945 * be made running after the above check and before 946 * the masking below. This will only happen if the IRQ 947 * thread has a lower priority than the task brining 948 * up the interface. Fixing this race would likely 949 * require changes in generic code. 950 */ 951 952 TSI_WRITE(TSI108_EC_INTMASK, 953 TSI_READ 954 (TSI108_EC_INTMASK) | 955 TSI108_INT_RXQUEUE0 | 956 TSI108_INT_RXTHRESH | 957 TSI108_INT_RXOVERRUN | 958 TSI108_INT_RXERROR | 959 TSI108_INT_RXWAIT); 960 } 961 } 962 } 963 964 /* If the RX ring has run out of memory, try periodically 965 * to allocate some more, as otherwise poll would never 966 * get called (apart from the initial end-of-queue condition). 967 * 968 * This is called once per second (by default) from the thread. 969 */ 970 971 static void tsi108_check_rxring(struct net_device *dev) 972 { 973 struct tsi108_prv_data *data = netdev_priv(dev); 974 975 /* A poll is scheduled, as opposed to caling tsi108_refill_rx 976 * directly, so as to keep the receive path single-threaded 977 * (and thus not needing a lock). 978 */ 979 980 if (netif_running(dev) && data->rxfree < TSI108_RXRING_LEN / 4) 981 tsi108_rx_int(dev); 982 } 983 984 static void tsi108_tx_int(struct net_device *dev) 985 { 986 struct tsi108_prv_data *data = netdev_priv(dev); 987 u32 estat = TSI_READ(TSI108_EC_TXESTAT); 988 989 TSI_WRITE(TSI108_EC_TXESTAT, estat); 990 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_TXQUEUE0 | 991 TSI108_INT_TXIDLE | TSI108_INT_TXERROR); 992 if (estat & TSI108_EC_TXESTAT_Q0_ERR) { 993 u32 err = TSI_READ(TSI108_EC_TXERR); 994 TSI_WRITE(TSI108_EC_TXERR, err); 995 996 if (err && net_ratelimit()) 997 printk(KERN_ERR "%s: TX error %x\n", dev->name, err); 998 } 999 1000 if (estat & (TSI108_EC_TXESTAT_Q0_DESCINT | TSI108_EC_TXESTAT_Q0_EOQ)) { 1001 spin_lock(&data->txlock); 1002 tsi108_complete_tx(dev); 1003 spin_unlock(&data->txlock); 1004 } 1005 } 1006 1007 1008 static irqreturn_t tsi108_irq(int irq, void *dev_id) 1009 { 1010 struct net_device *dev = dev_id; 1011 struct tsi108_prv_data *data = netdev_priv(dev); 1012 u32 stat = TSI_READ(TSI108_EC_INTSTAT); 1013 1014 if (!(stat & TSI108_INT_ANY)) 1015 return IRQ_NONE; /* Not our interrupt */ 1016 1017 stat &= ~TSI_READ(TSI108_EC_INTMASK); 1018 1019 if (stat & (TSI108_INT_TXQUEUE0 | TSI108_INT_TXIDLE | 1020 TSI108_INT_TXERROR)) 1021 tsi108_tx_int(dev); 1022 if (stat & (TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH | 1023 TSI108_INT_RXWAIT | TSI108_INT_RXOVERRUN | 1024 TSI108_INT_RXERROR)) 1025 tsi108_rx_int(dev); 1026 1027 if (stat & TSI108_INT_SFN) { 1028 if (net_ratelimit()) 1029 printk(KERN_DEBUG "%s: SFN error\n", dev->name); 1030 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_SFN); 1031 } 1032 1033 if (stat & TSI108_INT_STATCARRY) { 1034 tsi108_stat_carry(dev); 1035 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_STATCARRY); 1036 } 1037 1038 return IRQ_HANDLED; 1039 } 1040 1041 static void tsi108_stop_ethernet(struct net_device *dev) 1042 { 1043 struct tsi108_prv_data *data = netdev_priv(dev); 1044 int i = 1000; 1045 /* Disable all TX and RX queues ... */ 1046 TSI_WRITE(TSI108_EC_TXCTRL, 0); 1047 TSI_WRITE(TSI108_EC_RXCTRL, 0); 1048 1049 /* ...and wait for them to become idle */ 1050 while(i--) { 1051 if(!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_ACTIVE)) 1052 break; 1053 udelay(10); 1054 } 1055 i = 1000; 1056 while(i--){ 1057 if(!(TSI_READ(TSI108_EC_RXSTAT) & TSI108_EC_RXSTAT_ACTIVE)) 1058 return; 1059 udelay(10); 1060 } 1061 printk(KERN_ERR "%s function time out\n", __func__); 1062 } 1063 1064 static void tsi108_reset_ether(struct tsi108_prv_data * data) 1065 { 1066 TSI_WRITE(TSI108_MAC_CFG1, TSI108_MAC_CFG1_SOFTRST); 1067 udelay(100); 1068 TSI_WRITE(TSI108_MAC_CFG1, 0); 1069 1070 TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATRST); 1071 udelay(100); 1072 TSI_WRITE(TSI108_EC_PORTCTRL, 1073 TSI_READ(TSI108_EC_PORTCTRL) & 1074 ~TSI108_EC_PORTCTRL_STATRST); 1075 1076 TSI_WRITE(TSI108_EC_TXCFG, TSI108_EC_TXCFG_RST); 1077 udelay(100); 1078 TSI_WRITE(TSI108_EC_TXCFG, 1079 TSI_READ(TSI108_EC_TXCFG) & 1080 ~TSI108_EC_TXCFG_RST); 1081 1082 TSI_WRITE(TSI108_EC_RXCFG, TSI108_EC_RXCFG_RST); 1083 udelay(100); 1084 TSI_WRITE(TSI108_EC_RXCFG, 1085 TSI_READ(TSI108_EC_RXCFG) & 1086 ~TSI108_EC_RXCFG_RST); 1087 1088 TSI_WRITE(TSI108_MAC_MII_MGMT_CFG, 1089 TSI_READ(TSI108_MAC_MII_MGMT_CFG) | 1090 TSI108_MAC_MII_MGMT_RST); 1091 udelay(100); 1092 TSI_WRITE(TSI108_MAC_MII_MGMT_CFG, 1093 (TSI_READ(TSI108_MAC_MII_MGMT_CFG) & 1094 ~(TSI108_MAC_MII_MGMT_RST | 1095 TSI108_MAC_MII_MGMT_CLK)) | 0x07); 1096 } 1097 1098 static int tsi108_get_mac(struct net_device *dev) 1099 { 1100 struct tsi108_prv_data *data = netdev_priv(dev); 1101 u32 word1 = TSI_READ(TSI108_MAC_ADDR1); 1102 u32 word2 = TSI_READ(TSI108_MAC_ADDR2); 1103 1104 /* Note that the octets are reversed from what the manual says, 1105 * producing an even weirder ordering... 1106 */ 1107 if (word2 == 0 && word1 == 0) { 1108 dev->dev_addr[0] = 0x00; 1109 dev->dev_addr[1] = 0x06; 1110 dev->dev_addr[2] = 0xd2; 1111 dev->dev_addr[3] = 0x00; 1112 dev->dev_addr[4] = 0x00; 1113 if (0x8 == data->phy) 1114 dev->dev_addr[5] = 0x01; 1115 else 1116 dev->dev_addr[5] = 0x02; 1117 1118 word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24); 1119 1120 word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) | 1121 (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24); 1122 1123 TSI_WRITE(TSI108_MAC_ADDR1, word1); 1124 TSI_WRITE(TSI108_MAC_ADDR2, word2); 1125 } else { 1126 dev->dev_addr[0] = (word2 >> 16) & 0xff; 1127 dev->dev_addr[1] = (word2 >> 24) & 0xff; 1128 dev->dev_addr[2] = (word1 >> 0) & 0xff; 1129 dev->dev_addr[3] = (word1 >> 8) & 0xff; 1130 dev->dev_addr[4] = (word1 >> 16) & 0xff; 1131 dev->dev_addr[5] = (word1 >> 24) & 0xff; 1132 } 1133 1134 if (!is_valid_ether_addr(dev->dev_addr)) { 1135 printk(KERN_ERR 1136 "%s: Invalid MAC address. word1: %08x, word2: %08x\n", 1137 dev->name, word1, word2); 1138 return -EINVAL; 1139 } 1140 1141 return 0; 1142 } 1143 1144 static int tsi108_set_mac(struct net_device *dev, void *addr) 1145 { 1146 struct tsi108_prv_data *data = netdev_priv(dev); 1147 u32 word1, word2; 1148 int i; 1149 1150 if (!is_valid_ether_addr(addr)) 1151 return -EINVAL; 1152 1153 for (i = 0; i < 6; i++) 1154 /* +2 is for the offset of the HW addr type */ 1155 dev->dev_addr[i] = ((unsigned char *)addr)[i + 2]; 1156 1157 word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24); 1158 1159 word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) | 1160 (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24); 1161 1162 spin_lock_irq(&data->misclock); 1163 TSI_WRITE(TSI108_MAC_ADDR1, word1); 1164 TSI_WRITE(TSI108_MAC_ADDR2, word2); 1165 spin_lock(&data->txlock); 1166 1167 if (data->txfree && data->link_up) 1168 netif_wake_queue(dev); 1169 1170 spin_unlock(&data->txlock); 1171 spin_unlock_irq(&data->misclock); 1172 return 0; 1173 } 1174 1175 /* Protected by dev->xmit_lock. */ 1176 static void tsi108_set_rx_mode(struct net_device *dev) 1177 { 1178 struct tsi108_prv_data *data = netdev_priv(dev); 1179 u32 rxcfg = TSI_READ(TSI108_EC_RXCFG); 1180 1181 if (dev->flags & IFF_PROMISC) { 1182 rxcfg &= ~(TSI108_EC_RXCFG_UC_HASH | TSI108_EC_RXCFG_MC_HASH); 1183 rxcfg |= TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE; 1184 goto out; 1185 } 1186 1187 rxcfg &= ~(TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE); 1188 1189 if (dev->flags & IFF_ALLMULTI || !netdev_mc_empty(dev)) { 1190 int i; 1191 struct netdev_hw_addr *ha; 1192 rxcfg |= TSI108_EC_RXCFG_MFE | TSI108_EC_RXCFG_MC_HASH; 1193 1194 memset(data->mc_hash, 0, sizeof(data->mc_hash)); 1195 1196 netdev_for_each_mc_addr(ha, dev) { 1197 u32 hash, crc; 1198 1199 crc = ether_crc(6, ha->addr); 1200 hash = crc >> 23; 1201 __set_bit(hash, &data->mc_hash[0]); 1202 } 1203 1204 TSI_WRITE(TSI108_EC_HASHADDR, 1205 TSI108_EC_HASHADDR_AUTOINC | 1206 TSI108_EC_HASHADDR_MCAST); 1207 1208 for (i = 0; i < 16; i++) { 1209 /* The manual says that the hardware may drop 1210 * back-to-back writes to the data register. 1211 */ 1212 udelay(1); 1213 TSI_WRITE(TSI108_EC_HASHDATA, 1214 data->mc_hash[i]); 1215 } 1216 } 1217 1218 out: 1219 TSI_WRITE(TSI108_EC_RXCFG, rxcfg); 1220 } 1221 1222 static void tsi108_init_phy(struct net_device *dev) 1223 { 1224 struct tsi108_prv_data *data = netdev_priv(dev); 1225 u32 i = 0; 1226 u16 phyval = 0; 1227 unsigned long flags; 1228 1229 spin_lock_irqsave(&phy_lock, flags); 1230 1231 tsi108_write_mii(data, MII_BMCR, BMCR_RESET); 1232 while (--i) { 1233 if(!(tsi108_read_mii(data, MII_BMCR) & BMCR_RESET)) 1234 break; 1235 udelay(10); 1236 } 1237 if (i == 0) 1238 printk(KERN_ERR "%s function time out\n", __func__); 1239 1240 if (data->phy_type == TSI108_PHY_BCM54XX) { 1241 tsi108_write_mii(data, 0x09, 0x0300); 1242 tsi108_write_mii(data, 0x10, 0x1020); 1243 tsi108_write_mii(data, 0x1c, 0x8c00); 1244 } 1245 1246 tsi108_write_mii(data, 1247 MII_BMCR, 1248 BMCR_ANENABLE | BMCR_ANRESTART); 1249 while (tsi108_read_mii(data, MII_BMCR) & BMCR_ANRESTART) 1250 cpu_relax(); 1251 1252 /* Set G/MII mode and receive clock select in TBI control #2. The 1253 * second port won't work if this isn't done, even though we don't 1254 * use TBI mode. 1255 */ 1256 1257 tsi108_write_tbi(data, 0x11, 0x30); 1258 1259 /* FIXME: It seems to take more than 2 back-to-back reads to the 1260 * PHY_STAT register before the link up status bit is set. 1261 */ 1262 1263 data->link_up = 0; 1264 1265 while (!((phyval = tsi108_read_mii(data, MII_BMSR)) & 1266 BMSR_LSTATUS)) { 1267 if (i++ > (MII_READ_DELAY / 10)) { 1268 break; 1269 } 1270 spin_unlock_irqrestore(&phy_lock, flags); 1271 msleep(10); 1272 spin_lock_irqsave(&phy_lock, flags); 1273 } 1274 1275 data->mii_if.supports_gmii = mii_check_gmii_support(&data->mii_if); 1276 printk(KERN_DEBUG "PHY_STAT reg contains %08x\n", phyval); 1277 data->phy_ok = 1; 1278 data->init_media = 1; 1279 spin_unlock_irqrestore(&phy_lock, flags); 1280 } 1281 1282 static void tsi108_kill_phy(struct net_device *dev) 1283 { 1284 struct tsi108_prv_data *data = netdev_priv(dev); 1285 unsigned long flags; 1286 1287 spin_lock_irqsave(&phy_lock, flags); 1288 tsi108_write_mii(data, MII_BMCR, BMCR_PDOWN); 1289 data->phy_ok = 0; 1290 spin_unlock_irqrestore(&phy_lock, flags); 1291 } 1292 1293 static int tsi108_open(struct net_device *dev) 1294 { 1295 int i; 1296 struct tsi108_prv_data *data = netdev_priv(dev); 1297 unsigned int rxring_size = TSI108_RXRING_LEN * sizeof(rx_desc); 1298 unsigned int txring_size = TSI108_TXRING_LEN * sizeof(tx_desc); 1299 1300 i = request_irq(data->irq_num, tsi108_irq, 0, dev->name, dev); 1301 if (i != 0) { 1302 printk(KERN_ERR "tsi108_eth%d: Could not allocate IRQ%d.\n", 1303 data->id, data->irq_num); 1304 return i; 1305 } else { 1306 dev->irq = data->irq_num; 1307 printk(KERN_NOTICE 1308 "tsi108_open : Port %d Assigned IRQ %d to %s\n", 1309 data->id, dev->irq, dev->name); 1310 } 1311 1312 data->rxring = dma_alloc_coherent(NULL, rxring_size, 1313 &data->rxdma, GFP_KERNEL); 1314 1315 if (!data->rxring) { 1316 printk(KERN_DEBUG 1317 "TSI108_ETH: failed to allocate memory for rxring!\n"); 1318 return -ENOMEM; 1319 } else { 1320 memset(data->rxring, 0, rxring_size); 1321 } 1322 1323 data->txring = dma_alloc_coherent(NULL, txring_size, 1324 &data->txdma, GFP_KERNEL); 1325 1326 if (!data->txring) { 1327 printk(KERN_DEBUG 1328 "TSI108_ETH: failed to allocate memory for txring!\n"); 1329 pci_free_consistent(0, rxring_size, data->rxring, data->rxdma); 1330 return -ENOMEM; 1331 } else { 1332 memset(data->txring, 0, txring_size); 1333 } 1334 1335 for (i = 0; i < TSI108_RXRING_LEN; i++) { 1336 data->rxring[i].next0 = data->rxdma + (i + 1) * sizeof(rx_desc); 1337 data->rxring[i].blen = TSI108_RXBUF_SIZE; 1338 data->rxring[i].vlan = 0; 1339 } 1340 1341 data->rxring[TSI108_RXRING_LEN - 1].next0 = data->rxdma; 1342 1343 data->rxtail = 0; 1344 data->rxhead = 0; 1345 1346 for (i = 0; i < TSI108_RXRING_LEN; i++) { 1347 struct sk_buff *skb; 1348 1349 skb = netdev_alloc_skb_ip_align(dev, TSI108_RXBUF_SIZE); 1350 if (!skb) { 1351 /* Bah. No memory for now, but maybe we'll get 1352 * some more later. 1353 * For now, we'll live with the smaller ring. 1354 */ 1355 printk(KERN_WARNING 1356 "%s: Could only allocate %d receive skb(s).\n", 1357 dev->name, i); 1358 data->rxhead = i; 1359 break; 1360 } 1361 1362 data->rxskbs[i] = skb; 1363 data->rxskbs[i] = skb; 1364 data->rxring[i].buf0 = virt_to_phys(data->rxskbs[i]->data); 1365 data->rxring[i].misc = TSI108_RX_OWN | TSI108_RX_INT; 1366 } 1367 1368 data->rxfree = i; 1369 TSI_WRITE(TSI108_EC_RXQ_PTRLOW, data->rxdma); 1370 1371 for (i = 0; i < TSI108_TXRING_LEN; i++) { 1372 data->txring[i].next0 = data->txdma + (i + 1) * sizeof(tx_desc); 1373 data->txring[i].misc = 0; 1374 } 1375 1376 data->txring[TSI108_TXRING_LEN - 1].next0 = data->txdma; 1377 data->txtail = 0; 1378 data->txhead = 0; 1379 data->txfree = TSI108_TXRING_LEN; 1380 TSI_WRITE(TSI108_EC_TXQ_PTRLOW, data->txdma); 1381 tsi108_init_phy(dev); 1382 1383 napi_enable(&data->napi); 1384 1385 setup_timer(&data->timer, tsi108_timed_checker, (unsigned long)dev); 1386 mod_timer(&data->timer, jiffies + 1); 1387 1388 tsi108_restart_rx(data, dev); 1389 1390 TSI_WRITE(TSI108_EC_INTSTAT, ~0); 1391 1392 TSI_WRITE(TSI108_EC_INTMASK, 1393 ~(TSI108_INT_TXQUEUE0 | TSI108_INT_RXERROR | 1394 TSI108_INT_RXTHRESH | TSI108_INT_RXQUEUE0 | 1395 TSI108_INT_RXOVERRUN | TSI108_INT_RXWAIT | 1396 TSI108_INT_SFN | TSI108_INT_STATCARRY)); 1397 1398 TSI_WRITE(TSI108_MAC_CFG1, 1399 TSI108_MAC_CFG1_RXEN | TSI108_MAC_CFG1_TXEN); 1400 netif_start_queue(dev); 1401 return 0; 1402 } 1403 1404 static int tsi108_close(struct net_device *dev) 1405 { 1406 struct tsi108_prv_data *data = netdev_priv(dev); 1407 1408 netif_stop_queue(dev); 1409 napi_disable(&data->napi); 1410 1411 del_timer_sync(&data->timer); 1412 1413 tsi108_stop_ethernet(dev); 1414 tsi108_kill_phy(dev); 1415 TSI_WRITE(TSI108_EC_INTMASK, ~0); 1416 TSI_WRITE(TSI108_MAC_CFG1, 0); 1417 1418 /* Check for any pending TX packets, and drop them. */ 1419 1420 while (!data->txfree || data->txhead != data->txtail) { 1421 int tx = data->txtail; 1422 struct sk_buff *skb; 1423 skb = data->txskbs[tx]; 1424 data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN; 1425 data->txfree++; 1426 dev_kfree_skb(skb); 1427 } 1428 1429 free_irq(data->irq_num, dev); 1430 1431 /* Discard the RX ring. */ 1432 1433 while (data->rxfree) { 1434 int rx = data->rxtail; 1435 struct sk_buff *skb; 1436 1437 skb = data->rxskbs[rx]; 1438 data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN; 1439 data->rxfree--; 1440 dev_kfree_skb(skb); 1441 } 1442 1443 dma_free_coherent(0, 1444 TSI108_RXRING_LEN * sizeof(rx_desc), 1445 data->rxring, data->rxdma); 1446 dma_free_coherent(0, 1447 TSI108_TXRING_LEN * sizeof(tx_desc), 1448 data->txring, data->txdma); 1449 1450 return 0; 1451 } 1452 1453 static void tsi108_init_mac(struct net_device *dev) 1454 { 1455 struct tsi108_prv_data *data = netdev_priv(dev); 1456 1457 TSI_WRITE(TSI108_MAC_CFG2, TSI108_MAC_CFG2_DFLT_PREAMBLE | 1458 TSI108_MAC_CFG2_PADCRC); 1459 1460 TSI_WRITE(TSI108_EC_TXTHRESH, 1461 (192 << TSI108_EC_TXTHRESH_STARTFILL) | 1462 (192 << TSI108_EC_TXTHRESH_STOPFILL)); 1463 1464 TSI_WRITE(TSI108_STAT_CARRYMASK1, 1465 ~(TSI108_STAT_CARRY1_RXBYTES | 1466 TSI108_STAT_CARRY1_RXPKTS | 1467 TSI108_STAT_CARRY1_RXFCS | 1468 TSI108_STAT_CARRY1_RXMCAST | 1469 TSI108_STAT_CARRY1_RXALIGN | 1470 TSI108_STAT_CARRY1_RXLENGTH | 1471 TSI108_STAT_CARRY1_RXRUNT | 1472 TSI108_STAT_CARRY1_RXJUMBO | 1473 TSI108_STAT_CARRY1_RXFRAG | 1474 TSI108_STAT_CARRY1_RXJABBER | 1475 TSI108_STAT_CARRY1_RXDROP)); 1476 1477 TSI_WRITE(TSI108_STAT_CARRYMASK2, 1478 ~(TSI108_STAT_CARRY2_TXBYTES | 1479 TSI108_STAT_CARRY2_TXPKTS | 1480 TSI108_STAT_CARRY2_TXEXDEF | 1481 TSI108_STAT_CARRY2_TXEXCOL | 1482 TSI108_STAT_CARRY2_TXTCOL | 1483 TSI108_STAT_CARRY2_TXPAUSE)); 1484 1485 TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATEN); 1486 TSI_WRITE(TSI108_MAC_CFG1, 0); 1487 1488 TSI_WRITE(TSI108_EC_RXCFG, 1489 TSI108_EC_RXCFG_SE | TSI108_EC_RXCFG_BFE); 1490 1491 TSI_WRITE(TSI108_EC_TXQ_CFG, TSI108_EC_TXQ_CFG_DESC_INT | 1492 TSI108_EC_TXQ_CFG_EOQ_OWN_INT | 1493 TSI108_EC_TXQ_CFG_WSWP | (TSI108_PBM_PORT << 1494 TSI108_EC_TXQ_CFG_SFNPORT)); 1495 1496 TSI_WRITE(TSI108_EC_RXQ_CFG, TSI108_EC_RXQ_CFG_DESC_INT | 1497 TSI108_EC_RXQ_CFG_EOQ_OWN_INT | 1498 TSI108_EC_RXQ_CFG_WSWP | (TSI108_PBM_PORT << 1499 TSI108_EC_RXQ_CFG_SFNPORT)); 1500 1501 TSI_WRITE(TSI108_EC_TXQ_BUFCFG, 1502 TSI108_EC_TXQ_BUFCFG_BURST256 | 1503 TSI108_EC_TXQ_BUFCFG_BSWP | (TSI108_PBM_PORT << 1504 TSI108_EC_TXQ_BUFCFG_SFNPORT)); 1505 1506 TSI_WRITE(TSI108_EC_RXQ_BUFCFG, 1507 TSI108_EC_RXQ_BUFCFG_BURST256 | 1508 TSI108_EC_RXQ_BUFCFG_BSWP | (TSI108_PBM_PORT << 1509 TSI108_EC_RXQ_BUFCFG_SFNPORT)); 1510 1511 TSI_WRITE(TSI108_EC_INTMASK, ~0); 1512 } 1513 1514 static int tsi108_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 1515 { 1516 struct tsi108_prv_data *data = netdev_priv(dev); 1517 unsigned long flags; 1518 int rc; 1519 1520 spin_lock_irqsave(&data->txlock, flags); 1521 rc = mii_ethtool_gset(&data->mii_if, cmd); 1522 spin_unlock_irqrestore(&data->txlock, flags); 1523 1524 return rc; 1525 } 1526 1527 static int tsi108_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 1528 { 1529 struct tsi108_prv_data *data = netdev_priv(dev); 1530 unsigned long flags; 1531 int rc; 1532 1533 spin_lock_irqsave(&data->txlock, flags); 1534 rc = mii_ethtool_sset(&data->mii_if, cmd); 1535 spin_unlock_irqrestore(&data->txlock, flags); 1536 1537 return rc; 1538 } 1539 1540 static int tsi108_do_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1541 { 1542 struct tsi108_prv_data *data = netdev_priv(dev); 1543 if (!netif_running(dev)) 1544 return -EINVAL; 1545 return generic_mii_ioctl(&data->mii_if, if_mii(rq), cmd, NULL); 1546 } 1547 1548 static const struct ethtool_ops tsi108_ethtool_ops = { 1549 .get_link = ethtool_op_get_link, 1550 .get_settings = tsi108_get_settings, 1551 .set_settings = tsi108_set_settings, 1552 }; 1553 1554 static const struct net_device_ops tsi108_netdev_ops = { 1555 .ndo_open = tsi108_open, 1556 .ndo_stop = tsi108_close, 1557 .ndo_start_xmit = tsi108_send_packet, 1558 .ndo_set_rx_mode = tsi108_set_rx_mode, 1559 .ndo_get_stats = tsi108_get_stats, 1560 .ndo_do_ioctl = tsi108_do_ioctl, 1561 .ndo_set_mac_address = tsi108_set_mac, 1562 .ndo_validate_addr = eth_validate_addr, 1563 .ndo_change_mtu = eth_change_mtu, 1564 }; 1565 1566 static int 1567 tsi108_init_one(struct platform_device *pdev) 1568 { 1569 struct net_device *dev = NULL; 1570 struct tsi108_prv_data *data = NULL; 1571 hw_info *einfo; 1572 int err = 0; 1573 1574 einfo = pdev->dev.platform_data; 1575 1576 if (NULL == einfo) { 1577 printk(KERN_ERR "tsi-eth %d: Missing additional data!\n", 1578 pdev->id); 1579 return -ENODEV; 1580 } 1581 1582 /* Create an ethernet device instance */ 1583 1584 dev = alloc_etherdev(sizeof(struct tsi108_prv_data)); 1585 if (!dev) { 1586 printk("tsi108_eth: Could not allocate a device structure\n"); 1587 return -ENOMEM; 1588 } 1589 1590 printk("tsi108_eth%d: probe...\n", pdev->id); 1591 data = netdev_priv(dev); 1592 data->dev = dev; 1593 1594 pr_debug("tsi108_eth%d:regs:phyresgs:phy:irq_num=0x%x:0x%x:0x%x:0x%x\n", 1595 pdev->id, einfo->regs, einfo->phyregs, 1596 einfo->phy, einfo->irq_num); 1597 1598 data->regs = ioremap(einfo->regs, 0x400); 1599 if (NULL == data->regs) { 1600 err = -ENOMEM; 1601 goto regs_fail; 1602 } 1603 1604 data->phyregs = ioremap(einfo->phyregs, 0x400); 1605 if (NULL == data->phyregs) { 1606 err = -ENOMEM; 1607 goto regs_fail; 1608 } 1609 /* MII setup */ 1610 data->mii_if.dev = dev; 1611 data->mii_if.mdio_read = tsi108_mdio_read; 1612 data->mii_if.mdio_write = tsi108_mdio_write; 1613 data->mii_if.phy_id = einfo->phy; 1614 data->mii_if.phy_id_mask = 0x1f; 1615 data->mii_if.reg_num_mask = 0x1f; 1616 1617 data->phy = einfo->phy; 1618 data->phy_type = einfo->phy_type; 1619 data->irq_num = einfo->irq_num; 1620 data->id = pdev->id; 1621 netif_napi_add(dev, &data->napi, tsi108_poll, 64); 1622 dev->netdev_ops = &tsi108_netdev_ops; 1623 dev->ethtool_ops = &tsi108_ethtool_ops; 1624 1625 /* Apparently, the Linux networking code won't use scatter-gather 1626 * if the hardware doesn't do checksums. However, it's faster 1627 * to checksum in place and use SG, as (among other reasons) 1628 * the cache won't be dirtied (which then has to be flushed 1629 * before DMA). The checksumming is done by the driver (via 1630 * a new function skb_csum_dev() in net/core/skbuff.c). 1631 */ 1632 1633 dev->features = NETIF_F_HIGHDMA; 1634 1635 spin_lock_init(&data->txlock); 1636 spin_lock_init(&data->misclock); 1637 1638 tsi108_reset_ether(data); 1639 tsi108_kill_phy(dev); 1640 1641 if ((err = tsi108_get_mac(dev)) != 0) { 1642 printk(KERN_ERR "%s: Invalid MAC address. Please correct.\n", 1643 dev->name); 1644 goto register_fail; 1645 } 1646 1647 tsi108_init_mac(dev); 1648 err = register_netdev(dev); 1649 if (err) { 1650 printk(KERN_ERR "%s: Cannot register net device, aborting.\n", 1651 dev->name); 1652 goto register_fail; 1653 } 1654 1655 platform_set_drvdata(pdev, dev); 1656 printk(KERN_INFO "%s: Tsi108 Gigabit Ethernet, MAC: %pM\n", 1657 dev->name, dev->dev_addr); 1658 #ifdef DEBUG 1659 data->msg_enable = DEBUG; 1660 dump_eth_one(dev); 1661 #endif 1662 1663 return 0; 1664 1665 register_fail: 1666 iounmap(data->regs); 1667 iounmap(data->phyregs); 1668 1669 regs_fail: 1670 free_netdev(dev); 1671 return err; 1672 } 1673 1674 /* There's no way to either get interrupts from the PHY when 1675 * something changes, or to have the Tsi108 automatically communicate 1676 * with the PHY to reconfigure itself. 1677 * 1678 * Thus, we have to do it using a timer. 1679 */ 1680 1681 static void tsi108_timed_checker(unsigned long dev_ptr) 1682 { 1683 struct net_device *dev = (struct net_device *)dev_ptr; 1684 struct tsi108_prv_data *data = netdev_priv(dev); 1685 1686 tsi108_check_phy(dev); 1687 tsi108_check_rxring(dev); 1688 mod_timer(&data->timer, jiffies + CHECK_PHY_INTERVAL); 1689 } 1690 1691 static int tsi108_ether_init(void) 1692 { 1693 int ret; 1694 ret = platform_driver_register (&tsi_eth_driver); 1695 if (ret < 0){ 1696 printk("tsi108_ether_init: error initializing ethernet " 1697 "device\n"); 1698 return ret; 1699 } 1700 return 0; 1701 } 1702 1703 static int tsi108_ether_remove(struct platform_device *pdev) 1704 { 1705 struct net_device *dev = platform_get_drvdata(pdev); 1706 struct tsi108_prv_data *priv = netdev_priv(dev); 1707 1708 unregister_netdev(dev); 1709 tsi108_stop_ethernet(dev); 1710 platform_set_drvdata(pdev, NULL); 1711 iounmap(priv->regs); 1712 iounmap(priv->phyregs); 1713 free_netdev(dev); 1714 1715 return 0; 1716 } 1717 static void tsi108_ether_exit(void) 1718 { 1719 platform_driver_unregister(&tsi_eth_driver); 1720 } 1721 1722 module_init(tsi108_ether_init); 1723 module_exit(tsi108_ether_exit); 1724 1725 MODULE_AUTHOR("Tundra Semiconductor Corporation"); 1726 MODULE_DESCRIPTION("Tsi108 Gigabit Ethernet driver"); 1727 MODULE_LICENSE("GPL"); 1728 MODULE_ALIAS("platform:tsi-ethernet"); 1729