1 /*******************************************************************************
2 
3   Copyright(c) 2006 Tundra Semiconductor Corporation.
4 
5   This program is free software; you can redistribute it and/or modify it
6   under the terms of the GNU General Public License as published by the Free
7   Software Foundation; either version 2 of the License, or (at your option)
8   any later version.
9 
10   This program is distributed in the hope that it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc., 59
17   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
18 
19 *******************************************************************************/
20 
21 /* This driver is based on the driver code originally developed
22  * for the Intel IOC80314 (ForestLake) Gigabit Ethernet by
23  * scott.wood@timesys.com  * Copyright (C) 2003 TimeSys Corporation
24  *
25  * Currently changes from original version are:
26  * - porting to Tsi108-based platform and kernel 2.6 (kong.lai@tundra.com)
27  * - modifications to handle two ports independently and support for
28  *   additional PHY devices (alexandre.bounine@tundra.com)
29  * - Get hardware information from platform device. (tie-fei.zang@freescale.com)
30  *
31  */
32 
33 #include <linux/module.h>
34 #include <linux/types.h>
35 #include <linux/init.h>
36 #include <linux/interrupt.h>
37 #include <linux/net.h>
38 #include <linux/netdevice.h>
39 #include <linux/etherdevice.h>
40 #include <linux/ethtool.h>
41 #include <linux/skbuff.h>
42 #include <linux/spinlock.h>
43 #include <linux/delay.h>
44 #include <linux/crc32.h>
45 #include <linux/mii.h>
46 #include <linux/device.h>
47 #include <linux/pci.h>
48 #include <linux/rtnetlink.h>
49 #include <linux/timer.h>
50 #include <linux/platform_device.h>
51 #include <linux/gfp.h>
52 
53 #include <asm/system.h>
54 #include <asm/io.h>
55 #include <asm/tsi108.h>
56 
57 #include "tsi108_eth.h"
58 
59 #define MII_READ_DELAY 10000	/* max link wait time in msec */
60 
61 #define TSI108_RXRING_LEN     256
62 
63 /* NOTE: The driver currently does not support receiving packets
64  * larger than the buffer size, so don't decrease this (unless you
65  * want to add such support).
66  */
67 #define TSI108_RXBUF_SIZE     1536
68 
69 #define TSI108_TXRING_LEN     256
70 
71 #define TSI108_TX_INT_FREQ    64
72 
73 /* Check the phy status every half a second. */
74 #define CHECK_PHY_INTERVAL (HZ/2)
75 
76 static int tsi108_init_one(struct platform_device *pdev);
77 static int tsi108_ether_remove(struct platform_device *pdev);
78 
79 struct tsi108_prv_data {
80 	void  __iomem *regs;	/* Base of normal regs */
81 	void  __iomem *phyregs;	/* Base of register bank used for PHY access */
82 
83 	struct net_device *dev;
84 	struct napi_struct napi;
85 
86 	unsigned int phy;		/* Index of PHY for this interface */
87 	unsigned int irq_num;
88 	unsigned int id;
89 	unsigned int phy_type;
90 
91 	struct timer_list timer;/* Timer that triggers the check phy function */
92 	unsigned int rxtail;	/* Next entry in rxring to read */
93 	unsigned int rxhead;	/* Next entry in rxring to give a new buffer */
94 	unsigned int rxfree;	/* Number of free, allocated RX buffers */
95 
96 	unsigned int rxpending;	/* Non-zero if there are still descriptors
97 				 * to be processed from a previous descriptor
98 				 * interrupt condition that has been cleared */
99 
100 	unsigned int txtail;	/* Next TX descriptor to check status on */
101 	unsigned int txhead;	/* Next TX descriptor to use */
102 
103 	/* Number of free TX descriptors.  This could be calculated from
104 	 * rxhead and rxtail if one descriptor were left unused to disambiguate
105 	 * full and empty conditions, but it's simpler to just keep track
106 	 * explicitly. */
107 
108 	unsigned int txfree;
109 
110 	unsigned int phy_ok;		/* The PHY is currently powered on. */
111 
112 	/* PHY status (duplex is 1 for half, 2 for full,
113 	 * so that the default 0 indicates that neither has
114 	 * yet been configured). */
115 
116 	unsigned int link_up;
117 	unsigned int speed;
118 	unsigned int duplex;
119 
120 	tx_desc *txring;
121 	rx_desc *rxring;
122 	struct sk_buff *txskbs[TSI108_TXRING_LEN];
123 	struct sk_buff *rxskbs[TSI108_RXRING_LEN];
124 
125 	dma_addr_t txdma, rxdma;
126 
127 	/* txlock nests in misclock and phy_lock */
128 
129 	spinlock_t txlock, misclock;
130 
131 	/* stats is used to hold the upper bits of each hardware counter,
132 	 * and tmpstats is used to hold the full values for returning
133 	 * to the caller of get_stats().  They must be separate in case
134 	 * an overflow interrupt occurs before the stats are consumed.
135 	 */
136 
137 	struct net_device_stats stats;
138 	struct net_device_stats tmpstats;
139 
140 	/* These stats are kept separate in hardware, thus require individual
141 	 * fields for handling carry.  They are combined in get_stats.
142 	 */
143 
144 	unsigned long rx_fcs;	/* Add to rx_frame_errors */
145 	unsigned long rx_short_fcs;	/* Add to rx_frame_errors */
146 	unsigned long rx_long_fcs;	/* Add to rx_frame_errors */
147 	unsigned long rx_underruns;	/* Add to rx_length_errors */
148 	unsigned long rx_overruns;	/* Add to rx_length_errors */
149 
150 	unsigned long tx_coll_abort;	/* Add to tx_aborted_errors/collisions */
151 	unsigned long tx_pause_drop;	/* Add to tx_aborted_errors */
152 
153 	unsigned long mc_hash[16];
154 	u32 msg_enable;			/* debug message level */
155 	struct mii_if_info mii_if;
156 	unsigned int init_media;
157 };
158 
159 /* Structure for a device driver */
160 
161 static struct platform_driver tsi_eth_driver = {
162 	.probe = tsi108_init_one,
163 	.remove = tsi108_ether_remove,
164 	.driver	= {
165 		.name = "tsi-ethernet",
166 		.owner = THIS_MODULE,
167 	},
168 };
169 
170 static void tsi108_timed_checker(unsigned long dev_ptr);
171 
172 static void dump_eth_one(struct net_device *dev)
173 {
174 	struct tsi108_prv_data *data = netdev_priv(dev);
175 
176 	printk("Dumping %s...\n", dev->name);
177 	printk("intstat %x intmask %x phy_ok %d"
178 	       " link %d speed %d duplex %d\n",
179 	       TSI_READ(TSI108_EC_INTSTAT),
180 	       TSI_READ(TSI108_EC_INTMASK), data->phy_ok,
181 	       data->link_up, data->speed, data->duplex);
182 
183 	printk("TX: head %d, tail %d, free %d, stat %x, estat %x, err %x\n",
184 	       data->txhead, data->txtail, data->txfree,
185 	       TSI_READ(TSI108_EC_TXSTAT),
186 	       TSI_READ(TSI108_EC_TXESTAT),
187 	       TSI_READ(TSI108_EC_TXERR));
188 
189 	printk("RX: head %d, tail %d, free %d, stat %x,"
190 	       " estat %x, err %x, pending %d\n\n",
191 	       data->rxhead, data->rxtail, data->rxfree,
192 	       TSI_READ(TSI108_EC_RXSTAT),
193 	       TSI_READ(TSI108_EC_RXESTAT),
194 	       TSI_READ(TSI108_EC_RXERR), data->rxpending);
195 }
196 
197 /* Synchronization is needed between the thread and up/down events.
198  * Note that the PHY is accessed through the same registers for both
199  * interfaces, so this can't be made interface-specific.
200  */
201 
202 static DEFINE_SPINLOCK(phy_lock);
203 
204 static int tsi108_read_mii(struct tsi108_prv_data *data, int reg)
205 {
206 	unsigned i;
207 
208 	TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
209 				(data->phy << TSI108_MAC_MII_ADDR_PHY) |
210 				(reg << TSI108_MAC_MII_ADDR_REG));
211 	TSI_WRITE_PHY(TSI108_MAC_MII_CMD, 0);
212 	TSI_WRITE_PHY(TSI108_MAC_MII_CMD, TSI108_MAC_MII_CMD_READ);
213 	for (i = 0; i < 100; i++) {
214 		if (!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
215 		      (TSI108_MAC_MII_IND_NOTVALID | TSI108_MAC_MII_IND_BUSY)))
216 			break;
217 		udelay(10);
218 	}
219 
220 	if (i == 100)
221 		return 0xffff;
222 	else
223 		return TSI_READ_PHY(TSI108_MAC_MII_DATAIN);
224 }
225 
226 static void tsi108_write_mii(struct tsi108_prv_data *data,
227 				int reg, u16 val)
228 {
229 	unsigned i = 100;
230 	TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
231 				(data->phy << TSI108_MAC_MII_ADDR_PHY) |
232 				(reg << TSI108_MAC_MII_ADDR_REG));
233 	TSI_WRITE_PHY(TSI108_MAC_MII_DATAOUT, val);
234 	while (i--) {
235 		if(!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
236 			TSI108_MAC_MII_IND_BUSY))
237 			break;
238 		udelay(10);
239 	}
240 }
241 
242 static int tsi108_mdio_read(struct net_device *dev, int addr, int reg)
243 {
244 	struct tsi108_prv_data *data = netdev_priv(dev);
245 	return tsi108_read_mii(data, reg);
246 }
247 
248 static void tsi108_mdio_write(struct net_device *dev, int addr, int reg, int val)
249 {
250 	struct tsi108_prv_data *data = netdev_priv(dev);
251 	tsi108_write_mii(data, reg, val);
252 }
253 
254 static inline void tsi108_write_tbi(struct tsi108_prv_data *data,
255 					int reg, u16 val)
256 {
257 	unsigned i = 1000;
258 	TSI_WRITE(TSI108_MAC_MII_ADDR,
259 			     (0x1e << TSI108_MAC_MII_ADDR_PHY)
260 			     | (reg << TSI108_MAC_MII_ADDR_REG));
261 	TSI_WRITE(TSI108_MAC_MII_DATAOUT, val);
262 	while(i--) {
263 		if(!(TSI_READ(TSI108_MAC_MII_IND) & TSI108_MAC_MII_IND_BUSY))
264 			return;
265 		udelay(10);
266 	}
267 	printk(KERN_ERR "%s function time out\n", __func__);
268 }
269 
270 static int mii_speed(struct mii_if_info *mii)
271 {
272 	int advert, lpa, val, media;
273 	int lpa2 = 0;
274 	int speed;
275 
276 	if (!mii_link_ok(mii))
277 		return 0;
278 
279 	val = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_BMSR);
280 	if ((val & BMSR_ANEGCOMPLETE) == 0)
281 		return 0;
282 
283 	advert = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_ADVERTISE);
284 	lpa = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_LPA);
285 	media = mii_nway_result(advert & lpa);
286 
287 	if (mii->supports_gmii)
288 		lpa2 = mii->mdio_read(mii->dev, mii->phy_id, MII_STAT1000);
289 
290 	speed = lpa2 & (LPA_1000FULL | LPA_1000HALF) ? 1000 :
291 			(media & (ADVERTISE_100FULL | ADVERTISE_100HALF) ? 100 : 10);
292 	return speed;
293 }
294 
295 static void tsi108_check_phy(struct net_device *dev)
296 {
297 	struct tsi108_prv_data *data = netdev_priv(dev);
298 	u32 mac_cfg2_reg, portctrl_reg;
299 	u32 duplex;
300 	u32 speed;
301 	unsigned long flags;
302 
303 	spin_lock_irqsave(&phy_lock, flags);
304 
305 	if (!data->phy_ok)
306 		goto out;
307 
308 	duplex = mii_check_media(&data->mii_if, netif_msg_link(data), data->init_media);
309 	data->init_media = 0;
310 
311 	if (netif_carrier_ok(dev)) {
312 
313 		speed = mii_speed(&data->mii_if);
314 
315 		if ((speed != data->speed) || duplex) {
316 
317 			mac_cfg2_reg = TSI_READ(TSI108_MAC_CFG2);
318 			portctrl_reg = TSI_READ(TSI108_EC_PORTCTRL);
319 
320 			mac_cfg2_reg &= ~TSI108_MAC_CFG2_IFACE_MASK;
321 
322 			if (speed == 1000) {
323 				mac_cfg2_reg |= TSI108_MAC_CFG2_GIG;
324 				portctrl_reg &= ~TSI108_EC_PORTCTRL_NOGIG;
325 			} else {
326 				mac_cfg2_reg |= TSI108_MAC_CFG2_NOGIG;
327 				portctrl_reg |= TSI108_EC_PORTCTRL_NOGIG;
328 			}
329 
330 			data->speed = speed;
331 
332 			if (data->mii_if.full_duplex) {
333 				mac_cfg2_reg |= TSI108_MAC_CFG2_FULLDUPLEX;
334 				portctrl_reg &= ~TSI108_EC_PORTCTRL_HALFDUPLEX;
335 				data->duplex = 2;
336 			} else {
337 				mac_cfg2_reg &= ~TSI108_MAC_CFG2_FULLDUPLEX;
338 				portctrl_reg |= TSI108_EC_PORTCTRL_HALFDUPLEX;
339 				data->duplex = 1;
340 			}
341 
342 			TSI_WRITE(TSI108_MAC_CFG2, mac_cfg2_reg);
343 			TSI_WRITE(TSI108_EC_PORTCTRL, portctrl_reg);
344 		}
345 
346 		if (data->link_up == 0) {
347 			/* The manual says it can take 3-4 usecs for the speed change
348 			 * to take effect.
349 			 */
350 			udelay(5);
351 
352 			spin_lock(&data->txlock);
353 			if (is_valid_ether_addr(dev->dev_addr) && data->txfree)
354 				netif_wake_queue(dev);
355 
356 			data->link_up = 1;
357 			spin_unlock(&data->txlock);
358 		}
359 	} else {
360 		if (data->link_up == 1) {
361 			netif_stop_queue(dev);
362 			data->link_up = 0;
363 			printk(KERN_NOTICE "%s : link is down\n", dev->name);
364 		}
365 
366 		goto out;
367 	}
368 
369 
370 out:
371 	spin_unlock_irqrestore(&phy_lock, flags);
372 }
373 
374 static inline void
375 tsi108_stat_carry_one(int carry, int carry_bit, int carry_shift,
376 		      unsigned long *upper)
377 {
378 	if (carry & carry_bit)
379 		*upper += carry_shift;
380 }
381 
382 static void tsi108_stat_carry(struct net_device *dev)
383 {
384 	struct tsi108_prv_data *data = netdev_priv(dev);
385 	u32 carry1, carry2;
386 
387 	spin_lock_irq(&data->misclock);
388 
389 	carry1 = TSI_READ(TSI108_STAT_CARRY1);
390 	carry2 = TSI_READ(TSI108_STAT_CARRY2);
391 
392 	TSI_WRITE(TSI108_STAT_CARRY1, carry1);
393 	TSI_WRITE(TSI108_STAT_CARRY2, carry2);
394 
395 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXBYTES,
396 			      TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
397 
398 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXPKTS,
399 			      TSI108_STAT_RXPKTS_CARRY,
400 			      &data->stats.rx_packets);
401 
402 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFCS,
403 			      TSI108_STAT_RXFCS_CARRY, &data->rx_fcs);
404 
405 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXMCAST,
406 			      TSI108_STAT_RXMCAST_CARRY,
407 			      &data->stats.multicast);
408 
409 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXALIGN,
410 			      TSI108_STAT_RXALIGN_CARRY,
411 			      &data->stats.rx_frame_errors);
412 
413 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXLENGTH,
414 			      TSI108_STAT_RXLENGTH_CARRY,
415 			      &data->stats.rx_length_errors);
416 
417 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXRUNT,
418 			      TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
419 
420 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJUMBO,
421 			      TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
422 
423 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFRAG,
424 			      TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
425 
426 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJABBER,
427 			      TSI108_STAT_RXJABBER_CARRY, &data->rx_long_fcs);
428 
429 	tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXDROP,
430 			      TSI108_STAT_RXDROP_CARRY,
431 			      &data->stats.rx_missed_errors);
432 
433 	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXBYTES,
434 			      TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
435 
436 	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPKTS,
437 			      TSI108_STAT_TXPKTS_CARRY,
438 			      &data->stats.tx_packets);
439 
440 	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXDEF,
441 			      TSI108_STAT_TXEXDEF_CARRY,
442 			      &data->stats.tx_aborted_errors);
443 
444 	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXCOL,
445 			      TSI108_STAT_TXEXCOL_CARRY, &data->tx_coll_abort);
446 
447 	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXTCOL,
448 			      TSI108_STAT_TXTCOL_CARRY,
449 			      &data->stats.collisions);
450 
451 	tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPAUSE,
452 			      TSI108_STAT_TXPAUSEDROP_CARRY,
453 			      &data->tx_pause_drop);
454 
455 	spin_unlock_irq(&data->misclock);
456 }
457 
458 /* Read a stat counter atomically with respect to carries.
459  * data->misclock must be held.
460  */
461 static inline unsigned long
462 tsi108_read_stat(struct tsi108_prv_data * data, int reg, int carry_bit,
463 		 int carry_shift, unsigned long *upper)
464 {
465 	int carryreg;
466 	unsigned long val;
467 
468 	if (reg < 0xb0)
469 		carryreg = TSI108_STAT_CARRY1;
470 	else
471 		carryreg = TSI108_STAT_CARRY2;
472 
473       again:
474 	val = TSI_READ(reg) | *upper;
475 
476 	/* Check to see if it overflowed, but the interrupt hasn't
477 	 * been serviced yet.  If so, handle the carry here, and
478 	 * try again.
479 	 */
480 
481 	if (unlikely(TSI_READ(carryreg) & carry_bit)) {
482 		*upper += carry_shift;
483 		TSI_WRITE(carryreg, carry_bit);
484 		goto again;
485 	}
486 
487 	return val;
488 }
489 
490 static struct net_device_stats *tsi108_get_stats(struct net_device *dev)
491 {
492 	unsigned long excol;
493 
494 	struct tsi108_prv_data *data = netdev_priv(dev);
495 	spin_lock_irq(&data->misclock);
496 
497 	data->tmpstats.rx_packets =
498 	    tsi108_read_stat(data, TSI108_STAT_RXPKTS,
499 			     TSI108_STAT_CARRY1_RXPKTS,
500 			     TSI108_STAT_RXPKTS_CARRY, &data->stats.rx_packets);
501 
502 	data->tmpstats.tx_packets =
503 	    tsi108_read_stat(data, TSI108_STAT_TXPKTS,
504 			     TSI108_STAT_CARRY2_TXPKTS,
505 			     TSI108_STAT_TXPKTS_CARRY, &data->stats.tx_packets);
506 
507 	data->tmpstats.rx_bytes =
508 	    tsi108_read_stat(data, TSI108_STAT_RXBYTES,
509 			     TSI108_STAT_CARRY1_RXBYTES,
510 			     TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
511 
512 	data->tmpstats.tx_bytes =
513 	    tsi108_read_stat(data, TSI108_STAT_TXBYTES,
514 			     TSI108_STAT_CARRY2_TXBYTES,
515 			     TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
516 
517 	data->tmpstats.multicast =
518 	    tsi108_read_stat(data, TSI108_STAT_RXMCAST,
519 			     TSI108_STAT_CARRY1_RXMCAST,
520 			     TSI108_STAT_RXMCAST_CARRY, &data->stats.multicast);
521 
522 	excol = tsi108_read_stat(data, TSI108_STAT_TXEXCOL,
523 				 TSI108_STAT_CARRY2_TXEXCOL,
524 				 TSI108_STAT_TXEXCOL_CARRY,
525 				 &data->tx_coll_abort);
526 
527 	data->tmpstats.collisions =
528 	    tsi108_read_stat(data, TSI108_STAT_TXTCOL,
529 			     TSI108_STAT_CARRY2_TXTCOL,
530 			     TSI108_STAT_TXTCOL_CARRY, &data->stats.collisions);
531 
532 	data->tmpstats.collisions += excol;
533 
534 	data->tmpstats.rx_length_errors =
535 	    tsi108_read_stat(data, TSI108_STAT_RXLENGTH,
536 			     TSI108_STAT_CARRY1_RXLENGTH,
537 			     TSI108_STAT_RXLENGTH_CARRY,
538 			     &data->stats.rx_length_errors);
539 
540 	data->tmpstats.rx_length_errors +=
541 	    tsi108_read_stat(data, TSI108_STAT_RXRUNT,
542 			     TSI108_STAT_CARRY1_RXRUNT,
543 			     TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
544 
545 	data->tmpstats.rx_length_errors +=
546 	    tsi108_read_stat(data, TSI108_STAT_RXJUMBO,
547 			     TSI108_STAT_CARRY1_RXJUMBO,
548 			     TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
549 
550 	data->tmpstats.rx_frame_errors =
551 	    tsi108_read_stat(data, TSI108_STAT_RXALIGN,
552 			     TSI108_STAT_CARRY1_RXALIGN,
553 			     TSI108_STAT_RXALIGN_CARRY,
554 			     &data->stats.rx_frame_errors);
555 
556 	data->tmpstats.rx_frame_errors +=
557 	    tsi108_read_stat(data, TSI108_STAT_RXFCS,
558 			     TSI108_STAT_CARRY1_RXFCS, TSI108_STAT_RXFCS_CARRY,
559 			     &data->rx_fcs);
560 
561 	data->tmpstats.rx_frame_errors +=
562 	    tsi108_read_stat(data, TSI108_STAT_RXFRAG,
563 			     TSI108_STAT_CARRY1_RXFRAG,
564 			     TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
565 
566 	data->tmpstats.rx_missed_errors =
567 	    tsi108_read_stat(data, TSI108_STAT_RXDROP,
568 			     TSI108_STAT_CARRY1_RXDROP,
569 			     TSI108_STAT_RXDROP_CARRY,
570 			     &data->stats.rx_missed_errors);
571 
572 	/* These three are maintained by software. */
573 	data->tmpstats.rx_fifo_errors = data->stats.rx_fifo_errors;
574 	data->tmpstats.rx_crc_errors = data->stats.rx_crc_errors;
575 
576 	data->tmpstats.tx_aborted_errors =
577 	    tsi108_read_stat(data, TSI108_STAT_TXEXDEF,
578 			     TSI108_STAT_CARRY2_TXEXDEF,
579 			     TSI108_STAT_TXEXDEF_CARRY,
580 			     &data->stats.tx_aborted_errors);
581 
582 	data->tmpstats.tx_aborted_errors +=
583 	    tsi108_read_stat(data, TSI108_STAT_TXPAUSEDROP,
584 			     TSI108_STAT_CARRY2_TXPAUSE,
585 			     TSI108_STAT_TXPAUSEDROP_CARRY,
586 			     &data->tx_pause_drop);
587 
588 	data->tmpstats.tx_aborted_errors += excol;
589 
590 	data->tmpstats.tx_errors = data->tmpstats.tx_aborted_errors;
591 	data->tmpstats.rx_errors = data->tmpstats.rx_length_errors +
592 	    data->tmpstats.rx_crc_errors +
593 	    data->tmpstats.rx_frame_errors +
594 	    data->tmpstats.rx_fifo_errors + data->tmpstats.rx_missed_errors;
595 
596 	spin_unlock_irq(&data->misclock);
597 	return &data->tmpstats;
598 }
599 
600 static void tsi108_restart_rx(struct tsi108_prv_data * data, struct net_device *dev)
601 {
602 	TSI_WRITE(TSI108_EC_RXQ_PTRHIGH,
603 			     TSI108_EC_RXQ_PTRHIGH_VALID);
604 
605 	TSI_WRITE(TSI108_EC_RXCTRL, TSI108_EC_RXCTRL_GO
606 			     | TSI108_EC_RXCTRL_QUEUE0);
607 }
608 
609 static void tsi108_restart_tx(struct tsi108_prv_data * data)
610 {
611 	TSI_WRITE(TSI108_EC_TXQ_PTRHIGH,
612 			     TSI108_EC_TXQ_PTRHIGH_VALID);
613 
614 	TSI_WRITE(TSI108_EC_TXCTRL, TSI108_EC_TXCTRL_IDLEINT |
615 			     TSI108_EC_TXCTRL_GO | TSI108_EC_TXCTRL_QUEUE0);
616 }
617 
618 /* txlock must be held by caller, with IRQs disabled, and
619  * with permission to re-enable them when the lock is dropped.
620  */
621 static void tsi108_complete_tx(struct net_device *dev)
622 {
623 	struct tsi108_prv_data *data = netdev_priv(dev);
624 	int tx;
625 	struct sk_buff *skb;
626 	int release = 0;
627 
628 	while (!data->txfree || data->txhead != data->txtail) {
629 		tx = data->txtail;
630 
631 		if (data->txring[tx].misc & TSI108_TX_OWN)
632 			break;
633 
634 		skb = data->txskbs[tx];
635 
636 		if (!(data->txring[tx].misc & TSI108_TX_OK))
637 			printk("%s: bad tx packet, misc %x\n",
638 			       dev->name, data->txring[tx].misc);
639 
640 		data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
641 		data->txfree++;
642 
643 		if (data->txring[tx].misc & TSI108_TX_EOF) {
644 			dev_kfree_skb_any(skb);
645 			release++;
646 		}
647 	}
648 
649 	if (release) {
650 		if (is_valid_ether_addr(dev->dev_addr) && data->link_up)
651 			netif_wake_queue(dev);
652 	}
653 }
654 
655 static int tsi108_send_packet(struct sk_buff * skb, struct net_device *dev)
656 {
657 	struct tsi108_prv_data *data = netdev_priv(dev);
658 	int frags = skb_shinfo(skb)->nr_frags + 1;
659 	int i;
660 
661 	if (!data->phy_ok && net_ratelimit())
662 		printk(KERN_ERR "%s: Transmit while PHY is down!\n", dev->name);
663 
664 	if (!data->link_up) {
665 		printk(KERN_ERR "%s: Transmit while link is down!\n",
666 		       dev->name);
667 		netif_stop_queue(dev);
668 		return NETDEV_TX_BUSY;
669 	}
670 
671 	if (data->txfree < MAX_SKB_FRAGS + 1) {
672 		netif_stop_queue(dev);
673 
674 		if (net_ratelimit())
675 			printk(KERN_ERR "%s: Transmit with full tx ring!\n",
676 			       dev->name);
677 		return NETDEV_TX_BUSY;
678 	}
679 
680 	if (data->txfree - frags < MAX_SKB_FRAGS + 1) {
681 		netif_stop_queue(dev);
682 	}
683 
684 	spin_lock_irq(&data->txlock);
685 
686 	for (i = 0; i < frags; i++) {
687 		int misc = 0;
688 		int tx = data->txhead;
689 
690 		/* This is done to mark every TSI108_TX_INT_FREQ tx buffers with
691 		 * the interrupt bit.  TX descriptor-complete interrupts are
692 		 * enabled when the queue fills up, and masked when there is
693 		 * still free space.  This way, when saturating the outbound
694 		 * link, the tx interrupts are kept to a reasonable level.
695 		 * When the queue is not full, reclamation of skbs still occurs
696 		 * as new packets are transmitted, or on a queue-empty
697 		 * interrupt.
698 		 */
699 
700 		if ((tx % TSI108_TX_INT_FREQ == 0) &&
701 		    ((TSI108_TXRING_LEN - data->txfree) >= TSI108_TX_INT_FREQ))
702 			misc = TSI108_TX_INT;
703 
704 		data->txskbs[tx] = skb;
705 
706 		if (i == 0) {
707 			data->txring[tx].buf0 = dma_map_single(NULL, skb->data,
708 					skb_headlen(skb), DMA_TO_DEVICE);
709 			data->txring[tx].len = skb_headlen(skb);
710 			misc |= TSI108_TX_SOF;
711 		} else {
712 			const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
713 
714 			data->txring[tx].buf0 = skb_frag_dma_map(NULL, frag,
715 								 0,
716 								 skb_frag_size(frag),
717 								 DMA_TO_DEVICE);
718 			data->txring[tx].len = skb_frag_size(frag);
719 		}
720 
721 		if (i == frags - 1)
722 			misc |= TSI108_TX_EOF;
723 
724 		if (netif_msg_pktdata(data)) {
725 			int i;
726 			printk("%s: Tx Frame contents (%d)\n", dev->name,
727 			       skb->len);
728 			for (i = 0; i < skb->len; i++)
729 				printk(" %2.2x", skb->data[i]);
730 			printk(".\n");
731 		}
732 		data->txring[tx].misc = misc | TSI108_TX_OWN;
733 
734 		data->txhead = (data->txhead + 1) % TSI108_TXRING_LEN;
735 		data->txfree--;
736 	}
737 
738 	tsi108_complete_tx(dev);
739 
740 	/* This must be done after the check for completed tx descriptors,
741 	 * so that the tail pointer is correct.
742 	 */
743 
744 	if (!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_QUEUE0))
745 		tsi108_restart_tx(data);
746 
747 	spin_unlock_irq(&data->txlock);
748 	return NETDEV_TX_OK;
749 }
750 
751 static int tsi108_complete_rx(struct net_device *dev, int budget)
752 {
753 	struct tsi108_prv_data *data = netdev_priv(dev);
754 	int done = 0;
755 
756 	while (data->rxfree && done != budget) {
757 		int rx = data->rxtail;
758 		struct sk_buff *skb;
759 
760 		if (data->rxring[rx].misc & TSI108_RX_OWN)
761 			break;
762 
763 		skb = data->rxskbs[rx];
764 		data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
765 		data->rxfree--;
766 		done++;
767 
768 		if (data->rxring[rx].misc & TSI108_RX_BAD) {
769 			spin_lock_irq(&data->misclock);
770 
771 			if (data->rxring[rx].misc & TSI108_RX_CRC)
772 				data->stats.rx_crc_errors++;
773 			if (data->rxring[rx].misc & TSI108_RX_OVER)
774 				data->stats.rx_fifo_errors++;
775 
776 			spin_unlock_irq(&data->misclock);
777 
778 			dev_kfree_skb_any(skb);
779 			continue;
780 		}
781 		if (netif_msg_pktdata(data)) {
782 			int i;
783 			printk("%s: Rx Frame contents (%d)\n",
784 			       dev->name, data->rxring[rx].len);
785 			for (i = 0; i < data->rxring[rx].len; i++)
786 				printk(" %2.2x", skb->data[i]);
787 			printk(".\n");
788 		}
789 
790 		skb_put(skb, data->rxring[rx].len);
791 		skb->protocol = eth_type_trans(skb, dev);
792 		netif_receive_skb(skb);
793 	}
794 
795 	return done;
796 }
797 
798 static int tsi108_refill_rx(struct net_device *dev, int budget)
799 {
800 	struct tsi108_prv_data *data = netdev_priv(dev);
801 	int done = 0;
802 
803 	while (data->rxfree != TSI108_RXRING_LEN && done != budget) {
804 		int rx = data->rxhead;
805 		struct sk_buff *skb;
806 
807 		skb = netdev_alloc_skb_ip_align(dev, TSI108_RXBUF_SIZE);
808 		data->rxskbs[rx] = skb;
809 		if (!skb)
810 			break;
811 
812 		data->rxring[rx].buf0 = dma_map_single(NULL, skb->data,
813 							TSI108_RX_SKB_SIZE,
814 							DMA_FROM_DEVICE);
815 
816 		/* Sometimes the hardware sets blen to zero after packet
817 		 * reception, even though the manual says that it's only ever
818 		 * modified by the driver.
819 		 */
820 
821 		data->rxring[rx].blen = TSI108_RX_SKB_SIZE;
822 		data->rxring[rx].misc = TSI108_RX_OWN | TSI108_RX_INT;
823 
824 		data->rxhead = (data->rxhead + 1) % TSI108_RXRING_LEN;
825 		data->rxfree++;
826 		done++;
827 	}
828 
829 	if (done != 0 && !(TSI_READ(TSI108_EC_RXSTAT) &
830 			   TSI108_EC_RXSTAT_QUEUE0))
831 		tsi108_restart_rx(data, dev);
832 
833 	return done;
834 }
835 
836 static int tsi108_poll(struct napi_struct *napi, int budget)
837 {
838 	struct tsi108_prv_data *data = container_of(napi, struct tsi108_prv_data, napi);
839 	struct net_device *dev = data->dev;
840 	u32 estat = TSI_READ(TSI108_EC_RXESTAT);
841 	u32 intstat = TSI_READ(TSI108_EC_INTSTAT);
842 	int num_received = 0, num_filled = 0;
843 
844 	intstat &= TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
845 	    TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR | TSI108_INT_RXWAIT;
846 
847 	TSI_WRITE(TSI108_EC_RXESTAT, estat);
848 	TSI_WRITE(TSI108_EC_INTSTAT, intstat);
849 
850 	if (data->rxpending || (estat & TSI108_EC_RXESTAT_Q0_DESCINT))
851 		num_received = tsi108_complete_rx(dev, budget);
852 
853 	/* This should normally fill no more slots than the number of
854 	 * packets received in tsi108_complete_rx().  The exception
855 	 * is when we previously ran out of memory for RX SKBs.  In that
856 	 * case, it's helpful to obey the budget, not only so that the
857 	 * CPU isn't hogged, but so that memory (which may still be low)
858 	 * is not hogged by one device.
859 	 *
860 	 * A work unit is considered to be two SKBs to allow us to catch
861 	 * up when the ring has shrunk due to out-of-memory but we're
862 	 * still removing the full budget's worth of packets each time.
863 	 */
864 
865 	if (data->rxfree < TSI108_RXRING_LEN)
866 		num_filled = tsi108_refill_rx(dev, budget * 2);
867 
868 	if (intstat & TSI108_INT_RXERROR) {
869 		u32 err = TSI_READ(TSI108_EC_RXERR);
870 		TSI_WRITE(TSI108_EC_RXERR, err);
871 
872 		if (err) {
873 			if (net_ratelimit())
874 				printk(KERN_DEBUG "%s: RX error %x\n",
875 				       dev->name, err);
876 
877 			if (!(TSI_READ(TSI108_EC_RXSTAT) &
878 			      TSI108_EC_RXSTAT_QUEUE0))
879 				tsi108_restart_rx(data, dev);
880 		}
881 	}
882 
883 	if (intstat & TSI108_INT_RXOVERRUN) {
884 		spin_lock_irq(&data->misclock);
885 		data->stats.rx_fifo_errors++;
886 		spin_unlock_irq(&data->misclock);
887 	}
888 
889 	if (num_received < budget) {
890 		data->rxpending = 0;
891 		napi_complete(napi);
892 
893 		TSI_WRITE(TSI108_EC_INTMASK,
894 				     TSI_READ(TSI108_EC_INTMASK)
895 				     & ~(TSI108_INT_RXQUEUE0
896 					 | TSI108_INT_RXTHRESH |
897 					 TSI108_INT_RXOVERRUN |
898 					 TSI108_INT_RXERROR |
899 					 TSI108_INT_RXWAIT));
900 	} else {
901 		data->rxpending = 1;
902 	}
903 
904 	return num_received;
905 }
906 
907 static void tsi108_rx_int(struct net_device *dev)
908 {
909 	struct tsi108_prv_data *data = netdev_priv(dev);
910 
911 	/* A race could cause dev to already be scheduled, so it's not an
912 	 * error if that happens (and interrupts shouldn't be re-masked,
913 	 * because that can cause harmful races, if poll has already
914 	 * unmasked them but not cleared LINK_STATE_SCHED).
915 	 *
916 	 * This can happen if this code races with tsi108_poll(), which masks
917 	 * the interrupts after tsi108_irq_one() read the mask, but before
918 	 * napi_schedule is called.  It could also happen due to calls
919 	 * from tsi108_check_rxring().
920 	 */
921 
922 	if (napi_schedule_prep(&data->napi)) {
923 		/* Mask, rather than ack, the receive interrupts.  The ack
924 		 * will happen in tsi108_poll().
925 		 */
926 
927 		TSI_WRITE(TSI108_EC_INTMASK,
928 				     TSI_READ(TSI108_EC_INTMASK) |
929 				     TSI108_INT_RXQUEUE0
930 				     | TSI108_INT_RXTHRESH |
931 				     TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR |
932 				     TSI108_INT_RXWAIT);
933 		__napi_schedule(&data->napi);
934 	} else {
935 		if (!netif_running(dev)) {
936 			/* This can happen if an interrupt occurs while the
937 			 * interface is being brought down, as the START
938 			 * bit is cleared before the stop function is called.
939 			 *
940 			 * In this case, the interrupts must be masked, or
941 			 * they will continue indefinitely.
942 			 *
943 			 * There's a race here if the interface is brought down
944 			 * and then up in rapid succession, as the device could
945 			 * be made running after the above check and before
946 			 * the masking below.  This will only happen if the IRQ
947 			 * thread has a lower priority than the task brining
948 			 * up the interface.  Fixing this race would likely
949 			 * require changes in generic code.
950 			 */
951 
952 			TSI_WRITE(TSI108_EC_INTMASK,
953 					     TSI_READ
954 					     (TSI108_EC_INTMASK) |
955 					     TSI108_INT_RXQUEUE0 |
956 					     TSI108_INT_RXTHRESH |
957 					     TSI108_INT_RXOVERRUN |
958 					     TSI108_INT_RXERROR |
959 					     TSI108_INT_RXWAIT);
960 		}
961 	}
962 }
963 
964 /* If the RX ring has run out of memory, try periodically
965  * to allocate some more, as otherwise poll would never
966  * get called (apart from the initial end-of-queue condition).
967  *
968  * This is called once per second (by default) from the thread.
969  */
970 
971 static void tsi108_check_rxring(struct net_device *dev)
972 {
973 	struct tsi108_prv_data *data = netdev_priv(dev);
974 
975 	/* A poll is scheduled, as opposed to caling tsi108_refill_rx
976 	 * directly, so as to keep the receive path single-threaded
977 	 * (and thus not needing a lock).
978 	 */
979 
980 	if (netif_running(dev) && data->rxfree < TSI108_RXRING_LEN / 4)
981 		tsi108_rx_int(dev);
982 }
983 
984 static void tsi108_tx_int(struct net_device *dev)
985 {
986 	struct tsi108_prv_data *data = netdev_priv(dev);
987 	u32 estat = TSI_READ(TSI108_EC_TXESTAT);
988 
989 	TSI_WRITE(TSI108_EC_TXESTAT, estat);
990 	TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_TXQUEUE0 |
991 			     TSI108_INT_TXIDLE | TSI108_INT_TXERROR);
992 	if (estat & TSI108_EC_TXESTAT_Q0_ERR) {
993 		u32 err = TSI_READ(TSI108_EC_TXERR);
994 		TSI_WRITE(TSI108_EC_TXERR, err);
995 
996 		if (err && net_ratelimit())
997 			printk(KERN_ERR "%s: TX error %x\n", dev->name, err);
998 	}
999 
1000 	if (estat & (TSI108_EC_TXESTAT_Q0_DESCINT | TSI108_EC_TXESTAT_Q0_EOQ)) {
1001 		spin_lock(&data->txlock);
1002 		tsi108_complete_tx(dev);
1003 		spin_unlock(&data->txlock);
1004 	}
1005 }
1006 
1007 
1008 static irqreturn_t tsi108_irq(int irq, void *dev_id)
1009 {
1010 	struct net_device *dev = dev_id;
1011 	struct tsi108_prv_data *data = netdev_priv(dev);
1012 	u32 stat = TSI_READ(TSI108_EC_INTSTAT);
1013 
1014 	if (!(stat & TSI108_INT_ANY))
1015 		return IRQ_NONE;	/* Not our interrupt */
1016 
1017 	stat &= ~TSI_READ(TSI108_EC_INTMASK);
1018 
1019 	if (stat & (TSI108_INT_TXQUEUE0 | TSI108_INT_TXIDLE |
1020 		    TSI108_INT_TXERROR))
1021 		tsi108_tx_int(dev);
1022 	if (stat & (TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
1023 		    TSI108_INT_RXWAIT | TSI108_INT_RXOVERRUN |
1024 		    TSI108_INT_RXERROR))
1025 		tsi108_rx_int(dev);
1026 
1027 	if (stat & TSI108_INT_SFN) {
1028 		if (net_ratelimit())
1029 			printk(KERN_DEBUG "%s: SFN error\n", dev->name);
1030 		TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_SFN);
1031 	}
1032 
1033 	if (stat & TSI108_INT_STATCARRY) {
1034 		tsi108_stat_carry(dev);
1035 		TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_STATCARRY);
1036 	}
1037 
1038 	return IRQ_HANDLED;
1039 }
1040 
1041 static void tsi108_stop_ethernet(struct net_device *dev)
1042 {
1043 	struct tsi108_prv_data *data = netdev_priv(dev);
1044 	int i = 1000;
1045 	/* Disable all TX and RX queues ... */
1046 	TSI_WRITE(TSI108_EC_TXCTRL, 0);
1047 	TSI_WRITE(TSI108_EC_RXCTRL, 0);
1048 
1049 	/* ...and wait for them to become idle */
1050 	while(i--) {
1051 		if(!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_ACTIVE))
1052 			break;
1053 		udelay(10);
1054 	}
1055 	i = 1000;
1056 	while(i--){
1057 		if(!(TSI_READ(TSI108_EC_RXSTAT) & TSI108_EC_RXSTAT_ACTIVE))
1058 			return;
1059 		udelay(10);
1060 	}
1061 	printk(KERN_ERR "%s function time out\n", __func__);
1062 }
1063 
1064 static void tsi108_reset_ether(struct tsi108_prv_data * data)
1065 {
1066 	TSI_WRITE(TSI108_MAC_CFG1, TSI108_MAC_CFG1_SOFTRST);
1067 	udelay(100);
1068 	TSI_WRITE(TSI108_MAC_CFG1, 0);
1069 
1070 	TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATRST);
1071 	udelay(100);
1072 	TSI_WRITE(TSI108_EC_PORTCTRL,
1073 			     TSI_READ(TSI108_EC_PORTCTRL) &
1074 			     ~TSI108_EC_PORTCTRL_STATRST);
1075 
1076 	TSI_WRITE(TSI108_EC_TXCFG, TSI108_EC_TXCFG_RST);
1077 	udelay(100);
1078 	TSI_WRITE(TSI108_EC_TXCFG,
1079 			     TSI_READ(TSI108_EC_TXCFG) &
1080 			     ~TSI108_EC_TXCFG_RST);
1081 
1082 	TSI_WRITE(TSI108_EC_RXCFG, TSI108_EC_RXCFG_RST);
1083 	udelay(100);
1084 	TSI_WRITE(TSI108_EC_RXCFG,
1085 			     TSI_READ(TSI108_EC_RXCFG) &
1086 			     ~TSI108_EC_RXCFG_RST);
1087 
1088 	TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1089 			     TSI_READ(TSI108_MAC_MII_MGMT_CFG) |
1090 			     TSI108_MAC_MII_MGMT_RST);
1091 	udelay(100);
1092 	TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1093 			     (TSI_READ(TSI108_MAC_MII_MGMT_CFG) &
1094 			     ~(TSI108_MAC_MII_MGMT_RST |
1095 			       TSI108_MAC_MII_MGMT_CLK)) | 0x07);
1096 }
1097 
1098 static int tsi108_get_mac(struct net_device *dev)
1099 {
1100 	struct tsi108_prv_data *data = netdev_priv(dev);
1101 	u32 word1 = TSI_READ(TSI108_MAC_ADDR1);
1102 	u32 word2 = TSI_READ(TSI108_MAC_ADDR2);
1103 
1104 	/* Note that the octets are reversed from what the manual says,
1105 	 * producing an even weirder ordering...
1106 	 */
1107 	if (word2 == 0 && word1 == 0) {
1108 		dev->dev_addr[0] = 0x00;
1109 		dev->dev_addr[1] = 0x06;
1110 		dev->dev_addr[2] = 0xd2;
1111 		dev->dev_addr[3] = 0x00;
1112 		dev->dev_addr[4] = 0x00;
1113 		if (0x8 == data->phy)
1114 			dev->dev_addr[5] = 0x01;
1115 		else
1116 			dev->dev_addr[5] = 0x02;
1117 
1118 		word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1119 
1120 		word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1121 		    (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1122 
1123 		TSI_WRITE(TSI108_MAC_ADDR1, word1);
1124 		TSI_WRITE(TSI108_MAC_ADDR2, word2);
1125 	} else {
1126 		dev->dev_addr[0] = (word2 >> 16) & 0xff;
1127 		dev->dev_addr[1] = (word2 >> 24) & 0xff;
1128 		dev->dev_addr[2] = (word1 >> 0) & 0xff;
1129 		dev->dev_addr[3] = (word1 >> 8) & 0xff;
1130 		dev->dev_addr[4] = (word1 >> 16) & 0xff;
1131 		dev->dev_addr[5] = (word1 >> 24) & 0xff;
1132 	}
1133 
1134 	if (!is_valid_ether_addr(dev->dev_addr)) {
1135 		printk(KERN_ERR
1136 		       "%s: Invalid MAC address. word1: %08x, word2: %08x\n",
1137 		       dev->name, word1, word2);
1138 		return -EINVAL;
1139 	}
1140 
1141 	return 0;
1142 }
1143 
1144 static int tsi108_set_mac(struct net_device *dev, void *addr)
1145 {
1146 	struct tsi108_prv_data *data = netdev_priv(dev);
1147 	u32 word1, word2;
1148 	int i;
1149 
1150 	if (!is_valid_ether_addr(addr))
1151 		return -EINVAL;
1152 
1153 	for (i = 0; i < 6; i++)
1154 		/* +2 is for the offset of the HW addr type */
1155 		dev->dev_addr[i] = ((unsigned char *)addr)[i + 2];
1156 
1157 	word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1158 
1159 	word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1160 	    (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1161 
1162 	spin_lock_irq(&data->misclock);
1163 	TSI_WRITE(TSI108_MAC_ADDR1, word1);
1164 	TSI_WRITE(TSI108_MAC_ADDR2, word2);
1165 	spin_lock(&data->txlock);
1166 
1167 	if (data->txfree && data->link_up)
1168 		netif_wake_queue(dev);
1169 
1170 	spin_unlock(&data->txlock);
1171 	spin_unlock_irq(&data->misclock);
1172 	return 0;
1173 }
1174 
1175 /* Protected by dev->xmit_lock. */
1176 static void tsi108_set_rx_mode(struct net_device *dev)
1177 {
1178 	struct tsi108_prv_data *data = netdev_priv(dev);
1179 	u32 rxcfg = TSI_READ(TSI108_EC_RXCFG);
1180 
1181 	if (dev->flags & IFF_PROMISC) {
1182 		rxcfg &= ~(TSI108_EC_RXCFG_UC_HASH | TSI108_EC_RXCFG_MC_HASH);
1183 		rxcfg |= TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE;
1184 		goto out;
1185 	}
1186 
1187 	rxcfg &= ~(TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE);
1188 
1189 	if (dev->flags & IFF_ALLMULTI || !netdev_mc_empty(dev)) {
1190 		int i;
1191 		struct netdev_hw_addr *ha;
1192 		rxcfg |= TSI108_EC_RXCFG_MFE | TSI108_EC_RXCFG_MC_HASH;
1193 
1194 		memset(data->mc_hash, 0, sizeof(data->mc_hash));
1195 
1196 		netdev_for_each_mc_addr(ha, dev) {
1197 			u32 hash, crc;
1198 
1199 			crc = ether_crc(6, ha->addr);
1200 			hash = crc >> 23;
1201 			__set_bit(hash, &data->mc_hash[0]);
1202 		}
1203 
1204 		TSI_WRITE(TSI108_EC_HASHADDR,
1205 				     TSI108_EC_HASHADDR_AUTOINC |
1206 				     TSI108_EC_HASHADDR_MCAST);
1207 
1208 		for (i = 0; i < 16; i++) {
1209 			/* The manual says that the hardware may drop
1210 			 * back-to-back writes to the data register.
1211 			 */
1212 			udelay(1);
1213 			TSI_WRITE(TSI108_EC_HASHDATA,
1214 					     data->mc_hash[i]);
1215 		}
1216 	}
1217 
1218       out:
1219 	TSI_WRITE(TSI108_EC_RXCFG, rxcfg);
1220 }
1221 
1222 static void tsi108_init_phy(struct net_device *dev)
1223 {
1224 	struct tsi108_prv_data *data = netdev_priv(dev);
1225 	u32 i = 0;
1226 	u16 phyval = 0;
1227 	unsigned long flags;
1228 
1229 	spin_lock_irqsave(&phy_lock, flags);
1230 
1231 	tsi108_write_mii(data, MII_BMCR, BMCR_RESET);
1232 	while (--i) {
1233 		if(!(tsi108_read_mii(data, MII_BMCR) & BMCR_RESET))
1234 			break;
1235 		udelay(10);
1236 	}
1237 	if (i == 0)
1238 		printk(KERN_ERR "%s function time out\n", __func__);
1239 
1240 	if (data->phy_type == TSI108_PHY_BCM54XX) {
1241 		tsi108_write_mii(data, 0x09, 0x0300);
1242 		tsi108_write_mii(data, 0x10, 0x1020);
1243 		tsi108_write_mii(data, 0x1c, 0x8c00);
1244 	}
1245 
1246 	tsi108_write_mii(data,
1247 			 MII_BMCR,
1248 			 BMCR_ANENABLE | BMCR_ANRESTART);
1249 	while (tsi108_read_mii(data, MII_BMCR) & BMCR_ANRESTART)
1250 		cpu_relax();
1251 
1252 	/* Set G/MII mode and receive clock select in TBI control #2.  The
1253 	 * second port won't work if this isn't done, even though we don't
1254 	 * use TBI mode.
1255 	 */
1256 
1257 	tsi108_write_tbi(data, 0x11, 0x30);
1258 
1259 	/* FIXME: It seems to take more than 2 back-to-back reads to the
1260 	 * PHY_STAT register before the link up status bit is set.
1261 	 */
1262 
1263 	data->link_up = 0;
1264 
1265 	while (!((phyval = tsi108_read_mii(data, MII_BMSR)) &
1266 		 BMSR_LSTATUS)) {
1267 		if (i++ > (MII_READ_DELAY / 10)) {
1268 			break;
1269 		}
1270 		spin_unlock_irqrestore(&phy_lock, flags);
1271 		msleep(10);
1272 		spin_lock_irqsave(&phy_lock, flags);
1273 	}
1274 
1275 	data->mii_if.supports_gmii = mii_check_gmii_support(&data->mii_if);
1276 	printk(KERN_DEBUG "PHY_STAT reg contains %08x\n", phyval);
1277 	data->phy_ok = 1;
1278 	data->init_media = 1;
1279 	spin_unlock_irqrestore(&phy_lock, flags);
1280 }
1281 
1282 static void tsi108_kill_phy(struct net_device *dev)
1283 {
1284 	struct tsi108_prv_data *data = netdev_priv(dev);
1285 	unsigned long flags;
1286 
1287 	spin_lock_irqsave(&phy_lock, flags);
1288 	tsi108_write_mii(data, MII_BMCR, BMCR_PDOWN);
1289 	data->phy_ok = 0;
1290 	spin_unlock_irqrestore(&phy_lock, flags);
1291 }
1292 
1293 static int tsi108_open(struct net_device *dev)
1294 {
1295 	int i;
1296 	struct tsi108_prv_data *data = netdev_priv(dev);
1297 	unsigned int rxring_size = TSI108_RXRING_LEN * sizeof(rx_desc);
1298 	unsigned int txring_size = TSI108_TXRING_LEN * sizeof(tx_desc);
1299 
1300 	i = request_irq(data->irq_num, tsi108_irq, 0, dev->name, dev);
1301 	if (i != 0) {
1302 		printk(KERN_ERR "tsi108_eth%d: Could not allocate IRQ%d.\n",
1303 		       data->id, data->irq_num);
1304 		return i;
1305 	} else {
1306 		dev->irq = data->irq_num;
1307 		printk(KERN_NOTICE
1308 		       "tsi108_open : Port %d Assigned IRQ %d to %s\n",
1309 		       data->id, dev->irq, dev->name);
1310 	}
1311 
1312 	data->rxring = dma_alloc_coherent(NULL, rxring_size,
1313 			&data->rxdma, GFP_KERNEL);
1314 
1315 	if (!data->rxring) {
1316 		printk(KERN_DEBUG
1317 		       "TSI108_ETH: failed to allocate memory for rxring!\n");
1318 		return -ENOMEM;
1319 	} else {
1320 		memset(data->rxring, 0, rxring_size);
1321 	}
1322 
1323 	data->txring = dma_alloc_coherent(NULL, txring_size,
1324 			&data->txdma, GFP_KERNEL);
1325 
1326 	if (!data->txring) {
1327 		printk(KERN_DEBUG
1328 		       "TSI108_ETH: failed to allocate memory for txring!\n");
1329 		pci_free_consistent(0, rxring_size, data->rxring, data->rxdma);
1330 		return -ENOMEM;
1331 	} else {
1332 		memset(data->txring, 0, txring_size);
1333 	}
1334 
1335 	for (i = 0; i < TSI108_RXRING_LEN; i++) {
1336 		data->rxring[i].next0 = data->rxdma + (i + 1) * sizeof(rx_desc);
1337 		data->rxring[i].blen = TSI108_RXBUF_SIZE;
1338 		data->rxring[i].vlan = 0;
1339 	}
1340 
1341 	data->rxring[TSI108_RXRING_LEN - 1].next0 = data->rxdma;
1342 
1343 	data->rxtail = 0;
1344 	data->rxhead = 0;
1345 
1346 	for (i = 0; i < TSI108_RXRING_LEN; i++) {
1347 		struct sk_buff *skb;
1348 
1349 		skb = netdev_alloc_skb_ip_align(dev, TSI108_RXBUF_SIZE);
1350 		if (!skb) {
1351 			/* Bah.  No memory for now, but maybe we'll get
1352 			 * some more later.
1353 			 * For now, we'll live with the smaller ring.
1354 			 */
1355 			printk(KERN_WARNING
1356 			       "%s: Could only allocate %d receive skb(s).\n",
1357 			       dev->name, i);
1358 			data->rxhead = i;
1359 			break;
1360 		}
1361 
1362 		data->rxskbs[i] = skb;
1363 		data->rxskbs[i] = skb;
1364 		data->rxring[i].buf0 = virt_to_phys(data->rxskbs[i]->data);
1365 		data->rxring[i].misc = TSI108_RX_OWN | TSI108_RX_INT;
1366 	}
1367 
1368 	data->rxfree = i;
1369 	TSI_WRITE(TSI108_EC_RXQ_PTRLOW, data->rxdma);
1370 
1371 	for (i = 0; i < TSI108_TXRING_LEN; i++) {
1372 		data->txring[i].next0 = data->txdma + (i + 1) * sizeof(tx_desc);
1373 		data->txring[i].misc = 0;
1374 	}
1375 
1376 	data->txring[TSI108_TXRING_LEN - 1].next0 = data->txdma;
1377 	data->txtail = 0;
1378 	data->txhead = 0;
1379 	data->txfree = TSI108_TXRING_LEN;
1380 	TSI_WRITE(TSI108_EC_TXQ_PTRLOW, data->txdma);
1381 	tsi108_init_phy(dev);
1382 
1383 	napi_enable(&data->napi);
1384 
1385 	setup_timer(&data->timer, tsi108_timed_checker, (unsigned long)dev);
1386 	mod_timer(&data->timer, jiffies + 1);
1387 
1388 	tsi108_restart_rx(data, dev);
1389 
1390 	TSI_WRITE(TSI108_EC_INTSTAT, ~0);
1391 
1392 	TSI_WRITE(TSI108_EC_INTMASK,
1393 			     ~(TSI108_INT_TXQUEUE0 | TSI108_INT_RXERROR |
1394 			       TSI108_INT_RXTHRESH | TSI108_INT_RXQUEUE0 |
1395 			       TSI108_INT_RXOVERRUN | TSI108_INT_RXWAIT |
1396 			       TSI108_INT_SFN | TSI108_INT_STATCARRY));
1397 
1398 	TSI_WRITE(TSI108_MAC_CFG1,
1399 			     TSI108_MAC_CFG1_RXEN | TSI108_MAC_CFG1_TXEN);
1400 	netif_start_queue(dev);
1401 	return 0;
1402 }
1403 
1404 static int tsi108_close(struct net_device *dev)
1405 {
1406 	struct tsi108_prv_data *data = netdev_priv(dev);
1407 
1408 	netif_stop_queue(dev);
1409 	napi_disable(&data->napi);
1410 
1411 	del_timer_sync(&data->timer);
1412 
1413 	tsi108_stop_ethernet(dev);
1414 	tsi108_kill_phy(dev);
1415 	TSI_WRITE(TSI108_EC_INTMASK, ~0);
1416 	TSI_WRITE(TSI108_MAC_CFG1, 0);
1417 
1418 	/* Check for any pending TX packets, and drop them. */
1419 
1420 	while (!data->txfree || data->txhead != data->txtail) {
1421 		int tx = data->txtail;
1422 		struct sk_buff *skb;
1423 		skb = data->txskbs[tx];
1424 		data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
1425 		data->txfree++;
1426 		dev_kfree_skb(skb);
1427 	}
1428 
1429 	free_irq(data->irq_num, dev);
1430 
1431 	/* Discard the RX ring. */
1432 
1433 	while (data->rxfree) {
1434 		int rx = data->rxtail;
1435 		struct sk_buff *skb;
1436 
1437 		skb = data->rxskbs[rx];
1438 		data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
1439 		data->rxfree--;
1440 		dev_kfree_skb(skb);
1441 	}
1442 
1443 	dma_free_coherent(0,
1444 			    TSI108_RXRING_LEN * sizeof(rx_desc),
1445 			    data->rxring, data->rxdma);
1446 	dma_free_coherent(0,
1447 			    TSI108_TXRING_LEN * sizeof(tx_desc),
1448 			    data->txring, data->txdma);
1449 
1450 	return 0;
1451 }
1452 
1453 static void tsi108_init_mac(struct net_device *dev)
1454 {
1455 	struct tsi108_prv_data *data = netdev_priv(dev);
1456 
1457 	TSI_WRITE(TSI108_MAC_CFG2, TSI108_MAC_CFG2_DFLT_PREAMBLE |
1458 			     TSI108_MAC_CFG2_PADCRC);
1459 
1460 	TSI_WRITE(TSI108_EC_TXTHRESH,
1461 			     (192 << TSI108_EC_TXTHRESH_STARTFILL) |
1462 			     (192 << TSI108_EC_TXTHRESH_STOPFILL));
1463 
1464 	TSI_WRITE(TSI108_STAT_CARRYMASK1,
1465 			     ~(TSI108_STAT_CARRY1_RXBYTES |
1466 			       TSI108_STAT_CARRY1_RXPKTS |
1467 			       TSI108_STAT_CARRY1_RXFCS |
1468 			       TSI108_STAT_CARRY1_RXMCAST |
1469 			       TSI108_STAT_CARRY1_RXALIGN |
1470 			       TSI108_STAT_CARRY1_RXLENGTH |
1471 			       TSI108_STAT_CARRY1_RXRUNT |
1472 			       TSI108_STAT_CARRY1_RXJUMBO |
1473 			       TSI108_STAT_CARRY1_RXFRAG |
1474 			       TSI108_STAT_CARRY1_RXJABBER |
1475 			       TSI108_STAT_CARRY1_RXDROP));
1476 
1477 	TSI_WRITE(TSI108_STAT_CARRYMASK2,
1478 			     ~(TSI108_STAT_CARRY2_TXBYTES |
1479 			       TSI108_STAT_CARRY2_TXPKTS |
1480 			       TSI108_STAT_CARRY2_TXEXDEF |
1481 			       TSI108_STAT_CARRY2_TXEXCOL |
1482 			       TSI108_STAT_CARRY2_TXTCOL |
1483 			       TSI108_STAT_CARRY2_TXPAUSE));
1484 
1485 	TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATEN);
1486 	TSI_WRITE(TSI108_MAC_CFG1, 0);
1487 
1488 	TSI_WRITE(TSI108_EC_RXCFG,
1489 			     TSI108_EC_RXCFG_SE | TSI108_EC_RXCFG_BFE);
1490 
1491 	TSI_WRITE(TSI108_EC_TXQ_CFG, TSI108_EC_TXQ_CFG_DESC_INT |
1492 			     TSI108_EC_TXQ_CFG_EOQ_OWN_INT |
1493 			     TSI108_EC_TXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1494 						TSI108_EC_TXQ_CFG_SFNPORT));
1495 
1496 	TSI_WRITE(TSI108_EC_RXQ_CFG, TSI108_EC_RXQ_CFG_DESC_INT |
1497 			     TSI108_EC_RXQ_CFG_EOQ_OWN_INT |
1498 			     TSI108_EC_RXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1499 						TSI108_EC_RXQ_CFG_SFNPORT));
1500 
1501 	TSI_WRITE(TSI108_EC_TXQ_BUFCFG,
1502 			     TSI108_EC_TXQ_BUFCFG_BURST256 |
1503 			     TSI108_EC_TXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1504 						TSI108_EC_TXQ_BUFCFG_SFNPORT));
1505 
1506 	TSI_WRITE(TSI108_EC_RXQ_BUFCFG,
1507 			     TSI108_EC_RXQ_BUFCFG_BURST256 |
1508 			     TSI108_EC_RXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1509 						TSI108_EC_RXQ_BUFCFG_SFNPORT));
1510 
1511 	TSI_WRITE(TSI108_EC_INTMASK, ~0);
1512 }
1513 
1514 static int tsi108_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1515 {
1516 	struct tsi108_prv_data *data = netdev_priv(dev);
1517 	unsigned long flags;
1518 	int rc;
1519 
1520 	spin_lock_irqsave(&data->txlock, flags);
1521 	rc = mii_ethtool_gset(&data->mii_if, cmd);
1522 	spin_unlock_irqrestore(&data->txlock, flags);
1523 
1524 	return rc;
1525 }
1526 
1527 static int tsi108_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1528 {
1529 	struct tsi108_prv_data *data = netdev_priv(dev);
1530 	unsigned long flags;
1531 	int rc;
1532 
1533 	spin_lock_irqsave(&data->txlock, flags);
1534 	rc = mii_ethtool_sset(&data->mii_if, cmd);
1535 	spin_unlock_irqrestore(&data->txlock, flags);
1536 
1537 	return rc;
1538 }
1539 
1540 static int tsi108_do_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1541 {
1542 	struct tsi108_prv_data *data = netdev_priv(dev);
1543 	if (!netif_running(dev))
1544 		return -EINVAL;
1545 	return generic_mii_ioctl(&data->mii_if, if_mii(rq), cmd, NULL);
1546 }
1547 
1548 static const struct ethtool_ops tsi108_ethtool_ops = {
1549 	.get_link 	= ethtool_op_get_link,
1550 	.get_settings	= tsi108_get_settings,
1551 	.set_settings	= tsi108_set_settings,
1552 };
1553 
1554 static const struct net_device_ops tsi108_netdev_ops = {
1555 	.ndo_open		= tsi108_open,
1556 	.ndo_stop		= tsi108_close,
1557 	.ndo_start_xmit		= tsi108_send_packet,
1558 	.ndo_set_rx_mode	= tsi108_set_rx_mode,
1559 	.ndo_get_stats		= tsi108_get_stats,
1560 	.ndo_do_ioctl		= tsi108_do_ioctl,
1561 	.ndo_set_mac_address	= tsi108_set_mac,
1562 	.ndo_validate_addr	= eth_validate_addr,
1563 	.ndo_change_mtu		= eth_change_mtu,
1564 };
1565 
1566 static int
1567 tsi108_init_one(struct platform_device *pdev)
1568 {
1569 	struct net_device *dev = NULL;
1570 	struct tsi108_prv_data *data = NULL;
1571 	hw_info *einfo;
1572 	int err = 0;
1573 
1574 	einfo = pdev->dev.platform_data;
1575 
1576 	if (NULL == einfo) {
1577 		printk(KERN_ERR "tsi-eth %d: Missing additional data!\n",
1578 		       pdev->id);
1579 		return -ENODEV;
1580 	}
1581 
1582 	/* Create an ethernet device instance */
1583 
1584 	dev = alloc_etherdev(sizeof(struct tsi108_prv_data));
1585 	if (!dev) {
1586 		printk("tsi108_eth: Could not allocate a device structure\n");
1587 		return -ENOMEM;
1588 	}
1589 
1590 	printk("tsi108_eth%d: probe...\n", pdev->id);
1591 	data = netdev_priv(dev);
1592 	data->dev = dev;
1593 
1594 	pr_debug("tsi108_eth%d:regs:phyresgs:phy:irq_num=0x%x:0x%x:0x%x:0x%x\n",
1595 			pdev->id, einfo->regs, einfo->phyregs,
1596 			einfo->phy, einfo->irq_num);
1597 
1598 	data->regs = ioremap(einfo->regs, 0x400);
1599 	if (NULL == data->regs) {
1600 		err = -ENOMEM;
1601 		goto regs_fail;
1602 	}
1603 
1604 	data->phyregs = ioremap(einfo->phyregs, 0x400);
1605 	if (NULL == data->phyregs) {
1606 		err = -ENOMEM;
1607 		goto regs_fail;
1608 	}
1609 /* MII setup */
1610 	data->mii_if.dev = dev;
1611 	data->mii_if.mdio_read = tsi108_mdio_read;
1612 	data->mii_if.mdio_write = tsi108_mdio_write;
1613 	data->mii_if.phy_id = einfo->phy;
1614 	data->mii_if.phy_id_mask = 0x1f;
1615 	data->mii_if.reg_num_mask = 0x1f;
1616 
1617 	data->phy = einfo->phy;
1618 	data->phy_type = einfo->phy_type;
1619 	data->irq_num = einfo->irq_num;
1620 	data->id = pdev->id;
1621 	netif_napi_add(dev, &data->napi, tsi108_poll, 64);
1622 	dev->netdev_ops = &tsi108_netdev_ops;
1623 	dev->ethtool_ops = &tsi108_ethtool_ops;
1624 
1625 	/* Apparently, the Linux networking code won't use scatter-gather
1626 	 * if the hardware doesn't do checksums.  However, it's faster
1627 	 * to checksum in place and use SG, as (among other reasons)
1628 	 * the cache won't be dirtied (which then has to be flushed
1629 	 * before DMA).  The checksumming is done by the driver (via
1630 	 * a new function skb_csum_dev() in net/core/skbuff.c).
1631 	 */
1632 
1633 	dev->features = NETIF_F_HIGHDMA;
1634 
1635 	spin_lock_init(&data->txlock);
1636 	spin_lock_init(&data->misclock);
1637 
1638 	tsi108_reset_ether(data);
1639 	tsi108_kill_phy(dev);
1640 
1641 	if ((err = tsi108_get_mac(dev)) != 0) {
1642 		printk(KERN_ERR "%s: Invalid MAC address.  Please correct.\n",
1643 		       dev->name);
1644 		goto register_fail;
1645 	}
1646 
1647 	tsi108_init_mac(dev);
1648 	err = register_netdev(dev);
1649 	if (err) {
1650 		printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
1651 				dev->name);
1652 		goto register_fail;
1653 	}
1654 
1655 	platform_set_drvdata(pdev, dev);
1656 	printk(KERN_INFO "%s: Tsi108 Gigabit Ethernet, MAC: %pM\n",
1657 	       dev->name, dev->dev_addr);
1658 #ifdef DEBUG
1659 	data->msg_enable = DEBUG;
1660 	dump_eth_one(dev);
1661 #endif
1662 
1663 	return 0;
1664 
1665 register_fail:
1666 	iounmap(data->regs);
1667 	iounmap(data->phyregs);
1668 
1669 regs_fail:
1670 	free_netdev(dev);
1671 	return err;
1672 }
1673 
1674 /* There's no way to either get interrupts from the PHY when
1675  * something changes, or to have the Tsi108 automatically communicate
1676  * with the PHY to reconfigure itself.
1677  *
1678  * Thus, we have to do it using a timer.
1679  */
1680 
1681 static void tsi108_timed_checker(unsigned long dev_ptr)
1682 {
1683 	struct net_device *dev = (struct net_device *)dev_ptr;
1684 	struct tsi108_prv_data *data = netdev_priv(dev);
1685 
1686 	tsi108_check_phy(dev);
1687 	tsi108_check_rxring(dev);
1688 	mod_timer(&data->timer, jiffies + CHECK_PHY_INTERVAL);
1689 }
1690 
1691 static int tsi108_ether_init(void)
1692 {
1693 	int ret;
1694 	ret = platform_driver_register (&tsi_eth_driver);
1695 	if (ret < 0){
1696 		printk("tsi108_ether_init: error initializing ethernet "
1697 		       "device\n");
1698 		return ret;
1699 	}
1700 	return 0;
1701 }
1702 
1703 static int tsi108_ether_remove(struct platform_device *pdev)
1704 {
1705 	struct net_device *dev = platform_get_drvdata(pdev);
1706 	struct tsi108_prv_data *priv = netdev_priv(dev);
1707 
1708 	unregister_netdev(dev);
1709 	tsi108_stop_ethernet(dev);
1710 	platform_set_drvdata(pdev, NULL);
1711 	iounmap(priv->regs);
1712 	iounmap(priv->phyregs);
1713 	free_netdev(dev);
1714 
1715 	return 0;
1716 }
1717 static void tsi108_ether_exit(void)
1718 {
1719 	platform_driver_unregister(&tsi_eth_driver);
1720 }
1721 
1722 module_init(tsi108_ether_init);
1723 module_exit(tsi108_ether_exit);
1724 
1725 MODULE_AUTHOR("Tundra Semiconductor Corporation");
1726 MODULE_DESCRIPTION("Tsi108 Gigabit Ethernet driver");
1727 MODULE_LICENSE("GPL");
1728 MODULE_ALIAS("platform:tsi-ethernet");
1729