1 /* 2 * tc35815.c: A TOSHIBA TC35815CF PCI 10/100Mbps ethernet driver for linux. 3 * 4 * Based on skelton.c by Donald Becker. 5 * 6 * This driver is a replacement of older and less maintained version. 7 * This is a header of the older version: 8 * -----<snip>----- 9 * Copyright 2001 MontaVista Software Inc. 10 * Author: MontaVista Software, Inc. 11 * ahennessy@mvista.com 12 * Copyright (C) 2000-2001 Toshiba Corporation 13 * static const char *version = 14 * "tc35815.c:v0.00 26/07/2000 by Toshiba Corporation\n"; 15 * -----<snip>----- 16 * 17 * This file is subject to the terms and conditions of the GNU General Public 18 * License. See the file "COPYING" in the main directory of this archive 19 * for more details. 20 * 21 * (C) Copyright TOSHIBA CORPORATION 2004-2005 22 * All Rights Reserved. 23 */ 24 25 #define DRV_VERSION "1.39" 26 static const char version[] = "tc35815.c:v" DRV_VERSION "\n"; 27 #define MODNAME "tc35815" 28 29 #include <linux/module.h> 30 #include <linux/kernel.h> 31 #include <linux/types.h> 32 #include <linux/fcntl.h> 33 #include <linux/interrupt.h> 34 #include <linux/ioport.h> 35 #include <linux/in.h> 36 #include <linux/if_vlan.h> 37 #include <linux/slab.h> 38 #include <linux/string.h> 39 #include <linux/spinlock.h> 40 #include <linux/errno.h> 41 #include <linux/netdevice.h> 42 #include <linux/etherdevice.h> 43 #include <linux/skbuff.h> 44 #include <linux/delay.h> 45 #include <linux/pci.h> 46 #include <linux/phy.h> 47 #include <linux/workqueue.h> 48 #include <linux/platform_device.h> 49 #include <linux/prefetch.h> 50 #include <asm/io.h> 51 #include <asm/byteorder.h> 52 53 enum tc35815_chiptype { 54 TC35815CF = 0, 55 TC35815_NWU, 56 TC35815_TX4939, 57 }; 58 59 /* indexed by tc35815_chiptype, above */ 60 static const struct { 61 const char *name; 62 } chip_info[] = { 63 { "TOSHIBA TC35815CF 10/100BaseTX" }, 64 { "TOSHIBA TC35815 with Wake on LAN" }, 65 { "TOSHIBA TC35815/TX4939" }, 66 }; 67 68 static const struct pci_device_id tc35815_pci_tbl[] = { 69 {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815CF), .driver_data = TC35815CF }, 70 {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_NWU), .driver_data = TC35815_NWU }, 71 {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_TX4939), .driver_data = TC35815_TX4939 }, 72 {0,} 73 }; 74 MODULE_DEVICE_TABLE(pci, tc35815_pci_tbl); 75 76 /* see MODULE_PARM_DESC */ 77 static struct tc35815_options { 78 int speed; 79 int duplex; 80 } options; 81 82 /* 83 * Registers 84 */ 85 struct tc35815_regs { 86 __u32 DMA_Ctl; /* 0x00 */ 87 __u32 TxFrmPtr; 88 __u32 TxThrsh; 89 __u32 TxPollCtr; 90 __u32 BLFrmPtr; 91 __u32 RxFragSize; 92 __u32 Int_En; 93 __u32 FDA_Bas; 94 __u32 FDA_Lim; /* 0x20 */ 95 __u32 Int_Src; 96 __u32 unused0[2]; 97 __u32 PauseCnt; 98 __u32 RemPauCnt; 99 __u32 TxCtlFrmStat; 100 __u32 unused1; 101 __u32 MAC_Ctl; /* 0x40 */ 102 __u32 CAM_Ctl; 103 __u32 Tx_Ctl; 104 __u32 Tx_Stat; 105 __u32 Rx_Ctl; 106 __u32 Rx_Stat; 107 __u32 MD_Data; 108 __u32 MD_CA; 109 __u32 CAM_Adr; /* 0x60 */ 110 __u32 CAM_Data; 111 __u32 CAM_Ena; 112 __u32 PROM_Ctl; 113 __u32 PROM_Data; 114 __u32 Algn_Cnt; 115 __u32 CRC_Cnt; 116 __u32 Miss_Cnt; 117 }; 118 119 /* 120 * Bit assignments 121 */ 122 /* DMA_Ctl bit assign ------------------------------------------------------- */ 123 #define DMA_RxAlign 0x00c00000 /* 1:Reception Alignment */ 124 #define DMA_RxAlign_1 0x00400000 125 #define DMA_RxAlign_2 0x00800000 126 #define DMA_RxAlign_3 0x00c00000 127 #define DMA_M66EnStat 0x00080000 /* 1:66MHz Enable State */ 128 #define DMA_IntMask 0x00040000 /* 1:Interrupt mask */ 129 #define DMA_SWIntReq 0x00020000 /* 1:Software Interrupt request */ 130 #define DMA_TxWakeUp 0x00010000 /* 1:Transmit Wake Up */ 131 #define DMA_RxBigE 0x00008000 /* 1:Receive Big Endian */ 132 #define DMA_TxBigE 0x00004000 /* 1:Transmit Big Endian */ 133 #define DMA_TestMode 0x00002000 /* 1:Test Mode */ 134 #define DMA_PowrMgmnt 0x00001000 /* 1:Power Management */ 135 #define DMA_DmBurst_Mask 0x000001fc /* DMA Burst size */ 136 137 /* RxFragSize bit assign ---------------------------------------------------- */ 138 #define RxFrag_EnPack 0x00008000 /* 1:Enable Packing */ 139 #define RxFrag_MinFragMask 0x00000ffc /* Minimum Fragment */ 140 141 /* MAC_Ctl bit assign ------------------------------------------------------- */ 142 #define MAC_Link10 0x00008000 /* 1:Link Status 10Mbits */ 143 #define MAC_EnMissRoll 0x00002000 /* 1:Enable Missed Roll */ 144 #define MAC_MissRoll 0x00000400 /* 1:Missed Roll */ 145 #define MAC_Loop10 0x00000080 /* 1:Loop 10 Mbps */ 146 #define MAC_Conn_Auto 0x00000000 /*00:Connection mode (Automatic) */ 147 #define MAC_Conn_10M 0x00000020 /*01: (10Mbps endec)*/ 148 #define MAC_Conn_Mll 0x00000040 /*10: (Mll clock) */ 149 #define MAC_MacLoop 0x00000010 /* 1:MAC Loopback */ 150 #define MAC_FullDup 0x00000008 /* 1:Full Duplex 0:Half Duplex */ 151 #define MAC_Reset 0x00000004 /* 1:Software Reset */ 152 #define MAC_HaltImm 0x00000002 /* 1:Halt Immediate */ 153 #define MAC_HaltReq 0x00000001 /* 1:Halt request */ 154 155 /* PROM_Ctl bit assign ------------------------------------------------------ */ 156 #define PROM_Busy 0x00008000 /* 1:Busy (Start Operation) */ 157 #define PROM_Read 0x00004000 /*10:Read operation */ 158 #define PROM_Write 0x00002000 /*01:Write operation */ 159 #define PROM_Erase 0x00006000 /*11:Erase operation */ 160 /*00:Enable or Disable Writting, */ 161 /* as specified in PROM_Addr. */ 162 #define PROM_Addr_Ena 0x00000030 /*11xxxx:PROM Write enable */ 163 /*00xxxx: disable */ 164 165 /* CAM_Ctl bit assign ------------------------------------------------------- */ 166 #define CAM_CompEn 0x00000010 /* 1:CAM Compare Enable */ 167 #define CAM_NegCAM 0x00000008 /* 1:Reject packets CAM recognizes,*/ 168 /* accept other */ 169 #define CAM_BroadAcc 0x00000004 /* 1:Broadcast assept */ 170 #define CAM_GroupAcc 0x00000002 /* 1:Multicast assept */ 171 #define CAM_StationAcc 0x00000001 /* 1:unicast accept */ 172 173 /* CAM_Ena bit assign ------------------------------------------------------- */ 174 #define CAM_ENTRY_MAX 21 /* CAM Data entry max count */ 175 #define CAM_Ena_Mask ((1<<CAM_ENTRY_MAX)-1) /* CAM Enable bits (Max 21bits) */ 176 #define CAM_Ena_Bit(index) (1 << (index)) 177 #define CAM_ENTRY_DESTINATION 0 178 #define CAM_ENTRY_SOURCE 1 179 #define CAM_ENTRY_MACCTL 20 180 181 /* Tx_Ctl bit assign -------------------------------------------------------- */ 182 #define Tx_En 0x00000001 /* 1:Transmit enable */ 183 #define Tx_TxHalt 0x00000002 /* 1:Transmit Halt Request */ 184 #define Tx_NoPad 0x00000004 /* 1:Suppress Padding */ 185 #define Tx_NoCRC 0x00000008 /* 1:Suppress Padding */ 186 #define Tx_FBack 0x00000010 /* 1:Fast Back-off */ 187 #define Tx_EnUnder 0x00000100 /* 1:Enable Underrun */ 188 #define Tx_EnExDefer 0x00000200 /* 1:Enable Excessive Deferral */ 189 #define Tx_EnLCarr 0x00000400 /* 1:Enable Lost Carrier */ 190 #define Tx_EnExColl 0x00000800 /* 1:Enable Excessive Collision */ 191 #define Tx_EnLateColl 0x00001000 /* 1:Enable Late Collision */ 192 #define Tx_EnTxPar 0x00002000 /* 1:Enable Transmit Parity */ 193 #define Tx_EnComp 0x00004000 /* 1:Enable Completion */ 194 195 /* Tx_Stat bit assign ------------------------------------------------------- */ 196 #define Tx_TxColl_MASK 0x0000000F /* Tx Collision Count */ 197 #define Tx_ExColl 0x00000010 /* Excessive Collision */ 198 #define Tx_TXDefer 0x00000020 /* Transmit Defered */ 199 #define Tx_Paused 0x00000040 /* Transmit Paused */ 200 #define Tx_IntTx 0x00000080 /* Interrupt on Tx */ 201 #define Tx_Under 0x00000100 /* Underrun */ 202 #define Tx_Defer 0x00000200 /* Deferral */ 203 #define Tx_NCarr 0x00000400 /* No Carrier */ 204 #define Tx_10Stat 0x00000800 /* 10Mbps Status */ 205 #define Tx_LateColl 0x00001000 /* Late Collision */ 206 #define Tx_TxPar 0x00002000 /* Tx Parity Error */ 207 #define Tx_Comp 0x00004000 /* Completion */ 208 #define Tx_Halted 0x00008000 /* Tx Halted */ 209 #define Tx_SQErr 0x00010000 /* Signal Quality Error(SQE) */ 210 211 /* Rx_Ctl bit assign -------------------------------------------------------- */ 212 #define Rx_EnGood 0x00004000 /* 1:Enable Good */ 213 #define Rx_EnRxPar 0x00002000 /* 1:Enable Receive Parity */ 214 #define Rx_EnLongErr 0x00000800 /* 1:Enable Long Error */ 215 #define Rx_EnOver 0x00000400 /* 1:Enable OverFlow */ 216 #define Rx_EnCRCErr 0x00000200 /* 1:Enable CRC Error */ 217 #define Rx_EnAlign 0x00000100 /* 1:Enable Alignment */ 218 #define Rx_IgnoreCRC 0x00000040 /* 1:Ignore CRC Value */ 219 #define Rx_StripCRC 0x00000010 /* 1:Strip CRC Value */ 220 #define Rx_ShortEn 0x00000008 /* 1:Short Enable */ 221 #define Rx_LongEn 0x00000004 /* 1:Long Enable */ 222 #define Rx_RxHalt 0x00000002 /* 1:Receive Halt Request */ 223 #define Rx_RxEn 0x00000001 /* 1:Receive Intrrupt Enable */ 224 225 /* Rx_Stat bit assign ------------------------------------------------------- */ 226 #define Rx_Halted 0x00008000 /* Rx Halted */ 227 #define Rx_Good 0x00004000 /* Rx Good */ 228 #define Rx_RxPar 0x00002000 /* Rx Parity Error */ 229 #define Rx_TypePkt 0x00001000 /* Rx Type Packet */ 230 #define Rx_LongErr 0x00000800 /* Rx Long Error */ 231 #define Rx_Over 0x00000400 /* Rx Overflow */ 232 #define Rx_CRCErr 0x00000200 /* Rx CRC Error */ 233 #define Rx_Align 0x00000100 /* Rx Alignment Error */ 234 #define Rx_10Stat 0x00000080 /* Rx 10Mbps Status */ 235 #define Rx_IntRx 0x00000040 /* Rx Interrupt */ 236 #define Rx_CtlRecd 0x00000020 /* Rx Control Receive */ 237 #define Rx_InLenErr 0x00000010 /* Rx In Range Frame Length Error */ 238 239 #define Rx_Stat_Mask 0x0000FFF0 /* Rx All Status Mask */ 240 241 /* Int_En bit assign -------------------------------------------------------- */ 242 #define Int_NRAbtEn 0x00000800 /* 1:Non-recoverable Abort Enable */ 243 #define Int_TxCtlCmpEn 0x00000400 /* 1:Transmit Ctl Complete Enable */ 244 #define Int_DmParErrEn 0x00000200 /* 1:DMA Parity Error Enable */ 245 #define Int_DParDEn 0x00000100 /* 1:Data Parity Error Enable */ 246 #define Int_EarNotEn 0x00000080 /* 1:Early Notify Enable */ 247 #define Int_DParErrEn 0x00000040 /* 1:Detected Parity Error Enable */ 248 #define Int_SSysErrEn 0x00000020 /* 1:Signalled System Error Enable */ 249 #define Int_RMasAbtEn 0x00000010 /* 1:Received Master Abort Enable */ 250 #define Int_RTargAbtEn 0x00000008 /* 1:Received Target Abort Enable */ 251 #define Int_STargAbtEn 0x00000004 /* 1:Signalled Target Abort Enable */ 252 #define Int_BLExEn 0x00000002 /* 1:Buffer List Exhausted Enable */ 253 #define Int_FDAExEn 0x00000001 /* 1:Free Descriptor Area */ 254 /* Exhausted Enable */ 255 256 /* Int_Src bit assign ------------------------------------------------------- */ 257 #define Int_NRabt 0x00004000 /* 1:Non Recoverable error */ 258 #define Int_DmParErrStat 0x00002000 /* 1:DMA Parity Error & Clear */ 259 #define Int_BLEx 0x00001000 /* 1:Buffer List Empty & Clear */ 260 #define Int_FDAEx 0x00000800 /* 1:FDA Empty & Clear */ 261 #define Int_IntNRAbt 0x00000400 /* 1:Non Recoverable Abort */ 262 #define Int_IntCmp 0x00000200 /* 1:MAC control packet complete */ 263 #define Int_IntExBD 0x00000100 /* 1:Interrupt Extra BD & Clear */ 264 #define Int_DmParErr 0x00000080 /* 1:DMA Parity Error & Clear */ 265 #define Int_IntEarNot 0x00000040 /* 1:Receive Data write & Clear */ 266 #define Int_SWInt 0x00000020 /* 1:Software request & Clear */ 267 #define Int_IntBLEx 0x00000010 /* 1:Buffer List Empty & Clear */ 268 #define Int_IntFDAEx 0x00000008 /* 1:FDA Empty & Clear */ 269 #define Int_IntPCI 0x00000004 /* 1:PCI controller & Clear */ 270 #define Int_IntMacRx 0x00000002 /* 1:Rx controller & Clear */ 271 #define Int_IntMacTx 0x00000001 /* 1:Tx controller & Clear */ 272 273 /* MD_CA bit assign --------------------------------------------------------- */ 274 #define MD_CA_PreSup 0x00001000 /* 1:Preamble Suppress */ 275 #define MD_CA_Busy 0x00000800 /* 1:Busy (Start Operation) */ 276 #define MD_CA_Wr 0x00000400 /* 1:Write 0:Read */ 277 278 279 /* 280 * Descriptors 281 */ 282 283 /* Frame descriptor */ 284 struct FDesc { 285 volatile __u32 FDNext; 286 volatile __u32 FDSystem; 287 volatile __u32 FDStat; 288 volatile __u32 FDCtl; 289 }; 290 291 /* Buffer descriptor */ 292 struct BDesc { 293 volatile __u32 BuffData; 294 volatile __u32 BDCtl; 295 }; 296 297 #define FD_ALIGN 16 298 299 /* Frame Descriptor bit assign ---------------------------------------------- */ 300 #define FD_FDLength_MASK 0x0000FFFF /* Length MASK */ 301 #define FD_BDCnt_MASK 0x001F0000 /* BD count MASK in FD */ 302 #define FD_FrmOpt_MASK 0x7C000000 /* Frame option MASK */ 303 #define FD_FrmOpt_BigEndian 0x40000000 /* Tx/Rx */ 304 #define FD_FrmOpt_IntTx 0x20000000 /* Tx only */ 305 #define FD_FrmOpt_NoCRC 0x10000000 /* Tx only */ 306 #define FD_FrmOpt_NoPadding 0x08000000 /* Tx only */ 307 #define FD_FrmOpt_Packing 0x04000000 /* Rx only */ 308 #define FD_CownsFD 0x80000000 /* FD Controller owner bit */ 309 #define FD_Next_EOL 0x00000001 /* FD EOL indicator */ 310 #define FD_BDCnt_SHIFT 16 311 312 /* Buffer Descriptor bit assign --------------------------------------------- */ 313 #define BD_BuffLength_MASK 0x0000FFFF /* Receive Data Size */ 314 #define BD_RxBDID_MASK 0x00FF0000 /* BD ID Number MASK */ 315 #define BD_RxBDSeqN_MASK 0x7F000000 /* Rx BD Sequence Number */ 316 #define BD_CownsBD 0x80000000 /* BD Controller owner bit */ 317 #define BD_RxBDID_SHIFT 16 318 #define BD_RxBDSeqN_SHIFT 24 319 320 321 /* Some useful constants. */ 322 323 #define TX_CTL_CMD (Tx_EnTxPar | Tx_EnLateColl | \ 324 Tx_EnExColl | Tx_EnLCarr | Tx_EnExDefer | Tx_EnUnder | \ 325 Tx_En) /* maybe 0x7b01 */ 326 /* Do not use Rx_StripCRC -- it causes trouble on BLEx/FDAEx condition */ 327 #define RX_CTL_CMD (Rx_EnGood | Rx_EnRxPar | Rx_EnLongErr | Rx_EnOver \ 328 | Rx_EnCRCErr | Rx_EnAlign | Rx_RxEn) /* maybe 0x6f01 */ 329 #define INT_EN_CMD (Int_NRAbtEn | \ 330 Int_DmParErrEn | Int_DParDEn | Int_DParErrEn | \ 331 Int_SSysErrEn | Int_RMasAbtEn | Int_RTargAbtEn | \ 332 Int_STargAbtEn | \ 333 Int_BLExEn | Int_FDAExEn) /* maybe 0xb7f*/ 334 #define DMA_CTL_CMD DMA_BURST_SIZE 335 #define HAVE_DMA_RXALIGN(lp) likely((lp)->chiptype != TC35815CF) 336 337 /* Tuning parameters */ 338 #define DMA_BURST_SIZE 32 339 #define TX_THRESHOLD 1024 340 /* used threshold with packet max byte for low pci transfer ability.*/ 341 #define TX_THRESHOLD_MAX 1536 342 /* setting threshold max value when overrun error occurred this count. */ 343 #define TX_THRESHOLD_KEEP_LIMIT 10 344 345 /* 16 + RX_BUF_NUM * 8 + RX_FD_NUM * 16 + TX_FD_NUM * 32 <= PAGE_SIZE*FD_PAGE_NUM */ 346 #define FD_PAGE_NUM 4 347 #define RX_BUF_NUM 128 /* < 256 */ 348 #define RX_FD_NUM 256 /* >= 32 */ 349 #define TX_FD_NUM 128 350 #if RX_CTL_CMD & Rx_LongEn 351 #define RX_BUF_SIZE PAGE_SIZE 352 #elif RX_CTL_CMD & Rx_StripCRC 353 #define RX_BUF_SIZE \ 354 L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + NET_IP_ALIGN) 355 #else 356 #define RX_BUF_SIZE \ 357 L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN + NET_IP_ALIGN) 358 #endif 359 #define RX_FD_RESERVE (2 / 2) /* max 2 BD per RxFD */ 360 #define NAPI_WEIGHT 16 361 362 struct TxFD { 363 struct FDesc fd; 364 struct BDesc bd; 365 struct BDesc unused; 366 }; 367 368 struct RxFD { 369 struct FDesc fd; 370 struct BDesc bd[0]; /* variable length */ 371 }; 372 373 struct FrFD { 374 struct FDesc fd; 375 struct BDesc bd[RX_BUF_NUM]; 376 }; 377 378 379 #define tc_readl(addr) ioread32(addr) 380 #define tc_writel(d, addr) iowrite32(d, addr) 381 382 #define TC35815_TX_TIMEOUT msecs_to_jiffies(400) 383 384 /* Information that need to be kept for each controller. */ 385 struct tc35815_local { 386 struct pci_dev *pci_dev; 387 388 struct net_device *dev; 389 struct napi_struct napi; 390 391 /* statistics */ 392 struct { 393 int max_tx_qlen; 394 int tx_ints; 395 int rx_ints; 396 int tx_underrun; 397 } lstats; 398 399 /* Tx control lock. This protects the transmit buffer ring 400 * state along with the "tx full" state of the driver. This 401 * means all netif_queue flow control actions are protected 402 * by this lock as well. 403 */ 404 spinlock_t lock; 405 spinlock_t rx_lock; 406 407 struct mii_bus *mii_bus; 408 int duplex; 409 int speed; 410 int link; 411 struct work_struct restart_work; 412 413 /* 414 * Transmitting: Batch Mode. 415 * 1 BD in 1 TxFD. 416 * Receiving: Non-Packing Mode. 417 * 1 circular FD for Free Buffer List. 418 * RX_BUF_NUM BD in Free Buffer FD. 419 * One Free Buffer BD has ETH_FRAME_LEN data buffer. 420 */ 421 void *fd_buf; /* for TxFD, RxFD, FrFD */ 422 dma_addr_t fd_buf_dma; 423 struct TxFD *tfd_base; 424 unsigned int tfd_start; 425 unsigned int tfd_end; 426 struct RxFD *rfd_base; 427 struct RxFD *rfd_limit; 428 struct RxFD *rfd_cur; 429 struct FrFD *fbl_ptr; 430 unsigned int fbl_count; 431 struct { 432 struct sk_buff *skb; 433 dma_addr_t skb_dma; 434 } tx_skbs[TX_FD_NUM], rx_skbs[RX_BUF_NUM]; 435 u32 msg_enable; 436 enum tc35815_chiptype chiptype; 437 }; 438 439 static inline dma_addr_t fd_virt_to_bus(struct tc35815_local *lp, void *virt) 440 { 441 return lp->fd_buf_dma + ((u8 *)virt - (u8 *)lp->fd_buf); 442 } 443 #ifdef DEBUG 444 static inline void *fd_bus_to_virt(struct tc35815_local *lp, dma_addr_t bus) 445 { 446 return (void *)((u8 *)lp->fd_buf + (bus - lp->fd_buf_dma)); 447 } 448 #endif 449 static struct sk_buff *alloc_rxbuf_skb(struct net_device *dev, 450 struct pci_dev *hwdev, 451 dma_addr_t *dma_handle) 452 { 453 struct sk_buff *skb; 454 skb = netdev_alloc_skb(dev, RX_BUF_SIZE); 455 if (!skb) 456 return NULL; 457 *dma_handle = pci_map_single(hwdev, skb->data, RX_BUF_SIZE, 458 PCI_DMA_FROMDEVICE); 459 if (pci_dma_mapping_error(hwdev, *dma_handle)) { 460 dev_kfree_skb_any(skb); 461 return NULL; 462 } 463 skb_reserve(skb, 2); /* make IP header 4byte aligned */ 464 return skb; 465 } 466 467 static void free_rxbuf_skb(struct pci_dev *hwdev, struct sk_buff *skb, dma_addr_t dma_handle) 468 { 469 pci_unmap_single(hwdev, dma_handle, RX_BUF_SIZE, 470 PCI_DMA_FROMDEVICE); 471 dev_kfree_skb_any(skb); 472 } 473 474 /* Index to functions, as function prototypes. */ 475 476 static int tc35815_open(struct net_device *dev); 477 static netdev_tx_t tc35815_send_packet(struct sk_buff *skb, 478 struct net_device *dev); 479 static irqreturn_t tc35815_interrupt(int irq, void *dev_id); 480 static int tc35815_rx(struct net_device *dev, int limit); 481 static int tc35815_poll(struct napi_struct *napi, int budget); 482 static void tc35815_txdone(struct net_device *dev); 483 static int tc35815_close(struct net_device *dev); 484 static struct net_device_stats *tc35815_get_stats(struct net_device *dev); 485 static void tc35815_set_multicast_list(struct net_device *dev); 486 static void tc35815_tx_timeout(struct net_device *dev, unsigned int txqueue); 487 #ifdef CONFIG_NET_POLL_CONTROLLER 488 static void tc35815_poll_controller(struct net_device *dev); 489 #endif 490 static const struct ethtool_ops tc35815_ethtool_ops; 491 492 /* Example routines you must write ;->. */ 493 static void tc35815_chip_reset(struct net_device *dev); 494 static void tc35815_chip_init(struct net_device *dev); 495 496 #ifdef DEBUG 497 static void panic_queues(struct net_device *dev); 498 #endif 499 500 static void tc35815_restart_work(struct work_struct *work); 501 502 static int tc_mdio_read(struct mii_bus *bus, int mii_id, int regnum) 503 { 504 struct net_device *dev = bus->priv; 505 struct tc35815_regs __iomem *tr = 506 (struct tc35815_regs __iomem *)dev->base_addr; 507 unsigned long timeout = jiffies + HZ; 508 509 tc_writel(MD_CA_Busy | (mii_id << 5) | (regnum & 0x1f), &tr->MD_CA); 510 udelay(12); /* it takes 32 x 400ns at least */ 511 while (tc_readl(&tr->MD_CA) & MD_CA_Busy) { 512 if (time_after(jiffies, timeout)) 513 return -EIO; 514 cpu_relax(); 515 } 516 return tc_readl(&tr->MD_Data) & 0xffff; 517 } 518 519 static int tc_mdio_write(struct mii_bus *bus, int mii_id, int regnum, u16 val) 520 { 521 struct net_device *dev = bus->priv; 522 struct tc35815_regs __iomem *tr = 523 (struct tc35815_regs __iomem *)dev->base_addr; 524 unsigned long timeout = jiffies + HZ; 525 526 tc_writel(val, &tr->MD_Data); 527 tc_writel(MD_CA_Busy | MD_CA_Wr | (mii_id << 5) | (regnum & 0x1f), 528 &tr->MD_CA); 529 udelay(12); /* it takes 32 x 400ns at least */ 530 while (tc_readl(&tr->MD_CA) & MD_CA_Busy) { 531 if (time_after(jiffies, timeout)) 532 return -EIO; 533 cpu_relax(); 534 } 535 return 0; 536 } 537 538 static void tc_handle_link_change(struct net_device *dev) 539 { 540 struct tc35815_local *lp = netdev_priv(dev); 541 struct phy_device *phydev = dev->phydev; 542 unsigned long flags; 543 int status_change = 0; 544 545 spin_lock_irqsave(&lp->lock, flags); 546 if (phydev->link && 547 (lp->speed != phydev->speed || lp->duplex != phydev->duplex)) { 548 struct tc35815_regs __iomem *tr = 549 (struct tc35815_regs __iomem *)dev->base_addr; 550 u32 reg; 551 552 reg = tc_readl(&tr->MAC_Ctl); 553 reg |= MAC_HaltReq; 554 tc_writel(reg, &tr->MAC_Ctl); 555 if (phydev->duplex == DUPLEX_FULL) 556 reg |= MAC_FullDup; 557 else 558 reg &= ~MAC_FullDup; 559 tc_writel(reg, &tr->MAC_Ctl); 560 reg &= ~MAC_HaltReq; 561 tc_writel(reg, &tr->MAC_Ctl); 562 563 /* 564 * TX4939 PCFG.SPEEDn bit will be changed on 565 * NETDEV_CHANGE event. 566 */ 567 /* 568 * WORKAROUND: enable LostCrS only if half duplex 569 * operation. 570 * (TX4939 does not have EnLCarr) 571 */ 572 if (phydev->duplex == DUPLEX_HALF && 573 lp->chiptype != TC35815_TX4939) 574 tc_writel(tc_readl(&tr->Tx_Ctl) | Tx_EnLCarr, 575 &tr->Tx_Ctl); 576 577 lp->speed = phydev->speed; 578 lp->duplex = phydev->duplex; 579 status_change = 1; 580 } 581 582 if (phydev->link != lp->link) { 583 if (phydev->link) { 584 /* delayed promiscuous enabling */ 585 if (dev->flags & IFF_PROMISC) 586 tc35815_set_multicast_list(dev); 587 } else { 588 lp->speed = 0; 589 lp->duplex = -1; 590 } 591 lp->link = phydev->link; 592 593 status_change = 1; 594 } 595 spin_unlock_irqrestore(&lp->lock, flags); 596 597 if (status_change && netif_msg_link(lp)) { 598 phy_print_status(phydev); 599 pr_debug("%s: MII BMCR %04x BMSR %04x LPA %04x\n", 600 dev->name, 601 phy_read(phydev, MII_BMCR), 602 phy_read(phydev, MII_BMSR), 603 phy_read(phydev, MII_LPA)); 604 } 605 } 606 607 static int tc_mii_probe(struct net_device *dev) 608 { 609 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; 610 struct tc35815_local *lp = netdev_priv(dev); 611 struct phy_device *phydev; 612 613 phydev = phy_find_first(lp->mii_bus); 614 if (!phydev) { 615 printk(KERN_ERR "%s: no PHY found\n", dev->name); 616 return -ENODEV; 617 } 618 619 /* attach the mac to the phy */ 620 phydev = phy_connect(dev, phydev_name(phydev), 621 &tc_handle_link_change, 622 lp->chiptype == TC35815_TX4939 ? PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII); 623 if (IS_ERR(phydev)) { 624 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name); 625 return PTR_ERR(phydev); 626 } 627 628 phy_attached_info(phydev); 629 630 /* mask with MAC supported features */ 631 phy_set_max_speed(phydev, SPEED_100); 632 if (options.speed == 10) { 633 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask); 634 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask); 635 } else if (options.speed == 100) { 636 linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, mask); 637 linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, mask); 638 } 639 if (options.duplex == 1) { 640 linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, mask); 641 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask); 642 } else if (options.duplex == 2) { 643 linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, mask); 644 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask); 645 } 646 linkmode_and(phydev->supported, phydev->supported, mask); 647 linkmode_copy(phydev->advertising, phydev->supported); 648 649 lp->link = 0; 650 lp->speed = 0; 651 lp->duplex = -1; 652 653 return 0; 654 } 655 656 static int tc_mii_init(struct net_device *dev) 657 { 658 struct tc35815_local *lp = netdev_priv(dev); 659 int err; 660 661 lp->mii_bus = mdiobus_alloc(); 662 if (lp->mii_bus == NULL) { 663 err = -ENOMEM; 664 goto err_out; 665 } 666 667 lp->mii_bus->name = "tc35815_mii_bus"; 668 lp->mii_bus->read = tc_mdio_read; 669 lp->mii_bus->write = tc_mdio_write; 670 snprintf(lp->mii_bus->id, MII_BUS_ID_SIZE, "%x", 671 (lp->pci_dev->bus->number << 8) | lp->pci_dev->devfn); 672 lp->mii_bus->priv = dev; 673 lp->mii_bus->parent = &lp->pci_dev->dev; 674 err = mdiobus_register(lp->mii_bus); 675 if (err) 676 goto err_out_free_mii_bus; 677 err = tc_mii_probe(dev); 678 if (err) 679 goto err_out_unregister_bus; 680 return 0; 681 682 err_out_unregister_bus: 683 mdiobus_unregister(lp->mii_bus); 684 err_out_free_mii_bus: 685 mdiobus_free(lp->mii_bus); 686 err_out: 687 return err; 688 } 689 690 #ifdef CONFIG_CPU_TX49XX 691 /* 692 * Find a platform_device providing a MAC address. The platform code 693 * should provide a "tc35815-mac" device with a MAC address in its 694 * platform_data. 695 */ 696 static int tc35815_mac_match(struct device *dev, const void *data) 697 { 698 struct platform_device *plat_dev = to_platform_device(dev); 699 const struct pci_dev *pci_dev = data; 700 unsigned int id = pci_dev->irq; 701 return !strcmp(plat_dev->name, "tc35815-mac") && plat_dev->id == id; 702 } 703 704 static int tc35815_read_plat_dev_addr(struct net_device *dev) 705 { 706 struct tc35815_local *lp = netdev_priv(dev); 707 struct device *pd = bus_find_device(&platform_bus_type, NULL, 708 lp->pci_dev, tc35815_mac_match); 709 if (pd) { 710 if (pd->platform_data) 711 memcpy(dev->dev_addr, pd->platform_data, ETH_ALEN); 712 put_device(pd); 713 return is_valid_ether_addr(dev->dev_addr) ? 0 : -ENODEV; 714 } 715 return -ENODEV; 716 } 717 #else 718 static int tc35815_read_plat_dev_addr(struct net_device *dev) 719 { 720 return -ENODEV; 721 } 722 #endif 723 724 static int tc35815_init_dev_addr(struct net_device *dev) 725 { 726 struct tc35815_regs __iomem *tr = 727 (struct tc35815_regs __iomem *)dev->base_addr; 728 int i; 729 730 while (tc_readl(&tr->PROM_Ctl) & PROM_Busy) 731 ; 732 for (i = 0; i < 6; i += 2) { 733 unsigned short data; 734 tc_writel(PROM_Busy | PROM_Read | (i / 2 + 2), &tr->PROM_Ctl); 735 while (tc_readl(&tr->PROM_Ctl) & PROM_Busy) 736 ; 737 data = tc_readl(&tr->PROM_Data); 738 dev->dev_addr[i] = data & 0xff; 739 dev->dev_addr[i+1] = data >> 8; 740 } 741 if (!is_valid_ether_addr(dev->dev_addr)) 742 return tc35815_read_plat_dev_addr(dev); 743 return 0; 744 } 745 746 static const struct net_device_ops tc35815_netdev_ops = { 747 .ndo_open = tc35815_open, 748 .ndo_stop = tc35815_close, 749 .ndo_start_xmit = tc35815_send_packet, 750 .ndo_get_stats = tc35815_get_stats, 751 .ndo_set_rx_mode = tc35815_set_multicast_list, 752 .ndo_tx_timeout = tc35815_tx_timeout, 753 .ndo_do_ioctl = phy_do_ioctl_running, 754 .ndo_validate_addr = eth_validate_addr, 755 .ndo_set_mac_address = eth_mac_addr, 756 #ifdef CONFIG_NET_POLL_CONTROLLER 757 .ndo_poll_controller = tc35815_poll_controller, 758 #endif 759 }; 760 761 static int tc35815_init_one(struct pci_dev *pdev, 762 const struct pci_device_id *ent) 763 { 764 void __iomem *ioaddr = NULL; 765 struct net_device *dev; 766 struct tc35815_local *lp; 767 int rc; 768 769 static int printed_version; 770 if (!printed_version++) { 771 printk(version); 772 dev_printk(KERN_DEBUG, &pdev->dev, 773 "speed:%d duplex:%d\n", 774 options.speed, options.duplex); 775 } 776 777 if (!pdev->irq) { 778 dev_warn(&pdev->dev, "no IRQ assigned.\n"); 779 return -ENODEV; 780 } 781 782 /* dev zeroed in alloc_etherdev */ 783 dev = alloc_etherdev(sizeof(*lp)); 784 if (dev == NULL) 785 return -ENOMEM; 786 787 SET_NETDEV_DEV(dev, &pdev->dev); 788 lp = netdev_priv(dev); 789 lp->dev = dev; 790 791 /* enable device (incl. PCI PM wakeup), and bus-mastering */ 792 rc = pcim_enable_device(pdev); 793 if (rc) 794 goto err_out; 795 rc = pcim_iomap_regions(pdev, 1 << 1, MODNAME); 796 if (rc) 797 goto err_out; 798 pci_set_master(pdev); 799 ioaddr = pcim_iomap_table(pdev)[1]; 800 801 /* Initialize the device structure. */ 802 dev->netdev_ops = &tc35815_netdev_ops; 803 dev->ethtool_ops = &tc35815_ethtool_ops; 804 dev->watchdog_timeo = TC35815_TX_TIMEOUT; 805 netif_napi_add(dev, &lp->napi, tc35815_poll, NAPI_WEIGHT); 806 807 dev->irq = pdev->irq; 808 dev->base_addr = (unsigned long)ioaddr; 809 810 INIT_WORK(&lp->restart_work, tc35815_restart_work); 811 spin_lock_init(&lp->lock); 812 spin_lock_init(&lp->rx_lock); 813 lp->pci_dev = pdev; 814 lp->chiptype = ent->driver_data; 815 816 lp->msg_enable = NETIF_MSG_TX_ERR | NETIF_MSG_HW | NETIF_MSG_DRV | NETIF_MSG_LINK; 817 pci_set_drvdata(pdev, dev); 818 819 /* Soft reset the chip. */ 820 tc35815_chip_reset(dev); 821 822 /* Retrieve the ethernet address. */ 823 if (tc35815_init_dev_addr(dev)) { 824 dev_warn(&pdev->dev, "not valid ether addr\n"); 825 eth_hw_addr_random(dev); 826 } 827 828 rc = register_netdev(dev); 829 if (rc) 830 goto err_out; 831 832 printk(KERN_INFO "%s: %s at 0x%lx, %pM, IRQ %d\n", 833 dev->name, 834 chip_info[ent->driver_data].name, 835 dev->base_addr, 836 dev->dev_addr, 837 dev->irq); 838 839 rc = tc_mii_init(dev); 840 if (rc) 841 goto err_out_unregister; 842 843 return 0; 844 845 err_out_unregister: 846 unregister_netdev(dev); 847 err_out: 848 free_netdev(dev); 849 return rc; 850 } 851 852 853 static void tc35815_remove_one(struct pci_dev *pdev) 854 { 855 struct net_device *dev = pci_get_drvdata(pdev); 856 struct tc35815_local *lp = netdev_priv(dev); 857 858 phy_disconnect(dev->phydev); 859 mdiobus_unregister(lp->mii_bus); 860 mdiobus_free(lp->mii_bus); 861 unregister_netdev(dev); 862 free_netdev(dev); 863 } 864 865 static int 866 tc35815_init_queues(struct net_device *dev) 867 { 868 struct tc35815_local *lp = netdev_priv(dev); 869 int i; 870 unsigned long fd_addr; 871 872 if (!lp->fd_buf) { 873 BUG_ON(sizeof(struct FDesc) + 874 sizeof(struct BDesc) * RX_BUF_NUM + 875 sizeof(struct FDesc) * RX_FD_NUM + 876 sizeof(struct TxFD) * TX_FD_NUM > 877 PAGE_SIZE * FD_PAGE_NUM); 878 879 lp->fd_buf = pci_alloc_consistent(lp->pci_dev, 880 PAGE_SIZE * FD_PAGE_NUM, 881 &lp->fd_buf_dma); 882 if (!lp->fd_buf) 883 return -ENOMEM; 884 for (i = 0; i < RX_BUF_NUM; i++) { 885 lp->rx_skbs[i].skb = 886 alloc_rxbuf_skb(dev, lp->pci_dev, 887 &lp->rx_skbs[i].skb_dma); 888 if (!lp->rx_skbs[i].skb) { 889 while (--i >= 0) { 890 free_rxbuf_skb(lp->pci_dev, 891 lp->rx_skbs[i].skb, 892 lp->rx_skbs[i].skb_dma); 893 lp->rx_skbs[i].skb = NULL; 894 } 895 pci_free_consistent(lp->pci_dev, 896 PAGE_SIZE * FD_PAGE_NUM, 897 lp->fd_buf, 898 lp->fd_buf_dma); 899 lp->fd_buf = NULL; 900 return -ENOMEM; 901 } 902 } 903 printk(KERN_DEBUG "%s: FD buf %p DataBuf", 904 dev->name, lp->fd_buf); 905 printk("\n"); 906 } else { 907 for (i = 0; i < FD_PAGE_NUM; i++) 908 clear_page((void *)((unsigned long)lp->fd_buf + 909 i * PAGE_SIZE)); 910 } 911 fd_addr = (unsigned long)lp->fd_buf; 912 913 /* Free Descriptors (for Receive) */ 914 lp->rfd_base = (struct RxFD *)fd_addr; 915 fd_addr += sizeof(struct RxFD) * RX_FD_NUM; 916 for (i = 0; i < RX_FD_NUM; i++) 917 lp->rfd_base[i].fd.FDCtl = cpu_to_le32(FD_CownsFD); 918 lp->rfd_cur = lp->rfd_base; 919 lp->rfd_limit = (struct RxFD *)fd_addr - (RX_FD_RESERVE + 1); 920 921 /* Transmit Descriptors */ 922 lp->tfd_base = (struct TxFD *)fd_addr; 923 fd_addr += sizeof(struct TxFD) * TX_FD_NUM; 924 for (i = 0; i < TX_FD_NUM; i++) { 925 lp->tfd_base[i].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[i+1])); 926 lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff); 927 lp->tfd_base[i].fd.FDCtl = cpu_to_le32(0); 928 } 929 lp->tfd_base[TX_FD_NUM-1].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[0])); 930 lp->tfd_start = 0; 931 lp->tfd_end = 0; 932 933 /* Buffer List (for Receive) */ 934 lp->fbl_ptr = (struct FrFD *)fd_addr; 935 lp->fbl_ptr->fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, lp->fbl_ptr)); 936 lp->fbl_ptr->fd.FDCtl = cpu_to_le32(RX_BUF_NUM | FD_CownsFD); 937 /* 938 * move all allocated skbs to head of rx_skbs[] array. 939 * fbl_count mighe not be RX_BUF_NUM if alloc_rxbuf_skb() in 940 * tc35815_rx() had failed. 941 */ 942 lp->fbl_count = 0; 943 for (i = 0; i < RX_BUF_NUM; i++) { 944 if (lp->rx_skbs[i].skb) { 945 if (i != lp->fbl_count) { 946 lp->rx_skbs[lp->fbl_count].skb = 947 lp->rx_skbs[i].skb; 948 lp->rx_skbs[lp->fbl_count].skb_dma = 949 lp->rx_skbs[i].skb_dma; 950 } 951 lp->fbl_count++; 952 } 953 } 954 for (i = 0; i < RX_BUF_NUM; i++) { 955 if (i >= lp->fbl_count) { 956 lp->fbl_ptr->bd[i].BuffData = 0; 957 lp->fbl_ptr->bd[i].BDCtl = 0; 958 continue; 959 } 960 lp->fbl_ptr->bd[i].BuffData = 961 cpu_to_le32(lp->rx_skbs[i].skb_dma); 962 /* BDID is index of FrFD.bd[] */ 963 lp->fbl_ptr->bd[i].BDCtl = 964 cpu_to_le32(BD_CownsBD | (i << BD_RxBDID_SHIFT) | 965 RX_BUF_SIZE); 966 } 967 968 printk(KERN_DEBUG "%s: TxFD %p RxFD %p FrFD %p\n", 969 dev->name, lp->tfd_base, lp->rfd_base, lp->fbl_ptr); 970 return 0; 971 } 972 973 static void 974 tc35815_clear_queues(struct net_device *dev) 975 { 976 struct tc35815_local *lp = netdev_priv(dev); 977 int i; 978 979 for (i = 0; i < TX_FD_NUM; i++) { 980 u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem); 981 struct sk_buff *skb = 982 fdsystem != 0xffffffff ? 983 lp->tx_skbs[fdsystem].skb : NULL; 984 #ifdef DEBUG 985 if (lp->tx_skbs[i].skb != skb) { 986 printk("%s: tx_skbs mismatch(%d).\n", dev->name, i); 987 panic_queues(dev); 988 } 989 #else 990 BUG_ON(lp->tx_skbs[i].skb != skb); 991 #endif 992 if (skb) { 993 pci_unmap_single(lp->pci_dev, lp->tx_skbs[i].skb_dma, skb->len, PCI_DMA_TODEVICE); 994 lp->tx_skbs[i].skb = NULL; 995 lp->tx_skbs[i].skb_dma = 0; 996 dev_kfree_skb_any(skb); 997 } 998 lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff); 999 } 1000 1001 tc35815_init_queues(dev); 1002 } 1003 1004 static void 1005 tc35815_free_queues(struct net_device *dev) 1006 { 1007 struct tc35815_local *lp = netdev_priv(dev); 1008 int i; 1009 1010 if (lp->tfd_base) { 1011 for (i = 0; i < TX_FD_NUM; i++) { 1012 u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem); 1013 struct sk_buff *skb = 1014 fdsystem != 0xffffffff ? 1015 lp->tx_skbs[fdsystem].skb : NULL; 1016 #ifdef DEBUG 1017 if (lp->tx_skbs[i].skb != skb) { 1018 printk("%s: tx_skbs mismatch(%d).\n", dev->name, i); 1019 panic_queues(dev); 1020 } 1021 #else 1022 BUG_ON(lp->tx_skbs[i].skb != skb); 1023 #endif 1024 if (skb) { 1025 pci_unmap_single(lp->pci_dev, lp->tx_skbs[i].skb_dma, skb->len, PCI_DMA_TODEVICE); 1026 dev_kfree_skb(skb); 1027 lp->tx_skbs[i].skb = NULL; 1028 lp->tx_skbs[i].skb_dma = 0; 1029 } 1030 lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff); 1031 } 1032 } 1033 1034 lp->rfd_base = NULL; 1035 lp->rfd_limit = NULL; 1036 lp->rfd_cur = NULL; 1037 lp->fbl_ptr = NULL; 1038 1039 for (i = 0; i < RX_BUF_NUM; i++) { 1040 if (lp->rx_skbs[i].skb) { 1041 free_rxbuf_skb(lp->pci_dev, lp->rx_skbs[i].skb, 1042 lp->rx_skbs[i].skb_dma); 1043 lp->rx_skbs[i].skb = NULL; 1044 } 1045 } 1046 if (lp->fd_buf) { 1047 pci_free_consistent(lp->pci_dev, PAGE_SIZE * FD_PAGE_NUM, 1048 lp->fd_buf, lp->fd_buf_dma); 1049 lp->fd_buf = NULL; 1050 } 1051 } 1052 1053 static void 1054 dump_txfd(struct TxFD *fd) 1055 { 1056 printk("TxFD(%p): %08x %08x %08x %08x\n", fd, 1057 le32_to_cpu(fd->fd.FDNext), 1058 le32_to_cpu(fd->fd.FDSystem), 1059 le32_to_cpu(fd->fd.FDStat), 1060 le32_to_cpu(fd->fd.FDCtl)); 1061 printk("BD: "); 1062 printk(" %08x %08x", 1063 le32_to_cpu(fd->bd.BuffData), 1064 le32_to_cpu(fd->bd.BDCtl)); 1065 printk("\n"); 1066 } 1067 1068 static int 1069 dump_rxfd(struct RxFD *fd) 1070 { 1071 int i, bd_count = (le32_to_cpu(fd->fd.FDCtl) & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT; 1072 if (bd_count > 8) 1073 bd_count = 8; 1074 printk("RxFD(%p): %08x %08x %08x %08x\n", fd, 1075 le32_to_cpu(fd->fd.FDNext), 1076 le32_to_cpu(fd->fd.FDSystem), 1077 le32_to_cpu(fd->fd.FDStat), 1078 le32_to_cpu(fd->fd.FDCtl)); 1079 if (le32_to_cpu(fd->fd.FDCtl) & FD_CownsFD) 1080 return 0; 1081 printk("BD: "); 1082 for (i = 0; i < bd_count; i++) 1083 printk(" %08x %08x", 1084 le32_to_cpu(fd->bd[i].BuffData), 1085 le32_to_cpu(fd->bd[i].BDCtl)); 1086 printk("\n"); 1087 return bd_count; 1088 } 1089 1090 #ifdef DEBUG 1091 static void 1092 dump_frfd(struct FrFD *fd) 1093 { 1094 int i; 1095 printk("FrFD(%p): %08x %08x %08x %08x\n", fd, 1096 le32_to_cpu(fd->fd.FDNext), 1097 le32_to_cpu(fd->fd.FDSystem), 1098 le32_to_cpu(fd->fd.FDStat), 1099 le32_to_cpu(fd->fd.FDCtl)); 1100 printk("BD: "); 1101 for (i = 0; i < RX_BUF_NUM; i++) 1102 printk(" %08x %08x", 1103 le32_to_cpu(fd->bd[i].BuffData), 1104 le32_to_cpu(fd->bd[i].BDCtl)); 1105 printk("\n"); 1106 } 1107 1108 static void 1109 panic_queues(struct net_device *dev) 1110 { 1111 struct tc35815_local *lp = netdev_priv(dev); 1112 int i; 1113 1114 printk("TxFD base %p, start %u, end %u\n", 1115 lp->tfd_base, lp->tfd_start, lp->tfd_end); 1116 printk("RxFD base %p limit %p cur %p\n", 1117 lp->rfd_base, lp->rfd_limit, lp->rfd_cur); 1118 printk("FrFD %p\n", lp->fbl_ptr); 1119 for (i = 0; i < TX_FD_NUM; i++) 1120 dump_txfd(&lp->tfd_base[i]); 1121 for (i = 0; i < RX_FD_NUM; i++) { 1122 int bd_count = dump_rxfd(&lp->rfd_base[i]); 1123 i += (bd_count + 1) / 2; /* skip BDs */ 1124 } 1125 dump_frfd(lp->fbl_ptr); 1126 panic("%s: Illegal queue state.", dev->name); 1127 } 1128 #endif 1129 1130 static void print_eth(const u8 *add) 1131 { 1132 printk(KERN_DEBUG "print_eth(%p)\n", add); 1133 printk(KERN_DEBUG " %pM => %pM : %02x%02x\n", 1134 add + 6, add, add[12], add[13]); 1135 } 1136 1137 static int tc35815_tx_full(struct net_device *dev) 1138 { 1139 struct tc35815_local *lp = netdev_priv(dev); 1140 return (lp->tfd_start + 1) % TX_FD_NUM == lp->tfd_end; 1141 } 1142 1143 static void tc35815_restart(struct net_device *dev) 1144 { 1145 struct tc35815_local *lp = netdev_priv(dev); 1146 int ret; 1147 1148 if (dev->phydev) { 1149 ret = phy_init_hw(dev->phydev); 1150 if (ret) 1151 printk(KERN_ERR "%s: PHY init failed.\n", dev->name); 1152 } 1153 1154 spin_lock_bh(&lp->rx_lock); 1155 spin_lock_irq(&lp->lock); 1156 tc35815_chip_reset(dev); 1157 tc35815_clear_queues(dev); 1158 tc35815_chip_init(dev); 1159 /* Reconfigure CAM again since tc35815_chip_init() initialize it. */ 1160 tc35815_set_multicast_list(dev); 1161 spin_unlock_irq(&lp->lock); 1162 spin_unlock_bh(&lp->rx_lock); 1163 1164 netif_wake_queue(dev); 1165 } 1166 1167 static void tc35815_restart_work(struct work_struct *work) 1168 { 1169 struct tc35815_local *lp = 1170 container_of(work, struct tc35815_local, restart_work); 1171 struct net_device *dev = lp->dev; 1172 1173 tc35815_restart(dev); 1174 } 1175 1176 static void tc35815_schedule_restart(struct net_device *dev) 1177 { 1178 struct tc35815_local *lp = netdev_priv(dev); 1179 struct tc35815_regs __iomem *tr = 1180 (struct tc35815_regs __iomem *)dev->base_addr; 1181 unsigned long flags; 1182 1183 /* disable interrupts */ 1184 spin_lock_irqsave(&lp->lock, flags); 1185 tc_writel(0, &tr->Int_En); 1186 tc_writel(tc_readl(&tr->DMA_Ctl) | DMA_IntMask, &tr->DMA_Ctl); 1187 schedule_work(&lp->restart_work); 1188 spin_unlock_irqrestore(&lp->lock, flags); 1189 } 1190 1191 static void tc35815_tx_timeout(struct net_device *dev, unsigned int txqueue) 1192 { 1193 struct tc35815_regs __iomem *tr = 1194 (struct tc35815_regs __iomem *)dev->base_addr; 1195 1196 printk(KERN_WARNING "%s: transmit timed out, status %#x\n", 1197 dev->name, tc_readl(&tr->Tx_Stat)); 1198 1199 /* Try to restart the adaptor. */ 1200 tc35815_schedule_restart(dev); 1201 dev->stats.tx_errors++; 1202 } 1203 1204 /* 1205 * Open/initialize the controller. This is called (in the current kernel) 1206 * sometime after booting when the 'ifconfig' program is run. 1207 * 1208 * This routine should set everything up anew at each open, even 1209 * registers that "should" only need to be set once at boot, so that 1210 * there is non-reboot way to recover if something goes wrong. 1211 */ 1212 static int 1213 tc35815_open(struct net_device *dev) 1214 { 1215 struct tc35815_local *lp = netdev_priv(dev); 1216 1217 /* 1218 * This is used if the interrupt line can turned off (shared). 1219 * See 3c503.c for an example of selecting the IRQ at config-time. 1220 */ 1221 if (request_irq(dev->irq, tc35815_interrupt, IRQF_SHARED, 1222 dev->name, dev)) 1223 return -EAGAIN; 1224 1225 tc35815_chip_reset(dev); 1226 1227 if (tc35815_init_queues(dev) != 0) { 1228 free_irq(dev->irq, dev); 1229 return -EAGAIN; 1230 } 1231 1232 napi_enable(&lp->napi); 1233 1234 /* Reset the hardware here. Don't forget to set the station address. */ 1235 spin_lock_irq(&lp->lock); 1236 tc35815_chip_init(dev); 1237 spin_unlock_irq(&lp->lock); 1238 1239 netif_carrier_off(dev); 1240 /* schedule a link state check */ 1241 phy_start(dev->phydev); 1242 1243 /* We are now ready to accept transmit requeusts from 1244 * the queueing layer of the networking. 1245 */ 1246 netif_start_queue(dev); 1247 1248 return 0; 1249 } 1250 1251 /* This will only be invoked if your driver is _not_ in XOFF state. 1252 * What this means is that you need not check it, and that this 1253 * invariant will hold if you make sure that the netif_*_queue() 1254 * calls are done at the proper times. 1255 */ 1256 static netdev_tx_t 1257 tc35815_send_packet(struct sk_buff *skb, struct net_device *dev) 1258 { 1259 struct tc35815_local *lp = netdev_priv(dev); 1260 struct TxFD *txfd; 1261 unsigned long flags; 1262 1263 /* If some error occurs while trying to transmit this 1264 * packet, you should return '1' from this function. 1265 * In such a case you _may not_ do anything to the 1266 * SKB, it is still owned by the network queueing 1267 * layer when an error is returned. This means you 1268 * may not modify any SKB fields, you may not free 1269 * the SKB, etc. 1270 */ 1271 1272 /* This is the most common case for modern hardware. 1273 * The spinlock protects this code from the TX complete 1274 * hardware interrupt handler. Queue flow control is 1275 * thus managed under this lock as well. 1276 */ 1277 spin_lock_irqsave(&lp->lock, flags); 1278 1279 /* failsafe... (handle txdone now if half of FDs are used) */ 1280 if ((lp->tfd_start + TX_FD_NUM - lp->tfd_end) % TX_FD_NUM > 1281 TX_FD_NUM / 2) 1282 tc35815_txdone(dev); 1283 1284 if (netif_msg_pktdata(lp)) 1285 print_eth(skb->data); 1286 #ifdef DEBUG 1287 if (lp->tx_skbs[lp->tfd_start].skb) { 1288 printk("%s: tx_skbs conflict.\n", dev->name); 1289 panic_queues(dev); 1290 } 1291 #else 1292 BUG_ON(lp->tx_skbs[lp->tfd_start].skb); 1293 #endif 1294 lp->tx_skbs[lp->tfd_start].skb = skb; 1295 lp->tx_skbs[lp->tfd_start].skb_dma = pci_map_single(lp->pci_dev, skb->data, skb->len, PCI_DMA_TODEVICE); 1296 1297 /*add to ring */ 1298 txfd = &lp->tfd_base[lp->tfd_start]; 1299 txfd->bd.BuffData = cpu_to_le32(lp->tx_skbs[lp->tfd_start].skb_dma); 1300 txfd->bd.BDCtl = cpu_to_le32(skb->len); 1301 txfd->fd.FDSystem = cpu_to_le32(lp->tfd_start); 1302 txfd->fd.FDCtl = cpu_to_le32(FD_CownsFD | (1 << FD_BDCnt_SHIFT)); 1303 1304 if (lp->tfd_start == lp->tfd_end) { 1305 struct tc35815_regs __iomem *tr = 1306 (struct tc35815_regs __iomem *)dev->base_addr; 1307 /* Start DMA Transmitter. */ 1308 txfd->fd.FDNext |= cpu_to_le32(FD_Next_EOL); 1309 txfd->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx); 1310 if (netif_msg_tx_queued(lp)) { 1311 printk("%s: starting TxFD.\n", dev->name); 1312 dump_txfd(txfd); 1313 } 1314 tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr); 1315 } else { 1316 txfd->fd.FDNext &= cpu_to_le32(~FD_Next_EOL); 1317 if (netif_msg_tx_queued(lp)) { 1318 printk("%s: queueing TxFD.\n", dev->name); 1319 dump_txfd(txfd); 1320 } 1321 } 1322 lp->tfd_start = (lp->tfd_start + 1) % TX_FD_NUM; 1323 1324 /* If we just used up the very last entry in the 1325 * TX ring on this device, tell the queueing 1326 * layer to send no more. 1327 */ 1328 if (tc35815_tx_full(dev)) { 1329 if (netif_msg_tx_queued(lp)) 1330 printk(KERN_WARNING "%s: TxFD Exhausted.\n", dev->name); 1331 netif_stop_queue(dev); 1332 } 1333 1334 /* When the TX completion hw interrupt arrives, this 1335 * is when the transmit statistics are updated. 1336 */ 1337 1338 spin_unlock_irqrestore(&lp->lock, flags); 1339 return NETDEV_TX_OK; 1340 } 1341 1342 #define FATAL_ERROR_INT \ 1343 (Int_IntPCI | Int_DmParErr | Int_IntNRAbt) 1344 static void tc35815_fatal_error_interrupt(struct net_device *dev, u32 status) 1345 { 1346 static int count; 1347 printk(KERN_WARNING "%s: Fatal Error Interrupt (%#x):", 1348 dev->name, status); 1349 if (status & Int_IntPCI) 1350 printk(" IntPCI"); 1351 if (status & Int_DmParErr) 1352 printk(" DmParErr"); 1353 if (status & Int_IntNRAbt) 1354 printk(" IntNRAbt"); 1355 printk("\n"); 1356 if (count++ > 100) 1357 panic("%s: Too many fatal errors.", dev->name); 1358 printk(KERN_WARNING "%s: Resetting ...\n", dev->name); 1359 /* Try to restart the adaptor. */ 1360 tc35815_schedule_restart(dev); 1361 } 1362 1363 static int tc35815_do_interrupt(struct net_device *dev, u32 status, int limit) 1364 { 1365 struct tc35815_local *lp = netdev_priv(dev); 1366 int ret = -1; 1367 1368 /* Fatal errors... */ 1369 if (status & FATAL_ERROR_INT) { 1370 tc35815_fatal_error_interrupt(dev, status); 1371 return 0; 1372 } 1373 /* recoverable errors */ 1374 if (status & Int_IntFDAEx) { 1375 if (netif_msg_rx_err(lp)) 1376 dev_warn(&dev->dev, 1377 "Free Descriptor Area Exhausted (%#x).\n", 1378 status); 1379 dev->stats.rx_dropped++; 1380 ret = 0; 1381 } 1382 if (status & Int_IntBLEx) { 1383 if (netif_msg_rx_err(lp)) 1384 dev_warn(&dev->dev, 1385 "Buffer List Exhausted (%#x).\n", 1386 status); 1387 dev->stats.rx_dropped++; 1388 ret = 0; 1389 } 1390 if (status & Int_IntExBD) { 1391 if (netif_msg_rx_err(lp)) 1392 dev_warn(&dev->dev, 1393 "Excessive Buffer Descriptors (%#x).\n", 1394 status); 1395 dev->stats.rx_length_errors++; 1396 ret = 0; 1397 } 1398 1399 /* normal notification */ 1400 if (status & Int_IntMacRx) { 1401 /* Got a packet(s). */ 1402 ret = tc35815_rx(dev, limit); 1403 lp->lstats.rx_ints++; 1404 } 1405 if (status & Int_IntMacTx) { 1406 /* Transmit complete. */ 1407 lp->lstats.tx_ints++; 1408 spin_lock_irq(&lp->lock); 1409 tc35815_txdone(dev); 1410 spin_unlock_irq(&lp->lock); 1411 if (ret < 0) 1412 ret = 0; 1413 } 1414 return ret; 1415 } 1416 1417 /* 1418 * The typical workload of the driver: 1419 * Handle the network interface interrupts. 1420 */ 1421 static irqreturn_t tc35815_interrupt(int irq, void *dev_id) 1422 { 1423 struct net_device *dev = dev_id; 1424 struct tc35815_local *lp = netdev_priv(dev); 1425 struct tc35815_regs __iomem *tr = 1426 (struct tc35815_regs __iomem *)dev->base_addr; 1427 u32 dmactl = tc_readl(&tr->DMA_Ctl); 1428 1429 if (!(dmactl & DMA_IntMask)) { 1430 /* disable interrupts */ 1431 tc_writel(dmactl | DMA_IntMask, &tr->DMA_Ctl); 1432 if (napi_schedule_prep(&lp->napi)) 1433 __napi_schedule(&lp->napi); 1434 else { 1435 printk(KERN_ERR "%s: interrupt taken in poll\n", 1436 dev->name); 1437 BUG(); 1438 } 1439 (void)tc_readl(&tr->Int_Src); /* flush */ 1440 return IRQ_HANDLED; 1441 } 1442 return IRQ_NONE; 1443 } 1444 1445 #ifdef CONFIG_NET_POLL_CONTROLLER 1446 static void tc35815_poll_controller(struct net_device *dev) 1447 { 1448 disable_irq(dev->irq); 1449 tc35815_interrupt(dev->irq, dev); 1450 enable_irq(dev->irq); 1451 } 1452 #endif 1453 1454 /* We have a good packet(s), get it/them out of the buffers. */ 1455 static int 1456 tc35815_rx(struct net_device *dev, int limit) 1457 { 1458 struct tc35815_local *lp = netdev_priv(dev); 1459 unsigned int fdctl; 1460 int i; 1461 int received = 0; 1462 1463 while (!((fdctl = le32_to_cpu(lp->rfd_cur->fd.FDCtl)) & FD_CownsFD)) { 1464 int status = le32_to_cpu(lp->rfd_cur->fd.FDStat); 1465 int pkt_len = fdctl & FD_FDLength_MASK; 1466 int bd_count = (fdctl & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT; 1467 #ifdef DEBUG 1468 struct RxFD *next_rfd; 1469 #endif 1470 #if (RX_CTL_CMD & Rx_StripCRC) == 0 1471 pkt_len -= ETH_FCS_LEN; 1472 #endif 1473 1474 if (netif_msg_rx_status(lp)) 1475 dump_rxfd(lp->rfd_cur); 1476 if (status & Rx_Good) { 1477 struct sk_buff *skb; 1478 unsigned char *data; 1479 int cur_bd; 1480 1481 if (--limit < 0) 1482 break; 1483 BUG_ON(bd_count > 1); 1484 cur_bd = (le32_to_cpu(lp->rfd_cur->bd[0].BDCtl) 1485 & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT; 1486 #ifdef DEBUG 1487 if (cur_bd >= RX_BUF_NUM) { 1488 printk("%s: invalid BDID.\n", dev->name); 1489 panic_queues(dev); 1490 } 1491 BUG_ON(lp->rx_skbs[cur_bd].skb_dma != 1492 (le32_to_cpu(lp->rfd_cur->bd[0].BuffData) & ~3)); 1493 if (!lp->rx_skbs[cur_bd].skb) { 1494 printk("%s: NULL skb.\n", dev->name); 1495 panic_queues(dev); 1496 } 1497 #else 1498 BUG_ON(cur_bd >= RX_BUF_NUM); 1499 #endif 1500 skb = lp->rx_skbs[cur_bd].skb; 1501 prefetch(skb->data); 1502 lp->rx_skbs[cur_bd].skb = NULL; 1503 pci_unmap_single(lp->pci_dev, 1504 lp->rx_skbs[cur_bd].skb_dma, 1505 RX_BUF_SIZE, PCI_DMA_FROMDEVICE); 1506 if (!HAVE_DMA_RXALIGN(lp) && NET_IP_ALIGN != 0) 1507 memmove(skb->data, skb->data - NET_IP_ALIGN, 1508 pkt_len); 1509 data = skb_put(skb, pkt_len); 1510 if (netif_msg_pktdata(lp)) 1511 print_eth(data); 1512 skb->protocol = eth_type_trans(skb, dev); 1513 netif_receive_skb(skb); 1514 received++; 1515 dev->stats.rx_packets++; 1516 dev->stats.rx_bytes += pkt_len; 1517 } else { 1518 dev->stats.rx_errors++; 1519 if (netif_msg_rx_err(lp)) 1520 dev_info(&dev->dev, "Rx error (status %x)\n", 1521 status & Rx_Stat_Mask); 1522 /* WORKAROUND: LongErr and CRCErr means Overflow. */ 1523 if ((status & Rx_LongErr) && (status & Rx_CRCErr)) { 1524 status &= ~(Rx_LongErr|Rx_CRCErr); 1525 status |= Rx_Over; 1526 } 1527 if (status & Rx_LongErr) 1528 dev->stats.rx_length_errors++; 1529 if (status & Rx_Over) 1530 dev->stats.rx_fifo_errors++; 1531 if (status & Rx_CRCErr) 1532 dev->stats.rx_crc_errors++; 1533 if (status & Rx_Align) 1534 dev->stats.rx_frame_errors++; 1535 } 1536 1537 if (bd_count > 0) { 1538 /* put Free Buffer back to controller */ 1539 int bdctl = le32_to_cpu(lp->rfd_cur->bd[bd_count - 1].BDCtl); 1540 unsigned char id = 1541 (bdctl & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT; 1542 #ifdef DEBUG 1543 if (id >= RX_BUF_NUM) { 1544 printk("%s: invalid BDID.\n", dev->name); 1545 panic_queues(dev); 1546 } 1547 #else 1548 BUG_ON(id >= RX_BUF_NUM); 1549 #endif 1550 /* free old buffers */ 1551 lp->fbl_count--; 1552 while (lp->fbl_count < RX_BUF_NUM) 1553 { 1554 unsigned char curid = 1555 (id + 1 + lp->fbl_count) % RX_BUF_NUM; 1556 struct BDesc *bd = &lp->fbl_ptr->bd[curid]; 1557 #ifdef DEBUG 1558 bdctl = le32_to_cpu(bd->BDCtl); 1559 if (bdctl & BD_CownsBD) { 1560 printk("%s: Freeing invalid BD.\n", 1561 dev->name); 1562 panic_queues(dev); 1563 } 1564 #endif 1565 /* pass BD to controller */ 1566 if (!lp->rx_skbs[curid].skb) { 1567 lp->rx_skbs[curid].skb = 1568 alloc_rxbuf_skb(dev, 1569 lp->pci_dev, 1570 &lp->rx_skbs[curid].skb_dma); 1571 if (!lp->rx_skbs[curid].skb) 1572 break; /* try on next reception */ 1573 bd->BuffData = cpu_to_le32(lp->rx_skbs[curid].skb_dma); 1574 } 1575 /* Note: BDLength was modified by chip. */ 1576 bd->BDCtl = cpu_to_le32(BD_CownsBD | 1577 (curid << BD_RxBDID_SHIFT) | 1578 RX_BUF_SIZE); 1579 lp->fbl_count++; 1580 } 1581 } 1582 1583 /* put RxFD back to controller */ 1584 #ifdef DEBUG 1585 next_rfd = fd_bus_to_virt(lp, 1586 le32_to_cpu(lp->rfd_cur->fd.FDNext)); 1587 if (next_rfd < lp->rfd_base || next_rfd > lp->rfd_limit) { 1588 printk("%s: RxFD FDNext invalid.\n", dev->name); 1589 panic_queues(dev); 1590 } 1591 #endif 1592 for (i = 0; i < (bd_count + 1) / 2 + 1; i++) { 1593 /* pass FD to controller */ 1594 #ifdef DEBUG 1595 lp->rfd_cur->fd.FDNext = cpu_to_le32(0xdeaddead); 1596 #else 1597 lp->rfd_cur->fd.FDNext = cpu_to_le32(FD_Next_EOL); 1598 #endif 1599 lp->rfd_cur->fd.FDCtl = cpu_to_le32(FD_CownsFD); 1600 lp->rfd_cur++; 1601 } 1602 if (lp->rfd_cur > lp->rfd_limit) 1603 lp->rfd_cur = lp->rfd_base; 1604 #ifdef DEBUG 1605 if (lp->rfd_cur != next_rfd) 1606 printk("rfd_cur = %p, next_rfd %p\n", 1607 lp->rfd_cur, next_rfd); 1608 #endif 1609 } 1610 1611 return received; 1612 } 1613 1614 static int tc35815_poll(struct napi_struct *napi, int budget) 1615 { 1616 struct tc35815_local *lp = container_of(napi, struct tc35815_local, napi); 1617 struct net_device *dev = lp->dev; 1618 struct tc35815_regs __iomem *tr = 1619 (struct tc35815_regs __iomem *)dev->base_addr; 1620 int received = 0, handled; 1621 u32 status; 1622 1623 if (budget <= 0) 1624 return received; 1625 1626 spin_lock(&lp->rx_lock); 1627 status = tc_readl(&tr->Int_Src); 1628 do { 1629 /* BLEx, FDAEx will be cleared later */ 1630 tc_writel(status & ~(Int_BLEx | Int_FDAEx), 1631 &tr->Int_Src); /* write to clear */ 1632 1633 handled = tc35815_do_interrupt(dev, status, budget - received); 1634 if (status & (Int_BLEx | Int_FDAEx)) 1635 tc_writel(status & (Int_BLEx | Int_FDAEx), 1636 &tr->Int_Src); 1637 if (handled >= 0) { 1638 received += handled; 1639 if (received >= budget) 1640 break; 1641 } 1642 status = tc_readl(&tr->Int_Src); 1643 } while (status); 1644 spin_unlock(&lp->rx_lock); 1645 1646 if (received < budget) { 1647 napi_complete_done(napi, received); 1648 /* enable interrupts */ 1649 tc_writel(tc_readl(&tr->DMA_Ctl) & ~DMA_IntMask, &tr->DMA_Ctl); 1650 } 1651 return received; 1652 } 1653 1654 #define TX_STA_ERR (Tx_ExColl|Tx_Under|Tx_Defer|Tx_NCarr|Tx_LateColl|Tx_TxPar|Tx_SQErr) 1655 1656 static void 1657 tc35815_check_tx_stat(struct net_device *dev, int status) 1658 { 1659 struct tc35815_local *lp = netdev_priv(dev); 1660 const char *msg = NULL; 1661 1662 /* count collisions */ 1663 if (status & Tx_ExColl) 1664 dev->stats.collisions += 16; 1665 if (status & Tx_TxColl_MASK) 1666 dev->stats.collisions += status & Tx_TxColl_MASK; 1667 1668 /* TX4939 does not have NCarr */ 1669 if (lp->chiptype == TC35815_TX4939) 1670 status &= ~Tx_NCarr; 1671 /* WORKAROUND: ignore LostCrS in full duplex operation */ 1672 if (!lp->link || lp->duplex == DUPLEX_FULL) 1673 status &= ~Tx_NCarr; 1674 1675 if (!(status & TX_STA_ERR)) { 1676 /* no error. */ 1677 dev->stats.tx_packets++; 1678 return; 1679 } 1680 1681 dev->stats.tx_errors++; 1682 if (status & Tx_ExColl) { 1683 dev->stats.tx_aborted_errors++; 1684 msg = "Excessive Collision."; 1685 } 1686 if (status & Tx_Under) { 1687 dev->stats.tx_fifo_errors++; 1688 msg = "Tx FIFO Underrun."; 1689 if (lp->lstats.tx_underrun < TX_THRESHOLD_KEEP_LIMIT) { 1690 lp->lstats.tx_underrun++; 1691 if (lp->lstats.tx_underrun >= TX_THRESHOLD_KEEP_LIMIT) { 1692 struct tc35815_regs __iomem *tr = 1693 (struct tc35815_regs __iomem *)dev->base_addr; 1694 tc_writel(TX_THRESHOLD_MAX, &tr->TxThrsh); 1695 msg = "Tx FIFO Underrun.Change Tx threshold to max."; 1696 } 1697 } 1698 } 1699 if (status & Tx_Defer) { 1700 dev->stats.tx_fifo_errors++; 1701 msg = "Excessive Deferral."; 1702 } 1703 if (status & Tx_NCarr) { 1704 dev->stats.tx_carrier_errors++; 1705 msg = "Lost Carrier Sense."; 1706 } 1707 if (status & Tx_LateColl) { 1708 dev->stats.tx_aborted_errors++; 1709 msg = "Late Collision."; 1710 } 1711 if (status & Tx_TxPar) { 1712 dev->stats.tx_fifo_errors++; 1713 msg = "Transmit Parity Error."; 1714 } 1715 if (status & Tx_SQErr) { 1716 dev->stats.tx_heartbeat_errors++; 1717 msg = "Signal Quality Error."; 1718 } 1719 if (msg && netif_msg_tx_err(lp)) 1720 printk(KERN_WARNING "%s: %s (%#x)\n", dev->name, msg, status); 1721 } 1722 1723 /* This handles TX complete events posted by the device 1724 * via interrupts. 1725 */ 1726 static void 1727 tc35815_txdone(struct net_device *dev) 1728 { 1729 struct tc35815_local *lp = netdev_priv(dev); 1730 struct TxFD *txfd; 1731 unsigned int fdctl; 1732 1733 txfd = &lp->tfd_base[lp->tfd_end]; 1734 while (lp->tfd_start != lp->tfd_end && 1735 !((fdctl = le32_to_cpu(txfd->fd.FDCtl)) & FD_CownsFD)) { 1736 int status = le32_to_cpu(txfd->fd.FDStat); 1737 struct sk_buff *skb; 1738 unsigned long fdnext = le32_to_cpu(txfd->fd.FDNext); 1739 u32 fdsystem = le32_to_cpu(txfd->fd.FDSystem); 1740 1741 if (netif_msg_tx_done(lp)) { 1742 printk("%s: complete TxFD.\n", dev->name); 1743 dump_txfd(txfd); 1744 } 1745 tc35815_check_tx_stat(dev, status); 1746 1747 skb = fdsystem != 0xffffffff ? 1748 lp->tx_skbs[fdsystem].skb : NULL; 1749 #ifdef DEBUG 1750 if (lp->tx_skbs[lp->tfd_end].skb != skb) { 1751 printk("%s: tx_skbs mismatch.\n", dev->name); 1752 panic_queues(dev); 1753 } 1754 #else 1755 BUG_ON(lp->tx_skbs[lp->tfd_end].skb != skb); 1756 #endif 1757 if (skb) { 1758 dev->stats.tx_bytes += skb->len; 1759 pci_unmap_single(lp->pci_dev, lp->tx_skbs[lp->tfd_end].skb_dma, skb->len, PCI_DMA_TODEVICE); 1760 lp->tx_skbs[lp->tfd_end].skb = NULL; 1761 lp->tx_skbs[lp->tfd_end].skb_dma = 0; 1762 dev_kfree_skb_any(skb); 1763 } 1764 txfd->fd.FDSystem = cpu_to_le32(0xffffffff); 1765 1766 lp->tfd_end = (lp->tfd_end + 1) % TX_FD_NUM; 1767 txfd = &lp->tfd_base[lp->tfd_end]; 1768 #ifdef DEBUG 1769 if ((fdnext & ~FD_Next_EOL) != fd_virt_to_bus(lp, txfd)) { 1770 printk("%s: TxFD FDNext invalid.\n", dev->name); 1771 panic_queues(dev); 1772 } 1773 #endif 1774 if (fdnext & FD_Next_EOL) { 1775 /* DMA Transmitter has been stopping... */ 1776 if (lp->tfd_end != lp->tfd_start) { 1777 struct tc35815_regs __iomem *tr = 1778 (struct tc35815_regs __iomem *)dev->base_addr; 1779 int head = (lp->tfd_start + TX_FD_NUM - 1) % TX_FD_NUM; 1780 struct TxFD *txhead = &lp->tfd_base[head]; 1781 int qlen = (lp->tfd_start + TX_FD_NUM 1782 - lp->tfd_end) % TX_FD_NUM; 1783 1784 #ifdef DEBUG 1785 if (!(le32_to_cpu(txfd->fd.FDCtl) & FD_CownsFD)) { 1786 printk("%s: TxFD FDCtl invalid.\n", dev->name); 1787 panic_queues(dev); 1788 } 1789 #endif 1790 /* log max queue length */ 1791 if (lp->lstats.max_tx_qlen < qlen) 1792 lp->lstats.max_tx_qlen = qlen; 1793 1794 1795 /* start DMA Transmitter again */ 1796 txhead->fd.FDNext |= cpu_to_le32(FD_Next_EOL); 1797 txhead->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx); 1798 if (netif_msg_tx_queued(lp)) { 1799 printk("%s: start TxFD on queue.\n", 1800 dev->name); 1801 dump_txfd(txfd); 1802 } 1803 tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr); 1804 } 1805 break; 1806 } 1807 } 1808 1809 /* If we had stopped the queue due to a "tx full" 1810 * condition, and space has now been made available, 1811 * wake up the queue. 1812 */ 1813 if (netif_queue_stopped(dev) && !tc35815_tx_full(dev)) 1814 netif_wake_queue(dev); 1815 } 1816 1817 /* The inverse routine to tc35815_open(). */ 1818 static int 1819 tc35815_close(struct net_device *dev) 1820 { 1821 struct tc35815_local *lp = netdev_priv(dev); 1822 1823 netif_stop_queue(dev); 1824 napi_disable(&lp->napi); 1825 if (dev->phydev) 1826 phy_stop(dev->phydev); 1827 cancel_work_sync(&lp->restart_work); 1828 1829 /* Flush the Tx and disable Rx here. */ 1830 tc35815_chip_reset(dev); 1831 free_irq(dev->irq, dev); 1832 1833 tc35815_free_queues(dev); 1834 1835 return 0; 1836 1837 } 1838 1839 /* 1840 * Get the current statistics. 1841 * This may be called with the card open or closed. 1842 */ 1843 static struct net_device_stats *tc35815_get_stats(struct net_device *dev) 1844 { 1845 struct tc35815_regs __iomem *tr = 1846 (struct tc35815_regs __iomem *)dev->base_addr; 1847 if (netif_running(dev)) 1848 /* Update the statistics from the device registers. */ 1849 dev->stats.rx_missed_errors += tc_readl(&tr->Miss_Cnt); 1850 1851 return &dev->stats; 1852 } 1853 1854 static void tc35815_set_cam_entry(struct net_device *dev, int index, unsigned char *addr) 1855 { 1856 struct tc35815_local *lp = netdev_priv(dev); 1857 struct tc35815_regs __iomem *tr = 1858 (struct tc35815_regs __iomem *)dev->base_addr; 1859 int cam_index = index * 6; 1860 u32 cam_data; 1861 u32 saved_addr; 1862 1863 saved_addr = tc_readl(&tr->CAM_Adr); 1864 1865 if (netif_msg_hw(lp)) 1866 printk(KERN_DEBUG "%s: CAM %d: %pM\n", 1867 dev->name, index, addr); 1868 if (index & 1) { 1869 /* read modify write */ 1870 tc_writel(cam_index - 2, &tr->CAM_Adr); 1871 cam_data = tc_readl(&tr->CAM_Data) & 0xffff0000; 1872 cam_data |= addr[0] << 8 | addr[1]; 1873 tc_writel(cam_data, &tr->CAM_Data); 1874 /* write whole word */ 1875 tc_writel(cam_index + 2, &tr->CAM_Adr); 1876 cam_data = (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) | addr[5]; 1877 tc_writel(cam_data, &tr->CAM_Data); 1878 } else { 1879 /* write whole word */ 1880 tc_writel(cam_index, &tr->CAM_Adr); 1881 cam_data = (addr[0] << 24) | (addr[1] << 16) | (addr[2] << 8) | addr[3]; 1882 tc_writel(cam_data, &tr->CAM_Data); 1883 /* read modify write */ 1884 tc_writel(cam_index + 4, &tr->CAM_Adr); 1885 cam_data = tc_readl(&tr->CAM_Data) & 0x0000ffff; 1886 cam_data |= addr[4] << 24 | (addr[5] << 16); 1887 tc_writel(cam_data, &tr->CAM_Data); 1888 } 1889 1890 tc_writel(saved_addr, &tr->CAM_Adr); 1891 } 1892 1893 1894 /* 1895 * Set or clear the multicast filter for this adaptor. 1896 * num_addrs == -1 Promiscuous mode, receive all packets 1897 * num_addrs == 0 Normal mode, clear multicast list 1898 * num_addrs > 0 Multicast mode, receive normal and MC packets, 1899 * and do best-effort filtering. 1900 */ 1901 static void 1902 tc35815_set_multicast_list(struct net_device *dev) 1903 { 1904 struct tc35815_regs __iomem *tr = 1905 (struct tc35815_regs __iomem *)dev->base_addr; 1906 1907 if (dev->flags & IFF_PROMISC) { 1908 /* With some (all?) 100MHalf HUB, controller will hang 1909 * if we enabled promiscuous mode before linkup... */ 1910 struct tc35815_local *lp = netdev_priv(dev); 1911 1912 if (!lp->link) 1913 return; 1914 /* Enable promiscuous mode */ 1915 tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc | CAM_StationAcc, &tr->CAM_Ctl); 1916 } else if ((dev->flags & IFF_ALLMULTI) || 1917 netdev_mc_count(dev) > CAM_ENTRY_MAX - 3) { 1918 /* CAM 0, 1, 20 are reserved. */ 1919 /* Disable promiscuous mode, use normal mode. */ 1920 tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc, &tr->CAM_Ctl); 1921 } else if (!netdev_mc_empty(dev)) { 1922 struct netdev_hw_addr *ha; 1923 int i; 1924 int ena_bits = CAM_Ena_Bit(CAM_ENTRY_SOURCE); 1925 1926 tc_writel(0, &tr->CAM_Ctl); 1927 /* Walk the address list, and load the filter */ 1928 i = 0; 1929 netdev_for_each_mc_addr(ha, dev) { 1930 /* entry 0,1 is reserved. */ 1931 tc35815_set_cam_entry(dev, i + 2, ha->addr); 1932 ena_bits |= CAM_Ena_Bit(i + 2); 1933 i++; 1934 } 1935 tc_writel(ena_bits, &tr->CAM_Ena); 1936 tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl); 1937 } else { 1938 tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena); 1939 tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl); 1940 } 1941 } 1942 1943 static void tc35815_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 1944 { 1945 struct tc35815_local *lp = netdev_priv(dev); 1946 1947 strlcpy(info->driver, MODNAME, sizeof(info->driver)); 1948 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 1949 strlcpy(info->bus_info, pci_name(lp->pci_dev), sizeof(info->bus_info)); 1950 } 1951 1952 static u32 tc35815_get_msglevel(struct net_device *dev) 1953 { 1954 struct tc35815_local *lp = netdev_priv(dev); 1955 return lp->msg_enable; 1956 } 1957 1958 static void tc35815_set_msglevel(struct net_device *dev, u32 datum) 1959 { 1960 struct tc35815_local *lp = netdev_priv(dev); 1961 lp->msg_enable = datum; 1962 } 1963 1964 static int tc35815_get_sset_count(struct net_device *dev, int sset) 1965 { 1966 struct tc35815_local *lp = netdev_priv(dev); 1967 1968 switch (sset) { 1969 case ETH_SS_STATS: 1970 return sizeof(lp->lstats) / sizeof(int); 1971 default: 1972 return -EOPNOTSUPP; 1973 } 1974 } 1975 1976 static void tc35815_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data) 1977 { 1978 struct tc35815_local *lp = netdev_priv(dev); 1979 data[0] = lp->lstats.max_tx_qlen; 1980 data[1] = lp->lstats.tx_ints; 1981 data[2] = lp->lstats.rx_ints; 1982 data[3] = lp->lstats.tx_underrun; 1983 } 1984 1985 static struct { 1986 const char str[ETH_GSTRING_LEN]; 1987 } ethtool_stats_keys[] = { 1988 { "max_tx_qlen" }, 1989 { "tx_ints" }, 1990 { "rx_ints" }, 1991 { "tx_underrun" }, 1992 }; 1993 1994 static void tc35815_get_strings(struct net_device *dev, u32 stringset, u8 *data) 1995 { 1996 memcpy(data, ethtool_stats_keys, sizeof(ethtool_stats_keys)); 1997 } 1998 1999 static const struct ethtool_ops tc35815_ethtool_ops = { 2000 .get_drvinfo = tc35815_get_drvinfo, 2001 .get_link = ethtool_op_get_link, 2002 .get_msglevel = tc35815_get_msglevel, 2003 .set_msglevel = tc35815_set_msglevel, 2004 .get_strings = tc35815_get_strings, 2005 .get_sset_count = tc35815_get_sset_count, 2006 .get_ethtool_stats = tc35815_get_ethtool_stats, 2007 .get_link_ksettings = phy_ethtool_get_link_ksettings, 2008 .set_link_ksettings = phy_ethtool_set_link_ksettings, 2009 }; 2010 2011 static void tc35815_chip_reset(struct net_device *dev) 2012 { 2013 struct tc35815_regs __iomem *tr = 2014 (struct tc35815_regs __iomem *)dev->base_addr; 2015 int i; 2016 /* reset the controller */ 2017 tc_writel(MAC_Reset, &tr->MAC_Ctl); 2018 udelay(4); /* 3200ns */ 2019 i = 0; 2020 while (tc_readl(&tr->MAC_Ctl) & MAC_Reset) { 2021 if (i++ > 100) { 2022 printk(KERN_ERR "%s: MAC reset failed.\n", dev->name); 2023 break; 2024 } 2025 mdelay(1); 2026 } 2027 tc_writel(0, &tr->MAC_Ctl); 2028 2029 /* initialize registers to default value */ 2030 tc_writel(0, &tr->DMA_Ctl); 2031 tc_writel(0, &tr->TxThrsh); 2032 tc_writel(0, &tr->TxPollCtr); 2033 tc_writel(0, &tr->RxFragSize); 2034 tc_writel(0, &tr->Int_En); 2035 tc_writel(0, &tr->FDA_Bas); 2036 tc_writel(0, &tr->FDA_Lim); 2037 tc_writel(0xffffffff, &tr->Int_Src); /* Write 1 to clear */ 2038 tc_writel(0, &tr->CAM_Ctl); 2039 tc_writel(0, &tr->Tx_Ctl); 2040 tc_writel(0, &tr->Rx_Ctl); 2041 tc_writel(0, &tr->CAM_Ena); 2042 (void)tc_readl(&tr->Miss_Cnt); /* Read to clear */ 2043 2044 /* initialize internal SRAM */ 2045 tc_writel(DMA_TestMode, &tr->DMA_Ctl); 2046 for (i = 0; i < 0x1000; i += 4) { 2047 tc_writel(i, &tr->CAM_Adr); 2048 tc_writel(0, &tr->CAM_Data); 2049 } 2050 tc_writel(0, &tr->DMA_Ctl); 2051 } 2052 2053 static void tc35815_chip_init(struct net_device *dev) 2054 { 2055 struct tc35815_local *lp = netdev_priv(dev); 2056 struct tc35815_regs __iomem *tr = 2057 (struct tc35815_regs __iomem *)dev->base_addr; 2058 unsigned long txctl = TX_CTL_CMD; 2059 2060 /* load station address to CAM */ 2061 tc35815_set_cam_entry(dev, CAM_ENTRY_SOURCE, dev->dev_addr); 2062 2063 /* Enable CAM (broadcast and unicast) */ 2064 tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena); 2065 tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl); 2066 2067 /* Use DMA_RxAlign_2 to make IP header 4-byte aligned. */ 2068 if (HAVE_DMA_RXALIGN(lp)) 2069 tc_writel(DMA_BURST_SIZE | DMA_RxAlign_2, &tr->DMA_Ctl); 2070 else 2071 tc_writel(DMA_BURST_SIZE, &tr->DMA_Ctl); 2072 tc_writel(0, &tr->TxPollCtr); /* Batch mode */ 2073 tc_writel(TX_THRESHOLD, &tr->TxThrsh); 2074 tc_writel(INT_EN_CMD, &tr->Int_En); 2075 2076 /* set queues */ 2077 tc_writel(fd_virt_to_bus(lp, lp->rfd_base), &tr->FDA_Bas); 2078 tc_writel((unsigned long)lp->rfd_limit - (unsigned long)lp->rfd_base, 2079 &tr->FDA_Lim); 2080 /* 2081 * Activation method: 2082 * First, enable the MAC Transmitter and the DMA Receive circuits. 2083 * Then enable the DMA Transmitter and the MAC Receive circuits. 2084 */ 2085 tc_writel(fd_virt_to_bus(lp, lp->fbl_ptr), &tr->BLFrmPtr); /* start DMA receiver */ 2086 tc_writel(RX_CTL_CMD, &tr->Rx_Ctl); /* start MAC receiver */ 2087 2088 /* start MAC transmitter */ 2089 /* TX4939 does not have EnLCarr */ 2090 if (lp->chiptype == TC35815_TX4939) 2091 txctl &= ~Tx_EnLCarr; 2092 /* WORKAROUND: ignore LostCrS in full duplex operation */ 2093 if (!dev->phydev || !lp->link || lp->duplex == DUPLEX_FULL) 2094 txctl &= ~Tx_EnLCarr; 2095 tc_writel(txctl, &tr->Tx_Ctl); 2096 } 2097 2098 #ifdef CONFIG_PM 2099 static int tc35815_suspend(struct pci_dev *pdev, pm_message_t state) 2100 { 2101 struct net_device *dev = pci_get_drvdata(pdev); 2102 struct tc35815_local *lp = netdev_priv(dev); 2103 unsigned long flags; 2104 2105 pci_save_state(pdev); 2106 if (!netif_running(dev)) 2107 return 0; 2108 netif_device_detach(dev); 2109 if (dev->phydev) 2110 phy_stop(dev->phydev); 2111 spin_lock_irqsave(&lp->lock, flags); 2112 tc35815_chip_reset(dev); 2113 spin_unlock_irqrestore(&lp->lock, flags); 2114 pci_set_power_state(pdev, PCI_D3hot); 2115 return 0; 2116 } 2117 2118 static int tc35815_resume(struct pci_dev *pdev) 2119 { 2120 struct net_device *dev = pci_get_drvdata(pdev); 2121 2122 pci_restore_state(pdev); 2123 if (!netif_running(dev)) 2124 return 0; 2125 pci_set_power_state(pdev, PCI_D0); 2126 tc35815_restart(dev); 2127 netif_carrier_off(dev); 2128 if (dev->phydev) 2129 phy_start(dev->phydev); 2130 netif_device_attach(dev); 2131 return 0; 2132 } 2133 #endif /* CONFIG_PM */ 2134 2135 static struct pci_driver tc35815_pci_driver = { 2136 .name = MODNAME, 2137 .id_table = tc35815_pci_tbl, 2138 .probe = tc35815_init_one, 2139 .remove = tc35815_remove_one, 2140 #ifdef CONFIG_PM 2141 .suspend = tc35815_suspend, 2142 .resume = tc35815_resume, 2143 #endif 2144 }; 2145 2146 module_param_named(speed, options.speed, int, 0); 2147 MODULE_PARM_DESC(speed, "0:auto, 10:10Mbps, 100:100Mbps"); 2148 module_param_named(duplex, options.duplex, int, 0); 2149 MODULE_PARM_DESC(duplex, "0:auto, 1:half, 2:full"); 2150 2151 module_pci_driver(tc35815_pci_driver); 2152 MODULE_DESCRIPTION("TOSHIBA TC35815 PCI 10M/100M Ethernet driver"); 2153 MODULE_LICENSE("GPL"); 2154