1 /* 2 * tc35815.c: A TOSHIBA TC35815CF PCI 10/100Mbps ethernet driver for linux. 3 * 4 * Based on skelton.c by Donald Becker. 5 * 6 * This driver is a replacement of older and less maintained version. 7 * This is a header of the older version: 8 * -----<snip>----- 9 * Copyright 2001 MontaVista Software Inc. 10 * Author: MontaVista Software, Inc. 11 * ahennessy@mvista.com 12 * Copyright (C) 2000-2001 Toshiba Corporation 13 * static const char *version = 14 * "tc35815.c:v0.00 26/07/2000 by Toshiba Corporation\n"; 15 * -----<snip>----- 16 * 17 * This file is subject to the terms and conditions of the GNU General Public 18 * License. See the file "COPYING" in the main directory of this archive 19 * for more details. 20 * 21 * (C) Copyright TOSHIBA CORPORATION 2004-2005 22 * All Rights Reserved. 23 */ 24 25 #define DRV_VERSION "1.39" 26 static const char *version = "tc35815.c:v" DRV_VERSION "\n"; 27 #define MODNAME "tc35815" 28 29 #include <linux/module.h> 30 #include <linux/kernel.h> 31 #include <linux/types.h> 32 #include <linux/fcntl.h> 33 #include <linux/interrupt.h> 34 #include <linux/ioport.h> 35 #include <linux/in.h> 36 #include <linux/if_vlan.h> 37 #include <linux/slab.h> 38 #include <linux/string.h> 39 #include <linux/spinlock.h> 40 #include <linux/errno.h> 41 #include <linux/netdevice.h> 42 #include <linux/etherdevice.h> 43 #include <linux/skbuff.h> 44 #include <linux/delay.h> 45 #include <linux/pci.h> 46 #include <linux/phy.h> 47 #include <linux/workqueue.h> 48 #include <linux/platform_device.h> 49 #include <linux/prefetch.h> 50 #include <asm/io.h> 51 #include <asm/byteorder.h> 52 53 enum tc35815_chiptype { 54 TC35815CF = 0, 55 TC35815_NWU, 56 TC35815_TX4939, 57 }; 58 59 /* indexed by tc35815_chiptype, above */ 60 static const struct { 61 const char *name; 62 } chip_info[] = { 63 { "TOSHIBA TC35815CF 10/100BaseTX" }, 64 { "TOSHIBA TC35815 with Wake on LAN" }, 65 { "TOSHIBA TC35815/TX4939" }, 66 }; 67 68 static const struct pci_device_id tc35815_pci_tbl[] = { 69 {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815CF), .driver_data = TC35815CF }, 70 {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_NWU), .driver_data = TC35815_NWU }, 71 {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_TX4939), .driver_data = TC35815_TX4939 }, 72 {0,} 73 }; 74 MODULE_DEVICE_TABLE(pci, tc35815_pci_tbl); 75 76 /* see MODULE_PARM_DESC */ 77 static struct tc35815_options { 78 int speed; 79 int duplex; 80 } options; 81 82 /* 83 * Registers 84 */ 85 struct tc35815_regs { 86 __u32 DMA_Ctl; /* 0x00 */ 87 __u32 TxFrmPtr; 88 __u32 TxThrsh; 89 __u32 TxPollCtr; 90 __u32 BLFrmPtr; 91 __u32 RxFragSize; 92 __u32 Int_En; 93 __u32 FDA_Bas; 94 __u32 FDA_Lim; /* 0x20 */ 95 __u32 Int_Src; 96 __u32 unused0[2]; 97 __u32 PauseCnt; 98 __u32 RemPauCnt; 99 __u32 TxCtlFrmStat; 100 __u32 unused1; 101 __u32 MAC_Ctl; /* 0x40 */ 102 __u32 CAM_Ctl; 103 __u32 Tx_Ctl; 104 __u32 Tx_Stat; 105 __u32 Rx_Ctl; 106 __u32 Rx_Stat; 107 __u32 MD_Data; 108 __u32 MD_CA; 109 __u32 CAM_Adr; /* 0x60 */ 110 __u32 CAM_Data; 111 __u32 CAM_Ena; 112 __u32 PROM_Ctl; 113 __u32 PROM_Data; 114 __u32 Algn_Cnt; 115 __u32 CRC_Cnt; 116 __u32 Miss_Cnt; 117 }; 118 119 /* 120 * Bit assignments 121 */ 122 /* DMA_Ctl bit assign ------------------------------------------------------- */ 123 #define DMA_RxAlign 0x00c00000 /* 1:Reception Alignment */ 124 #define DMA_RxAlign_1 0x00400000 125 #define DMA_RxAlign_2 0x00800000 126 #define DMA_RxAlign_3 0x00c00000 127 #define DMA_M66EnStat 0x00080000 /* 1:66MHz Enable State */ 128 #define DMA_IntMask 0x00040000 /* 1:Interrupt mask */ 129 #define DMA_SWIntReq 0x00020000 /* 1:Software Interrupt request */ 130 #define DMA_TxWakeUp 0x00010000 /* 1:Transmit Wake Up */ 131 #define DMA_RxBigE 0x00008000 /* 1:Receive Big Endian */ 132 #define DMA_TxBigE 0x00004000 /* 1:Transmit Big Endian */ 133 #define DMA_TestMode 0x00002000 /* 1:Test Mode */ 134 #define DMA_PowrMgmnt 0x00001000 /* 1:Power Management */ 135 #define DMA_DmBurst_Mask 0x000001fc /* DMA Burst size */ 136 137 /* RxFragSize bit assign ---------------------------------------------------- */ 138 #define RxFrag_EnPack 0x00008000 /* 1:Enable Packing */ 139 #define RxFrag_MinFragMask 0x00000ffc /* Minimum Fragment */ 140 141 /* MAC_Ctl bit assign ------------------------------------------------------- */ 142 #define MAC_Link10 0x00008000 /* 1:Link Status 10Mbits */ 143 #define MAC_EnMissRoll 0x00002000 /* 1:Enable Missed Roll */ 144 #define MAC_MissRoll 0x00000400 /* 1:Missed Roll */ 145 #define MAC_Loop10 0x00000080 /* 1:Loop 10 Mbps */ 146 #define MAC_Conn_Auto 0x00000000 /*00:Connection mode (Automatic) */ 147 #define MAC_Conn_10M 0x00000020 /*01: (10Mbps endec)*/ 148 #define MAC_Conn_Mll 0x00000040 /*10: (Mll clock) */ 149 #define MAC_MacLoop 0x00000010 /* 1:MAC Loopback */ 150 #define MAC_FullDup 0x00000008 /* 1:Full Duplex 0:Half Duplex */ 151 #define MAC_Reset 0x00000004 /* 1:Software Reset */ 152 #define MAC_HaltImm 0x00000002 /* 1:Halt Immediate */ 153 #define MAC_HaltReq 0x00000001 /* 1:Halt request */ 154 155 /* PROM_Ctl bit assign ------------------------------------------------------ */ 156 #define PROM_Busy 0x00008000 /* 1:Busy (Start Operation) */ 157 #define PROM_Read 0x00004000 /*10:Read operation */ 158 #define PROM_Write 0x00002000 /*01:Write operation */ 159 #define PROM_Erase 0x00006000 /*11:Erase operation */ 160 /*00:Enable or Disable Writting, */ 161 /* as specified in PROM_Addr. */ 162 #define PROM_Addr_Ena 0x00000030 /*11xxxx:PROM Write enable */ 163 /*00xxxx: disable */ 164 165 /* CAM_Ctl bit assign ------------------------------------------------------- */ 166 #define CAM_CompEn 0x00000010 /* 1:CAM Compare Enable */ 167 #define CAM_NegCAM 0x00000008 /* 1:Reject packets CAM recognizes,*/ 168 /* accept other */ 169 #define CAM_BroadAcc 0x00000004 /* 1:Broadcast assept */ 170 #define CAM_GroupAcc 0x00000002 /* 1:Multicast assept */ 171 #define CAM_StationAcc 0x00000001 /* 1:unicast accept */ 172 173 /* CAM_Ena bit assign ------------------------------------------------------- */ 174 #define CAM_ENTRY_MAX 21 /* CAM Data entry max count */ 175 #define CAM_Ena_Mask ((1<<CAM_ENTRY_MAX)-1) /* CAM Enable bits (Max 21bits) */ 176 #define CAM_Ena_Bit(index) (1 << (index)) 177 #define CAM_ENTRY_DESTINATION 0 178 #define CAM_ENTRY_SOURCE 1 179 #define CAM_ENTRY_MACCTL 20 180 181 /* Tx_Ctl bit assign -------------------------------------------------------- */ 182 #define Tx_En 0x00000001 /* 1:Transmit enable */ 183 #define Tx_TxHalt 0x00000002 /* 1:Transmit Halt Request */ 184 #define Tx_NoPad 0x00000004 /* 1:Suppress Padding */ 185 #define Tx_NoCRC 0x00000008 /* 1:Suppress Padding */ 186 #define Tx_FBack 0x00000010 /* 1:Fast Back-off */ 187 #define Tx_EnUnder 0x00000100 /* 1:Enable Underrun */ 188 #define Tx_EnExDefer 0x00000200 /* 1:Enable Excessive Deferral */ 189 #define Tx_EnLCarr 0x00000400 /* 1:Enable Lost Carrier */ 190 #define Tx_EnExColl 0x00000800 /* 1:Enable Excessive Collision */ 191 #define Tx_EnLateColl 0x00001000 /* 1:Enable Late Collision */ 192 #define Tx_EnTxPar 0x00002000 /* 1:Enable Transmit Parity */ 193 #define Tx_EnComp 0x00004000 /* 1:Enable Completion */ 194 195 /* Tx_Stat bit assign ------------------------------------------------------- */ 196 #define Tx_TxColl_MASK 0x0000000F /* Tx Collision Count */ 197 #define Tx_ExColl 0x00000010 /* Excessive Collision */ 198 #define Tx_TXDefer 0x00000020 /* Transmit Defered */ 199 #define Tx_Paused 0x00000040 /* Transmit Paused */ 200 #define Tx_IntTx 0x00000080 /* Interrupt on Tx */ 201 #define Tx_Under 0x00000100 /* Underrun */ 202 #define Tx_Defer 0x00000200 /* Deferral */ 203 #define Tx_NCarr 0x00000400 /* No Carrier */ 204 #define Tx_10Stat 0x00000800 /* 10Mbps Status */ 205 #define Tx_LateColl 0x00001000 /* Late Collision */ 206 #define Tx_TxPar 0x00002000 /* Tx Parity Error */ 207 #define Tx_Comp 0x00004000 /* Completion */ 208 #define Tx_Halted 0x00008000 /* Tx Halted */ 209 #define Tx_SQErr 0x00010000 /* Signal Quality Error(SQE) */ 210 211 /* Rx_Ctl bit assign -------------------------------------------------------- */ 212 #define Rx_EnGood 0x00004000 /* 1:Enable Good */ 213 #define Rx_EnRxPar 0x00002000 /* 1:Enable Receive Parity */ 214 #define Rx_EnLongErr 0x00000800 /* 1:Enable Long Error */ 215 #define Rx_EnOver 0x00000400 /* 1:Enable OverFlow */ 216 #define Rx_EnCRCErr 0x00000200 /* 1:Enable CRC Error */ 217 #define Rx_EnAlign 0x00000100 /* 1:Enable Alignment */ 218 #define Rx_IgnoreCRC 0x00000040 /* 1:Ignore CRC Value */ 219 #define Rx_StripCRC 0x00000010 /* 1:Strip CRC Value */ 220 #define Rx_ShortEn 0x00000008 /* 1:Short Enable */ 221 #define Rx_LongEn 0x00000004 /* 1:Long Enable */ 222 #define Rx_RxHalt 0x00000002 /* 1:Receive Halt Request */ 223 #define Rx_RxEn 0x00000001 /* 1:Receive Intrrupt Enable */ 224 225 /* Rx_Stat bit assign ------------------------------------------------------- */ 226 #define Rx_Halted 0x00008000 /* Rx Halted */ 227 #define Rx_Good 0x00004000 /* Rx Good */ 228 #define Rx_RxPar 0x00002000 /* Rx Parity Error */ 229 #define Rx_TypePkt 0x00001000 /* Rx Type Packet */ 230 #define Rx_LongErr 0x00000800 /* Rx Long Error */ 231 #define Rx_Over 0x00000400 /* Rx Overflow */ 232 #define Rx_CRCErr 0x00000200 /* Rx CRC Error */ 233 #define Rx_Align 0x00000100 /* Rx Alignment Error */ 234 #define Rx_10Stat 0x00000080 /* Rx 10Mbps Status */ 235 #define Rx_IntRx 0x00000040 /* Rx Interrupt */ 236 #define Rx_CtlRecd 0x00000020 /* Rx Control Receive */ 237 #define Rx_InLenErr 0x00000010 /* Rx In Range Frame Length Error */ 238 239 #define Rx_Stat_Mask 0x0000FFF0 /* Rx All Status Mask */ 240 241 /* Int_En bit assign -------------------------------------------------------- */ 242 #define Int_NRAbtEn 0x00000800 /* 1:Non-recoverable Abort Enable */ 243 #define Int_TxCtlCmpEn 0x00000400 /* 1:Transmit Ctl Complete Enable */ 244 #define Int_DmParErrEn 0x00000200 /* 1:DMA Parity Error Enable */ 245 #define Int_DParDEn 0x00000100 /* 1:Data Parity Error Enable */ 246 #define Int_EarNotEn 0x00000080 /* 1:Early Notify Enable */ 247 #define Int_DParErrEn 0x00000040 /* 1:Detected Parity Error Enable */ 248 #define Int_SSysErrEn 0x00000020 /* 1:Signalled System Error Enable */ 249 #define Int_RMasAbtEn 0x00000010 /* 1:Received Master Abort Enable */ 250 #define Int_RTargAbtEn 0x00000008 /* 1:Received Target Abort Enable */ 251 #define Int_STargAbtEn 0x00000004 /* 1:Signalled Target Abort Enable */ 252 #define Int_BLExEn 0x00000002 /* 1:Buffer List Exhausted Enable */ 253 #define Int_FDAExEn 0x00000001 /* 1:Free Descriptor Area */ 254 /* Exhausted Enable */ 255 256 /* Int_Src bit assign ------------------------------------------------------- */ 257 #define Int_NRabt 0x00004000 /* 1:Non Recoverable error */ 258 #define Int_DmParErrStat 0x00002000 /* 1:DMA Parity Error & Clear */ 259 #define Int_BLEx 0x00001000 /* 1:Buffer List Empty & Clear */ 260 #define Int_FDAEx 0x00000800 /* 1:FDA Empty & Clear */ 261 #define Int_IntNRAbt 0x00000400 /* 1:Non Recoverable Abort */ 262 #define Int_IntCmp 0x00000200 /* 1:MAC control packet complete */ 263 #define Int_IntExBD 0x00000100 /* 1:Interrupt Extra BD & Clear */ 264 #define Int_DmParErr 0x00000080 /* 1:DMA Parity Error & Clear */ 265 #define Int_IntEarNot 0x00000040 /* 1:Receive Data write & Clear */ 266 #define Int_SWInt 0x00000020 /* 1:Software request & Clear */ 267 #define Int_IntBLEx 0x00000010 /* 1:Buffer List Empty & Clear */ 268 #define Int_IntFDAEx 0x00000008 /* 1:FDA Empty & Clear */ 269 #define Int_IntPCI 0x00000004 /* 1:PCI controller & Clear */ 270 #define Int_IntMacRx 0x00000002 /* 1:Rx controller & Clear */ 271 #define Int_IntMacTx 0x00000001 /* 1:Tx controller & Clear */ 272 273 /* MD_CA bit assign --------------------------------------------------------- */ 274 #define MD_CA_PreSup 0x00001000 /* 1:Preamble Suppress */ 275 #define MD_CA_Busy 0x00000800 /* 1:Busy (Start Operation) */ 276 #define MD_CA_Wr 0x00000400 /* 1:Write 0:Read */ 277 278 279 /* 280 * Descriptors 281 */ 282 283 /* Frame descriptor */ 284 struct FDesc { 285 volatile __u32 FDNext; 286 volatile __u32 FDSystem; 287 volatile __u32 FDStat; 288 volatile __u32 FDCtl; 289 }; 290 291 /* Buffer descriptor */ 292 struct BDesc { 293 volatile __u32 BuffData; 294 volatile __u32 BDCtl; 295 }; 296 297 #define FD_ALIGN 16 298 299 /* Frame Descriptor bit assign ---------------------------------------------- */ 300 #define FD_FDLength_MASK 0x0000FFFF /* Length MASK */ 301 #define FD_BDCnt_MASK 0x001F0000 /* BD count MASK in FD */ 302 #define FD_FrmOpt_MASK 0x7C000000 /* Frame option MASK */ 303 #define FD_FrmOpt_BigEndian 0x40000000 /* Tx/Rx */ 304 #define FD_FrmOpt_IntTx 0x20000000 /* Tx only */ 305 #define FD_FrmOpt_NoCRC 0x10000000 /* Tx only */ 306 #define FD_FrmOpt_NoPadding 0x08000000 /* Tx only */ 307 #define FD_FrmOpt_Packing 0x04000000 /* Rx only */ 308 #define FD_CownsFD 0x80000000 /* FD Controller owner bit */ 309 #define FD_Next_EOL 0x00000001 /* FD EOL indicator */ 310 #define FD_BDCnt_SHIFT 16 311 312 /* Buffer Descriptor bit assign --------------------------------------------- */ 313 #define BD_BuffLength_MASK 0x0000FFFF /* Receive Data Size */ 314 #define BD_RxBDID_MASK 0x00FF0000 /* BD ID Number MASK */ 315 #define BD_RxBDSeqN_MASK 0x7F000000 /* Rx BD Sequence Number */ 316 #define BD_CownsBD 0x80000000 /* BD Controller owner bit */ 317 #define BD_RxBDID_SHIFT 16 318 #define BD_RxBDSeqN_SHIFT 24 319 320 321 /* Some useful constants. */ 322 323 #define TX_CTL_CMD (Tx_EnTxPar | Tx_EnLateColl | \ 324 Tx_EnExColl | Tx_EnLCarr | Tx_EnExDefer | Tx_EnUnder | \ 325 Tx_En) /* maybe 0x7b01 */ 326 /* Do not use Rx_StripCRC -- it causes trouble on BLEx/FDAEx condition */ 327 #define RX_CTL_CMD (Rx_EnGood | Rx_EnRxPar | Rx_EnLongErr | Rx_EnOver \ 328 | Rx_EnCRCErr | Rx_EnAlign | Rx_RxEn) /* maybe 0x6f01 */ 329 #define INT_EN_CMD (Int_NRAbtEn | \ 330 Int_DmParErrEn | Int_DParDEn | Int_DParErrEn | \ 331 Int_SSysErrEn | Int_RMasAbtEn | Int_RTargAbtEn | \ 332 Int_STargAbtEn | \ 333 Int_BLExEn | Int_FDAExEn) /* maybe 0xb7f*/ 334 #define DMA_CTL_CMD DMA_BURST_SIZE 335 #define HAVE_DMA_RXALIGN(lp) likely((lp)->chiptype != TC35815CF) 336 337 /* Tuning parameters */ 338 #define DMA_BURST_SIZE 32 339 #define TX_THRESHOLD 1024 340 /* used threshold with packet max byte for low pci transfer ability.*/ 341 #define TX_THRESHOLD_MAX 1536 342 /* setting threshold max value when overrun error occurred this count. */ 343 #define TX_THRESHOLD_KEEP_LIMIT 10 344 345 /* 16 + RX_BUF_NUM * 8 + RX_FD_NUM * 16 + TX_FD_NUM * 32 <= PAGE_SIZE*FD_PAGE_NUM */ 346 #define FD_PAGE_NUM 4 347 #define RX_BUF_NUM 128 /* < 256 */ 348 #define RX_FD_NUM 256 /* >= 32 */ 349 #define TX_FD_NUM 128 350 #if RX_CTL_CMD & Rx_LongEn 351 #define RX_BUF_SIZE PAGE_SIZE 352 #elif RX_CTL_CMD & Rx_StripCRC 353 #define RX_BUF_SIZE \ 354 L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + NET_IP_ALIGN) 355 #else 356 #define RX_BUF_SIZE \ 357 L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN + NET_IP_ALIGN) 358 #endif 359 #define RX_FD_RESERVE (2 / 2) /* max 2 BD per RxFD */ 360 #define NAPI_WEIGHT 16 361 362 struct TxFD { 363 struct FDesc fd; 364 struct BDesc bd; 365 struct BDesc unused; 366 }; 367 368 struct RxFD { 369 struct FDesc fd; 370 struct BDesc bd[0]; /* variable length */ 371 }; 372 373 struct FrFD { 374 struct FDesc fd; 375 struct BDesc bd[RX_BUF_NUM]; 376 }; 377 378 379 #define tc_readl(addr) ioread32(addr) 380 #define tc_writel(d, addr) iowrite32(d, addr) 381 382 #define TC35815_TX_TIMEOUT msecs_to_jiffies(400) 383 384 /* Information that need to be kept for each controller. */ 385 struct tc35815_local { 386 struct pci_dev *pci_dev; 387 388 struct net_device *dev; 389 struct napi_struct napi; 390 391 /* statistics */ 392 struct { 393 int max_tx_qlen; 394 int tx_ints; 395 int rx_ints; 396 int tx_underrun; 397 } lstats; 398 399 /* Tx control lock. This protects the transmit buffer ring 400 * state along with the "tx full" state of the driver. This 401 * means all netif_queue flow control actions are protected 402 * by this lock as well. 403 */ 404 spinlock_t lock; 405 spinlock_t rx_lock; 406 407 struct mii_bus *mii_bus; 408 int duplex; 409 int speed; 410 int link; 411 struct work_struct restart_work; 412 413 /* 414 * Transmitting: Batch Mode. 415 * 1 BD in 1 TxFD. 416 * Receiving: Non-Packing Mode. 417 * 1 circular FD for Free Buffer List. 418 * RX_BUF_NUM BD in Free Buffer FD. 419 * One Free Buffer BD has ETH_FRAME_LEN data buffer. 420 */ 421 void *fd_buf; /* for TxFD, RxFD, FrFD */ 422 dma_addr_t fd_buf_dma; 423 struct TxFD *tfd_base; 424 unsigned int tfd_start; 425 unsigned int tfd_end; 426 struct RxFD *rfd_base; 427 struct RxFD *rfd_limit; 428 struct RxFD *rfd_cur; 429 struct FrFD *fbl_ptr; 430 unsigned int fbl_count; 431 struct { 432 struct sk_buff *skb; 433 dma_addr_t skb_dma; 434 } tx_skbs[TX_FD_NUM], rx_skbs[RX_BUF_NUM]; 435 u32 msg_enable; 436 enum tc35815_chiptype chiptype; 437 }; 438 439 static inline dma_addr_t fd_virt_to_bus(struct tc35815_local *lp, void *virt) 440 { 441 return lp->fd_buf_dma + ((u8 *)virt - (u8 *)lp->fd_buf); 442 } 443 #ifdef DEBUG 444 static inline void *fd_bus_to_virt(struct tc35815_local *lp, dma_addr_t bus) 445 { 446 return (void *)((u8 *)lp->fd_buf + (bus - lp->fd_buf_dma)); 447 } 448 #endif 449 static struct sk_buff *alloc_rxbuf_skb(struct net_device *dev, 450 struct pci_dev *hwdev, 451 dma_addr_t *dma_handle) 452 { 453 struct sk_buff *skb; 454 skb = netdev_alloc_skb(dev, RX_BUF_SIZE); 455 if (!skb) 456 return NULL; 457 *dma_handle = pci_map_single(hwdev, skb->data, RX_BUF_SIZE, 458 PCI_DMA_FROMDEVICE); 459 if (pci_dma_mapping_error(hwdev, *dma_handle)) { 460 dev_kfree_skb_any(skb); 461 return NULL; 462 } 463 skb_reserve(skb, 2); /* make IP header 4byte aligned */ 464 return skb; 465 } 466 467 static void free_rxbuf_skb(struct pci_dev *hwdev, struct sk_buff *skb, dma_addr_t dma_handle) 468 { 469 pci_unmap_single(hwdev, dma_handle, RX_BUF_SIZE, 470 PCI_DMA_FROMDEVICE); 471 dev_kfree_skb_any(skb); 472 } 473 474 /* Index to functions, as function prototypes. */ 475 476 static int tc35815_open(struct net_device *dev); 477 static int tc35815_send_packet(struct sk_buff *skb, struct net_device *dev); 478 static irqreturn_t tc35815_interrupt(int irq, void *dev_id); 479 static int tc35815_rx(struct net_device *dev, int limit); 480 static int tc35815_poll(struct napi_struct *napi, int budget); 481 static void tc35815_txdone(struct net_device *dev); 482 static int tc35815_close(struct net_device *dev); 483 static struct net_device_stats *tc35815_get_stats(struct net_device *dev); 484 static void tc35815_set_multicast_list(struct net_device *dev); 485 static void tc35815_tx_timeout(struct net_device *dev); 486 static int tc35815_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); 487 #ifdef CONFIG_NET_POLL_CONTROLLER 488 static void tc35815_poll_controller(struct net_device *dev); 489 #endif 490 static const struct ethtool_ops tc35815_ethtool_ops; 491 492 /* Example routines you must write ;->. */ 493 static void tc35815_chip_reset(struct net_device *dev); 494 static void tc35815_chip_init(struct net_device *dev); 495 496 #ifdef DEBUG 497 static void panic_queues(struct net_device *dev); 498 #endif 499 500 static void tc35815_restart_work(struct work_struct *work); 501 502 static int tc_mdio_read(struct mii_bus *bus, int mii_id, int regnum) 503 { 504 struct net_device *dev = bus->priv; 505 struct tc35815_regs __iomem *tr = 506 (struct tc35815_regs __iomem *)dev->base_addr; 507 unsigned long timeout = jiffies + HZ; 508 509 tc_writel(MD_CA_Busy | (mii_id << 5) | (regnum & 0x1f), &tr->MD_CA); 510 udelay(12); /* it takes 32 x 400ns at least */ 511 while (tc_readl(&tr->MD_CA) & MD_CA_Busy) { 512 if (time_after(jiffies, timeout)) 513 return -EIO; 514 cpu_relax(); 515 } 516 return tc_readl(&tr->MD_Data) & 0xffff; 517 } 518 519 static int tc_mdio_write(struct mii_bus *bus, int mii_id, int regnum, u16 val) 520 { 521 struct net_device *dev = bus->priv; 522 struct tc35815_regs __iomem *tr = 523 (struct tc35815_regs __iomem *)dev->base_addr; 524 unsigned long timeout = jiffies + HZ; 525 526 tc_writel(val, &tr->MD_Data); 527 tc_writel(MD_CA_Busy | MD_CA_Wr | (mii_id << 5) | (regnum & 0x1f), 528 &tr->MD_CA); 529 udelay(12); /* it takes 32 x 400ns at least */ 530 while (tc_readl(&tr->MD_CA) & MD_CA_Busy) { 531 if (time_after(jiffies, timeout)) 532 return -EIO; 533 cpu_relax(); 534 } 535 return 0; 536 } 537 538 static void tc_handle_link_change(struct net_device *dev) 539 { 540 struct tc35815_local *lp = netdev_priv(dev); 541 struct phy_device *phydev = dev->phydev; 542 unsigned long flags; 543 int status_change = 0; 544 545 spin_lock_irqsave(&lp->lock, flags); 546 if (phydev->link && 547 (lp->speed != phydev->speed || lp->duplex != phydev->duplex)) { 548 struct tc35815_regs __iomem *tr = 549 (struct tc35815_regs __iomem *)dev->base_addr; 550 u32 reg; 551 552 reg = tc_readl(&tr->MAC_Ctl); 553 reg |= MAC_HaltReq; 554 tc_writel(reg, &tr->MAC_Ctl); 555 if (phydev->duplex == DUPLEX_FULL) 556 reg |= MAC_FullDup; 557 else 558 reg &= ~MAC_FullDup; 559 tc_writel(reg, &tr->MAC_Ctl); 560 reg &= ~MAC_HaltReq; 561 tc_writel(reg, &tr->MAC_Ctl); 562 563 /* 564 * TX4939 PCFG.SPEEDn bit will be changed on 565 * NETDEV_CHANGE event. 566 */ 567 /* 568 * WORKAROUND: enable LostCrS only if half duplex 569 * operation. 570 * (TX4939 does not have EnLCarr) 571 */ 572 if (phydev->duplex == DUPLEX_HALF && 573 lp->chiptype != TC35815_TX4939) 574 tc_writel(tc_readl(&tr->Tx_Ctl) | Tx_EnLCarr, 575 &tr->Tx_Ctl); 576 577 lp->speed = phydev->speed; 578 lp->duplex = phydev->duplex; 579 status_change = 1; 580 } 581 582 if (phydev->link != lp->link) { 583 if (phydev->link) { 584 /* delayed promiscuous enabling */ 585 if (dev->flags & IFF_PROMISC) 586 tc35815_set_multicast_list(dev); 587 } else { 588 lp->speed = 0; 589 lp->duplex = -1; 590 } 591 lp->link = phydev->link; 592 593 status_change = 1; 594 } 595 spin_unlock_irqrestore(&lp->lock, flags); 596 597 if (status_change && netif_msg_link(lp)) { 598 phy_print_status(phydev); 599 pr_debug("%s: MII BMCR %04x BMSR %04x LPA %04x\n", 600 dev->name, 601 phy_read(phydev, MII_BMCR), 602 phy_read(phydev, MII_BMSR), 603 phy_read(phydev, MII_LPA)); 604 } 605 } 606 607 static int tc_mii_probe(struct net_device *dev) 608 { 609 struct tc35815_local *lp = netdev_priv(dev); 610 struct phy_device *phydev; 611 u32 dropmask; 612 613 phydev = phy_find_first(lp->mii_bus); 614 if (!phydev) { 615 printk(KERN_ERR "%s: no PHY found\n", dev->name); 616 return -ENODEV; 617 } 618 619 /* attach the mac to the phy */ 620 phydev = phy_connect(dev, phydev_name(phydev), 621 &tc_handle_link_change, 622 lp->chiptype == TC35815_TX4939 ? PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII); 623 if (IS_ERR(phydev)) { 624 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name); 625 return PTR_ERR(phydev); 626 } 627 628 phy_attached_info(phydev); 629 630 /* mask with MAC supported features */ 631 phydev->supported &= PHY_BASIC_FEATURES; 632 dropmask = 0; 633 if (options.speed == 10) 634 dropmask |= SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full; 635 else if (options.speed == 100) 636 dropmask |= SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full; 637 if (options.duplex == 1) 638 dropmask |= SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Full; 639 else if (options.duplex == 2) 640 dropmask |= SUPPORTED_10baseT_Half | SUPPORTED_100baseT_Half; 641 phydev->supported &= ~dropmask; 642 phydev->advertising = phydev->supported; 643 644 lp->link = 0; 645 lp->speed = 0; 646 lp->duplex = -1; 647 648 return 0; 649 } 650 651 static int tc_mii_init(struct net_device *dev) 652 { 653 struct tc35815_local *lp = netdev_priv(dev); 654 int err; 655 656 lp->mii_bus = mdiobus_alloc(); 657 if (lp->mii_bus == NULL) { 658 err = -ENOMEM; 659 goto err_out; 660 } 661 662 lp->mii_bus->name = "tc35815_mii_bus"; 663 lp->mii_bus->read = tc_mdio_read; 664 lp->mii_bus->write = tc_mdio_write; 665 snprintf(lp->mii_bus->id, MII_BUS_ID_SIZE, "%x", 666 (lp->pci_dev->bus->number << 8) | lp->pci_dev->devfn); 667 lp->mii_bus->priv = dev; 668 lp->mii_bus->parent = &lp->pci_dev->dev; 669 err = mdiobus_register(lp->mii_bus); 670 if (err) 671 goto err_out_free_mii_bus; 672 err = tc_mii_probe(dev); 673 if (err) 674 goto err_out_unregister_bus; 675 return 0; 676 677 err_out_unregister_bus: 678 mdiobus_unregister(lp->mii_bus); 679 err_out_free_mii_bus: 680 mdiobus_free(lp->mii_bus); 681 err_out: 682 return err; 683 } 684 685 #ifdef CONFIG_CPU_TX49XX 686 /* 687 * Find a platform_device providing a MAC address. The platform code 688 * should provide a "tc35815-mac" device with a MAC address in its 689 * platform_data. 690 */ 691 static int tc35815_mac_match(struct device *dev, void *data) 692 { 693 struct platform_device *plat_dev = to_platform_device(dev); 694 struct pci_dev *pci_dev = data; 695 unsigned int id = pci_dev->irq; 696 return !strcmp(plat_dev->name, "tc35815-mac") && plat_dev->id == id; 697 } 698 699 static int tc35815_read_plat_dev_addr(struct net_device *dev) 700 { 701 struct tc35815_local *lp = netdev_priv(dev); 702 struct device *pd = bus_find_device(&platform_bus_type, NULL, 703 lp->pci_dev, tc35815_mac_match); 704 if (pd) { 705 if (pd->platform_data) 706 memcpy(dev->dev_addr, pd->platform_data, ETH_ALEN); 707 put_device(pd); 708 return is_valid_ether_addr(dev->dev_addr) ? 0 : -ENODEV; 709 } 710 return -ENODEV; 711 } 712 #else 713 static int tc35815_read_plat_dev_addr(struct net_device *dev) 714 { 715 return -ENODEV; 716 } 717 #endif 718 719 static int tc35815_init_dev_addr(struct net_device *dev) 720 { 721 struct tc35815_regs __iomem *tr = 722 (struct tc35815_regs __iomem *)dev->base_addr; 723 int i; 724 725 while (tc_readl(&tr->PROM_Ctl) & PROM_Busy) 726 ; 727 for (i = 0; i < 6; i += 2) { 728 unsigned short data; 729 tc_writel(PROM_Busy | PROM_Read | (i / 2 + 2), &tr->PROM_Ctl); 730 while (tc_readl(&tr->PROM_Ctl) & PROM_Busy) 731 ; 732 data = tc_readl(&tr->PROM_Data); 733 dev->dev_addr[i] = data & 0xff; 734 dev->dev_addr[i+1] = data >> 8; 735 } 736 if (!is_valid_ether_addr(dev->dev_addr)) 737 return tc35815_read_plat_dev_addr(dev); 738 return 0; 739 } 740 741 static const struct net_device_ops tc35815_netdev_ops = { 742 .ndo_open = tc35815_open, 743 .ndo_stop = tc35815_close, 744 .ndo_start_xmit = tc35815_send_packet, 745 .ndo_get_stats = tc35815_get_stats, 746 .ndo_set_rx_mode = tc35815_set_multicast_list, 747 .ndo_tx_timeout = tc35815_tx_timeout, 748 .ndo_do_ioctl = tc35815_ioctl, 749 .ndo_validate_addr = eth_validate_addr, 750 .ndo_change_mtu = eth_change_mtu, 751 .ndo_set_mac_address = eth_mac_addr, 752 #ifdef CONFIG_NET_POLL_CONTROLLER 753 .ndo_poll_controller = tc35815_poll_controller, 754 #endif 755 }; 756 757 static int tc35815_init_one(struct pci_dev *pdev, 758 const struct pci_device_id *ent) 759 { 760 void __iomem *ioaddr = NULL; 761 struct net_device *dev; 762 struct tc35815_local *lp; 763 int rc; 764 765 static int printed_version; 766 if (!printed_version++) { 767 printk(version); 768 dev_printk(KERN_DEBUG, &pdev->dev, 769 "speed:%d duplex:%d\n", 770 options.speed, options.duplex); 771 } 772 773 if (!pdev->irq) { 774 dev_warn(&pdev->dev, "no IRQ assigned.\n"); 775 return -ENODEV; 776 } 777 778 /* dev zeroed in alloc_etherdev */ 779 dev = alloc_etherdev(sizeof(*lp)); 780 if (dev == NULL) 781 return -ENOMEM; 782 783 SET_NETDEV_DEV(dev, &pdev->dev); 784 lp = netdev_priv(dev); 785 lp->dev = dev; 786 787 /* enable device (incl. PCI PM wakeup), and bus-mastering */ 788 rc = pcim_enable_device(pdev); 789 if (rc) 790 goto err_out; 791 rc = pcim_iomap_regions(pdev, 1 << 1, MODNAME); 792 if (rc) 793 goto err_out; 794 pci_set_master(pdev); 795 ioaddr = pcim_iomap_table(pdev)[1]; 796 797 /* Initialize the device structure. */ 798 dev->netdev_ops = &tc35815_netdev_ops; 799 dev->ethtool_ops = &tc35815_ethtool_ops; 800 dev->watchdog_timeo = TC35815_TX_TIMEOUT; 801 netif_napi_add(dev, &lp->napi, tc35815_poll, NAPI_WEIGHT); 802 803 dev->irq = pdev->irq; 804 dev->base_addr = (unsigned long)ioaddr; 805 806 INIT_WORK(&lp->restart_work, tc35815_restart_work); 807 spin_lock_init(&lp->lock); 808 spin_lock_init(&lp->rx_lock); 809 lp->pci_dev = pdev; 810 lp->chiptype = ent->driver_data; 811 812 lp->msg_enable = NETIF_MSG_TX_ERR | NETIF_MSG_HW | NETIF_MSG_DRV | NETIF_MSG_LINK; 813 pci_set_drvdata(pdev, dev); 814 815 /* Soft reset the chip. */ 816 tc35815_chip_reset(dev); 817 818 /* Retrieve the ethernet address. */ 819 if (tc35815_init_dev_addr(dev)) { 820 dev_warn(&pdev->dev, "not valid ether addr\n"); 821 eth_hw_addr_random(dev); 822 } 823 824 rc = register_netdev(dev); 825 if (rc) 826 goto err_out; 827 828 printk(KERN_INFO "%s: %s at 0x%lx, %pM, IRQ %d\n", 829 dev->name, 830 chip_info[ent->driver_data].name, 831 dev->base_addr, 832 dev->dev_addr, 833 dev->irq); 834 835 rc = tc_mii_init(dev); 836 if (rc) 837 goto err_out_unregister; 838 839 return 0; 840 841 err_out_unregister: 842 unregister_netdev(dev); 843 err_out: 844 free_netdev(dev); 845 return rc; 846 } 847 848 849 static void tc35815_remove_one(struct pci_dev *pdev) 850 { 851 struct net_device *dev = pci_get_drvdata(pdev); 852 struct tc35815_local *lp = netdev_priv(dev); 853 854 phy_disconnect(dev->phydev); 855 mdiobus_unregister(lp->mii_bus); 856 mdiobus_free(lp->mii_bus); 857 unregister_netdev(dev); 858 free_netdev(dev); 859 } 860 861 static int 862 tc35815_init_queues(struct net_device *dev) 863 { 864 struct tc35815_local *lp = netdev_priv(dev); 865 int i; 866 unsigned long fd_addr; 867 868 if (!lp->fd_buf) { 869 BUG_ON(sizeof(struct FDesc) + 870 sizeof(struct BDesc) * RX_BUF_NUM + 871 sizeof(struct FDesc) * RX_FD_NUM + 872 sizeof(struct TxFD) * TX_FD_NUM > 873 PAGE_SIZE * FD_PAGE_NUM); 874 875 lp->fd_buf = pci_alloc_consistent(lp->pci_dev, 876 PAGE_SIZE * FD_PAGE_NUM, 877 &lp->fd_buf_dma); 878 if (!lp->fd_buf) 879 return -ENOMEM; 880 for (i = 0; i < RX_BUF_NUM; i++) { 881 lp->rx_skbs[i].skb = 882 alloc_rxbuf_skb(dev, lp->pci_dev, 883 &lp->rx_skbs[i].skb_dma); 884 if (!lp->rx_skbs[i].skb) { 885 while (--i >= 0) { 886 free_rxbuf_skb(lp->pci_dev, 887 lp->rx_skbs[i].skb, 888 lp->rx_skbs[i].skb_dma); 889 lp->rx_skbs[i].skb = NULL; 890 } 891 pci_free_consistent(lp->pci_dev, 892 PAGE_SIZE * FD_PAGE_NUM, 893 lp->fd_buf, 894 lp->fd_buf_dma); 895 lp->fd_buf = NULL; 896 return -ENOMEM; 897 } 898 } 899 printk(KERN_DEBUG "%s: FD buf %p DataBuf", 900 dev->name, lp->fd_buf); 901 printk("\n"); 902 } else { 903 for (i = 0; i < FD_PAGE_NUM; i++) 904 clear_page((void *)((unsigned long)lp->fd_buf + 905 i * PAGE_SIZE)); 906 } 907 fd_addr = (unsigned long)lp->fd_buf; 908 909 /* Free Descriptors (for Receive) */ 910 lp->rfd_base = (struct RxFD *)fd_addr; 911 fd_addr += sizeof(struct RxFD) * RX_FD_NUM; 912 for (i = 0; i < RX_FD_NUM; i++) 913 lp->rfd_base[i].fd.FDCtl = cpu_to_le32(FD_CownsFD); 914 lp->rfd_cur = lp->rfd_base; 915 lp->rfd_limit = (struct RxFD *)fd_addr - (RX_FD_RESERVE + 1); 916 917 /* Transmit Descriptors */ 918 lp->tfd_base = (struct TxFD *)fd_addr; 919 fd_addr += sizeof(struct TxFD) * TX_FD_NUM; 920 for (i = 0; i < TX_FD_NUM; i++) { 921 lp->tfd_base[i].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[i+1])); 922 lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff); 923 lp->tfd_base[i].fd.FDCtl = cpu_to_le32(0); 924 } 925 lp->tfd_base[TX_FD_NUM-1].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[0])); 926 lp->tfd_start = 0; 927 lp->tfd_end = 0; 928 929 /* Buffer List (for Receive) */ 930 lp->fbl_ptr = (struct FrFD *)fd_addr; 931 lp->fbl_ptr->fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, lp->fbl_ptr)); 932 lp->fbl_ptr->fd.FDCtl = cpu_to_le32(RX_BUF_NUM | FD_CownsFD); 933 /* 934 * move all allocated skbs to head of rx_skbs[] array. 935 * fbl_count mighe not be RX_BUF_NUM if alloc_rxbuf_skb() in 936 * tc35815_rx() had failed. 937 */ 938 lp->fbl_count = 0; 939 for (i = 0; i < RX_BUF_NUM; i++) { 940 if (lp->rx_skbs[i].skb) { 941 if (i != lp->fbl_count) { 942 lp->rx_skbs[lp->fbl_count].skb = 943 lp->rx_skbs[i].skb; 944 lp->rx_skbs[lp->fbl_count].skb_dma = 945 lp->rx_skbs[i].skb_dma; 946 } 947 lp->fbl_count++; 948 } 949 } 950 for (i = 0; i < RX_BUF_NUM; i++) { 951 if (i >= lp->fbl_count) { 952 lp->fbl_ptr->bd[i].BuffData = 0; 953 lp->fbl_ptr->bd[i].BDCtl = 0; 954 continue; 955 } 956 lp->fbl_ptr->bd[i].BuffData = 957 cpu_to_le32(lp->rx_skbs[i].skb_dma); 958 /* BDID is index of FrFD.bd[] */ 959 lp->fbl_ptr->bd[i].BDCtl = 960 cpu_to_le32(BD_CownsBD | (i << BD_RxBDID_SHIFT) | 961 RX_BUF_SIZE); 962 } 963 964 printk(KERN_DEBUG "%s: TxFD %p RxFD %p FrFD %p\n", 965 dev->name, lp->tfd_base, lp->rfd_base, lp->fbl_ptr); 966 return 0; 967 } 968 969 static void 970 tc35815_clear_queues(struct net_device *dev) 971 { 972 struct tc35815_local *lp = netdev_priv(dev); 973 int i; 974 975 for (i = 0; i < TX_FD_NUM; i++) { 976 u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem); 977 struct sk_buff *skb = 978 fdsystem != 0xffffffff ? 979 lp->tx_skbs[fdsystem].skb : NULL; 980 #ifdef DEBUG 981 if (lp->tx_skbs[i].skb != skb) { 982 printk("%s: tx_skbs mismatch(%d).\n", dev->name, i); 983 panic_queues(dev); 984 } 985 #else 986 BUG_ON(lp->tx_skbs[i].skb != skb); 987 #endif 988 if (skb) { 989 pci_unmap_single(lp->pci_dev, lp->tx_skbs[i].skb_dma, skb->len, PCI_DMA_TODEVICE); 990 lp->tx_skbs[i].skb = NULL; 991 lp->tx_skbs[i].skb_dma = 0; 992 dev_kfree_skb_any(skb); 993 } 994 lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff); 995 } 996 997 tc35815_init_queues(dev); 998 } 999 1000 static void 1001 tc35815_free_queues(struct net_device *dev) 1002 { 1003 struct tc35815_local *lp = netdev_priv(dev); 1004 int i; 1005 1006 if (lp->tfd_base) { 1007 for (i = 0; i < TX_FD_NUM; i++) { 1008 u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem); 1009 struct sk_buff *skb = 1010 fdsystem != 0xffffffff ? 1011 lp->tx_skbs[fdsystem].skb : NULL; 1012 #ifdef DEBUG 1013 if (lp->tx_skbs[i].skb != skb) { 1014 printk("%s: tx_skbs mismatch(%d).\n", dev->name, i); 1015 panic_queues(dev); 1016 } 1017 #else 1018 BUG_ON(lp->tx_skbs[i].skb != skb); 1019 #endif 1020 if (skb) { 1021 dev_kfree_skb(skb); 1022 pci_unmap_single(lp->pci_dev, lp->tx_skbs[i].skb_dma, skb->len, PCI_DMA_TODEVICE); 1023 lp->tx_skbs[i].skb = NULL; 1024 lp->tx_skbs[i].skb_dma = 0; 1025 } 1026 lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff); 1027 } 1028 } 1029 1030 lp->rfd_base = NULL; 1031 lp->rfd_limit = NULL; 1032 lp->rfd_cur = NULL; 1033 lp->fbl_ptr = NULL; 1034 1035 for (i = 0; i < RX_BUF_NUM; i++) { 1036 if (lp->rx_skbs[i].skb) { 1037 free_rxbuf_skb(lp->pci_dev, lp->rx_skbs[i].skb, 1038 lp->rx_skbs[i].skb_dma); 1039 lp->rx_skbs[i].skb = NULL; 1040 } 1041 } 1042 if (lp->fd_buf) { 1043 pci_free_consistent(lp->pci_dev, PAGE_SIZE * FD_PAGE_NUM, 1044 lp->fd_buf, lp->fd_buf_dma); 1045 lp->fd_buf = NULL; 1046 } 1047 } 1048 1049 static void 1050 dump_txfd(struct TxFD *fd) 1051 { 1052 printk("TxFD(%p): %08x %08x %08x %08x\n", fd, 1053 le32_to_cpu(fd->fd.FDNext), 1054 le32_to_cpu(fd->fd.FDSystem), 1055 le32_to_cpu(fd->fd.FDStat), 1056 le32_to_cpu(fd->fd.FDCtl)); 1057 printk("BD: "); 1058 printk(" %08x %08x", 1059 le32_to_cpu(fd->bd.BuffData), 1060 le32_to_cpu(fd->bd.BDCtl)); 1061 printk("\n"); 1062 } 1063 1064 static int 1065 dump_rxfd(struct RxFD *fd) 1066 { 1067 int i, bd_count = (le32_to_cpu(fd->fd.FDCtl) & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT; 1068 if (bd_count > 8) 1069 bd_count = 8; 1070 printk("RxFD(%p): %08x %08x %08x %08x\n", fd, 1071 le32_to_cpu(fd->fd.FDNext), 1072 le32_to_cpu(fd->fd.FDSystem), 1073 le32_to_cpu(fd->fd.FDStat), 1074 le32_to_cpu(fd->fd.FDCtl)); 1075 if (le32_to_cpu(fd->fd.FDCtl) & FD_CownsFD) 1076 return 0; 1077 printk("BD: "); 1078 for (i = 0; i < bd_count; i++) 1079 printk(" %08x %08x", 1080 le32_to_cpu(fd->bd[i].BuffData), 1081 le32_to_cpu(fd->bd[i].BDCtl)); 1082 printk("\n"); 1083 return bd_count; 1084 } 1085 1086 #ifdef DEBUG 1087 static void 1088 dump_frfd(struct FrFD *fd) 1089 { 1090 int i; 1091 printk("FrFD(%p): %08x %08x %08x %08x\n", fd, 1092 le32_to_cpu(fd->fd.FDNext), 1093 le32_to_cpu(fd->fd.FDSystem), 1094 le32_to_cpu(fd->fd.FDStat), 1095 le32_to_cpu(fd->fd.FDCtl)); 1096 printk("BD: "); 1097 for (i = 0; i < RX_BUF_NUM; i++) 1098 printk(" %08x %08x", 1099 le32_to_cpu(fd->bd[i].BuffData), 1100 le32_to_cpu(fd->bd[i].BDCtl)); 1101 printk("\n"); 1102 } 1103 1104 static void 1105 panic_queues(struct net_device *dev) 1106 { 1107 struct tc35815_local *lp = netdev_priv(dev); 1108 int i; 1109 1110 printk("TxFD base %p, start %u, end %u\n", 1111 lp->tfd_base, lp->tfd_start, lp->tfd_end); 1112 printk("RxFD base %p limit %p cur %p\n", 1113 lp->rfd_base, lp->rfd_limit, lp->rfd_cur); 1114 printk("FrFD %p\n", lp->fbl_ptr); 1115 for (i = 0; i < TX_FD_NUM; i++) 1116 dump_txfd(&lp->tfd_base[i]); 1117 for (i = 0; i < RX_FD_NUM; i++) { 1118 int bd_count = dump_rxfd(&lp->rfd_base[i]); 1119 i += (bd_count + 1) / 2; /* skip BDs */ 1120 } 1121 dump_frfd(lp->fbl_ptr); 1122 panic("%s: Illegal queue state.", dev->name); 1123 } 1124 #endif 1125 1126 static void print_eth(const u8 *add) 1127 { 1128 printk(KERN_DEBUG "print_eth(%p)\n", add); 1129 printk(KERN_DEBUG " %pM => %pM : %02x%02x\n", 1130 add + 6, add, add[12], add[13]); 1131 } 1132 1133 static int tc35815_tx_full(struct net_device *dev) 1134 { 1135 struct tc35815_local *lp = netdev_priv(dev); 1136 return (lp->tfd_start + 1) % TX_FD_NUM == lp->tfd_end; 1137 } 1138 1139 static void tc35815_restart(struct net_device *dev) 1140 { 1141 struct tc35815_local *lp = netdev_priv(dev); 1142 int ret; 1143 1144 if (dev->phydev) { 1145 ret = phy_init_hw(dev->phydev); 1146 if (ret) 1147 printk(KERN_ERR "%s: PHY init failed.\n", dev->name); 1148 } 1149 1150 spin_lock_bh(&lp->rx_lock); 1151 spin_lock_irq(&lp->lock); 1152 tc35815_chip_reset(dev); 1153 tc35815_clear_queues(dev); 1154 tc35815_chip_init(dev); 1155 /* Reconfigure CAM again since tc35815_chip_init() initialize it. */ 1156 tc35815_set_multicast_list(dev); 1157 spin_unlock_irq(&lp->lock); 1158 spin_unlock_bh(&lp->rx_lock); 1159 1160 netif_wake_queue(dev); 1161 } 1162 1163 static void tc35815_restart_work(struct work_struct *work) 1164 { 1165 struct tc35815_local *lp = 1166 container_of(work, struct tc35815_local, restart_work); 1167 struct net_device *dev = lp->dev; 1168 1169 tc35815_restart(dev); 1170 } 1171 1172 static void tc35815_schedule_restart(struct net_device *dev) 1173 { 1174 struct tc35815_local *lp = netdev_priv(dev); 1175 struct tc35815_regs __iomem *tr = 1176 (struct tc35815_regs __iomem *)dev->base_addr; 1177 unsigned long flags; 1178 1179 /* disable interrupts */ 1180 spin_lock_irqsave(&lp->lock, flags); 1181 tc_writel(0, &tr->Int_En); 1182 tc_writel(tc_readl(&tr->DMA_Ctl) | DMA_IntMask, &tr->DMA_Ctl); 1183 schedule_work(&lp->restart_work); 1184 spin_unlock_irqrestore(&lp->lock, flags); 1185 } 1186 1187 static void tc35815_tx_timeout(struct net_device *dev) 1188 { 1189 struct tc35815_regs __iomem *tr = 1190 (struct tc35815_regs __iomem *)dev->base_addr; 1191 1192 printk(KERN_WARNING "%s: transmit timed out, status %#x\n", 1193 dev->name, tc_readl(&tr->Tx_Stat)); 1194 1195 /* Try to restart the adaptor. */ 1196 tc35815_schedule_restart(dev); 1197 dev->stats.tx_errors++; 1198 } 1199 1200 /* 1201 * Open/initialize the controller. This is called (in the current kernel) 1202 * sometime after booting when the 'ifconfig' program is run. 1203 * 1204 * This routine should set everything up anew at each open, even 1205 * registers that "should" only need to be set once at boot, so that 1206 * there is non-reboot way to recover if something goes wrong. 1207 */ 1208 static int 1209 tc35815_open(struct net_device *dev) 1210 { 1211 struct tc35815_local *lp = netdev_priv(dev); 1212 1213 /* 1214 * This is used if the interrupt line can turned off (shared). 1215 * See 3c503.c for an example of selecting the IRQ at config-time. 1216 */ 1217 if (request_irq(dev->irq, tc35815_interrupt, IRQF_SHARED, 1218 dev->name, dev)) 1219 return -EAGAIN; 1220 1221 tc35815_chip_reset(dev); 1222 1223 if (tc35815_init_queues(dev) != 0) { 1224 free_irq(dev->irq, dev); 1225 return -EAGAIN; 1226 } 1227 1228 napi_enable(&lp->napi); 1229 1230 /* Reset the hardware here. Don't forget to set the station address. */ 1231 spin_lock_irq(&lp->lock); 1232 tc35815_chip_init(dev); 1233 spin_unlock_irq(&lp->lock); 1234 1235 netif_carrier_off(dev); 1236 /* schedule a link state check */ 1237 phy_start(dev->phydev); 1238 1239 /* We are now ready to accept transmit requeusts from 1240 * the queueing layer of the networking. 1241 */ 1242 netif_start_queue(dev); 1243 1244 return 0; 1245 } 1246 1247 /* This will only be invoked if your driver is _not_ in XOFF state. 1248 * What this means is that you need not check it, and that this 1249 * invariant will hold if you make sure that the netif_*_queue() 1250 * calls are done at the proper times. 1251 */ 1252 static int tc35815_send_packet(struct sk_buff *skb, struct net_device *dev) 1253 { 1254 struct tc35815_local *lp = netdev_priv(dev); 1255 struct TxFD *txfd; 1256 unsigned long flags; 1257 1258 /* If some error occurs while trying to transmit this 1259 * packet, you should return '1' from this function. 1260 * In such a case you _may not_ do anything to the 1261 * SKB, it is still owned by the network queueing 1262 * layer when an error is returned. This means you 1263 * may not modify any SKB fields, you may not free 1264 * the SKB, etc. 1265 */ 1266 1267 /* This is the most common case for modern hardware. 1268 * The spinlock protects this code from the TX complete 1269 * hardware interrupt handler. Queue flow control is 1270 * thus managed under this lock as well. 1271 */ 1272 spin_lock_irqsave(&lp->lock, flags); 1273 1274 /* failsafe... (handle txdone now if half of FDs are used) */ 1275 if ((lp->tfd_start + TX_FD_NUM - lp->tfd_end) % TX_FD_NUM > 1276 TX_FD_NUM / 2) 1277 tc35815_txdone(dev); 1278 1279 if (netif_msg_pktdata(lp)) 1280 print_eth(skb->data); 1281 #ifdef DEBUG 1282 if (lp->tx_skbs[lp->tfd_start].skb) { 1283 printk("%s: tx_skbs conflict.\n", dev->name); 1284 panic_queues(dev); 1285 } 1286 #else 1287 BUG_ON(lp->tx_skbs[lp->tfd_start].skb); 1288 #endif 1289 lp->tx_skbs[lp->tfd_start].skb = skb; 1290 lp->tx_skbs[lp->tfd_start].skb_dma = pci_map_single(lp->pci_dev, skb->data, skb->len, PCI_DMA_TODEVICE); 1291 1292 /*add to ring */ 1293 txfd = &lp->tfd_base[lp->tfd_start]; 1294 txfd->bd.BuffData = cpu_to_le32(lp->tx_skbs[lp->tfd_start].skb_dma); 1295 txfd->bd.BDCtl = cpu_to_le32(skb->len); 1296 txfd->fd.FDSystem = cpu_to_le32(lp->tfd_start); 1297 txfd->fd.FDCtl = cpu_to_le32(FD_CownsFD | (1 << FD_BDCnt_SHIFT)); 1298 1299 if (lp->tfd_start == lp->tfd_end) { 1300 struct tc35815_regs __iomem *tr = 1301 (struct tc35815_regs __iomem *)dev->base_addr; 1302 /* Start DMA Transmitter. */ 1303 txfd->fd.FDNext |= cpu_to_le32(FD_Next_EOL); 1304 txfd->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx); 1305 if (netif_msg_tx_queued(lp)) { 1306 printk("%s: starting TxFD.\n", dev->name); 1307 dump_txfd(txfd); 1308 } 1309 tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr); 1310 } else { 1311 txfd->fd.FDNext &= cpu_to_le32(~FD_Next_EOL); 1312 if (netif_msg_tx_queued(lp)) { 1313 printk("%s: queueing TxFD.\n", dev->name); 1314 dump_txfd(txfd); 1315 } 1316 } 1317 lp->tfd_start = (lp->tfd_start + 1) % TX_FD_NUM; 1318 1319 /* If we just used up the very last entry in the 1320 * TX ring on this device, tell the queueing 1321 * layer to send no more. 1322 */ 1323 if (tc35815_tx_full(dev)) { 1324 if (netif_msg_tx_queued(lp)) 1325 printk(KERN_WARNING "%s: TxFD Exhausted.\n", dev->name); 1326 netif_stop_queue(dev); 1327 } 1328 1329 /* When the TX completion hw interrupt arrives, this 1330 * is when the transmit statistics are updated. 1331 */ 1332 1333 spin_unlock_irqrestore(&lp->lock, flags); 1334 return NETDEV_TX_OK; 1335 } 1336 1337 #define FATAL_ERROR_INT \ 1338 (Int_IntPCI | Int_DmParErr | Int_IntNRAbt) 1339 static void tc35815_fatal_error_interrupt(struct net_device *dev, u32 status) 1340 { 1341 static int count; 1342 printk(KERN_WARNING "%s: Fatal Error Intterrupt (%#x):", 1343 dev->name, status); 1344 if (status & Int_IntPCI) 1345 printk(" IntPCI"); 1346 if (status & Int_DmParErr) 1347 printk(" DmParErr"); 1348 if (status & Int_IntNRAbt) 1349 printk(" IntNRAbt"); 1350 printk("\n"); 1351 if (count++ > 100) 1352 panic("%s: Too many fatal errors.", dev->name); 1353 printk(KERN_WARNING "%s: Resetting ...\n", dev->name); 1354 /* Try to restart the adaptor. */ 1355 tc35815_schedule_restart(dev); 1356 } 1357 1358 static int tc35815_do_interrupt(struct net_device *dev, u32 status, int limit) 1359 { 1360 struct tc35815_local *lp = netdev_priv(dev); 1361 int ret = -1; 1362 1363 /* Fatal errors... */ 1364 if (status & FATAL_ERROR_INT) { 1365 tc35815_fatal_error_interrupt(dev, status); 1366 return 0; 1367 } 1368 /* recoverable errors */ 1369 if (status & Int_IntFDAEx) { 1370 if (netif_msg_rx_err(lp)) 1371 dev_warn(&dev->dev, 1372 "Free Descriptor Area Exhausted (%#x).\n", 1373 status); 1374 dev->stats.rx_dropped++; 1375 ret = 0; 1376 } 1377 if (status & Int_IntBLEx) { 1378 if (netif_msg_rx_err(lp)) 1379 dev_warn(&dev->dev, 1380 "Buffer List Exhausted (%#x).\n", 1381 status); 1382 dev->stats.rx_dropped++; 1383 ret = 0; 1384 } 1385 if (status & Int_IntExBD) { 1386 if (netif_msg_rx_err(lp)) 1387 dev_warn(&dev->dev, 1388 "Excessive Buffer Descriptors (%#x).\n", 1389 status); 1390 dev->stats.rx_length_errors++; 1391 ret = 0; 1392 } 1393 1394 /* normal notification */ 1395 if (status & Int_IntMacRx) { 1396 /* Got a packet(s). */ 1397 ret = tc35815_rx(dev, limit); 1398 lp->lstats.rx_ints++; 1399 } 1400 if (status & Int_IntMacTx) { 1401 /* Transmit complete. */ 1402 lp->lstats.tx_ints++; 1403 spin_lock_irq(&lp->lock); 1404 tc35815_txdone(dev); 1405 spin_unlock_irq(&lp->lock); 1406 if (ret < 0) 1407 ret = 0; 1408 } 1409 return ret; 1410 } 1411 1412 /* 1413 * The typical workload of the driver: 1414 * Handle the network interface interrupts. 1415 */ 1416 static irqreturn_t tc35815_interrupt(int irq, void *dev_id) 1417 { 1418 struct net_device *dev = dev_id; 1419 struct tc35815_local *lp = netdev_priv(dev); 1420 struct tc35815_regs __iomem *tr = 1421 (struct tc35815_regs __iomem *)dev->base_addr; 1422 u32 dmactl = tc_readl(&tr->DMA_Ctl); 1423 1424 if (!(dmactl & DMA_IntMask)) { 1425 /* disable interrupts */ 1426 tc_writel(dmactl | DMA_IntMask, &tr->DMA_Ctl); 1427 if (napi_schedule_prep(&lp->napi)) 1428 __napi_schedule(&lp->napi); 1429 else { 1430 printk(KERN_ERR "%s: interrupt taken in poll\n", 1431 dev->name); 1432 BUG(); 1433 } 1434 (void)tc_readl(&tr->Int_Src); /* flush */ 1435 return IRQ_HANDLED; 1436 } 1437 return IRQ_NONE; 1438 } 1439 1440 #ifdef CONFIG_NET_POLL_CONTROLLER 1441 static void tc35815_poll_controller(struct net_device *dev) 1442 { 1443 disable_irq(dev->irq); 1444 tc35815_interrupt(dev->irq, dev); 1445 enable_irq(dev->irq); 1446 } 1447 #endif 1448 1449 /* We have a good packet(s), get it/them out of the buffers. */ 1450 static int 1451 tc35815_rx(struct net_device *dev, int limit) 1452 { 1453 struct tc35815_local *lp = netdev_priv(dev); 1454 unsigned int fdctl; 1455 int i; 1456 int received = 0; 1457 1458 while (!((fdctl = le32_to_cpu(lp->rfd_cur->fd.FDCtl)) & FD_CownsFD)) { 1459 int status = le32_to_cpu(lp->rfd_cur->fd.FDStat); 1460 int pkt_len = fdctl & FD_FDLength_MASK; 1461 int bd_count = (fdctl & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT; 1462 #ifdef DEBUG 1463 struct RxFD *next_rfd; 1464 #endif 1465 #if (RX_CTL_CMD & Rx_StripCRC) == 0 1466 pkt_len -= ETH_FCS_LEN; 1467 #endif 1468 1469 if (netif_msg_rx_status(lp)) 1470 dump_rxfd(lp->rfd_cur); 1471 if (status & Rx_Good) { 1472 struct sk_buff *skb; 1473 unsigned char *data; 1474 int cur_bd; 1475 1476 if (--limit < 0) 1477 break; 1478 BUG_ON(bd_count > 1); 1479 cur_bd = (le32_to_cpu(lp->rfd_cur->bd[0].BDCtl) 1480 & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT; 1481 #ifdef DEBUG 1482 if (cur_bd >= RX_BUF_NUM) { 1483 printk("%s: invalid BDID.\n", dev->name); 1484 panic_queues(dev); 1485 } 1486 BUG_ON(lp->rx_skbs[cur_bd].skb_dma != 1487 (le32_to_cpu(lp->rfd_cur->bd[0].BuffData) & ~3)); 1488 if (!lp->rx_skbs[cur_bd].skb) { 1489 printk("%s: NULL skb.\n", dev->name); 1490 panic_queues(dev); 1491 } 1492 #else 1493 BUG_ON(cur_bd >= RX_BUF_NUM); 1494 #endif 1495 skb = lp->rx_skbs[cur_bd].skb; 1496 prefetch(skb->data); 1497 lp->rx_skbs[cur_bd].skb = NULL; 1498 pci_unmap_single(lp->pci_dev, 1499 lp->rx_skbs[cur_bd].skb_dma, 1500 RX_BUF_SIZE, PCI_DMA_FROMDEVICE); 1501 if (!HAVE_DMA_RXALIGN(lp) && NET_IP_ALIGN) 1502 memmove(skb->data, skb->data - NET_IP_ALIGN, 1503 pkt_len); 1504 data = skb_put(skb, pkt_len); 1505 if (netif_msg_pktdata(lp)) 1506 print_eth(data); 1507 skb->protocol = eth_type_trans(skb, dev); 1508 netif_receive_skb(skb); 1509 received++; 1510 dev->stats.rx_packets++; 1511 dev->stats.rx_bytes += pkt_len; 1512 } else { 1513 dev->stats.rx_errors++; 1514 if (netif_msg_rx_err(lp)) 1515 dev_info(&dev->dev, "Rx error (status %x)\n", 1516 status & Rx_Stat_Mask); 1517 /* WORKAROUND: LongErr and CRCErr means Overflow. */ 1518 if ((status & Rx_LongErr) && (status & Rx_CRCErr)) { 1519 status &= ~(Rx_LongErr|Rx_CRCErr); 1520 status |= Rx_Over; 1521 } 1522 if (status & Rx_LongErr) 1523 dev->stats.rx_length_errors++; 1524 if (status & Rx_Over) 1525 dev->stats.rx_fifo_errors++; 1526 if (status & Rx_CRCErr) 1527 dev->stats.rx_crc_errors++; 1528 if (status & Rx_Align) 1529 dev->stats.rx_frame_errors++; 1530 } 1531 1532 if (bd_count > 0) { 1533 /* put Free Buffer back to controller */ 1534 int bdctl = le32_to_cpu(lp->rfd_cur->bd[bd_count - 1].BDCtl); 1535 unsigned char id = 1536 (bdctl & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT; 1537 #ifdef DEBUG 1538 if (id >= RX_BUF_NUM) { 1539 printk("%s: invalid BDID.\n", dev->name); 1540 panic_queues(dev); 1541 } 1542 #else 1543 BUG_ON(id >= RX_BUF_NUM); 1544 #endif 1545 /* free old buffers */ 1546 lp->fbl_count--; 1547 while (lp->fbl_count < RX_BUF_NUM) 1548 { 1549 unsigned char curid = 1550 (id + 1 + lp->fbl_count) % RX_BUF_NUM; 1551 struct BDesc *bd = &lp->fbl_ptr->bd[curid]; 1552 #ifdef DEBUG 1553 bdctl = le32_to_cpu(bd->BDCtl); 1554 if (bdctl & BD_CownsBD) { 1555 printk("%s: Freeing invalid BD.\n", 1556 dev->name); 1557 panic_queues(dev); 1558 } 1559 #endif 1560 /* pass BD to controller */ 1561 if (!lp->rx_skbs[curid].skb) { 1562 lp->rx_skbs[curid].skb = 1563 alloc_rxbuf_skb(dev, 1564 lp->pci_dev, 1565 &lp->rx_skbs[curid].skb_dma); 1566 if (!lp->rx_skbs[curid].skb) 1567 break; /* try on next reception */ 1568 bd->BuffData = cpu_to_le32(lp->rx_skbs[curid].skb_dma); 1569 } 1570 /* Note: BDLength was modified by chip. */ 1571 bd->BDCtl = cpu_to_le32(BD_CownsBD | 1572 (curid << BD_RxBDID_SHIFT) | 1573 RX_BUF_SIZE); 1574 lp->fbl_count++; 1575 } 1576 } 1577 1578 /* put RxFD back to controller */ 1579 #ifdef DEBUG 1580 next_rfd = fd_bus_to_virt(lp, 1581 le32_to_cpu(lp->rfd_cur->fd.FDNext)); 1582 if (next_rfd < lp->rfd_base || next_rfd > lp->rfd_limit) { 1583 printk("%s: RxFD FDNext invalid.\n", dev->name); 1584 panic_queues(dev); 1585 } 1586 #endif 1587 for (i = 0; i < (bd_count + 1) / 2 + 1; i++) { 1588 /* pass FD to controller */ 1589 #ifdef DEBUG 1590 lp->rfd_cur->fd.FDNext = cpu_to_le32(0xdeaddead); 1591 #else 1592 lp->rfd_cur->fd.FDNext = cpu_to_le32(FD_Next_EOL); 1593 #endif 1594 lp->rfd_cur->fd.FDCtl = cpu_to_le32(FD_CownsFD); 1595 lp->rfd_cur++; 1596 } 1597 if (lp->rfd_cur > lp->rfd_limit) 1598 lp->rfd_cur = lp->rfd_base; 1599 #ifdef DEBUG 1600 if (lp->rfd_cur != next_rfd) 1601 printk("rfd_cur = %p, next_rfd %p\n", 1602 lp->rfd_cur, next_rfd); 1603 #endif 1604 } 1605 1606 return received; 1607 } 1608 1609 static int tc35815_poll(struct napi_struct *napi, int budget) 1610 { 1611 struct tc35815_local *lp = container_of(napi, struct tc35815_local, napi); 1612 struct net_device *dev = lp->dev; 1613 struct tc35815_regs __iomem *tr = 1614 (struct tc35815_regs __iomem *)dev->base_addr; 1615 int received = 0, handled; 1616 u32 status; 1617 1618 if (budget <= 0) 1619 return received; 1620 1621 spin_lock(&lp->rx_lock); 1622 status = tc_readl(&tr->Int_Src); 1623 do { 1624 /* BLEx, FDAEx will be cleared later */ 1625 tc_writel(status & ~(Int_BLEx | Int_FDAEx), 1626 &tr->Int_Src); /* write to clear */ 1627 1628 handled = tc35815_do_interrupt(dev, status, budget - received); 1629 if (status & (Int_BLEx | Int_FDAEx)) 1630 tc_writel(status & (Int_BLEx | Int_FDAEx), 1631 &tr->Int_Src); 1632 if (handled >= 0) { 1633 received += handled; 1634 if (received >= budget) 1635 break; 1636 } 1637 status = tc_readl(&tr->Int_Src); 1638 } while (status); 1639 spin_unlock(&lp->rx_lock); 1640 1641 if (received < budget) { 1642 napi_complete(napi); 1643 /* enable interrupts */ 1644 tc_writel(tc_readl(&tr->DMA_Ctl) & ~DMA_IntMask, &tr->DMA_Ctl); 1645 } 1646 return received; 1647 } 1648 1649 #define TX_STA_ERR (Tx_ExColl|Tx_Under|Tx_Defer|Tx_NCarr|Tx_LateColl|Tx_TxPar|Tx_SQErr) 1650 1651 static void 1652 tc35815_check_tx_stat(struct net_device *dev, int status) 1653 { 1654 struct tc35815_local *lp = netdev_priv(dev); 1655 const char *msg = NULL; 1656 1657 /* count collisions */ 1658 if (status & Tx_ExColl) 1659 dev->stats.collisions += 16; 1660 if (status & Tx_TxColl_MASK) 1661 dev->stats.collisions += status & Tx_TxColl_MASK; 1662 1663 /* TX4939 does not have NCarr */ 1664 if (lp->chiptype == TC35815_TX4939) 1665 status &= ~Tx_NCarr; 1666 /* WORKAROUND: ignore LostCrS in full duplex operation */ 1667 if (!lp->link || lp->duplex == DUPLEX_FULL) 1668 status &= ~Tx_NCarr; 1669 1670 if (!(status & TX_STA_ERR)) { 1671 /* no error. */ 1672 dev->stats.tx_packets++; 1673 return; 1674 } 1675 1676 dev->stats.tx_errors++; 1677 if (status & Tx_ExColl) { 1678 dev->stats.tx_aborted_errors++; 1679 msg = "Excessive Collision."; 1680 } 1681 if (status & Tx_Under) { 1682 dev->stats.tx_fifo_errors++; 1683 msg = "Tx FIFO Underrun."; 1684 if (lp->lstats.tx_underrun < TX_THRESHOLD_KEEP_LIMIT) { 1685 lp->lstats.tx_underrun++; 1686 if (lp->lstats.tx_underrun >= TX_THRESHOLD_KEEP_LIMIT) { 1687 struct tc35815_regs __iomem *tr = 1688 (struct tc35815_regs __iomem *)dev->base_addr; 1689 tc_writel(TX_THRESHOLD_MAX, &tr->TxThrsh); 1690 msg = "Tx FIFO Underrun.Change Tx threshold to max."; 1691 } 1692 } 1693 } 1694 if (status & Tx_Defer) { 1695 dev->stats.tx_fifo_errors++; 1696 msg = "Excessive Deferral."; 1697 } 1698 if (status & Tx_NCarr) { 1699 dev->stats.tx_carrier_errors++; 1700 msg = "Lost Carrier Sense."; 1701 } 1702 if (status & Tx_LateColl) { 1703 dev->stats.tx_aborted_errors++; 1704 msg = "Late Collision."; 1705 } 1706 if (status & Tx_TxPar) { 1707 dev->stats.tx_fifo_errors++; 1708 msg = "Transmit Parity Error."; 1709 } 1710 if (status & Tx_SQErr) { 1711 dev->stats.tx_heartbeat_errors++; 1712 msg = "Signal Quality Error."; 1713 } 1714 if (msg && netif_msg_tx_err(lp)) 1715 printk(KERN_WARNING "%s: %s (%#x)\n", dev->name, msg, status); 1716 } 1717 1718 /* This handles TX complete events posted by the device 1719 * via interrupts. 1720 */ 1721 static void 1722 tc35815_txdone(struct net_device *dev) 1723 { 1724 struct tc35815_local *lp = netdev_priv(dev); 1725 struct TxFD *txfd; 1726 unsigned int fdctl; 1727 1728 txfd = &lp->tfd_base[lp->tfd_end]; 1729 while (lp->tfd_start != lp->tfd_end && 1730 !((fdctl = le32_to_cpu(txfd->fd.FDCtl)) & FD_CownsFD)) { 1731 int status = le32_to_cpu(txfd->fd.FDStat); 1732 struct sk_buff *skb; 1733 unsigned long fdnext = le32_to_cpu(txfd->fd.FDNext); 1734 u32 fdsystem = le32_to_cpu(txfd->fd.FDSystem); 1735 1736 if (netif_msg_tx_done(lp)) { 1737 printk("%s: complete TxFD.\n", dev->name); 1738 dump_txfd(txfd); 1739 } 1740 tc35815_check_tx_stat(dev, status); 1741 1742 skb = fdsystem != 0xffffffff ? 1743 lp->tx_skbs[fdsystem].skb : NULL; 1744 #ifdef DEBUG 1745 if (lp->tx_skbs[lp->tfd_end].skb != skb) { 1746 printk("%s: tx_skbs mismatch.\n", dev->name); 1747 panic_queues(dev); 1748 } 1749 #else 1750 BUG_ON(lp->tx_skbs[lp->tfd_end].skb != skb); 1751 #endif 1752 if (skb) { 1753 dev->stats.tx_bytes += skb->len; 1754 pci_unmap_single(lp->pci_dev, lp->tx_skbs[lp->tfd_end].skb_dma, skb->len, PCI_DMA_TODEVICE); 1755 lp->tx_skbs[lp->tfd_end].skb = NULL; 1756 lp->tx_skbs[lp->tfd_end].skb_dma = 0; 1757 dev_kfree_skb_any(skb); 1758 } 1759 txfd->fd.FDSystem = cpu_to_le32(0xffffffff); 1760 1761 lp->tfd_end = (lp->tfd_end + 1) % TX_FD_NUM; 1762 txfd = &lp->tfd_base[lp->tfd_end]; 1763 #ifdef DEBUG 1764 if ((fdnext & ~FD_Next_EOL) != fd_virt_to_bus(lp, txfd)) { 1765 printk("%s: TxFD FDNext invalid.\n", dev->name); 1766 panic_queues(dev); 1767 } 1768 #endif 1769 if (fdnext & FD_Next_EOL) { 1770 /* DMA Transmitter has been stopping... */ 1771 if (lp->tfd_end != lp->tfd_start) { 1772 struct tc35815_regs __iomem *tr = 1773 (struct tc35815_regs __iomem *)dev->base_addr; 1774 int head = (lp->tfd_start + TX_FD_NUM - 1) % TX_FD_NUM; 1775 struct TxFD *txhead = &lp->tfd_base[head]; 1776 int qlen = (lp->tfd_start + TX_FD_NUM 1777 - lp->tfd_end) % TX_FD_NUM; 1778 1779 #ifdef DEBUG 1780 if (!(le32_to_cpu(txfd->fd.FDCtl) & FD_CownsFD)) { 1781 printk("%s: TxFD FDCtl invalid.\n", dev->name); 1782 panic_queues(dev); 1783 } 1784 #endif 1785 /* log max queue length */ 1786 if (lp->lstats.max_tx_qlen < qlen) 1787 lp->lstats.max_tx_qlen = qlen; 1788 1789 1790 /* start DMA Transmitter again */ 1791 txhead->fd.FDNext |= cpu_to_le32(FD_Next_EOL); 1792 txhead->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx); 1793 if (netif_msg_tx_queued(lp)) { 1794 printk("%s: start TxFD on queue.\n", 1795 dev->name); 1796 dump_txfd(txfd); 1797 } 1798 tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr); 1799 } 1800 break; 1801 } 1802 } 1803 1804 /* If we had stopped the queue due to a "tx full" 1805 * condition, and space has now been made available, 1806 * wake up the queue. 1807 */ 1808 if (netif_queue_stopped(dev) && !tc35815_tx_full(dev)) 1809 netif_wake_queue(dev); 1810 } 1811 1812 /* The inverse routine to tc35815_open(). */ 1813 static int 1814 tc35815_close(struct net_device *dev) 1815 { 1816 struct tc35815_local *lp = netdev_priv(dev); 1817 1818 netif_stop_queue(dev); 1819 napi_disable(&lp->napi); 1820 if (dev->phydev) 1821 phy_stop(dev->phydev); 1822 cancel_work_sync(&lp->restart_work); 1823 1824 /* Flush the Tx and disable Rx here. */ 1825 tc35815_chip_reset(dev); 1826 free_irq(dev->irq, dev); 1827 1828 tc35815_free_queues(dev); 1829 1830 return 0; 1831 1832 } 1833 1834 /* 1835 * Get the current statistics. 1836 * This may be called with the card open or closed. 1837 */ 1838 static struct net_device_stats *tc35815_get_stats(struct net_device *dev) 1839 { 1840 struct tc35815_regs __iomem *tr = 1841 (struct tc35815_regs __iomem *)dev->base_addr; 1842 if (netif_running(dev)) 1843 /* Update the statistics from the device registers. */ 1844 dev->stats.rx_missed_errors += tc_readl(&tr->Miss_Cnt); 1845 1846 return &dev->stats; 1847 } 1848 1849 static void tc35815_set_cam_entry(struct net_device *dev, int index, unsigned char *addr) 1850 { 1851 struct tc35815_local *lp = netdev_priv(dev); 1852 struct tc35815_regs __iomem *tr = 1853 (struct tc35815_regs __iomem *)dev->base_addr; 1854 int cam_index = index * 6; 1855 u32 cam_data; 1856 u32 saved_addr; 1857 1858 saved_addr = tc_readl(&tr->CAM_Adr); 1859 1860 if (netif_msg_hw(lp)) 1861 printk(KERN_DEBUG "%s: CAM %d: %pM\n", 1862 dev->name, index, addr); 1863 if (index & 1) { 1864 /* read modify write */ 1865 tc_writel(cam_index - 2, &tr->CAM_Adr); 1866 cam_data = tc_readl(&tr->CAM_Data) & 0xffff0000; 1867 cam_data |= addr[0] << 8 | addr[1]; 1868 tc_writel(cam_data, &tr->CAM_Data); 1869 /* write whole word */ 1870 tc_writel(cam_index + 2, &tr->CAM_Adr); 1871 cam_data = (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) | addr[5]; 1872 tc_writel(cam_data, &tr->CAM_Data); 1873 } else { 1874 /* write whole word */ 1875 tc_writel(cam_index, &tr->CAM_Adr); 1876 cam_data = (addr[0] << 24) | (addr[1] << 16) | (addr[2] << 8) | addr[3]; 1877 tc_writel(cam_data, &tr->CAM_Data); 1878 /* read modify write */ 1879 tc_writel(cam_index + 4, &tr->CAM_Adr); 1880 cam_data = tc_readl(&tr->CAM_Data) & 0x0000ffff; 1881 cam_data |= addr[4] << 24 | (addr[5] << 16); 1882 tc_writel(cam_data, &tr->CAM_Data); 1883 } 1884 1885 tc_writel(saved_addr, &tr->CAM_Adr); 1886 } 1887 1888 1889 /* 1890 * Set or clear the multicast filter for this adaptor. 1891 * num_addrs == -1 Promiscuous mode, receive all packets 1892 * num_addrs == 0 Normal mode, clear multicast list 1893 * num_addrs > 0 Multicast mode, receive normal and MC packets, 1894 * and do best-effort filtering. 1895 */ 1896 static void 1897 tc35815_set_multicast_list(struct net_device *dev) 1898 { 1899 struct tc35815_regs __iomem *tr = 1900 (struct tc35815_regs __iomem *)dev->base_addr; 1901 1902 if (dev->flags & IFF_PROMISC) { 1903 /* With some (all?) 100MHalf HUB, controller will hang 1904 * if we enabled promiscuous mode before linkup... */ 1905 struct tc35815_local *lp = netdev_priv(dev); 1906 1907 if (!lp->link) 1908 return; 1909 /* Enable promiscuous mode */ 1910 tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc | CAM_StationAcc, &tr->CAM_Ctl); 1911 } else if ((dev->flags & IFF_ALLMULTI) || 1912 netdev_mc_count(dev) > CAM_ENTRY_MAX - 3) { 1913 /* CAM 0, 1, 20 are reserved. */ 1914 /* Disable promiscuous mode, use normal mode. */ 1915 tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc, &tr->CAM_Ctl); 1916 } else if (!netdev_mc_empty(dev)) { 1917 struct netdev_hw_addr *ha; 1918 int i; 1919 int ena_bits = CAM_Ena_Bit(CAM_ENTRY_SOURCE); 1920 1921 tc_writel(0, &tr->CAM_Ctl); 1922 /* Walk the address list, and load the filter */ 1923 i = 0; 1924 netdev_for_each_mc_addr(ha, dev) { 1925 /* entry 0,1 is reserved. */ 1926 tc35815_set_cam_entry(dev, i + 2, ha->addr); 1927 ena_bits |= CAM_Ena_Bit(i + 2); 1928 i++; 1929 } 1930 tc_writel(ena_bits, &tr->CAM_Ena); 1931 tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl); 1932 } else { 1933 tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena); 1934 tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl); 1935 } 1936 } 1937 1938 static void tc35815_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 1939 { 1940 struct tc35815_local *lp = netdev_priv(dev); 1941 1942 strlcpy(info->driver, MODNAME, sizeof(info->driver)); 1943 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 1944 strlcpy(info->bus_info, pci_name(lp->pci_dev), sizeof(info->bus_info)); 1945 } 1946 1947 static u32 tc35815_get_msglevel(struct net_device *dev) 1948 { 1949 struct tc35815_local *lp = netdev_priv(dev); 1950 return lp->msg_enable; 1951 } 1952 1953 static void tc35815_set_msglevel(struct net_device *dev, u32 datum) 1954 { 1955 struct tc35815_local *lp = netdev_priv(dev); 1956 lp->msg_enable = datum; 1957 } 1958 1959 static int tc35815_get_sset_count(struct net_device *dev, int sset) 1960 { 1961 struct tc35815_local *lp = netdev_priv(dev); 1962 1963 switch (sset) { 1964 case ETH_SS_STATS: 1965 return sizeof(lp->lstats) / sizeof(int); 1966 default: 1967 return -EOPNOTSUPP; 1968 } 1969 } 1970 1971 static void tc35815_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data) 1972 { 1973 struct tc35815_local *lp = netdev_priv(dev); 1974 data[0] = lp->lstats.max_tx_qlen; 1975 data[1] = lp->lstats.tx_ints; 1976 data[2] = lp->lstats.rx_ints; 1977 data[3] = lp->lstats.tx_underrun; 1978 } 1979 1980 static struct { 1981 const char str[ETH_GSTRING_LEN]; 1982 } ethtool_stats_keys[] = { 1983 { "max_tx_qlen" }, 1984 { "tx_ints" }, 1985 { "rx_ints" }, 1986 { "tx_underrun" }, 1987 }; 1988 1989 static void tc35815_get_strings(struct net_device *dev, u32 stringset, u8 *data) 1990 { 1991 memcpy(data, ethtool_stats_keys, sizeof(ethtool_stats_keys)); 1992 } 1993 1994 static const struct ethtool_ops tc35815_ethtool_ops = { 1995 .get_drvinfo = tc35815_get_drvinfo, 1996 .get_link = ethtool_op_get_link, 1997 .get_msglevel = tc35815_get_msglevel, 1998 .set_msglevel = tc35815_set_msglevel, 1999 .get_strings = tc35815_get_strings, 2000 .get_sset_count = tc35815_get_sset_count, 2001 .get_ethtool_stats = tc35815_get_ethtool_stats, 2002 .get_link_ksettings = phy_ethtool_get_link_ksettings, 2003 .set_link_ksettings = phy_ethtool_set_link_ksettings, 2004 }; 2005 2006 static int tc35815_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 2007 { 2008 if (!netif_running(dev)) 2009 return -EINVAL; 2010 if (!dev->phydev) 2011 return -ENODEV; 2012 return phy_mii_ioctl(dev->phydev, rq, cmd); 2013 } 2014 2015 static void tc35815_chip_reset(struct net_device *dev) 2016 { 2017 struct tc35815_regs __iomem *tr = 2018 (struct tc35815_regs __iomem *)dev->base_addr; 2019 int i; 2020 /* reset the controller */ 2021 tc_writel(MAC_Reset, &tr->MAC_Ctl); 2022 udelay(4); /* 3200ns */ 2023 i = 0; 2024 while (tc_readl(&tr->MAC_Ctl) & MAC_Reset) { 2025 if (i++ > 100) { 2026 printk(KERN_ERR "%s: MAC reset failed.\n", dev->name); 2027 break; 2028 } 2029 mdelay(1); 2030 } 2031 tc_writel(0, &tr->MAC_Ctl); 2032 2033 /* initialize registers to default value */ 2034 tc_writel(0, &tr->DMA_Ctl); 2035 tc_writel(0, &tr->TxThrsh); 2036 tc_writel(0, &tr->TxPollCtr); 2037 tc_writel(0, &tr->RxFragSize); 2038 tc_writel(0, &tr->Int_En); 2039 tc_writel(0, &tr->FDA_Bas); 2040 tc_writel(0, &tr->FDA_Lim); 2041 tc_writel(0xffffffff, &tr->Int_Src); /* Write 1 to clear */ 2042 tc_writel(0, &tr->CAM_Ctl); 2043 tc_writel(0, &tr->Tx_Ctl); 2044 tc_writel(0, &tr->Rx_Ctl); 2045 tc_writel(0, &tr->CAM_Ena); 2046 (void)tc_readl(&tr->Miss_Cnt); /* Read to clear */ 2047 2048 /* initialize internal SRAM */ 2049 tc_writel(DMA_TestMode, &tr->DMA_Ctl); 2050 for (i = 0; i < 0x1000; i += 4) { 2051 tc_writel(i, &tr->CAM_Adr); 2052 tc_writel(0, &tr->CAM_Data); 2053 } 2054 tc_writel(0, &tr->DMA_Ctl); 2055 } 2056 2057 static void tc35815_chip_init(struct net_device *dev) 2058 { 2059 struct tc35815_local *lp = netdev_priv(dev); 2060 struct tc35815_regs __iomem *tr = 2061 (struct tc35815_regs __iomem *)dev->base_addr; 2062 unsigned long txctl = TX_CTL_CMD; 2063 2064 /* load station address to CAM */ 2065 tc35815_set_cam_entry(dev, CAM_ENTRY_SOURCE, dev->dev_addr); 2066 2067 /* Enable CAM (broadcast and unicast) */ 2068 tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena); 2069 tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl); 2070 2071 /* Use DMA_RxAlign_2 to make IP header 4-byte aligned. */ 2072 if (HAVE_DMA_RXALIGN(lp)) 2073 tc_writel(DMA_BURST_SIZE | DMA_RxAlign_2, &tr->DMA_Ctl); 2074 else 2075 tc_writel(DMA_BURST_SIZE, &tr->DMA_Ctl); 2076 tc_writel(0, &tr->TxPollCtr); /* Batch mode */ 2077 tc_writel(TX_THRESHOLD, &tr->TxThrsh); 2078 tc_writel(INT_EN_CMD, &tr->Int_En); 2079 2080 /* set queues */ 2081 tc_writel(fd_virt_to_bus(lp, lp->rfd_base), &tr->FDA_Bas); 2082 tc_writel((unsigned long)lp->rfd_limit - (unsigned long)lp->rfd_base, 2083 &tr->FDA_Lim); 2084 /* 2085 * Activation method: 2086 * First, enable the MAC Transmitter and the DMA Receive circuits. 2087 * Then enable the DMA Transmitter and the MAC Receive circuits. 2088 */ 2089 tc_writel(fd_virt_to_bus(lp, lp->fbl_ptr), &tr->BLFrmPtr); /* start DMA receiver */ 2090 tc_writel(RX_CTL_CMD, &tr->Rx_Ctl); /* start MAC receiver */ 2091 2092 /* start MAC transmitter */ 2093 /* TX4939 does not have EnLCarr */ 2094 if (lp->chiptype == TC35815_TX4939) 2095 txctl &= ~Tx_EnLCarr; 2096 /* WORKAROUND: ignore LostCrS in full duplex operation */ 2097 if (!dev->phydev || !lp->link || lp->duplex == DUPLEX_FULL) 2098 txctl &= ~Tx_EnLCarr; 2099 tc_writel(txctl, &tr->Tx_Ctl); 2100 } 2101 2102 #ifdef CONFIG_PM 2103 static int tc35815_suspend(struct pci_dev *pdev, pm_message_t state) 2104 { 2105 struct net_device *dev = pci_get_drvdata(pdev); 2106 struct tc35815_local *lp = netdev_priv(dev); 2107 unsigned long flags; 2108 2109 pci_save_state(pdev); 2110 if (!netif_running(dev)) 2111 return 0; 2112 netif_device_detach(dev); 2113 if (dev->phydev) 2114 phy_stop(dev->phydev); 2115 spin_lock_irqsave(&lp->lock, flags); 2116 tc35815_chip_reset(dev); 2117 spin_unlock_irqrestore(&lp->lock, flags); 2118 pci_set_power_state(pdev, PCI_D3hot); 2119 return 0; 2120 } 2121 2122 static int tc35815_resume(struct pci_dev *pdev) 2123 { 2124 struct net_device *dev = pci_get_drvdata(pdev); 2125 2126 pci_restore_state(pdev); 2127 if (!netif_running(dev)) 2128 return 0; 2129 pci_set_power_state(pdev, PCI_D0); 2130 tc35815_restart(dev); 2131 netif_carrier_off(dev); 2132 if (dev->phydev) 2133 phy_start(dev->phydev); 2134 netif_device_attach(dev); 2135 return 0; 2136 } 2137 #endif /* CONFIG_PM */ 2138 2139 static struct pci_driver tc35815_pci_driver = { 2140 .name = MODNAME, 2141 .id_table = tc35815_pci_tbl, 2142 .probe = tc35815_init_one, 2143 .remove = tc35815_remove_one, 2144 #ifdef CONFIG_PM 2145 .suspend = tc35815_suspend, 2146 .resume = tc35815_resume, 2147 #endif 2148 }; 2149 2150 module_param_named(speed, options.speed, int, 0); 2151 MODULE_PARM_DESC(speed, "0:auto, 10:10Mbps, 100:100Mbps"); 2152 module_param_named(duplex, options.duplex, int, 0); 2153 MODULE_PARM_DESC(duplex, "0:auto, 1:half, 2:full"); 2154 2155 module_pci_driver(tc35815_pci_driver); 2156 MODULE_DESCRIPTION("TOSHIBA TC35815 PCI 10M/100M Ethernet driver"); 2157 MODULE_LICENSE("GPL"); 2158