1 /* 2 * tc35815.c: A TOSHIBA TC35815CF PCI 10/100Mbps ethernet driver for linux. 3 * 4 * Based on skelton.c by Donald Becker. 5 * 6 * This driver is a replacement of older and less maintained version. 7 * This is a header of the older version: 8 * -----<snip>----- 9 * Copyright 2001 MontaVista Software Inc. 10 * Author: MontaVista Software, Inc. 11 * ahennessy@mvista.com 12 * Copyright (C) 2000-2001 Toshiba Corporation 13 * static const char *version = 14 * "tc35815.c:v0.00 26/07/2000 by Toshiba Corporation\n"; 15 * -----<snip>----- 16 * 17 * This file is subject to the terms and conditions of the GNU General Public 18 * License. See the file "COPYING" in the main directory of this archive 19 * for more details. 20 * 21 * (C) Copyright TOSHIBA CORPORATION 2004-2005 22 * All Rights Reserved. 23 */ 24 25 #define DRV_VERSION "1.39" 26 static const char version[] = "tc35815.c:v" DRV_VERSION "\n"; 27 #define MODNAME "tc35815" 28 29 #include <linux/module.h> 30 #include <linux/kernel.h> 31 #include <linux/types.h> 32 #include <linux/fcntl.h> 33 #include <linux/interrupt.h> 34 #include <linux/ioport.h> 35 #include <linux/in.h> 36 #include <linux/if_vlan.h> 37 #include <linux/slab.h> 38 #include <linux/string.h> 39 #include <linux/spinlock.h> 40 #include <linux/errno.h> 41 #include <linux/netdevice.h> 42 #include <linux/etherdevice.h> 43 #include <linux/skbuff.h> 44 #include <linux/delay.h> 45 #include <linux/pci.h> 46 #include <linux/phy.h> 47 #include <linux/workqueue.h> 48 #include <linux/platform_device.h> 49 #include <linux/prefetch.h> 50 #include <asm/io.h> 51 #include <asm/byteorder.h> 52 53 enum tc35815_chiptype { 54 TC35815CF = 0, 55 TC35815_NWU, 56 TC35815_TX4939, 57 }; 58 59 /* indexed by tc35815_chiptype, above */ 60 static const struct { 61 const char *name; 62 } chip_info[] = { 63 { "TOSHIBA TC35815CF 10/100BaseTX" }, 64 { "TOSHIBA TC35815 with Wake on LAN" }, 65 { "TOSHIBA TC35815/TX4939" }, 66 }; 67 68 static const struct pci_device_id tc35815_pci_tbl[] = { 69 {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815CF), .driver_data = TC35815CF }, 70 {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_NWU), .driver_data = TC35815_NWU }, 71 {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_TX4939), .driver_data = TC35815_TX4939 }, 72 {0,} 73 }; 74 MODULE_DEVICE_TABLE(pci, tc35815_pci_tbl); 75 76 /* see MODULE_PARM_DESC */ 77 static struct tc35815_options { 78 int speed; 79 int duplex; 80 } options; 81 82 /* 83 * Registers 84 */ 85 struct tc35815_regs { 86 __u32 DMA_Ctl; /* 0x00 */ 87 __u32 TxFrmPtr; 88 __u32 TxThrsh; 89 __u32 TxPollCtr; 90 __u32 BLFrmPtr; 91 __u32 RxFragSize; 92 __u32 Int_En; 93 __u32 FDA_Bas; 94 __u32 FDA_Lim; /* 0x20 */ 95 __u32 Int_Src; 96 __u32 unused0[2]; 97 __u32 PauseCnt; 98 __u32 RemPauCnt; 99 __u32 TxCtlFrmStat; 100 __u32 unused1; 101 __u32 MAC_Ctl; /* 0x40 */ 102 __u32 CAM_Ctl; 103 __u32 Tx_Ctl; 104 __u32 Tx_Stat; 105 __u32 Rx_Ctl; 106 __u32 Rx_Stat; 107 __u32 MD_Data; 108 __u32 MD_CA; 109 __u32 CAM_Adr; /* 0x60 */ 110 __u32 CAM_Data; 111 __u32 CAM_Ena; 112 __u32 PROM_Ctl; 113 __u32 PROM_Data; 114 __u32 Algn_Cnt; 115 __u32 CRC_Cnt; 116 __u32 Miss_Cnt; 117 }; 118 119 /* 120 * Bit assignments 121 */ 122 /* DMA_Ctl bit assign ------------------------------------------------------- */ 123 #define DMA_RxAlign 0x00c00000 /* 1:Reception Alignment */ 124 #define DMA_RxAlign_1 0x00400000 125 #define DMA_RxAlign_2 0x00800000 126 #define DMA_RxAlign_3 0x00c00000 127 #define DMA_M66EnStat 0x00080000 /* 1:66MHz Enable State */ 128 #define DMA_IntMask 0x00040000 /* 1:Interrupt mask */ 129 #define DMA_SWIntReq 0x00020000 /* 1:Software Interrupt request */ 130 #define DMA_TxWakeUp 0x00010000 /* 1:Transmit Wake Up */ 131 #define DMA_RxBigE 0x00008000 /* 1:Receive Big Endian */ 132 #define DMA_TxBigE 0x00004000 /* 1:Transmit Big Endian */ 133 #define DMA_TestMode 0x00002000 /* 1:Test Mode */ 134 #define DMA_PowrMgmnt 0x00001000 /* 1:Power Management */ 135 #define DMA_DmBurst_Mask 0x000001fc /* DMA Burst size */ 136 137 /* RxFragSize bit assign ---------------------------------------------------- */ 138 #define RxFrag_EnPack 0x00008000 /* 1:Enable Packing */ 139 #define RxFrag_MinFragMask 0x00000ffc /* Minimum Fragment */ 140 141 /* MAC_Ctl bit assign ------------------------------------------------------- */ 142 #define MAC_Link10 0x00008000 /* 1:Link Status 10Mbits */ 143 #define MAC_EnMissRoll 0x00002000 /* 1:Enable Missed Roll */ 144 #define MAC_MissRoll 0x00000400 /* 1:Missed Roll */ 145 #define MAC_Loop10 0x00000080 /* 1:Loop 10 Mbps */ 146 #define MAC_Conn_Auto 0x00000000 /*00:Connection mode (Automatic) */ 147 #define MAC_Conn_10M 0x00000020 /*01: (10Mbps endec)*/ 148 #define MAC_Conn_Mll 0x00000040 /*10: (Mll clock) */ 149 #define MAC_MacLoop 0x00000010 /* 1:MAC Loopback */ 150 #define MAC_FullDup 0x00000008 /* 1:Full Duplex 0:Half Duplex */ 151 #define MAC_Reset 0x00000004 /* 1:Software Reset */ 152 #define MAC_HaltImm 0x00000002 /* 1:Halt Immediate */ 153 #define MAC_HaltReq 0x00000001 /* 1:Halt request */ 154 155 /* PROM_Ctl bit assign ------------------------------------------------------ */ 156 #define PROM_Busy 0x00008000 /* 1:Busy (Start Operation) */ 157 #define PROM_Read 0x00004000 /*10:Read operation */ 158 #define PROM_Write 0x00002000 /*01:Write operation */ 159 #define PROM_Erase 0x00006000 /*11:Erase operation */ 160 /*00:Enable or Disable Writting, */ 161 /* as specified in PROM_Addr. */ 162 #define PROM_Addr_Ena 0x00000030 /*11xxxx:PROM Write enable */ 163 /*00xxxx: disable */ 164 165 /* CAM_Ctl bit assign ------------------------------------------------------- */ 166 #define CAM_CompEn 0x00000010 /* 1:CAM Compare Enable */ 167 #define CAM_NegCAM 0x00000008 /* 1:Reject packets CAM recognizes,*/ 168 /* accept other */ 169 #define CAM_BroadAcc 0x00000004 /* 1:Broadcast assept */ 170 #define CAM_GroupAcc 0x00000002 /* 1:Multicast assept */ 171 #define CAM_StationAcc 0x00000001 /* 1:unicast accept */ 172 173 /* CAM_Ena bit assign ------------------------------------------------------- */ 174 #define CAM_ENTRY_MAX 21 /* CAM Data entry max count */ 175 #define CAM_Ena_Mask ((1<<CAM_ENTRY_MAX)-1) /* CAM Enable bits (Max 21bits) */ 176 #define CAM_Ena_Bit(index) (1 << (index)) 177 #define CAM_ENTRY_DESTINATION 0 178 #define CAM_ENTRY_SOURCE 1 179 #define CAM_ENTRY_MACCTL 20 180 181 /* Tx_Ctl bit assign -------------------------------------------------------- */ 182 #define Tx_En 0x00000001 /* 1:Transmit enable */ 183 #define Tx_TxHalt 0x00000002 /* 1:Transmit Halt Request */ 184 #define Tx_NoPad 0x00000004 /* 1:Suppress Padding */ 185 #define Tx_NoCRC 0x00000008 /* 1:Suppress Padding */ 186 #define Tx_FBack 0x00000010 /* 1:Fast Back-off */ 187 #define Tx_EnUnder 0x00000100 /* 1:Enable Underrun */ 188 #define Tx_EnExDefer 0x00000200 /* 1:Enable Excessive Deferral */ 189 #define Tx_EnLCarr 0x00000400 /* 1:Enable Lost Carrier */ 190 #define Tx_EnExColl 0x00000800 /* 1:Enable Excessive Collision */ 191 #define Tx_EnLateColl 0x00001000 /* 1:Enable Late Collision */ 192 #define Tx_EnTxPar 0x00002000 /* 1:Enable Transmit Parity */ 193 #define Tx_EnComp 0x00004000 /* 1:Enable Completion */ 194 195 /* Tx_Stat bit assign ------------------------------------------------------- */ 196 #define Tx_TxColl_MASK 0x0000000F /* Tx Collision Count */ 197 #define Tx_ExColl 0x00000010 /* Excessive Collision */ 198 #define Tx_TXDefer 0x00000020 /* Transmit Defered */ 199 #define Tx_Paused 0x00000040 /* Transmit Paused */ 200 #define Tx_IntTx 0x00000080 /* Interrupt on Tx */ 201 #define Tx_Under 0x00000100 /* Underrun */ 202 #define Tx_Defer 0x00000200 /* Deferral */ 203 #define Tx_NCarr 0x00000400 /* No Carrier */ 204 #define Tx_10Stat 0x00000800 /* 10Mbps Status */ 205 #define Tx_LateColl 0x00001000 /* Late Collision */ 206 #define Tx_TxPar 0x00002000 /* Tx Parity Error */ 207 #define Tx_Comp 0x00004000 /* Completion */ 208 #define Tx_Halted 0x00008000 /* Tx Halted */ 209 #define Tx_SQErr 0x00010000 /* Signal Quality Error(SQE) */ 210 211 /* Rx_Ctl bit assign -------------------------------------------------------- */ 212 #define Rx_EnGood 0x00004000 /* 1:Enable Good */ 213 #define Rx_EnRxPar 0x00002000 /* 1:Enable Receive Parity */ 214 #define Rx_EnLongErr 0x00000800 /* 1:Enable Long Error */ 215 #define Rx_EnOver 0x00000400 /* 1:Enable OverFlow */ 216 #define Rx_EnCRCErr 0x00000200 /* 1:Enable CRC Error */ 217 #define Rx_EnAlign 0x00000100 /* 1:Enable Alignment */ 218 #define Rx_IgnoreCRC 0x00000040 /* 1:Ignore CRC Value */ 219 #define Rx_StripCRC 0x00000010 /* 1:Strip CRC Value */ 220 #define Rx_ShortEn 0x00000008 /* 1:Short Enable */ 221 #define Rx_LongEn 0x00000004 /* 1:Long Enable */ 222 #define Rx_RxHalt 0x00000002 /* 1:Receive Halt Request */ 223 #define Rx_RxEn 0x00000001 /* 1:Receive Intrrupt Enable */ 224 225 /* Rx_Stat bit assign ------------------------------------------------------- */ 226 #define Rx_Halted 0x00008000 /* Rx Halted */ 227 #define Rx_Good 0x00004000 /* Rx Good */ 228 #define Rx_RxPar 0x00002000 /* Rx Parity Error */ 229 #define Rx_TypePkt 0x00001000 /* Rx Type Packet */ 230 #define Rx_LongErr 0x00000800 /* Rx Long Error */ 231 #define Rx_Over 0x00000400 /* Rx Overflow */ 232 #define Rx_CRCErr 0x00000200 /* Rx CRC Error */ 233 #define Rx_Align 0x00000100 /* Rx Alignment Error */ 234 #define Rx_10Stat 0x00000080 /* Rx 10Mbps Status */ 235 #define Rx_IntRx 0x00000040 /* Rx Interrupt */ 236 #define Rx_CtlRecd 0x00000020 /* Rx Control Receive */ 237 #define Rx_InLenErr 0x00000010 /* Rx In Range Frame Length Error */ 238 239 #define Rx_Stat_Mask 0x0000FFF0 /* Rx All Status Mask */ 240 241 /* Int_En bit assign -------------------------------------------------------- */ 242 #define Int_NRAbtEn 0x00000800 /* 1:Non-recoverable Abort Enable */ 243 #define Int_TxCtlCmpEn 0x00000400 /* 1:Transmit Ctl Complete Enable */ 244 #define Int_DmParErrEn 0x00000200 /* 1:DMA Parity Error Enable */ 245 #define Int_DParDEn 0x00000100 /* 1:Data Parity Error Enable */ 246 #define Int_EarNotEn 0x00000080 /* 1:Early Notify Enable */ 247 #define Int_DParErrEn 0x00000040 /* 1:Detected Parity Error Enable */ 248 #define Int_SSysErrEn 0x00000020 /* 1:Signalled System Error Enable */ 249 #define Int_RMasAbtEn 0x00000010 /* 1:Received Master Abort Enable */ 250 #define Int_RTargAbtEn 0x00000008 /* 1:Received Target Abort Enable */ 251 #define Int_STargAbtEn 0x00000004 /* 1:Signalled Target Abort Enable */ 252 #define Int_BLExEn 0x00000002 /* 1:Buffer List Exhausted Enable */ 253 #define Int_FDAExEn 0x00000001 /* 1:Free Descriptor Area */ 254 /* Exhausted Enable */ 255 256 /* Int_Src bit assign ------------------------------------------------------- */ 257 #define Int_NRabt 0x00004000 /* 1:Non Recoverable error */ 258 #define Int_DmParErrStat 0x00002000 /* 1:DMA Parity Error & Clear */ 259 #define Int_BLEx 0x00001000 /* 1:Buffer List Empty & Clear */ 260 #define Int_FDAEx 0x00000800 /* 1:FDA Empty & Clear */ 261 #define Int_IntNRAbt 0x00000400 /* 1:Non Recoverable Abort */ 262 #define Int_IntCmp 0x00000200 /* 1:MAC control packet complete */ 263 #define Int_IntExBD 0x00000100 /* 1:Interrupt Extra BD & Clear */ 264 #define Int_DmParErr 0x00000080 /* 1:DMA Parity Error & Clear */ 265 #define Int_IntEarNot 0x00000040 /* 1:Receive Data write & Clear */ 266 #define Int_SWInt 0x00000020 /* 1:Software request & Clear */ 267 #define Int_IntBLEx 0x00000010 /* 1:Buffer List Empty & Clear */ 268 #define Int_IntFDAEx 0x00000008 /* 1:FDA Empty & Clear */ 269 #define Int_IntPCI 0x00000004 /* 1:PCI controller & Clear */ 270 #define Int_IntMacRx 0x00000002 /* 1:Rx controller & Clear */ 271 #define Int_IntMacTx 0x00000001 /* 1:Tx controller & Clear */ 272 273 /* MD_CA bit assign --------------------------------------------------------- */ 274 #define MD_CA_PreSup 0x00001000 /* 1:Preamble Suppress */ 275 #define MD_CA_Busy 0x00000800 /* 1:Busy (Start Operation) */ 276 #define MD_CA_Wr 0x00000400 /* 1:Write 0:Read */ 277 278 279 /* 280 * Descriptors 281 */ 282 283 /* Frame descriptor */ 284 struct FDesc { 285 volatile __u32 FDNext; 286 volatile __u32 FDSystem; 287 volatile __u32 FDStat; 288 volatile __u32 FDCtl; 289 }; 290 291 /* Buffer descriptor */ 292 struct BDesc { 293 volatile __u32 BuffData; 294 volatile __u32 BDCtl; 295 }; 296 297 #define FD_ALIGN 16 298 299 /* Frame Descriptor bit assign ---------------------------------------------- */ 300 #define FD_FDLength_MASK 0x0000FFFF /* Length MASK */ 301 #define FD_BDCnt_MASK 0x001F0000 /* BD count MASK in FD */ 302 #define FD_FrmOpt_MASK 0x7C000000 /* Frame option MASK */ 303 #define FD_FrmOpt_BigEndian 0x40000000 /* Tx/Rx */ 304 #define FD_FrmOpt_IntTx 0x20000000 /* Tx only */ 305 #define FD_FrmOpt_NoCRC 0x10000000 /* Tx only */ 306 #define FD_FrmOpt_NoPadding 0x08000000 /* Tx only */ 307 #define FD_FrmOpt_Packing 0x04000000 /* Rx only */ 308 #define FD_CownsFD 0x80000000 /* FD Controller owner bit */ 309 #define FD_Next_EOL 0x00000001 /* FD EOL indicator */ 310 #define FD_BDCnt_SHIFT 16 311 312 /* Buffer Descriptor bit assign --------------------------------------------- */ 313 #define BD_BuffLength_MASK 0x0000FFFF /* Receive Data Size */ 314 #define BD_RxBDID_MASK 0x00FF0000 /* BD ID Number MASK */ 315 #define BD_RxBDSeqN_MASK 0x7F000000 /* Rx BD Sequence Number */ 316 #define BD_CownsBD 0x80000000 /* BD Controller owner bit */ 317 #define BD_RxBDID_SHIFT 16 318 #define BD_RxBDSeqN_SHIFT 24 319 320 321 /* Some useful constants. */ 322 323 #define TX_CTL_CMD (Tx_EnTxPar | Tx_EnLateColl | \ 324 Tx_EnExColl | Tx_EnLCarr | Tx_EnExDefer | Tx_EnUnder | \ 325 Tx_En) /* maybe 0x7b01 */ 326 /* Do not use Rx_StripCRC -- it causes trouble on BLEx/FDAEx condition */ 327 #define RX_CTL_CMD (Rx_EnGood | Rx_EnRxPar | Rx_EnLongErr | Rx_EnOver \ 328 | Rx_EnCRCErr | Rx_EnAlign | Rx_RxEn) /* maybe 0x6f01 */ 329 #define INT_EN_CMD (Int_NRAbtEn | \ 330 Int_DmParErrEn | Int_DParDEn | Int_DParErrEn | \ 331 Int_SSysErrEn | Int_RMasAbtEn | Int_RTargAbtEn | \ 332 Int_STargAbtEn | \ 333 Int_BLExEn | Int_FDAExEn) /* maybe 0xb7f*/ 334 #define DMA_CTL_CMD DMA_BURST_SIZE 335 #define HAVE_DMA_RXALIGN(lp) likely((lp)->chiptype != TC35815CF) 336 337 /* Tuning parameters */ 338 #define DMA_BURST_SIZE 32 339 #define TX_THRESHOLD 1024 340 /* used threshold with packet max byte for low pci transfer ability.*/ 341 #define TX_THRESHOLD_MAX 1536 342 /* setting threshold max value when overrun error occurred this count. */ 343 #define TX_THRESHOLD_KEEP_LIMIT 10 344 345 /* 16 + RX_BUF_NUM * 8 + RX_FD_NUM * 16 + TX_FD_NUM * 32 <= PAGE_SIZE*FD_PAGE_NUM */ 346 #define FD_PAGE_NUM 4 347 #define RX_BUF_NUM 128 /* < 256 */ 348 #define RX_FD_NUM 256 /* >= 32 */ 349 #define TX_FD_NUM 128 350 #if RX_CTL_CMD & Rx_LongEn 351 #define RX_BUF_SIZE PAGE_SIZE 352 #elif RX_CTL_CMD & Rx_StripCRC 353 #define RX_BUF_SIZE \ 354 L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + NET_IP_ALIGN) 355 #else 356 #define RX_BUF_SIZE \ 357 L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN + NET_IP_ALIGN) 358 #endif 359 #define RX_FD_RESERVE (2 / 2) /* max 2 BD per RxFD */ 360 #define NAPI_WEIGHT 16 361 362 struct TxFD { 363 struct FDesc fd; 364 struct BDesc bd; 365 struct BDesc unused; 366 }; 367 368 struct RxFD { 369 struct FDesc fd; 370 struct BDesc bd[0]; /* variable length */ 371 }; 372 373 struct FrFD { 374 struct FDesc fd; 375 struct BDesc bd[RX_BUF_NUM]; 376 }; 377 378 379 #define tc_readl(addr) ioread32(addr) 380 #define tc_writel(d, addr) iowrite32(d, addr) 381 382 #define TC35815_TX_TIMEOUT msecs_to_jiffies(400) 383 384 /* Information that need to be kept for each controller. */ 385 struct tc35815_local { 386 struct pci_dev *pci_dev; 387 388 struct net_device *dev; 389 struct napi_struct napi; 390 391 /* statistics */ 392 struct { 393 int max_tx_qlen; 394 int tx_ints; 395 int rx_ints; 396 int tx_underrun; 397 } lstats; 398 399 /* Tx control lock. This protects the transmit buffer ring 400 * state along with the "tx full" state of the driver. This 401 * means all netif_queue flow control actions are protected 402 * by this lock as well. 403 */ 404 spinlock_t lock; 405 spinlock_t rx_lock; 406 407 struct mii_bus *mii_bus; 408 int duplex; 409 int speed; 410 int link; 411 struct work_struct restart_work; 412 413 /* 414 * Transmitting: Batch Mode. 415 * 1 BD in 1 TxFD. 416 * Receiving: Non-Packing Mode. 417 * 1 circular FD for Free Buffer List. 418 * RX_BUF_NUM BD in Free Buffer FD. 419 * One Free Buffer BD has ETH_FRAME_LEN data buffer. 420 */ 421 void *fd_buf; /* for TxFD, RxFD, FrFD */ 422 dma_addr_t fd_buf_dma; 423 struct TxFD *tfd_base; 424 unsigned int tfd_start; 425 unsigned int tfd_end; 426 struct RxFD *rfd_base; 427 struct RxFD *rfd_limit; 428 struct RxFD *rfd_cur; 429 struct FrFD *fbl_ptr; 430 unsigned int fbl_count; 431 struct { 432 struct sk_buff *skb; 433 dma_addr_t skb_dma; 434 } tx_skbs[TX_FD_NUM], rx_skbs[RX_BUF_NUM]; 435 u32 msg_enable; 436 enum tc35815_chiptype chiptype; 437 }; 438 439 static inline dma_addr_t fd_virt_to_bus(struct tc35815_local *lp, void *virt) 440 { 441 return lp->fd_buf_dma + ((u8 *)virt - (u8 *)lp->fd_buf); 442 } 443 #ifdef DEBUG 444 static inline void *fd_bus_to_virt(struct tc35815_local *lp, dma_addr_t bus) 445 { 446 return (void *)((u8 *)lp->fd_buf + (bus - lp->fd_buf_dma)); 447 } 448 #endif 449 static struct sk_buff *alloc_rxbuf_skb(struct net_device *dev, 450 struct pci_dev *hwdev, 451 dma_addr_t *dma_handle) 452 { 453 struct sk_buff *skb; 454 skb = netdev_alloc_skb(dev, RX_BUF_SIZE); 455 if (!skb) 456 return NULL; 457 *dma_handle = pci_map_single(hwdev, skb->data, RX_BUF_SIZE, 458 PCI_DMA_FROMDEVICE); 459 if (pci_dma_mapping_error(hwdev, *dma_handle)) { 460 dev_kfree_skb_any(skb); 461 return NULL; 462 } 463 skb_reserve(skb, 2); /* make IP header 4byte aligned */ 464 return skb; 465 } 466 467 static void free_rxbuf_skb(struct pci_dev *hwdev, struct sk_buff *skb, dma_addr_t dma_handle) 468 { 469 pci_unmap_single(hwdev, dma_handle, RX_BUF_SIZE, 470 PCI_DMA_FROMDEVICE); 471 dev_kfree_skb_any(skb); 472 } 473 474 /* Index to functions, as function prototypes. */ 475 476 static int tc35815_open(struct net_device *dev); 477 static int tc35815_send_packet(struct sk_buff *skb, struct net_device *dev); 478 static irqreturn_t tc35815_interrupt(int irq, void *dev_id); 479 static int tc35815_rx(struct net_device *dev, int limit); 480 static int tc35815_poll(struct napi_struct *napi, int budget); 481 static void tc35815_txdone(struct net_device *dev); 482 static int tc35815_close(struct net_device *dev); 483 static struct net_device_stats *tc35815_get_stats(struct net_device *dev); 484 static void tc35815_set_multicast_list(struct net_device *dev); 485 static void tc35815_tx_timeout(struct net_device *dev); 486 static int tc35815_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); 487 #ifdef CONFIG_NET_POLL_CONTROLLER 488 static void tc35815_poll_controller(struct net_device *dev); 489 #endif 490 static const struct ethtool_ops tc35815_ethtool_ops; 491 492 /* Example routines you must write ;->. */ 493 static void tc35815_chip_reset(struct net_device *dev); 494 static void tc35815_chip_init(struct net_device *dev); 495 496 #ifdef DEBUG 497 static void panic_queues(struct net_device *dev); 498 #endif 499 500 static void tc35815_restart_work(struct work_struct *work); 501 502 static int tc_mdio_read(struct mii_bus *bus, int mii_id, int regnum) 503 { 504 struct net_device *dev = bus->priv; 505 struct tc35815_regs __iomem *tr = 506 (struct tc35815_regs __iomem *)dev->base_addr; 507 unsigned long timeout = jiffies + HZ; 508 509 tc_writel(MD_CA_Busy | (mii_id << 5) | (regnum & 0x1f), &tr->MD_CA); 510 udelay(12); /* it takes 32 x 400ns at least */ 511 while (tc_readl(&tr->MD_CA) & MD_CA_Busy) { 512 if (time_after(jiffies, timeout)) 513 return -EIO; 514 cpu_relax(); 515 } 516 return tc_readl(&tr->MD_Data) & 0xffff; 517 } 518 519 static int tc_mdio_write(struct mii_bus *bus, int mii_id, int regnum, u16 val) 520 { 521 struct net_device *dev = bus->priv; 522 struct tc35815_regs __iomem *tr = 523 (struct tc35815_regs __iomem *)dev->base_addr; 524 unsigned long timeout = jiffies + HZ; 525 526 tc_writel(val, &tr->MD_Data); 527 tc_writel(MD_CA_Busy | MD_CA_Wr | (mii_id << 5) | (regnum & 0x1f), 528 &tr->MD_CA); 529 udelay(12); /* it takes 32 x 400ns at least */ 530 while (tc_readl(&tr->MD_CA) & MD_CA_Busy) { 531 if (time_after(jiffies, timeout)) 532 return -EIO; 533 cpu_relax(); 534 } 535 return 0; 536 } 537 538 static void tc_handle_link_change(struct net_device *dev) 539 { 540 struct tc35815_local *lp = netdev_priv(dev); 541 struct phy_device *phydev = dev->phydev; 542 unsigned long flags; 543 int status_change = 0; 544 545 spin_lock_irqsave(&lp->lock, flags); 546 if (phydev->link && 547 (lp->speed != phydev->speed || lp->duplex != phydev->duplex)) { 548 struct tc35815_regs __iomem *tr = 549 (struct tc35815_regs __iomem *)dev->base_addr; 550 u32 reg; 551 552 reg = tc_readl(&tr->MAC_Ctl); 553 reg |= MAC_HaltReq; 554 tc_writel(reg, &tr->MAC_Ctl); 555 if (phydev->duplex == DUPLEX_FULL) 556 reg |= MAC_FullDup; 557 else 558 reg &= ~MAC_FullDup; 559 tc_writel(reg, &tr->MAC_Ctl); 560 reg &= ~MAC_HaltReq; 561 tc_writel(reg, &tr->MAC_Ctl); 562 563 /* 564 * TX4939 PCFG.SPEEDn bit will be changed on 565 * NETDEV_CHANGE event. 566 */ 567 /* 568 * WORKAROUND: enable LostCrS only if half duplex 569 * operation. 570 * (TX4939 does not have EnLCarr) 571 */ 572 if (phydev->duplex == DUPLEX_HALF && 573 lp->chiptype != TC35815_TX4939) 574 tc_writel(tc_readl(&tr->Tx_Ctl) | Tx_EnLCarr, 575 &tr->Tx_Ctl); 576 577 lp->speed = phydev->speed; 578 lp->duplex = phydev->duplex; 579 status_change = 1; 580 } 581 582 if (phydev->link != lp->link) { 583 if (phydev->link) { 584 /* delayed promiscuous enabling */ 585 if (dev->flags & IFF_PROMISC) 586 tc35815_set_multicast_list(dev); 587 } else { 588 lp->speed = 0; 589 lp->duplex = -1; 590 } 591 lp->link = phydev->link; 592 593 status_change = 1; 594 } 595 spin_unlock_irqrestore(&lp->lock, flags); 596 597 if (status_change && netif_msg_link(lp)) { 598 phy_print_status(phydev); 599 pr_debug("%s: MII BMCR %04x BMSR %04x LPA %04x\n", 600 dev->name, 601 phy_read(phydev, MII_BMCR), 602 phy_read(phydev, MII_BMSR), 603 phy_read(phydev, MII_LPA)); 604 } 605 } 606 607 static int tc_mii_probe(struct net_device *dev) 608 { 609 struct tc35815_local *lp = netdev_priv(dev); 610 struct phy_device *phydev; 611 u32 dropmask; 612 613 phydev = phy_find_first(lp->mii_bus); 614 if (!phydev) { 615 printk(KERN_ERR "%s: no PHY found\n", dev->name); 616 return -ENODEV; 617 } 618 619 /* attach the mac to the phy */ 620 phydev = phy_connect(dev, phydev_name(phydev), 621 &tc_handle_link_change, 622 lp->chiptype == TC35815_TX4939 ? PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII); 623 if (IS_ERR(phydev)) { 624 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name); 625 return PTR_ERR(phydev); 626 } 627 628 phy_attached_info(phydev); 629 630 /* mask with MAC supported features */ 631 phydev->supported &= PHY_BASIC_FEATURES; 632 dropmask = 0; 633 if (options.speed == 10) 634 dropmask |= SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full; 635 else if (options.speed == 100) 636 dropmask |= SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full; 637 if (options.duplex == 1) 638 dropmask |= SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Full; 639 else if (options.duplex == 2) 640 dropmask |= SUPPORTED_10baseT_Half | SUPPORTED_100baseT_Half; 641 phydev->supported &= ~dropmask; 642 phydev->advertising = phydev->supported; 643 644 lp->link = 0; 645 lp->speed = 0; 646 lp->duplex = -1; 647 648 return 0; 649 } 650 651 static int tc_mii_init(struct net_device *dev) 652 { 653 struct tc35815_local *lp = netdev_priv(dev); 654 int err; 655 656 lp->mii_bus = mdiobus_alloc(); 657 if (lp->mii_bus == NULL) { 658 err = -ENOMEM; 659 goto err_out; 660 } 661 662 lp->mii_bus->name = "tc35815_mii_bus"; 663 lp->mii_bus->read = tc_mdio_read; 664 lp->mii_bus->write = tc_mdio_write; 665 snprintf(lp->mii_bus->id, MII_BUS_ID_SIZE, "%x", 666 (lp->pci_dev->bus->number << 8) | lp->pci_dev->devfn); 667 lp->mii_bus->priv = dev; 668 lp->mii_bus->parent = &lp->pci_dev->dev; 669 err = mdiobus_register(lp->mii_bus); 670 if (err) 671 goto err_out_free_mii_bus; 672 err = tc_mii_probe(dev); 673 if (err) 674 goto err_out_unregister_bus; 675 return 0; 676 677 err_out_unregister_bus: 678 mdiobus_unregister(lp->mii_bus); 679 err_out_free_mii_bus: 680 mdiobus_free(lp->mii_bus); 681 err_out: 682 return err; 683 } 684 685 #ifdef CONFIG_CPU_TX49XX 686 /* 687 * Find a platform_device providing a MAC address. The platform code 688 * should provide a "tc35815-mac" device with a MAC address in its 689 * platform_data. 690 */ 691 static int tc35815_mac_match(struct device *dev, void *data) 692 { 693 struct platform_device *plat_dev = to_platform_device(dev); 694 struct pci_dev *pci_dev = data; 695 unsigned int id = pci_dev->irq; 696 return !strcmp(plat_dev->name, "tc35815-mac") && plat_dev->id == id; 697 } 698 699 static int tc35815_read_plat_dev_addr(struct net_device *dev) 700 { 701 struct tc35815_local *lp = netdev_priv(dev); 702 struct device *pd = bus_find_device(&platform_bus_type, NULL, 703 lp->pci_dev, tc35815_mac_match); 704 if (pd) { 705 if (pd->platform_data) 706 memcpy(dev->dev_addr, pd->platform_data, ETH_ALEN); 707 put_device(pd); 708 return is_valid_ether_addr(dev->dev_addr) ? 0 : -ENODEV; 709 } 710 return -ENODEV; 711 } 712 #else 713 static int tc35815_read_plat_dev_addr(struct net_device *dev) 714 { 715 return -ENODEV; 716 } 717 #endif 718 719 static int tc35815_init_dev_addr(struct net_device *dev) 720 { 721 struct tc35815_regs __iomem *tr = 722 (struct tc35815_regs __iomem *)dev->base_addr; 723 int i; 724 725 while (tc_readl(&tr->PROM_Ctl) & PROM_Busy) 726 ; 727 for (i = 0; i < 6; i += 2) { 728 unsigned short data; 729 tc_writel(PROM_Busy | PROM_Read | (i / 2 + 2), &tr->PROM_Ctl); 730 while (tc_readl(&tr->PROM_Ctl) & PROM_Busy) 731 ; 732 data = tc_readl(&tr->PROM_Data); 733 dev->dev_addr[i] = data & 0xff; 734 dev->dev_addr[i+1] = data >> 8; 735 } 736 if (!is_valid_ether_addr(dev->dev_addr)) 737 return tc35815_read_plat_dev_addr(dev); 738 return 0; 739 } 740 741 static const struct net_device_ops tc35815_netdev_ops = { 742 .ndo_open = tc35815_open, 743 .ndo_stop = tc35815_close, 744 .ndo_start_xmit = tc35815_send_packet, 745 .ndo_get_stats = tc35815_get_stats, 746 .ndo_set_rx_mode = tc35815_set_multicast_list, 747 .ndo_tx_timeout = tc35815_tx_timeout, 748 .ndo_do_ioctl = tc35815_ioctl, 749 .ndo_validate_addr = eth_validate_addr, 750 .ndo_set_mac_address = eth_mac_addr, 751 #ifdef CONFIG_NET_POLL_CONTROLLER 752 .ndo_poll_controller = tc35815_poll_controller, 753 #endif 754 }; 755 756 static int tc35815_init_one(struct pci_dev *pdev, 757 const struct pci_device_id *ent) 758 { 759 void __iomem *ioaddr = NULL; 760 struct net_device *dev; 761 struct tc35815_local *lp; 762 int rc; 763 764 static int printed_version; 765 if (!printed_version++) { 766 printk(version); 767 dev_printk(KERN_DEBUG, &pdev->dev, 768 "speed:%d duplex:%d\n", 769 options.speed, options.duplex); 770 } 771 772 if (!pdev->irq) { 773 dev_warn(&pdev->dev, "no IRQ assigned.\n"); 774 return -ENODEV; 775 } 776 777 /* dev zeroed in alloc_etherdev */ 778 dev = alloc_etherdev(sizeof(*lp)); 779 if (dev == NULL) 780 return -ENOMEM; 781 782 SET_NETDEV_DEV(dev, &pdev->dev); 783 lp = netdev_priv(dev); 784 lp->dev = dev; 785 786 /* enable device (incl. PCI PM wakeup), and bus-mastering */ 787 rc = pcim_enable_device(pdev); 788 if (rc) 789 goto err_out; 790 rc = pcim_iomap_regions(pdev, 1 << 1, MODNAME); 791 if (rc) 792 goto err_out; 793 pci_set_master(pdev); 794 ioaddr = pcim_iomap_table(pdev)[1]; 795 796 /* Initialize the device structure. */ 797 dev->netdev_ops = &tc35815_netdev_ops; 798 dev->ethtool_ops = &tc35815_ethtool_ops; 799 dev->watchdog_timeo = TC35815_TX_TIMEOUT; 800 netif_napi_add(dev, &lp->napi, tc35815_poll, NAPI_WEIGHT); 801 802 dev->irq = pdev->irq; 803 dev->base_addr = (unsigned long)ioaddr; 804 805 INIT_WORK(&lp->restart_work, tc35815_restart_work); 806 spin_lock_init(&lp->lock); 807 spin_lock_init(&lp->rx_lock); 808 lp->pci_dev = pdev; 809 lp->chiptype = ent->driver_data; 810 811 lp->msg_enable = NETIF_MSG_TX_ERR | NETIF_MSG_HW | NETIF_MSG_DRV | NETIF_MSG_LINK; 812 pci_set_drvdata(pdev, dev); 813 814 /* Soft reset the chip. */ 815 tc35815_chip_reset(dev); 816 817 /* Retrieve the ethernet address. */ 818 if (tc35815_init_dev_addr(dev)) { 819 dev_warn(&pdev->dev, "not valid ether addr\n"); 820 eth_hw_addr_random(dev); 821 } 822 823 rc = register_netdev(dev); 824 if (rc) 825 goto err_out; 826 827 printk(KERN_INFO "%s: %s at 0x%lx, %pM, IRQ %d\n", 828 dev->name, 829 chip_info[ent->driver_data].name, 830 dev->base_addr, 831 dev->dev_addr, 832 dev->irq); 833 834 rc = tc_mii_init(dev); 835 if (rc) 836 goto err_out_unregister; 837 838 return 0; 839 840 err_out_unregister: 841 unregister_netdev(dev); 842 err_out: 843 free_netdev(dev); 844 return rc; 845 } 846 847 848 static void tc35815_remove_one(struct pci_dev *pdev) 849 { 850 struct net_device *dev = pci_get_drvdata(pdev); 851 struct tc35815_local *lp = netdev_priv(dev); 852 853 phy_disconnect(dev->phydev); 854 mdiobus_unregister(lp->mii_bus); 855 mdiobus_free(lp->mii_bus); 856 unregister_netdev(dev); 857 free_netdev(dev); 858 } 859 860 static int 861 tc35815_init_queues(struct net_device *dev) 862 { 863 struct tc35815_local *lp = netdev_priv(dev); 864 int i; 865 unsigned long fd_addr; 866 867 if (!lp->fd_buf) { 868 BUG_ON(sizeof(struct FDesc) + 869 sizeof(struct BDesc) * RX_BUF_NUM + 870 sizeof(struct FDesc) * RX_FD_NUM + 871 sizeof(struct TxFD) * TX_FD_NUM > 872 PAGE_SIZE * FD_PAGE_NUM); 873 874 lp->fd_buf = pci_alloc_consistent(lp->pci_dev, 875 PAGE_SIZE * FD_PAGE_NUM, 876 &lp->fd_buf_dma); 877 if (!lp->fd_buf) 878 return -ENOMEM; 879 for (i = 0; i < RX_BUF_NUM; i++) { 880 lp->rx_skbs[i].skb = 881 alloc_rxbuf_skb(dev, lp->pci_dev, 882 &lp->rx_skbs[i].skb_dma); 883 if (!lp->rx_skbs[i].skb) { 884 while (--i >= 0) { 885 free_rxbuf_skb(lp->pci_dev, 886 lp->rx_skbs[i].skb, 887 lp->rx_skbs[i].skb_dma); 888 lp->rx_skbs[i].skb = NULL; 889 } 890 pci_free_consistent(lp->pci_dev, 891 PAGE_SIZE * FD_PAGE_NUM, 892 lp->fd_buf, 893 lp->fd_buf_dma); 894 lp->fd_buf = NULL; 895 return -ENOMEM; 896 } 897 } 898 printk(KERN_DEBUG "%s: FD buf %p DataBuf", 899 dev->name, lp->fd_buf); 900 printk("\n"); 901 } else { 902 for (i = 0; i < FD_PAGE_NUM; i++) 903 clear_page((void *)((unsigned long)lp->fd_buf + 904 i * PAGE_SIZE)); 905 } 906 fd_addr = (unsigned long)lp->fd_buf; 907 908 /* Free Descriptors (for Receive) */ 909 lp->rfd_base = (struct RxFD *)fd_addr; 910 fd_addr += sizeof(struct RxFD) * RX_FD_NUM; 911 for (i = 0; i < RX_FD_NUM; i++) 912 lp->rfd_base[i].fd.FDCtl = cpu_to_le32(FD_CownsFD); 913 lp->rfd_cur = lp->rfd_base; 914 lp->rfd_limit = (struct RxFD *)fd_addr - (RX_FD_RESERVE + 1); 915 916 /* Transmit Descriptors */ 917 lp->tfd_base = (struct TxFD *)fd_addr; 918 fd_addr += sizeof(struct TxFD) * TX_FD_NUM; 919 for (i = 0; i < TX_FD_NUM; i++) { 920 lp->tfd_base[i].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[i+1])); 921 lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff); 922 lp->tfd_base[i].fd.FDCtl = cpu_to_le32(0); 923 } 924 lp->tfd_base[TX_FD_NUM-1].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[0])); 925 lp->tfd_start = 0; 926 lp->tfd_end = 0; 927 928 /* Buffer List (for Receive) */ 929 lp->fbl_ptr = (struct FrFD *)fd_addr; 930 lp->fbl_ptr->fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, lp->fbl_ptr)); 931 lp->fbl_ptr->fd.FDCtl = cpu_to_le32(RX_BUF_NUM | FD_CownsFD); 932 /* 933 * move all allocated skbs to head of rx_skbs[] array. 934 * fbl_count mighe not be RX_BUF_NUM if alloc_rxbuf_skb() in 935 * tc35815_rx() had failed. 936 */ 937 lp->fbl_count = 0; 938 for (i = 0; i < RX_BUF_NUM; i++) { 939 if (lp->rx_skbs[i].skb) { 940 if (i != lp->fbl_count) { 941 lp->rx_skbs[lp->fbl_count].skb = 942 lp->rx_skbs[i].skb; 943 lp->rx_skbs[lp->fbl_count].skb_dma = 944 lp->rx_skbs[i].skb_dma; 945 } 946 lp->fbl_count++; 947 } 948 } 949 for (i = 0; i < RX_BUF_NUM; i++) { 950 if (i >= lp->fbl_count) { 951 lp->fbl_ptr->bd[i].BuffData = 0; 952 lp->fbl_ptr->bd[i].BDCtl = 0; 953 continue; 954 } 955 lp->fbl_ptr->bd[i].BuffData = 956 cpu_to_le32(lp->rx_skbs[i].skb_dma); 957 /* BDID is index of FrFD.bd[] */ 958 lp->fbl_ptr->bd[i].BDCtl = 959 cpu_to_le32(BD_CownsBD | (i << BD_RxBDID_SHIFT) | 960 RX_BUF_SIZE); 961 } 962 963 printk(KERN_DEBUG "%s: TxFD %p RxFD %p FrFD %p\n", 964 dev->name, lp->tfd_base, lp->rfd_base, lp->fbl_ptr); 965 return 0; 966 } 967 968 static void 969 tc35815_clear_queues(struct net_device *dev) 970 { 971 struct tc35815_local *lp = netdev_priv(dev); 972 int i; 973 974 for (i = 0; i < TX_FD_NUM; i++) { 975 u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem); 976 struct sk_buff *skb = 977 fdsystem != 0xffffffff ? 978 lp->tx_skbs[fdsystem].skb : NULL; 979 #ifdef DEBUG 980 if (lp->tx_skbs[i].skb != skb) { 981 printk("%s: tx_skbs mismatch(%d).\n", dev->name, i); 982 panic_queues(dev); 983 } 984 #else 985 BUG_ON(lp->tx_skbs[i].skb != skb); 986 #endif 987 if (skb) { 988 pci_unmap_single(lp->pci_dev, lp->tx_skbs[i].skb_dma, skb->len, PCI_DMA_TODEVICE); 989 lp->tx_skbs[i].skb = NULL; 990 lp->tx_skbs[i].skb_dma = 0; 991 dev_kfree_skb_any(skb); 992 } 993 lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff); 994 } 995 996 tc35815_init_queues(dev); 997 } 998 999 static void 1000 tc35815_free_queues(struct net_device *dev) 1001 { 1002 struct tc35815_local *lp = netdev_priv(dev); 1003 int i; 1004 1005 if (lp->tfd_base) { 1006 for (i = 0; i < TX_FD_NUM; i++) { 1007 u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem); 1008 struct sk_buff *skb = 1009 fdsystem != 0xffffffff ? 1010 lp->tx_skbs[fdsystem].skb : NULL; 1011 #ifdef DEBUG 1012 if (lp->tx_skbs[i].skb != skb) { 1013 printk("%s: tx_skbs mismatch(%d).\n", dev->name, i); 1014 panic_queues(dev); 1015 } 1016 #else 1017 BUG_ON(lp->tx_skbs[i].skb != skb); 1018 #endif 1019 if (skb) { 1020 pci_unmap_single(lp->pci_dev, lp->tx_skbs[i].skb_dma, skb->len, PCI_DMA_TODEVICE); 1021 dev_kfree_skb(skb); 1022 lp->tx_skbs[i].skb = NULL; 1023 lp->tx_skbs[i].skb_dma = 0; 1024 } 1025 lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff); 1026 } 1027 } 1028 1029 lp->rfd_base = NULL; 1030 lp->rfd_limit = NULL; 1031 lp->rfd_cur = NULL; 1032 lp->fbl_ptr = NULL; 1033 1034 for (i = 0; i < RX_BUF_NUM; i++) { 1035 if (lp->rx_skbs[i].skb) { 1036 free_rxbuf_skb(lp->pci_dev, lp->rx_skbs[i].skb, 1037 lp->rx_skbs[i].skb_dma); 1038 lp->rx_skbs[i].skb = NULL; 1039 } 1040 } 1041 if (lp->fd_buf) { 1042 pci_free_consistent(lp->pci_dev, PAGE_SIZE * FD_PAGE_NUM, 1043 lp->fd_buf, lp->fd_buf_dma); 1044 lp->fd_buf = NULL; 1045 } 1046 } 1047 1048 static void 1049 dump_txfd(struct TxFD *fd) 1050 { 1051 printk("TxFD(%p): %08x %08x %08x %08x\n", fd, 1052 le32_to_cpu(fd->fd.FDNext), 1053 le32_to_cpu(fd->fd.FDSystem), 1054 le32_to_cpu(fd->fd.FDStat), 1055 le32_to_cpu(fd->fd.FDCtl)); 1056 printk("BD: "); 1057 printk(" %08x %08x", 1058 le32_to_cpu(fd->bd.BuffData), 1059 le32_to_cpu(fd->bd.BDCtl)); 1060 printk("\n"); 1061 } 1062 1063 static int 1064 dump_rxfd(struct RxFD *fd) 1065 { 1066 int i, bd_count = (le32_to_cpu(fd->fd.FDCtl) & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT; 1067 if (bd_count > 8) 1068 bd_count = 8; 1069 printk("RxFD(%p): %08x %08x %08x %08x\n", fd, 1070 le32_to_cpu(fd->fd.FDNext), 1071 le32_to_cpu(fd->fd.FDSystem), 1072 le32_to_cpu(fd->fd.FDStat), 1073 le32_to_cpu(fd->fd.FDCtl)); 1074 if (le32_to_cpu(fd->fd.FDCtl) & FD_CownsFD) 1075 return 0; 1076 printk("BD: "); 1077 for (i = 0; i < bd_count; i++) 1078 printk(" %08x %08x", 1079 le32_to_cpu(fd->bd[i].BuffData), 1080 le32_to_cpu(fd->bd[i].BDCtl)); 1081 printk("\n"); 1082 return bd_count; 1083 } 1084 1085 #ifdef DEBUG 1086 static void 1087 dump_frfd(struct FrFD *fd) 1088 { 1089 int i; 1090 printk("FrFD(%p): %08x %08x %08x %08x\n", fd, 1091 le32_to_cpu(fd->fd.FDNext), 1092 le32_to_cpu(fd->fd.FDSystem), 1093 le32_to_cpu(fd->fd.FDStat), 1094 le32_to_cpu(fd->fd.FDCtl)); 1095 printk("BD: "); 1096 for (i = 0; i < RX_BUF_NUM; i++) 1097 printk(" %08x %08x", 1098 le32_to_cpu(fd->bd[i].BuffData), 1099 le32_to_cpu(fd->bd[i].BDCtl)); 1100 printk("\n"); 1101 } 1102 1103 static void 1104 panic_queues(struct net_device *dev) 1105 { 1106 struct tc35815_local *lp = netdev_priv(dev); 1107 int i; 1108 1109 printk("TxFD base %p, start %u, end %u\n", 1110 lp->tfd_base, lp->tfd_start, lp->tfd_end); 1111 printk("RxFD base %p limit %p cur %p\n", 1112 lp->rfd_base, lp->rfd_limit, lp->rfd_cur); 1113 printk("FrFD %p\n", lp->fbl_ptr); 1114 for (i = 0; i < TX_FD_NUM; i++) 1115 dump_txfd(&lp->tfd_base[i]); 1116 for (i = 0; i < RX_FD_NUM; i++) { 1117 int bd_count = dump_rxfd(&lp->rfd_base[i]); 1118 i += (bd_count + 1) / 2; /* skip BDs */ 1119 } 1120 dump_frfd(lp->fbl_ptr); 1121 panic("%s: Illegal queue state.", dev->name); 1122 } 1123 #endif 1124 1125 static void print_eth(const u8 *add) 1126 { 1127 printk(KERN_DEBUG "print_eth(%p)\n", add); 1128 printk(KERN_DEBUG " %pM => %pM : %02x%02x\n", 1129 add + 6, add, add[12], add[13]); 1130 } 1131 1132 static int tc35815_tx_full(struct net_device *dev) 1133 { 1134 struct tc35815_local *lp = netdev_priv(dev); 1135 return (lp->tfd_start + 1) % TX_FD_NUM == lp->tfd_end; 1136 } 1137 1138 static void tc35815_restart(struct net_device *dev) 1139 { 1140 struct tc35815_local *lp = netdev_priv(dev); 1141 int ret; 1142 1143 if (dev->phydev) { 1144 ret = phy_init_hw(dev->phydev); 1145 if (ret) 1146 printk(KERN_ERR "%s: PHY init failed.\n", dev->name); 1147 } 1148 1149 spin_lock_bh(&lp->rx_lock); 1150 spin_lock_irq(&lp->lock); 1151 tc35815_chip_reset(dev); 1152 tc35815_clear_queues(dev); 1153 tc35815_chip_init(dev); 1154 /* Reconfigure CAM again since tc35815_chip_init() initialize it. */ 1155 tc35815_set_multicast_list(dev); 1156 spin_unlock_irq(&lp->lock); 1157 spin_unlock_bh(&lp->rx_lock); 1158 1159 netif_wake_queue(dev); 1160 } 1161 1162 static void tc35815_restart_work(struct work_struct *work) 1163 { 1164 struct tc35815_local *lp = 1165 container_of(work, struct tc35815_local, restart_work); 1166 struct net_device *dev = lp->dev; 1167 1168 tc35815_restart(dev); 1169 } 1170 1171 static void tc35815_schedule_restart(struct net_device *dev) 1172 { 1173 struct tc35815_local *lp = netdev_priv(dev); 1174 struct tc35815_regs __iomem *tr = 1175 (struct tc35815_regs __iomem *)dev->base_addr; 1176 unsigned long flags; 1177 1178 /* disable interrupts */ 1179 spin_lock_irqsave(&lp->lock, flags); 1180 tc_writel(0, &tr->Int_En); 1181 tc_writel(tc_readl(&tr->DMA_Ctl) | DMA_IntMask, &tr->DMA_Ctl); 1182 schedule_work(&lp->restart_work); 1183 spin_unlock_irqrestore(&lp->lock, flags); 1184 } 1185 1186 static void tc35815_tx_timeout(struct net_device *dev) 1187 { 1188 struct tc35815_regs __iomem *tr = 1189 (struct tc35815_regs __iomem *)dev->base_addr; 1190 1191 printk(KERN_WARNING "%s: transmit timed out, status %#x\n", 1192 dev->name, tc_readl(&tr->Tx_Stat)); 1193 1194 /* Try to restart the adaptor. */ 1195 tc35815_schedule_restart(dev); 1196 dev->stats.tx_errors++; 1197 } 1198 1199 /* 1200 * Open/initialize the controller. This is called (in the current kernel) 1201 * sometime after booting when the 'ifconfig' program is run. 1202 * 1203 * This routine should set everything up anew at each open, even 1204 * registers that "should" only need to be set once at boot, so that 1205 * there is non-reboot way to recover if something goes wrong. 1206 */ 1207 static int 1208 tc35815_open(struct net_device *dev) 1209 { 1210 struct tc35815_local *lp = netdev_priv(dev); 1211 1212 /* 1213 * This is used if the interrupt line can turned off (shared). 1214 * See 3c503.c for an example of selecting the IRQ at config-time. 1215 */ 1216 if (request_irq(dev->irq, tc35815_interrupt, IRQF_SHARED, 1217 dev->name, dev)) 1218 return -EAGAIN; 1219 1220 tc35815_chip_reset(dev); 1221 1222 if (tc35815_init_queues(dev) != 0) { 1223 free_irq(dev->irq, dev); 1224 return -EAGAIN; 1225 } 1226 1227 napi_enable(&lp->napi); 1228 1229 /* Reset the hardware here. Don't forget to set the station address. */ 1230 spin_lock_irq(&lp->lock); 1231 tc35815_chip_init(dev); 1232 spin_unlock_irq(&lp->lock); 1233 1234 netif_carrier_off(dev); 1235 /* schedule a link state check */ 1236 phy_start(dev->phydev); 1237 1238 /* We are now ready to accept transmit requeusts from 1239 * the queueing layer of the networking. 1240 */ 1241 netif_start_queue(dev); 1242 1243 return 0; 1244 } 1245 1246 /* This will only be invoked if your driver is _not_ in XOFF state. 1247 * What this means is that you need not check it, and that this 1248 * invariant will hold if you make sure that the netif_*_queue() 1249 * calls are done at the proper times. 1250 */ 1251 static int tc35815_send_packet(struct sk_buff *skb, struct net_device *dev) 1252 { 1253 struct tc35815_local *lp = netdev_priv(dev); 1254 struct TxFD *txfd; 1255 unsigned long flags; 1256 1257 /* If some error occurs while trying to transmit this 1258 * packet, you should return '1' from this function. 1259 * In such a case you _may not_ do anything to the 1260 * SKB, it is still owned by the network queueing 1261 * layer when an error is returned. This means you 1262 * may not modify any SKB fields, you may not free 1263 * the SKB, etc. 1264 */ 1265 1266 /* This is the most common case for modern hardware. 1267 * The spinlock protects this code from the TX complete 1268 * hardware interrupt handler. Queue flow control is 1269 * thus managed under this lock as well. 1270 */ 1271 spin_lock_irqsave(&lp->lock, flags); 1272 1273 /* failsafe... (handle txdone now if half of FDs are used) */ 1274 if ((lp->tfd_start + TX_FD_NUM - lp->tfd_end) % TX_FD_NUM > 1275 TX_FD_NUM / 2) 1276 tc35815_txdone(dev); 1277 1278 if (netif_msg_pktdata(lp)) 1279 print_eth(skb->data); 1280 #ifdef DEBUG 1281 if (lp->tx_skbs[lp->tfd_start].skb) { 1282 printk("%s: tx_skbs conflict.\n", dev->name); 1283 panic_queues(dev); 1284 } 1285 #else 1286 BUG_ON(lp->tx_skbs[lp->tfd_start].skb); 1287 #endif 1288 lp->tx_skbs[lp->tfd_start].skb = skb; 1289 lp->tx_skbs[lp->tfd_start].skb_dma = pci_map_single(lp->pci_dev, skb->data, skb->len, PCI_DMA_TODEVICE); 1290 1291 /*add to ring */ 1292 txfd = &lp->tfd_base[lp->tfd_start]; 1293 txfd->bd.BuffData = cpu_to_le32(lp->tx_skbs[lp->tfd_start].skb_dma); 1294 txfd->bd.BDCtl = cpu_to_le32(skb->len); 1295 txfd->fd.FDSystem = cpu_to_le32(lp->tfd_start); 1296 txfd->fd.FDCtl = cpu_to_le32(FD_CownsFD | (1 << FD_BDCnt_SHIFT)); 1297 1298 if (lp->tfd_start == lp->tfd_end) { 1299 struct tc35815_regs __iomem *tr = 1300 (struct tc35815_regs __iomem *)dev->base_addr; 1301 /* Start DMA Transmitter. */ 1302 txfd->fd.FDNext |= cpu_to_le32(FD_Next_EOL); 1303 txfd->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx); 1304 if (netif_msg_tx_queued(lp)) { 1305 printk("%s: starting TxFD.\n", dev->name); 1306 dump_txfd(txfd); 1307 } 1308 tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr); 1309 } else { 1310 txfd->fd.FDNext &= cpu_to_le32(~FD_Next_EOL); 1311 if (netif_msg_tx_queued(lp)) { 1312 printk("%s: queueing TxFD.\n", dev->name); 1313 dump_txfd(txfd); 1314 } 1315 } 1316 lp->tfd_start = (lp->tfd_start + 1) % TX_FD_NUM; 1317 1318 /* If we just used up the very last entry in the 1319 * TX ring on this device, tell the queueing 1320 * layer to send no more. 1321 */ 1322 if (tc35815_tx_full(dev)) { 1323 if (netif_msg_tx_queued(lp)) 1324 printk(KERN_WARNING "%s: TxFD Exhausted.\n", dev->name); 1325 netif_stop_queue(dev); 1326 } 1327 1328 /* When the TX completion hw interrupt arrives, this 1329 * is when the transmit statistics are updated. 1330 */ 1331 1332 spin_unlock_irqrestore(&lp->lock, flags); 1333 return NETDEV_TX_OK; 1334 } 1335 1336 #define FATAL_ERROR_INT \ 1337 (Int_IntPCI | Int_DmParErr | Int_IntNRAbt) 1338 static void tc35815_fatal_error_interrupt(struct net_device *dev, u32 status) 1339 { 1340 static int count; 1341 printk(KERN_WARNING "%s: Fatal Error Interrupt (%#x):", 1342 dev->name, status); 1343 if (status & Int_IntPCI) 1344 printk(" IntPCI"); 1345 if (status & Int_DmParErr) 1346 printk(" DmParErr"); 1347 if (status & Int_IntNRAbt) 1348 printk(" IntNRAbt"); 1349 printk("\n"); 1350 if (count++ > 100) 1351 panic("%s: Too many fatal errors.", dev->name); 1352 printk(KERN_WARNING "%s: Resetting ...\n", dev->name); 1353 /* Try to restart the adaptor. */ 1354 tc35815_schedule_restart(dev); 1355 } 1356 1357 static int tc35815_do_interrupt(struct net_device *dev, u32 status, int limit) 1358 { 1359 struct tc35815_local *lp = netdev_priv(dev); 1360 int ret = -1; 1361 1362 /* Fatal errors... */ 1363 if (status & FATAL_ERROR_INT) { 1364 tc35815_fatal_error_interrupt(dev, status); 1365 return 0; 1366 } 1367 /* recoverable errors */ 1368 if (status & Int_IntFDAEx) { 1369 if (netif_msg_rx_err(lp)) 1370 dev_warn(&dev->dev, 1371 "Free Descriptor Area Exhausted (%#x).\n", 1372 status); 1373 dev->stats.rx_dropped++; 1374 ret = 0; 1375 } 1376 if (status & Int_IntBLEx) { 1377 if (netif_msg_rx_err(lp)) 1378 dev_warn(&dev->dev, 1379 "Buffer List Exhausted (%#x).\n", 1380 status); 1381 dev->stats.rx_dropped++; 1382 ret = 0; 1383 } 1384 if (status & Int_IntExBD) { 1385 if (netif_msg_rx_err(lp)) 1386 dev_warn(&dev->dev, 1387 "Excessive Buffer Descriptors (%#x).\n", 1388 status); 1389 dev->stats.rx_length_errors++; 1390 ret = 0; 1391 } 1392 1393 /* normal notification */ 1394 if (status & Int_IntMacRx) { 1395 /* Got a packet(s). */ 1396 ret = tc35815_rx(dev, limit); 1397 lp->lstats.rx_ints++; 1398 } 1399 if (status & Int_IntMacTx) { 1400 /* Transmit complete. */ 1401 lp->lstats.tx_ints++; 1402 spin_lock_irq(&lp->lock); 1403 tc35815_txdone(dev); 1404 spin_unlock_irq(&lp->lock); 1405 if (ret < 0) 1406 ret = 0; 1407 } 1408 return ret; 1409 } 1410 1411 /* 1412 * The typical workload of the driver: 1413 * Handle the network interface interrupts. 1414 */ 1415 static irqreturn_t tc35815_interrupt(int irq, void *dev_id) 1416 { 1417 struct net_device *dev = dev_id; 1418 struct tc35815_local *lp = netdev_priv(dev); 1419 struct tc35815_regs __iomem *tr = 1420 (struct tc35815_regs __iomem *)dev->base_addr; 1421 u32 dmactl = tc_readl(&tr->DMA_Ctl); 1422 1423 if (!(dmactl & DMA_IntMask)) { 1424 /* disable interrupts */ 1425 tc_writel(dmactl | DMA_IntMask, &tr->DMA_Ctl); 1426 if (napi_schedule_prep(&lp->napi)) 1427 __napi_schedule(&lp->napi); 1428 else { 1429 printk(KERN_ERR "%s: interrupt taken in poll\n", 1430 dev->name); 1431 BUG(); 1432 } 1433 (void)tc_readl(&tr->Int_Src); /* flush */ 1434 return IRQ_HANDLED; 1435 } 1436 return IRQ_NONE; 1437 } 1438 1439 #ifdef CONFIG_NET_POLL_CONTROLLER 1440 static void tc35815_poll_controller(struct net_device *dev) 1441 { 1442 disable_irq(dev->irq); 1443 tc35815_interrupt(dev->irq, dev); 1444 enable_irq(dev->irq); 1445 } 1446 #endif 1447 1448 /* We have a good packet(s), get it/them out of the buffers. */ 1449 static int 1450 tc35815_rx(struct net_device *dev, int limit) 1451 { 1452 struct tc35815_local *lp = netdev_priv(dev); 1453 unsigned int fdctl; 1454 int i; 1455 int received = 0; 1456 1457 while (!((fdctl = le32_to_cpu(lp->rfd_cur->fd.FDCtl)) & FD_CownsFD)) { 1458 int status = le32_to_cpu(lp->rfd_cur->fd.FDStat); 1459 int pkt_len = fdctl & FD_FDLength_MASK; 1460 int bd_count = (fdctl & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT; 1461 #ifdef DEBUG 1462 struct RxFD *next_rfd; 1463 #endif 1464 #if (RX_CTL_CMD & Rx_StripCRC) == 0 1465 pkt_len -= ETH_FCS_LEN; 1466 #endif 1467 1468 if (netif_msg_rx_status(lp)) 1469 dump_rxfd(lp->rfd_cur); 1470 if (status & Rx_Good) { 1471 struct sk_buff *skb; 1472 unsigned char *data; 1473 int cur_bd; 1474 1475 if (--limit < 0) 1476 break; 1477 BUG_ON(bd_count > 1); 1478 cur_bd = (le32_to_cpu(lp->rfd_cur->bd[0].BDCtl) 1479 & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT; 1480 #ifdef DEBUG 1481 if (cur_bd >= RX_BUF_NUM) { 1482 printk("%s: invalid BDID.\n", dev->name); 1483 panic_queues(dev); 1484 } 1485 BUG_ON(lp->rx_skbs[cur_bd].skb_dma != 1486 (le32_to_cpu(lp->rfd_cur->bd[0].BuffData) & ~3)); 1487 if (!lp->rx_skbs[cur_bd].skb) { 1488 printk("%s: NULL skb.\n", dev->name); 1489 panic_queues(dev); 1490 } 1491 #else 1492 BUG_ON(cur_bd >= RX_BUF_NUM); 1493 #endif 1494 skb = lp->rx_skbs[cur_bd].skb; 1495 prefetch(skb->data); 1496 lp->rx_skbs[cur_bd].skb = NULL; 1497 pci_unmap_single(lp->pci_dev, 1498 lp->rx_skbs[cur_bd].skb_dma, 1499 RX_BUF_SIZE, PCI_DMA_FROMDEVICE); 1500 if (!HAVE_DMA_RXALIGN(lp) && NET_IP_ALIGN) 1501 memmove(skb->data, skb->data - NET_IP_ALIGN, 1502 pkt_len); 1503 data = skb_put(skb, pkt_len); 1504 if (netif_msg_pktdata(lp)) 1505 print_eth(data); 1506 skb->protocol = eth_type_trans(skb, dev); 1507 netif_receive_skb(skb); 1508 received++; 1509 dev->stats.rx_packets++; 1510 dev->stats.rx_bytes += pkt_len; 1511 } else { 1512 dev->stats.rx_errors++; 1513 if (netif_msg_rx_err(lp)) 1514 dev_info(&dev->dev, "Rx error (status %x)\n", 1515 status & Rx_Stat_Mask); 1516 /* WORKAROUND: LongErr and CRCErr means Overflow. */ 1517 if ((status & Rx_LongErr) && (status & Rx_CRCErr)) { 1518 status &= ~(Rx_LongErr|Rx_CRCErr); 1519 status |= Rx_Over; 1520 } 1521 if (status & Rx_LongErr) 1522 dev->stats.rx_length_errors++; 1523 if (status & Rx_Over) 1524 dev->stats.rx_fifo_errors++; 1525 if (status & Rx_CRCErr) 1526 dev->stats.rx_crc_errors++; 1527 if (status & Rx_Align) 1528 dev->stats.rx_frame_errors++; 1529 } 1530 1531 if (bd_count > 0) { 1532 /* put Free Buffer back to controller */ 1533 int bdctl = le32_to_cpu(lp->rfd_cur->bd[bd_count - 1].BDCtl); 1534 unsigned char id = 1535 (bdctl & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT; 1536 #ifdef DEBUG 1537 if (id >= RX_BUF_NUM) { 1538 printk("%s: invalid BDID.\n", dev->name); 1539 panic_queues(dev); 1540 } 1541 #else 1542 BUG_ON(id >= RX_BUF_NUM); 1543 #endif 1544 /* free old buffers */ 1545 lp->fbl_count--; 1546 while (lp->fbl_count < RX_BUF_NUM) 1547 { 1548 unsigned char curid = 1549 (id + 1 + lp->fbl_count) % RX_BUF_NUM; 1550 struct BDesc *bd = &lp->fbl_ptr->bd[curid]; 1551 #ifdef DEBUG 1552 bdctl = le32_to_cpu(bd->BDCtl); 1553 if (bdctl & BD_CownsBD) { 1554 printk("%s: Freeing invalid BD.\n", 1555 dev->name); 1556 panic_queues(dev); 1557 } 1558 #endif 1559 /* pass BD to controller */ 1560 if (!lp->rx_skbs[curid].skb) { 1561 lp->rx_skbs[curid].skb = 1562 alloc_rxbuf_skb(dev, 1563 lp->pci_dev, 1564 &lp->rx_skbs[curid].skb_dma); 1565 if (!lp->rx_skbs[curid].skb) 1566 break; /* try on next reception */ 1567 bd->BuffData = cpu_to_le32(lp->rx_skbs[curid].skb_dma); 1568 } 1569 /* Note: BDLength was modified by chip. */ 1570 bd->BDCtl = cpu_to_le32(BD_CownsBD | 1571 (curid << BD_RxBDID_SHIFT) | 1572 RX_BUF_SIZE); 1573 lp->fbl_count++; 1574 } 1575 } 1576 1577 /* put RxFD back to controller */ 1578 #ifdef DEBUG 1579 next_rfd = fd_bus_to_virt(lp, 1580 le32_to_cpu(lp->rfd_cur->fd.FDNext)); 1581 if (next_rfd < lp->rfd_base || next_rfd > lp->rfd_limit) { 1582 printk("%s: RxFD FDNext invalid.\n", dev->name); 1583 panic_queues(dev); 1584 } 1585 #endif 1586 for (i = 0; i < (bd_count + 1) / 2 + 1; i++) { 1587 /* pass FD to controller */ 1588 #ifdef DEBUG 1589 lp->rfd_cur->fd.FDNext = cpu_to_le32(0xdeaddead); 1590 #else 1591 lp->rfd_cur->fd.FDNext = cpu_to_le32(FD_Next_EOL); 1592 #endif 1593 lp->rfd_cur->fd.FDCtl = cpu_to_le32(FD_CownsFD); 1594 lp->rfd_cur++; 1595 } 1596 if (lp->rfd_cur > lp->rfd_limit) 1597 lp->rfd_cur = lp->rfd_base; 1598 #ifdef DEBUG 1599 if (lp->rfd_cur != next_rfd) 1600 printk("rfd_cur = %p, next_rfd %p\n", 1601 lp->rfd_cur, next_rfd); 1602 #endif 1603 } 1604 1605 return received; 1606 } 1607 1608 static int tc35815_poll(struct napi_struct *napi, int budget) 1609 { 1610 struct tc35815_local *lp = container_of(napi, struct tc35815_local, napi); 1611 struct net_device *dev = lp->dev; 1612 struct tc35815_regs __iomem *tr = 1613 (struct tc35815_regs __iomem *)dev->base_addr; 1614 int received = 0, handled; 1615 u32 status; 1616 1617 if (budget <= 0) 1618 return received; 1619 1620 spin_lock(&lp->rx_lock); 1621 status = tc_readl(&tr->Int_Src); 1622 do { 1623 /* BLEx, FDAEx will be cleared later */ 1624 tc_writel(status & ~(Int_BLEx | Int_FDAEx), 1625 &tr->Int_Src); /* write to clear */ 1626 1627 handled = tc35815_do_interrupt(dev, status, budget - received); 1628 if (status & (Int_BLEx | Int_FDAEx)) 1629 tc_writel(status & (Int_BLEx | Int_FDAEx), 1630 &tr->Int_Src); 1631 if (handled >= 0) { 1632 received += handled; 1633 if (received >= budget) 1634 break; 1635 } 1636 status = tc_readl(&tr->Int_Src); 1637 } while (status); 1638 spin_unlock(&lp->rx_lock); 1639 1640 if (received < budget) { 1641 napi_complete_done(napi, received); 1642 /* enable interrupts */ 1643 tc_writel(tc_readl(&tr->DMA_Ctl) & ~DMA_IntMask, &tr->DMA_Ctl); 1644 } 1645 return received; 1646 } 1647 1648 #define TX_STA_ERR (Tx_ExColl|Tx_Under|Tx_Defer|Tx_NCarr|Tx_LateColl|Tx_TxPar|Tx_SQErr) 1649 1650 static void 1651 tc35815_check_tx_stat(struct net_device *dev, int status) 1652 { 1653 struct tc35815_local *lp = netdev_priv(dev); 1654 const char *msg = NULL; 1655 1656 /* count collisions */ 1657 if (status & Tx_ExColl) 1658 dev->stats.collisions += 16; 1659 if (status & Tx_TxColl_MASK) 1660 dev->stats.collisions += status & Tx_TxColl_MASK; 1661 1662 /* TX4939 does not have NCarr */ 1663 if (lp->chiptype == TC35815_TX4939) 1664 status &= ~Tx_NCarr; 1665 /* WORKAROUND: ignore LostCrS in full duplex operation */ 1666 if (!lp->link || lp->duplex == DUPLEX_FULL) 1667 status &= ~Tx_NCarr; 1668 1669 if (!(status & TX_STA_ERR)) { 1670 /* no error. */ 1671 dev->stats.tx_packets++; 1672 return; 1673 } 1674 1675 dev->stats.tx_errors++; 1676 if (status & Tx_ExColl) { 1677 dev->stats.tx_aborted_errors++; 1678 msg = "Excessive Collision."; 1679 } 1680 if (status & Tx_Under) { 1681 dev->stats.tx_fifo_errors++; 1682 msg = "Tx FIFO Underrun."; 1683 if (lp->lstats.tx_underrun < TX_THRESHOLD_KEEP_LIMIT) { 1684 lp->lstats.tx_underrun++; 1685 if (lp->lstats.tx_underrun >= TX_THRESHOLD_KEEP_LIMIT) { 1686 struct tc35815_regs __iomem *tr = 1687 (struct tc35815_regs __iomem *)dev->base_addr; 1688 tc_writel(TX_THRESHOLD_MAX, &tr->TxThrsh); 1689 msg = "Tx FIFO Underrun.Change Tx threshold to max."; 1690 } 1691 } 1692 } 1693 if (status & Tx_Defer) { 1694 dev->stats.tx_fifo_errors++; 1695 msg = "Excessive Deferral."; 1696 } 1697 if (status & Tx_NCarr) { 1698 dev->stats.tx_carrier_errors++; 1699 msg = "Lost Carrier Sense."; 1700 } 1701 if (status & Tx_LateColl) { 1702 dev->stats.tx_aborted_errors++; 1703 msg = "Late Collision."; 1704 } 1705 if (status & Tx_TxPar) { 1706 dev->stats.tx_fifo_errors++; 1707 msg = "Transmit Parity Error."; 1708 } 1709 if (status & Tx_SQErr) { 1710 dev->stats.tx_heartbeat_errors++; 1711 msg = "Signal Quality Error."; 1712 } 1713 if (msg && netif_msg_tx_err(lp)) 1714 printk(KERN_WARNING "%s: %s (%#x)\n", dev->name, msg, status); 1715 } 1716 1717 /* This handles TX complete events posted by the device 1718 * via interrupts. 1719 */ 1720 static void 1721 tc35815_txdone(struct net_device *dev) 1722 { 1723 struct tc35815_local *lp = netdev_priv(dev); 1724 struct TxFD *txfd; 1725 unsigned int fdctl; 1726 1727 txfd = &lp->tfd_base[lp->tfd_end]; 1728 while (lp->tfd_start != lp->tfd_end && 1729 !((fdctl = le32_to_cpu(txfd->fd.FDCtl)) & FD_CownsFD)) { 1730 int status = le32_to_cpu(txfd->fd.FDStat); 1731 struct sk_buff *skb; 1732 unsigned long fdnext = le32_to_cpu(txfd->fd.FDNext); 1733 u32 fdsystem = le32_to_cpu(txfd->fd.FDSystem); 1734 1735 if (netif_msg_tx_done(lp)) { 1736 printk("%s: complete TxFD.\n", dev->name); 1737 dump_txfd(txfd); 1738 } 1739 tc35815_check_tx_stat(dev, status); 1740 1741 skb = fdsystem != 0xffffffff ? 1742 lp->tx_skbs[fdsystem].skb : NULL; 1743 #ifdef DEBUG 1744 if (lp->tx_skbs[lp->tfd_end].skb != skb) { 1745 printk("%s: tx_skbs mismatch.\n", dev->name); 1746 panic_queues(dev); 1747 } 1748 #else 1749 BUG_ON(lp->tx_skbs[lp->tfd_end].skb != skb); 1750 #endif 1751 if (skb) { 1752 dev->stats.tx_bytes += skb->len; 1753 pci_unmap_single(lp->pci_dev, lp->tx_skbs[lp->tfd_end].skb_dma, skb->len, PCI_DMA_TODEVICE); 1754 lp->tx_skbs[lp->tfd_end].skb = NULL; 1755 lp->tx_skbs[lp->tfd_end].skb_dma = 0; 1756 dev_kfree_skb_any(skb); 1757 } 1758 txfd->fd.FDSystem = cpu_to_le32(0xffffffff); 1759 1760 lp->tfd_end = (lp->tfd_end + 1) % TX_FD_NUM; 1761 txfd = &lp->tfd_base[lp->tfd_end]; 1762 #ifdef DEBUG 1763 if ((fdnext & ~FD_Next_EOL) != fd_virt_to_bus(lp, txfd)) { 1764 printk("%s: TxFD FDNext invalid.\n", dev->name); 1765 panic_queues(dev); 1766 } 1767 #endif 1768 if (fdnext & FD_Next_EOL) { 1769 /* DMA Transmitter has been stopping... */ 1770 if (lp->tfd_end != lp->tfd_start) { 1771 struct tc35815_regs __iomem *tr = 1772 (struct tc35815_regs __iomem *)dev->base_addr; 1773 int head = (lp->tfd_start + TX_FD_NUM - 1) % TX_FD_NUM; 1774 struct TxFD *txhead = &lp->tfd_base[head]; 1775 int qlen = (lp->tfd_start + TX_FD_NUM 1776 - lp->tfd_end) % TX_FD_NUM; 1777 1778 #ifdef DEBUG 1779 if (!(le32_to_cpu(txfd->fd.FDCtl) & FD_CownsFD)) { 1780 printk("%s: TxFD FDCtl invalid.\n", dev->name); 1781 panic_queues(dev); 1782 } 1783 #endif 1784 /* log max queue length */ 1785 if (lp->lstats.max_tx_qlen < qlen) 1786 lp->lstats.max_tx_qlen = qlen; 1787 1788 1789 /* start DMA Transmitter again */ 1790 txhead->fd.FDNext |= cpu_to_le32(FD_Next_EOL); 1791 txhead->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx); 1792 if (netif_msg_tx_queued(lp)) { 1793 printk("%s: start TxFD on queue.\n", 1794 dev->name); 1795 dump_txfd(txfd); 1796 } 1797 tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr); 1798 } 1799 break; 1800 } 1801 } 1802 1803 /* If we had stopped the queue due to a "tx full" 1804 * condition, and space has now been made available, 1805 * wake up the queue. 1806 */ 1807 if (netif_queue_stopped(dev) && !tc35815_tx_full(dev)) 1808 netif_wake_queue(dev); 1809 } 1810 1811 /* The inverse routine to tc35815_open(). */ 1812 static int 1813 tc35815_close(struct net_device *dev) 1814 { 1815 struct tc35815_local *lp = netdev_priv(dev); 1816 1817 netif_stop_queue(dev); 1818 napi_disable(&lp->napi); 1819 if (dev->phydev) 1820 phy_stop(dev->phydev); 1821 cancel_work_sync(&lp->restart_work); 1822 1823 /* Flush the Tx and disable Rx here. */ 1824 tc35815_chip_reset(dev); 1825 free_irq(dev->irq, dev); 1826 1827 tc35815_free_queues(dev); 1828 1829 return 0; 1830 1831 } 1832 1833 /* 1834 * Get the current statistics. 1835 * This may be called with the card open or closed. 1836 */ 1837 static struct net_device_stats *tc35815_get_stats(struct net_device *dev) 1838 { 1839 struct tc35815_regs __iomem *tr = 1840 (struct tc35815_regs __iomem *)dev->base_addr; 1841 if (netif_running(dev)) 1842 /* Update the statistics from the device registers. */ 1843 dev->stats.rx_missed_errors += tc_readl(&tr->Miss_Cnt); 1844 1845 return &dev->stats; 1846 } 1847 1848 static void tc35815_set_cam_entry(struct net_device *dev, int index, unsigned char *addr) 1849 { 1850 struct tc35815_local *lp = netdev_priv(dev); 1851 struct tc35815_regs __iomem *tr = 1852 (struct tc35815_regs __iomem *)dev->base_addr; 1853 int cam_index = index * 6; 1854 u32 cam_data; 1855 u32 saved_addr; 1856 1857 saved_addr = tc_readl(&tr->CAM_Adr); 1858 1859 if (netif_msg_hw(lp)) 1860 printk(KERN_DEBUG "%s: CAM %d: %pM\n", 1861 dev->name, index, addr); 1862 if (index & 1) { 1863 /* read modify write */ 1864 tc_writel(cam_index - 2, &tr->CAM_Adr); 1865 cam_data = tc_readl(&tr->CAM_Data) & 0xffff0000; 1866 cam_data |= addr[0] << 8 | addr[1]; 1867 tc_writel(cam_data, &tr->CAM_Data); 1868 /* write whole word */ 1869 tc_writel(cam_index + 2, &tr->CAM_Adr); 1870 cam_data = (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) | addr[5]; 1871 tc_writel(cam_data, &tr->CAM_Data); 1872 } else { 1873 /* write whole word */ 1874 tc_writel(cam_index, &tr->CAM_Adr); 1875 cam_data = (addr[0] << 24) | (addr[1] << 16) | (addr[2] << 8) | addr[3]; 1876 tc_writel(cam_data, &tr->CAM_Data); 1877 /* read modify write */ 1878 tc_writel(cam_index + 4, &tr->CAM_Adr); 1879 cam_data = tc_readl(&tr->CAM_Data) & 0x0000ffff; 1880 cam_data |= addr[4] << 24 | (addr[5] << 16); 1881 tc_writel(cam_data, &tr->CAM_Data); 1882 } 1883 1884 tc_writel(saved_addr, &tr->CAM_Adr); 1885 } 1886 1887 1888 /* 1889 * Set or clear the multicast filter for this adaptor. 1890 * num_addrs == -1 Promiscuous mode, receive all packets 1891 * num_addrs == 0 Normal mode, clear multicast list 1892 * num_addrs > 0 Multicast mode, receive normal and MC packets, 1893 * and do best-effort filtering. 1894 */ 1895 static void 1896 tc35815_set_multicast_list(struct net_device *dev) 1897 { 1898 struct tc35815_regs __iomem *tr = 1899 (struct tc35815_regs __iomem *)dev->base_addr; 1900 1901 if (dev->flags & IFF_PROMISC) { 1902 /* With some (all?) 100MHalf HUB, controller will hang 1903 * if we enabled promiscuous mode before linkup... */ 1904 struct tc35815_local *lp = netdev_priv(dev); 1905 1906 if (!lp->link) 1907 return; 1908 /* Enable promiscuous mode */ 1909 tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc | CAM_StationAcc, &tr->CAM_Ctl); 1910 } else if ((dev->flags & IFF_ALLMULTI) || 1911 netdev_mc_count(dev) > CAM_ENTRY_MAX - 3) { 1912 /* CAM 0, 1, 20 are reserved. */ 1913 /* Disable promiscuous mode, use normal mode. */ 1914 tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc, &tr->CAM_Ctl); 1915 } else if (!netdev_mc_empty(dev)) { 1916 struct netdev_hw_addr *ha; 1917 int i; 1918 int ena_bits = CAM_Ena_Bit(CAM_ENTRY_SOURCE); 1919 1920 tc_writel(0, &tr->CAM_Ctl); 1921 /* Walk the address list, and load the filter */ 1922 i = 0; 1923 netdev_for_each_mc_addr(ha, dev) { 1924 /* entry 0,1 is reserved. */ 1925 tc35815_set_cam_entry(dev, i + 2, ha->addr); 1926 ena_bits |= CAM_Ena_Bit(i + 2); 1927 i++; 1928 } 1929 tc_writel(ena_bits, &tr->CAM_Ena); 1930 tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl); 1931 } else { 1932 tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena); 1933 tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl); 1934 } 1935 } 1936 1937 static void tc35815_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 1938 { 1939 struct tc35815_local *lp = netdev_priv(dev); 1940 1941 strlcpy(info->driver, MODNAME, sizeof(info->driver)); 1942 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 1943 strlcpy(info->bus_info, pci_name(lp->pci_dev), sizeof(info->bus_info)); 1944 } 1945 1946 static u32 tc35815_get_msglevel(struct net_device *dev) 1947 { 1948 struct tc35815_local *lp = netdev_priv(dev); 1949 return lp->msg_enable; 1950 } 1951 1952 static void tc35815_set_msglevel(struct net_device *dev, u32 datum) 1953 { 1954 struct tc35815_local *lp = netdev_priv(dev); 1955 lp->msg_enable = datum; 1956 } 1957 1958 static int tc35815_get_sset_count(struct net_device *dev, int sset) 1959 { 1960 struct tc35815_local *lp = netdev_priv(dev); 1961 1962 switch (sset) { 1963 case ETH_SS_STATS: 1964 return sizeof(lp->lstats) / sizeof(int); 1965 default: 1966 return -EOPNOTSUPP; 1967 } 1968 } 1969 1970 static void tc35815_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data) 1971 { 1972 struct tc35815_local *lp = netdev_priv(dev); 1973 data[0] = lp->lstats.max_tx_qlen; 1974 data[1] = lp->lstats.tx_ints; 1975 data[2] = lp->lstats.rx_ints; 1976 data[3] = lp->lstats.tx_underrun; 1977 } 1978 1979 static struct { 1980 const char str[ETH_GSTRING_LEN]; 1981 } ethtool_stats_keys[] = { 1982 { "max_tx_qlen" }, 1983 { "tx_ints" }, 1984 { "rx_ints" }, 1985 { "tx_underrun" }, 1986 }; 1987 1988 static void tc35815_get_strings(struct net_device *dev, u32 stringset, u8 *data) 1989 { 1990 memcpy(data, ethtool_stats_keys, sizeof(ethtool_stats_keys)); 1991 } 1992 1993 static const struct ethtool_ops tc35815_ethtool_ops = { 1994 .get_drvinfo = tc35815_get_drvinfo, 1995 .get_link = ethtool_op_get_link, 1996 .get_msglevel = tc35815_get_msglevel, 1997 .set_msglevel = tc35815_set_msglevel, 1998 .get_strings = tc35815_get_strings, 1999 .get_sset_count = tc35815_get_sset_count, 2000 .get_ethtool_stats = tc35815_get_ethtool_stats, 2001 .get_link_ksettings = phy_ethtool_get_link_ksettings, 2002 .set_link_ksettings = phy_ethtool_set_link_ksettings, 2003 }; 2004 2005 static int tc35815_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 2006 { 2007 if (!netif_running(dev)) 2008 return -EINVAL; 2009 if (!dev->phydev) 2010 return -ENODEV; 2011 return phy_mii_ioctl(dev->phydev, rq, cmd); 2012 } 2013 2014 static void tc35815_chip_reset(struct net_device *dev) 2015 { 2016 struct tc35815_regs __iomem *tr = 2017 (struct tc35815_regs __iomem *)dev->base_addr; 2018 int i; 2019 /* reset the controller */ 2020 tc_writel(MAC_Reset, &tr->MAC_Ctl); 2021 udelay(4); /* 3200ns */ 2022 i = 0; 2023 while (tc_readl(&tr->MAC_Ctl) & MAC_Reset) { 2024 if (i++ > 100) { 2025 printk(KERN_ERR "%s: MAC reset failed.\n", dev->name); 2026 break; 2027 } 2028 mdelay(1); 2029 } 2030 tc_writel(0, &tr->MAC_Ctl); 2031 2032 /* initialize registers to default value */ 2033 tc_writel(0, &tr->DMA_Ctl); 2034 tc_writel(0, &tr->TxThrsh); 2035 tc_writel(0, &tr->TxPollCtr); 2036 tc_writel(0, &tr->RxFragSize); 2037 tc_writel(0, &tr->Int_En); 2038 tc_writel(0, &tr->FDA_Bas); 2039 tc_writel(0, &tr->FDA_Lim); 2040 tc_writel(0xffffffff, &tr->Int_Src); /* Write 1 to clear */ 2041 tc_writel(0, &tr->CAM_Ctl); 2042 tc_writel(0, &tr->Tx_Ctl); 2043 tc_writel(0, &tr->Rx_Ctl); 2044 tc_writel(0, &tr->CAM_Ena); 2045 (void)tc_readl(&tr->Miss_Cnt); /* Read to clear */ 2046 2047 /* initialize internal SRAM */ 2048 tc_writel(DMA_TestMode, &tr->DMA_Ctl); 2049 for (i = 0; i < 0x1000; i += 4) { 2050 tc_writel(i, &tr->CAM_Adr); 2051 tc_writel(0, &tr->CAM_Data); 2052 } 2053 tc_writel(0, &tr->DMA_Ctl); 2054 } 2055 2056 static void tc35815_chip_init(struct net_device *dev) 2057 { 2058 struct tc35815_local *lp = netdev_priv(dev); 2059 struct tc35815_regs __iomem *tr = 2060 (struct tc35815_regs __iomem *)dev->base_addr; 2061 unsigned long txctl = TX_CTL_CMD; 2062 2063 /* load station address to CAM */ 2064 tc35815_set_cam_entry(dev, CAM_ENTRY_SOURCE, dev->dev_addr); 2065 2066 /* Enable CAM (broadcast and unicast) */ 2067 tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena); 2068 tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl); 2069 2070 /* Use DMA_RxAlign_2 to make IP header 4-byte aligned. */ 2071 if (HAVE_DMA_RXALIGN(lp)) 2072 tc_writel(DMA_BURST_SIZE | DMA_RxAlign_2, &tr->DMA_Ctl); 2073 else 2074 tc_writel(DMA_BURST_SIZE, &tr->DMA_Ctl); 2075 tc_writel(0, &tr->TxPollCtr); /* Batch mode */ 2076 tc_writel(TX_THRESHOLD, &tr->TxThrsh); 2077 tc_writel(INT_EN_CMD, &tr->Int_En); 2078 2079 /* set queues */ 2080 tc_writel(fd_virt_to_bus(lp, lp->rfd_base), &tr->FDA_Bas); 2081 tc_writel((unsigned long)lp->rfd_limit - (unsigned long)lp->rfd_base, 2082 &tr->FDA_Lim); 2083 /* 2084 * Activation method: 2085 * First, enable the MAC Transmitter and the DMA Receive circuits. 2086 * Then enable the DMA Transmitter and the MAC Receive circuits. 2087 */ 2088 tc_writel(fd_virt_to_bus(lp, lp->fbl_ptr), &tr->BLFrmPtr); /* start DMA receiver */ 2089 tc_writel(RX_CTL_CMD, &tr->Rx_Ctl); /* start MAC receiver */ 2090 2091 /* start MAC transmitter */ 2092 /* TX4939 does not have EnLCarr */ 2093 if (lp->chiptype == TC35815_TX4939) 2094 txctl &= ~Tx_EnLCarr; 2095 /* WORKAROUND: ignore LostCrS in full duplex operation */ 2096 if (!dev->phydev || !lp->link || lp->duplex == DUPLEX_FULL) 2097 txctl &= ~Tx_EnLCarr; 2098 tc_writel(txctl, &tr->Tx_Ctl); 2099 } 2100 2101 #ifdef CONFIG_PM 2102 static int tc35815_suspend(struct pci_dev *pdev, pm_message_t state) 2103 { 2104 struct net_device *dev = pci_get_drvdata(pdev); 2105 struct tc35815_local *lp = netdev_priv(dev); 2106 unsigned long flags; 2107 2108 pci_save_state(pdev); 2109 if (!netif_running(dev)) 2110 return 0; 2111 netif_device_detach(dev); 2112 if (dev->phydev) 2113 phy_stop(dev->phydev); 2114 spin_lock_irqsave(&lp->lock, flags); 2115 tc35815_chip_reset(dev); 2116 spin_unlock_irqrestore(&lp->lock, flags); 2117 pci_set_power_state(pdev, PCI_D3hot); 2118 return 0; 2119 } 2120 2121 static int tc35815_resume(struct pci_dev *pdev) 2122 { 2123 struct net_device *dev = pci_get_drvdata(pdev); 2124 2125 pci_restore_state(pdev); 2126 if (!netif_running(dev)) 2127 return 0; 2128 pci_set_power_state(pdev, PCI_D0); 2129 tc35815_restart(dev); 2130 netif_carrier_off(dev); 2131 if (dev->phydev) 2132 phy_start(dev->phydev); 2133 netif_device_attach(dev); 2134 return 0; 2135 } 2136 #endif /* CONFIG_PM */ 2137 2138 static struct pci_driver tc35815_pci_driver = { 2139 .name = MODNAME, 2140 .id_table = tc35815_pci_tbl, 2141 .probe = tc35815_init_one, 2142 .remove = tc35815_remove_one, 2143 #ifdef CONFIG_PM 2144 .suspend = tc35815_suspend, 2145 .resume = tc35815_resume, 2146 #endif 2147 }; 2148 2149 module_param_named(speed, options.speed, int, 0); 2150 MODULE_PARM_DESC(speed, "0:auto, 10:10Mbps, 100:100Mbps"); 2151 module_param_named(duplex, options.duplex, int, 0); 2152 MODULE_PARM_DESC(duplex, "0:auto, 1:half, 2:full"); 2153 2154 module_pci_driver(tc35815_pci_driver); 2155 MODULE_DESCRIPTION("TOSHIBA TC35815 PCI 10M/100M Ethernet driver"); 2156 MODULE_LICENSE("GPL"); 2157