1 /*
2  * tc35815.c: A TOSHIBA TC35815CF PCI 10/100Mbps ethernet driver for linux.
3  *
4  * Based on skelton.c by Donald Becker.
5  *
6  * This driver is a replacement of older and less maintained version.
7  * This is a header of the older version:
8  *	-----<snip>-----
9  *	Copyright 2001 MontaVista Software Inc.
10  *	Author: MontaVista Software, Inc.
11  *		ahennessy@mvista.com
12  *	Copyright (C) 2000-2001 Toshiba Corporation
13  *	static const char *version =
14  *		"tc35815.c:v0.00 26/07/2000 by Toshiba Corporation\n";
15  *	-----<snip>-----
16  *
17  * This file is subject to the terms and conditions of the GNU General Public
18  * License.  See the file "COPYING" in the main directory of this archive
19  * for more details.
20  *
21  * (C) Copyright TOSHIBA CORPORATION 2004-2005
22  * All Rights Reserved.
23  */
24 
25 #define DRV_VERSION	"1.39"
26 static const char *version = "tc35815.c:v" DRV_VERSION "\n";
27 #define MODNAME			"tc35815"
28 
29 #include <linux/module.h>
30 #include <linux/kernel.h>
31 #include <linux/types.h>
32 #include <linux/fcntl.h>
33 #include <linux/interrupt.h>
34 #include <linux/ioport.h>
35 #include <linux/in.h>
36 #include <linux/if_vlan.h>
37 #include <linux/slab.h>
38 #include <linux/string.h>
39 #include <linux/spinlock.h>
40 #include <linux/errno.h>
41 #include <linux/init.h>
42 #include <linux/netdevice.h>
43 #include <linux/etherdevice.h>
44 #include <linux/skbuff.h>
45 #include <linux/delay.h>
46 #include <linux/pci.h>
47 #include <linux/phy.h>
48 #include <linux/workqueue.h>
49 #include <linux/platform_device.h>
50 #include <linux/prefetch.h>
51 #include <asm/io.h>
52 #include <asm/byteorder.h>
53 
54 enum tc35815_chiptype {
55 	TC35815CF = 0,
56 	TC35815_NWU,
57 	TC35815_TX4939,
58 };
59 
60 /* indexed by tc35815_chiptype, above */
61 static const struct {
62 	const char *name;
63 } chip_info[] = {
64 	{ "TOSHIBA TC35815CF 10/100BaseTX" },
65 	{ "TOSHIBA TC35815 with Wake on LAN" },
66 	{ "TOSHIBA TC35815/TX4939" },
67 };
68 
69 static DEFINE_PCI_DEVICE_TABLE(tc35815_pci_tbl) = {
70 	{PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815CF), .driver_data = TC35815CF },
71 	{PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_NWU), .driver_data = TC35815_NWU },
72 	{PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_TX4939), .driver_data = TC35815_TX4939 },
73 	{0,}
74 };
75 MODULE_DEVICE_TABLE(pci, tc35815_pci_tbl);
76 
77 /* see MODULE_PARM_DESC */
78 static struct tc35815_options {
79 	int speed;
80 	int duplex;
81 } options;
82 
83 /*
84  * Registers
85  */
86 struct tc35815_regs {
87 	__u32 DMA_Ctl;		/* 0x00 */
88 	__u32 TxFrmPtr;
89 	__u32 TxThrsh;
90 	__u32 TxPollCtr;
91 	__u32 BLFrmPtr;
92 	__u32 RxFragSize;
93 	__u32 Int_En;
94 	__u32 FDA_Bas;
95 	__u32 FDA_Lim;		/* 0x20 */
96 	__u32 Int_Src;
97 	__u32 unused0[2];
98 	__u32 PauseCnt;
99 	__u32 RemPauCnt;
100 	__u32 TxCtlFrmStat;
101 	__u32 unused1;
102 	__u32 MAC_Ctl;		/* 0x40 */
103 	__u32 CAM_Ctl;
104 	__u32 Tx_Ctl;
105 	__u32 Tx_Stat;
106 	__u32 Rx_Ctl;
107 	__u32 Rx_Stat;
108 	__u32 MD_Data;
109 	__u32 MD_CA;
110 	__u32 CAM_Adr;		/* 0x60 */
111 	__u32 CAM_Data;
112 	__u32 CAM_Ena;
113 	__u32 PROM_Ctl;
114 	__u32 PROM_Data;
115 	__u32 Algn_Cnt;
116 	__u32 CRC_Cnt;
117 	__u32 Miss_Cnt;
118 };
119 
120 /*
121  * Bit assignments
122  */
123 /* DMA_Ctl bit assign ------------------------------------------------------- */
124 #define DMA_RxAlign	       0x00c00000 /* 1:Reception Alignment	     */
125 #define DMA_RxAlign_1	       0x00400000
126 #define DMA_RxAlign_2	       0x00800000
127 #define DMA_RxAlign_3	       0x00c00000
128 #define DMA_M66EnStat	       0x00080000 /* 1:66MHz Enable State	     */
129 #define DMA_IntMask	       0x00040000 /* 1:Interrupt mask		     */
130 #define DMA_SWIntReq	       0x00020000 /* 1:Software Interrupt request    */
131 #define DMA_TxWakeUp	       0x00010000 /* 1:Transmit Wake Up		     */
132 #define DMA_RxBigE	       0x00008000 /* 1:Receive Big Endian	     */
133 #define DMA_TxBigE	       0x00004000 /* 1:Transmit Big Endian	     */
134 #define DMA_TestMode	       0x00002000 /* 1:Test Mode		     */
135 #define DMA_PowrMgmnt	       0x00001000 /* 1:Power Management		     */
136 #define DMA_DmBurst_Mask       0x000001fc /* DMA Burst size		     */
137 
138 /* RxFragSize bit assign ---------------------------------------------------- */
139 #define RxFrag_EnPack	       0x00008000 /* 1:Enable Packing		     */
140 #define RxFrag_MinFragMask     0x00000ffc /* Minimum Fragment		     */
141 
142 /* MAC_Ctl bit assign ------------------------------------------------------- */
143 #define MAC_Link10	       0x00008000 /* 1:Link Status 10Mbits	     */
144 #define MAC_EnMissRoll	       0x00002000 /* 1:Enable Missed Roll	     */
145 #define MAC_MissRoll	       0x00000400 /* 1:Missed Roll		     */
146 #define MAC_Loop10	       0x00000080 /* 1:Loop 10 Mbps		     */
147 #define MAC_Conn_Auto	       0x00000000 /*00:Connection mode (Automatic)   */
148 #define MAC_Conn_10M	       0x00000020 /*01:		       (10Mbps endec)*/
149 #define MAC_Conn_Mll	       0x00000040 /*10:		       (Mll clock)   */
150 #define MAC_MacLoop	       0x00000010 /* 1:MAC Loopback		     */
151 #define MAC_FullDup	       0x00000008 /* 1:Full Duplex 0:Half Duplex     */
152 #define MAC_Reset	       0x00000004 /* 1:Software Reset		     */
153 #define MAC_HaltImm	       0x00000002 /* 1:Halt Immediate		     */
154 #define MAC_HaltReq	       0x00000001 /* 1:Halt request		     */
155 
156 /* PROM_Ctl bit assign ------------------------------------------------------ */
157 #define PROM_Busy	       0x00008000 /* 1:Busy (Start Operation)	     */
158 #define PROM_Read	       0x00004000 /*10:Read operation		     */
159 #define PROM_Write	       0x00002000 /*01:Write operation		     */
160 #define PROM_Erase	       0x00006000 /*11:Erase operation		     */
161 					  /*00:Enable or Disable Writting,   */
162 					  /*	  as specified in PROM_Addr. */
163 #define PROM_Addr_Ena	       0x00000030 /*11xxxx:PROM Write enable	     */
164 					  /*00xxxx:	      disable	     */
165 
166 /* CAM_Ctl bit assign ------------------------------------------------------- */
167 #define CAM_CompEn	       0x00000010 /* 1:CAM Compare Enable	     */
168 #define CAM_NegCAM	       0x00000008 /* 1:Reject packets CAM recognizes,*/
169 					  /*			accept other */
170 #define CAM_BroadAcc	       0x00000004 /* 1:Broadcast assept		     */
171 #define CAM_GroupAcc	       0x00000002 /* 1:Multicast assept		     */
172 #define CAM_StationAcc	       0x00000001 /* 1:unicast accept		     */
173 
174 /* CAM_Ena bit assign ------------------------------------------------------- */
175 #define CAM_ENTRY_MAX		       21   /* CAM Data entry max count	     */
176 #define CAM_Ena_Mask ((1<<CAM_ENTRY_MAX)-1) /* CAM Enable bits (Max 21bits)  */
177 #define CAM_Ena_Bit(index)	(1 << (index))
178 #define CAM_ENTRY_DESTINATION	0
179 #define CAM_ENTRY_SOURCE	1
180 #define CAM_ENTRY_MACCTL	20
181 
182 /* Tx_Ctl bit assign -------------------------------------------------------- */
183 #define Tx_En		       0x00000001 /* 1:Transmit enable		     */
184 #define Tx_TxHalt	       0x00000002 /* 1:Transmit Halt Request	     */
185 #define Tx_NoPad	       0x00000004 /* 1:Suppress Padding		     */
186 #define Tx_NoCRC	       0x00000008 /* 1:Suppress Padding		     */
187 #define Tx_FBack	       0x00000010 /* 1:Fast Back-off		     */
188 #define Tx_EnUnder	       0x00000100 /* 1:Enable Underrun		     */
189 #define Tx_EnExDefer	       0x00000200 /* 1:Enable Excessive Deferral     */
190 #define Tx_EnLCarr	       0x00000400 /* 1:Enable Lost Carrier	     */
191 #define Tx_EnExColl	       0x00000800 /* 1:Enable Excessive Collision    */
192 #define Tx_EnLateColl	       0x00001000 /* 1:Enable Late Collision	     */
193 #define Tx_EnTxPar	       0x00002000 /* 1:Enable Transmit Parity	     */
194 #define Tx_EnComp	       0x00004000 /* 1:Enable Completion	     */
195 
196 /* Tx_Stat bit assign ------------------------------------------------------- */
197 #define Tx_TxColl_MASK	       0x0000000F /* Tx Collision Count		     */
198 #define Tx_ExColl	       0x00000010 /* Excessive Collision	     */
199 #define Tx_TXDefer	       0x00000020 /* Transmit Defered		     */
200 #define Tx_Paused	       0x00000040 /* Transmit Paused		     */
201 #define Tx_IntTx	       0x00000080 /* Interrupt on Tx		     */
202 #define Tx_Under	       0x00000100 /* Underrun			     */
203 #define Tx_Defer	       0x00000200 /* Deferral			     */
204 #define Tx_NCarr	       0x00000400 /* No Carrier			     */
205 #define Tx_10Stat	       0x00000800 /* 10Mbps Status		     */
206 #define Tx_LateColl	       0x00001000 /* Late Collision		     */
207 #define Tx_TxPar	       0x00002000 /* Tx Parity Error		     */
208 #define Tx_Comp		       0x00004000 /* Completion			     */
209 #define Tx_Halted	       0x00008000 /* Tx Halted			     */
210 #define Tx_SQErr	       0x00010000 /* Signal Quality Error(SQE)	     */
211 
212 /* Rx_Ctl bit assign -------------------------------------------------------- */
213 #define Rx_EnGood	       0x00004000 /* 1:Enable Good		     */
214 #define Rx_EnRxPar	       0x00002000 /* 1:Enable Receive Parity	     */
215 #define Rx_EnLongErr	       0x00000800 /* 1:Enable Long Error	     */
216 #define Rx_EnOver	       0x00000400 /* 1:Enable OverFlow		     */
217 #define Rx_EnCRCErr	       0x00000200 /* 1:Enable CRC Error		     */
218 #define Rx_EnAlign	       0x00000100 /* 1:Enable Alignment		     */
219 #define Rx_IgnoreCRC	       0x00000040 /* 1:Ignore CRC Value		     */
220 #define Rx_StripCRC	       0x00000010 /* 1:Strip CRC Value		     */
221 #define Rx_ShortEn	       0x00000008 /* 1:Short Enable		     */
222 #define Rx_LongEn	       0x00000004 /* 1:Long Enable		     */
223 #define Rx_RxHalt	       0x00000002 /* 1:Receive Halt Request	     */
224 #define Rx_RxEn		       0x00000001 /* 1:Receive Intrrupt Enable	     */
225 
226 /* Rx_Stat bit assign ------------------------------------------------------- */
227 #define Rx_Halted	       0x00008000 /* Rx Halted			     */
228 #define Rx_Good		       0x00004000 /* Rx Good			     */
229 #define Rx_RxPar	       0x00002000 /* Rx Parity Error		     */
230 #define Rx_TypePkt	       0x00001000 /* Rx Type Packet		     */
231 #define Rx_LongErr	       0x00000800 /* Rx Long Error		     */
232 #define Rx_Over		       0x00000400 /* Rx Overflow		     */
233 #define Rx_CRCErr	       0x00000200 /* Rx CRC Error		     */
234 #define Rx_Align	       0x00000100 /* Rx Alignment Error		     */
235 #define Rx_10Stat	       0x00000080 /* Rx 10Mbps Status		     */
236 #define Rx_IntRx	       0x00000040 /* Rx Interrupt		     */
237 #define Rx_CtlRecd	       0x00000020 /* Rx Control Receive		     */
238 #define Rx_InLenErr	       0x00000010 /* Rx In Range Frame Length Error  */
239 
240 #define Rx_Stat_Mask	       0x0000FFF0 /* Rx All Status Mask		     */
241 
242 /* Int_En bit assign -------------------------------------------------------- */
243 #define Int_NRAbtEn	       0x00000800 /* 1:Non-recoverable Abort Enable  */
244 #define Int_TxCtlCmpEn	       0x00000400 /* 1:Transmit Ctl Complete Enable  */
245 #define Int_DmParErrEn	       0x00000200 /* 1:DMA Parity Error Enable	     */
246 #define Int_DParDEn	       0x00000100 /* 1:Data Parity Error Enable	     */
247 #define Int_EarNotEn	       0x00000080 /* 1:Early Notify Enable	     */
248 #define Int_DParErrEn	       0x00000040 /* 1:Detected Parity Error Enable  */
249 #define Int_SSysErrEn	       0x00000020 /* 1:Signalled System Error Enable */
250 #define Int_RMasAbtEn	       0x00000010 /* 1:Received Master Abort Enable  */
251 #define Int_RTargAbtEn	       0x00000008 /* 1:Received Target Abort Enable  */
252 #define Int_STargAbtEn	       0x00000004 /* 1:Signalled Target Abort Enable */
253 #define Int_BLExEn	       0x00000002 /* 1:Buffer List Exhausted Enable  */
254 #define Int_FDAExEn	       0x00000001 /* 1:Free Descriptor Area	     */
255 					  /*		   Exhausted Enable  */
256 
257 /* Int_Src bit assign ------------------------------------------------------- */
258 #define Int_NRabt	       0x00004000 /* 1:Non Recoverable error	     */
259 #define Int_DmParErrStat       0x00002000 /* 1:DMA Parity Error & Clear	     */
260 #define Int_BLEx	       0x00001000 /* 1:Buffer List Empty & Clear     */
261 #define Int_FDAEx	       0x00000800 /* 1:FDA Empty & Clear	     */
262 #define Int_IntNRAbt	       0x00000400 /* 1:Non Recoverable Abort	     */
263 #define Int_IntCmp	       0x00000200 /* 1:MAC control packet complete   */
264 #define Int_IntExBD	       0x00000100 /* 1:Interrupt Extra BD & Clear    */
265 #define Int_DmParErr	       0x00000080 /* 1:DMA Parity Error & Clear	     */
266 #define Int_IntEarNot	       0x00000040 /* 1:Receive Data write & Clear    */
267 #define Int_SWInt	       0x00000020 /* 1:Software request & Clear	     */
268 #define Int_IntBLEx	       0x00000010 /* 1:Buffer List Empty & Clear     */
269 #define Int_IntFDAEx	       0x00000008 /* 1:FDA Empty & Clear	     */
270 #define Int_IntPCI	       0x00000004 /* 1:PCI controller & Clear	     */
271 #define Int_IntMacRx	       0x00000002 /* 1:Rx controller & Clear	     */
272 #define Int_IntMacTx	       0x00000001 /* 1:Tx controller & Clear	     */
273 
274 /* MD_CA bit assign --------------------------------------------------------- */
275 #define MD_CA_PreSup	       0x00001000 /* 1:Preamble Suppress		     */
276 #define MD_CA_Busy	       0x00000800 /* 1:Busy (Start Operation)	     */
277 #define MD_CA_Wr	       0x00000400 /* 1:Write 0:Read		     */
278 
279 
280 /*
281  * Descriptors
282  */
283 
284 /* Frame descripter */
285 struct FDesc {
286 	volatile __u32 FDNext;
287 	volatile __u32 FDSystem;
288 	volatile __u32 FDStat;
289 	volatile __u32 FDCtl;
290 };
291 
292 /* Buffer descripter */
293 struct BDesc {
294 	volatile __u32 BuffData;
295 	volatile __u32 BDCtl;
296 };
297 
298 #define FD_ALIGN	16
299 
300 /* Frame Descripter bit assign ---------------------------------------------- */
301 #define FD_FDLength_MASK       0x0000FFFF /* Length MASK		     */
302 #define FD_BDCnt_MASK	       0x001F0000 /* BD count MASK in FD	     */
303 #define FD_FrmOpt_MASK	       0x7C000000 /* Frame option MASK		     */
304 #define FD_FrmOpt_BigEndian    0x40000000 /* Tx/Rx */
305 #define FD_FrmOpt_IntTx	       0x20000000 /* Tx only */
306 #define FD_FrmOpt_NoCRC	       0x10000000 /* Tx only */
307 #define FD_FrmOpt_NoPadding    0x08000000 /* Tx only */
308 #define FD_FrmOpt_Packing      0x04000000 /* Rx only */
309 #define FD_CownsFD	       0x80000000 /* FD Controller owner bit	     */
310 #define FD_Next_EOL	       0x00000001 /* FD EOL indicator		     */
311 #define FD_BDCnt_SHIFT	       16
312 
313 /* Buffer Descripter bit assign --------------------------------------------- */
314 #define BD_BuffLength_MASK     0x0000FFFF /* Receive Data Size		     */
315 #define BD_RxBDID_MASK	       0x00FF0000 /* BD ID Number MASK		     */
316 #define BD_RxBDSeqN_MASK       0x7F000000 /* Rx BD Sequence Number	     */
317 #define BD_CownsBD	       0x80000000 /* BD Controller owner bit	     */
318 #define BD_RxBDID_SHIFT	       16
319 #define BD_RxBDSeqN_SHIFT      24
320 
321 
322 /* Some useful constants. */
323 
324 #define TX_CTL_CMD	(Tx_EnTxPar | Tx_EnLateColl | \
325 	Tx_EnExColl | Tx_EnLCarr | Tx_EnExDefer | Tx_EnUnder | \
326 	Tx_En)	/* maybe  0x7b01 */
327 /* Do not use Rx_StripCRC -- it causes trouble on BLEx/FDAEx condition */
328 #define RX_CTL_CMD	(Rx_EnGood | Rx_EnRxPar | Rx_EnLongErr | Rx_EnOver \
329 	| Rx_EnCRCErr | Rx_EnAlign | Rx_RxEn) /* maybe 0x6f01 */
330 #define INT_EN_CMD  (Int_NRAbtEn | \
331 	Int_DmParErrEn | Int_DParDEn | Int_DParErrEn | \
332 	Int_SSysErrEn  | Int_RMasAbtEn | Int_RTargAbtEn | \
333 	Int_STargAbtEn | \
334 	Int_BLExEn  | Int_FDAExEn) /* maybe 0xb7f*/
335 #define DMA_CTL_CMD	DMA_BURST_SIZE
336 #define HAVE_DMA_RXALIGN(lp)	likely((lp)->chiptype != TC35815CF)
337 
338 /* Tuning parameters */
339 #define DMA_BURST_SIZE	32
340 #define TX_THRESHOLD	1024
341 /* used threshold with packet max byte for low pci transfer ability.*/
342 #define TX_THRESHOLD_MAX 1536
343 /* setting threshold max value when overrun error occurred this count. */
344 #define TX_THRESHOLD_KEEP_LIMIT 10
345 
346 /* 16 + RX_BUF_NUM * 8 + RX_FD_NUM * 16 + TX_FD_NUM * 32 <= PAGE_SIZE*FD_PAGE_NUM */
347 #define FD_PAGE_NUM 4
348 #define RX_BUF_NUM	128	/* < 256 */
349 #define RX_FD_NUM	256	/* >= 32 */
350 #define TX_FD_NUM	128
351 #if RX_CTL_CMD & Rx_LongEn
352 #define RX_BUF_SIZE	PAGE_SIZE
353 #elif RX_CTL_CMD & Rx_StripCRC
354 #define RX_BUF_SIZE	\
355 	L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + NET_IP_ALIGN)
356 #else
357 #define RX_BUF_SIZE	\
358 	L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN + NET_IP_ALIGN)
359 #endif
360 #define RX_FD_RESERVE	(2 / 2)	/* max 2 BD per RxFD */
361 #define NAPI_WEIGHT	16
362 
363 struct TxFD {
364 	struct FDesc fd;
365 	struct BDesc bd;
366 	struct BDesc unused;
367 };
368 
369 struct RxFD {
370 	struct FDesc fd;
371 	struct BDesc bd[0];	/* variable length */
372 };
373 
374 struct FrFD {
375 	struct FDesc fd;
376 	struct BDesc bd[RX_BUF_NUM];
377 };
378 
379 
380 #define tc_readl(addr)	ioread32(addr)
381 #define tc_writel(d, addr)	iowrite32(d, addr)
382 
383 #define TC35815_TX_TIMEOUT  msecs_to_jiffies(400)
384 
385 /* Information that need to be kept for each controller. */
386 struct tc35815_local {
387 	struct pci_dev *pci_dev;
388 
389 	struct net_device *dev;
390 	struct napi_struct napi;
391 
392 	/* statistics */
393 	struct {
394 		int max_tx_qlen;
395 		int tx_ints;
396 		int rx_ints;
397 		int tx_underrun;
398 	} lstats;
399 
400 	/* Tx control lock.  This protects the transmit buffer ring
401 	 * state along with the "tx full" state of the driver.  This
402 	 * means all netif_queue flow control actions are protected
403 	 * by this lock as well.
404 	 */
405 	spinlock_t lock;
406 	spinlock_t rx_lock;
407 
408 	struct mii_bus *mii_bus;
409 	struct phy_device *phy_dev;
410 	int duplex;
411 	int speed;
412 	int link;
413 	struct work_struct restart_work;
414 
415 	/*
416 	 * Transmitting: Batch Mode.
417 	 *	1 BD in 1 TxFD.
418 	 * Receiving: Non-Packing Mode.
419 	 *	1 circular FD for Free Buffer List.
420 	 *	RX_BUF_NUM BD in Free Buffer FD.
421 	 *	One Free Buffer BD has ETH_FRAME_LEN data buffer.
422 	 */
423 	void *fd_buf;	/* for TxFD, RxFD, FrFD */
424 	dma_addr_t fd_buf_dma;
425 	struct TxFD *tfd_base;
426 	unsigned int tfd_start;
427 	unsigned int tfd_end;
428 	struct RxFD *rfd_base;
429 	struct RxFD *rfd_limit;
430 	struct RxFD *rfd_cur;
431 	struct FrFD *fbl_ptr;
432 	unsigned int fbl_count;
433 	struct {
434 		struct sk_buff *skb;
435 		dma_addr_t skb_dma;
436 	} tx_skbs[TX_FD_NUM], rx_skbs[RX_BUF_NUM];
437 	u32 msg_enable;
438 	enum tc35815_chiptype chiptype;
439 };
440 
441 static inline dma_addr_t fd_virt_to_bus(struct tc35815_local *lp, void *virt)
442 {
443 	return lp->fd_buf_dma + ((u8 *)virt - (u8 *)lp->fd_buf);
444 }
445 #ifdef DEBUG
446 static inline void *fd_bus_to_virt(struct tc35815_local *lp, dma_addr_t bus)
447 {
448 	return (void *)((u8 *)lp->fd_buf + (bus - lp->fd_buf_dma));
449 }
450 #endif
451 static struct sk_buff *alloc_rxbuf_skb(struct net_device *dev,
452 				       struct pci_dev *hwdev,
453 				       dma_addr_t *dma_handle)
454 {
455 	struct sk_buff *skb;
456 	skb = netdev_alloc_skb(dev, RX_BUF_SIZE);
457 	if (!skb)
458 		return NULL;
459 	*dma_handle = pci_map_single(hwdev, skb->data, RX_BUF_SIZE,
460 				     PCI_DMA_FROMDEVICE);
461 	if (pci_dma_mapping_error(hwdev, *dma_handle)) {
462 		dev_kfree_skb_any(skb);
463 		return NULL;
464 	}
465 	skb_reserve(skb, 2);	/* make IP header 4byte aligned */
466 	return skb;
467 }
468 
469 static void free_rxbuf_skb(struct pci_dev *hwdev, struct sk_buff *skb, dma_addr_t dma_handle)
470 {
471 	pci_unmap_single(hwdev, dma_handle, RX_BUF_SIZE,
472 			 PCI_DMA_FROMDEVICE);
473 	dev_kfree_skb_any(skb);
474 }
475 
476 /* Index to functions, as function prototypes. */
477 
478 static int	tc35815_open(struct net_device *dev);
479 static int	tc35815_send_packet(struct sk_buff *skb, struct net_device *dev);
480 static irqreturn_t	tc35815_interrupt(int irq, void *dev_id);
481 static int	tc35815_rx(struct net_device *dev, int limit);
482 static int	tc35815_poll(struct napi_struct *napi, int budget);
483 static void	tc35815_txdone(struct net_device *dev);
484 static int	tc35815_close(struct net_device *dev);
485 static struct	net_device_stats *tc35815_get_stats(struct net_device *dev);
486 static void	tc35815_set_multicast_list(struct net_device *dev);
487 static void	tc35815_tx_timeout(struct net_device *dev);
488 static int	tc35815_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
489 #ifdef CONFIG_NET_POLL_CONTROLLER
490 static void	tc35815_poll_controller(struct net_device *dev);
491 #endif
492 static const struct ethtool_ops tc35815_ethtool_ops;
493 
494 /* Example routines you must write ;->. */
495 static void	tc35815_chip_reset(struct net_device *dev);
496 static void	tc35815_chip_init(struct net_device *dev);
497 
498 #ifdef DEBUG
499 static void	panic_queues(struct net_device *dev);
500 #endif
501 
502 static void tc35815_restart_work(struct work_struct *work);
503 
504 static int tc_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
505 {
506 	struct net_device *dev = bus->priv;
507 	struct tc35815_regs __iomem *tr =
508 		(struct tc35815_regs __iomem *)dev->base_addr;
509 	unsigned long timeout = jiffies + HZ;
510 
511 	tc_writel(MD_CA_Busy | (mii_id << 5) | (regnum & 0x1f), &tr->MD_CA);
512 	udelay(12); /* it takes 32 x 400ns at least */
513 	while (tc_readl(&tr->MD_CA) & MD_CA_Busy) {
514 		if (time_after(jiffies, timeout))
515 			return -EIO;
516 		cpu_relax();
517 	}
518 	return tc_readl(&tr->MD_Data) & 0xffff;
519 }
520 
521 static int tc_mdio_write(struct mii_bus *bus, int mii_id, int regnum, u16 val)
522 {
523 	struct net_device *dev = bus->priv;
524 	struct tc35815_regs __iomem *tr =
525 		(struct tc35815_regs __iomem *)dev->base_addr;
526 	unsigned long timeout = jiffies + HZ;
527 
528 	tc_writel(val, &tr->MD_Data);
529 	tc_writel(MD_CA_Busy | MD_CA_Wr | (mii_id << 5) | (regnum & 0x1f),
530 		  &tr->MD_CA);
531 	udelay(12); /* it takes 32 x 400ns at least */
532 	while (tc_readl(&tr->MD_CA) & MD_CA_Busy) {
533 		if (time_after(jiffies, timeout))
534 			return -EIO;
535 		cpu_relax();
536 	}
537 	return 0;
538 }
539 
540 static void tc_handle_link_change(struct net_device *dev)
541 {
542 	struct tc35815_local *lp = netdev_priv(dev);
543 	struct phy_device *phydev = lp->phy_dev;
544 	unsigned long flags;
545 	int status_change = 0;
546 
547 	spin_lock_irqsave(&lp->lock, flags);
548 	if (phydev->link &&
549 	    (lp->speed != phydev->speed || lp->duplex != phydev->duplex)) {
550 		struct tc35815_regs __iomem *tr =
551 			(struct tc35815_regs __iomem *)dev->base_addr;
552 		u32 reg;
553 
554 		reg = tc_readl(&tr->MAC_Ctl);
555 		reg |= MAC_HaltReq;
556 		tc_writel(reg, &tr->MAC_Ctl);
557 		if (phydev->duplex == DUPLEX_FULL)
558 			reg |= MAC_FullDup;
559 		else
560 			reg &= ~MAC_FullDup;
561 		tc_writel(reg, &tr->MAC_Ctl);
562 		reg &= ~MAC_HaltReq;
563 		tc_writel(reg, &tr->MAC_Ctl);
564 
565 		/*
566 		 * TX4939 PCFG.SPEEDn bit will be changed on
567 		 * NETDEV_CHANGE event.
568 		 */
569 		/*
570 		 * WORKAROUND: enable LostCrS only if half duplex
571 		 * operation.
572 		 * (TX4939 does not have EnLCarr)
573 		 */
574 		if (phydev->duplex == DUPLEX_HALF &&
575 		    lp->chiptype != TC35815_TX4939)
576 			tc_writel(tc_readl(&tr->Tx_Ctl) | Tx_EnLCarr,
577 				  &tr->Tx_Ctl);
578 
579 		lp->speed = phydev->speed;
580 		lp->duplex = phydev->duplex;
581 		status_change = 1;
582 	}
583 
584 	if (phydev->link != lp->link) {
585 		if (phydev->link) {
586 			/* delayed promiscuous enabling */
587 			if (dev->flags & IFF_PROMISC)
588 				tc35815_set_multicast_list(dev);
589 		} else {
590 			lp->speed = 0;
591 			lp->duplex = -1;
592 		}
593 		lp->link = phydev->link;
594 
595 		status_change = 1;
596 	}
597 	spin_unlock_irqrestore(&lp->lock, flags);
598 
599 	if (status_change && netif_msg_link(lp)) {
600 		phy_print_status(phydev);
601 		pr_debug("%s: MII BMCR %04x BMSR %04x LPA %04x\n",
602 			 dev->name,
603 			 phy_read(phydev, MII_BMCR),
604 			 phy_read(phydev, MII_BMSR),
605 			 phy_read(phydev, MII_LPA));
606 	}
607 }
608 
609 static int tc_mii_probe(struct net_device *dev)
610 {
611 	struct tc35815_local *lp = netdev_priv(dev);
612 	struct phy_device *phydev = NULL;
613 	int phy_addr;
614 	u32 dropmask;
615 
616 	/* find the first phy */
617 	for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) {
618 		if (lp->mii_bus->phy_map[phy_addr]) {
619 			if (phydev) {
620 				printk(KERN_ERR "%s: multiple PHYs found\n",
621 				       dev->name);
622 				return -EINVAL;
623 			}
624 			phydev = lp->mii_bus->phy_map[phy_addr];
625 			break;
626 		}
627 	}
628 
629 	if (!phydev) {
630 		printk(KERN_ERR "%s: no PHY found\n", dev->name);
631 		return -ENODEV;
632 	}
633 
634 	/* attach the mac to the phy */
635 	phydev = phy_connect(dev, dev_name(&phydev->dev),
636 			     &tc_handle_link_change,
637 			     lp->chiptype == TC35815_TX4939 ? PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII);
638 	if (IS_ERR(phydev)) {
639 		printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
640 		return PTR_ERR(phydev);
641 	}
642 	printk(KERN_INFO "%s: attached PHY driver [%s] "
643 		"(mii_bus:phy_addr=%s, id=%x)\n",
644 		dev->name, phydev->drv->name, dev_name(&phydev->dev),
645 		phydev->phy_id);
646 
647 	/* mask with MAC supported features */
648 	phydev->supported &= PHY_BASIC_FEATURES;
649 	dropmask = 0;
650 	if (options.speed == 10)
651 		dropmask |= SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full;
652 	else if (options.speed == 100)
653 		dropmask |= SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full;
654 	if (options.duplex == 1)
655 		dropmask |= SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Full;
656 	else if (options.duplex == 2)
657 		dropmask |= SUPPORTED_10baseT_Half | SUPPORTED_100baseT_Half;
658 	phydev->supported &= ~dropmask;
659 	phydev->advertising = phydev->supported;
660 
661 	lp->link = 0;
662 	lp->speed = 0;
663 	lp->duplex = -1;
664 	lp->phy_dev = phydev;
665 
666 	return 0;
667 }
668 
669 static int tc_mii_init(struct net_device *dev)
670 {
671 	struct tc35815_local *lp = netdev_priv(dev);
672 	int err;
673 	int i;
674 
675 	lp->mii_bus = mdiobus_alloc();
676 	if (lp->mii_bus == NULL) {
677 		err = -ENOMEM;
678 		goto err_out;
679 	}
680 
681 	lp->mii_bus->name = "tc35815_mii_bus";
682 	lp->mii_bus->read = tc_mdio_read;
683 	lp->mii_bus->write = tc_mdio_write;
684 	snprintf(lp->mii_bus->id, MII_BUS_ID_SIZE, "%x",
685 		 (lp->pci_dev->bus->number << 8) | lp->pci_dev->devfn);
686 	lp->mii_bus->priv = dev;
687 	lp->mii_bus->parent = &lp->pci_dev->dev;
688 	lp->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
689 	if (!lp->mii_bus->irq) {
690 		err = -ENOMEM;
691 		goto err_out_free_mii_bus;
692 	}
693 
694 	for (i = 0; i < PHY_MAX_ADDR; i++)
695 		lp->mii_bus->irq[i] = PHY_POLL;
696 
697 	err = mdiobus_register(lp->mii_bus);
698 	if (err)
699 		goto err_out_free_mdio_irq;
700 	err = tc_mii_probe(dev);
701 	if (err)
702 		goto err_out_unregister_bus;
703 	return 0;
704 
705 err_out_unregister_bus:
706 	mdiobus_unregister(lp->mii_bus);
707 err_out_free_mdio_irq:
708 	kfree(lp->mii_bus->irq);
709 err_out_free_mii_bus:
710 	mdiobus_free(lp->mii_bus);
711 err_out:
712 	return err;
713 }
714 
715 #ifdef CONFIG_CPU_TX49XX
716 /*
717  * Find a platform_device providing a MAC address.  The platform code
718  * should provide a "tc35815-mac" device with a MAC address in its
719  * platform_data.
720  */
721 static int tc35815_mac_match(struct device *dev, void *data)
722 {
723 	struct platform_device *plat_dev = to_platform_device(dev);
724 	struct pci_dev *pci_dev = data;
725 	unsigned int id = pci_dev->irq;
726 	return !strcmp(plat_dev->name, "tc35815-mac") && plat_dev->id == id;
727 }
728 
729 static int tc35815_read_plat_dev_addr(struct net_device *dev)
730 {
731 	struct tc35815_local *lp = netdev_priv(dev);
732 	struct device *pd = bus_find_device(&platform_bus_type, NULL,
733 					    lp->pci_dev, tc35815_mac_match);
734 	if (pd) {
735 		if (pd->platform_data)
736 			memcpy(dev->dev_addr, pd->platform_data, ETH_ALEN);
737 		put_device(pd);
738 		return is_valid_ether_addr(dev->dev_addr) ? 0 : -ENODEV;
739 	}
740 	return -ENODEV;
741 }
742 #else
743 static int tc35815_read_plat_dev_addr(struct net_device *dev)
744 {
745 	return -ENODEV;
746 }
747 #endif
748 
749 static int tc35815_init_dev_addr(struct net_device *dev)
750 {
751 	struct tc35815_regs __iomem *tr =
752 		(struct tc35815_regs __iomem *)dev->base_addr;
753 	int i;
754 
755 	while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
756 		;
757 	for (i = 0; i < 6; i += 2) {
758 		unsigned short data;
759 		tc_writel(PROM_Busy | PROM_Read | (i / 2 + 2), &tr->PROM_Ctl);
760 		while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
761 			;
762 		data = tc_readl(&tr->PROM_Data);
763 		dev->dev_addr[i] = data & 0xff;
764 		dev->dev_addr[i+1] = data >> 8;
765 	}
766 	if (!is_valid_ether_addr(dev->dev_addr))
767 		return tc35815_read_plat_dev_addr(dev);
768 	return 0;
769 }
770 
771 static const struct net_device_ops tc35815_netdev_ops = {
772 	.ndo_open		= tc35815_open,
773 	.ndo_stop		= tc35815_close,
774 	.ndo_start_xmit		= tc35815_send_packet,
775 	.ndo_get_stats		= tc35815_get_stats,
776 	.ndo_set_rx_mode	= tc35815_set_multicast_list,
777 	.ndo_tx_timeout		= tc35815_tx_timeout,
778 	.ndo_do_ioctl		= tc35815_ioctl,
779 	.ndo_validate_addr	= eth_validate_addr,
780 	.ndo_change_mtu		= eth_change_mtu,
781 	.ndo_set_mac_address	= eth_mac_addr,
782 #ifdef CONFIG_NET_POLL_CONTROLLER
783 	.ndo_poll_controller	= tc35815_poll_controller,
784 #endif
785 };
786 
787 static int tc35815_init_one(struct pci_dev *pdev,
788 			    const struct pci_device_id *ent)
789 {
790 	void __iomem *ioaddr = NULL;
791 	struct net_device *dev;
792 	struct tc35815_local *lp;
793 	int rc;
794 
795 	static int printed_version;
796 	if (!printed_version++) {
797 		printk(version);
798 		dev_printk(KERN_DEBUG, &pdev->dev,
799 			   "speed:%d duplex:%d\n",
800 			   options.speed, options.duplex);
801 	}
802 
803 	if (!pdev->irq) {
804 		dev_warn(&pdev->dev, "no IRQ assigned.\n");
805 		return -ENODEV;
806 	}
807 
808 	/* dev zeroed in alloc_etherdev */
809 	dev = alloc_etherdev(sizeof(*lp));
810 	if (dev == NULL)
811 		return -ENOMEM;
812 
813 	SET_NETDEV_DEV(dev, &pdev->dev);
814 	lp = netdev_priv(dev);
815 	lp->dev = dev;
816 
817 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
818 	rc = pcim_enable_device(pdev);
819 	if (rc)
820 		goto err_out;
821 	rc = pcim_iomap_regions(pdev, 1 << 1, MODNAME);
822 	if (rc)
823 		goto err_out;
824 	pci_set_master(pdev);
825 	ioaddr = pcim_iomap_table(pdev)[1];
826 
827 	/* Initialize the device structure. */
828 	dev->netdev_ops = &tc35815_netdev_ops;
829 	dev->ethtool_ops = &tc35815_ethtool_ops;
830 	dev->watchdog_timeo = TC35815_TX_TIMEOUT;
831 	netif_napi_add(dev, &lp->napi, tc35815_poll, NAPI_WEIGHT);
832 
833 	dev->irq = pdev->irq;
834 	dev->base_addr = (unsigned long)ioaddr;
835 
836 	INIT_WORK(&lp->restart_work, tc35815_restart_work);
837 	spin_lock_init(&lp->lock);
838 	spin_lock_init(&lp->rx_lock);
839 	lp->pci_dev = pdev;
840 	lp->chiptype = ent->driver_data;
841 
842 	lp->msg_enable = NETIF_MSG_TX_ERR | NETIF_MSG_HW | NETIF_MSG_DRV | NETIF_MSG_LINK;
843 	pci_set_drvdata(pdev, dev);
844 
845 	/* Soft reset the chip. */
846 	tc35815_chip_reset(dev);
847 
848 	/* Retrieve the ethernet address. */
849 	if (tc35815_init_dev_addr(dev)) {
850 		dev_warn(&pdev->dev, "not valid ether addr\n");
851 		eth_hw_addr_random(dev);
852 	}
853 
854 	rc = register_netdev(dev);
855 	if (rc)
856 		goto err_out;
857 
858 	printk(KERN_INFO "%s: %s at 0x%lx, %pM, IRQ %d\n",
859 		dev->name,
860 		chip_info[ent->driver_data].name,
861 		dev->base_addr,
862 		dev->dev_addr,
863 		dev->irq);
864 
865 	rc = tc_mii_init(dev);
866 	if (rc)
867 		goto err_out_unregister;
868 
869 	return 0;
870 
871 err_out_unregister:
872 	unregister_netdev(dev);
873 err_out:
874 	free_netdev(dev);
875 	return rc;
876 }
877 
878 
879 static void tc35815_remove_one(struct pci_dev *pdev)
880 {
881 	struct net_device *dev = pci_get_drvdata(pdev);
882 	struct tc35815_local *lp = netdev_priv(dev);
883 
884 	phy_disconnect(lp->phy_dev);
885 	mdiobus_unregister(lp->mii_bus);
886 	kfree(lp->mii_bus->irq);
887 	mdiobus_free(lp->mii_bus);
888 	unregister_netdev(dev);
889 	free_netdev(dev);
890 	pci_set_drvdata(pdev, NULL);
891 }
892 
893 static int
894 tc35815_init_queues(struct net_device *dev)
895 {
896 	struct tc35815_local *lp = netdev_priv(dev);
897 	int i;
898 	unsigned long fd_addr;
899 
900 	if (!lp->fd_buf) {
901 		BUG_ON(sizeof(struct FDesc) +
902 		       sizeof(struct BDesc) * RX_BUF_NUM +
903 		       sizeof(struct FDesc) * RX_FD_NUM +
904 		       sizeof(struct TxFD) * TX_FD_NUM >
905 		       PAGE_SIZE * FD_PAGE_NUM);
906 
907 		lp->fd_buf = pci_alloc_consistent(lp->pci_dev,
908 						  PAGE_SIZE * FD_PAGE_NUM,
909 						  &lp->fd_buf_dma);
910 		if (!lp->fd_buf)
911 			return -ENOMEM;
912 		for (i = 0; i < RX_BUF_NUM; i++) {
913 			lp->rx_skbs[i].skb =
914 				alloc_rxbuf_skb(dev, lp->pci_dev,
915 						&lp->rx_skbs[i].skb_dma);
916 			if (!lp->rx_skbs[i].skb) {
917 				while (--i >= 0) {
918 					free_rxbuf_skb(lp->pci_dev,
919 						       lp->rx_skbs[i].skb,
920 						       lp->rx_skbs[i].skb_dma);
921 					lp->rx_skbs[i].skb = NULL;
922 				}
923 				pci_free_consistent(lp->pci_dev,
924 						    PAGE_SIZE * FD_PAGE_NUM,
925 						    lp->fd_buf,
926 						    lp->fd_buf_dma);
927 				lp->fd_buf = NULL;
928 				return -ENOMEM;
929 			}
930 		}
931 		printk(KERN_DEBUG "%s: FD buf %p DataBuf",
932 		       dev->name, lp->fd_buf);
933 		printk("\n");
934 	} else {
935 		for (i = 0; i < FD_PAGE_NUM; i++)
936 			clear_page((void *)((unsigned long)lp->fd_buf +
937 					    i * PAGE_SIZE));
938 	}
939 	fd_addr = (unsigned long)lp->fd_buf;
940 
941 	/* Free Descriptors (for Receive) */
942 	lp->rfd_base = (struct RxFD *)fd_addr;
943 	fd_addr += sizeof(struct RxFD) * RX_FD_NUM;
944 	for (i = 0; i < RX_FD_NUM; i++)
945 		lp->rfd_base[i].fd.FDCtl = cpu_to_le32(FD_CownsFD);
946 	lp->rfd_cur = lp->rfd_base;
947 	lp->rfd_limit = (struct RxFD *)fd_addr - (RX_FD_RESERVE + 1);
948 
949 	/* Transmit Descriptors */
950 	lp->tfd_base = (struct TxFD *)fd_addr;
951 	fd_addr += sizeof(struct TxFD) * TX_FD_NUM;
952 	for (i = 0; i < TX_FD_NUM; i++) {
953 		lp->tfd_base[i].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[i+1]));
954 		lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
955 		lp->tfd_base[i].fd.FDCtl = cpu_to_le32(0);
956 	}
957 	lp->tfd_base[TX_FD_NUM-1].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[0]));
958 	lp->tfd_start = 0;
959 	lp->tfd_end = 0;
960 
961 	/* Buffer List (for Receive) */
962 	lp->fbl_ptr = (struct FrFD *)fd_addr;
963 	lp->fbl_ptr->fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, lp->fbl_ptr));
964 	lp->fbl_ptr->fd.FDCtl = cpu_to_le32(RX_BUF_NUM | FD_CownsFD);
965 	/*
966 	 * move all allocated skbs to head of rx_skbs[] array.
967 	 * fbl_count mighe not be RX_BUF_NUM if alloc_rxbuf_skb() in
968 	 * tc35815_rx() had failed.
969 	 */
970 	lp->fbl_count = 0;
971 	for (i = 0; i < RX_BUF_NUM; i++) {
972 		if (lp->rx_skbs[i].skb) {
973 			if (i != lp->fbl_count) {
974 				lp->rx_skbs[lp->fbl_count].skb =
975 					lp->rx_skbs[i].skb;
976 				lp->rx_skbs[lp->fbl_count].skb_dma =
977 					lp->rx_skbs[i].skb_dma;
978 			}
979 			lp->fbl_count++;
980 		}
981 	}
982 	for (i = 0; i < RX_BUF_NUM; i++) {
983 		if (i >= lp->fbl_count) {
984 			lp->fbl_ptr->bd[i].BuffData = 0;
985 			lp->fbl_ptr->bd[i].BDCtl = 0;
986 			continue;
987 		}
988 		lp->fbl_ptr->bd[i].BuffData =
989 			cpu_to_le32(lp->rx_skbs[i].skb_dma);
990 		/* BDID is index of FrFD.bd[] */
991 		lp->fbl_ptr->bd[i].BDCtl =
992 			cpu_to_le32(BD_CownsBD | (i << BD_RxBDID_SHIFT) |
993 				    RX_BUF_SIZE);
994 	}
995 
996 	printk(KERN_DEBUG "%s: TxFD %p RxFD %p FrFD %p\n",
997 	       dev->name, lp->tfd_base, lp->rfd_base, lp->fbl_ptr);
998 	return 0;
999 }
1000 
1001 static void
1002 tc35815_clear_queues(struct net_device *dev)
1003 {
1004 	struct tc35815_local *lp = netdev_priv(dev);
1005 	int i;
1006 
1007 	for (i = 0; i < TX_FD_NUM; i++) {
1008 		u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
1009 		struct sk_buff *skb =
1010 			fdsystem != 0xffffffff ?
1011 			lp->tx_skbs[fdsystem].skb : NULL;
1012 #ifdef DEBUG
1013 		if (lp->tx_skbs[i].skb != skb) {
1014 			printk("%s: tx_skbs mismatch(%d).\n", dev->name, i);
1015 			panic_queues(dev);
1016 		}
1017 #else
1018 		BUG_ON(lp->tx_skbs[i].skb != skb);
1019 #endif
1020 		if (skb) {
1021 			pci_unmap_single(lp->pci_dev, lp->tx_skbs[i].skb_dma, skb->len, PCI_DMA_TODEVICE);
1022 			lp->tx_skbs[i].skb = NULL;
1023 			lp->tx_skbs[i].skb_dma = 0;
1024 			dev_kfree_skb_any(skb);
1025 		}
1026 		lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
1027 	}
1028 
1029 	tc35815_init_queues(dev);
1030 }
1031 
1032 static void
1033 tc35815_free_queues(struct net_device *dev)
1034 {
1035 	struct tc35815_local *lp = netdev_priv(dev);
1036 	int i;
1037 
1038 	if (lp->tfd_base) {
1039 		for (i = 0; i < TX_FD_NUM; i++) {
1040 			u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
1041 			struct sk_buff *skb =
1042 				fdsystem != 0xffffffff ?
1043 				lp->tx_skbs[fdsystem].skb : NULL;
1044 #ifdef DEBUG
1045 			if (lp->tx_skbs[i].skb != skb) {
1046 				printk("%s: tx_skbs mismatch(%d).\n", dev->name, i);
1047 				panic_queues(dev);
1048 			}
1049 #else
1050 			BUG_ON(lp->tx_skbs[i].skb != skb);
1051 #endif
1052 			if (skb) {
1053 				dev_kfree_skb(skb);
1054 				pci_unmap_single(lp->pci_dev, lp->tx_skbs[i].skb_dma, skb->len, PCI_DMA_TODEVICE);
1055 				lp->tx_skbs[i].skb = NULL;
1056 				lp->tx_skbs[i].skb_dma = 0;
1057 			}
1058 			lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
1059 		}
1060 	}
1061 
1062 	lp->rfd_base = NULL;
1063 	lp->rfd_limit = NULL;
1064 	lp->rfd_cur = NULL;
1065 	lp->fbl_ptr = NULL;
1066 
1067 	for (i = 0; i < RX_BUF_NUM; i++) {
1068 		if (lp->rx_skbs[i].skb) {
1069 			free_rxbuf_skb(lp->pci_dev, lp->rx_skbs[i].skb,
1070 				       lp->rx_skbs[i].skb_dma);
1071 			lp->rx_skbs[i].skb = NULL;
1072 		}
1073 	}
1074 	if (lp->fd_buf) {
1075 		pci_free_consistent(lp->pci_dev, PAGE_SIZE * FD_PAGE_NUM,
1076 				    lp->fd_buf, lp->fd_buf_dma);
1077 		lp->fd_buf = NULL;
1078 	}
1079 }
1080 
1081 static void
1082 dump_txfd(struct TxFD *fd)
1083 {
1084 	printk("TxFD(%p): %08x %08x %08x %08x\n", fd,
1085 	       le32_to_cpu(fd->fd.FDNext),
1086 	       le32_to_cpu(fd->fd.FDSystem),
1087 	       le32_to_cpu(fd->fd.FDStat),
1088 	       le32_to_cpu(fd->fd.FDCtl));
1089 	printk("BD: ");
1090 	printk(" %08x %08x",
1091 	       le32_to_cpu(fd->bd.BuffData),
1092 	       le32_to_cpu(fd->bd.BDCtl));
1093 	printk("\n");
1094 }
1095 
1096 static int
1097 dump_rxfd(struct RxFD *fd)
1098 {
1099 	int i, bd_count = (le32_to_cpu(fd->fd.FDCtl) & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
1100 	if (bd_count > 8)
1101 		bd_count = 8;
1102 	printk("RxFD(%p): %08x %08x %08x %08x\n", fd,
1103 	       le32_to_cpu(fd->fd.FDNext),
1104 	       le32_to_cpu(fd->fd.FDSystem),
1105 	       le32_to_cpu(fd->fd.FDStat),
1106 	       le32_to_cpu(fd->fd.FDCtl));
1107 	if (le32_to_cpu(fd->fd.FDCtl) & FD_CownsFD)
1108 		return 0;
1109 	printk("BD: ");
1110 	for (i = 0; i < bd_count; i++)
1111 		printk(" %08x %08x",
1112 		       le32_to_cpu(fd->bd[i].BuffData),
1113 		       le32_to_cpu(fd->bd[i].BDCtl));
1114 	printk("\n");
1115 	return bd_count;
1116 }
1117 
1118 #ifdef DEBUG
1119 static void
1120 dump_frfd(struct FrFD *fd)
1121 {
1122 	int i;
1123 	printk("FrFD(%p): %08x %08x %08x %08x\n", fd,
1124 	       le32_to_cpu(fd->fd.FDNext),
1125 	       le32_to_cpu(fd->fd.FDSystem),
1126 	       le32_to_cpu(fd->fd.FDStat),
1127 	       le32_to_cpu(fd->fd.FDCtl));
1128 	printk("BD: ");
1129 	for (i = 0; i < RX_BUF_NUM; i++)
1130 		printk(" %08x %08x",
1131 		       le32_to_cpu(fd->bd[i].BuffData),
1132 		       le32_to_cpu(fd->bd[i].BDCtl));
1133 	printk("\n");
1134 }
1135 
1136 static void
1137 panic_queues(struct net_device *dev)
1138 {
1139 	struct tc35815_local *lp = netdev_priv(dev);
1140 	int i;
1141 
1142 	printk("TxFD base %p, start %u, end %u\n",
1143 	       lp->tfd_base, lp->tfd_start, lp->tfd_end);
1144 	printk("RxFD base %p limit %p cur %p\n",
1145 	       lp->rfd_base, lp->rfd_limit, lp->rfd_cur);
1146 	printk("FrFD %p\n", lp->fbl_ptr);
1147 	for (i = 0; i < TX_FD_NUM; i++)
1148 		dump_txfd(&lp->tfd_base[i]);
1149 	for (i = 0; i < RX_FD_NUM; i++) {
1150 		int bd_count = dump_rxfd(&lp->rfd_base[i]);
1151 		i += (bd_count + 1) / 2;	/* skip BDs */
1152 	}
1153 	dump_frfd(lp->fbl_ptr);
1154 	panic("%s: Illegal queue state.", dev->name);
1155 }
1156 #endif
1157 
1158 static void print_eth(const u8 *add)
1159 {
1160 	printk(KERN_DEBUG "print_eth(%p)\n", add);
1161 	printk(KERN_DEBUG " %pM => %pM : %02x%02x\n",
1162 		add + 6, add, add[12], add[13]);
1163 }
1164 
1165 static int tc35815_tx_full(struct net_device *dev)
1166 {
1167 	struct tc35815_local *lp = netdev_priv(dev);
1168 	return (lp->tfd_start + 1) % TX_FD_NUM == lp->tfd_end;
1169 }
1170 
1171 static void tc35815_restart(struct net_device *dev)
1172 {
1173 	struct tc35815_local *lp = netdev_priv(dev);
1174 
1175 	if (lp->phy_dev) {
1176 		int timeout;
1177 
1178 		phy_write(lp->phy_dev, MII_BMCR, BMCR_RESET);
1179 		timeout = 100;
1180 		while (--timeout) {
1181 			if (!(phy_read(lp->phy_dev, MII_BMCR) & BMCR_RESET))
1182 				break;
1183 			udelay(1);
1184 		}
1185 		if (!timeout)
1186 			printk(KERN_ERR "%s: BMCR reset failed.\n", dev->name);
1187 	}
1188 
1189 	spin_lock_bh(&lp->rx_lock);
1190 	spin_lock_irq(&lp->lock);
1191 	tc35815_chip_reset(dev);
1192 	tc35815_clear_queues(dev);
1193 	tc35815_chip_init(dev);
1194 	/* Reconfigure CAM again since tc35815_chip_init() initialize it. */
1195 	tc35815_set_multicast_list(dev);
1196 	spin_unlock_irq(&lp->lock);
1197 	spin_unlock_bh(&lp->rx_lock);
1198 
1199 	netif_wake_queue(dev);
1200 }
1201 
1202 static void tc35815_restart_work(struct work_struct *work)
1203 {
1204 	struct tc35815_local *lp =
1205 		container_of(work, struct tc35815_local, restart_work);
1206 	struct net_device *dev = lp->dev;
1207 
1208 	tc35815_restart(dev);
1209 }
1210 
1211 static void tc35815_schedule_restart(struct net_device *dev)
1212 {
1213 	struct tc35815_local *lp = netdev_priv(dev);
1214 	struct tc35815_regs __iomem *tr =
1215 		(struct tc35815_regs __iomem *)dev->base_addr;
1216 	unsigned long flags;
1217 
1218 	/* disable interrupts */
1219 	spin_lock_irqsave(&lp->lock, flags);
1220 	tc_writel(0, &tr->Int_En);
1221 	tc_writel(tc_readl(&tr->DMA_Ctl) | DMA_IntMask, &tr->DMA_Ctl);
1222 	schedule_work(&lp->restart_work);
1223 	spin_unlock_irqrestore(&lp->lock, flags);
1224 }
1225 
1226 static void tc35815_tx_timeout(struct net_device *dev)
1227 {
1228 	struct tc35815_regs __iomem *tr =
1229 		(struct tc35815_regs __iomem *)dev->base_addr;
1230 
1231 	printk(KERN_WARNING "%s: transmit timed out, status %#x\n",
1232 	       dev->name, tc_readl(&tr->Tx_Stat));
1233 
1234 	/* Try to restart the adaptor. */
1235 	tc35815_schedule_restart(dev);
1236 	dev->stats.tx_errors++;
1237 }
1238 
1239 /*
1240  * Open/initialize the controller. This is called (in the current kernel)
1241  * sometime after booting when the 'ifconfig' program is run.
1242  *
1243  * This routine should set everything up anew at each open, even
1244  * registers that "should" only need to be set once at boot, so that
1245  * there is non-reboot way to recover if something goes wrong.
1246  */
1247 static int
1248 tc35815_open(struct net_device *dev)
1249 {
1250 	struct tc35815_local *lp = netdev_priv(dev);
1251 
1252 	/*
1253 	 * This is used if the interrupt line can turned off (shared).
1254 	 * See 3c503.c for an example of selecting the IRQ at config-time.
1255 	 */
1256 	if (request_irq(dev->irq, tc35815_interrupt, IRQF_SHARED,
1257 			dev->name, dev))
1258 		return -EAGAIN;
1259 
1260 	tc35815_chip_reset(dev);
1261 
1262 	if (tc35815_init_queues(dev) != 0) {
1263 		free_irq(dev->irq, dev);
1264 		return -EAGAIN;
1265 	}
1266 
1267 	napi_enable(&lp->napi);
1268 
1269 	/* Reset the hardware here. Don't forget to set the station address. */
1270 	spin_lock_irq(&lp->lock);
1271 	tc35815_chip_init(dev);
1272 	spin_unlock_irq(&lp->lock);
1273 
1274 	netif_carrier_off(dev);
1275 	/* schedule a link state check */
1276 	phy_start(lp->phy_dev);
1277 
1278 	/* We are now ready to accept transmit requeusts from
1279 	 * the queueing layer of the networking.
1280 	 */
1281 	netif_start_queue(dev);
1282 
1283 	return 0;
1284 }
1285 
1286 /* This will only be invoked if your driver is _not_ in XOFF state.
1287  * What this means is that you need not check it, and that this
1288  * invariant will hold if you make sure that the netif_*_queue()
1289  * calls are done at the proper times.
1290  */
1291 static int tc35815_send_packet(struct sk_buff *skb, struct net_device *dev)
1292 {
1293 	struct tc35815_local *lp = netdev_priv(dev);
1294 	struct TxFD *txfd;
1295 	unsigned long flags;
1296 
1297 	/* If some error occurs while trying to transmit this
1298 	 * packet, you should return '1' from this function.
1299 	 * In such a case you _may not_ do anything to the
1300 	 * SKB, it is still owned by the network queueing
1301 	 * layer when an error is returned.  This means you
1302 	 * may not modify any SKB fields, you may not free
1303 	 * the SKB, etc.
1304 	 */
1305 
1306 	/* This is the most common case for modern hardware.
1307 	 * The spinlock protects this code from the TX complete
1308 	 * hardware interrupt handler.  Queue flow control is
1309 	 * thus managed under this lock as well.
1310 	 */
1311 	spin_lock_irqsave(&lp->lock, flags);
1312 
1313 	/* failsafe... (handle txdone now if half of FDs are used) */
1314 	if ((lp->tfd_start + TX_FD_NUM - lp->tfd_end) % TX_FD_NUM >
1315 	    TX_FD_NUM / 2)
1316 		tc35815_txdone(dev);
1317 
1318 	if (netif_msg_pktdata(lp))
1319 		print_eth(skb->data);
1320 #ifdef DEBUG
1321 	if (lp->tx_skbs[lp->tfd_start].skb) {
1322 		printk("%s: tx_skbs conflict.\n", dev->name);
1323 		panic_queues(dev);
1324 	}
1325 #else
1326 	BUG_ON(lp->tx_skbs[lp->tfd_start].skb);
1327 #endif
1328 	lp->tx_skbs[lp->tfd_start].skb = skb;
1329 	lp->tx_skbs[lp->tfd_start].skb_dma = pci_map_single(lp->pci_dev, skb->data, skb->len, PCI_DMA_TODEVICE);
1330 
1331 	/*add to ring */
1332 	txfd = &lp->tfd_base[lp->tfd_start];
1333 	txfd->bd.BuffData = cpu_to_le32(lp->tx_skbs[lp->tfd_start].skb_dma);
1334 	txfd->bd.BDCtl = cpu_to_le32(skb->len);
1335 	txfd->fd.FDSystem = cpu_to_le32(lp->tfd_start);
1336 	txfd->fd.FDCtl = cpu_to_le32(FD_CownsFD | (1 << FD_BDCnt_SHIFT));
1337 
1338 	if (lp->tfd_start == lp->tfd_end) {
1339 		struct tc35815_regs __iomem *tr =
1340 			(struct tc35815_regs __iomem *)dev->base_addr;
1341 		/* Start DMA Transmitter. */
1342 		txfd->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
1343 		txfd->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
1344 		if (netif_msg_tx_queued(lp)) {
1345 			printk("%s: starting TxFD.\n", dev->name);
1346 			dump_txfd(txfd);
1347 		}
1348 		tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr);
1349 	} else {
1350 		txfd->fd.FDNext &= cpu_to_le32(~FD_Next_EOL);
1351 		if (netif_msg_tx_queued(lp)) {
1352 			printk("%s: queueing TxFD.\n", dev->name);
1353 			dump_txfd(txfd);
1354 		}
1355 	}
1356 	lp->tfd_start = (lp->tfd_start + 1) % TX_FD_NUM;
1357 
1358 	/* If we just used up the very last entry in the
1359 	 * TX ring on this device, tell the queueing
1360 	 * layer to send no more.
1361 	 */
1362 	if (tc35815_tx_full(dev)) {
1363 		if (netif_msg_tx_queued(lp))
1364 			printk(KERN_WARNING "%s: TxFD Exhausted.\n", dev->name);
1365 		netif_stop_queue(dev);
1366 	}
1367 
1368 	/* When the TX completion hw interrupt arrives, this
1369 	 * is when the transmit statistics are updated.
1370 	 */
1371 
1372 	spin_unlock_irqrestore(&lp->lock, flags);
1373 	return NETDEV_TX_OK;
1374 }
1375 
1376 #define FATAL_ERROR_INT \
1377 	(Int_IntPCI | Int_DmParErr | Int_IntNRAbt)
1378 static void tc35815_fatal_error_interrupt(struct net_device *dev, u32 status)
1379 {
1380 	static int count;
1381 	printk(KERN_WARNING "%s: Fatal Error Intterrupt (%#x):",
1382 	       dev->name, status);
1383 	if (status & Int_IntPCI)
1384 		printk(" IntPCI");
1385 	if (status & Int_DmParErr)
1386 		printk(" DmParErr");
1387 	if (status & Int_IntNRAbt)
1388 		printk(" IntNRAbt");
1389 	printk("\n");
1390 	if (count++ > 100)
1391 		panic("%s: Too many fatal errors.", dev->name);
1392 	printk(KERN_WARNING "%s: Resetting ...\n", dev->name);
1393 	/* Try to restart the adaptor. */
1394 	tc35815_schedule_restart(dev);
1395 }
1396 
1397 static int tc35815_do_interrupt(struct net_device *dev, u32 status, int limit)
1398 {
1399 	struct tc35815_local *lp = netdev_priv(dev);
1400 	int ret = -1;
1401 
1402 	/* Fatal errors... */
1403 	if (status & FATAL_ERROR_INT) {
1404 		tc35815_fatal_error_interrupt(dev, status);
1405 		return 0;
1406 	}
1407 	/* recoverable errors */
1408 	if (status & Int_IntFDAEx) {
1409 		if (netif_msg_rx_err(lp))
1410 			dev_warn(&dev->dev,
1411 				 "Free Descriptor Area Exhausted (%#x).\n",
1412 				 status);
1413 		dev->stats.rx_dropped++;
1414 		ret = 0;
1415 	}
1416 	if (status & Int_IntBLEx) {
1417 		if (netif_msg_rx_err(lp))
1418 			dev_warn(&dev->dev,
1419 				 "Buffer List Exhausted (%#x).\n",
1420 				 status);
1421 		dev->stats.rx_dropped++;
1422 		ret = 0;
1423 	}
1424 	if (status & Int_IntExBD) {
1425 		if (netif_msg_rx_err(lp))
1426 			dev_warn(&dev->dev,
1427 				 "Excessive Buffer Descriptiors (%#x).\n",
1428 				 status);
1429 		dev->stats.rx_length_errors++;
1430 		ret = 0;
1431 	}
1432 
1433 	/* normal notification */
1434 	if (status & Int_IntMacRx) {
1435 		/* Got a packet(s). */
1436 		ret = tc35815_rx(dev, limit);
1437 		lp->lstats.rx_ints++;
1438 	}
1439 	if (status & Int_IntMacTx) {
1440 		/* Transmit complete. */
1441 		lp->lstats.tx_ints++;
1442 		spin_lock_irq(&lp->lock);
1443 		tc35815_txdone(dev);
1444 		spin_unlock_irq(&lp->lock);
1445 		if (ret < 0)
1446 			ret = 0;
1447 	}
1448 	return ret;
1449 }
1450 
1451 /*
1452  * The typical workload of the driver:
1453  * Handle the network interface interrupts.
1454  */
1455 static irqreturn_t tc35815_interrupt(int irq, void *dev_id)
1456 {
1457 	struct net_device *dev = dev_id;
1458 	struct tc35815_local *lp = netdev_priv(dev);
1459 	struct tc35815_regs __iomem *tr =
1460 		(struct tc35815_regs __iomem *)dev->base_addr;
1461 	u32 dmactl = tc_readl(&tr->DMA_Ctl);
1462 
1463 	if (!(dmactl & DMA_IntMask)) {
1464 		/* disable interrupts */
1465 		tc_writel(dmactl | DMA_IntMask, &tr->DMA_Ctl);
1466 		if (napi_schedule_prep(&lp->napi))
1467 			__napi_schedule(&lp->napi);
1468 		else {
1469 			printk(KERN_ERR "%s: interrupt taken in poll\n",
1470 			       dev->name);
1471 			BUG();
1472 		}
1473 		(void)tc_readl(&tr->Int_Src);	/* flush */
1474 		return IRQ_HANDLED;
1475 	}
1476 	return IRQ_NONE;
1477 }
1478 
1479 #ifdef CONFIG_NET_POLL_CONTROLLER
1480 static void tc35815_poll_controller(struct net_device *dev)
1481 {
1482 	disable_irq(dev->irq);
1483 	tc35815_interrupt(dev->irq, dev);
1484 	enable_irq(dev->irq);
1485 }
1486 #endif
1487 
1488 /* We have a good packet(s), get it/them out of the buffers. */
1489 static int
1490 tc35815_rx(struct net_device *dev, int limit)
1491 {
1492 	struct tc35815_local *lp = netdev_priv(dev);
1493 	unsigned int fdctl;
1494 	int i;
1495 	int received = 0;
1496 
1497 	while (!((fdctl = le32_to_cpu(lp->rfd_cur->fd.FDCtl)) & FD_CownsFD)) {
1498 		int status = le32_to_cpu(lp->rfd_cur->fd.FDStat);
1499 		int pkt_len = fdctl & FD_FDLength_MASK;
1500 		int bd_count = (fdctl & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
1501 #ifdef DEBUG
1502 		struct RxFD *next_rfd;
1503 #endif
1504 #if (RX_CTL_CMD & Rx_StripCRC) == 0
1505 		pkt_len -= ETH_FCS_LEN;
1506 #endif
1507 
1508 		if (netif_msg_rx_status(lp))
1509 			dump_rxfd(lp->rfd_cur);
1510 		if (status & Rx_Good) {
1511 			struct sk_buff *skb;
1512 			unsigned char *data;
1513 			int cur_bd;
1514 
1515 			if (--limit < 0)
1516 				break;
1517 			BUG_ON(bd_count > 1);
1518 			cur_bd = (le32_to_cpu(lp->rfd_cur->bd[0].BDCtl)
1519 				  & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT;
1520 #ifdef DEBUG
1521 			if (cur_bd >= RX_BUF_NUM) {
1522 				printk("%s: invalid BDID.\n", dev->name);
1523 				panic_queues(dev);
1524 			}
1525 			BUG_ON(lp->rx_skbs[cur_bd].skb_dma !=
1526 			       (le32_to_cpu(lp->rfd_cur->bd[0].BuffData) & ~3));
1527 			if (!lp->rx_skbs[cur_bd].skb) {
1528 				printk("%s: NULL skb.\n", dev->name);
1529 				panic_queues(dev);
1530 			}
1531 #else
1532 			BUG_ON(cur_bd >= RX_BUF_NUM);
1533 #endif
1534 			skb = lp->rx_skbs[cur_bd].skb;
1535 			prefetch(skb->data);
1536 			lp->rx_skbs[cur_bd].skb = NULL;
1537 			pci_unmap_single(lp->pci_dev,
1538 					 lp->rx_skbs[cur_bd].skb_dma,
1539 					 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1540 			if (!HAVE_DMA_RXALIGN(lp) && NET_IP_ALIGN)
1541 				memmove(skb->data, skb->data - NET_IP_ALIGN,
1542 					pkt_len);
1543 			data = skb_put(skb, pkt_len);
1544 			if (netif_msg_pktdata(lp))
1545 				print_eth(data);
1546 			skb->protocol = eth_type_trans(skb, dev);
1547 			netif_receive_skb(skb);
1548 			received++;
1549 			dev->stats.rx_packets++;
1550 			dev->stats.rx_bytes += pkt_len;
1551 		} else {
1552 			dev->stats.rx_errors++;
1553 			if (netif_msg_rx_err(lp))
1554 				dev_info(&dev->dev, "Rx error (status %x)\n",
1555 					 status & Rx_Stat_Mask);
1556 			/* WORKAROUND: LongErr and CRCErr means Overflow. */
1557 			if ((status & Rx_LongErr) && (status & Rx_CRCErr)) {
1558 				status &= ~(Rx_LongErr|Rx_CRCErr);
1559 				status |= Rx_Over;
1560 			}
1561 			if (status & Rx_LongErr)
1562 				dev->stats.rx_length_errors++;
1563 			if (status & Rx_Over)
1564 				dev->stats.rx_fifo_errors++;
1565 			if (status & Rx_CRCErr)
1566 				dev->stats.rx_crc_errors++;
1567 			if (status & Rx_Align)
1568 				dev->stats.rx_frame_errors++;
1569 		}
1570 
1571 		if (bd_count > 0) {
1572 			/* put Free Buffer back to controller */
1573 			int bdctl = le32_to_cpu(lp->rfd_cur->bd[bd_count - 1].BDCtl);
1574 			unsigned char id =
1575 				(bdctl & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT;
1576 #ifdef DEBUG
1577 			if (id >= RX_BUF_NUM) {
1578 				printk("%s: invalid BDID.\n", dev->name);
1579 				panic_queues(dev);
1580 			}
1581 #else
1582 			BUG_ON(id >= RX_BUF_NUM);
1583 #endif
1584 			/* free old buffers */
1585 			lp->fbl_count--;
1586 			while (lp->fbl_count < RX_BUF_NUM)
1587 			{
1588 				unsigned char curid =
1589 					(id + 1 + lp->fbl_count) % RX_BUF_NUM;
1590 				struct BDesc *bd = &lp->fbl_ptr->bd[curid];
1591 #ifdef DEBUG
1592 				bdctl = le32_to_cpu(bd->BDCtl);
1593 				if (bdctl & BD_CownsBD) {
1594 					printk("%s: Freeing invalid BD.\n",
1595 					       dev->name);
1596 					panic_queues(dev);
1597 				}
1598 #endif
1599 				/* pass BD to controller */
1600 				if (!lp->rx_skbs[curid].skb) {
1601 					lp->rx_skbs[curid].skb =
1602 						alloc_rxbuf_skb(dev,
1603 								lp->pci_dev,
1604 								&lp->rx_skbs[curid].skb_dma);
1605 					if (!lp->rx_skbs[curid].skb)
1606 						break; /* try on next reception */
1607 					bd->BuffData = cpu_to_le32(lp->rx_skbs[curid].skb_dma);
1608 				}
1609 				/* Note: BDLength was modified by chip. */
1610 				bd->BDCtl = cpu_to_le32(BD_CownsBD |
1611 							(curid << BD_RxBDID_SHIFT) |
1612 							RX_BUF_SIZE);
1613 				lp->fbl_count++;
1614 			}
1615 		}
1616 
1617 		/* put RxFD back to controller */
1618 #ifdef DEBUG
1619 		next_rfd = fd_bus_to_virt(lp,
1620 					  le32_to_cpu(lp->rfd_cur->fd.FDNext));
1621 		if (next_rfd < lp->rfd_base || next_rfd > lp->rfd_limit) {
1622 			printk("%s: RxFD FDNext invalid.\n", dev->name);
1623 			panic_queues(dev);
1624 		}
1625 #endif
1626 		for (i = 0; i < (bd_count + 1) / 2 + 1; i++) {
1627 			/* pass FD to controller */
1628 #ifdef DEBUG
1629 			lp->rfd_cur->fd.FDNext = cpu_to_le32(0xdeaddead);
1630 #else
1631 			lp->rfd_cur->fd.FDNext = cpu_to_le32(FD_Next_EOL);
1632 #endif
1633 			lp->rfd_cur->fd.FDCtl = cpu_to_le32(FD_CownsFD);
1634 			lp->rfd_cur++;
1635 		}
1636 		if (lp->rfd_cur > lp->rfd_limit)
1637 			lp->rfd_cur = lp->rfd_base;
1638 #ifdef DEBUG
1639 		if (lp->rfd_cur != next_rfd)
1640 			printk("rfd_cur = %p, next_rfd %p\n",
1641 			       lp->rfd_cur, next_rfd);
1642 #endif
1643 	}
1644 
1645 	return received;
1646 }
1647 
1648 static int tc35815_poll(struct napi_struct *napi, int budget)
1649 {
1650 	struct tc35815_local *lp = container_of(napi, struct tc35815_local, napi);
1651 	struct net_device *dev = lp->dev;
1652 	struct tc35815_regs __iomem *tr =
1653 		(struct tc35815_regs __iomem *)dev->base_addr;
1654 	int received = 0, handled;
1655 	u32 status;
1656 
1657 	spin_lock(&lp->rx_lock);
1658 	status = tc_readl(&tr->Int_Src);
1659 	do {
1660 		/* BLEx, FDAEx will be cleared later */
1661 		tc_writel(status & ~(Int_BLEx | Int_FDAEx),
1662 			  &tr->Int_Src);	/* write to clear */
1663 
1664 		handled = tc35815_do_interrupt(dev, status, budget - received);
1665 		if (status & (Int_BLEx | Int_FDAEx))
1666 			tc_writel(status & (Int_BLEx | Int_FDAEx),
1667 				  &tr->Int_Src);
1668 		if (handled >= 0) {
1669 			received += handled;
1670 			if (received >= budget)
1671 				break;
1672 		}
1673 		status = tc_readl(&tr->Int_Src);
1674 	} while (status);
1675 	spin_unlock(&lp->rx_lock);
1676 
1677 	if (received < budget) {
1678 		napi_complete(napi);
1679 		/* enable interrupts */
1680 		tc_writel(tc_readl(&tr->DMA_Ctl) & ~DMA_IntMask, &tr->DMA_Ctl);
1681 	}
1682 	return received;
1683 }
1684 
1685 #define TX_STA_ERR	(Tx_ExColl|Tx_Under|Tx_Defer|Tx_NCarr|Tx_LateColl|Tx_TxPar|Tx_SQErr)
1686 
1687 static void
1688 tc35815_check_tx_stat(struct net_device *dev, int status)
1689 {
1690 	struct tc35815_local *lp = netdev_priv(dev);
1691 	const char *msg = NULL;
1692 
1693 	/* count collisions */
1694 	if (status & Tx_ExColl)
1695 		dev->stats.collisions += 16;
1696 	if (status & Tx_TxColl_MASK)
1697 		dev->stats.collisions += status & Tx_TxColl_MASK;
1698 
1699 	/* TX4939 does not have NCarr */
1700 	if (lp->chiptype == TC35815_TX4939)
1701 		status &= ~Tx_NCarr;
1702 	/* WORKAROUND: ignore LostCrS in full duplex operation */
1703 	if (!lp->link || lp->duplex == DUPLEX_FULL)
1704 		status &= ~Tx_NCarr;
1705 
1706 	if (!(status & TX_STA_ERR)) {
1707 		/* no error. */
1708 		dev->stats.tx_packets++;
1709 		return;
1710 	}
1711 
1712 	dev->stats.tx_errors++;
1713 	if (status & Tx_ExColl) {
1714 		dev->stats.tx_aborted_errors++;
1715 		msg = "Excessive Collision.";
1716 	}
1717 	if (status & Tx_Under) {
1718 		dev->stats.tx_fifo_errors++;
1719 		msg = "Tx FIFO Underrun.";
1720 		if (lp->lstats.tx_underrun < TX_THRESHOLD_KEEP_LIMIT) {
1721 			lp->lstats.tx_underrun++;
1722 			if (lp->lstats.tx_underrun >= TX_THRESHOLD_KEEP_LIMIT) {
1723 				struct tc35815_regs __iomem *tr =
1724 					(struct tc35815_regs __iomem *)dev->base_addr;
1725 				tc_writel(TX_THRESHOLD_MAX, &tr->TxThrsh);
1726 				msg = "Tx FIFO Underrun.Change Tx threshold to max.";
1727 			}
1728 		}
1729 	}
1730 	if (status & Tx_Defer) {
1731 		dev->stats.tx_fifo_errors++;
1732 		msg = "Excessive Deferral.";
1733 	}
1734 	if (status & Tx_NCarr) {
1735 		dev->stats.tx_carrier_errors++;
1736 		msg = "Lost Carrier Sense.";
1737 	}
1738 	if (status & Tx_LateColl) {
1739 		dev->stats.tx_aborted_errors++;
1740 		msg = "Late Collision.";
1741 	}
1742 	if (status & Tx_TxPar) {
1743 		dev->stats.tx_fifo_errors++;
1744 		msg = "Transmit Parity Error.";
1745 	}
1746 	if (status & Tx_SQErr) {
1747 		dev->stats.tx_heartbeat_errors++;
1748 		msg = "Signal Quality Error.";
1749 	}
1750 	if (msg && netif_msg_tx_err(lp))
1751 		printk(KERN_WARNING "%s: %s (%#x)\n", dev->name, msg, status);
1752 }
1753 
1754 /* This handles TX complete events posted by the device
1755  * via interrupts.
1756  */
1757 static void
1758 tc35815_txdone(struct net_device *dev)
1759 {
1760 	struct tc35815_local *lp = netdev_priv(dev);
1761 	struct TxFD *txfd;
1762 	unsigned int fdctl;
1763 
1764 	txfd = &lp->tfd_base[lp->tfd_end];
1765 	while (lp->tfd_start != lp->tfd_end &&
1766 	       !((fdctl = le32_to_cpu(txfd->fd.FDCtl)) & FD_CownsFD)) {
1767 		int status = le32_to_cpu(txfd->fd.FDStat);
1768 		struct sk_buff *skb;
1769 		unsigned long fdnext = le32_to_cpu(txfd->fd.FDNext);
1770 		u32 fdsystem = le32_to_cpu(txfd->fd.FDSystem);
1771 
1772 		if (netif_msg_tx_done(lp)) {
1773 			printk("%s: complete TxFD.\n", dev->name);
1774 			dump_txfd(txfd);
1775 		}
1776 		tc35815_check_tx_stat(dev, status);
1777 
1778 		skb = fdsystem != 0xffffffff ?
1779 			lp->tx_skbs[fdsystem].skb : NULL;
1780 #ifdef DEBUG
1781 		if (lp->tx_skbs[lp->tfd_end].skb != skb) {
1782 			printk("%s: tx_skbs mismatch.\n", dev->name);
1783 			panic_queues(dev);
1784 		}
1785 #else
1786 		BUG_ON(lp->tx_skbs[lp->tfd_end].skb != skb);
1787 #endif
1788 		if (skb) {
1789 			dev->stats.tx_bytes += skb->len;
1790 			pci_unmap_single(lp->pci_dev, lp->tx_skbs[lp->tfd_end].skb_dma, skb->len, PCI_DMA_TODEVICE);
1791 			lp->tx_skbs[lp->tfd_end].skb = NULL;
1792 			lp->tx_skbs[lp->tfd_end].skb_dma = 0;
1793 			dev_kfree_skb_any(skb);
1794 		}
1795 		txfd->fd.FDSystem = cpu_to_le32(0xffffffff);
1796 
1797 		lp->tfd_end = (lp->tfd_end + 1) % TX_FD_NUM;
1798 		txfd = &lp->tfd_base[lp->tfd_end];
1799 #ifdef DEBUG
1800 		if ((fdnext & ~FD_Next_EOL) != fd_virt_to_bus(lp, txfd)) {
1801 			printk("%s: TxFD FDNext invalid.\n", dev->name);
1802 			panic_queues(dev);
1803 		}
1804 #endif
1805 		if (fdnext & FD_Next_EOL) {
1806 			/* DMA Transmitter has been stopping... */
1807 			if (lp->tfd_end != lp->tfd_start) {
1808 				struct tc35815_regs __iomem *tr =
1809 					(struct tc35815_regs __iomem *)dev->base_addr;
1810 				int head = (lp->tfd_start + TX_FD_NUM - 1) % TX_FD_NUM;
1811 				struct TxFD *txhead = &lp->tfd_base[head];
1812 				int qlen = (lp->tfd_start + TX_FD_NUM
1813 					    - lp->tfd_end) % TX_FD_NUM;
1814 
1815 #ifdef DEBUG
1816 				if (!(le32_to_cpu(txfd->fd.FDCtl) & FD_CownsFD)) {
1817 					printk("%s: TxFD FDCtl invalid.\n", dev->name);
1818 					panic_queues(dev);
1819 				}
1820 #endif
1821 				/* log max queue length */
1822 				if (lp->lstats.max_tx_qlen < qlen)
1823 					lp->lstats.max_tx_qlen = qlen;
1824 
1825 
1826 				/* start DMA Transmitter again */
1827 				txhead->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
1828 				txhead->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
1829 				if (netif_msg_tx_queued(lp)) {
1830 					printk("%s: start TxFD on queue.\n",
1831 					       dev->name);
1832 					dump_txfd(txfd);
1833 				}
1834 				tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr);
1835 			}
1836 			break;
1837 		}
1838 	}
1839 
1840 	/* If we had stopped the queue due to a "tx full"
1841 	 * condition, and space has now been made available,
1842 	 * wake up the queue.
1843 	 */
1844 	if (netif_queue_stopped(dev) && !tc35815_tx_full(dev))
1845 		netif_wake_queue(dev);
1846 }
1847 
1848 /* The inverse routine to tc35815_open(). */
1849 static int
1850 tc35815_close(struct net_device *dev)
1851 {
1852 	struct tc35815_local *lp = netdev_priv(dev);
1853 
1854 	netif_stop_queue(dev);
1855 	napi_disable(&lp->napi);
1856 	if (lp->phy_dev)
1857 		phy_stop(lp->phy_dev);
1858 	cancel_work_sync(&lp->restart_work);
1859 
1860 	/* Flush the Tx and disable Rx here. */
1861 	tc35815_chip_reset(dev);
1862 	free_irq(dev->irq, dev);
1863 
1864 	tc35815_free_queues(dev);
1865 
1866 	return 0;
1867 
1868 }
1869 
1870 /*
1871  * Get the current statistics.
1872  * This may be called with the card open or closed.
1873  */
1874 static struct net_device_stats *tc35815_get_stats(struct net_device *dev)
1875 {
1876 	struct tc35815_regs __iomem *tr =
1877 		(struct tc35815_regs __iomem *)dev->base_addr;
1878 	if (netif_running(dev))
1879 		/* Update the statistics from the device registers. */
1880 		dev->stats.rx_missed_errors += tc_readl(&tr->Miss_Cnt);
1881 
1882 	return &dev->stats;
1883 }
1884 
1885 static void tc35815_set_cam_entry(struct net_device *dev, int index, unsigned char *addr)
1886 {
1887 	struct tc35815_local *lp = netdev_priv(dev);
1888 	struct tc35815_regs __iomem *tr =
1889 		(struct tc35815_regs __iomem *)dev->base_addr;
1890 	int cam_index = index * 6;
1891 	u32 cam_data;
1892 	u32 saved_addr;
1893 
1894 	saved_addr = tc_readl(&tr->CAM_Adr);
1895 
1896 	if (netif_msg_hw(lp))
1897 		printk(KERN_DEBUG "%s: CAM %d: %pM\n",
1898 			dev->name, index, addr);
1899 	if (index & 1) {
1900 		/* read modify write */
1901 		tc_writel(cam_index - 2, &tr->CAM_Adr);
1902 		cam_data = tc_readl(&tr->CAM_Data) & 0xffff0000;
1903 		cam_data |= addr[0] << 8 | addr[1];
1904 		tc_writel(cam_data, &tr->CAM_Data);
1905 		/* write whole word */
1906 		tc_writel(cam_index + 2, &tr->CAM_Adr);
1907 		cam_data = (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) | addr[5];
1908 		tc_writel(cam_data, &tr->CAM_Data);
1909 	} else {
1910 		/* write whole word */
1911 		tc_writel(cam_index, &tr->CAM_Adr);
1912 		cam_data = (addr[0] << 24) | (addr[1] << 16) | (addr[2] << 8) | addr[3];
1913 		tc_writel(cam_data, &tr->CAM_Data);
1914 		/* read modify write */
1915 		tc_writel(cam_index + 4, &tr->CAM_Adr);
1916 		cam_data = tc_readl(&tr->CAM_Data) & 0x0000ffff;
1917 		cam_data |= addr[4] << 24 | (addr[5] << 16);
1918 		tc_writel(cam_data, &tr->CAM_Data);
1919 	}
1920 
1921 	tc_writel(saved_addr, &tr->CAM_Adr);
1922 }
1923 
1924 
1925 /*
1926  * Set or clear the multicast filter for this adaptor.
1927  * num_addrs == -1	Promiscuous mode, receive all packets
1928  * num_addrs == 0	Normal mode, clear multicast list
1929  * num_addrs > 0	Multicast mode, receive normal and MC packets,
1930  *			and do best-effort filtering.
1931  */
1932 static void
1933 tc35815_set_multicast_list(struct net_device *dev)
1934 {
1935 	struct tc35815_regs __iomem *tr =
1936 		(struct tc35815_regs __iomem *)dev->base_addr;
1937 
1938 	if (dev->flags & IFF_PROMISC) {
1939 		/* With some (all?) 100MHalf HUB, controller will hang
1940 		 * if we enabled promiscuous mode before linkup... */
1941 		struct tc35815_local *lp = netdev_priv(dev);
1942 
1943 		if (!lp->link)
1944 			return;
1945 		/* Enable promiscuous mode */
1946 		tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc | CAM_StationAcc, &tr->CAM_Ctl);
1947 	} else if ((dev->flags & IFF_ALLMULTI) ||
1948 		  netdev_mc_count(dev) > CAM_ENTRY_MAX - 3) {
1949 		/* CAM 0, 1, 20 are reserved. */
1950 		/* Disable promiscuous mode, use normal mode. */
1951 		tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc, &tr->CAM_Ctl);
1952 	} else if (!netdev_mc_empty(dev)) {
1953 		struct netdev_hw_addr *ha;
1954 		int i;
1955 		int ena_bits = CAM_Ena_Bit(CAM_ENTRY_SOURCE);
1956 
1957 		tc_writel(0, &tr->CAM_Ctl);
1958 		/* Walk the address list, and load the filter */
1959 		i = 0;
1960 		netdev_for_each_mc_addr(ha, dev) {
1961 			/* entry 0,1 is reserved. */
1962 			tc35815_set_cam_entry(dev, i + 2, ha->addr);
1963 			ena_bits |= CAM_Ena_Bit(i + 2);
1964 			i++;
1965 		}
1966 		tc_writel(ena_bits, &tr->CAM_Ena);
1967 		tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
1968 	} else {
1969 		tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena);
1970 		tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
1971 	}
1972 }
1973 
1974 static void tc35815_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1975 {
1976 	struct tc35815_local *lp = netdev_priv(dev);
1977 
1978 	strlcpy(info->driver, MODNAME, sizeof(info->driver));
1979 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1980 	strlcpy(info->bus_info, pci_name(lp->pci_dev), sizeof(info->bus_info));
1981 }
1982 
1983 static int tc35815_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1984 {
1985 	struct tc35815_local *lp = netdev_priv(dev);
1986 
1987 	if (!lp->phy_dev)
1988 		return -ENODEV;
1989 	return phy_ethtool_gset(lp->phy_dev, cmd);
1990 }
1991 
1992 static int tc35815_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1993 {
1994 	struct tc35815_local *lp = netdev_priv(dev);
1995 
1996 	if (!lp->phy_dev)
1997 		return -ENODEV;
1998 	return phy_ethtool_sset(lp->phy_dev, cmd);
1999 }
2000 
2001 static u32 tc35815_get_msglevel(struct net_device *dev)
2002 {
2003 	struct tc35815_local *lp = netdev_priv(dev);
2004 	return lp->msg_enable;
2005 }
2006 
2007 static void tc35815_set_msglevel(struct net_device *dev, u32 datum)
2008 {
2009 	struct tc35815_local *lp = netdev_priv(dev);
2010 	lp->msg_enable = datum;
2011 }
2012 
2013 static int tc35815_get_sset_count(struct net_device *dev, int sset)
2014 {
2015 	struct tc35815_local *lp = netdev_priv(dev);
2016 
2017 	switch (sset) {
2018 	case ETH_SS_STATS:
2019 		return sizeof(lp->lstats) / sizeof(int);
2020 	default:
2021 		return -EOPNOTSUPP;
2022 	}
2023 }
2024 
2025 static void tc35815_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data)
2026 {
2027 	struct tc35815_local *lp = netdev_priv(dev);
2028 	data[0] = lp->lstats.max_tx_qlen;
2029 	data[1] = lp->lstats.tx_ints;
2030 	data[2] = lp->lstats.rx_ints;
2031 	data[3] = lp->lstats.tx_underrun;
2032 }
2033 
2034 static struct {
2035 	const char str[ETH_GSTRING_LEN];
2036 } ethtool_stats_keys[] = {
2037 	{ "max_tx_qlen" },
2038 	{ "tx_ints" },
2039 	{ "rx_ints" },
2040 	{ "tx_underrun" },
2041 };
2042 
2043 static void tc35815_get_strings(struct net_device *dev, u32 stringset, u8 *data)
2044 {
2045 	memcpy(data, ethtool_stats_keys, sizeof(ethtool_stats_keys));
2046 }
2047 
2048 static const struct ethtool_ops tc35815_ethtool_ops = {
2049 	.get_drvinfo		= tc35815_get_drvinfo,
2050 	.get_settings		= tc35815_get_settings,
2051 	.set_settings		= tc35815_set_settings,
2052 	.get_link		= ethtool_op_get_link,
2053 	.get_msglevel		= tc35815_get_msglevel,
2054 	.set_msglevel		= tc35815_set_msglevel,
2055 	.get_strings		= tc35815_get_strings,
2056 	.get_sset_count		= tc35815_get_sset_count,
2057 	.get_ethtool_stats	= tc35815_get_ethtool_stats,
2058 };
2059 
2060 static int tc35815_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2061 {
2062 	struct tc35815_local *lp = netdev_priv(dev);
2063 
2064 	if (!netif_running(dev))
2065 		return -EINVAL;
2066 	if (!lp->phy_dev)
2067 		return -ENODEV;
2068 	return phy_mii_ioctl(lp->phy_dev, rq, cmd);
2069 }
2070 
2071 static void tc35815_chip_reset(struct net_device *dev)
2072 {
2073 	struct tc35815_regs __iomem *tr =
2074 		(struct tc35815_regs __iomem *)dev->base_addr;
2075 	int i;
2076 	/* reset the controller */
2077 	tc_writel(MAC_Reset, &tr->MAC_Ctl);
2078 	udelay(4); /* 3200ns */
2079 	i = 0;
2080 	while (tc_readl(&tr->MAC_Ctl) & MAC_Reset) {
2081 		if (i++ > 100) {
2082 			printk(KERN_ERR "%s: MAC reset failed.\n", dev->name);
2083 			break;
2084 		}
2085 		mdelay(1);
2086 	}
2087 	tc_writel(0, &tr->MAC_Ctl);
2088 
2089 	/* initialize registers to default value */
2090 	tc_writel(0, &tr->DMA_Ctl);
2091 	tc_writel(0, &tr->TxThrsh);
2092 	tc_writel(0, &tr->TxPollCtr);
2093 	tc_writel(0, &tr->RxFragSize);
2094 	tc_writel(0, &tr->Int_En);
2095 	tc_writel(0, &tr->FDA_Bas);
2096 	tc_writel(0, &tr->FDA_Lim);
2097 	tc_writel(0xffffffff, &tr->Int_Src);	/* Write 1 to clear */
2098 	tc_writel(0, &tr->CAM_Ctl);
2099 	tc_writel(0, &tr->Tx_Ctl);
2100 	tc_writel(0, &tr->Rx_Ctl);
2101 	tc_writel(0, &tr->CAM_Ena);
2102 	(void)tc_readl(&tr->Miss_Cnt);	/* Read to clear */
2103 
2104 	/* initialize internal SRAM */
2105 	tc_writel(DMA_TestMode, &tr->DMA_Ctl);
2106 	for (i = 0; i < 0x1000; i += 4) {
2107 		tc_writel(i, &tr->CAM_Adr);
2108 		tc_writel(0, &tr->CAM_Data);
2109 	}
2110 	tc_writel(0, &tr->DMA_Ctl);
2111 }
2112 
2113 static void tc35815_chip_init(struct net_device *dev)
2114 {
2115 	struct tc35815_local *lp = netdev_priv(dev);
2116 	struct tc35815_regs __iomem *tr =
2117 		(struct tc35815_regs __iomem *)dev->base_addr;
2118 	unsigned long txctl = TX_CTL_CMD;
2119 
2120 	/* load station address to CAM */
2121 	tc35815_set_cam_entry(dev, CAM_ENTRY_SOURCE, dev->dev_addr);
2122 
2123 	/* Enable CAM (broadcast and unicast) */
2124 	tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena);
2125 	tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
2126 
2127 	/* Use DMA_RxAlign_2 to make IP header 4-byte aligned. */
2128 	if (HAVE_DMA_RXALIGN(lp))
2129 		tc_writel(DMA_BURST_SIZE | DMA_RxAlign_2, &tr->DMA_Ctl);
2130 	else
2131 		tc_writel(DMA_BURST_SIZE, &tr->DMA_Ctl);
2132 	tc_writel(0, &tr->TxPollCtr);	/* Batch mode */
2133 	tc_writel(TX_THRESHOLD, &tr->TxThrsh);
2134 	tc_writel(INT_EN_CMD, &tr->Int_En);
2135 
2136 	/* set queues */
2137 	tc_writel(fd_virt_to_bus(lp, lp->rfd_base), &tr->FDA_Bas);
2138 	tc_writel((unsigned long)lp->rfd_limit - (unsigned long)lp->rfd_base,
2139 		  &tr->FDA_Lim);
2140 	/*
2141 	 * Activation method:
2142 	 * First, enable the MAC Transmitter and the DMA Receive circuits.
2143 	 * Then enable the DMA Transmitter and the MAC Receive circuits.
2144 	 */
2145 	tc_writel(fd_virt_to_bus(lp, lp->fbl_ptr), &tr->BLFrmPtr);	/* start DMA receiver */
2146 	tc_writel(RX_CTL_CMD, &tr->Rx_Ctl);	/* start MAC receiver */
2147 
2148 	/* start MAC transmitter */
2149 	/* TX4939 does not have EnLCarr */
2150 	if (lp->chiptype == TC35815_TX4939)
2151 		txctl &= ~Tx_EnLCarr;
2152 	/* WORKAROUND: ignore LostCrS in full duplex operation */
2153 	if (!lp->phy_dev || !lp->link || lp->duplex == DUPLEX_FULL)
2154 		txctl &= ~Tx_EnLCarr;
2155 	tc_writel(txctl, &tr->Tx_Ctl);
2156 }
2157 
2158 #ifdef CONFIG_PM
2159 static int tc35815_suspend(struct pci_dev *pdev, pm_message_t state)
2160 {
2161 	struct net_device *dev = pci_get_drvdata(pdev);
2162 	struct tc35815_local *lp = netdev_priv(dev);
2163 	unsigned long flags;
2164 
2165 	pci_save_state(pdev);
2166 	if (!netif_running(dev))
2167 		return 0;
2168 	netif_device_detach(dev);
2169 	if (lp->phy_dev)
2170 		phy_stop(lp->phy_dev);
2171 	spin_lock_irqsave(&lp->lock, flags);
2172 	tc35815_chip_reset(dev);
2173 	spin_unlock_irqrestore(&lp->lock, flags);
2174 	pci_set_power_state(pdev, PCI_D3hot);
2175 	return 0;
2176 }
2177 
2178 static int tc35815_resume(struct pci_dev *pdev)
2179 {
2180 	struct net_device *dev = pci_get_drvdata(pdev);
2181 	struct tc35815_local *lp = netdev_priv(dev);
2182 
2183 	pci_restore_state(pdev);
2184 	if (!netif_running(dev))
2185 		return 0;
2186 	pci_set_power_state(pdev, PCI_D0);
2187 	tc35815_restart(dev);
2188 	netif_carrier_off(dev);
2189 	if (lp->phy_dev)
2190 		phy_start(lp->phy_dev);
2191 	netif_device_attach(dev);
2192 	return 0;
2193 }
2194 #endif /* CONFIG_PM */
2195 
2196 static struct pci_driver tc35815_pci_driver = {
2197 	.name		= MODNAME,
2198 	.id_table	= tc35815_pci_tbl,
2199 	.probe		= tc35815_init_one,
2200 	.remove		= tc35815_remove_one,
2201 #ifdef CONFIG_PM
2202 	.suspend	= tc35815_suspend,
2203 	.resume		= tc35815_resume,
2204 #endif
2205 };
2206 
2207 module_param_named(speed, options.speed, int, 0);
2208 MODULE_PARM_DESC(speed, "0:auto, 10:10Mbps, 100:100Mbps");
2209 module_param_named(duplex, options.duplex, int, 0);
2210 MODULE_PARM_DESC(duplex, "0:auto, 1:half, 2:full");
2211 
2212 module_pci_driver(tc35815_pci_driver);
2213 MODULE_DESCRIPTION("TOSHIBA TC35815 PCI 10M/100M Ethernet driver");
2214 MODULE_LICENSE("GPL");
2215