1 /*
2  * tc35815.c: A TOSHIBA TC35815CF PCI 10/100Mbps ethernet driver for linux.
3  *
4  * Based on skelton.c by Donald Becker.
5  *
6  * This driver is a replacement of older and less maintained version.
7  * This is a header of the older version:
8  *	-----<snip>-----
9  *	Copyright 2001 MontaVista Software Inc.
10  *	Author: MontaVista Software, Inc.
11  *		ahennessy@mvista.com
12  *	Copyright (C) 2000-2001 Toshiba Corporation
13  *	static const char *version =
14  *		"tc35815.c:v0.00 26/07/2000 by Toshiba Corporation\n";
15  *	-----<snip>-----
16  *
17  * This file is subject to the terms and conditions of the GNU General Public
18  * License.  See the file "COPYING" in the main directory of this archive
19  * for more details.
20  *
21  * (C) Copyright TOSHIBA CORPORATION 2004-2005
22  * All Rights Reserved.
23  */
24 
25 #define DRV_VERSION	"1.39"
26 static const char *version = "tc35815.c:v" DRV_VERSION "\n";
27 #define MODNAME			"tc35815"
28 
29 #include <linux/module.h>
30 #include <linux/kernel.h>
31 #include <linux/types.h>
32 #include <linux/fcntl.h>
33 #include <linux/interrupt.h>
34 #include <linux/ioport.h>
35 #include <linux/in.h>
36 #include <linux/if_vlan.h>
37 #include <linux/slab.h>
38 #include <linux/string.h>
39 #include <linux/spinlock.h>
40 #include <linux/errno.h>
41 #include <linux/netdevice.h>
42 #include <linux/etherdevice.h>
43 #include <linux/skbuff.h>
44 #include <linux/delay.h>
45 #include <linux/pci.h>
46 #include <linux/phy.h>
47 #include <linux/workqueue.h>
48 #include <linux/platform_device.h>
49 #include <linux/prefetch.h>
50 #include <asm/io.h>
51 #include <asm/byteorder.h>
52 
53 enum tc35815_chiptype {
54 	TC35815CF = 0,
55 	TC35815_NWU,
56 	TC35815_TX4939,
57 };
58 
59 /* indexed by tc35815_chiptype, above */
60 static const struct {
61 	const char *name;
62 } chip_info[] = {
63 	{ "TOSHIBA TC35815CF 10/100BaseTX" },
64 	{ "TOSHIBA TC35815 with Wake on LAN" },
65 	{ "TOSHIBA TC35815/TX4939" },
66 };
67 
68 static const struct pci_device_id tc35815_pci_tbl[] = {
69 	{PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815CF), .driver_data = TC35815CF },
70 	{PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_NWU), .driver_data = TC35815_NWU },
71 	{PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_TX4939), .driver_data = TC35815_TX4939 },
72 	{0,}
73 };
74 MODULE_DEVICE_TABLE(pci, tc35815_pci_tbl);
75 
76 /* see MODULE_PARM_DESC */
77 static struct tc35815_options {
78 	int speed;
79 	int duplex;
80 } options;
81 
82 /*
83  * Registers
84  */
85 struct tc35815_regs {
86 	__u32 DMA_Ctl;		/* 0x00 */
87 	__u32 TxFrmPtr;
88 	__u32 TxThrsh;
89 	__u32 TxPollCtr;
90 	__u32 BLFrmPtr;
91 	__u32 RxFragSize;
92 	__u32 Int_En;
93 	__u32 FDA_Bas;
94 	__u32 FDA_Lim;		/* 0x20 */
95 	__u32 Int_Src;
96 	__u32 unused0[2];
97 	__u32 PauseCnt;
98 	__u32 RemPauCnt;
99 	__u32 TxCtlFrmStat;
100 	__u32 unused1;
101 	__u32 MAC_Ctl;		/* 0x40 */
102 	__u32 CAM_Ctl;
103 	__u32 Tx_Ctl;
104 	__u32 Tx_Stat;
105 	__u32 Rx_Ctl;
106 	__u32 Rx_Stat;
107 	__u32 MD_Data;
108 	__u32 MD_CA;
109 	__u32 CAM_Adr;		/* 0x60 */
110 	__u32 CAM_Data;
111 	__u32 CAM_Ena;
112 	__u32 PROM_Ctl;
113 	__u32 PROM_Data;
114 	__u32 Algn_Cnt;
115 	__u32 CRC_Cnt;
116 	__u32 Miss_Cnt;
117 };
118 
119 /*
120  * Bit assignments
121  */
122 /* DMA_Ctl bit assign ------------------------------------------------------- */
123 #define DMA_RxAlign	       0x00c00000 /* 1:Reception Alignment	     */
124 #define DMA_RxAlign_1	       0x00400000
125 #define DMA_RxAlign_2	       0x00800000
126 #define DMA_RxAlign_3	       0x00c00000
127 #define DMA_M66EnStat	       0x00080000 /* 1:66MHz Enable State	     */
128 #define DMA_IntMask	       0x00040000 /* 1:Interrupt mask		     */
129 #define DMA_SWIntReq	       0x00020000 /* 1:Software Interrupt request    */
130 #define DMA_TxWakeUp	       0x00010000 /* 1:Transmit Wake Up		     */
131 #define DMA_RxBigE	       0x00008000 /* 1:Receive Big Endian	     */
132 #define DMA_TxBigE	       0x00004000 /* 1:Transmit Big Endian	     */
133 #define DMA_TestMode	       0x00002000 /* 1:Test Mode		     */
134 #define DMA_PowrMgmnt	       0x00001000 /* 1:Power Management		     */
135 #define DMA_DmBurst_Mask       0x000001fc /* DMA Burst size		     */
136 
137 /* RxFragSize bit assign ---------------------------------------------------- */
138 #define RxFrag_EnPack	       0x00008000 /* 1:Enable Packing		     */
139 #define RxFrag_MinFragMask     0x00000ffc /* Minimum Fragment		     */
140 
141 /* MAC_Ctl bit assign ------------------------------------------------------- */
142 #define MAC_Link10	       0x00008000 /* 1:Link Status 10Mbits	     */
143 #define MAC_EnMissRoll	       0x00002000 /* 1:Enable Missed Roll	     */
144 #define MAC_MissRoll	       0x00000400 /* 1:Missed Roll		     */
145 #define MAC_Loop10	       0x00000080 /* 1:Loop 10 Mbps		     */
146 #define MAC_Conn_Auto	       0x00000000 /*00:Connection mode (Automatic)   */
147 #define MAC_Conn_10M	       0x00000020 /*01:		       (10Mbps endec)*/
148 #define MAC_Conn_Mll	       0x00000040 /*10:		       (Mll clock)   */
149 #define MAC_MacLoop	       0x00000010 /* 1:MAC Loopback		     */
150 #define MAC_FullDup	       0x00000008 /* 1:Full Duplex 0:Half Duplex     */
151 #define MAC_Reset	       0x00000004 /* 1:Software Reset		     */
152 #define MAC_HaltImm	       0x00000002 /* 1:Halt Immediate		     */
153 #define MAC_HaltReq	       0x00000001 /* 1:Halt request		     */
154 
155 /* PROM_Ctl bit assign ------------------------------------------------------ */
156 #define PROM_Busy	       0x00008000 /* 1:Busy (Start Operation)	     */
157 #define PROM_Read	       0x00004000 /*10:Read operation		     */
158 #define PROM_Write	       0x00002000 /*01:Write operation		     */
159 #define PROM_Erase	       0x00006000 /*11:Erase operation		     */
160 					  /*00:Enable or Disable Writting,   */
161 					  /*	  as specified in PROM_Addr. */
162 #define PROM_Addr_Ena	       0x00000030 /*11xxxx:PROM Write enable	     */
163 					  /*00xxxx:	      disable	     */
164 
165 /* CAM_Ctl bit assign ------------------------------------------------------- */
166 #define CAM_CompEn	       0x00000010 /* 1:CAM Compare Enable	     */
167 #define CAM_NegCAM	       0x00000008 /* 1:Reject packets CAM recognizes,*/
168 					  /*			accept other */
169 #define CAM_BroadAcc	       0x00000004 /* 1:Broadcast assept		     */
170 #define CAM_GroupAcc	       0x00000002 /* 1:Multicast assept		     */
171 #define CAM_StationAcc	       0x00000001 /* 1:unicast accept		     */
172 
173 /* CAM_Ena bit assign ------------------------------------------------------- */
174 #define CAM_ENTRY_MAX		       21   /* CAM Data entry max count	     */
175 #define CAM_Ena_Mask ((1<<CAM_ENTRY_MAX)-1) /* CAM Enable bits (Max 21bits)  */
176 #define CAM_Ena_Bit(index)	(1 << (index))
177 #define CAM_ENTRY_DESTINATION	0
178 #define CAM_ENTRY_SOURCE	1
179 #define CAM_ENTRY_MACCTL	20
180 
181 /* Tx_Ctl bit assign -------------------------------------------------------- */
182 #define Tx_En		       0x00000001 /* 1:Transmit enable		     */
183 #define Tx_TxHalt	       0x00000002 /* 1:Transmit Halt Request	     */
184 #define Tx_NoPad	       0x00000004 /* 1:Suppress Padding		     */
185 #define Tx_NoCRC	       0x00000008 /* 1:Suppress Padding		     */
186 #define Tx_FBack	       0x00000010 /* 1:Fast Back-off		     */
187 #define Tx_EnUnder	       0x00000100 /* 1:Enable Underrun		     */
188 #define Tx_EnExDefer	       0x00000200 /* 1:Enable Excessive Deferral     */
189 #define Tx_EnLCarr	       0x00000400 /* 1:Enable Lost Carrier	     */
190 #define Tx_EnExColl	       0x00000800 /* 1:Enable Excessive Collision    */
191 #define Tx_EnLateColl	       0x00001000 /* 1:Enable Late Collision	     */
192 #define Tx_EnTxPar	       0x00002000 /* 1:Enable Transmit Parity	     */
193 #define Tx_EnComp	       0x00004000 /* 1:Enable Completion	     */
194 
195 /* Tx_Stat bit assign ------------------------------------------------------- */
196 #define Tx_TxColl_MASK	       0x0000000F /* Tx Collision Count		     */
197 #define Tx_ExColl	       0x00000010 /* Excessive Collision	     */
198 #define Tx_TXDefer	       0x00000020 /* Transmit Defered		     */
199 #define Tx_Paused	       0x00000040 /* Transmit Paused		     */
200 #define Tx_IntTx	       0x00000080 /* Interrupt on Tx		     */
201 #define Tx_Under	       0x00000100 /* Underrun			     */
202 #define Tx_Defer	       0x00000200 /* Deferral			     */
203 #define Tx_NCarr	       0x00000400 /* No Carrier			     */
204 #define Tx_10Stat	       0x00000800 /* 10Mbps Status		     */
205 #define Tx_LateColl	       0x00001000 /* Late Collision		     */
206 #define Tx_TxPar	       0x00002000 /* Tx Parity Error		     */
207 #define Tx_Comp		       0x00004000 /* Completion			     */
208 #define Tx_Halted	       0x00008000 /* Tx Halted			     */
209 #define Tx_SQErr	       0x00010000 /* Signal Quality Error(SQE)	     */
210 
211 /* Rx_Ctl bit assign -------------------------------------------------------- */
212 #define Rx_EnGood	       0x00004000 /* 1:Enable Good		     */
213 #define Rx_EnRxPar	       0x00002000 /* 1:Enable Receive Parity	     */
214 #define Rx_EnLongErr	       0x00000800 /* 1:Enable Long Error	     */
215 #define Rx_EnOver	       0x00000400 /* 1:Enable OverFlow		     */
216 #define Rx_EnCRCErr	       0x00000200 /* 1:Enable CRC Error		     */
217 #define Rx_EnAlign	       0x00000100 /* 1:Enable Alignment		     */
218 #define Rx_IgnoreCRC	       0x00000040 /* 1:Ignore CRC Value		     */
219 #define Rx_StripCRC	       0x00000010 /* 1:Strip CRC Value		     */
220 #define Rx_ShortEn	       0x00000008 /* 1:Short Enable		     */
221 #define Rx_LongEn	       0x00000004 /* 1:Long Enable		     */
222 #define Rx_RxHalt	       0x00000002 /* 1:Receive Halt Request	     */
223 #define Rx_RxEn		       0x00000001 /* 1:Receive Intrrupt Enable	     */
224 
225 /* Rx_Stat bit assign ------------------------------------------------------- */
226 #define Rx_Halted	       0x00008000 /* Rx Halted			     */
227 #define Rx_Good		       0x00004000 /* Rx Good			     */
228 #define Rx_RxPar	       0x00002000 /* Rx Parity Error		     */
229 #define Rx_TypePkt	       0x00001000 /* Rx Type Packet		     */
230 #define Rx_LongErr	       0x00000800 /* Rx Long Error		     */
231 #define Rx_Over		       0x00000400 /* Rx Overflow		     */
232 #define Rx_CRCErr	       0x00000200 /* Rx CRC Error		     */
233 #define Rx_Align	       0x00000100 /* Rx Alignment Error		     */
234 #define Rx_10Stat	       0x00000080 /* Rx 10Mbps Status		     */
235 #define Rx_IntRx	       0x00000040 /* Rx Interrupt		     */
236 #define Rx_CtlRecd	       0x00000020 /* Rx Control Receive		     */
237 #define Rx_InLenErr	       0x00000010 /* Rx In Range Frame Length Error  */
238 
239 #define Rx_Stat_Mask	       0x0000FFF0 /* Rx All Status Mask		     */
240 
241 /* Int_En bit assign -------------------------------------------------------- */
242 #define Int_NRAbtEn	       0x00000800 /* 1:Non-recoverable Abort Enable  */
243 #define Int_TxCtlCmpEn	       0x00000400 /* 1:Transmit Ctl Complete Enable  */
244 #define Int_DmParErrEn	       0x00000200 /* 1:DMA Parity Error Enable	     */
245 #define Int_DParDEn	       0x00000100 /* 1:Data Parity Error Enable	     */
246 #define Int_EarNotEn	       0x00000080 /* 1:Early Notify Enable	     */
247 #define Int_DParErrEn	       0x00000040 /* 1:Detected Parity Error Enable  */
248 #define Int_SSysErrEn	       0x00000020 /* 1:Signalled System Error Enable */
249 #define Int_RMasAbtEn	       0x00000010 /* 1:Received Master Abort Enable  */
250 #define Int_RTargAbtEn	       0x00000008 /* 1:Received Target Abort Enable  */
251 #define Int_STargAbtEn	       0x00000004 /* 1:Signalled Target Abort Enable */
252 #define Int_BLExEn	       0x00000002 /* 1:Buffer List Exhausted Enable  */
253 #define Int_FDAExEn	       0x00000001 /* 1:Free Descriptor Area	     */
254 					  /*		   Exhausted Enable  */
255 
256 /* Int_Src bit assign ------------------------------------------------------- */
257 #define Int_NRabt	       0x00004000 /* 1:Non Recoverable error	     */
258 #define Int_DmParErrStat       0x00002000 /* 1:DMA Parity Error & Clear	     */
259 #define Int_BLEx	       0x00001000 /* 1:Buffer List Empty & Clear     */
260 #define Int_FDAEx	       0x00000800 /* 1:FDA Empty & Clear	     */
261 #define Int_IntNRAbt	       0x00000400 /* 1:Non Recoverable Abort	     */
262 #define Int_IntCmp	       0x00000200 /* 1:MAC control packet complete   */
263 #define Int_IntExBD	       0x00000100 /* 1:Interrupt Extra BD & Clear    */
264 #define Int_DmParErr	       0x00000080 /* 1:DMA Parity Error & Clear	     */
265 #define Int_IntEarNot	       0x00000040 /* 1:Receive Data write & Clear    */
266 #define Int_SWInt	       0x00000020 /* 1:Software request & Clear	     */
267 #define Int_IntBLEx	       0x00000010 /* 1:Buffer List Empty & Clear     */
268 #define Int_IntFDAEx	       0x00000008 /* 1:FDA Empty & Clear	     */
269 #define Int_IntPCI	       0x00000004 /* 1:PCI controller & Clear	     */
270 #define Int_IntMacRx	       0x00000002 /* 1:Rx controller & Clear	     */
271 #define Int_IntMacTx	       0x00000001 /* 1:Tx controller & Clear	     */
272 
273 /* MD_CA bit assign --------------------------------------------------------- */
274 #define MD_CA_PreSup	       0x00001000 /* 1:Preamble Suppress		     */
275 #define MD_CA_Busy	       0x00000800 /* 1:Busy (Start Operation)	     */
276 #define MD_CA_Wr	       0x00000400 /* 1:Write 0:Read		     */
277 
278 
279 /*
280  * Descriptors
281  */
282 
283 /* Frame descriptor */
284 struct FDesc {
285 	volatile __u32 FDNext;
286 	volatile __u32 FDSystem;
287 	volatile __u32 FDStat;
288 	volatile __u32 FDCtl;
289 };
290 
291 /* Buffer descriptor */
292 struct BDesc {
293 	volatile __u32 BuffData;
294 	volatile __u32 BDCtl;
295 };
296 
297 #define FD_ALIGN	16
298 
299 /* Frame Descriptor bit assign ---------------------------------------------- */
300 #define FD_FDLength_MASK       0x0000FFFF /* Length MASK		     */
301 #define FD_BDCnt_MASK	       0x001F0000 /* BD count MASK in FD	     */
302 #define FD_FrmOpt_MASK	       0x7C000000 /* Frame option MASK		     */
303 #define FD_FrmOpt_BigEndian    0x40000000 /* Tx/Rx */
304 #define FD_FrmOpt_IntTx	       0x20000000 /* Tx only */
305 #define FD_FrmOpt_NoCRC	       0x10000000 /* Tx only */
306 #define FD_FrmOpt_NoPadding    0x08000000 /* Tx only */
307 #define FD_FrmOpt_Packing      0x04000000 /* Rx only */
308 #define FD_CownsFD	       0x80000000 /* FD Controller owner bit	     */
309 #define FD_Next_EOL	       0x00000001 /* FD EOL indicator		     */
310 #define FD_BDCnt_SHIFT	       16
311 
312 /* Buffer Descriptor bit assign --------------------------------------------- */
313 #define BD_BuffLength_MASK     0x0000FFFF /* Receive Data Size		     */
314 #define BD_RxBDID_MASK	       0x00FF0000 /* BD ID Number MASK		     */
315 #define BD_RxBDSeqN_MASK       0x7F000000 /* Rx BD Sequence Number	     */
316 #define BD_CownsBD	       0x80000000 /* BD Controller owner bit	     */
317 #define BD_RxBDID_SHIFT	       16
318 #define BD_RxBDSeqN_SHIFT      24
319 
320 
321 /* Some useful constants. */
322 
323 #define TX_CTL_CMD	(Tx_EnTxPar | Tx_EnLateColl | \
324 	Tx_EnExColl | Tx_EnLCarr | Tx_EnExDefer | Tx_EnUnder | \
325 	Tx_En)	/* maybe  0x7b01 */
326 /* Do not use Rx_StripCRC -- it causes trouble on BLEx/FDAEx condition */
327 #define RX_CTL_CMD	(Rx_EnGood | Rx_EnRxPar | Rx_EnLongErr | Rx_EnOver \
328 	| Rx_EnCRCErr | Rx_EnAlign | Rx_RxEn) /* maybe 0x6f01 */
329 #define INT_EN_CMD  (Int_NRAbtEn | \
330 	Int_DmParErrEn | Int_DParDEn | Int_DParErrEn | \
331 	Int_SSysErrEn  | Int_RMasAbtEn | Int_RTargAbtEn | \
332 	Int_STargAbtEn | \
333 	Int_BLExEn  | Int_FDAExEn) /* maybe 0xb7f*/
334 #define DMA_CTL_CMD	DMA_BURST_SIZE
335 #define HAVE_DMA_RXALIGN(lp)	likely((lp)->chiptype != TC35815CF)
336 
337 /* Tuning parameters */
338 #define DMA_BURST_SIZE	32
339 #define TX_THRESHOLD	1024
340 /* used threshold with packet max byte for low pci transfer ability.*/
341 #define TX_THRESHOLD_MAX 1536
342 /* setting threshold max value when overrun error occurred this count. */
343 #define TX_THRESHOLD_KEEP_LIMIT 10
344 
345 /* 16 + RX_BUF_NUM * 8 + RX_FD_NUM * 16 + TX_FD_NUM * 32 <= PAGE_SIZE*FD_PAGE_NUM */
346 #define FD_PAGE_NUM 4
347 #define RX_BUF_NUM	128	/* < 256 */
348 #define RX_FD_NUM	256	/* >= 32 */
349 #define TX_FD_NUM	128
350 #if RX_CTL_CMD & Rx_LongEn
351 #define RX_BUF_SIZE	PAGE_SIZE
352 #elif RX_CTL_CMD & Rx_StripCRC
353 #define RX_BUF_SIZE	\
354 	L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + NET_IP_ALIGN)
355 #else
356 #define RX_BUF_SIZE	\
357 	L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN + NET_IP_ALIGN)
358 #endif
359 #define RX_FD_RESERVE	(2 / 2)	/* max 2 BD per RxFD */
360 #define NAPI_WEIGHT	16
361 
362 struct TxFD {
363 	struct FDesc fd;
364 	struct BDesc bd;
365 	struct BDesc unused;
366 };
367 
368 struct RxFD {
369 	struct FDesc fd;
370 	struct BDesc bd[0];	/* variable length */
371 };
372 
373 struct FrFD {
374 	struct FDesc fd;
375 	struct BDesc bd[RX_BUF_NUM];
376 };
377 
378 
379 #define tc_readl(addr)	ioread32(addr)
380 #define tc_writel(d, addr)	iowrite32(d, addr)
381 
382 #define TC35815_TX_TIMEOUT  msecs_to_jiffies(400)
383 
384 /* Information that need to be kept for each controller. */
385 struct tc35815_local {
386 	struct pci_dev *pci_dev;
387 
388 	struct net_device *dev;
389 	struct napi_struct napi;
390 
391 	/* statistics */
392 	struct {
393 		int max_tx_qlen;
394 		int tx_ints;
395 		int rx_ints;
396 		int tx_underrun;
397 	} lstats;
398 
399 	/* Tx control lock.  This protects the transmit buffer ring
400 	 * state along with the "tx full" state of the driver.  This
401 	 * means all netif_queue flow control actions are protected
402 	 * by this lock as well.
403 	 */
404 	spinlock_t lock;
405 	spinlock_t rx_lock;
406 
407 	struct mii_bus *mii_bus;
408 	int duplex;
409 	int speed;
410 	int link;
411 	struct work_struct restart_work;
412 
413 	/*
414 	 * Transmitting: Batch Mode.
415 	 *	1 BD in 1 TxFD.
416 	 * Receiving: Non-Packing Mode.
417 	 *	1 circular FD for Free Buffer List.
418 	 *	RX_BUF_NUM BD in Free Buffer FD.
419 	 *	One Free Buffer BD has ETH_FRAME_LEN data buffer.
420 	 */
421 	void *fd_buf;	/* for TxFD, RxFD, FrFD */
422 	dma_addr_t fd_buf_dma;
423 	struct TxFD *tfd_base;
424 	unsigned int tfd_start;
425 	unsigned int tfd_end;
426 	struct RxFD *rfd_base;
427 	struct RxFD *rfd_limit;
428 	struct RxFD *rfd_cur;
429 	struct FrFD *fbl_ptr;
430 	unsigned int fbl_count;
431 	struct {
432 		struct sk_buff *skb;
433 		dma_addr_t skb_dma;
434 	} tx_skbs[TX_FD_NUM], rx_skbs[RX_BUF_NUM];
435 	u32 msg_enable;
436 	enum tc35815_chiptype chiptype;
437 };
438 
439 static inline dma_addr_t fd_virt_to_bus(struct tc35815_local *lp, void *virt)
440 {
441 	return lp->fd_buf_dma + ((u8 *)virt - (u8 *)lp->fd_buf);
442 }
443 #ifdef DEBUG
444 static inline void *fd_bus_to_virt(struct tc35815_local *lp, dma_addr_t bus)
445 {
446 	return (void *)((u8 *)lp->fd_buf + (bus - lp->fd_buf_dma));
447 }
448 #endif
449 static struct sk_buff *alloc_rxbuf_skb(struct net_device *dev,
450 				       struct pci_dev *hwdev,
451 				       dma_addr_t *dma_handle)
452 {
453 	struct sk_buff *skb;
454 	skb = netdev_alloc_skb(dev, RX_BUF_SIZE);
455 	if (!skb)
456 		return NULL;
457 	*dma_handle = pci_map_single(hwdev, skb->data, RX_BUF_SIZE,
458 				     PCI_DMA_FROMDEVICE);
459 	if (pci_dma_mapping_error(hwdev, *dma_handle)) {
460 		dev_kfree_skb_any(skb);
461 		return NULL;
462 	}
463 	skb_reserve(skb, 2);	/* make IP header 4byte aligned */
464 	return skb;
465 }
466 
467 static void free_rxbuf_skb(struct pci_dev *hwdev, struct sk_buff *skb, dma_addr_t dma_handle)
468 {
469 	pci_unmap_single(hwdev, dma_handle, RX_BUF_SIZE,
470 			 PCI_DMA_FROMDEVICE);
471 	dev_kfree_skb_any(skb);
472 }
473 
474 /* Index to functions, as function prototypes. */
475 
476 static int	tc35815_open(struct net_device *dev);
477 static int	tc35815_send_packet(struct sk_buff *skb, struct net_device *dev);
478 static irqreturn_t	tc35815_interrupt(int irq, void *dev_id);
479 static int	tc35815_rx(struct net_device *dev, int limit);
480 static int	tc35815_poll(struct napi_struct *napi, int budget);
481 static void	tc35815_txdone(struct net_device *dev);
482 static int	tc35815_close(struct net_device *dev);
483 static struct	net_device_stats *tc35815_get_stats(struct net_device *dev);
484 static void	tc35815_set_multicast_list(struct net_device *dev);
485 static void	tc35815_tx_timeout(struct net_device *dev);
486 static int	tc35815_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
487 #ifdef CONFIG_NET_POLL_CONTROLLER
488 static void	tc35815_poll_controller(struct net_device *dev);
489 #endif
490 static const struct ethtool_ops tc35815_ethtool_ops;
491 
492 /* Example routines you must write ;->. */
493 static void	tc35815_chip_reset(struct net_device *dev);
494 static void	tc35815_chip_init(struct net_device *dev);
495 
496 #ifdef DEBUG
497 static void	panic_queues(struct net_device *dev);
498 #endif
499 
500 static void tc35815_restart_work(struct work_struct *work);
501 
502 static int tc_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
503 {
504 	struct net_device *dev = bus->priv;
505 	struct tc35815_regs __iomem *tr =
506 		(struct tc35815_regs __iomem *)dev->base_addr;
507 	unsigned long timeout = jiffies + HZ;
508 
509 	tc_writel(MD_CA_Busy | (mii_id << 5) | (regnum & 0x1f), &tr->MD_CA);
510 	udelay(12); /* it takes 32 x 400ns at least */
511 	while (tc_readl(&tr->MD_CA) & MD_CA_Busy) {
512 		if (time_after(jiffies, timeout))
513 			return -EIO;
514 		cpu_relax();
515 	}
516 	return tc_readl(&tr->MD_Data) & 0xffff;
517 }
518 
519 static int tc_mdio_write(struct mii_bus *bus, int mii_id, int regnum, u16 val)
520 {
521 	struct net_device *dev = bus->priv;
522 	struct tc35815_regs __iomem *tr =
523 		(struct tc35815_regs __iomem *)dev->base_addr;
524 	unsigned long timeout = jiffies + HZ;
525 
526 	tc_writel(val, &tr->MD_Data);
527 	tc_writel(MD_CA_Busy | MD_CA_Wr | (mii_id << 5) | (regnum & 0x1f),
528 		  &tr->MD_CA);
529 	udelay(12); /* it takes 32 x 400ns at least */
530 	while (tc_readl(&tr->MD_CA) & MD_CA_Busy) {
531 		if (time_after(jiffies, timeout))
532 			return -EIO;
533 		cpu_relax();
534 	}
535 	return 0;
536 }
537 
538 static void tc_handle_link_change(struct net_device *dev)
539 {
540 	struct tc35815_local *lp = netdev_priv(dev);
541 	struct phy_device *phydev = dev->phydev;
542 	unsigned long flags;
543 	int status_change = 0;
544 
545 	spin_lock_irqsave(&lp->lock, flags);
546 	if (phydev->link &&
547 	    (lp->speed != phydev->speed || lp->duplex != phydev->duplex)) {
548 		struct tc35815_regs __iomem *tr =
549 			(struct tc35815_regs __iomem *)dev->base_addr;
550 		u32 reg;
551 
552 		reg = tc_readl(&tr->MAC_Ctl);
553 		reg |= MAC_HaltReq;
554 		tc_writel(reg, &tr->MAC_Ctl);
555 		if (phydev->duplex == DUPLEX_FULL)
556 			reg |= MAC_FullDup;
557 		else
558 			reg &= ~MAC_FullDup;
559 		tc_writel(reg, &tr->MAC_Ctl);
560 		reg &= ~MAC_HaltReq;
561 		tc_writel(reg, &tr->MAC_Ctl);
562 
563 		/*
564 		 * TX4939 PCFG.SPEEDn bit will be changed on
565 		 * NETDEV_CHANGE event.
566 		 */
567 		/*
568 		 * WORKAROUND: enable LostCrS only if half duplex
569 		 * operation.
570 		 * (TX4939 does not have EnLCarr)
571 		 */
572 		if (phydev->duplex == DUPLEX_HALF &&
573 		    lp->chiptype != TC35815_TX4939)
574 			tc_writel(tc_readl(&tr->Tx_Ctl) | Tx_EnLCarr,
575 				  &tr->Tx_Ctl);
576 
577 		lp->speed = phydev->speed;
578 		lp->duplex = phydev->duplex;
579 		status_change = 1;
580 	}
581 
582 	if (phydev->link != lp->link) {
583 		if (phydev->link) {
584 			/* delayed promiscuous enabling */
585 			if (dev->flags & IFF_PROMISC)
586 				tc35815_set_multicast_list(dev);
587 		} else {
588 			lp->speed = 0;
589 			lp->duplex = -1;
590 		}
591 		lp->link = phydev->link;
592 
593 		status_change = 1;
594 	}
595 	spin_unlock_irqrestore(&lp->lock, flags);
596 
597 	if (status_change && netif_msg_link(lp)) {
598 		phy_print_status(phydev);
599 		pr_debug("%s: MII BMCR %04x BMSR %04x LPA %04x\n",
600 			 dev->name,
601 			 phy_read(phydev, MII_BMCR),
602 			 phy_read(phydev, MII_BMSR),
603 			 phy_read(phydev, MII_LPA));
604 	}
605 }
606 
607 static int tc_mii_probe(struct net_device *dev)
608 {
609 	struct tc35815_local *lp = netdev_priv(dev);
610 	struct phy_device *phydev;
611 	u32 dropmask;
612 
613 	phydev = phy_find_first(lp->mii_bus);
614 	if (!phydev) {
615 		printk(KERN_ERR "%s: no PHY found\n", dev->name);
616 		return -ENODEV;
617 	}
618 
619 	/* attach the mac to the phy */
620 	phydev = phy_connect(dev, phydev_name(phydev),
621 			     &tc_handle_link_change,
622 			     lp->chiptype == TC35815_TX4939 ? PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII);
623 	if (IS_ERR(phydev)) {
624 		printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
625 		return PTR_ERR(phydev);
626 	}
627 
628 	phy_attached_info(phydev);
629 
630 	/* mask with MAC supported features */
631 	phydev->supported &= PHY_BASIC_FEATURES;
632 	dropmask = 0;
633 	if (options.speed == 10)
634 		dropmask |= SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full;
635 	else if (options.speed == 100)
636 		dropmask |= SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full;
637 	if (options.duplex == 1)
638 		dropmask |= SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Full;
639 	else if (options.duplex == 2)
640 		dropmask |= SUPPORTED_10baseT_Half | SUPPORTED_100baseT_Half;
641 	phydev->supported &= ~dropmask;
642 	phydev->advertising = phydev->supported;
643 
644 	lp->link = 0;
645 	lp->speed = 0;
646 	lp->duplex = -1;
647 
648 	return 0;
649 }
650 
651 static int tc_mii_init(struct net_device *dev)
652 {
653 	struct tc35815_local *lp = netdev_priv(dev);
654 	int err;
655 
656 	lp->mii_bus = mdiobus_alloc();
657 	if (lp->mii_bus == NULL) {
658 		err = -ENOMEM;
659 		goto err_out;
660 	}
661 
662 	lp->mii_bus->name = "tc35815_mii_bus";
663 	lp->mii_bus->read = tc_mdio_read;
664 	lp->mii_bus->write = tc_mdio_write;
665 	snprintf(lp->mii_bus->id, MII_BUS_ID_SIZE, "%x",
666 		 (lp->pci_dev->bus->number << 8) | lp->pci_dev->devfn);
667 	lp->mii_bus->priv = dev;
668 	lp->mii_bus->parent = &lp->pci_dev->dev;
669 	err = mdiobus_register(lp->mii_bus);
670 	if (err)
671 		goto err_out_free_mii_bus;
672 	err = tc_mii_probe(dev);
673 	if (err)
674 		goto err_out_unregister_bus;
675 	return 0;
676 
677 err_out_unregister_bus:
678 	mdiobus_unregister(lp->mii_bus);
679 err_out_free_mii_bus:
680 	mdiobus_free(lp->mii_bus);
681 err_out:
682 	return err;
683 }
684 
685 #ifdef CONFIG_CPU_TX49XX
686 /*
687  * Find a platform_device providing a MAC address.  The platform code
688  * should provide a "tc35815-mac" device with a MAC address in its
689  * platform_data.
690  */
691 static int tc35815_mac_match(struct device *dev, void *data)
692 {
693 	struct platform_device *plat_dev = to_platform_device(dev);
694 	struct pci_dev *pci_dev = data;
695 	unsigned int id = pci_dev->irq;
696 	return !strcmp(plat_dev->name, "tc35815-mac") && plat_dev->id == id;
697 }
698 
699 static int tc35815_read_plat_dev_addr(struct net_device *dev)
700 {
701 	struct tc35815_local *lp = netdev_priv(dev);
702 	struct device *pd = bus_find_device(&platform_bus_type, NULL,
703 					    lp->pci_dev, tc35815_mac_match);
704 	if (pd) {
705 		if (pd->platform_data)
706 			memcpy(dev->dev_addr, pd->platform_data, ETH_ALEN);
707 		put_device(pd);
708 		return is_valid_ether_addr(dev->dev_addr) ? 0 : -ENODEV;
709 	}
710 	return -ENODEV;
711 }
712 #else
713 static int tc35815_read_plat_dev_addr(struct net_device *dev)
714 {
715 	return -ENODEV;
716 }
717 #endif
718 
719 static int tc35815_init_dev_addr(struct net_device *dev)
720 {
721 	struct tc35815_regs __iomem *tr =
722 		(struct tc35815_regs __iomem *)dev->base_addr;
723 	int i;
724 
725 	while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
726 		;
727 	for (i = 0; i < 6; i += 2) {
728 		unsigned short data;
729 		tc_writel(PROM_Busy | PROM_Read | (i / 2 + 2), &tr->PROM_Ctl);
730 		while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
731 			;
732 		data = tc_readl(&tr->PROM_Data);
733 		dev->dev_addr[i] = data & 0xff;
734 		dev->dev_addr[i+1] = data >> 8;
735 	}
736 	if (!is_valid_ether_addr(dev->dev_addr))
737 		return tc35815_read_plat_dev_addr(dev);
738 	return 0;
739 }
740 
741 static const struct net_device_ops tc35815_netdev_ops = {
742 	.ndo_open		= tc35815_open,
743 	.ndo_stop		= tc35815_close,
744 	.ndo_start_xmit		= tc35815_send_packet,
745 	.ndo_get_stats		= tc35815_get_stats,
746 	.ndo_set_rx_mode	= tc35815_set_multicast_list,
747 	.ndo_tx_timeout		= tc35815_tx_timeout,
748 	.ndo_do_ioctl		= tc35815_ioctl,
749 	.ndo_validate_addr	= eth_validate_addr,
750 	.ndo_set_mac_address	= eth_mac_addr,
751 #ifdef CONFIG_NET_POLL_CONTROLLER
752 	.ndo_poll_controller	= tc35815_poll_controller,
753 #endif
754 };
755 
756 static int tc35815_init_one(struct pci_dev *pdev,
757 			    const struct pci_device_id *ent)
758 {
759 	void __iomem *ioaddr = NULL;
760 	struct net_device *dev;
761 	struct tc35815_local *lp;
762 	int rc;
763 
764 	static int printed_version;
765 	if (!printed_version++) {
766 		printk(version);
767 		dev_printk(KERN_DEBUG, &pdev->dev,
768 			   "speed:%d duplex:%d\n",
769 			   options.speed, options.duplex);
770 	}
771 
772 	if (!pdev->irq) {
773 		dev_warn(&pdev->dev, "no IRQ assigned.\n");
774 		return -ENODEV;
775 	}
776 
777 	/* dev zeroed in alloc_etherdev */
778 	dev = alloc_etherdev(sizeof(*lp));
779 	if (dev == NULL)
780 		return -ENOMEM;
781 
782 	SET_NETDEV_DEV(dev, &pdev->dev);
783 	lp = netdev_priv(dev);
784 	lp->dev = dev;
785 
786 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
787 	rc = pcim_enable_device(pdev);
788 	if (rc)
789 		goto err_out;
790 	rc = pcim_iomap_regions(pdev, 1 << 1, MODNAME);
791 	if (rc)
792 		goto err_out;
793 	pci_set_master(pdev);
794 	ioaddr = pcim_iomap_table(pdev)[1];
795 
796 	/* Initialize the device structure. */
797 	dev->netdev_ops = &tc35815_netdev_ops;
798 	dev->ethtool_ops = &tc35815_ethtool_ops;
799 	dev->watchdog_timeo = TC35815_TX_TIMEOUT;
800 	netif_napi_add(dev, &lp->napi, tc35815_poll, NAPI_WEIGHT);
801 
802 	dev->irq = pdev->irq;
803 	dev->base_addr = (unsigned long)ioaddr;
804 
805 	INIT_WORK(&lp->restart_work, tc35815_restart_work);
806 	spin_lock_init(&lp->lock);
807 	spin_lock_init(&lp->rx_lock);
808 	lp->pci_dev = pdev;
809 	lp->chiptype = ent->driver_data;
810 
811 	lp->msg_enable = NETIF_MSG_TX_ERR | NETIF_MSG_HW | NETIF_MSG_DRV | NETIF_MSG_LINK;
812 	pci_set_drvdata(pdev, dev);
813 
814 	/* Soft reset the chip. */
815 	tc35815_chip_reset(dev);
816 
817 	/* Retrieve the ethernet address. */
818 	if (tc35815_init_dev_addr(dev)) {
819 		dev_warn(&pdev->dev, "not valid ether addr\n");
820 		eth_hw_addr_random(dev);
821 	}
822 
823 	rc = register_netdev(dev);
824 	if (rc)
825 		goto err_out;
826 
827 	printk(KERN_INFO "%s: %s at 0x%lx, %pM, IRQ %d\n",
828 		dev->name,
829 		chip_info[ent->driver_data].name,
830 		dev->base_addr,
831 		dev->dev_addr,
832 		dev->irq);
833 
834 	rc = tc_mii_init(dev);
835 	if (rc)
836 		goto err_out_unregister;
837 
838 	return 0;
839 
840 err_out_unregister:
841 	unregister_netdev(dev);
842 err_out:
843 	free_netdev(dev);
844 	return rc;
845 }
846 
847 
848 static void tc35815_remove_one(struct pci_dev *pdev)
849 {
850 	struct net_device *dev = pci_get_drvdata(pdev);
851 	struct tc35815_local *lp = netdev_priv(dev);
852 
853 	phy_disconnect(dev->phydev);
854 	mdiobus_unregister(lp->mii_bus);
855 	mdiobus_free(lp->mii_bus);
856 	unregister_netdev(dev);
857 	free_netdev(dev);
858 }
859 
860 static int
861 tc35815_init_queues(struct net_device *dev)
862 {
863 	struct tc35815_local *lp = netdev_priv(dev);
864 	int i;
865 	unsigned long fd_addr;
866 
867 	if (!lp->fd_buf) {
868 		BUG_ON(sizeof(struct FDesc) +
869 		       sizeof(struct BDesc) * RX_BUF_NUM +
870 		       sizeof(struct FDesc) * RX_FD_NUM +
871 		       sizeof(struct TxFD) * TX_FD_NUM >
872 		       PAGE_SIZE * FD_PAGE_NUM);
873 
874 		lp->fd_buf = pci_alloc_consistent(lp->pci_dev,
875 						  PAGE_SIZE * FD_PAGE_NUM,
876 						  &lp->fd_buf_dma);
877 		if (!lp->fd_buf)
878 			return -ENOMEM;
879 		for (i = 0; i < RX_BUF_NUM; i++) {
880 			lp->rx_skbs[i].skb =
881 				alloc_rxbuf_skb(dev, lp->pci_dev,
882 						&lp->rx_skbs[i].skb_dma);
883 			if (!lp->rx_skbs[i].skb) {
884 				while (--i >= 0) {
885 					free_rxbuf_skb(lp->pci_dev,
886 						       lp->rx_skbs[i].skb,
887 						       lp->rx_skbs[i].skb_dma);
888 					lp->rx_skbs[i].skb = NULL;
889 				}
890 				pci_free_consistent(lp->pci_dev,
891 						    PAGE_SIZE * FD_PAGE_NUM,
892 						    lp->fd_buf,
893 						    lp->fd_buf_dma);
894 				lp->fd_buf = NULL;
895 				return -ENOMEM;
896 			}
897 		}
898 		printk(KERN_DEBUG "%s: FD buf %p DataBuf",
899 		       dev->name, lp->fd_buf);
900 		printk("\n");
901 	} else {
902 		for (i = 0; i < FD_PAGE_NUM; i++)
903 			clear_page((void *)((unsigned long)lp->fd_buf +
904 					    i * PAGE_SIZE));
905 	}
906 	fd_addr = (unsigned long)lp->fd_buf;
907 
908 	/* Free Descriptors (for Receive) */
909 	lp->rfd_base = (struct RxFD *)fd_addr;
910 	fd_addr += sizeof(struct RxFD) * RX_FD_NUM;
911 	for (i = 0; i < RX_FD_NUM; i++)
912 		lp->rfd_base[i].fd.FDCtl = cpu_to_le32(FD_CownsFD);
913 	lp->rfd_cur = lp->rfd_base;
914 	lp->rfd_limit = (struct RxFD *)fd_addr - (RX_FD_RESERVE + 1);
915 
916 	/* Transmit Descriptors */
917 	lp->tfd_base = (struct TxFD *)fd_addr;
918 	fd_addr += sizeof(struct TxFD) * TX_FD_NUM;
919 	for (i = 0; i < TX_FD_NUM; i++) {
920 		lp->tfd_base[i].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[i+1]));
921 		lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
922 		lp->tfd_base[i].fd.FDCtl = cpu_to_le32(0);
923 	}
924 	lp->tfd_base[TX_FD_NUM-1].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[0]));
925 	lp->tfd_start = 0;
926 	lp->tfd_end = 0;
927 
928 	/* Buffer List (for Receive) */
929 	lp->fbl_ptr = (struct FrFD *)fd_addr;
930 	lp->fbl_ptr->fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, lp->fbl_ptr));
931 	lp->fbl_ptr->fd.FDCtl = cpu_to_le32(RX_BUF_NUM | FD_CownsFD);
932 	/*
933 	 * move all allocated skbs to head of rx_skbs[] array.
934 	 * fbl_count mighe not be RX_BUF_NUM if alloc_rxbuf_skb() in
935 	 * tc35815_rx() had failed.
936 	 */
937 	lp->fbl_count = 0;
938 	for (i = 0; i < RX_BUF_NUM; i++) {
939 		if (lp->rx_skbs[i].skb) {
940 			if (i != lp->fbl_count) {
941 				lp->rx_skbs[lp->fbl_count].skb =
942 					lp->rx_skbs[i].skb;
943 				lp->rx_skbs[lp->fbl_count].skb_dma =
944 					lp->rx_skbs[i].skb_dma;
945 			}
946 			lp->fbl_count++;
947 		}
948 	}
949 	for (i = 0; i < RX_BUF_NUM; i++) {
950 		if (i >= lp->fbl_count) {
951 			lp->fbl_ptr->bd[i].BuffData = 0;
952 			lp->fbl_ptr->bd[i].BDCtl = 0;
953 			continue;
954 		}
955 		lp->fbl_ptr->bd[i].BuffData =
956 			cpu_to_le32(lp->rx_skbs[i].skb_dma);
957 		/* BDID is index of FrFD.bd[] */
958 		lp->fbl_ptr->bd[i].BDCtl =
959 			cpu_to_le32(BD_CownsBD | (i << BD_RxBDID_SHIFT) |
960 				    RX_BUF_SIZE);
961 	}
962 
963 	printk(KERN_DEBUG "%s: TxFD %p RxFD %p FrFD %p\n",
964 	       dev->name, lp->tfd_base, lp->rfd_base, lp->fbl_ptr);
965 	return 0;
966 }
967 
968 static void
969 tc35815_clear_queues(struct net_device *dev)
970 {
971 	struct tc35815_local *lp = netdev_priv(dev);
972 	int i;
973 
974 	for (i = 0; i < TX_FD_NUM; i++) {
975 		u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
976 		struct sk_buff *skb =
977 			fdsystem != 0xffffffff ?
978 			lp->tx_skbs[fdsystem].skb : NULL;
979 #ifdef DEBUG
980 		if (lp->tx_skbs[i].skb != skb) {
981 			printk("%s: tx_skbs mismatch(%d).\n", dev->name, i);
982 			panic_queues(dev);
983 		}
984 #else
985 		BUG_ON(lp->tx_skbs[i].skb != skb);
986 #endif
987 		if (skb) {
988 			pci_unmap_single(lp->pci_dev, lp->tx_skbs[i].skb_dma, skb->len, PCI_DMA_TODEVICE);
989 			lp->tx_skbs[i].skb = NULL;
990 			lp->tx_skbs[i].skb_dma = 0;
991 			dev_kfree_skb_any(skb);
992 		}
993 		lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
994 	}
995 
996 	tc35815_init_queues(dev);
997 }
998 
999 static void
1000 tc35815_free_queues(struct net_device *dev)
1001 {
1002 	struct tc35815_local *lp = netdev_priv(dev);
1003 	int i;
1004 
1005 	if (lp->tfd_base) {
1006 		for (i = 0; i < TX_FD_NUM; i++) {
1007 			u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
1008 			struct sk_buff *skb =
1009 				fdsystem != 0xffffffff ?
1010 				lp->tx_skbs[fdsystem].skb : NULL;
1011 #ifdef DEBUG
1012 			if (lp->tx_skbs[i].skb != skb) {
1013 				printk("%s: tx_skbs mismatch(%d).\n", dev->name, i);
1014 				panic_queues(dev);
1015 			}
1016 #else
1017 			BUG_ON(lp->tx_skbs[i].skb != skb);
1018 #endif
1019 			if (skb) {
1020 				dev_kfree_skb(skb);
1021 				pci_unmap_single(lp->pci_dev, lp->tx_skbs[i].skb_dma, skb->len, PCI_DMA_TODEVICE);
1022 				lp->tx_skbs[i].skb = NULL;
1023 				lp->tx_skbs[i].skb_dma = 0;
1024 			}
1025 			lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
1026 		}
1027 	}
1028 
1029 	lp->rfd_base = NULL;
1030 	lp->rfd_limit = NULL;
1031 	lp->rfd_cur = NULL;
1032 	lp->fbl_ptr = NULL;
1033 
1034 	for (i = 0; i < RX_BUF_NUM; i++) {
1035 		if (lp->rx_skbs[i].skb) {
1036 			free_rxbuf_skb(lp->pci_dev, lp->rx_skbs[i].skb,
1037 				       lp->rx_skbs[i].skb_dma);
1038 			lp->rx_skbs[i].skb = NULL;
1039 		}
1040 	}
1041 	if (lp->fd_buf) {
1042 		pci_free_consistent(lp->pci_dev, PAGE_SIZE * FD_PAGE_NUM,
1043 				    lp->fd_buf, lp->fd_buf_dma);
1044 		lp->fd_buf = NULL;
1045 	}
1046 }
1047 
1048 static void
1049 dump_txfd(struct TxFD *fd)
1050 {
1051 	printk("TxFD(%p): %08x %08x %08x %08x\n", fd,
1052 	       le32_to_cpu(fd->fd.FDNext),
1053 	       le32_to_cpu(fd->fd.FDSystem),
1054 	       le32_to_cpu(fd->fd.FDStat),
1055 	       le32_to_cpu(fd->fd.FDCtl));
1056 	printk("BD: ");
1057 	printk(" %08x %08x",
1058 	       le32_to_cpu(fd->bd.BuffData),
1059 	       le32_to_cpu(fd->bd.BDCtl));
1060 	printk("\n");
1061 }
1062 
1063 static int
1064 dump_rxfd(struct RxFD *fd)
1065 {
1066 	int i, bd_count = (le32_to_cpu(fd->fd.FDCtl) & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
1067 	if (bd_count > 8)
1068 		bd_count = 8;
1069 	printk("RxFD(%p): %08x %08x %08x %08x\n", fd,
1070 	       le32_to_cpu(fd->fd.FDNext),
1071 	       le32_to_cpu(fd->fd.FDSystem),
1072 	       le32_to_cpu(fd->fd.FDStat),
1073 	       le32_to_cpu(fd->fd.FDCtl));
1074 	if (le32_to_cpu(fd->fd.FDCtl) & FD_CownsFD)
1075 		return 0;
1076 	printk("BD: ");
1077 	for (i = 0; i < bd_count; i++)
1078 		printk(" %08x %08x",
1079 		       le32_to_cpu(fd->bd[i].BuffData),
1080 		       le32_to_cpu(fd->bd[i].BDCtl));
1081 	printk("\n");
1082 	return bd_count;
1083 }
1084 
1085 #ifdef DEBUG
1086 static void
1087 dump_frfd(struct FrFD *fd)
1088 {
1089 	int i;
1090 	printk("FrFD(%p): %08x %08x %08x %08x\n", fd,
1091 	       le32_to_cpu(fd->fd.FDNext),
1092 	       le32_to_cpu(fd->fd.FDSystem),
1093 	       le32_to_cpu(fd->fd.FDStat),
1094 	       le32_to_cpu(fd->fd.FDCtl));
1095 	printk("BD: ");
1096 	for (i = 0; i < RX_BUF_NUM; i++)
1097 		printk(" %08x %08x",
1098 		       le32_to_cpu(fd->bd[i].BuffData),
1099 		       le32_to_cpu(fd->bd[i].BDCtl));
1100 	printk("\n");
1101 }
1102 
1103 static void
1104 panic_queues(struct net_device *dev)
1105 {
1106 	struct tc35815_local *lp = netdev_priv(dev);
1107 	int i;
1108 
1109 	printk("TxFD base %p, start %u, end %u\n",
1110 	       lp->tfd_base, lp->tfd_start, lp->tfd_end);
1111 	printk("RxFD base %p limit %p cur %p\n",
1112 	       lp->rfd_base, lp->rfd_limit, lp->rfd_cur);
1113 	printk("FrFD %p\n", lp->fbl_ptr);
1114 	for (i = 0; i < TX_FD_NUM; i++)
1115 		dump_txfd(&lp->tfd_base[i]);
1116 	for (i = 0; i < RX_FD_NUM; i++) {
1117 		int bd_count = dump_rxfd(&lp->rfd_base[i]);
1118 		i += (bd_count + 1) / 2;	/* skip BDs */
1119 	}
1120 	dump_frfd(lp->fbl_ptr);
1121 	panic("%s: Illegal queue state.", dev->name);
1122 }
1123 #endif
1124 
1125 static void print_eth(const u8 *add)
1126 {
1127 	printk(KERN_DEBUG "print_eth(%p)\n", add);
1128 	printk(KERN_DEBUG " %pM => %pM : %02x%02x\n",
1129 		add + 6, add, add[12], add[13]);
1130 }
1131 
1132 static int tc35815_tx_full(struct net_device *dev)
1133 {
1134 	struct tc35815_local *lp = netdev_priv(dev);
1135 	return (lp->tfd_start + 1) % TX_FD_NUM == lp->tfd_end;
1136 }
1137 
1138 static void tc35815_restart(struct net_device *dev)
1139 {
1140 	struct tc35815_local *lp = netdev_priv(dev);
1141 	int ret;
1142 
1143 	if (dev->phydev) {
1144 		ret = phy_init_hw(dev->phydev);
1145 		if (ret)
1146 			printk(KERN_ERR "%s: PHY init failed.\n", dev->name);
1147 	}
1148 
1149 	spin_lock_bh(&lp->rx_lock);
1150 	spin_lock_irq(&lp->lock);
1151 	tc35815_chip_reset(dev);
1152 	tc35815_clear_queues(dev);
1153 	tc35815_chip_init(dev);
1154 	/* Reconfigure CAM again since tc35815_chip_init() initialize it. */
1155 	tc35815_set_multicast_list(dev);
1156 	spin_unlock_irq(&lp->lock);
1157 	spin_unlock_bh(&lp->rx_lock);
1158 
1159 	netif_wake_queue(dev);
1160 }
1161 
1162 static void tc35815_restart_work(struct work_struct *work)
1163 {
1164 	struct tc35815_local *lp =
1165 		container_of(work, struct tc35815_local, restart_work);
1166 	struct net_device *dev = lp->dev;
1167 
1168 	tc35815_restart(dev);
1169 }
1170 
1171 static void tc35815_schedule_restart(struct net_device *dev)
1172 {
1173 	struct tc35815_local *lp = netdev_priv(dev);
1174 	struct tc35815_regs __iomem *tr =
1175 		(struct tc35815_regs __iomem *)dev->base_addr;
1176 	unsigned long flags;
1177 
1178 	/* disable interrupts */
1179 	spin_lock_irqsave(&lp->lock, flags);
1180 	tc_writel(0, &tr->Int_En);
1181 	tc_writel(tc_readl(&tr->DMA_Ctl) | DMA_IntMask, &tr->DMA_Ctl);
1182 	schedule_work(&lp->restart_work);
1183 	spin_unlock_irqrestore(&lp->lock, flags);
1184 }
1185 
1186 static void tc35815_tx_timeout(struct net_device *dev)
1187 {
1188 	struct tc35815_regs __iomem *tr =
1189 		(struct tc35815_regs __iomem *)dev->base_addr;
1190 
1191 	printk(KERN_WARNING "%s: transmit timed out, status %#x\n",
1192 	       dev->name, tc_readl(&tr->Tx_Stat));
1193 
1194 	/* Try to restart the adaptor. */
1195 	tc35815_schedule_restart(dev);
1196 	dev->stats.tx_errors++;
1197 }
1198 
1199 /*
1200  * Open/initialize the controller. This is called (in the current kernel)
1201  * sometime after booting when the 'ifconfig' program is run.
1202  *
1203  * This routine should set everything up anew at each open, even
1204  * registers that "should" only need to be set once at boot, so that
1205  * there is non-reboot way to recover if something goes wrong.
1206  */
1207 static int
1208 tc35815_open(struct net_device *dev)
1209 {
1210 	struct tc35815_local *lp = netdev_priv(dev);
1211 
1212 	/*
1213 	 * This is used if the interrupt line can turned off (shared).
1214 	 * See 3c503.c for an example of selecting the IRQ at config-time.
1215 	 */
1216 	if (request_irq(dev->irq, tc35815_interrupt, IRQF_SHARED,
1217 			dev->name, dev))
1218 		return -EAGAIN;
1219 
1220 	tc35815_chip_reset(dev);
1221 
1222 	if (tc35815_init_queues(dev) != 0) {
1223 		free_irq(dev->irq, dev);
1224 		return -EAGAIN;
1225 	}
1226 
1227 	napi_enable(&lp->napi);
1228 
1229 	/* Reset the hardware here. Don't forget to set the station address. */
1230 	spin_lock_irq(&lp->lock);
1231 	tc35815_chip_init(dev);
1232 	spin_unlock_irq(&lp->lock);
1233 
1234 	netif_carrier_off(dev);
1235 	/* schedule a link state check */
1236 	phy_start(dev->phydev);
1237 
1238 	/* We are now ready to accept transmit requeusts from
1239 	 * the queueing layer of the networking.
1240 	 */
1241 	netif_start_queue(dev);
1242 
1243 	return 0;
1244 }
1245 
1246 /* This will only be invoked if your driver is _not_ in XOFF state.
1247  * What this means is that you need not check it, and that this
1248  * invariant will hold if you make sure that the netif_*_queue()
1249  * calls are done at the proper times.
1250  */
1251 static int tc35815_send_packet(struct sk_buff *skb, struct net_device *dev)
1252 {
1253 	struct tc35815_local *lp = netdev_priv(dev);
1254 	struct TxFD *txfd;
1255 	unsigned long flags;
1256 
1257 	/* If some error occurs while trying to transmit this
1258 	 * packet, you should return '1' from this function.
1259 	 * In such a case you _may not_ do anything to the
1260 	 * SKB, it is still owned by the network queueing
1261 	 * layer when an error is returned.  This means you
1262 	 * may not modify any SKB fields, you may not free
1263 	 * the SKB, etc.
1264 	 */
1265 
1266 	/* This is the most common case for modern hardware.
1267 	 * The spinlock protects this code from the TX complete
1268 	 * hardware interrupt handler.  Queue flow control is
1269 	 * thus managed under this lock as well.
1270 	 */
1271 	spin_lock_irqsave(&lp->lock, flags);
1272 
1273 	/* failsafe... (handle txdone now if half of FDs are used) */
1274 	if ((lp->tfd_start + TX_FD_NUM - lp->tfd_end) % TX_FD_NUM >
1275 	    TX_FD_NUM / 2)
1276 		tc35815_txdone(dev);
1277 
1278 	if (netif_msg_pktdata(lp))
1279 		print_eth(skb->data);
1280 #ifdef DEBUG
1281 	if (lp->tx_skbs[lp->tfd_start].skb) {
1282 		printk("%s: tx_skbs conflict.\n", dev->name);
1283 		panic_queues(dev);
1284 	}
1285 #else
1286 	BUG_ON(lp->tx_skbs[lp->tfd_start].skb);
1287 #endif
1288 	lp->tx_skbs[lp->tfd_start].skb = skb;
1289 	lp->tx_skbs[lp->tfd_start].skb_dma = pci_map_single(lp->pci_dev, skb->data, skb->len, PCI_DMA_TODEVICE);
1290 
1291 	/*add to ring */
1292 	txfd = &lp->tfd_base[lp->tfd_start];
1293 	txfd->bd.BuffData = cpu_to_le32(lp->tx_skbs[lp->tfd_start].skb_dma);
1294 	txfd->bd.BDCtl = cpu_to_le32(skb->len);
1295 	txfd->fd.FDSystem = cpu_to_le32(lp->tfd_start);
1296 	txfd->fd.FDCtl = cpu_to_le32(FD_CownsFD | (1 << FD_BDCnt_SHIFT));
1297 
1298 	if (lp->tfd_start == lp->tfd_end) {
1299 		struct tc35815_regs __iomem *tr =
1300 			(struct tc35815_regs __iomem *)dev->base_addr;
1301 		/* Start DMA Transmitter. */
1302 		txfd->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
1303 		txfd->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
1304 		if (netif_msg_tx_queued(lp)) {
1305 			printk("%s: starting TxFD.\n", dev->name);
1306 			dump_txfd(txfd);
1307 		}
1308 		tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr);
1309 	} else {
1310 		txfd->fd.FDNext &= cpu_to_le32(~FD_Next_EOL);
1311 		if (netif_msg_tx_queued(lp)) {
1312 			printk("%s: queueing TxFD.\n", dev->name);
1313 			dump_txfd(txfd);
1314 		}
1315 	}
1316 	lp->tfd_start = (lp->tfd_start + 1) % TX_FD_NUM;
1317 
1318 	/* If we just used up the very last entry in the
1319 	 * TX ring on this device, tell the queueing
1320 	 * layer to send no more.
1321 	 */
1322 	if (tc35815_tx_full(dev)) {
1323 		if (netif_msg_tx_queued(lp))
1324 			printk(KERN_WARNING "%s: TxFD Exhausted.\n", dev->name);
1325 		netif_stop_queue(dev);
1326 	}
1327 
1328 	/* When the TX completion hw interrupt arrives, this
1329 	 * is when the transmit statistics are updated.
1330 	 */
1331 
1332 	spin_unlock_irqrestore(&lp->lock, flags);
1333 	return NETDEV_TX_OK;
1334 }
1335 
1336 #define FATAL_ERROR_INT \
1337 	(Int_IntPCI | Int_DmParErr | Int_IntNRAbt)
1338 static void tc35815_fatal_error_interrupt(struct net_device *dev, u32 status)
1339 {
1340 	static int count;
1341 	printk(KERN_WARNING "%s: Fatal Error Intterrupt (%#x):",
1342 	       dev->name, status);
1343 	if (status & Int_IntPCI)
1344 		printk(" IntPCI");
1345 	if (status & Int_DmParErr)
1346 		printk(" DmParErr");
1347 	if (status & Int_IntNRAbt)
1348 		printk(" IntNRAbt");
1349 	printk("\n");
1350 	if (count++ > 100)
1351 		panic("%s: Too many fatal errors.", dev->name);
1352 	printk(KERN_WARNING "%s: Resetting ...\n", dev->name);
1353 	/* Try to restart the adaptor. */
1354 	tc35815_schedule_restart(dev);
1355 }
1356 
1357 static int tc35815_do_interrupt(struct net_device *dev, u32 status, int limit)
1358 {
1359 	struct tc35815_local *lp = netdev_priv(dev);
1360 	int ret = -1;
1361 
1362 	/* Fatal errors... */
1363 	if (status & FATAL_ERROR_INT) {
1364 		tc35815_fatal_error_interrupt(dev, status);
1365 		return 0;
1366 	}
1367 	/* recoverable errors */
1368 	if (status & Int_IntFDAEx) {
1369 		if (netif_msg_rx_err(lp))
1370 			dev_warn(&dev->dev,
1371 				 "Free Descriptor Area Exhausted (%#x).\n",
1372 				 status);
1373 		dev->stats.rx_dropped++;
1374 		ret = 0;
1375 	}
1376 	if (status & Int_IntBLEx) {
1377 		if (netif_msg_rx_err(lp))
1378 			dev_warn(&dev->dev,
1379 				 "Buffer List Exhausted (%#x).\n",
1380 				 status);
1381 		dev->stats.rx_dropped++;
1382 		ret = 0;
1383 	}
1384 	if (status & Int_IntExBD) {
1385 		if (netif_msg_rx_err(lp))
1386 			dev_warn(&dev->dev,
1387 				 "Excessive Buffer Descriptors (%#x).\n",
1388 				 status);
1389 		dev->stats.rx_length_errors++;
1390 		ret = 0;
1391 	}
1392 
1393 	/* normal notification */
1394 	if (status & Int_IntMacRx) {
1395 		/* Got a packet(s). */
1396 		ret = tc35815_rx(dev, limit);
1397 		lp->lstats.rx_ints++;
1398 	}
1399 	if (status & Int_IntMacTx) {
1400 		/* Transmit complete. */
1401 		lp->lstats.tx_ints++;
1402 		spin_lock_irq(&lp->lock);
1403 		tc35815_txdone(dev);
1404 		spin_unlock_irq(&lp->lock);
1405 		if (ret < 0)
1406 			ret = 0;
1407 	}
1408 	return ret;
1409 }
1410 
1411 /*
1412  * The typical workload of the driver:
1413  * Handle the network interface interrupts.
1414  */
1415 static irqreturn_t tc35815_interrupt(int irq, void *dev_id)
1416 {
1417 	struct net_device *dev = dev_id;
1418 	struct tc35815_local *lp = netdev_priv(dev);
1419 	struct tc35815_regs __iomem *tr =
1420 		(struct tc35815_regs __iomem *)dev->base_addr;
1421 	u32 dmactl = tc_readl(&tr->DMA_Ctl);
1422 
1423 	if (!(dmactl & DMA_IntMask)) {
1424 		/* disable interrupts */
1425 		tc_writel(dmactl | DMA_IntMask, &tr->DMA_Ctl);
1426 		if (napi_schedule_prep(&lp->napi))
1427 			__napi_schedule(&lp->napi);
1428 		else {
1429 			printk(KERN_ERR "%s: interrupt taken in poll\n",
1430 			       dev->name);
1431 			BUG();
1432 		}
1433 		(void)tc_readl(&tr->Int_Src);	/* flush */
1434 		return IRQ_HANDLED;
1435 	}
1436 	return IRQ_NONE;
1437 }
1438 
1439 #ifdef CONFIG_NET_POLL_CONTROLLER
1440 static void tc35815_poll_controller(struct net_device *dev)
1441 {
1442 	disable_irq(dev->irq);
1443 	tc35815_interrupt(dev->irq, dev);
1444 	enable_irq(dev->irq);
1445 }
1446 #endif
1447 
1448 /* We have a good packet(s), get it/them out of the buffers. */
1449 static int
1450 tc35815_rx(struct net_device *dev, int limit)
1451 {
1452 	struct tc35815_local *lp = netdev_priv(dev);
1453 	unsigned int fdctl;
1454 	int i;
1455 	int received = 0;
1456 
1457 	while (!((fdctl = le32_to_cpu(lp->rfd_cur->fd.FDCtl)) & FD_CownsFD)) {
1458 		int status = le32_to_cpu(lp->rfd_cur->fd.FDStat);
1459 		int pkt_len = fdctl & FD_FDLength_MASK;
1460 		int bd_count = (fdctl & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
1461 #ifdef DEBUG
1462 		struct RxFD *next_rfd;
1463 #endif
1464 #if (RX_CTL_CMD & Rx_StripCRC) == 0
1465 		pkt_len -= ETH_FCS_LEN;
1466 #endif
1467 
1468 		if (netif_msg_rx_status(lp))
1469 			dump_rxfd(lp->rfd_cur);
1470 		if (status & Rx_Good) {
1471 			struct sk_buff *skb;
1472 			unsigned char *data;
1473 			int cur_bd;
1474 
1475 			if (--limit < 0)
1476 				break;
1477 			BUG_ON(bd_count > 1);
1478 			cur_bd = (le32_to_cpu(lp->rfd_cur->bd[0].BDCtl)
1479 				  & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT;
1480 #ifdef DEBUG
1481 			if (cur_bd >= RX_BUF_NUM) {
1482 				printk("%s: invalid BDID.\n", dev->name);
1483 				panic_queues(dev);
1484 			}
1485 			BUG_ON(lp->rx_skbs[cur_bd].skb_dma !=
1486 			       (le32_to_cpu(lp->rfd_cur->bd[0].BuffData) & ~3));
1487 			if (!lp->rx_skbs[cur_bd].skb) {
1488 				printk("%s: NULL skb.\n", dev->name);
1489 				panic_queues(dev);
1490 			}
1491 #else
1492 			BUG_ON(cur_bd >= RX_BUF_NUM);
1493 #endif
1494 			skb = lp->rx_skbs[cur_bd].skb;
1495 			prefetch(skb->data);
1496 			lp->rx_skbs[cur_bd].skb = NULL;
1497 			pci_unmap_single(lp->pci_dev,
1498 					 lp->rx_skbs[cur_bd].skb_dma,
1499 					 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1500 			if (!HAVE_DMA_RXALIGN(lp) && NET_IP_ALIGN)
1501 				memmove(skb->data, skb->data - NET_IP_ALIGN,
1502 					pkt_len);
1503 			data = skb_put(skb, pkt_len);
1504 			if (netif_msg_pktdata(lp))
1505 				print_eth(data);
1506 			skb->protocol = eth_type_trans(skb, dev);
1507 			netif_receive_skb(skb);
1508 			received++;
1509 			dev->stats.rx_packets++;
1510 			dev->stats.rx_bytes += pkt_len;
1511 		} else {
1512 			dev->stats.rx_errors++;
1513 			if (netif_msg_rx_err(lp))
1514 				dev_info(&dev->dev, "Rx error (status %x)\n",
1515 					 status & Rx_Stat_Mask);
1516 			/* WORKAROUND: LongErr and CRCErr means Overflow. */
1517 			if ((status & Rx_LongErr) && (status & Rx_CRCErr)) {
1518 				status &= ~(Rx_LongErr|Rx_CRCErr);
1519 				status |= Rx_Over;
1520 			}
1521 			if (status & Rx_LongErr)
1522 				dev->stats.rx_length_errors++;
1523 			if (status & Rx_Over)
1524 				dev->stats.rx_fifo_errors++;
1525 			if (status & Rx_CRCErr)
1526 				dev->stats.rx_crc_errors++;
1527 			if (status & Rx_Align)
1528 				dev->stats.rx_frame_errors++;
1529 		}
1530 
1531 		if (bd_count > 0) {
1532 			/* put Free Buffer back to controller */
1533 			int bdctl = le32_to_cpu(lp->rfd_cur->bd[bd_count - 1].BDCtl);
1534 			unsigned char id =
1535 				(bdctl & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT;
1536 #ifdef DEBUG
1537 			if (id >= RX_BUF_NUM) {
1538 				printk("%s: invalid BDID.\n", dev->name);
1539 				panic_queues(dev);
1540 			}
1541 #else
1542 			BUG_ON(id >= RX_BUF_NUM);
1543 #endif
1544 			/* free old buffers */
1545 			lp->fbl_count--;
1546 			while (lp->fbl_count < RX_BUF_NUM)
1547 			{
1548 				unsigned char curid =
1549 					(id + 1 + lp->fbl_count) % RX_BUF_NUM;
1550 				struct BDesc *bd = &lp->fbl_ptr->bd[curid];
1551 #ifdef DEBUG
1552 				bdctl = le32_to_cpu(bd->BDCtl);
1553 				if (bdctl & BD_CownsBD) {
1554 					printk("%s: Freeing invalid BD.\n",
1555 					       dev->name);
1556 					panic_queues(dev);
1557 				}
1558 #endif
1559 				/* pass BD to controller */
1560 				if (!lp->rx_skbs[curid].skb) {
1561 					lp->rx_skbs[curid].skb =
1562 						alloc_rxbuf_skb(dev,
1563 								lp->pci_dev,
1564 								&lp->rx_skbs[curid].skb_dma);
1565 					if (!lp->rx_skbs[curid].skb)
1566 						break; /* try on next reception */
1567 					bd->BuffData = cpu_to_le32(lp->rx_skbs[curid].skb_dma);
1568 				}
1569 				/* Note: BDLength was modified by chip. */
1570 				bd->BDCtl = cpu_to_le32(BD_CownsBD |
1571 							(curid << BD_RxBDID_SHIFT) |
1572 							RX_BUF_SIZE);
1573 				lp->fbl_count++;
1574 			}
1575 		}
1576 
1577 		/* put RxFD back to controller */
1578 #ifdef DEBUG
1579 		next_rfd = fd_bus_to_virt(lp,
1580 					  le32_to_cpu(lp->rfd_cur->fd.FDNext));
1581 		if (next_rfd < lp->rfd_base || next_rfd > lp->rfd_limit) {
1582 			printk("%s: RxFD FDNext invalid.\n", dev->name);
1583 			panic_queues(dev);
1584 		}
1585 #endif
1586 		for (i = 0; i < (bd_count + 1) / 2 + 1; i++) {
1587 			/* pass FD to controller */
1588 #ifdef DEBUG
1589 			lp->rfd_cur->fd.FDNext = cpu_to_le32(0xdeaddead);
1590 #else
1591 			lp->rfd_cur->fd.FDNext = cpu_to_le32(FD_Next_EOL);
1592 #endif
1593 			lp->rfd_cur->fd.FDCtl = cpu_to_le32(FD_CownsFD);
1594 			lp->rfd_cur++;
1595 		}
1596 		if (lp->rfd_cur > lp->rfd_limit)
1597 			lp->rfd_cur = lp->rfd_base;
1598 #ifdef DEBUG
1599 		if (lp->rfd_cur != next_rfd)
1600 			printk("rfd_cur = %p, next_rfd %p\n",
1601 			       lp->rfd_cur, next_rfd);
1602 #endif
1603 	}
1604 
1605 	return received;
1606 }
1607 
1608 static int tc35815_poll(struct napi_struct *napi, int budget)
1609 {
1610 	struct tc35815_local *lp = container_of(napi, struct tc35815_local, napi);
1611 	struct net_device *dev = lp->dev;
1612 	struct tc35815_regs __iomem *tr =
1613 		(struct tc35815_regs __iomem *)dev->base_addr;
1614 	int received = 0, handled;
1615 	u32 status;
1616 
1617 	if (budget <= 0)
1618 		return received;
1619 
1620 	spin_lock(&lp->rx_lock);
1621 	status = tc_readl(&tr->Int_Src);
1622 	do {
1623 		/* BLEx, FDAEx will be cleared later */
1624 		tc_writel(status & ~(Int_BLEx | Int_FDAEx),
1625 			  &tr->Int_Src);	/* write to clear */
1626 
1627 		handled = tc35815_do_interrupt(dev, status, budget - received);
1628 		if (status & (Int_BLEx | Int_FDAEx))
1629 			tc_writel(status & (Int_BLEx | Int_FDAEx),
1630 				  &tr->Int_Src);
1631 		if (handled >= 0) {
1632 			received += handled;
1633 			if (received >= budget)
1634 				break;
1635 		}
1636 		status = tc_readl(&tr->Int_Src);
1637 	} while (status);
1638 	spin_unlock(&lp->rx_lock);
1639 
1640 	if (received < budget) {
1641 		napi_complete_done(napi, received);
1642 		/* enable interrupts */
1643 		tc_writel(tc_readl(&tr->DMA_Ctl) & ~DMA_IntMask, &tr->DMA_Ctl);
1644 	}
1645 	return received;
1646 }
1647 
1648 #define TX_STA_ERR	(Tx_ExColl|Tx_Under|Tx_Defer|Tx_NCarr|Tx_LateColl|Tx_TxPar|Tx_SQErr)
1649 
1650 static void
1651 tc35815_check_tx_stat(struct net_device *dev, int status)
1652 {
1653 	struct tc35815_local *lp = netdev_priv(dev);
1654 	const char *msg = NULL;
1655 
1656 	/* count collisions */
1657 	if (status & Tx_ExColl)
1658 		dev->stats.collisions += 16;
1659 	if (status & Tx_TxColl_MASK)
1660 		dev->stats.collisions += status & Tx_TxColl_MASK;
1661 
1662 	/* TX4939 does not have NCarr */
1663 	if (lp->chiptype == TC35815_TX4939)
1664 		status &= ~Tx_NCarr;
1665 	/* WORKAROUND: ignore LostCrS in full duplex operation */
1666 	if (!lp->link || lp->duplex == DUPLEX_FULL)
1667 		status &= ~Tx_NCarr;
1668 
1669 	if (!(status & TX_STA_ERR)) {
1670 		/* no error. */
1671 		dev->stats.tx_packets++;
1672 		return;
1673 	}
1674 
1675 	dev->stats.tx_errors++;
1676 	if (status & Tx_ExColl) {
1677 		dev->stats.tx_aborted_errors++;
1678 		msg = "Excessive Collision.";
1679 	}
1680 	if (status & Tx_Under) {
1681 		dev->stats.tx_fifo_errors++;
1682 		msg = "Tx FIFO Underrun.";
1683 		if (lp->lstats.tx_underrun < TX_THRESHOLD_KEEP_LIMIT) {
1684 			lp->lstats.tx_underrun++;
1685 			if (lp->lstats.tx_underrun >= TX_THRESHOLD_KEEP_LIMIT) {
1686 				struct tc35815_regs __iomem *tr =
1687 					(struct tc35815_regs __iomem *)dev->base_addr;
1688 				tc_writel(TX_THRESHOLD_MAX, &tr->TxThrsh);
1689 				msg = "Tx FIFO Underrun.Change Tx threshold to max.";
1690 			}
1691 		}
1692 	}
1693 	if (status & Tx_Defer) {
1694 		dev->stats.tx_fifo_errors++;
1695 		msg = "Excessive Deferral.";
1696 	}
1697 	if (status & Tx_NCarr) {
1698 		dev->stats.tx_carrier_errors++;
1699 		msg = "Lost Carrier Sense.";
1700 	}
1701 	if (status & Tx_LateColl) {
1702 		dev->stats.tx_aborted_errors++;
1703 		msg = "Late Collision.";
1704 	}
1705 	if (status & Tx_TxPar) {
1706 		dev->stats.tx_fifo_errors++;
1707 		msg = "Transmit Parity Error.";
1708 	}
1709 	if (status & Tx_SQErr) {
1710 		dev->stats.tx_heartbeat_errors++;
1711 		msg = "Signal Quality Error.";
1712 	}
1713 	if (msg && netif_msg_tx_err(lp))
1714 		printk(KERN_WARNING "%s: %s (%#x)\n", dev->name, msg, status);
1715 }
1716 
1717 /* This handles TX complete events posted by the device
1718  * via interrupts.
1719  */
1720 static void
1721 tc35815_txdone(struct net_device *dev)
1722 {
1723 	struct tc35815_local *lp = netdev_priv(dev);
1724 	struct TxFD *txfd;
1725 	unsigned int fdctl;
1726 
1727 	txfd = &lp->tfd_base[lp->tfd_end];
1728 	while (lp->tfd_start != lp->tfd_end &&
1729 	       !((fdctl = le32_to_cpu(txfd->fd.FDCtl)) & FD_CownsFD)) {
1730 		int status = le32_to_cpu(txfd->fd.FDStat);
1731 		struct sk_buff *skb;
1732 		unsigned long fdnext = le32_to_cpu(txfd->fd.FDNext);
1733 		u32 fdsystem = le32_to_cpu(txfd->fd.FDSystem);
1734 
1735 		if (netif_msg_tx_done(lp)) {
1736 			printk("%s: complete TxFD.\n", dev->name);
1737 			dump_txfd(txfd);
1738 		}
1739 		tc35815_check_tx_stat(dev, status);
1740 
1741 		skb = fdsystem != 0xffffffff ?
1742 			lp->tx_skbs[fdsystem].skb : NULL;
1743 #ifdef DEBUG
1744 		if (lp->tx_skbs[lp->tfd_end].skb != skb) {
1745 			printk("%s: tx_skbs mismatch.\n", dev->name);
1746 			panic_queues(dev);
1747 		}
1748 #else
1749 		BUG_ON(lp->tx_skbs[lp->tfd_end].skb != skb);
1750 #endif
1751 		if (skb) {
1752 			dev->stats.tx_bytes += skb->len;
1753 			pci_unmap_single(lp->pci_dev, lp->tx_skbs[lp->tfd_end].skb_dma, skb->len, PCI_DMA_TODEVICE);
1754 			lp->tx_skbs[lp->tfd_end].skb = NULL;
1755 			lp->tx_skbs[lp->tfd_end].skb_dma = 0;
1756 			dev_kfree_skb_any(skb);
1757 		}
1758 		txfd->fd.FDSystem = cpu_to_le32(0xffffffff);
1759 
1760 		lp->tfd_end = (lp->tfd_end + 1) % TX_FD_NUM;
1761 		txfd = &lp->tfd_base[lp->tfd_end];
1762 #ifdef DEBUG
1763 		if ((fdnext & ~FD_Next_EOL) != fd_virt_to_bus(lp, txfd)) {
1764 			printk("%s: TxFD FDNext invalid.\n", dev->name);
1765 			panic_queues(dev);
1766 		}
1767 #endif
1768 		if (fdnext & FD_Next_EOL) {
1769 			/* DMA Transmitter has been stopping... */
1770 			if (lp->tfd_end != lp->tfd_start) {
1771 				struct tc35815_regs __iomem *tr =
1772 					(struct tc35815_regs __iomem *)dev->base_addr;
1773 				int head = (lp->tfd_start + TX_FD_NUM - 1) % TX_FD_NUM;
1774 				struct TxFD *txhead = &lp->tfd_base[head];
1775 				int qlen = (lp->tfd_start + TX_FD_NUM
1776 					    - lp->tfd_end) % TX_FD_NUM;
1777 
1778 #ifdef DEBUG
1779 				if (!(le32_to_cpu(txfd->fd.FDCtl) & FD_CownsFD)) {
1780 					printk("%s: TxFD FDCtl invalid.\n", dev->name);
1781 					panic_queues(dev);
1782 				}
1783 #endif
1784 				/* log max queue length */
1785 				if (lp->lstats.max_tx_qlen < qlen)
1786 					lp->lstats.max_tx_qlen = qlen;
1787 
1788 
1789 				/* start DMA Transmitter again */
1790 				txhead->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
1791 				txhead->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
1792 				if (netif_msg_tx_queued(lp)) {
1793 					printk("%s: start TxFD on queue.\n",
1794 					       dev->name);
1795 					dump_txfd(txfd);
1796 				}
1797 				tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr);
1798 			}
1799 			break;
1800 		}
1801 	}
1802 
1803 	/* If we had stopped the queue due to a "tx full"
1804 	 * condition, and space has now been made available,
1805 	 * wake up the queue.
1806 	 */
1807 	if (netif_queue_stopped(dev) && !tc35815_tx_full(dev))
1808 		netif_wake_queue(dev);
1809 }
1810 
1811 /* The inverse routine to tc35815_open(). */
1812 static int
1813 tc35815_close(struct net_device *dev)
1814 {
1815 	struct tc35815_local *lp = netdev_priv(dev);
1816 
1817 	netif_stop_queue(dev);
1818 	napi_disable(&lp->napi);
1819 	if (dev->phydev)
1820 		phy_stop(dev->phydev);
1821 	cancel_work_sync(&lp->restart_work);
1822 
1823 	/* Flush the Tx and disable Rx here. */
1824 	tc35815_chip_reset(dev);
1825 	free_irq(dev->irq, dev);
1826 
1827 	tc35815_free_queues(dev);
1828 
1829 	return 0;
1830 
1831 }
1832 
1833 /*
1834  * Get the current statistics.
1835  * This may be called with the card open or closed.
1836  */
1837 static struct net_device_stats *tc35815_get_stats(struct net_device *dev)
1838 {
1839 	struct tc35815_regs __iomem *tr =
1840 		(struct tc35815_regs __iomem *)dev->base_addr;
1841 	if (netif_running(dev))
1842 		/* Update the statistics from the device registers. */
1843 		dev->stats.rx_missed_errors += tc_readl(&tr->Miss_Cnt);
1844 
1845 	return &dev->stats;
1846 }
1847 
1848 static void tc35815_set_cam_entry(struct net_device *dev, int index, unsigned char *addr)
1849 {
1850 	struct tc35815_local *lp = netdev_priv(dev);
1851 	struct tc35815_regs __iomem *tr =
1852 		(struct tc35815_regs __iomem *)dev->base_addr;
1853 	int cam_index = index * 6;
1854 	u32 cam_data;
1855 	u32 saved_addr;
1856 
1857 	saved_addr = tc_readl(&tr->CAM_Adr);
1858 
1859 	if (netif_msg_hw(lp))
1860 		printk(KERN_DEBUG "%s: CAM %d: %pM\n",
1861 			dev->name, index, addr);
1862 	if (index & 1) {
1863 		/* read modify write */
1864 		tc_writel(cam_index - 2, &tr->CAM_Adr);
1865 		cam_data = tc_readl(&tr->CAM_Data) & 0xffff0000;
1866 		cam_data |= addr[0] << 8 | addr[1];
1867 		tc_writel(cam_data, &tr->CAM_Data);
1868 		/* write whole word */
1869 		tc_writel(cam_index + 2, &tr->CAM_Adr);
1870 		cam_data = (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) | addr[5];
1871 		tc_writel(cam_data, &tr->CAM_Data);
1872 	} else {
1873 		/* write whole word */
1874 		tc_writel(cam_index, &tr->CAM_Adr);
1875 		cam_data = (addr[0] << 24) | (addr[1] << 16) | (addr[2] << 8) | addr[3];
1876 		tc_writel(cam_data, &tr->CAM_Data);
1877 		/* read modify write */
1878 		tc_writel(cam_index + 4, &tr->CAM_Adr);
1879 		cam_data = tc_readl(&tr->CAM_Data) & 0x0000ffff;
1880 		cam_data |= addr[4] << 24 | (addr[5] << 16);
1881 		tc_writel(cam_data, &tr->CAM_Data);
1882 	}
1883 
1884 	tc_writel(saved_addr, &tr->CAM_Adr);
1885 }
1886 
1887 
1888 /*
1889  * Set or clear the multicast filter for this adaptor.
1890  * num_addrs == -1	Promiscuous mode, receive all packets
1891  * num_addrs == 0	Normal mode, clear multicast list
1892  * num_addrs > 0	Multicast mode, receive normal and MC packets,
1893  *			and do best-effort filtering.
1894  */
1895 static void
1896 tc35815_set_multicast_list(struct net_device *dev)
1897 {
1898 	struct tc35815_regs __iomem *tr =
1899 		(struct tc35815_regs __iomem *)dev->base_addr;
1900 
1901 	if (dev->flags & IFF_PROMISC) {
1902 		/* With some (all?) 100MHalf HUB, controller will hang
1903 		 * if we enabled promiscuous mode before linkup... */
1904 		struct tc35815_local *lp = netdev_priv(dev);
1905 
1906 		if (!lp->link)
1907 			return;
1908 		/* Enable promiscuous mode */
1909 		tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc | CAM_StationAcc, &tr->CAM_Ctl);
1910 	} else if ((dev->flags & IFF_ALLMULTI) ||
1911 		  netdev_mc_count(dev) > CAM_ENTRY_MAX - 3) {
1912 		/* CAM 0, 1, 20 are reserved. */
1913 		/* Disable promiscuous mode, use normal mode. */
1914 		tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc, &tr->CAM_Ctl);
1915 	} else if (!netdev_mc_empty(dev)) {
1916 		struct netdev_hw_addr *ha;
1917 		int i;
1918 		int ena_bits = CAM_Ena_Bit(CAM_ENTRY_SOURCE);
1919 
1920 		tc_writel(0, &tr->CAM_Ctl);
1921 		/* Walk the address list, and load the filter */
1922 		i = 0;
1923 		netdev_for_each_mc_addr(ha, dev) {
1924 			/* entry 0,1 is reserved. */
1925 			tc35815_set_cam_entry(dev, i + 2, ha->addr);
1926 			ena_bits |= CAM_Ena_Bit(i + 2);
1927 			i++;
1928 		}
1929 		tc_writel(ena_bits, &tr->CAM_Ena);
1930 		tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
1931 	} else {
1932 		tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena);
1933 		tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
1934 	}
1935 }
1936 
1937 static void tc35815_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1938 {
1939 	struct tc35815_local *lp = netdev_priv(dev);
1940 
1941 	strlcpy(info->driver, MODNAME, sizeof(info->driver));
1942 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1943 	strlcpy(info->bus_info, pci_name(lp->pci_dev), sizeof(info->bus_info));
1944 }
1945 
1946 static u32 tc35815_get_msglevel(struct net_device *dev)
1947 {
1948 	struct tc35815_local *lp = netdev_priv(dev);
1949 	return lp->msg_enable;
1950 }
1951 
1952 static void tc35815_set_msglevel(struct net_device *dev, u32 datum)
1953 {
1954 	struct tc35815_local *lp = netdev_priv(dev);
1955 	lp->msg_enable = datum;
1956 }
1957 
1958 static int tc35815_get_sset_count(struct net_device *dev, int sset)
1959 {
1960 	struct tc35815_local *lp = netdev_priv(dev);
1961 
1962 	switch (sset) {
1963 	case ETH_SS_STATS:
1964 		return sizeof(lp->lstats) / sizeof(int);
1965 	default:
1966 		return -EOPNOTSUPP;
1967 	}
1968 }
1969 
1970 static void tc35815_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data)
1971 {
1972 	struct tc35815_local *lp = netdev_priv(dev);
1973 	data[0] = lp->lstats.max_tx_qlen;
1974 	data[1] = lp->lstats.tx_ints;
1975 	data[2] = lp->lstats.rx_ints;
1976 	data[3] = lp->lstats.tx_underrun;
1977 }
1978 
1979 static struct {
1980 	const char str[ETH_GSTRING_LEN];
1981 } ethtool_stats_keys[] = {
1982 	{ "max_tx_qlen" },
1983 	{ "tx_ints" },
1984 	{ "rx_ints" },
1985 	{ "tx_underrun" },
1986 };
1987 
1988 static void tc35815_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1989 {
1990 	memcpy(data, ethtool_stats_keys, sizeof(ethtool_stats_keys));
1991 }
1992 
1993 static const struct ethtool_ops tc35815_ethtool_ops = {
1994 	.get_drvinfo		= tc35815_get_drvinfo,
1995 	.get_link		= ethtool_op_get_link,
1996 	.get_msglevel		= tc35815_get_msglevel,
1997 	.set_msglevel		= tc35815_set_msglevel,
1998 	.get_strings		= tc35815_get_strings,
1999 	.get_sset_count		= tc35815_get_sset_count,
2000 	.get_ethtool_stats	= tc35815_get_ethtool_stats,
2001 	.get_link_ksettings = phy_ethtool_get_link_ksettings,
2002 	.set_link_ksettings = phy_ethtool_set_link_ksettings,
2003 };
2004 
2005 static int tc35815_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2006 {
2007 	if (!netif_running(dev))
2008 		return -EINVAL;
2009 	if (!dev->phydev)
2010 		return -ENODEV;
2011 	return phy_mii_ioctl(dev->phydev, rq, cmd);
2012 }
2013 
2014 static void tc35815_chip_reset(struct net_device *dev)
2015 {
2016 	struct tc35815_regs __iomem *tr =
2017 		(struct tc35815_regs __iomem *)dev->base_addr;
2018 	int i;
2019 	/* reset the controller */
2020 	tc_writel(MAC_Reset, &tr->MAC_Ctl);
2021 	udelay(4); /* 3200ns */
2022 	i = 0;
2023 	while (tc_readl(&tr->MAC_Ctl) & MAC_Reset) {
2024 		if (i++ > 100) {
2025 			printk(KERN_ERR "%s: MAC reset failed.\n", dev->name);
2026 			break;
2027 		}
2028 		mdelay(1);
2029 	}
2030 	tc_writel(0, &tr->MAC_Ctl);
2031 
2032 	/* initialize registers to default value */
2033 	tc_writel(0, &tr->DMA_Ctl);
2034 	tc_writel(0, &tr->TxThrsh);
2035 	tc_writel(0, &tr->TxPollCtr);
2036 	tc_writel(0, &tr->RxFragSize);
2037 	tc_writel(0, &tr->Int_En);
2038 	tc_writel(0, &tr->FDA_Bas);
2039 	tc_writel(0, &tr->FDA_Lim);
2040 	tc_writel(0xffffffff, &tr->Int_Src);	/* Write 1 to clear */
2041 	tc_writel(0, &tr->CAM_Ctl);
2042 	tc_writel(0, &tr->Tx_Ctl);
2043 	tc_writel(0, &tr->Rx_Ctl);
2044 	tc_writel(0, &tr->CAM_Ena);
2045 	(void)tc_readl(&tr->Miss_Cnt);	/* Read to clear */
2046 
2047 	/* initialize internal SRAM */
2048 	tc_writel(DMA_TestMode, &tr->DMA_Ctl);
2049 	for (i = 0; i < 0x1000; i += 4) {
2050 		tc_writel(i, &tr->CAM_Adr);
2051 		tc_writel(0, &tr->CAM_Data);
2052 	}
2053 	tc_writel(0, &tr->DMA_Ctl);
2054 }
2055 
2056 static void tc35815_chip_init(struct net_device *dev)
2057 {
2058 	struct tc35815_local *lp = netdev_priv(dev);
2059 	struct tc35815_regs __iomem *tr =
2060 		(struct tc35815_regs __iomem *)dev->base_addr;
2061 	unsigned long txctl = TX_CTL_CMD;
2062 
2063 	/* load station address to CAM */
2064 	tc35815_set_cam_entry(dev, CAM_ENTRY_SOURCE, dev->dev_addr);
2065 
2066 	/* Enable CAM (broadcast and unicast) */
2067 	tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena);
2068 	tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
2069 
2070 	/* Use DMA_RxAlign_2 to make IP header 4-byte aligned. */
2071 	if (HAVE_DMA_RXALIGN(lp))
2072 		tc_writel(DMA_BURST_SIZE | DMA_RxAlign_2, &tr->DMA_Ctl);
2073 	else
2074 		tc_writel(DMA_BURST_SIZE, &tr->DMA_Ctl);
2075 	tc_writel(0, &tr->TxPollCtr);	/* Batch mode */
2076 	tc_writel(TX_THRESHOLD, &tr->TxThrsh);
2077 	tc_writel(INT_EN_CMD, &tr->Int_En);
2078 
2079 	/* set queues */
2080 	tc_writel(fd_virt_to_bus(lp, lp->rfd_base), &tr->FDA_Bas);
2081 	tc_writel((unsigned long)lp->rfd_limit - (unsigned long)lp->rfd_base,
2082 		  &tr->FDA_Lim);
2083 	/*
2084 	 * Activation method:
2085 	 * First, enable the MAC Transmitter and the DMA Receive circuits.
2086 	 * Then enable the DMA Transmitter and the MAC Receive circuits.
2087 	 */
2088 	tc_writel(fd_virt_to_bus(lp, lp->fbl_ptr), &tr->BLFrmPtr);	/* start DMA receiver */
2089 	tc_writel(RX_CTL_CMD, &tr->Rx_Ctl);	/* start MAC receiver */
2090 
2091 	/* start MAC transmitter */
2092 	/* TX4939 does not have EnLCarr */
2093 	if (lp->chiptype == TC35815_TX4939)
2094 		txctl &= ~Tx_EnLCarr;
2095 	/* WORKAROUND: ignore LostCrS in full duplex operation */
2096 	if (!dev->phydev || !lp->link || lp->duplex == DUPLEX_FULL)
2097 		txctl &= ~Tx_EnLCarr;
2098 	tc_writel(txctl, &tr->Tx_Ctl);
2099 }
2100 
2101 #ifdef CONFIG_PM
2102 static int tc35815_suspend(struct pci_dev *pdev, pm_message_t state)
2103 {
2104 	struct net_device *dev = pci_get_drvdata(pdev);
2105 	struct tc35815_local *lp = netdev_priv(dev);
2106 	unsigned long flags;
2107 
2108 	pci_save_state(pdev);
2109 	if (!netif_running(dev))
2110 		return 0;
2111 	netif_device_detach(dev);
2112 	if (dev->phydev)
2113 		phy_stop(dev->phydev);
2114 	spin_lock_irqsave(&lp->lock, flags);
2115 	tc35815_chip_reset(dev);
2116 	spin_unlock_irqrestore(&lp->lock, flags);
2117 	pci_set_power_state(pdev, PCI_D3hot);
2118 	return 0;
2119 }
2120 
2121 static int tc35815_resume(struct pci_dev *pdev)
2122 {
2123 	struct net_device *dev = pci_get_drvdata(pdev);
2124 
2125 	pci_restore_state(pdev);
2126 	if (!netif_running(dev))
2127 		return 0;
2128 	pci_set_power_state(pdev, PCI_D0);
2129 	tc35815_restart(dev);
2130 	netif_carrier_off(dev);
2131 	if (dev->phydev)
2132 		phy_start(dev->phydev);
2133 	netif_device_attach(dev);
2134 	return 0;
2135 }
2136 #endif /* CONFIG_PM */
2137 
2138 static struct pci_driver tc35815_pci_driver = {
2139 	.name		= MODNAME,
2140 	.id_table	= tc35815_pci_tbl,
2141 	.probe		= tc35815_init_one,
2142 	.remove		= tc35815_remove_one,
2143 #ifdef CONFIG_PM
2144 	.suspend	= tc35815_suspend,
2145 	.resume		= tc35815_resume,
2146 #endif
2147 };
2148 
2149 module_param_named(speed, options.speed, int, 0);
2150 MODULE_PARM_DESC(speed, "0:auto, 10:10Mbps, 100:100Mbps");
2151 module_param_named(duplex, options.duplex, int, 0);
2152 MODULE_PARM_DESC(duplex, "0:auto, 1:half, 2:full");
2153 
2154 module_pci_driver(tc35815_pci_driver);
2155 MODULE_DESCRIPTION("TOSHIBA TC35815 PCI 10M/100M Ethernet driver");
2156 MODULE_LICENSE("GPL");
2157