xref: /openbmc/linux/drivers/net/ethernet/toshiba/tc35815.c (revision 31ab09b4218879bc394c9faa6da983a82a694600)
1 /*
2  * tc35815.c: A TOSHIBA TC35815CF PCI 10/100Mbps ethernet driver for linux.
3  *
4  * Based on skelton.c by Donald Becker.
5  *
6  * This driver is a replacement of older and less maintained version.
7  * This is a header of the older version:
8  *	-----<snip>-----
9  *	Copyright 2001 MontaVista Software Inc.
10  *	Author: MontaVista Software, Inc.
11  *		ahennessy@mvista.com
12  *	Copyright (C) 2000-2001 Toshiba Corporation
13  *	static const char *version =
14  *		"tc35815.c:v0.00 26/07/2000 by Toshiba Corporation\n";
15  *	-----<snip>-----
16  *
17  * This file is subject to the terms and conditions of the GNU General Public
18  * License.  See the file "COPYING" in the main directory of this archive
19  * for more details.
20  *
21  * (C) Copyright TOSHIBA CORPORATION 2004-2005
22  * All Rights Reserved.
23  */
24 
25 #define DRV_VERSION	"1.39"
26 static const char version[] = "tc35815.c:v" DRV_VERSION "\n";
27 #define MODNAME			"tc35815"
28 
29 #include <linux/module.h>
30 #include <linux/kernel.h>
31 #include <linux/types.h>
32 #include <linux/fcntl.h>
33 #include <linux/interrupt.h>
34 #include <linux/ioport.h>
35 #include <linux/in.h>
36 #include <linux/if_vlan.h>
37 #include <linux/slab.h>
38 #include <linux/string.h>
39 #include <linux/spinlock.h>
40 #include <linux/errno.h>
41 #include <linux/netdevice.h>
42 #include <linux/etherdevice.h>
43 #include <linux/skbuff.h>
44 #include <linux/delay.h>
45 #include <linux/pci.h>
46 #include <linux/phy.h>
47 #include <linux/workqueue.h>
48 #include <linux/platform_device.h>
49 #include <linux/prefetch.h>
50 #include <asm/io.h>
51 #include <asm/byteorder.h>
52 
53 enum tc35815_chiptype {
54 	TC35815CF = 0,
55 	TC35815_NWU,
56 	TC35815_TX4939,
57 };
58 
59 /* indexed by tc35815_chiptype, above */
60 static const struct {
61 	const char *name;
62 } chip_info[] = {
63 	{ "TOSHIBA TC35815CF 10/100BaseTX" },
64 	{ "TOSHIBA TC35815 with Wake on LAN" },
65 	{ "TOSHIBA TC35815/TX4939" },
66 };
67 
68 static const struct pci_device_id tc35815_pci_tbl[] = {
69 	{PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815CF), .driver_data = TC35815CF },
70 	{PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_NWU), .driver_data = TC35815_NWU },
71 	{PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_TX4939), .driver_data = TC35815_TX4939 },
72 	{0,}
73 };
74 MODULE_DEVICE_TABLE(pci, tc35815_pci_tbl);
75 
76 /* see MODULE_PARM_DESC */
77 static struct tc35815_options {
78 	int speed;
79 	int duplex;
80 } options;
81 
82 /*
83  * Registers
84  */
85 struct tc35815_regs {
86 	__u32 DMA_Ctl;		/* 0x00 */
87 	__u32 TxFrmPtr;
88 	__u32 TxThrsh;
89 	__u32 TxPollCtr;
90 	__u32 BLFrmPtr;
91 	__u32 RxFragSize;
92 	__u32 Int_En;
93 	__u32 FDA_Bas;
94 	__u32 FDA_Lim;		/* 0x20 */
95 	__u32 Int_Src;
96 	__u32 unused0[2];
97 	__u32 PauseCnt;
98 	__u32 RemPauCnt;
99 	__u32 TxCtlFrmStat;
100 	__u32 unused1;
101 	__u32 MAC_Ctl;		/* 0x40 */
102 	__u32 CAM_Ctl;
103 	__u32 Tx_Ctl;
104 	__u32 Tx_Stat;
105 	__u32 Rx_Ctl;
106 	__u32 Rx_Stat;
107 	__u32 MD_Data;
108 	__u32 MD_CA;
109 	__u32 CAM_Adr;		/* 0x60 */
110 	__u32 CAM_Data;
111 	__u32 CAM_Ena;
112 	__u32 PROM_Ctl;
113 	__u32 PROM_Data;
114 	__u32 Algn_Cnt;
115 	__u32 CRC_Cnt;
116 	__u32 Miss_Cnt;
117 };
118 
119 /*
120  * Bit assignments
121  */
122 /* DMA_Ctl bit assign ------------------------------------------------------- */
123 #define DMA_RxAlign	       0x00c00000 /* 1:Reception Alignment	     */
124 #define DMA_RxAlign_1	       0x00400000
125 #define DMA_RxAlign_2	       0x00800000
126 #define DMA_RxAlign_3	       0x00c00000
127 #define DMA_M66EnStat	       0x00080000 /* 1:66MHz Enable State	     */
128 #define DMA_IntMask	       0x00040000 /* 1:Interrupt mask		     */
129 #define DMA_SWIntReq	       0x00020000 /* 1:Software Interrupt request    */
130 #define DMA_TxWakeUp	       0x00010000 /* 1:Transmit Wake Up		     */
131 #define DMA_RxBigE	       0x00008000 /* 1:Receive Big Endian	     */
132 #define DMA_TxBigE	       0x00004000 /* 1:Transmit Big Endian	     */
133 #define DMA_TestMode	       0x00002000 /* 1:Test Mode		     */
134 #define DMA_PowrMgmnt	       0x00001000 /* 1:Power Management		     */
135 #define DMA_DmBurst_Mask       0x000001fc /* DMA Burst size		     */
136 
137 /* RxFragSize bit assign ---------------------------------------------------- */
138 #define RxFrag_EnPack	       0x00008000 /* 1:Enable Packing		     */
139 #define RxFrag_MinFragMask     0x00000ffc /* Minimum Fragment		     */
140 
141 /* MAC_Ctl bit assign ------------------------------------------------------- */
142 #define MAC_Link10	       0x00008000 /* 1:Link Status 10Mbits	     */
143 #define MAC_EnMissRoll	       0x00002000 /* 1:Enable Missed Roll	     */
144 #define MAC_MissRoll	       0x00000400 /* 1:Missed Roll		     */
145 #define MAC_Loop10	       0x00000080 /* 1:Loop 10 Mbps		     */
146 #define MAC_Conn_Auto	       0x00000000 /*00:Connection mode (Automatic)   */
147 #define MAC_Conn_10M	       0x00000020 /*01:		       (10Mbps endec)*/
148 #define MAC_Conn_Mll	       0x00000040 /*10:		       (Mll clock)   */
149 #define MAC_MacLoop	       0x00000010 /* 1:MAC Loopback		     */
150 #define MAC_FullDup	       0x00000008 /* 1:Full Duplex 0:Half Duplex     */
151 #define MAC_Reset	       0x00000004 /* 1:Software Reset		     */
152 #define MAC_HaltImm	       0x00000002 /* 1:Halt Immediate		     */
153 #define MAC_HaltReq	       0x00000001 /* 1:Halt request		     */
154 
155 /* PROM_Ctl bit assign ------------------------------------------------------ */
156 #define PROM_Busy	       0x00008000 /* 1:Busy (Start Operation)	     */
157 #define PROM_Read	       0x00004000 /*10:Read operation		     */
158 #define PROM_Write	       0x00002000 /*01:Write operation		     */
159 #define PROM_Erase	       0x00006000 /*11:Erase operation		     */
160 					  /*00:Enable or Disable Writting,   */
161 					  /*	  as specified in PROM_Addr. */
162 #define PROM_Addr_Ena	       0x00000030 /*11xxxx:PROM Write enable	     */
163 					  /*00xxxx:	      disable	     */
164 
165 /* CAM_Ctl bit assign ------------------------------------------------------- */
166 #define CAM_CompEn	       0x00000010 /* 1:CAM Compare Enable	     */
167 #define CAM_NegCAM	       0x00000008 /* 1:Reject packets CAM recognizes,*/
168 					  /*			accept other */
169 #define CAM_BroadAcc	       0x00000004 /* 1:Broadcast assept		     */
170 #define CAM_GroupAcc	       0x00000002 /* 1:Multicast assept		     */
171 #define CAM_StationAcc	       0x00000001 /* 1:unicast accept		     */
172 
173 /* CAM_Ena bit assign ------------------------------------------------------- */
174 #define CAM_ENTRY_MAX		       21   /* CAM Data entry max count	     */
175 #define CAM_Ena_Mask ((1<<CAM_ENTRY_MAX)-1) /* CAM Enable bits (Max 21bits)  */
176 #define CAM_Ena_Bit(index)	(1 << (index))
177 #define CAM_ENTRY_DESTINATION	0
178 #define CAM_ENTRY_SOURCE	1
179 #define CAM_ENTRY_MACCTL	20
180 
181 /* Tx_Ctl bit assign -------------------------------------------------------- */
182 #define Tx_En		       0x00000001 /* 1:Transmit enable		     */
183 #define Tx_TxHalt	       0x00000002 /* 1:Transmit Halt Request	     */
184 #define Tx_NoPad	       0x00000004 /* 1:Suppress Padding		     */
185 #define Tx_NoCRC	       0x00000008 /* 1:Suppress Padding		     */
186 #define Tx_FBack	       0x00000010 /* 1:Fast Back-off		     */
187 #define Tx_EnUnder	       0x00000100 /* 1:Enable Underrun		     */
188 #define Tx_EnExDefer	       0x00000200 /* 1:Enable Excessive Deferral     */
189 #define Tx_EnLCarr	       0x00000400 /* 1:Enable Lost Carrier	     */
190 #define Tx_EnExColl	       0x00000800 /* 1:Enable Excessive Collision    */
191 #define Tx_EnLateColl	       0x00001000 /* 1:Enable Late Collision	     */
192 #define Tx_EnTxPar	       0x00002000 /* 1:Enable Transmit Parity	     */
193 #define Tx_EnComp	       0x00004000 /* 1:Enable Completion	     */
194 
195 /* Tx_Stat bit assign ------------------------------------------------------- */
196 #define Tx_TxColl_MASK	       0x0000000F /* Tx Collision Count		     */
197 #define Tx_ExColl	       0x00000010 /* Excessive Collision	     */
198 #define Tx_TXDefer	       0x00000020 /* Transmit Defered		     */
199 #define Tx_Paused	       0x00000040 /* Transmit Paused		     */
200 #define Tx_IntTx	       0x00000080 /* Interrupt on Tx		     */
201 #define Tx_Under	       0x00000100 /* Underrun			     */
202 #define Tx_Defer	       0x00000200 /* Deferral			     */
203 #define Tx_NCarr	       0x00000400 /* No Carrier			     */
204 #define Tx_10Stat	       0x00000800 /* 10Mbps Status		     */
205 #define Tx_LateColl	       0x00001000 /* Late Collision		     */
206 #define Tx_TxPar	       0x00002000 /* Tx Parity Error		     */
207 #define Tx_Comp		       0x00004000 /* Completion			     */
208 #define Tx_Halted	       0x00008000 /* Tx Halted			     */
209 #define Tx_SQErr	       0x00010000 /* Signal Quality Error(SQE)	     */
210 
211 /* Rx_Ctl bit assign -------------------------------------------------------- */
212 #define Rx_EnGood	       0x00004000 /* 1:Enable Good		     */
213 #define Rx_EnRxPar	       0x00002000 /* 1:Enable Receive Parity	     */
214 #define Rx_EnLongErr	       0x00000800 /* 1:Enable Long Error	     */
215 #define Rx_EnOver	       0x00000400 /* 1:Enable OverFlow		     */
216 #define Rx_EnCRCErr	       0x00000200 /* 1:Enable CRC Error		     */
217 #define Rx_EnAlign	       0x00000100 /* 1:Enable Alignment		     */
218 #define Rx_IgnoreCRC	       0x00000040 /* 1:Ignore CRC Value		     */
219 #define Rx_StripCRC	       0x00000010 /* 1:Strip CRC Value		     */
220 #define Rx_ShortEn	       0x00000008 /* 1:Short Enable		     */
221 #define Rx_LongEn	       0x00000004 /* 1:Long Enable		     */
222 #define Rx_RxHalt	       0x00000002 /* 1:Receive Halt Request	     */
223 #define Rx_RxEn		       0x00000001 /* 1:Receive Intrrupt Enable	     */
224 
225 /* Rx_Stat bit assign ------------------------------------------------------- */
226 #define Rx_Halted	       0x00008000 /* Rx Halted			     */
227 #define Rx_Good		       0x00004000 /* Rx Good			     */
228 #define Rx_RxPar	       0x00002000 /* Rx Parity Error		     */
229 #define Rx_TypePkt	       0x00001000 /* Rx Type Packet		     */
230 #define Rx_LongErr	       0x00000800 /* Rx Long Error		     */
231 #define Rx_Over		       0x00000400 /* Rx Overflow		     */
232 #define Rx_CRCErr	       0x00000200 /* Rx CRC Error		     */
233 #define Rx_Align	       0x00000100 /* Rx Alignment Error		     */
234 #define Rx_10Stat	       0x00000080 /* Rx 10Mbps Status		     */
235 #define Rx_IntRx	       0x00000040 /* Rx Interrupt		     */
236 #define Rx_CtlRecd	       0x00000020 /* Rx Control Receive		     */
237 #define Rx_InLenErr	       0x00000010 /* Rx In Range Frame Length Error  */
238 
239 #define Rx_Stat_Mask	       0x0000FFF0 /* Rx All Status Mask		     */
240 
241 /* Int_En bit assign -------------------------------------------------------- */
242 #define Int_NRAbtEn	       0x00000800 /* 1:Non-recoverable Abort Enable  */
243 #define Int_TxCtlCmpEn	       0x00000400 /* 1:Transmit Ctl Complete Enable  */
244 #define Int_DmParErrEn	       0x00000200 /* 1:DMA Parity Error Enable	     */
245 #define Int_DParDEn	       0x00000100 /* 1:Data Parity Error Enable	     */
246 #define Int_EarNotEn	       0x00000080 /* 1:Early Notify Enable	     */
247 #define Int_DParErrEn	       0x00000040 /* 1:Detected Parity Error Enable  */
248 #define Int_SSysErrEn	       0x00000020 /* 1:Signalled System Error Enable */
249 #define Int_RMasAbtEn	       0x00000010 /* 1:Received Master Abort Enable  */
250 #define Int_RTargAbtEn	       0x00000008 /* 1:Received Target Abort Enable  */
251 #define Int_STargAbtEn	       0x00000004 /* 1:Signalled Target Abort Enable */
252 #define Int_BLExEn	       0x00000002 /* 1:Buffer List Exhausted Enable  */
253 #define Int_FDAExEn	       0x00000001 /* 1:Free Descriptor Area	     */
254 					  /*		   Exhausted Enable  */
255 
256 /* Int_Src bit assign ------------------------------------------------------- */
257 #define Int_NRabt	       0x00004000 /* 1:Non Recoverable error	     */
258 #define Int_DmParErrStat       0x00002000 /* 1:DMA Parity Error & Clear	     */
259 #define Int_BLEx	       0x00001000 /* 1:Buffer List Empty & Clear     */
260 #define Int_FDAEx	       0x00000800 /* 1:FDA Empty & Clear	     */
261 #define Int_IntNRAbt	       0x00000400 /* 1:Non Recoverable Abort	     */
262 #define Int_IntCmp	       0x00000200 /* 1:MAC control packet complete   */
263 #define Int_IntExBD	       0x00000100 /* 1:Interrupt Extra BD & Clear    */
264 #define Int_DmParErr	       0x00000080 /* 1:DMA Parity Error & Clear	     */
265 #define Int_IntEarNot	       0x00000040 /* 1:Receive Data write & Clear    */
266 #define Int_SWInt	       0x00000020 /* 1:Software request & Clear	     */
267 #define Int_IntBLEx	       0x00000010 /* 1:Buffer List Empty & Clear     */
268 #define Int_IntFDAEx	       0x00000008 /* 1:FDA Empty & Clear	     */
269 #define Int_IntPCI	       0x00000004 /* 1:PCI controller & Clear	     */
270 #define Int_IntMacRx	       0x00000002 /* 1:Rx controller & Clear	     */
271 #define Int_IntMacTx	       0x00000001 /* 1:Tx controller & Clear	     */
272 
273 /* MD_CA bit assign --------------------------------------------------------- */
274 #define MD_CA_PreSup	       0x00001000 /* 1:Preamble Suppress		     */
275 #define MD_CA_Busy	       0x00000800 /* 1:Busy (Start Operation)	     */
276 #define MD_CA_Wr	       0x00000400 /* 1:Write 0:Read		     */
277 
278 
279 /*
280  * Descriptors
281  */
282 
283 /* Frame descriptor */
284 struct FDesc {
285 	volatile __u32 FDNext;
286 	volatile __u32 FDSystem;
287 	volatile __u32 FDStat;
288 	volatile __u32 FDCtl;
289 };
290 
291 /* Buffer descriptor */
292 struct BDesc {
293 	volatile __u32 BuffData;
294 	volatile __u32 BDCtl;
295 };
296 
297 #define FD_ALIGN	16
298 
299 /* Frame Descriptor bit assign ---------------------------------------------- */
300 #define FD_FDLength_MASK       0x0000FFFF /* Length MASK		     */
301 #define FD_BDCnt_MASK	       0x001F0000 /* BD count MASK in FD	     */
302 #define FD_FrmOpt_MASK	       0x7C000000 /* Frame option MASK		     */
303 #define FD_FrmOpt_BigEndian    0x40000000 /* Tx/Rx */
304 #define FD_FrmOpt_IntTx	       0x20000000 /* Tx only */
305 #define FD_FrmOpt_NoCRC	       0x10000000 /* Tx only */
306 #define FD_FrmOpt_NoPadding    0x08000000 /* Tx only */
307 #define FD_FrmOpt_Packing      0x04000000 /* Rx only */
308 #define FD_CownsFD	       0x80000000 /* FD Controller owner bit	     */
309 #define FD_Next_EOL	       0x00000001 /* FD EOL indicator		     */
310 #define FD_BDCnt_SHIFT	       16
311 
312 /* Buffer Descriptor bit assign --------------------------------------------- */
313 #define BD_BuffLength_MASK     0x0000FFFF /* Receive Data Size		     */
314 #define BD_RxBDID_MASK	       0x00FF0000 /* BD ID Number MASK		     */
315 #define BD_RxBDSeqN_MASK       0x7F000000 /* Rx BD Sequence Number	     */
316 #define BD_CownsBD	       0x80000000 /* BD Controller owner bit	     */
317 #define BD_RxBDID_SHIFT	       16
318 #define BD_RxBDSeqN_SHIFT      24
319 
320 
321 /* Some useful constants. */
322 
323 #define TX_CTL_CMD	(Tx_EnTxPar | Tx_EnLateColl | \
324 	Tx_EnExColl | Tx_EnLCarr | Tx_EnExDefer | Tx_EnUnder | \
325 	Tx_En)	/* maybe  0x7b01 */
326 /* Do not use Rx_StripCRC -- it causes trouble on BLEx/FDAEx condition */
327 #define RX_CTL_CMD	(Rx_EnGood | Rx_EnRxPar | Rx_EnLongErr | Rx_EnOver \
328 	| Rx_EnCRCErr | Rx_EnAlign | Rx_RxEn) /* maybe 0x6f01 */
329 #define INT_EN_CMD  (Int_NRAbtEn | \
330 	Int_DmParErrEn | Int_DParDEn | Int_DParErrEn | \
331 	Int_SSysErrEn  | Int_RMasAbtEn | Int_RTargAbtEn | \
332 	Int_STargAbtEn | \
333 	Int_BLExEn  | Int_FDAExEn) /* maybe 0xb7f*/
334 #define DMA_CTL_CMD	DMA_BURST_SIZE
335 #define HAVE_DMA_RXALIGN(lp)	likely((lp)->chiptype != TC35815CF)
336 
337 /* Tuning parameters */
338 #define DMA_BURST_SIZE	32
339 #define TX_THRESHOLD	1024
340 /* used threshold with packet max byte for low pci transfer ability.*/
341 #define TX_THRESHOLD_MAX 1536
342 /* setting threshold max value when overrun error occurred this count. */
343 #define TX_THRESHOLD_KEEP_LIMIT 10
344 
345 /* 16 + RX_BUF_NUM * 8 + RX_FD_NUM * 16 + TX_FD_NUM * 32 <= PAGE_SIZE*FD_PAGE_NUM */
346 #define FD_PAGE_NUM 4
347 #define RX_BUF_NUM	128	/* < 256 */
348 #define RX_FD_NUM	256	/* >= 32 */
349 #define TX_FD_NUM	128
350 #if RX_CTL_CMD & Rx_LongEn
351 #define RX_BUF_SIZE	PAGE_SIZE
352 #elif RX_CTL_CMD & Rx_StripCRC
353 #define RX_BUF_SIZE	\
354 	L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + NET_IP_ALIGN)
355 #else
356 #define RX_BUF_SIZE	\
357 	L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN + NET_IP_ALIGN)
358 #endif
359 #define RX_FD_RESERVE	(2 / 2)	/* max 2 BD per RxFD */
360 #define NAPI_WEIGHT	16
361 
362 struct TxFD {
363 	struct FDesc fd;
364 	struct BDesc bd;
365 	struct BDesc unused;
366 };
367 
368 struct RxFD {
369 	struct FDesc fd;
370 	struct BDesc bd[];	/* variable length */
371 };
372 
373 struct FrFD {
374 	struct FDesc fd;
375 	struct BDesc bd[RX_BUF_NUM];
376 };
377 
378 
379 #define tc_readl(addr)	ioread32(addr)
380 #define tc_writel(d, addr)	iowrite32(d, addr)
381 
382 #define TC35815_TX_TIMEOUT  msecs_to_jiffies(400)
383 
384 /* Information that need to be kept for each controller. */
385 struct tc35815_local {
386 	struct pci_dev *pci_dev;
387 
388 	struct net_device *dev;
389 	struct napi_struct napi;
390 
391 	/* statistics */
392 	struct {
393 		int max_tx_qlen;
394 		int tx_ints;
395 		int rx_ints;
396 		int tx_underrun;
397 	} lstats;
398 
399 	/* Tx control lock.  This protects the transmit buffer ring
400 	 * state along with the "tx full" state of the driver.  This
401 	 * means all netif_queue flow control actions are protected
402 	 * by this lock as well.
403 	 */
404 	spinlock_t lock;
405 	spinlock_t rx_lock;
406 
407 	struct mii_bus *mii_bus;
408 	int duplex;
409 	int speed;
410 	int link;
411 	struct work_struct restart_work;
412 
413 	/*
414 	 * Transmitting: Batch Mode.
415 	 *	1 BD in 1 TxFD.
416 	 * Receiving: Non-Packing Mode.
417 	 *	1 circular FD for Free Buffer List.
418 	 *	RX_BUF_NUM BD in Free Buffer FD.
419 	 *	One Free Buffer BD has ETH_FRAME_LEN data buffer.
420 	 */
421 	void *fd_buf;	/* for TxFD, RxFD, FrFD */
422 	dma_addr_t fd_buf_dma;
423 	struct TxFD *tfd_base;
424 	unsigned int tfd_start;
425 	unsigned int tfd_end;
426 	struct RxFD *rfd_base;
427 	struct RxFD *rfd_limit;
428 	struct RxFD *rfd_cur;
429 	struct FrFD *fbl_ptr;
430 	unsigned int fbl_count;
431 	struct {
432 		struct sk_buff *skb;
433 		dma_addr_t skb_dma;
434 	} tx_skbs[TX_FD_NUM], rx_skbs[RX_BUF_NUM];
435 	u32 msg_enable;
436 	enum tc35815_chiptype chiptype;
437 };
438 
439 static inline dma_addr_t fd_virt_to_bus(struct tc35815_local *lp, void *virt)
440 {
441 	return lp->fd_buf_dma + ((u8 *)virt - (u8 *)lp->fd_buf);
442 }
443 #ifdef DEBUG
444 static inline void *fd_bus_to_virt(struct tc35815_local *lp, dma_addr_t bus)
445 {
446 	return (void *)((u8 *)lp->fd_buf + (bus - lp->fd_buf_dma));
447 }
448 #endif
449 static struct sk_buff *alloc_rxbuf_skb(struct net_device *dev,
450 				       struct pci_dev *hwdev,
451 				       dma_addr_t *dma_handle)
452 {
453 	struct sk_buff *skb;
454 	skb = netdev_alloc_skb(dev, RX_BUF_SIZE);
455 	if (!skb)
456 		return NULL;
457 	*dma_handle = dma_map_single(&hwdev->dev, skb->data, RX_BUF_SIZE,
458 				     DMA_FROM_DEVICE);
459 	if (dma_mapping_error(&hwdev->dev, *dma_handle)) {
460 		dev_kfree_skb_any(skb);
461 		return NULL;
462 	}
463 	skb_reserve(skb, 2);	/* make IP header 4byte aligned */
464 	return skb;
465 }
466 
467 static void free_rxbuf_skb(struct pci_dev *hwdev, struct sk_buff *skb, dma_addr_t dma_handle)
468 {
469 	dma_unmap_single(&hwdev->dev, dma_handle, RX_BUF_SIZE,
470 			 DMA_FROM_DEVICE);
471 	dev_kfree_skb_any(skb);
472 }
473 
474 /* Index to functions, as function prototypes. */
475 
476 static int	tc35815_open(struct net_device *dev);
477 static netdev_tx_t	tc35815_send_packet(struct sk_buff *skb,
478 					    struct net_device *dev);
479 static irqreturn_t	tc35815_interrupt(int irq, void *dev_id);
480 static int	tc35815_rx(struct net_device *dev, int limit);
481 static int	tc35815_poll(struct napi_struct *napi, int budget);
482 static void	tc35815_txdone(struct net_device *dev);
483 static int	tc35815_close(struct net_device *dev);
484 static struct	net_device_stats *tc35815_get_stats(struct net_device *dev);
485 static void	tc35815_set_multicast_list(struct net_device *dev);
486 static void	tc35815_tx_timeout(struct net_device *dev, unsigned int txqueue);
487 #ifdef CONFIG_NET_POLL_CONTROLLER
488 static void	tc35815_poll_controller(struct net_device *dev);
489 #endif
490 static const struct ethtool_ops tc35815_ethtool_ops;
491 
492 /* Example routines you must write ;->. */
493 static void	tc35815_chip_reset(struct net_device *dev);
494 static void	tc35815_chip_init(struct net_device *dev);
495 
496 #ifdef DEBUG
497 static void	panic_queues(struct net_device *dev);
498 #endif
499 
500 static void tc35815_restart_work(struct work_struct *work);
501 
502 static int tc_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
503 {
504 	struct net_device *dev = bus->priv;
505 	struct tc35815_regs __iomem *tr =
506 		(struct tc35815_regs __iomem *)dev->base_addr;
507 	unsigned long timeout = jiffies + HZ;
508 
509 	tc_writel(MD_CA_Busy | (mii_id << 5) | (regnum & 0x1f), &tr->MD_CA);
510 	udelay(12); /* it takes 32 x 400ns at least */
511 	while (tc_readl(&tr->MD_CA) & MD_CA_Busy) {
512 		if (time_after(jiffies, timeout))
513 			return -EIO;
514 		cpu_relax();
515 	}
516 	return tc_readl(&tr->MD_Data) & 0xffff;
517 }
518 
519 static int tc_mdio_write(struct mii_bus *bus, int mii_id, int regnum, u16 val)
520 {
521 	struct net_device *dev = bus->priv;
522 	struct tc35815_regs __iomem *tr =
523 		(struct tc35815_regs __iomem *)dev->base_addr;
524 	unsigned long timeout = jiffies + HZ;
525 
526 	tc_writel(val, &tr->MD_Data);
527 	tc_writel(MD_CA_Busy | MD_CA_Wr | (mii_id << 5) | (regnum & 0x1f),
528 		  &tr->MD_CA);
529 	udelay(12); /* it takes 32 x 400ns at least */
530 	while (tc_readl(&tr->MD_CA) & MD_CA_Busy) {
531 		if (time_after(jiffies, timeout))
532 			return -EIO;
533 		cpu_relax();
534 	}
535 	return 0;
536 }
537 
538 static void tc_handle_link_change(struct net_device *dev)
539 {
540 	struct tc35815_local *lp = netdev_priv(dev);
541 	struct phy_device *phydev = dev->phydev;
542 	unsigned long flags;
543 	int status_change = 0;
544 
545 	spin_lock_irqsave(&lp->lock, flags);
546 	if (phydev->link &&
547 	    (lp->speed != phydev->speed || lp->duplex != phydev->duplex)) {
548 		struct tc35815_regs __iomem *tr =
549 			(struct tc35815_regs __iomem *)dev->base_addr;
550 		u32 reg;
551 
552 		reg = tc_readl(&tr->MAC_Ctl);
553 		reg |= MAC_HaltReq;
554 		tc_writel(reg, &tr->MAC_Ctl);
555 		if (phydev->duplex == DUPLEX_FULL)
556 			reg |= MAC_FullDup;
557 		else
558 			reg &= ~MAC_FullDup;
559 		tc_writel(reg, &tr->MAC_Ctl);
560 		reg &= ~MAC_HaltReq;
561 		tc_writel(reg, &tr->MAC_Ctl);
562 
563 		/*
564 		 * TX4939 PCFG.SPEEDn bit will be changed on
565 		 * NETDEV_CHANGE event.
566 		 */
567 		/*
568 		 * WORKAROUND: enable LostCrS only if half duplex
569 		 * operation.
570 		 * (TX4939 does not have EnLCarr)
571 		 */
572 		if (phydev->duplex == DUPLEX_HALF &&
573 		    lp->chiptype != TC35815_TX4939)
574 			tc_writel(tc_readl(&tr->Tx_Ctl) | Tx_EnLCarr,
575 				  &tr->Tx_Ctl);
576 
577 		lp->speed = phydev->speed;
578 		lp->duplex = phydev->duplex;
579 		status_change = 1;
580 	}
581 
582 	if (phydev->link != lp->link) {
583 		if (phydev->link) {
584 			/* delayed promiscuous enabling */
585 			if (dev->flags & IFF_PROMISC)
586 				tc35815_set_multicast_list(dev);
587 		} else {
588 			lp->speed = 0;
589 			lp->duplex = -1;
590 		}
591 		lp->link = phydev->link;
592 
593 		status_change = 1;
594 	}
595 	spin_unlock_irqrestore(&lp->lock, flags);
596 
597 	if (status_change && netif_msg_link(lp)) {
598 		phy_print_status(phydev);
599 		pr_debug("%s: MII BMCR %04x BMSR %04x LPA %04x\n",
600 			 dev->name,
601 			 phy_read(phydev, MII_BMCR),
602 			 phy_read(phydev, MII_BMSR),
603 			 phy_read(phydev, MII_LPA));
604 	}
605 }
606 
607 static int tc_mii_probe(struct net_device *dev)
608 {
609 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
610 	struct tc35815_local *lp = netdev_priv(dev);
611 	struct phy_device *phydev;
612 
613 	phydev = phy_find_first(lp->mii_bus);
614 	if (!phydev) {
615 		printk(KERN_ERR "%s: no PHY found\n", dev->name);
616 		return -ENODEV;
617 	}
618 
619 	/* attach the mac to the phy */
620 	phydev = phy_connect(dev, phydev_name(phydev),
621 			     &tc_handle_link_change,
622 			     lp->chiptype == TC35815_TX4939 ? PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII);
623 	if (IS_ERR(phydev)) {
624 		printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
625 		return PTR_ERR(phydev);
626 	}
627 
628 	phy_attached_info(phydev);
629 
630 	/* mask with MAC supported features */
631 	phy_set_max_speed(phydev, SPEED_100);
632 	if (options.speed == 10) {
633 		linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask);
634 		linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask);
635 	} else if (options.speed == 100) {
636 		linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, mask);
637 		linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, mask);
638 	}
639 	if (options.duplex == 1) {
640 		linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, mask);
641 		linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask);
642 	} else if (options.duplex == 2) {
643 		linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, mask);
644 		linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask);
645 	}
646 	linkmode_andnot(phydev->supported, phydev->supported, mask);
647 	linkmode_copy(phydev->advertising, phydev->supported);
648 
649 	lp->link = 0;
650 	lp->speed = 0;
651 	lp->duplex = -1;
652 
653 	return 0;
654 }
655 
656 static int tc_mii_init(struct net_device *dev)
657 {
658 	struct tc35815_local *lp = netdev_priv(dev);
659 	int err;
660 
661 	lp->mii_bus = mdiobus_alloc();
662 	if (lp->mii_bus == NULL) {
663 		err = -ENOMEM;
664 		goto err_out;
665 	}
666 
667 	lp->mii_bus->name = "tc35815_mii_bus";
668 	lp->mii_bus->read = tc_mdio_read;
669 	lp->mii_bus->write = tc_mdio_write;
670 	snprintf(lp->mii_bus->id, MII_BUS_ID_SIZE, "%x",
671 		 (lp->pci_dev->bus->number << 8) | lp->pci_dev->devfn);
672 	lp->mii_bus->priv = dev;
673 	lp->mii_bus->parent = &lp->pci_dev->dev;
674 	err = mdiobus_register(lp->mii_bus);
675 	if (err)
676 		goto err_out_free_mii_bus;
677 	err = tc_mii_probe(dev);
678 	if (err)
679 		goto err_out_unregister_bus;
680 	return 0;
681 
682 err_out_unregister_bus:
683 	mdiobus_unregister(lp->mii_bus);
684 err_out_free_mii_bus:
685 	mdiobus_free(lp->mii_bus);
686 err_out:
687 	return err;
688 }
689 
690 #ifdef CONFIG_CPU_TX49XX
691 /*
692  * Find a platform_device providing a MAC address.  The platform code
693  * should provide a "tc35815-mac" device with a MAC address in its
694  * platform_data.
695  */
696 static int tc35815_mac_match(struct device *dev, const void *data)
697 {
698 	struct platform_device *plat_dev = to_platform_device(dev);
699 	const struct pci_dev *pci_dev = data;
700 	unsigned int id = pci_dev->irq;
701 	return !strcmp(plat_dev->name, "tc35815-mac") && plat_dev->id == id;
702 }
703 
704 static int tc35815_read_plat_dev_addr(struct net_device *dev)
705 {
706 	struct tc35815_local *lp = netdev_priv(dev);
707 	struct device *pd = bus_find_device(&platform_bus_type, NULL,
708 					    lp->pci_dev, tc35815_mac_match);
709 	if (pd) {
710 		if (pd->platform_data)
711 			eth_hw_addr_set(dev, pd->platform_data);
712 		put_device(pd);
713 		return is_valid_ether_addr(dev->dev_addr) ? 0 : -ENODEV;
714 	}
715 	return -ENODEV;
716 }
717 #else
718 static int tc35815_read_plat_dev_addr(struct net_device *dev)
719 {
720 	return -ENODEV;
721 }
722 #endif
723 
724 static int tc35815_init_dev_addr(struct net_device *dev)
725 {
726 	struct tc35815_regs __iomem *tr =
727 		(struct tc35815_regs __iomem *)dev->base_addr;
728 	u8 addr[ETH_ALEN];
729 	int i;
730 
731 	while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
732 		;
733 	for (i = 0; i < 6; i += 2) {
734 		unsigned short data;
735 		tc_writel(PROM_Busy | PROM_Read | (i / 2 + 2), &tr->PROM_Ctl);
736 		while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
737 			;
738 		data = tc_readl(&tr->PROM_Data);
739 		addr[i] = data & 0xff;
740 		addr[i+1] = data >> 8;
741 	}
742 	eth_hw_addr_set(dev, addr);
743 	if (!is_valid_ether_addr(dev->dev_addr))
744 		return tc35815_read_plat_dev_addr(dev);
745 	return 0;
746 }
747 
748 static const struct net_device_ops tc35815_netdev_ops = {
749 	.ndo_open		= tc35815_open,
750 	.ndo_stop		= tc35815_close,
751 	.ndo_start_xmit		= tc35815_send_packet,
752 	.ndo_get_stats		= tc35815_get_stats,
753 	.ndo_set_rx_mode	= tc35815_set_multicast_list,
754 	.ndo_tx_timeout		= tc35815_tx_timeout,
755 	.ndo_eth_ioctl		= phy_do_ioctl_running,
756 	.ndo_validate_addr	= eth_validate_addr,
757 	.ndo_set_mac_address	= eth_mac_addr,
758 #ifdef CONFIG_NET_POLL_CONTROLLER
759 	.ndo_poll_controller	= tc35815_poll_controller,
760 #endif
761 };
762 
763 static int tc35815_init_one(struct pci_dev *pdev,
764 			    const struct pci_device_id *ent)
765 {
766 	void __iomem *ioaddr = NULL;
767 	struct net_device *dev;
768 	struct tc35815_local *lp;
769 	int rc;
770 
771 	static int printed_version;
772 	if (!printed_version++) {
773 		printk(version);
774 		dev_printk(KERN_DEBUG, &pdev->dev,
775 			   "speed:%d duplex:%d\n",
776 			   options.speed, options.duplex);
777 	}
778 
779 	if (!pdev->irq) {
780 		dev_warn(&pdev->dev, "no IRQ assigned.\n");
781 		return -ENODEV;
782 	}
783 
784 	/* dev zeroed in alloc_etherdev */
785 	dev = alloc_etherdev(sizeof(*lp));
786 	if (dev == NULL)
787 		return -ENOMEM;
788 
789 	SET_NETDEV_DEV(dev, &pdev->dev);
790 	lp = netdev_priv(dev);
791 	lp->dev = dev;
792 
793 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
794 	rc = pcim_enable_device(pdev);
795 	if (rc)
796 		goto err_out;
797 	rc = pcim_iomap_regions(pdev, 1 << 1, MODNAME);
798 	if (rc)
799 		goto err_out;
800 	pci_set_master(pdev);
801 	ioaddr = pcim_iomap_table(pdev)[1];
802 
803 	/* Initialize the device structure. */
804 	dev->netdev_ops = &tc35815_netdev_ops;
805 	dev->ethtool_ops = &tc35815_ethtool_ops;
806 	dev->watchdog_timeo = TC35815_TX_TIMEOUT;
807 	netif_napi_add(dev, &lp->napi, tc35815_poll, NAPI_WEIGHT);
808 
809 	dev->irq = pdev->irq;
810 	dev->base_addr = (unsigned long)ioaddr;
811 
812 	INIT_WORK(&lp->restart_work, tc35815_restart_work);
813 	spin_lock_init(&lp->lock);
814 	spin_lock_init(&lp->rx_lock);
815 	lp->pci_dev = pdev;
816 	lp->chiptype = ent->driver_data;
817 
818 	lp->msg_enable = NETIF_MSG_TX_ERR | NETIF_MSG_HW | NETIF_MSG_DRV | NETIF_MSG_LINK;
819 	pci_set_drvdata(pdev, dev);
820 
821 	/* Soft reset the chip. */
822 	tc35815_chip_reset(dev);
823 
824 	/* Retrieve the ethernet address. */
825 	if (tc35815_init_dev_addr(dev)) {
826 		dev_warn(&pdev->dev, "not valid ether addr\n");
827 		eth_hw_addr_random(dev);
828 	}
829 
830 	rc = register_netdev(dev);
831 	if (rc)
832 		goto err_out;
833 
834 	printk(KERN_INFO "%s: %s at 0x%lx, %pM, IRQ %d\n",
835 		dev->name,
836 		chip_info[ent->driver_data].name,
837 		dev->base_addr,
838 		dev->dev_addr,
839 		dev->irq);
840 
841 	rc = tc_mii_init(dev);
842 	if (rc)
843 		goto err_out_unregister;
844 
845 	return 0;
846 
847 err_out_unregister:
848 	unregister_netdev(dev);
849 err_out:
850 	free_netdev(dev);
851 	return rc;
852 }
853 
854 
855 static void tc35815_remove_one(struct pci_dev *pdev)
856 {
857 	struct net_device *dev = pci_get_drvdata(pdev);
858 	struct tc35815_local *lp = netdev_priv(dev);
859 
860 	phy_disconnect(dev->phydev);
861 	mdiobus_unregister(lp->mii_bus);
862 	mdiobus_free(lp->mii_bus);
863 	unregister_netdev(dev);
864 	free_netdev(dev);
865 }
866 
867 static int
868 tc35815_init_queues(struct net_device *dev)
869 {
870 	struct tc35815_local *lp = netdev_priv(dev);
871 	int i;
872 	unsigned long fd_addr;
873 
874 	if (!lp->fd_buf) {
875 		BUG_ON(sizeof(struct FDesc) +
876 		       sizeof(struct BDesc) * RX_BUF_NUM +
877 		       sizeof(struct FDesc) * RX_FD_NUM +
878 		       sizeof(struct TxFD) * TX_FD_NUM >
879 		       PAGE_SIZE * FD_PAGE_NUM);
880 
881 		lp->fd_buf = dma_alloc_coherent(&lp->pci_dev->dev,
882 						PAGE_SIZE * FD_PAGE_NUM,
883 						&lp->fd_buf_dma, GFP_ATOMIC);
884 		if (!lp->fd_buf)
885 			return -ENOMEM;
886 		for (i = 0; i < RX_BUF_NUM; i++) {
887 			lp->rx_skbs[i].skb =
888 				alloc_rxbuf_skb(dev, lp->pci_dev,
889 						&lp->rx_skbs[i].skb_dma);
890 			if (!lp->rx_skbs[i].skb) {
891 				while (--i >= 0) {
892 					free_rxbuf_skb(lp->pci_dev,
893 						       lp->rx_skbs[i].skb,
894 						       lp->rx_skbs[i].skb_dma);
895 					lp->rx_skbs[i].skb = NULL;
896 				}
897 				dma_free_coherent(&lp->pci_dev->dev,
898 						  PAGE_SIZE * FD_PAGE_NUM,
899 						  lp->fd_buf, lp->fd_buf_dma);
900 				lp->fd_buf = NULL;
901 				return -ENOMEM;
902 			}
903 		}
904 		printk(KERN_DEBUG "%s: FD buf %p DataBuf",
905 		       dev->name, lp->fd_buf);
906 		printk("\n");
907 	} else {
908 		for (i = 0; i < FD_PAGE_NUM; i++)
909 			clear_page((void *)((unsigned long)lp->fd_buf +
910 					    i * PAGE_SIZE));
911 	}
912 	fd_addr = (unsigned long)lp->fd_buf;
913 
914 	/* Free Descriptors (for Receive) */
915 	lp->rfd_base = (struct RxFD *)fd_addr;
916 	fd_addr += sizeof(struct RxFD) * RX_FD_NUM;
917 	for (i = 0; i < RX_FD_NUM; i++)
918 		lp->rfd_base[i].fd.FDCtl = cpu_to_le32(FD_CownsFD);
919 	lp->rfd_cur = lp->rfd_base;
920 	lp->rfd_limit = (struct RxFD *)fd_addr - (RX_FD_RESERVE + 1);
921 
922 	/* Transmit Descriptors */
923 	lp->tfd_base = (struct TxFD *)fd_addr;
924 	fd_addr += sizeof(struct TxFD) * TX_FD_NUM;
925 	for (i = 0; i < TX_FD_NUM; i++) {
926 		lp->tfd_base[i].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[i+1]));
927 		lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
928 		lp->tfd_base[i].fd.FDCtl = cpu_to_le32(0);
929 	}
930 	lp->tfd_base[TX_FD_NUM-1].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[0]));
931 	lp->tfd_start = 0;
932 	lp->tfd_end = 0;
933 
934 	/* Buffer List (for Receive) */
935 	lp->fbl_ptr = (struct FrFD *)fd_addr;
936 	lp->fbl_ptr->fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, lp->fbl_ptr));
937 	lp->fbl_ptr->fd.FDCtl = cpu_to_le32(RX_BUF_NUM | FD_CownsFD);
938 	/*
939 	 * move all allocated skbs to head of rx_skbs[] array.
940 	 * fbl_count mighe not be RX_BUF_NUM if alloc_rxbuf_skb() in
941 	 * tc35815_rx() had failed.
942 	 */
943 	lp->fbl_count = 0;
944 	for (i = 0; i < RX_BUF_NUM; i++) {
945 		if (lp->rx_skbs[i].skb) {
946 			if (i != lp->fbl_count) {
947 				lp->rx_skbs[lp->fbl_count].skb =
948 					lp->rx_skbs[i].skb;
949 				lp->rx_skbs[lp->fbl_count].skb_dma =
950 					lp->rx_skbs[i].skb_dma;
951 			}
952 			lp->fbl_count++;
953 		}
954 	}
955 	for (i = 0; i < RX_BUF_NUM; i++) {
956 		if (i >= lp->fbl_count) {
957 			lp->fbl_ptr->bd[i].BuffData = 0;
958 			lp->fbl_ptr->bd[i].BDCtl = 0;
959 			continue;
960 		}
961 		lp->fbl_ptr->bd[i].BuffData =
962 			cpu_to_le32(lp->rx_skbs[i].skb_dma);
963 		/* BDID is index of FrFD.bd[] */
964 		lp->fbl_ptr->bd[i].BDCtl =
965 			cpu_to_le32(BD_CownsBD | (i << BD_RxBDID_SHIFT) |
966 				    RX_BUF_SIZE);
967 	}
968 
969 	printk(KERN_DEBUG "%s: TxFD %p RxFD %p FrFD %p\n",
970 	       dev->name, lp->tfd_base, lp->rfd_base, lp->fbl_ptr);
971 	return 0;
972 }
973 
974 static void
975 tc35815_clear_queues(struct net_device *dev)
976 {
977 	struct tc35815_local *lp = netdev_priv(dev);
978 	int i;
979 
980 	for (i = 0; i < TX_FD_NUM; i++) {
981 		u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
982 		struct sk_buff *skb =
983 			fdsystem != 0xffffffff ?
984 			lp->tx_skbs[fdsystem].skb : NULL;
985 #ifdef DEBUG
986 		if (lp->tx_skbs[i].skb != skb) {
987 			printk("%s: tx_skbs mismatch(%d).\n", dev->name, i);
988 			panic_queues(dev);
989 		}
990 #else
991 		BUG_ON(lp->tx_skbs[i].skb != skb);
992 #endif
993 		if (skb) {
994 			dma_unmap_single(&lp->pci_dev->dev,
995 					 lp->tx_skbs[i].skb_dma, skb->len,
996 					 DMA_TO_DEVICE);
997 			lp->tx_skbs[i].skb = NULL;
998 			lp->tx_skbs[i].skb_dma = 0;
999 			dev_kfree_skb_any(skb);
1000 		}
1001 		lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
1002 	}
1003 
1004 	tc35815_init_queues(dev);
1005 }
1006 
1007 static void
1008 tc35815_free_queues(struct net_device *dev)
1009 {
1010 	struct tc35815_local *lp = netdev_priv(dev);
1011 	int i;
1012 
1013 	if (lp->tfd_base) {
1014 		for (i = 0; i < TX_FD_NUM; i++) {
1015 			u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
1016 			struct sk_buff *skb =
1017 				fdsystem != 0xffffffff ?
1018 				lp->tx_skbs[fdsystem].skb : NULL;
1019 #ifdef DEBUG
1020 			if (lp->tx_skbs[i].skb != skb) {
1021 				printk("%s: tx_skbs mismatch(%d).\n", dev->name, i);
1022 				panic_queues(dev);
1023 			}
1024 #else
1025 			BUG_ON(lp->tx_skbs[i].skb != skb);
1026 #endif
1027 			if (skb) {
1028 				dma_unmap_single(&lp->pci_dev->dev,
1029 						 lp->tx_skbs[i].skb_dma,
1030 						 skb->len, DMA_TO_DEVICE);
1031 				dev_kfree_skb(skb);
1032 				lp->tx_skbs[i].skb = NULL;
1033 				lp->tx_skbs[i].skb_dma = 0;
1034 			}
1035 			lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
1036 		}
1037 	}
1038 
1039 	lp->rfd_base = NULL;
1040 	lp->rfd_limit = NULL;
1041 	lp->rfd_cur = NULL;
1042 	lp->fbl_ptr = NULL;
1043 
1044 	for (i = 0; i < RX_BUF_NUM; i++) {
1045 		if (lp->rx_skbs[i].skb) {
1046 			free_rxbuf_skb(lp->pci_dev, lp->rx_skbs[i].skb,
1047 				       lp->rx_skbs[i].skb_dma);
1048 			lp->rx_skbs[i].skb = NULL;
1049 		}
1050 	}
1051 	if (lp->fd_buf) {
1052 		dma_free_coherent(&lp->pci_dev->dev, PAGE_SIZE * FD_PAGE_NUM,
1053 				  lp->fd_buf, lp->fd_buf_dma);
1054 		lp->fd_buf = NULL;
1055 	}
1056 }
1057 
1058 static void
1059 dump_txfd(struct TxFD *fd)
1060 {
1061 	printk("TxFD(%p): %08x %08x %08x %08x\n", fd,
1062 	       le32_to_cpu(fd->fd.FDNext),
1063 	       le32_to_cpu(fd->fd.FDSystem),
1064 	       le32_to_cpu(fd->fd.FDStat),
1065 	       le32_to_cpu(fd->fd.FDCtl));
1066 	printk("BD: ");
1067 	printk(" %08x %08x",
1068 	       le32_to_cpu(fd->bd.BuffData),
1069 	       le32_to_cpu(fd->bd.BDCtl));
1070 	printk("\n");
1071 }
1072 
1073 static int
1074 dump_rxfd(struct RxFD *fd)
1075 {
1076 	int i, bd_count = (le32_to_cpu(fd->fd.FDCtl) & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
1077 	if (bd_count > 8)
1078 		bd_count = 8;
1079 	printk("RxFD(%p): %08x %08x %08x %08x\n", fd,
1080 	       le32_to_cpu(fd->fd.FDNext),
1081 	       le32_to_cpu(fd->fd.FDSystem),
1082 	       le32_to_cpu(fd->fd.FDStat),
1083 	       le32_to_cpu(fd->fd.FDCtl));
1084 	if (le32_to_cpu(fd->fd.FDCtl) & FD_CownsFD)
1085 		return 0;
1086 	printk("BD: ");
1087 	for (i = 0; i < bd_count; i++)
1088 		printk(" %08x %08x",
1089 		       le32_to_cpu(fd->bd[i].BuffData),
1090 		       le32_to_cpu(fd->bd[i].BDCtl));
1091 	printk("\n");
1092 	return bd_count;
1093 }
1094 
1095 #ifdef DEBUG
1096 static void
1097 dump_frfd(struct FrFD *fd)
1098 {
1099 	int i;
1100 	printk("FrFD(%p): %08x %08x %08x %08x\n", fd,
1101 	       le32_to_cpu(fd->fd.FDNext),
1102 	       le32_to_cpu(fd->fd.FDSystem),
1103 	       le32_to_cpu(fd->fd.FDStat),
1104 	       le32_to_cpu(fd->fd.FDCtl));
1105 	printk("BD: ");
1106 	for (i = 0; i < RX_BUF_NUM; i++)
1107 		printk(" %08x %08x",
1108 		       le32_to_cpu(fd->bd[i].BuffData),
1109 		       le32_to_cpu(fd->bd[i].BDCtl));
1110 	printk("\n");
1111 }
1112 
1113 static void
1114 panic_queues(struct net_device *dev)
1115 {
1116 	struct tc35815_local *lp = netdev_priv(dev);
1117 	int i;
1118 
1119 	printk("TxFD base %p, start %u, end %u\n",
1120 	       lp->tfd_base, lp->tfd_start, lp->tfd_end);
1121 	printk("RxFD base %p limit %p cur %p\n",
1122 	       lp->rfd_base, lp->rfd_limit, lp->rfd_cur);
1123 	printk("FrFD %p\n", lp->fbl_ptr);
1124 	for (i = 0; i < TX_FD_NUM; i++)
1125 		dump_txfd(&lp->tfd_base[i]);
1126 	for (i = 0; i < RX_FD_NUM; i++) {
1127 		int bd_count = dump_rxfd(&lp->rfd_base[i]);
1128 		i += (bd_count + 1) / 2;	/* skip BDs */
1129 	}
1130 	dump_frfd(lp->fbl_ptr);
1131 	panic("%s: Illegal queue state.", dev->name);
1132 }
1133 #endif
1134 
1135 static void print_eth(const u8 *add)
1136 {
1137 	printk(KERN_DEBUG "print_eth(%p)\n", add);
1138 	printk(KERN_DEBUG " %pM => %pM : %02x%02x\n",
1139 		add + 6, add, add[12], add[13]);
1140 }
1141 
1142 static int tc35815_tx_full(struct net_device *dev)
1143 {
1144 	struct tc35815_local *lp = netdev_priv(dev);
1145 	return (lp->tfd_start + 1) % TX_FD_NUM == lp->tfd_end;
1146 }
1147 
1148 static void tc35815_restart(struct net_device *dev)
1149 {
1150 	struct tc35815_local *lp = netdev_priv(dev);
1151 	int ret;
1152 
1153 	if (dev->phydev) {
1154 		ret = phy_init_hw(dev->phydev);
1155 		if (ret)
1156 			printk(KERN_ERR "%s: PHY init failed.\n", dev->name);
1157 	}
1158 
1159 	spin_lock_bh(&lp->rx_lock);
1160 	spin_lock_irq(&lp->lock);
1161 	tc35815_chip_reset(dev);
1162 	tc35815_clear_queues(dev);
1163 	tc35815_chip_init(dev);
1164 	/* Reconfigure CAM again since tc35815_chip_init() initialize it. */
1165 	tc35815_set_multicast_list(dev);
1166 	spin_unlock_irq(&lp->lock);
1167 	spin_unlock_bh(&lp->rx_lock);
1168 
1169 	netif_wake_queue(dev);
1170 }
1171 
1172 static void tc35815_restart_work(struct work_struct *work)
1173 {
1174 	struct tc35815_local *lp =
1175 		container_of(work, struct tc35815_local, restart_work);
1176 	struct net_device *dev = lp->dev;
1177 
1178 	tc35815_restart(dev);
1179 }
1180 
1181 static void tc35815_schedule_restart(struct net_device *dev)
1182 {
1183 	struct tc35815_local *lp = netdev_priv(dev);
1184 	struct tc35815_regs __iomem *tr =
1185 		(struct tc35815_regs __iomem *)dev->base_addr;
1186 	unsigned long flags;
1187 
1188 	/* disable interrupts */
1189 	spin_lock_irqsave(&lp->lock, flags);
1190 	tc_writel(0, &tr->Int_En);
1191 	tc_writel(tc_readl(&tr->DMA_Ctl) | DMA_IntMask, &tr->DMA_Ctl);
1192 	schedule_work(&lp->restart_work);
1193 	spin_unlock_irqrestore(&lp->lock, flags);
1194 }
1195 
1196 static void tc35815_tx_timeout(struct net_device *dev, unsigned int txqueue)
1197 {
1198 	struct tc35815_regs __iomem *tr =
1199 		(struct tc35815_regs __iomem *)dev->base_addr;
1200 
1201 	printk(KERN_WARNING "%s: transmit timed out, status %#x\n",
1202 	       dev->name, tc_readl(&tr->Tx_Stat));
1203 
1204 	/* Try to restart the adaptor. */
1205 	tc35815_schedule_restart(dev);
1206 	dev->stats.tx_errors++;
1207 }
1208 
1209 /*
1210  * Open/initialize the controller. This is called (in the current kernel)
1211  * sometime after booting when the 'ifconfig' program is run.
1212  *
1213  * This routine should set everything up anew at each open, even
1214  * registers that "should" only need to be set once at boot, so that
1215  * there is non-reboot way to recover if something goes wrong.
1216  */
1217 static int
1218 tc35815_open(struct net_device *dev)
1219 {
1220 	struct tc35815_local *lp = netdev_priv(dev);
1221 
1222 	/*
1223 	 * This is used if the interrupt line can turned off (shared).
1224 	 * See 3c503.c for an example of selecting the IRQ at config-time.
1225 	 */
1226 	if (request_irq(dev->irq, tc35815_interrupt, IRQF_SHARED,
1227 			dev->name, dev))
1228 		return -EAGAIN;
1229 
1230 	tc35815_chip_reset(dev);
1231 
1232 	if (tc35815_init_queues(dev) != 0) {
1233 		free_irq(dev->irq, dev);
1234 		return -EAGAIN;
1235 	}
1236 
1237 	napi_enable(&lp->napi);
1238 
1239 	/* Reset the hardware here. Don't forget to set the station address. */
1240 	spin_lock_irq(&lp->lock);
1241 	tc35815_chip_init(dev);
1242 	spin_unlock_irq(&lp->lock);
1243 
1244 	netif_carrier_off(dev);
1245 	/* schedule a link state check */
1246 	phy_start(dev->phydev);
1247 
1248 	/* We are now ready to accept transmit requeusts from
1249 	 * the queueing layer of the networking.
1250 	 */
1251 	netif_start_queue(dev);
1252 
1253 	return 0;
1254 }
1255 
1256 /* This will only be invoked if your driver is _not_ in XOFF state.
1257  * What this means is that you need not check it, and that this
1258  * invariant will hold if you make sure that the netif_*_queue()
1259  * calls are done at the proper times.
1260  */
1261 static netdev_tx_t
1262 tc35815_send_packet(struct sk_buff *skb, struct net_device *dev)
1263 {
1264 	struct tc35815_local *lp = netdev_priv(dev);
1265 	struct TxFD *txfd;
1266 	unsigned long flags;
1267 
1268 	/* If some error occurs while trying to transmit this
1269 	 * packet, you should return '1' from this function.
1270 	 * In such a case you _may not_ do anything to the
1271 	 * SKB, it is still owned by the network queueing
1272 	 * layer when an error is returned.  This means you
1273 	 * may not modify any SKB fields, you may not free
1274 	 * the SKB, etc.
1275 	 */
1276 
1277 	/* This is the most common case for modern hardware.
1278 	 * The spinlock protects this code from the TX complete
1279 	 * hardware interrupt handler.  Queue flow control is
1280 	 * thus managed under this lock as well.
1281 	 */
1282 	spin_lock_irqsave(&lp->lock, flags);
1283 
1284 	/* failsafe... (handle txdone now if half of FDs are used) */
1285 	if ((lp->tfd_start + TX_FD_NUM - lp->tfd_end) % TX_FD_NUM >
1286 	    TX_FD_NUM / 2)
1287 		tc35815_txdone(dev);
1288 
1289 	if (netif_msg_pktdata(lp))
1290 		print_eth(skb->data);
1291 #ifdef DEBUG
1292 	if (lp->tx_skbs[lp->tfd_start].skb) {
1293 		printk("%s: tx_skbs conflict.\n", dev->name);
1294 		panic_queues(dev);
1295 	}
1296 #else
1297 	BUG_ON(lp->tx_skbs[lp->tfd_start].skb);
1298 #endif
1299 	lp->tx_skbs[lp->tfd_start].skb = skb;
1300 	lp->tx_skbs[lp->tfd_start].skb_dma = dma_map_single(&lp->pci_dev->dev,
1301 							    skb->data,
1302 							    skb->len,
1303 							    DMA_TO_DEVICE);
1304 
1305 	/*add to ring */
1306 	txfd = &lp->tfd_base[lp->tfd_start];
1307 	txfd->bd.BuffData = cpu_to_le32(lp->tx_skbs[lp->tfd_start].skb_dma);
1308 	txfd->bd.BDCtl = cpu_to_le32(skb->len);
1309 	txfd->fd.FDSystem = cpu_to_le32(lp->tfd_start);
1310 	txfd->fd.FDCtl = cpu_to_le32(FD_CownsFD | (1 << FD_BDCnt_SHIFT));
1311 
1312 	if (lp->tfd_start == lp->tfd_end) {
1313 		struct tc35815_regs __iomem *tr =
1314 			(struct tc35815_regs __iomem *)dev->base_addr;
1315 		/* Start DMA Transmitter. */
1316 		txfd->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
1317 		txfd->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
1318 		if (netif_msg_tx_queued(lp)) {
1319 			printk("%s: starting TxFD.\n", dev->name);
1320 			dump_txfd(txfd);
1321 		}
1322 		tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr);
1323 	} else {
1324 		txfd->fd.FDNext &= cpu_to_le32(~FD_Next_EOL);
1325 		if (netif_msg_tx_queued(lp)) {
1326 			printk("%s: queueing TxFD.\n", dev->name);
1327 			dump_txfd(txfd);
1328 		}
1329 	}
1330 	lp->tfd_start = (lp->tfd_start + 1) % TX_FD_NUM;
1331 
1332 	/* If we just used up the very last entry in the
1333 	 * TX ring on this device, tell the queueing
1334 	 * layer to send no more.
1335 	 */
1336 	if (tc35815_tx_full(dev)) {
1337 		if (netif_msg_tx_queued(lp))
1338 			printk(KERN_WARNING "%s: TxFD Exhausted.\n", dev->name);
1339 		netif_stop_queue(dev);
1340 	}
1341 
1342 	/* When the TX completion hw interrupt arrives, this
1343 	 * is when the transmit statistics are updated.
1344 	 */
1345 
1346 	spin_unlock_irqrestore(&lp->lock, flags);
1347 	return NETDEV_TX_OK;
1348 }
1349 
1350 #define FATAL_ERROR_INT \
1351 	(Int_IntPCI | Int_DmParErr | Int_IntNRAbt)
1352 static void tc35815_fatal_error_interrupt(struct net_device *dev, u32 status)
1353 {
1354 	static int count;
1355 	printk(KERN_WARNING "%s: Fatal Error Interrupt (%#x):",
1356 	       dev->name, status);
1357 	if (status & Int_IntPCI)
1358 		printk(" IntPCI");
1359 	if (status & Int_DmParErr)
1360 		printk(" DmParErr");
1361 	if (status & Int_IntNRAbt)
1362 		printk(" IntNRAbt");
1363 	printk("\n");
1364 	if (count++ > 100)
1365 		panic("%s: Too many fatal errors.", dev->name);
1366 	printk(KERN_WARNING "%s: Resetting ...\n", dev->name);
1367 	/* Try to restart the adaptor. */
1368 	tc35815_schedule_restart(dev);
1369 }
1370 
1371 static int tc35815_do_interrupt(struct net_device *dev, u32 status, int limit)
1372 {
1373 	struct tc35815_local *lp = netdev_priv(dev);
1374 	int ret = -1;
1375 
1376 	/* Fatal errors... */
1377 	if (status & FATAL_ERROR_INT) {
1378 		tc35815_fatal_error_interrupt(dev, status);
1379 		return 0;
1380 	}
1381 	/* recoverable errors */
1382 	if (status & Int_IntFDAEx) {
1383 		if (netif_msg_rx_err(lp))
1384 			dev_warn(&dev->dev,
1385 				 "Free Descriptor Area Exhausted (%#x).\n",
1386 				 status);
1387 		dev->stats.rx_dropped++;
1388 		ret = 0;
1389 	}
1390 	if (status & Int_IntBLEx) {
1391 		if (netif_msg_rx_err(lp))
1392 			dev_warn(&dev->dev,
1393 				 "Buffer List Exhausted (%#x).\n",
1394 				 status);
1395 		dev->stats.rx_dropped++;
1396 		ret = 0;
1397 	}
1398 	if (status & Int_IntExBD) {
1399 		if (netif_msg_rx_err(lp))
1400 			dev_warn(&dev->dev,
1401 				 "Excessive Buffer Descriptors (%#x).\n",
1402 				 status);
1403 		dev->stats.rx_length_errors++;
1404 		ret = 0;
1405 	}
1406 
1407 	/* normal notification */
1408 	if (status & Int_IntMacRx) {
1409 		/* Got a packet(s). */
1410 		ret = tc35815_rx(dev, limit);
1411 		lp->lstats.rx_ints++;
1412 	}
1413 	if (status & Int_IntMacTx) {
1414 		/* Transmit complete. */
1415 		lp->lstats.tx_ints++;
1416 		spin_lock_irq(&lp->lock);
1417 		tc35815_txdone(dev);
1418 		spin_unlock_irq(&lp->lock);
1419 		if (ret < 0)
1420 			ret = 0;
1421 	}
1422 	return ret;
1423 }
1424 
1425 /*
1426  * The typical workload of the driver:
1427  * Handle the network interface interrupts.
1428  */
1429 static irqreturn_t tc35815_interrupt(int irq, void *dev_id)
1430 {
1431 	struct net_device *dev = dev_id;
1432 	struct tc35815_local *lp = netdev_priv(dev);
1433 	struct tc35815_regs __iomem *tr =
1434 		(struct tc35815_regs __iomem *)dev->base_addr;
1435 	u32 dmactl = tc_readl(&tr->DMA_Ctl);
1436 
1437 	if (!(dmactl & DMA_IntMask)) {
1438 		/* disable interrupts */
1439 		tc_writel(dmactl | DMA_IntMask, &tr->DMA_Ctl);
1440 		if (napi_schedule_prep(&lp->napi))
1441 			__napi_schedule(&lp->napi);
1442 		else {
1443 			printk(KERN_ERR "%s: interrupt taken in poll\n",
1444 			       dev->name);
1445 			BUG();
1446 		}
1447 		(void)tc_readl(&tr->Int_Src);	/* flush */
1448 		return IRQ_HANDLED;
1449 	}
1450 	return IRQ_NONE;
1451 }
1452 
1453 #ifdef CONFIG_NET_POLL_CONTROLLER
1454 static void tc35815_poll_controller(struct net_device *dev)
1455 {
1456 	disable_irq(dev->irq);
1457 	tc35815_interrupt(dev->irq, dev);
1458 	enable_irq(dev->irq);
1459 }
1460 #endif
1461 
1462 /* We have a good packet(s), get it/them out of the buffers. */
1463 static int
1464 tc35815_rx(struct net_device *dev, int limit)
1465 {
1466 	struct tc35815_local *lp = netdev_priv(dev);
1467 	unsigned int fdctl;
1468 	int i;
1469 	int received = 0;
1470 
1471 	while (!((fdctl = le32_to_cpu(lp->rfd_cur->fd.FDCtl)) & FD_CownsFD)) {
1472 		int status = le32_to_cpu(lp->rfd_cur->fd.FDStat);
1473 		int pkt_len = fdctl & FD_FDLength_MASK;
1474 		int bd_count = (fdctl & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
1475 #ifdef DEBUG
1476 		struct RxFD *next_rfd;
1477 #endif
1478 #if (RX_CTL_CMD & Rx_StripCRC) == 0
1479 		pkt_len -= ETH_FCS_LEN;
1480 #endif
1481 
1482 		if (netif_msg_rx_status(lp))
1483 			dump_rxfd(lp->rfd_cur);
1484 		if (status & Rx_Good) {
1485 			struct sk_buff *skb;
1486 			unsigned char *data;
1487 			int cur_bd;
1488 
1489 			if (--limit < 0)
1490 				break;
1491 			BUG_ON(bd_count > 1);
1492 			cur_bd = (le32_to_cpu(lp->rfd_cur->bd[0].BDCtl)
1493 				  & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT;
1494 #ifdef DEBUG
1495 			if (cur_bd >= RX_BUF_NUM) {
1496 				printk("%s: invalid BDID.\n", dev->name);
1497 				panic_queues(dev);
1498 			}
1499 			BUG_ON(lp->rx_skbs[cur_bd].skb_dma !=
1500 			       (le32_to_cpu(lp->rfd_cur->bd[0].BuffData) & ~3));
1501 			if (!lp->rx_skbs[cur_bd].skb) {
1502 				printk("%s: NULL skb.\n", dev->name);
1503 				panic_queues(dev);
1504 			}
1505 #else
1506 			BUG_ON(cur_bd >= RX_BUF_NUM);
1507 #endif
1508 			skb = lp->rx_skbs[cur_bd].skb;
1509 			prefetch(skb->data);
1510 			lp->rx_skbs[cur_bd].skb = NULL;
1511 			dma_unmap_single(&lp->pci_dev->dev,
1512 					 lp->rx_skbs[cur_bd].skb_dma,
1513 					 RX_BUF_SIZE, DMA_FROM_DEVICE);
1514 			if (!HAVE_DMA_RXALIGN(lp) && NET_IP_ALIGN != 0)
1515 				memmove(skb->data, skb->data - NET_IP_ALIGN,
1516 					pkt_len);
1517 			data = skb_put(skb, pkt_len);
1518 			if (netif_msg_pktdata(lp))
1519 				print_eth(data);
1520 			skb->protocol = eth_type_trans(skb, dev);
1521 			netif_receive_skb(skb);
1522 			received++;
1523 			dev->stats.rx_packets++;
1524 			dev->stats.rx_bytes += pkt_len;
1525 		} else {
1526 			dev->stats.rx_errors++;
1527 			if (netif_msg_rx_err(lp))
1528 				dev_info(&dev->dev, "Rx error (status %x)\n",
1529 					 status & Rx_Stat_Mask);
1530 			/* WORKAROUND: LongErr and CRCErr means Overflow. */
1531 			if ((status & Rx_LongErr) && (status & Rx_CRCErr)) {
1532 				status &= ~(Rx_LongErr|Rx_CRCErr);
1533 				status |= Rx_Over;
1534 			}
1535 			if (status & Rx_LongErr)
1536 				dev->stats.rx_length_errors++;
1537 			if (status & Rx_Over)
1538 				dev->stats.rx_fifo_errors++;
1539 			if (status & Rx_CRCErr)
1540 				dev->stats.rx_crc_errors++;
1541 			if (status & Rx_Align)
1542 				dev->stats.rx_frame_errors++;
1543 		}
1544 
1545 		if (bd_count > 0) {
1546 			/* put Free Buffer back to controller */
1547 			int bdctl = le32_to_cpu(lp->rfd_cur->bd[bd_count - 1].BDCtl);
1548 			unsigned char id =
1549 				(bdctl & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT;
1550 #ifdef DEBUG
1551 			if (id >= RX_BUF_NUM) {
1552 				printk("%s: invalid BDID.\n", dev->name);
1553 				panic_queues(dev);
1554 			}
1555 #else
1556 			BUG_ON(id >= RX_BUF_NUM);
1557 #endif
1558 			/* free old buffers */
1559 			lp->fbl_count--;
1560 			while (lp->fbl_count < RX_BUF_NUM)
1561 			{
1562 				unsigned char curid =
1563 					(id + 1 + lp->fbl_count) % RX_BUF_NUM;
1564 				struct BDesc *bd = &lp->fbl_ptr->bd[curid];
1565 #ifdef DEBUG
1566 				bdctl = le32_to_cpu(bd->BDCtl);
1567 				if (bdctl & BD_CownsBD) {
1568 					printk("%s: Freeing invalid BD.\n",
1569 					       dev->name);
1570 					panic_queues(dev);
1571 				}
1572 #endif
1573 				/* pass BD to controller */
1574 				if (!lp->rx_skbs[curid].skb) {
1575 					lp->rx_skbs[curid].skb =
1576 						alloc_rxbuf_skb(dev,
1577 								lp->pci_dev,
1578 								&lp->rx_skbs[curid].skb_dma);
1579 					if (!lp->rx_skbs[curid].skb)
1580 						break; /* try on next reception */
1581 					bd->BuffData = cpu_to_le32(lp->rx_skbs[curid].skb_dma);
1582 				}
1583 				/* Note: BDLength was modified by chip. */
1584 				bd->BDCtl = cpu_to_le32(BD_CownsBD |
1585 							(curid << BD_RxBDID_SHIFT) |
1586 							RX_BUF_SIZE);
1587 				lp->fbl_count++;
1588 			}
1589 		}
1590 
1591 		/* put RxFD back to controller */
1592 #ifdef DEBUG
1593 		next_rfd = fd_bus_to_virt(lp,
1594 					  le32_to_cpu(lp->rfd_cur->fd.FDNext));
1595 		if (next_rfd < lp->rfd_base || next_rfd > lp->rfd_limit) {
1596 			printk("%s: RxFD FDNext invalid.\n", dev->name);
1597 			panic_queues(dev);
1598 		}
1599 #endif
1600 		for (i = 0; i < (bd_count + 1) / 2 + 1; i++) {
1601 			/* pass FD to controller */
1602 #ifdef DEBUG
1603 			lp->rfd_cur->fd.FDNext = cpu_to_le32(0xdeaddead);
1604 #else
1605 			lp->rfd_cur->fd.FDNext = cpu_to_le32(FD_Next_EOL);
1606 #endif
1607 			lp->rfd_cur->fd.FDCtl = cpu_to_le32(FD_CownsFD);
1608 			lp->rfd_cur++;
1609 		}
1610 		if (lp->rfd_cur > lp->rfd_limit)
1611 			lp->rfd_cur = lp->rfd_base;
1612 #ifdef DEBUG
1613 		if (lp->rfd_cur != next_rfd)
1614 			printk("rfd_cur = %p, next_rfd %p\n",
1615 			       lp->rfd_cur, next_rfd);
1616 #endif
1617 	}
1618 
1619 	return received;
1620 }
1621 
1622 static int tc35815_poll(struct napi_struct *napi, int budget)
1623 {
1624 	struct tc35815_local *lp = container_of(napi, struct tc35815_local, napi);
1625 	struct net_device *dev = lp->dev;
1626 	struct tc35815_regs __iomem *tr =
1627 		(struct tc35815_regs __iomem *)dev->base_addr;
1628 	int received = 0, handled;
1629 	u32 status;
1630 
1631 	if (budget <= 0)
1632 		return received;
1633 
1634 	spin_lock(&lp->rx_lock);
1635 	status = tc_readl(&tr->Int_Src);
1636 	do {
1637 		/* BLEx, FDAEx will be cleared later */
1638 		tc_writel(status & ~(Int_BLEx | Int_FDAEx),
1639 			  &tr->Int_Src);	/* write to clear */
1640 
1641 		handled = tc35815_do_interrupt(dev, status, budget - received);
1642 		if (status & (Int_BLEx | Int_FDAEx))
1643 			tc_writel(status & (Int_BLEx | Int_FDAEx),
1644 				  &tr->Int_Src);
1645 		if (handled >= 0) {
1646 			received += handled;
1647 			if (received >= budget)
1648 				break;
1649 		}
1650 		status = tc_readl(&tr->Int_Src);
1651 	} while (status);
1652 	spin_unlock(&lp->rx_lock);
1653 
1654 	if (received < budget) {
1655 		napi_complete_done(napi, received);
1656 		/* enable interrupts */
1657 		tc_writel(tc_readl(&tr->DMA_Ctl) & ~DMA_IntMask, &tr->DMA_Ctl);
1658 	}
1659 	return received;
1660 }
1661 
1662 #define TX_STA_ERR	(Tx_ExColl|Tx_Under|Tx_Defer|Tx_NCarr|Tx_LateColl|Tx_TxPar|Tx_SQErr)
1663 
1664 static void
1665 tc35815_check_tx_stat(struct net_device *dev, int status)
1666 {
1667 	struct tc35815_local *lp = netdev_priv(dev);
1668 	const char *msg = NULL;
1669 
1670 	/* count collisions */
1671 	if (status & Tx_ExColl)
1672 		dev->stats.collisions += 16;
1673 	if (status & Tx_TxColl_MASK)
1674 		dev->stats.collisions += status & Tx_TxColl_MASK;
1675 
1676 	/* TX4939 does not have NCarr */
1677 	if (lp->chiptype == TC35815_TX4939)
1678 		status &= ~Tx_NCarr;
1679 	/* WORKAROUND: ignore LostCrS in full duplex operation */
1680 	if (!lp->link || lp->duplex == DUPLEX_FULL)
1681 		status &= ~Tx_NCarr;
1682 
1683 	if (!(status & TX_STA_ERR)) {
1684 		/* no error. */
1685 		dev->stats.tx_packets++;
1686 		return;
1687 	}
1688 
1689 	dev->stats.tx_errors++;
1690 	if (status & Tx_ExColl) {
1691 		dev->stats.tx_aborted_errors++;
1692 		msg = "Excessive Collision.";
1693 	}
1694 	if (status & Tx_Under) {
1695 		dev->stats.tx_fifo_errors++;
1696 		msg = "Tx FIFO Underrun.";
1697 		if (lp->lstats.tx_underrun < TX_THRESHOLD_KEEP_LIMIT) {
1698 			lp->lstats.tx_underrun++;
1699 			if (lp->lstats.tx_underrun >= TX_THRESHOLD_KEEP_LIMIT) {
1700 				struct tc35815_regs __iomem *tr =
1701 					(struct tc35815_regs __iomem *)dev->base_addr;
1702 				tc_writel(TX_THRESHOLD_MAX, &tr->TxThrsh);
1703 				msg = "Tx FIFO Underrun.Change Tx threshold to max.";
1704 			}
1705 		}
1706 	}
1707 	if (status & Tx_Defer) {
1708 		dev->stats.tx_fifo_errors++;
1709 		msg = "Excessive Deferral.";
1710 	}
1711 	if (status & Tx_NCarr) {
1712 		dev->stats.tx_carrier_errors++;
1713 		msg = "Lost Carrier Sense.";
1714 	}
1715 	if (status & Tx_LateColl) {
1716 		dev->stats.tx_aborted_errors++;
1717 		msg = "Late Collision.";
1718 	}
1719 	if (status & Tx_TxPar) {
1720 		dev->stats.tx_fifo_errors++;
1721 		msg = "Transmit Parity Error.";
1722 	}
1723 	if (status & Tx_SQErr) {
1724 		dev->stats.tx_heartbeat_errors++;
1725 		msg = "Signal Quality Error.";
1726 	}
1727 	if (msg && netif_msg_tx_err(lp))
1728 		printk(KERN_WARNING "%s: %s (%#x)\n", dev->name, msg, status);
1729 }
1730 
1731 /* This handles TX complete events posted by the device
1732  * via interrupts.
1733  */
1734 static void
1735 tc35815_txdone(struct net_device *dev)
1736 {
1737 	struct tc35815_local *lp = netdev_priv(dev);
1738 	struct TxFD *txfd;
1739 	unsigned int fdctl;
1740 
1741 	txfd = &lp->tfd_base[lp->tfd_end];
1742 	while (lp->tfd_start != lp->tfd_end &&
1743 	       !((fdctl = le32_to_cpu(txfd->fd.FDCtl)) & FD_CownsFD)) {
1744 		int status = le32_to_cpu(txfd->fd.FDStat);
1745 		struct sk_buff *skb;
1746 		unsigned long fdnext = le32_to_cpu(txfd->fd.FDNext);
1747 		u32 fdsystem = le32_to_cpu(txfd->fd.FDSystem);
1748 
1749 		if (netif_msg_tx_done(lp)) {
1750 			printk("%s: complete TxFD.\n", dev->name);
1751 			dump_txfd(txfd);
1752 		}
1753 		tc35815_check_tx_stat(dev, status);
1754 
1755 		skb = fdsystem != 0xffffffff ?
1756 			lp->tx_skbs[fdsystem].skb : NULL;
1757 #ifdef DEBUG
1758 		if (lp->tx_skbs[lp->tfd_end].skb != skb) {
1759 			printk("%s: tx_skbs mismatch.\n", dev->name);
1760 			panic_queues(dev);
1761 		}
1762 #else
1763 		BUG_ON(lp->tx_skbs[lp->tfd_end].skb != skb);
1764 #endif
1765 		if (skb) {
1766 			dev->stats.tx_bytes += skb->len;
1767 			dma_unmap_single(&lp->pci_dev->dev,
1768 					 lp->tx_skbs[lp->tfd_end].skb_dma,
1769 					 skb->len, DMA_TO_DEVICE);
1770 			lp->tx_skbs[lp->tfd_end].skb = NULL;
1771 			lp->tx_skbs[lp->tfd_end].skb_dma = 0;
1772 			dev_kfree_skb_any(skb);
1773 		}
1774 		txfd->fd.FDSystem = cpu_to_le32(0xffffffff);
1775 
1776 		lp->tfd_end = (lp->tfd_end + 1) % TX_FD_NUM;
1777 		txfd = &lp->tfd_base[lp->tfd_end];
1778 #ifdef DEBUG
1779 		if ((fdnext & ~FD_Next_EOL) != fd_virt_to_bus(lp, txfd)) {
1780 			printk("%s: TxFD FDNext invalid.\n", dev->name);
1781 			panic_queues(dev);
1782 		}
1783 #endif
1784 		if (fdnext & FD_Next_EOL) {
1785 			/* DMA Transmitter has been stopping... */
1786 			if (lp->tfd_end != lp->tfd_start) {
1787 				struct tc35815_regs __iomem *tr =
1788 					(struct tc35815_regs __iomem *)dev->base_addr;
1789 				int head = (lp->tfd_start + TX_FD_NUM - 1) % TX_FD_NUM;
1790 				struct TxFD *txhead = &lp->tfd_base[head];
1791 				int qlen = (lp->tfd_start + TX_FD_NUM
1792 					    - lp->tfd_end) % TX_FD_NUM;
1793 
1794 #ifdef DEBUG
1795 				if (!(le32_to_cpu(txfd->fd.FDCtl) & FD_CownsFD)) {
1796 					printk("%s: TxFD FDCtl invalid.\n", dev->name);
1797 					panic_queues(dev);
1798 				}
1799 #endif
1800 				/* log max queue length */
1801 				if (lp->lstats.max_tx_qlen < qlen)
1802 					lp->lstats.max_tx_qlen = qlen;
1803 
1804 
1805 				/* start DMA Transmitter again */
1806 				txhead->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
1807 				txhead->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
1808 				if (netif_msg_tx_queued(lp)) {
1809 					printk("%s: start TxFD on queue.\n",
1810 					       dev->name);
1811 					dump_txfd(txfd);
1812 				}
1813 				tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr);
1814 			}
1815 			break;
1816 		}
1817 	}
1818 
1819 	/* If we had stopped the queue due to a "tx full"
1820 	 * condition, and space has now been made available,
1821 	 * wake up the queue.
1822 	 */
1823 	if (netif_queue_stopped(dev) && !tc35815_tx_full(dev))
1824 		netif_wake_queue(dev);
1825 }
1826 
1827 /* The inverse routine to tc35815_open(). */
1828 static int
1829 tc35815_close(struct net_device *dev)
1830 {
1831 	struct tc35815_local *lp = netdev_priv(dev);
1832 
1833 	netif_stop_queue(dev);
1834 	napi_disable(&lp->napi);
1835 	if (dev->phydev)
1836 		phy_stop(dev->phydev);
1837 	cancel_work_sync(&lp->restart_work);
1838 
1839 	/* Flush the Tx and disable Rx here. */
1840 	tc35815_chip_reset(dev);
1841 	free_irq(dev->irq, dev);
1842 
1843 	tc35815_free_queues(dev);
1844 
1845 	return 0;
1846 
1847 }
1848 
1849 /*
1850  * Get the current statistics.
1851  * This may be called with the card open or closed.
1852  */
1853 static struct net_device_stats *tc35815_get_stats(struct net_device *dev)
1854 {
1855 	struct tc35815_regs __iomem *tr =
1856 		(struct tc35815_regs __iomem *)dev->base_addr;
1857 	if (netif_running(dev))
1858 		/* Update the statistics from the device registers. */
1859 		dev->stats.rx_missed_errors += tc_readl(&tr->Miss_Cnt);
1860 
1861 	return &dev->stats;
1862 }
1863 
1864 static void tc35815_set_cam_entry(struct net_device *dev, int index,
1865 				  const unsigned char *addr)
1866 {
1867 	struct tc35815_local *lp = netdev_priv(dev);
1868 	struct tc35815_regs __iomem *tr =
1869 		(struct tc35815_regs __iomem *)dev->base_addr;
1870 	int cam_index = index * 6;
1871 	u32 cam_data;
1872 	u32 saved_addr;
1873 
1874 	saved_addr = tc_readl(&tr->CAM_Adr);
1875 
1876 	if (netif_msg_hw(lp))
1877 		printk(KERN_DEBUG "%s: CAM %d: %pM\n",
1878 			dev->name, index, addr);
1879 	if (index & 1) {
1880 		/* read modify write */
1881 		tc_writel(cam_index - 2, &tr->CAM_Adr);
1882 		cam_data = tc_readl(&tr->CAM_Data) & 0xffff0000;
1883 		cam_data |= addr[0] << 8 | addr[1];
1884 		tc_writel(cam_data, &tr->CAM_Data);
1885 		/* write whole word */
1886 		tc_writel(cam_index + 2, &tr->CAM_Adr);
1887 		cam_data = (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) | addr[5];
1888 		tc_writel(cam_data, &tr->CAM_Data);
1889 	} else {
1890 		/* write whole word */
1891 		tc_writel(cam_index, &tr->CAM_Adr);
1892 		cam_data = (addr[0] << 24) | (addr[1] << 16) | (addr[2] << 8) | addr[3];
1893 		tc_writel(cam_data, &tr->CAM_Data);
1894 		/* read modify write */
1895 		tc_writel(cam_index + 4, &tr->CAM_Adr);
1896 		cam_data = tc_readl(&tr->CAM_Data) & 0x0000ffff;
1897 		cam_data |= addr[4] << 24 | (addr[5] << 16);
1898 		tc_writel(cam_data, &tr->CAM_Data);
1899 	}
1900 
1901 	tc_writel(saved_addr, &tr->CAM_Adr);
1902 }
1903 
1904 
1905 /*
1906  * Set or clear the multicast filter for this adaptor.
1907  * num_addrs == -1	Promiscuous mode, receive all packets
1908  * num_addrs == 0	Normal mode, clear multicast list
1909  * num_addrs > 0	Multicast mode, receive normal and MC packets,
1910  *			and do best-effort filtering.
1911  */
1912 static void
1913 tc35815_set_multicast_list(struct net_device *dev)
1914 {
1915 	struct tc35815_regs __iomem *tr =
1916 		(struct tc35815_regs __iomem *)dev->base_addr;
1917 
1918 	if (dev->flags & IFF_PROMISC) {
1919 		/* With some (all?) 100MHalf HUB, controller will hang
1920 		 * if we enabled promiscuous mode before linkup...
1921 		 */
1922 		struct tc35815_local *lp = netdev_priv(dev);
1923 
1924 		if (!lp->link)
1925 			return;
1926 		/* Enable promiscuous mode */
1927 		tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc | CAM_StationAcc, &tr->CAM_Ctl);
1928 	} else if ((dev->flags & IFF_ALLMULTI) ||
1929 		  netdev_mc_count(dev) > CAM_ENTRY_MAX - 3) {
1930 		/* CAM 0, 1, 20 are reserved. */
1931 		/* Disable promiscuous mode, use normal mode. */
1932 		tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc, &tr->CAM_Ctl);
1933 	} else if (!netdev_mc_empty(dev)) {
1934 		struct netdev_hw_addr *ha;
1935 		int i;
1936 		int ena_bits = CAM_Ena_Bit(CAM_ENTRY_SOURCE);
1937 
1938 		tc_writel(0, &tr->CAM_Ctl);
1939 		/* Walk the address list, and load the filter */
1940 		i = 0;
1941 		netdev_for_each_mc_addr(ha, dev) {
1942 			/* entry 0,1 is reserved. */
1943 			tc35815_set_cam_entry(dev, i + 2, ha->addr);
1944 			ena_bits |= CAM_Ena_Bit(i + 2);
1945 			i++;
1946 		}
1947 		tc_writel(ena_bits, &tr->CAM_Ena);
1948 		tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
1949 	} else {
1950 		tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena);
1951 		tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
1952 	}
1953 }
1954 
1955 static void tc35815_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1956 {
1957 	struct tc35815_local *lp = netdev_priv(dev);
1958 
1959 	strlcpy(info->driver, MODNAME, sizeof(info->driver));
1960 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1961 	strlcpy(info->bus_info, pci_name(lp->pci_dev), sizeof(info->bus_info));
1962 }
1963 
1964 static u32 tc35815_get_msglevel(struct net_device *dev)
1965 {
1966 	struct tc35815_local *lp = netdev_priv(dev);
1967 	return lp->msg_enable;
1968 }
1969 
1970 static void tc35815_set_msglevel(struct net_device *dev, u32 datum)
1971 {
1972 	struct tc35815_local *lp = netdev_priv(dev);
1973 	lp->msg_enable = datum;
1974 }
1975 
1976 static int tc35815_get_sset_count(struct net_device *dev, int sset)
1977 {
1978 	struct tc35815_local *lp = netdev_priv(dev);
1979 
1980 	switch (sset) {
1981 	case ETH_SS_STATS:
1982 		return sizeof(lp->lstats) / sizeof(int);
1983 	default:
1984 		return -EOPNOTSUPP;
1985 	}
1986 }
1987 
1988 static void tc35815_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data)
1989 {
1990 	struct tc35815_local *lp = netdev_priv(dev);
1991 	data[0] = lp->lstats.max_tx_qlen;
1992 	data[1] = lp->lstats.tx_ints;
1993 	data[2] = lp->lstats.rx_ints;
1994 	data[3] = lp->lstats.tx_underrun;
1995 }
1996 
1997 static struct {
1998 	const char str[ETH_GSTRING_LEN];
1999 } ethtool_stats_keys[] = {
2000 	{ "max_tx_qlen" },
2001 	{ "tx_ints" },
2002 	{ "rx_ints" },
2003 	{ "tx_underrun" },
2004 };
2005 
2006 static void tc35815_get_strings(struct net_device *dev, u32 stringset, u8 *data)
2007 {
2008 	memcpy(data, ethtool_stats_keys, sizeof(ethtool_stats_keys));
2009 }
2010 
2011 static const struct ethtool_ops tc35815_ethtool_ops = {
2012 	.get_drvinfo		= tc35815_get_drvinfo,
2013 	.get_link		= ethtool_op_get_link,
2014 	.get_msglevel		= tc35815_get_msglevel,
2015 	.set_msglevel		= tc35815_set_msglevel,
2016 	.get_strings		= tc35815_get_strings,
2017 	.get_sset_count		= tc35815_get_sset_count,
2018 	.get_ethtool_stats	= tc35815_get_ethtool_stats,
2019 	.get_link_ksettings = phy_ethtool_get_link_ksettings,
2020 	.set_link_ksettings = phy_ethtool_set_link_ksettings,
2021 };
2022 
2023 static void tc35815_chip_reset(struct net_device *dev)
2024 {
2025 	struct tc35815_regs __iomem *tr =
2026 		(struct tc35815_regs __iomem *)dev->base_addr;
2027 	int i;
2028 	/* reset the controller */
2029 	tc_writel(MAC_Reset, &tr->MAC_Ctl);
2030 	udelay(4); /* 3200ns */
2031 	i = 0;
2032 	while (tc_readl(&tr->MAC_Ctl) & MAC_Reset) {
2033 		if (i++ > 100) {
2034 			printk(KERN_ERR "%s: MAC reset failed.\n", dev->name);
2035 			break;
2036 		}
2037 		mdelay(1);
2038 	}
2039 	tc_writel(0, &tr->MAC_Ctl);
2040 
2041 	/* initialize registers to default value */
2042 	tc_writel(0, &tr->DMA_Ctl);
2043 	tc_writel(0, &tr->TxThrsh);
2044 	tc_writel(0, &tr->TxPollCtr);
2045 	tc_writel(0, &tr->RxFragSize);
2046 	tc_writel(0, &tr->Int_En);
2047 	tc_writel(0, &tr->FDA_Bas);
2048 	tc_writel(0, &tr->FDA_Lim);
2049 	tc_writel(0xffffffff, &tr->Int_Src);	/* Write 1 to clear */
2050 	tc_writel(0, &tr->CAM_Ctl);
2051 	tc_writel(0, &tr->Tx_Ctl);
2052 	tc_writel(0, &tr->Rx_Ctl);
2053 	tc_writel(0, &tr->CAM_Ena);
2054 	(void)tc_readl(&tr->Miss_Cnt);	/* Read to clear */
2055 
2056 	/* initialize internal SRAM */
2057 	tc_writel(DMA_TestMode, &tr->DMA_Ctl);
2058 	for (i = 0; i < 0x1000; i += 4) {
2059 		tc_writel(i, &tr->CAM_Adr);
2060 		tc_writel(0, &tr->CAM_Data);
2061 	}
2062 	tc_writel(0, &tr->DMA_Ctl);
2063 }
2064 
2065 static void tc35815_chip_init(struct net_device *dev)
2066 {
2067 	struct tc35815_local *lp = netdev_priv(dev);
2068 	struct tc35815_regs __iomem *tr =
2069 		(struct tc35815_regs __iomem *)dev->base_addr;
2070 	unsigned long txctl = TX_CTL_CMD;
2071 
2072 	/* load station address to CAM */
2073 	tc35815_set_cam_entry(dev, CAM_ENTRY_SOURCE, dev->dev_addr);
2074 
2075 	/* Enable CAM (broadcast and unicast) */
2076 	tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena);
2077 	tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
2078 
2079 	/* Use DMA_RxAlign_2 to make IP header 4-byte aligned. */
2080 	if (HAVE_DMA_RXALIGN(lp))
2081 		tc_writel(DMA_BURST_SIZE | DMA_RxAlign_2, &tr->DMA_Ctl);
2082 	else
2083 		tc_writel(DMA_BURST_SIZE, &tr->DMA_Ctl);
2084 	tc_writel(0, &tr->TxPollCtr);	/* Batch mode */
2085 	tc_writel(TX_THRESHOLD, &tr->TxThrsh);
2086 	tc_writel(INT_EN_CMD, &tr->Int_En);
2087 
2088 	/* set queues */
2089 	tc_writel(fd_virt_to_bus(lp, lp->rfd_base), &tr->FDA_Bas);
2090 	tc_writel((unsigned long)lp->rfd_limit - (unsigned long)lp->rfd_base,
2091 		  &tr->FDA_Lim);
2092 	/*
2093 	 * Activation method:
2094 	 * First, enable the MAC Transmitter and the DMA Receive circuits.
2095 	 * Then enable the DMA Transmitter and the MAC Receive circuits.
2096 	 */
2097 	tc_writel(fd_virt_to_bus(lp, lp->fbl_ptr), &tr->BLFrmPtr);	/* start DMA receiver */
2098 	tc_writel(RX_CTL_CMD, &tr->Rx_Ctl);	/* start MAC receiver */
2099 
2100 	/* start MAC transmitter */
2101 	/* TX4939 does not have EnLCarr */
2102 	if (lp->chiptype == TC35815_TX4939)
2103 		txctl &= ~Tx_EnLCarr;
2104 	/* WORKAROUND: ignore LostCrS in full duplex operation */
2105 	if (!dev->phydev || !lp->link || lp->duplex == DUPLEX_FULL)
2106 		txctl &= ~Tx_EnLCarr;
2107 	tc_writel(txctl, &tr->Tx_Ctl);
2108 }
2109 
2110 #ifdef CONFIG_PM
2111 static int tc35815_suspend(struct pci_dev *pdev, pm_message_t state)
2112 {
2113 	struct net_device *dev = pci_get_drvdata(pdev);
2114 	struct tc35815_local *lp = netdev_priv(dev);
2115 	unsigned long flags;
2116 
2117 	pci_save_state(pdev);
2118 	if (!netif_running(dev))
2119 		return 0;
2120 	netif_device_detach(dev);
2121 	if (dev->phydev)
2122 		phy_stop(dev->phydev);
2123 	spin_lock_irqsave(&lp->lock, flags);
2124 	tc35815_chip_reset(dev);
2125 	spin_unlock_irqrestore(&lp->lock, flags);
2126 	pci_set_power_state(pdev, PCI_D3hot);
2127 	return 0;
2128 }
2129 
2130 static int tc35815_resume(struct pci_dev *pdev)
2131 {
2132 	struct net_device *dev = pci_get_drvdata(pdev);
2133 
2134 	pci_restore_state(pdev);
2135 	if (!netif_running(dev))
2136 		return 0;
2137 	pci_set_power_state(pdev, PCI_D0);
2138 	tc35815_restart(dev);
2139 	netif_carrier_off(dev);
2140 	if (dev->phydev)
2141 		phy_start(dev->phydev);
2142 	netif_device_attach(dev);
2143 	return 0;
2144 }
2145 #endif /* CONFIG_PM */
2146 
2147 static struct pci_driver tc35815_pci_driver = {
2148 	.name		= MODNAME,
2149 	.id_table	= tc35815_pci_tbl,
2150 	.probe		= tc35815_init_one,
2151 	.remove		= tc35815_remove_one,
2152 #ifdef CONFIG_PM
2153 	.suspend	= tc35815_suspend,
2154 	.resume		= tc35815_resume,
2155 #endif
2156 };
2157 
2158 module_param_named(speed, options.speed, int, 0);
2159 MODULE_PARM_DESC(speed, "0:auto, 10:10Mbps, 100:100Mbps");
2160 module_param_named(duplex, options.duplex, int, 0);
2161 MODULE_PARM_DESC(duplex, "0:auto, 1:half, 2:full");
2162 
2163 module_pci_driver(tc35815_pci_driver);
2164 MODULE_DESCRIPTION("TOSHIBA TC35815 PCI 10M/100M Ethernet driver");
2165 MODULE_LICENSE("GPL");
2166