xref: /openbmc/linux/drivers/net/ethernet/ti/netcp_core.c (revision e983940270f10fe8551baf0098be76ea478294a3)
1 /*
2  * Keystone NetCP Core driver
3  *
4  * Copyright (C) 2014 Texas Instruments Incorporated
5  * Authors:	Sandeep Nair <sandeep_n@ti.com>
6  *		Sandeep Paulraj <s-paulraj@ti.com>
7  *		Cyril Chemparathy <cyril@ti.com>
8  *		Santosh Shilimkar <santosh.shilimkar@ti.com>
9  *		Murali Karicheri <m-karicheri2@ti.com>
10  *		Wingman Kwok <w-kwok2@ti.com>
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License as
14  * published by the Free Software Foundation version 2.
15  *
16  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
17  * kind, whether express or implied; without even the implied warranty
18  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  */
21 
22 #include <linux/io.h>
23 #include <linux/module.h>
24 #include <linux/of_net.h>
25 #include <linux/of_address.h>
26 #include <linux/if_vlan.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/platform_device.h>
29 #include <linux/soc/ti/knav_qmss.h>
30 #include <linux/soc/ti/knav_dma.h>
31 
32 #include "netcp.h"
33 
34 #define NETCP_SOP_OFFSET	(NET_IP_ALIGN + NET_SKB_PAD)
35 #define NETCP_NAPI_WEIGHT	64
36 #define NETCP_TX_TIMEOUT	(5 * HZ)
37 #define NETCP_PACKET_SIZE	(ETH_FRAME_LEN + ETH_FCS_LEN)
38 #define NETCP_MIN_PACKET_SIZE	ETH_ZLEN
39 #define NETCP_MAX_MCAST_ADDR	16
40 
41 #define NETCP_EFUSE_REG_INDEX	0
42 
43 #define NETCP_MOD_PROBE_SKIPPED	1
44 #define NETCP_MOD_PROBE_FAILED	2
45 
46 #define NETCP_DEBUG (NETIF_MSG_HW	| NETIF_MSG_WOL		|	\
47 		    NETIF_MSG_DRV	| NETIF_MSG_LINK	|	\
48 		    NETIF_MSG_IFUP	| NETIF_MSG_INTR	|	\
49 		    NETIF_MSG_PROBE	| NETIF_MSG_TIMER	|	\
50 		    NETIF_MSG_IFDOWN	| NETIF_MSG_RX_ERR	|	\
51 		    NETIF_MSG_TX_ERR	| NETIF_MSG_TX_DONE	|	\
52 		    NETIF_MSG_PKTDATA	| NETIF_MSG_TX_QUEUED	|	\
53 		    NETIF_MSG_RX_STATUS)
54 
55 #define NETCP_EFUSE_ADDR_SWAP	2
56 
57 #define knav_queue_get_id(q)	knav_queue_device_control(q, \
58 				KNAV_QUEUE_GET_ID, (unsigned long)NULL)
59 
60 #define knav_queue_enable_notify(q) knav_queue_device_control(q,	\
61 					KNAV_QUEUE_ENABLE_NOTIFY,	\
62 					(unsigned long)NULL)
63 
64 #define knav_queue_disable_notify(q) knav_queue_device_control(q,	\
65 					KNAV_QUEUE_DISABLE_NOTIFY,	\
66 					(unsigned long)NULL)
67 
68 #define knav_queue_get_count(q)	knav_queue_device_control(q, \
69 				KNAV_QUEUE_GET_COUNT, (unsigned long)NULL)
70 
71 #define for_each_netcp_module(module)			\
72 	list_for_each_entry(module, &netcp_modules, module_list)
73 
74 #define for_each_netcp_device_module(netcp_device, inst_modpriv) \
75 	list_for_each_entry(inst_modpriv, \
76 		&((netcp_device)->modpriv_head), inst_list)
77 
78 #define for_each_module(netcp, intf_modpriv)			\
79 	list_for_each_entry(intf_modpriv, &netcp->module_head, intf_list)
80 
81 /* Module management structures */
82 struct netcp_device {
83 	struct list_head	device_list;
84 	struct list_head	interface_head;
85 	struct list_head	modpriv_head;
86 	struct device		*device;
87 };
88 
89 struct netcp_inst_modpriv {
90 	struct netcp_device	*netcp_device;
91 	struct netcp_module	*netcp_module;
92 	struct list_head	inst_list;
93 	void			*module_priv;
94 };
95 
96 struct netcp_intf_modpriv {
97 	struct netcp_intf	*netcp_priv;
98 	struct netcp_module	*netcp_module;
99 	struct list_head	intf_list;
100 	void			*module_priv;
101 };
102 
103 static LIST_HEAD(netcp_devices);
104 static LIST_HEAD(netcp_modules);
105 static DEFINE_MUTEX(netcp_modules_lock);
106 
107 static int netcp_debug_level = -1;
108 module_param(netcp_debug_level, int, 0);
109 MODULE_PARM_DESC(netcp_debug_level, "Netcp debug level (NETIF_MSG bits) (0=none,...,16=all)");
110 
111 /* Helper functions - Get/Set */
112 static void get_pkt_info(dma_addr_t *buff, u32 *buff_len, dma_addr_t *ndesc,
113 			 struct knav_dma_desc *desc)
114 {
115 	*buff_len = le32_to_cpu(desc->buff_len);
116 	*buff = le32_to_cpu(desc->buff);
117 	*ndesc = le32_to_cpu(desc->next_desc);
118 }
119 
120 static u32 get_sw_data(int index, struct knav_dma_desc *desc)
121 {
122 	/* No Endian conversion needed as this data is untouched by hw */
123 	return desc->sw_data[index];
124 }
125 
126 /* use these macros to get sw data */
127 #define GET_SW_DATA0(desc) get_sw_data(0, desc)
128 #define GET_SW_DATA1(desc) get_sw_data(1, desc)
129 #define GET_SW_DATA2(desc) get_sw_data(2, desc)
130 #define GET_SW_DATA3(desc) get_sw_data(3, desc)
131 
132 static void get_org_pkt_info(dma_addr_t *buff, u32 *buff_len,
133 			     struct knav_dma_desc *desc)
134 {
135 	*buff = le32_to_cpu(desc->orig_buff);
136 	*buff_len = le32_to_cpu(desc->orig_len);
137 }
138 
139 static void get_words(dma_addr_t *words, int num_words, __le32 *desc)
140 {
141 	int i;
142 
143 	for (i = 0; i < num_words; i++)
144 		words[i] = le32_to_cpu(desc[i]);
145 }
146 
147 static void set_pkt_info(dma_addr_t buff, u32 buff_len, u32 ndesc,
148 			 struct knav_dma_desc *desc)
149 {
150 	desc->buff_len = cpu_to_le32(buff_len);
151 	desc->buff = cpu_to_le32(buff);
152 	desc->next_desc = cpu_to_le32(ndesc);
153 }
154 
155 static void set_desc_info(u32 desc_info, u32 pkt_info,
156 			  struct knav_dma_desc *desc)
157 {
158 	desc->desc_info = cpu_to_le32(desc_info);
159 	desc->packet_info = cpu_to_le32(pkt_info);
160 }
161 
162 static void set_sw_data(int index, u32 data, struct knav_dma_desc *desc)
163 {
164 	/* No Endian conversion needed as this data is untouched by hw */
165 	desc->sw_data[index] = data;
166 }
167 
168 /* use these macros to set sw data */
169 #define SET_SW_DATA0(data, desc) set_sw_data(0, data, desc)
170 #define SET_SW_DATA1(data, desc) set_sw_data(1, data, desc)
171 #define SET_SW_DATA2(data, desc) set_sw_data(2, data, desc)
172 #define SET_SW_DATA3(data, desc) set_sw_data(3, data, desc)
173 
174 static void set_org_pkt_info(dma_addr_t buff, u32 buff_len,
175 			     struct knav_dma_desc *desc)
176 {
177 	desc->orig_buff = cpu_to_le32(buff);
178 	desc->orig_len = cpu_to_le32(buff_len);
179 }
180 
181 static void set_words(u32 *words, int num_words, __le32 *desc)
182 {
183 	int i;
184 
185 	for (i = 0; i < num_words; i++)
186 		desc[i] = cpu_to_le32(words[i]);
187 }
188 
189 /* Read the e-fuse value as 32 bit values to be endian independent */
190 static int emac_arch_get_mac_addr(char *x, void __iomem *efuse_mac, u32 swap)
191 {
192 	unsigned int addr0, addr1;
193 
194 	addr1 = readl(efuse_mac + 4);
195 	addr0 = readl(efuse_mac);
196 
197 	switch (swap) {
198 	case NETCP_EFUSE_ADDR_SWAP:
199 		addr0 = addr1;
200 		addr1 = readl(efuse_mac);
201 		break;
202 	default:
203 		break;
204 	}
205 
206 	x[0] = (addr1 & 0x0000ff00) >> 8;
207 	x[1] = addr1 & 0x000000ff;
208 	x[2] = (addr0 & 0xff000000) >> 24;
209 	x[3] = (addr0 & 0x00ff0000) >> 16;
210 	x[4] = (addr0 & 0x0000ff00) >> 8;
211 	x[5] = addr0 & 0x000000ff;
212 
213 	return 0;
214 }
215 
216 static const char *netcp_node_name(struct device_node *node)
217 {
218 	const char *name;
219 
220 	if (of_property_read_string(node, "label", &name) < 0)
221 		name = node->name;
222 	if (!name)
223 		name = "unknown";
224 	return name;
225 }
226 
227 /* Module management routines */
228 static int netcp_register_interface(struct netcp_intf *netcp)
229 {
230 	int ret;
231 
232 	ret = register_netdev(netcp->ndev);
233 	if (!ret)
234 		netcp->netdev_registered = true;
235 	return ret;
236 }
237 
238 static int netcp_module_probe(struct netcp_device *netcp_device,
239 			      struct netcp_module *module)
240 {
241 	struct device *dev = netcp_device->device;
242 	struct device_node *devices, *interface, *node = dev->of_node;
243 	struct device_node *child;
244 	struct netcp_inst_modpriv *inst_modpriv;
245 	struct netcp_intf *netcp_intf;
246 	struct netcp_module *tmp;
247 	bool primary_module_registered = false;
248 	int ret;
249 
250 	/* Find this module in the sub-tree for this device */
251 	devices = of_get_child_by_name(node, "netcp-devices");
252 	if (!devices) {
253 		dev_err(dev, "could not find netcp-devices node\n");
254 		return NETCP_MOD_PROBE_SKIPPED;
255 	}
256 
257 	for_each_available_child_of_node(devices, child) {
258 		const char *name = netcp_node_name(child);
259 
260 		if (!strcasecmp(module->name, name))
261 			break;
262 	}
263 
264 	of_node_put(devices);
265 	/* If module not used for this device, skip it */
266 	if (!child) {
267 		dev_warn(dev, "module(%s) not used for device\n", module->name);
268 		return NETCP_MOD_PROBE_SKIPPED;
269 	}
270 
271 	inst_modpriv = devm_kzalloc(dev, sizeof(*inst_modpriv), GFP_KERNEL);
272 	if (!inst_modpriv) {
273 		of_node_put(child);
274 		return -ENOMEM;
275 	}
276 
277 	inst_modpriv->netcp_device = netcp_device;
278 	inst_modpriv->netcp_module = module;
279 	list_add_tail(&inst_modpriv->inst_list, &netcp_device->modpriv_head);
280 
281 	ret = module->probe(netcp_device, dev, child,
282 			    &inst_modpriv->module_priv);
283 	of_node_put(child);
284 	if (ret) {
285 		dev_err(dev, "Probe of module(%s) failed with %d\n",
286 			module->name, ret);
287 		list_del(&inst_modpriv->inst_list);
288 		devm_kfree(dev, inst_modpriv);
289 		return NETCP_MOD_PROBE_FAILED;
290 	}
291 
292 	/* Attach modules only if the primary module is probed */
293 	for_each_netcp_module(tmp) {
294 		if (tmp->primary)
295 			primary_module_registered = true;
296 	}
297 
298 	if (!primary_module_registered)
299 		return 0;
300 
301 	/* Attach module to interfaces */
302 	list_for_each_entry(netcp_intf, &netcp_device->interface_head,
303 			    interface_list) {
304 		struct netcp_intf_modpriv *intf_modpriv;
305 
306 		intf_modpriv = devm_kzalloc(dev, sizeof(*intf_modpriv),
307 					    GFP_KERNEL);
308 		if (!intf_modpriv)
309 			return -ENOMEM;
310 
311 		interface = of_parse_phandle(netcp_intf->node_interface,
312 					     module->name, 0);
313 
314 		if (!interface) {
315 			devm_kfree(dev, intf_modpriv);
316 			continue;
317 		}
318 
319 		intf_modpriv->netcp_priv = netcp_intf;
320 		intf_modpriv->netcp_module = module;
321 		list_add_tail(&intf_modpriv->intf_list,
322 			      &netcp_intf->module_head);
323 
324 		ret = module->attach(inst_modpriv->module_priv,
325 				     netcp_intf->ndev, interface,
326 				     &intf_modpriv->module_priv);
327 		of_node_put(interface);
328 		if (ret) {
329 			dev_dbg(dev, "Attach of module %s declined with %d\n",
330 				module->name, ret);
331 			list_del(&intf_modpriv->intf_list);
332 			devm_kfree(dev, intf_modpriv);
333 			continue;
334 		}
335 	}
336 
337 	/* Now register the interface with netdev */
338 	list_for_each_entry(netcp_intf,
339 			    &netcp_device->interface_head,
340 			    interface_list) {
341 		/* If interface not registered then register now */
342 		if (!netcp_intf->netdev_registered) {
343 			ret = netcp_register_interface(netcp_intf);
344 			if (ret)
345 				return -ENODEV;
346 		}
347 	}
348 	return 0;
349 }
350 
351 int netcp_register_module(struct netcp_module *module)
352 {
353 	struct netcp_device *netcp_device;
354 	struct netcp_module *tmp;
355 	int ret;
356 
357 	if (!module->name) {
358 		WARN(1, "error registering netcp module: no name\n");
359 		return -EINVAL;
360 	}
361 
362 	if (!module->probe) {
363 		WARN(1, "error registering netcp module: no probe\n");
364 		return -EINVAL;
365 	}
366 
367 	mutex_lock(&netcp_modules_lock);
368 
369 	for_each_netcp_module(tmp) {
370 		if (!strcasecmp(tmp->name, module->name)) {
371 			mutex_unlock(&netcp_modules_lock);
372 			return -EEXIST;
373 		}
374 	}
375 	list_add_tail(&module->module_list, &netcp_modules);
376 
377 	list_for_each_entry(netcp_device, &netcp_devices, device_list) {
378 		ret = netcp_module_probe(netcp_device, module);
379 		if (ret < 0)
380 			goto fail;
381 	}
382 	mutex_unlock(&netcp_modules_lock);
383 	return 0;
384 
385 fail:
386 	mutex_unlock(&netcp_modules_lock);
387 	netcp_unregister_module(module);
388 	return ret;
389 }
390 EXPORT_SYMBOL_GPL(netcp_register_module);
391 
392 static void netcp_release_module(struct netcp_device *netcp_device,
393 				 struct netcp_module *module)
394 {
395 	struct netcp_inst_modpriv *inst_modpriv, *inst_tmp;
396 	struct netcp_intf *netcp_intf, *netcp_tmp;
397 	struct device *dev = netcp_device->device;
398 
399 	/* Release the module from each interface */
400 	list_for_each_entry_safe(netcp_intf, netcp_tmp,
401 				 &netcp_device->interface_head,
402 				 interface_list) {
403 		struct netcp_intf_modpriv *intf_modpriv, *intf_tmp;
404 
405 		list_for_each_entry_safe(intf_modpriv, intf_tmp,
406 					 &netcp_intf->module_head,
407 					 intf_list) {
408 			if (intf_modpriv->netcp_module == module) {
409 				module->release(intf_modpriv->module_priv);
410 				list_del(&intf_modpriv->intf_list);
411 				devm_kfree(dev, intf_modpriv);
412 				break;
413 			}
414 		}
415 	}
416 
417 	/* Remove the module from each instance */
418 	list_for_each_entry_safe(inst_modpriv, inst_tmp,
419 				 &netcp_device->modpriv_head, inst_list) {
420 		if (inst_modpriv->netcp_module == module) {
421 			module->remove(netcp_device,
422 				       inst_modpriv->module_priv);
423 			list_del(&inst_modpriv->inst_list);
424 			devm_kfree(dev, inst_modpriv);
425 			break;
426 		}
427 	}
428 }
429 
430 void netcp_unregister_module(struct netcp_module *module)
431 {
432 	struct netcp_device *netcp_device;
433 	struct netcp_module *module_tmp;
434 
435 	mutex_lock(&netcp_modules_lock);
436 
437 	list_for_each_entry(netcp_device, &netcp_devices, device_list) {
438 		netcp_release_module(netcp_device, module);
439 	}
440 
441 	/* Remove the module from the module list */
442 	for_each_netcp_module(module_tmp) {
443 		if (module == module_tmp) {
444 			list_del(&module->module_list);
445 			break;
446 		}
447 	}
448 
449 	mutex_unlock(&netcp_modules_lock);
450 }
451 EXPORT_SYMBOL_GPL(netcp_unregister_module);
452 
453 void *netcp_module_get_intf_data(struct netcp_module *module,
454 				 struct netcp_intf *intf)
455 {
456 	struct netcp_intf_modpriv *intf_modpriv;
457 
458 	list_for_each_entry(intf_modpriv, &intf->module_head, intf_list)
459 		if (intf_modpriv->netcp_module == module)
460 			return intf_modpriv->module_priv;
461 	return NULL;
462 }
463 EXPORT_SYMBOL_GPL(netcp_module_get_intf_data);
464 
465 /* Module TX and RX Hook management */
466 struct netcp_hook_list {
467 	struct list_head	 list;
468 	netcp_hook_rtn		*hook_rtn;
469 	void			*hook_data;
470 	int			 order;
471 };
472 
473 int netcp_register_txhook(struct netcp_intf *netcp_priv, int order,
474 			  netcp_hook_rtn *hook_rtn, void *hook_data)
475 {
476 	struct netcp_hook_list *entry;
477 	struct netcp_hook_list *next;
478 	unsigned long flags;
479 
480 	entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL);
481 	if (!entry)
482 		return -ENOMEM;
483 
484 	entry->hook_rtn  = hook_rtn;
485 	entry->hook_data = hook_data;
486 	entry->order     = order;
487 
488 	spin_lock_irqsave(&netcp_priv->lock, flags);
489 	list_for_each_entry(next, &netcp_priv->txhook_list_head, list) {
490 		if (next->order > order)
491 			break;
492 	}
493 	__list_add(&entry->list, next->list.prev, &next->list);
494 	spin_unlock_irqrestore(&netcp_priv->lock, flags);
495 
496 	return 0;
497 }
498 EXPORT_SYMBOL_GPL(netcp_register_txhook);
499 
500 int netcp_unregister_txhook(struct netcp_intf *netcp_priv, int order,
501 			    netcp_hook_rtn *hook_rtn, void *hook_data)
502 {
503 	struct netcp_hook_list *next, *n;
504 	unsigned long flags;
505 
506 	spin_lock_irqsave(&netcp_priv->lock, flags);
507 	list_for_each_entry_safe(next, n, &netcp_priv->txhook_list_head, list) {
508 		if ((next->order     == order) &&
509 		    (next->hook_rtn  == hook_rtn) &&
510 		    (next->hook_data == hook_data)) {
511 			list_del(&next->list);
512 			spin_unlock_irqrestore(&netcp_priv->lock, flags);
513 			devm_kfree(netcp_priv->dev, next);
514 			return 0;
515 		}
516 	}
517 	spin_unlock_irqrestore(&netcp_priv->lock, flags);
518 	return -ENOENT;
519 }
520 EXPORT_SYMBOL_GPL(netcp_unregister_txhook);
521 
522 int netcp_register_rxhook(struct netcp_intf *netcp_priv, int order,
523 			  netcp_hook_rtn *hook_rtn, void *hook_data)
524 {
525 	struct netcp_hook_list *entry;
526 	struct netcp_hook_list *next;
527 	unsigned long flags;
528 
529 	entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL);
530 	if (!entry)
531 		return -ENOMEM;
532 
533 	entry->hook_rtn  = hook_rtn;
534 	entry->hook_data = hook_data;
535 	entry->order     = order;
536 
537 	spin_lock_irqsave(&netcp_priv->lock, flags);
538 	list_for_each_entry(next, &netcp_priv->rxhook_list_head, list) {
539 		if (next->order > order)
540 			break;
541 	}
542 	__list_add(&entry->list, next->list.prev, &next->list);
543 	spin_unlock_irqrestore(&netcp_priv->lock, flags);
544 
545 	return 0;
546 }
547 
548 int netcp_unregister_rxhook(struct netcp_intf *netcp_priv, int order,
549 			    netcp_hook_rtn *hook_rtn, void *hook_data)
550 {
551 	struct netcp_hook_list *next, *n;
552 	unsigned long flags;
553 
554 	spin_lock_irqsave(&netcp_priv->lock, flags);
555 	list_for_each_entry_safe(next, n, &netcp_priv->rxhook_list_head, list) {
556 		if ((next->order     == order) &&
557 		    (next->hook_rtn  == hook_rtn) &&
558 		    (next->hook_data == hook_data)) {
559 			list_del(&next->list);
560 			spin_unlock_irqrestore(&netcp_priv->lock, flags);
561 			devm_kfree(netcp_priv->dev, next);
562 			return 0;
563 		}
564 	}
565 	spin_unlock_irqrestore(&netcp_priv->lock, flags);
566 
567 	return -ENOENT;
568 }
569 
570 static void netcp_frag_free(bool is_frag, void *ptr)
571 {
572 	if (is_frag)
573 		skb_free_frag(ptr);
574 	else
575 		kfree(ptr);
576 }
577 
578 static void netcp_free_rx_desc_chain(struct netcp_intf *netcp,
579 				     struct knav_dma_desc *desc)
580 {
581 	struct knav_dma_desc *ndesc;
582 	dma_addr_t dma_desc, dma_buf;
583 	unsigned int buf_len, dma_sz = sizeof(*ndesc);
584 	void *buf_ptr;
585 	u32 tmp;
586 
587 	get_words(&dma_desc, 1, &desc->next_desc);
588 
589 	while (dma_desc) {
590 		ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
591 		if (unlikely(!ndesc)) {
592 			dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
593 			break;
594 		}
595 		get_pkt_info(&dma_buf, &tmp, &dma_desc, ndesc);
596 		/* warning!!!! We are retrieving the virtual ptr in the sw_data
597 		 * field as a 32bit value. Will not work on 64bit machines
598 		 */
599 		buf_ptr = (void *)GET_SW_DATA0(ndesc);
600 		buf_len = (int)GET_SW_DATA1(desc);
601 		dma_unmap_page(netcp->dev, dma_buf, PAGE_SIZE, DMA_FROM_DEVICE);
602 		__free_page(buf_ptr);
603 		knav_pool_desc_put(netcp->rx_pool, desc);
604 	}
605 	/* warning!!!! We are retrieving the virtual ptr in the sw_data
606 	 * field as a 32bit value. Will not work on 64bit machines
607 	 */
608 	buf_ptr = (void *)GET_SW_DATA0(desc);
609 	buf_len = (int)GET_SW_DATA1(desc);
610 
611 	if (buf_ptr)
612 		netcp_frag_free(buf_len <= PAGE_SIZE, buf_ptr);
613 	knav_pool_desc_put(netcp->rx_pool, desc);
614 }
615 
616 static void netcp_empty_rx_queue(struct netcp_intf *netcp)
617 {
618 	struct knav_dma_desc *desc;
619 	unsigned int dma_sz;
620 	dma_addr_t dma;
621 
622 	for (; ;) {
623 		dma = knav_queue_pop(netcp->rx_queue, &dma_sz);
624 		if (!dma)
625 			break;
626 
627 		desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz);
628 		if (unlikely(!desc)) {
629 			dev_err(netcp->ndev_dev, "%s: failed to unmap Rx desc\n",
630 				__func__);
631 			netcp->ndev->stats.rx_errors++;
632 			continue;
633 		}
634 		netcp_free_rx_desc_chain(netcp, desc);
635 		netcp->ndev->stats.rx_dropped++;
636 	}
637 }
638 
639 static int netcp_process_one_rx_packet(struct netcp_intf *netcp)
640 {
641 	unsigned int dma_sz, buf_len, org_buf_len;
642 	struct knav_dma_desc *desc, *ndesc;
643 	unsigned int pkt_sz = 0, accum_sz;
644 	struct netcp_hook_list *rx_hook;
645 	dma_addr_t dma_desc, dma_buff;
646 	struct netcp_packet p_info;
647 	struct sk_buff *skb;
648 	void *org_buf_ptr;
649 
650 	dma_desc = knav_queue_pop(netcp->rx_queue, &dma_sz);
651 	if (!dma_desc)
652 		return -1;
653 
654 	desc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
655 	if (unlikely(!desc)) {
656 		dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
657 		return 0;
658 	}
659 
660 	get_pkt_info(&dma_buff, &buf_len, &dma_desc, desc);
661 	/* warning!!!! We are retrieving the virtual ptr in the sw_data
662 	 * field as a 32bit value. Will not work on 64bit machines
663 	 */
664 	org_buf_ptr = (void *)GET_SW_DATA0(desc);
665 	org_buf_len = (int)GET_SW_DATA1(desc);
666 
667 	if (unlikely(!org_buf_ptr)) {
668 		dev_err(netcp->ndev_dev, "NULL bufptr in desc\n");
669 		goto free_desc;
670 	}
671 
672 	pkt_sz &= KNAV_DMA_DESC_PKT_LEN_MASK;
673 	accum_sz = buf_len;
674 	dma_unmap_single(netcp->dev, dma_buff, buf_len, DMA_FROM_DEVICE);
675 
676 	/* Build a new sk_buff for the primary buffer */
677 	skb = build_skb(org_buf_ptr, org_buf_len);
678 	if (unlikely(!skb)) {
679 		dev_err(netcp->ndev_dev, "build_skb() failed\n");
680 		goto free_desc;
681 	}
682 
683 	/* update data, tail and len */
684 	skb_reserve(skb, NETCP_SOP_OFFSET);
685 	__skb_put(skb, buf_len);
686 
687 	/* Fill in the page fragment list */
688 	while (dma_desc) {
689 		struct page *page;
690 
691 		ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
692 		if (unlikely(!ndesc)) {
693 			dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
694 			goto free_desc;
695 		}
696 
697 		get_pkt_info(&dma_buff, &buf_len, &dma_desc, ndesc);
698 		/* warning!!!! We are retrieving the virtual ptr in the sw_data
699 		 * field as a 32bit value. Will not work on 64bit machines
700 		 */
701 		page = (struct page *)GET_SW_DATA0(desc);
702 
703 		if (likely(dma_buff && buf_len && page)) {
704 			dma_unmap_page(netcp->dev, dma_buff, PAGE_SIZE,
705 				       DMA_FROM_DEVICE);
706 		} else {
707 			dev_err(netcp->ndev_dev, "Bad Rx desc dma_buff(%pad), len(%d), page(%p)\n",
708 				&dma_buff, buf_len, page);
709 			goto free_desc;
710 		}
711 
712 		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
713 				offset_in_page(dma_buff), buf_len, PAGE_SIZE);
714 		accum_sz += buf_len;
715 
716 		/* Free the descriptor */
717 		knav_pool_desc_put(netcp->rx_pool, ndesc);
718 	}
719 
720 	/* Free the primary descriptor */
721 	knav_pool_desc_put(netcp->rx_pool, desc);
722 
723 	/* check for packet len and warn */
724 	if (unlikely(pkt_sz != accum_sz))
725 		dev_dbg(netcp->ndev_dev, "mismatch in packet size(%d) & sum of fragments(%d)\n",
726 			pkt_sz, accum_sz);
727 
728 	/* Remove ethernet FCS from the packet */
729 	__pskb_trim(skb, skb->len - ETH_FCS_LEN);
730 
731 	/* Call each of the RX hooks */
732 	p_info.skb = skb;
733 	p_info.rxtstamp_complete = false;
734 	list_for_each_entry(rx_hook, &netcp->rxhook_list_head, list) {
735 		int ret;
736 
737 		ret = rx_hook->hook_rtn(rx_hook->order, rx_hook->hook_data,
738 					&p_info);
739 		if (unlikely(ret)) {
740 			dev_err(netcp->ndev_dev, "RX hook %d failed: %d\n",
741 				rx_hook->order, ret);
742 			netcp->ndev->stats.rx_errors++;
743 			dev_kfree_skb(skb);
744 			return 0;
745 		}
746 	}
747 
748 	netcp->ndev->stats.rx_packets++;
749 	netcp->ndev->stats.rx_bytes += skb->len;
750 
751 	/* push skb up the stack */
752 	skb->protocol = eth_type_trans(skb, netcp->ndev);
753 	netif_receive_skb(skb);
754 	return 0;
755 
756 free_desc:
757 	netcp_free_rx_desc_chain(netcp, desc);
758 	netcp->ndev->stats.rx_errors++;
759 	return 0;
760 }
761 
762 static int netcp_process_rx_packets(struct netcp_intf *netcp,
763 				    unsigned int budget)
764 {
765 	int i;
766 
767 	for (i = 0; (i < budget) && !netcp_process_one_rx_packet(netcp); i++)
768 		;
769 	return i;
770 }
771 
772 /* Release descriptors and attached buffers from Rx FDQ */
773 static void netcp_free_rx_buf(struct netcp_intf *netcp, int fdq)
774 {
775 	struct knav_dma_desc *desc;
776 	unsigned int buf_len, dma_sz;
777 	dma_addr_t dma;
778 	void *buf_ptr;
779 
780 	/* Allocate descriptor */
781 	while ((dma = knav_queue_pop(netcp->rx_fdq[fdq], &dma_sz))) {
782 		desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz);
783 		if (unlikely(!desc)) {
784 			dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
785 			continue;
786 		}
787 
788 		get_org_pkt_info(&dma, &buf_len, desc);
789 		/* warning!!!! We are retrieving the virtual ptr in the sw_data
790 		 * field as a 32bit value. Will not work on 64bit machines
791 		 */
792 		buf_ptr = (void *)GET_SW_DATA0(desc);
793 
794 		if (unlikely(!dma)) {
795 			dev_err(netcp->ndev_dev, "NULL orig_buff in desc\n");
796 			knav_pool_desc_put(netcp->rx_pool, desc);
797 			continue;
798 		}
799 
800 		if (unlikely(!buf_ptr)) {
801 			dev_err(netcp->ndev_dev, "NULL bufptr in desc\n");
802 			knav_pool_desc_put(netcp->rx_pool, desc);
803 			continue;
804 		}
805 
806 		if (fdq == 0) {
807 			dma_unmap_single(netcp->dev, dma, buf_len,
808 					 DMA_FROM_DEVICE);
809 			netcp_frag_free((buf_len <= PAGE_SIZE), buf_ptr);
810 		} else {
811 			dma_unmap_page(netcp->dev, dma, buf_len,
812 				       DMA_FROM_DEVICE);
813 			__free_page(buf_ptr);
814 		}
815 
816 		knav_pool_desc_put(netcp->rx_pool, desc);
817 	}
818 }
819 
820 static void netcp_rxpool_free(struct netcp_intf *netcp)
821 {
822 	int i;
823 
824 	for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN &&
825 	     !IS_ERR_OR_NULL(netcp->rx_fdq[i]); i++)
826 		netcp_free_rx_buf(netcp, i);
827 
828 	if (knav_pool_count(netcp->rx_pool) != netcp->rx_pool_size)
829 		dev_err(netcp->ndev_dev, "Lost Rx (%d) descriptors\n",
830 			netcp->rx_pool_size - knav_pool_count(netcp->rx_pool));
831 
832 	knav_pool_destroy(netcp->rx_pool);
833 	netcp->rx_pool = NULL;
834 }
835 
836 static int netcp_allocate_rx_buf(struct netcp_intf *netcp, int fdq)
837 {
838 	struct knav_dma_desc *hwdesc;
839 	unsigned int buf_len, dma_sz;
840 	u32 desc_info, pkt_info;
841 	struct page *page;
842 	dma_addr_t dma;
843 	void *bufptr;
844 	u32 sw_data[2];
845 
846 	/* Allocate descriptor */
847 	hwdesc = knav_pool_desc_get(netcp->rx_pool);
848 	if (IS_ERR_OR_NULL(hwdesc)) {
849 		dev_dbg(netcp->ndev_dev, "out of rx pool desc\n");
850 		return -ENOMEM;
851 	}
852 
853 	if (likely(fdq == 0)) {
854 		unsigned int primary_buf_len;
855 		/* Allocate a primary receive queue entry */
856 		buf_len = NETCP_PACKET_SIZE + NETCP_SOP_OFFSET;
857 		primary_buf_len = SKB_DATA_ALIGN(buf_len) +
858 				SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
859 
860 		bufptr = netdev_alloc_frag(primary_buf_len);
861 		sw_data[1] = primary_buf_len;
862 
863 		if (unlikely(!bufptr)) {
864 			dev_warn_ratelimited(netcp->ndev_dev,
865 					     "Primary RX buffer alloc failed\n");
866 			goto fail;
867 		}
868 		dma = dma_map_single(netcp->dev, bufptr, buf_len,
869 				     DMA_TO_DEVICE);
870 		if (unlikely(dma_mapping_error(netcp->dev, dma)))
871 			goto fail;
872 
873 		/* warning!!!! We are saving the virtual ptr in the sw_data
874 		 * field as a 32bit value. Will not work on 64bit machines
875 		 */
876 		sw_data[0] = (u32)bufptr;
877 	} else {
878 		/* Allocate a secondary receive queue entry */
879 		page = alloc_page(GFP_ATOMIC | GFP_DMA | __GFP_COLD);
880 		if (unlikely(!page)) {
881 			dev_warn_ratelimited(netcp->ndev_dev, "Secondary page alloc failed\n");
882 			goto fail;
883 		}
884 		buf_len = PAGE_SIZE;
885 		dma = dma_map_page(netcp->dev, page, 0, buf_len, DMA_TO_DEVICE);
886 		/* warning!!!! We are saving the virtual ptr in the sw_data
887 		 * field as a 32bit value. Will not work on 64bit machines
888 		 */
889 		sw_data[0] = (u32)page;
890 		sw_data[1] = 0;
891 	}
892 
893 	desc_info =  KNAV_DMA_DESC_PS_INFO_IN_DESC;
894 	desc_info |= buf_len & KNAV_DMA_DESC_PKT_LEN_MASK;
895 	pkt_info =  KNAV_DMA_DESC_HAS_EPIB;
896 	pkt_info |= KNAV_DMA_NUM_PS_WORDS << KNAV_DMA_DESC_PSLEN_SHIFT;
897 	pkt_info |= (netcp->rx_queue_id & KNAV_DMA_DESC_RETQ_MASK) <<
898 		    KNAV_DMA_DESC_RETQ_SHIFT;
899 	set_org_pkt_info(dma, buf_len, hwdesc);
900 	SET_SW_DATA0(sw_data[0], hwdesc);
901 	SET_SW_DATA1(sw_data[1], hwdesc);
902 	set_desc_info(desc_info, pkt_info, hwdesc);
903 
904 	/* Push to FDQs */
905 	knav_pool_desc_map(netcp->rx_pool, hwdesc, sizeof(*hwdesc), &dma,
906 			   &dma_sz);
907 	knav_queue_push(netcp->rx_fdq[fdq], dma, sizeof(*hwdesc), 0);
908 	return 0;
909 
910 fail:
911 	knav_pool_desc_put(netcp->rx_pool, hwdesc);
912 	return -ENOMEM;
913 }
914 
915 /* Refill Rx FDQ with descriptors & attached buffers */
916 static void netcp_rxpool_refill(struct netcp_intf *netcp)
917 {
918 	u32 fdq_deficit[KNAV_DMA_FDQ_PER_CHAN] = {0};
919 	int i, ret = 0;
920 
921 	/* Calculate the FDQ deficit and refill */
922 	for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_fdq[i]; i++) {
923 		fdq_deficit[i] = netcp->rx_queue_depths[i] -
924 				 knav_queue_get_count(netcp->rx_fdq[i]);
925 
926 		while (fdq_deficit[i]-- && !ret)
927 			ret = netcp_allocate_rx_buf(netcp, i);
928 	} /* end for fdqs */
929 }
930 
931 /* NAPI poll */
932 static int netcp_rx_poll(struct napi_struct *napi, int budget)
933 {
934 	struct netcp_intf *netcp = container_of(napi, struct netcp_intf,
935 						rx_napi);
936 	unsigned int packets;
937 
938 	packets = netcp_process_rx_packets(netcp, budget);
939 
940 	netcp_rxpool_refill(netcp);
941 	if (packets < budget) {
942 		napi_complete(&netcp->rx_napi);
943 		knav_queue_enable_notify(netcp->rx_queue);
944 	}
945 
946 	return packets;
947 }
948 
949 static void netcp_rx_notify(void *arg)
950 {
951 	struct netcp_intf *netcp = arg;
952 
953 	knav_queue_disable_notify(netcp->rx_queue);
954 	napi_schedule(&netcp->rx_napi);
955 }
956 
957 static void netcp_free_tx_desc_chain(struct netcp_intf *netcp,
958 				     struct knav_dma_desc *desc,
959 				     unsigned int desc_sz)
960 {
961 	struct knav_dma_desc *ndesc = desc;
962 	dma_addr_t dma_desc, dma_buf;
963 	unsigned int buf_len;
964 
965 	while (ndesc) {
966 		get_pkt_info(&dma_buf, &buf_len, &dma_desc, ndesc);
967 
968 		if (dma_buf && buf_len)
969 			dma_unmap_single(netcp->dev, dma_buf, buf_len,
970 					 DMA_TO_DEVICE);
971 		else
972 			dev_warn(netcp->ndev_dev, "bad Tx desc buf(%pad), len(%d)\n",
973 				 &dma_buf, buf_len);
974 
975 		knav_pool_desc_put(netcp->tx_pool, ndesc);
976 		ndesc = NULL;
977 		if (dma_desc) {
978 			ndesc = knav_pool_desc_unmap(netcp->tx_pool, dma_desc,
979 						     desc_sz);
980 			if (!ndesc)
981 				dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n");
982 		}
983 	}
984 }
985 
986 static int netcp_process_tx_compl_packets(struct netcp_intf *netcp,
987 					  unsigned int budget)
988 {
989 	struct knav_dma_desc *desc;
990 	struct sk_buff *skb;
991 	unsigned int dma_sz;
992 	dma_addr_t dma;
993 	int pkts = 0;
994 
995 	while (budget--) {
996 		dma = knav_queue_pop(netcp->tx_compl_q, &dma_sz);
997 		if (!dma)
998 			break;
999 		desc = knav_pool_desc_unmap(netcp->tx_pool, dma, dma_sz);
1000 		if (unlikely(!desc)) {
1001 			dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n");
1002 			netcp->ndev->stats.tx_errors++;
1003 			continue;
1004 		}
1005 
1006 		/* warning!!!! We are retrieving the virtual ptr in the sw_data
1007 		 * field as a 32bit value. Will not work on 64bit machines
1008 		 */
1009 		skb = (struct sk_buff *)GET_SW_DATA0(desc);
1010 		netcp_free_tx_desc_chain(netcp, desc, dma_sz);
1011 		if (!skb) {
1012 			dev_err(netcp->ndev_dev, "No skb in Tx desc\n");
1013 			netcp->ndev->stats.tx_errors++;
1014 			continue;
1015 		}
1016 
1017 		if (netif_subqueue_stopped(netcp->ndev, skb) &&
1018 		    netif_running(netcp->ndev) &&
1019 		    (knav_pool_count(netcp->tx_pool) >
1020 		    netcp->tx_resume_threshold)) {
1021 			u16 subqueue = skb_get_queue_mapping(skb);
1022 
1023 			netif_wake_subqueue(netcp->ndev, subqueue);
1024 		}
1025 
1026 		netcp->ndev->stats.tx_packets++;
1027 		netcp->ndev->stats.tx_bytes += skb->len;
1028 		dev_kfree_skb(skb);
1029 		pkts++;
1030 	}
1031 	return pkts;
1032 }
1033 
1034 static int netcp_tx_poll(struct napi_struct *napi, int budget)
1035 {
1036 	int packets;
1037 	struct netcp_intf *netcp = container_of(napi, struct netcp_intf,
1038 						tx_napi);
1039 
1040 	packets = netcp_process_tx_compl_packets(netcp, budget);
1041 	if (packets < budget) {
1042 		napi_complete(&netcp->tx_napi);
1043 		knav_queue_enable_notify(netcp->tx_compl_q);
1044 	}
1045 
1046 	return packets;
1047 }
1048 
1049 static void netcp_tx_notify(void *arg)
1050 {
1051 	struct netcp_intf *netcp = arg;
1052 
1053 	knav_queue_disable_notify(netcp->tx_compl_q);
1054 	napi_schedule(&netcp->tx_napi);
1055 }
1056 
1057 static struct knav_dma_desc*
1058 netcp_tx_map_skb(struct sk_buff *skb, struct netcp_intf *netcp)
1059 {
1060 	struct knav_dma_desc *desc, *ndesc, *pdesc;
1061 	unsigned int pkt_len = skb_headlen(skb);
1062 	struct device *dev = netcp->dev;
1063 	dma_addr_t dma_addr;
1064 	unsigned int dma_sz;
1065 	int i;
1066 
1067 	/* Map the linear buffer */
1068 	dma_addr = dma_map_single(dev, skb->data, pkt_len, DMA_TO_DEVICE);
1069 	if (unlikely(dma_mapping_error(dev, dma_addr))) {
1070 		dev_err(netcp->ndev_dev, "Failed to map skb buffer\n");
1071 		return NULL;
1072 	}
1073 
1074 	desc = knav_pool_desc_get(netcp->tx_pool);
1075 	if (IS_ERR_OR_NULL(desc)) {
1076 		dev_err(netcp->ndev_dev, "out of TX desc\n");
1077 		dma_unmap_single(dev, dma_addr, pkt_len, DMA_TO_DEVICE);
1078 		return NULL;
1079 	}
1080 
1081 	set_pkt_info(dma_addr, pkt_len, 0, desc);
1082 	if (skb_is_nonlinear(skb)) {
1083 		prefetchw(skb_shinfo(skb));
1084 	} else {
1085 		desc->next_desc = 0;
1086 		goto upd_pkt_len;
1087 	}
1088 
1089 	pdesc = desc;
1090 
1091 	/* Handle the case where skb is fragmented in pages */
1092 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1093 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1094 		struct page *page = skb_frag_page(frag);
1095 		u32 page_offset = frag->page_offset;
1096 		u32 buf_len = skb_frag_size(frag);
1097 		dma_addr_t desc_dma;
1098 		u32 desc_dma_32;
1099 		u32 pkt_info;
1100 
1101 		dma_addr = dma_map_page(dev, page, page_offset, buf_len,
1102 					DMA_TO_DEVICE);
1103 		if (unlikely(!dma_addr)) {
1104 			dev_err(netcp->ndev_dev, "Failed to map skb page\n");
1105 			goto free_descs;
1106 		}
1107 
1108 		ndesc = knav_pool_desc_get(netcp->tx_pool);
1109 		if (IS_ERR_OR_NULL(ndesc)) {
1110 			dev_err(netcp->ndev_dev, "out of TX desc for frags\n");
1111 			dma_unmap_page(dev, dma_addr, buf_len, DMA_TO_DEVICE);
1112 			goto free_descs;
1113 		}
1114 
1115 		desc_dma = knav_pool_desc_virt_to_dma(netcp->tx_pool, ndesc);
1116 		pkt_info =
1117 			(netcp->tx_compl_qid & KNAV_DMA_DESC_RETQ_MASK) <<
1118 				KNAV_DMA_DESC_RETQ_SHIFT;
1119 		set_pkt_info(dma_addr, buf_len, 0, ndesc);
1120 		desc_dma_32 = (u32)desc_dma;
1121 		set_words(&desc_dma_32, 1, &pdesc->next_desc);
1122 		pkt_len += buf_len;
1123 		if (pdesc != desc)
1124 			knav_pool_desc_map(netcp->tx_pool, pdesc,
1125 					   sizeof(*pdesc), &desc_dma, &dma_sz);
1126 		pdesc = ndesc;
1127 	}
1128 	if (pdesc != desc)
1129 		knav_pool_desc_map(netcp->tx_pool, pdesc, sizeof(*pdesc),
1130 				   &dma_addr, &dma_sz);
1131 
1132 	/* frag list based linkage is not supported for now. */
1133 	if (skb_shinfo(skb)->frag_list) {
1134 		dev_err_ratelimited(netcp->ndev_dev, "NETIF_F_FRAGLIST not supported\n");
1135 		goto free_descs;
1136 	}
1137 
1138 upd_pkt_len:
1139 	WARN_ON(pkt_len != skb->len);
1140 
1141 	pkt_len &= KNAV_DMA_DESC_PKT_LEN_MASK;
1142 	set_words(&pkt_len, 1, &desc->desc_info);
1143 	return desc;
1144 
1145 free_descs:
1146 	netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc));
1147 	return NULL;
1148 }
1149 
1150 static int netcp_tx_submit_skb(struct netcp_intf *netcp,
1151 			       struct sk_buff *skb,
1152 			       struct knav_dma_desc *desc)
1153 {
1154 	struct netcp_tx_pipe *tx_pipe = NULL;
1155 	struct netcp_hook_list *tx_hook;
1156 	struct netcp_packet p_info;
1157 	unsigned int dma_sz;
1158 	dma_addr_t dma;
1159 	u32 tmp = 0;
1160 	int ret = 0;
1161 
1162 	p_info.netcp = netcp;
1163 	p_info.skb = skb;
1164 	p_info.tx_pipe = NULL;
1165 	p_info.psdata_len = 0;
1166 	p_info.ts_context = NULL;
1167 	p_info.txtstamp_complete = NULL;
1168 	p_info.epib = desc->epib;
1169 	p_info.psdata = (u32 __force *)desc->psdata;
1170 	memset(p_info.epib, 0, KNAV_DMA_NUM_EPIB_WORDS * sizeof(__le32));
1171 
1172 	/* Find out where to inject the packet for transmission */
1173 	list_for_each_entry(tx_hook, &netcp->txhook_list_head, list) {
1174 		ret = tx_hook->hook_rtn(tx_hook->order, tx_hook->hook_data,
1175 					&p_info);
1176 		if (unlikely(ret != 0)) {
1177 			dev_err(netcp->ndev_dev, "TX hook %d rejected the packet with reason(%d)\n",
1178 				tx_hook->order, ret);
1179 			ret = (ret < 0) ? ret : NETDEV_TX_OK;
1180 			goto out;
1181 		}
1182 	}
1183 
1184 	/* Make sure some TX hook claimed the packet */
1185 	tx_pipe = p_info.tx_pipe;
1186 	if (!tx_pipe) {
1187 		dev_err(netcp->ndev_dev, "No TX hook claimed the packet!\n");
1188 		ret = -ENXIO;
1189 		goto out;
1190 	}
1191 
1192 	/* update descriptor */
1193 	if (p_info.psdata_len) {
1194 		/* psdata points to both native-endian and device-endian data */
1195 		__le32 *psdata = (void __force *)p_info.psdata;
1196 
1197 		memmove(p_info.psdata, p_info.psdata + p_info.psdata_len,
1198 			p_info.psdata_len);
1199 		set_words(p_info.psdata, p_info.psdata_len, psdata);
1200 		tmp |= (p_info.psdata_len & KNAV_DMA_DESC_PSLEN_MASK) <<
1201 			KNAV_DMA_DESC_PSLEN_SHIFT;
1202 	}
1203 
1204 	tmp |= KNAV_DMA_DESC_HAS_EPIB |
1205 		((netcp->tx_compl_qid & KNAV_DMA_DESC_RETQ_MASK) <<
1206 		KNAV_DMA_DESC_RETQ_SHIFT);
1207 
1208 	if (!(tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO)) {
1209 		tmp |= ((tx_pipe->switch_to_port & KNAV_DMA_DESC_PSFLAG_MASK) <<
1210 			KNAV_DMA_DESC_PSFLAG_SHIFT);
1211 	}
1212 
1213 	set_words(&tmp, 1, &desc->packet_info);
1214 	/* warning!!!! We are saving the virtual ptr in the sw_data
1215 	 * field as a 32bit value. Will not work on 64bit machines
1216 	 */
1217 	SET_SW_DATA0((u32)skb, desc);
1218 
1219 	if (tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO) {
1220 		tmp = tx_pipe->switch_to_port;
1221 		set_words(&tmp, 1, &desc->tag_info);
1222 	}
1223 
1224 	/* submit packet descriptor */
1225 	ret = knav_pool_desc_map(netcp->tx_pool, desc, sizeof(*desc), &dma,
1226 				 &dma_sz);
1227 	if (unlikely(ret)) {
1228 		dev_err(netcp->ndev_dev, "%s() failed to map desc\n", __func__);
1229 		ret = -ENOMEM;
1230 		goto out;
1231 	}
1232 	skb_tx_timestamp(skb);
1233 	knav_queue_push(tx_pipe->dma_queue, dma, dma_sz, 0);
1234 
1235 out:
1236 	return ret;
1237 }
1238 
1239 /* Submit the packet */
1240 static int netcp_ndo_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1241 {
1242 	struct netcp_intf *netcp = netdev_priv(ndev);
1243 	int subqueue = skb_get_queue_mapping(skb);
1244 	struct knav_dma_desc *desc;
1245 	int desc_count, ret = 0;
1246 
1247 	if (unlikely(skb->len <= 0)) {
1248 		dev_kfree_skb(skb);
1249 		return NETDEV_TX_OK;
1250 	}
1251 
1252 	if (unlikely(skb->len < NETCP_MIN_PACKET_SIZE)) {
1253 		ret = skb_padto(skb, NETCP_MIN_PACKET_SIZE);
1254 		if (ret < 0) {
1255 			/* If we get here, the skb has already been dropped */
1256 			dev_warn(netcp->ndev_dev, "padding failed (%d), packet dropped\n",
1257 				 ret);
1258 			ndev->stats.tx_dropped++;
1259 			return ret;
1260 		}
1261 		skb->len = NETCP_MIN_PACKET_SIZE;
1262 	}
1263 
1264 	desc = netcp_tx_map_skb(skb, netcp);
1265 	if (unlikely(!desc)) {
1266 		netif_stop_subqueue(ndev, subqueue);
1267 		ret = -ENOBUFS;
1268 		goto drop;
1269 	}
1270 
1271 	ret = netcp_tx_submit_skb(netcp, skb, desc);
1272 	if (ret)
1273 		goto drop;
1274 
1275 	netif_trans_update(ndev);
1276 
1277 	/* Check Tx pool count & stop subqueue if needed */
1278 	desc_count = knav_pool_count(netcp->tx_pool);
1279 	if (desc_count < netcp->tx_pause_threshold) {
1280 		dev_dbg(netcp->ndev_dev, "pausing tx, count(%d)\n", desc_count);
1281 		netif_stop_subqueue(ndev, subqueue);
1282 	}
1283 	return NETDEV_TX_OK;
1284 
1285 drop:
1286 	ndev->stats.tx_dropped++;
1287 	if (desc)
1288 		netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc));
1289 	dev_kfree_skb(skb);
1290 	return ret;
1291 }
1292 
1293 int netcp_txpipe_close(struct netcp_tx_pipe *tx_pipe)
1294 {
1295 	if (tx_pipe->dma_channel) {
1296 		knav_dma_close_channel(tx_pipe->dma_channel);
1297 		tx_pipe->dma_channel = NULL;
1298 	}
1299 	return 0;
1300 }
1301 EXPORT_SYMBOL_GPL(netcp_txpipe_close);
1302 
1303 int netcp_txpipe_open(struct netcp_tx_pipe *tx_pipe)
1304 {
1305 	struct device *dev = tx_pipe->netcp_device->device;
1306 	struct knav_dma_cfg config;
1307 	int ret = 0;
1308 	u8 name[16];
1309 
1310 	memset(&config, 0, sizeof(config));
1311 	config.direction = DMA_MEM_TO_DEV;
1312 	config.u.tx.filt_einfo = false;
1313 	config.u.tx.filt_pswords = false;
1314 	config.u.tx.priority = DMA_PRIO_MED_L;
1315 
1316 	tx_pipe->dma_channel = knav_dma_open_channel(dev,
1317 				tx_pipe->dma_chan_name, &config);
1318 	if (IS_ERR_OR_NULL(tx_pipe->dma_channel)) {
1319 		dev_err(dev, "failed opening tx chan(%s)\n",
1320 			tx_pipe->dma_chan_name);
1321 		goto err;
1322 	}
1323 
1324 	snprintf(name, sizeof(name), "tx-pipe-%s", dev_name(dev));
1325 	tx_pipe->dma_queue = knav_queue_open(name, tx_pipe->dma_queue_id,
1326 					     KNAV_QUEUE_SHARED);
1327 	if (IS_ERR(tx_pipe->dma_queue)) {
1328 		dev_err(dev, "Could not open DMA queue for channel \"%s\": %d\n",
1329 			name, ret);
1330 		ret = PTR_ERR(tx_pipe->dma_queue);
1331 		goto err;
1332 	}
1333 
1334 	dev_dbg(dev, "opened tx pipe %s\n", name);
1335 	return 0;
1336 
1337 err:
1338 	if (!IS_ERR_OR_NULL(tx_pipe->dma_channel))
1339 		knav_dma_close_channel(tx_pipe->dma_channel);
1340 	tx_pipe->dma_channel = NULL;
1341 	return ret;
1342 }
1343 EXPORT_SYMBOL_GPL(netcp_txpipe_open);
1344 
1345 int netcp_txpipe_init(struct netcp_tx_pipe *tx_pipe,
1346 		      struct netcp_device *netcp_device,
1347 		      const char *dma_chan_name, unsigned int dma_queue_id)
1348 {
1349 	memset(tx_pipe, 0, sizeof(*tx_pipe));
1350 	tx_pipe->netcp_device = netcp_device;
1351 	tx_pipe->dma_chan_name = dma_chan_name;
1352 	tx_pipe->dma_queue_id = dma_queue_id;
1353 	return 0;
1354 }
1355 EXPORT_SYMBOL_GPL(netcp_txpipe_init);
1356 
1357 static struct netcp_addr *netcp_addr_find(struct netcp_intf *netcp,
1358 					  const u8 *addr,
1359 					  enum netcp_addr_type type)
1360 {
1361 	struct netcp_addr *naddr;
1362 
1363 	list_for_each_entry(naddr, &netcp->addr_list, node) {
1364 		if (naddr->type != type)
1365 			continue;
1366 		if (addr && memcmp(addr, naddr->addr, ETH_ALEN))
1367 			continue;
1368 		return naddr;
1369 	}
1370 
1371 	return NULL;
1372 }
1373 
1374 static struct netcp_addr *netcp_addr_add(struct netcp_intf *netcp,
1375 					 const u8 *addr,
1376 					 enum netcp_addr_type type)
1377 {
1378 	struct netcp_addr *naddr;
1379 
1380 	naddr = devm_kmalloc(netcp->dev, sizeof(*naddr), GFP_ATOMIC);
1381 	if (!naddr)
1382 		return NULL;
1383 
1384 	naddr->type = type;
1385 	naddr->flags = 0;
1386 	naddr->netcp = netcp;
1387 	if (addr)
1388 		ether_addr_copy(naddr->addr, addr);
1389 	else
1390 		eth_zero_addr(naddr->addr);
1391 	list_add_tail(&naddr->node, &netcp->addr_list);
1392 
1393 	return naddr;
1394 }
1395 
1396 static void netcp_addr_del(struct netcp_intf *netcp, struct netcp_addr *naddr)
1397 {
1398 	list_del(&naddr->node);
1399 	devm_kfree(netcp->dev, naddr);
1400 }
1401 
1402 static void netcp_addr_clear_mark(struct netcp_intf *netcp)
1403 {
1404 	struct netcp_addr *naddr;
1405 
1406 	list_for_each_entry(naddr, &netcp->addr_list, node)
1407 		naddr->flags = 0;
1408 }
1409 
1410 static void netcp_addr_add_mark(struct netcp_intf *netcp, const u8 *addr,
1411 				enum netcp_addr_type type)
1412 {
1413 	struct netcp_addr *naddr;
1414 
1415 	naddr = netcp_addr_find(netcp, addr, type);
1416 	if (naddr) {
1417 		naddr->flags |= ADDR_VALID;
1418 		return;
1419 	}
1420 
1421 	naddr = netcp_addr_add(netcp, addr, type);
1422 	if (!WARN_ON(!naddr))
1423 		naddr->flags |= ADDR_NEW;
1424 }
1425 
1426 static void netcp_addr_sweep_del(struct netcp_intf *netcp)
1427 {
1428 	struct netcp_addr *naddr, *tmp;
1429 	struct netcp_intf_modpriv *priv;
1430 	struct netcp_module *module;
1431 	int error;
1432 
1433 	list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) {
1434 		if (naddr->flags & (ADDR_VALID | ADDR_NEW))
1435 			continue;
1436 		dev_dbg(netcp->ndev_dev, "deleting address %pM, type %x\n",
1437 			naddr->addr, naddr->type);
1438 		for_each_module(netcp, priv) {
1439 			module = priv->netcp_module;
1440 			if (!module->del_addr)
1441 				continue;
1442 			error = module->del_addr(priv->module_priv,
1443 						 naddr);
1444 			WARN_ON(error);
1445 		}
1446 		netcp_addr_del(netcp, naddr);
1447 	}
1448 }
1449 
1450 static void netcp_addr_sweep_add(struct netcp_intf *netcp)
1451 {
1452 	struct netcp_addr *naddr, *tmp;
1453 	struct netcp_intf_modpriv *priv;
1454 	struct netcp_module *module;
1455 	int error;
1456 
1457 	list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) {
1458 		if (!(naddr->flags & ADDR_NEW))
1459 			continue;
1460 		dev_dbg(netcp->ndev_dev, "adding address %pM, type %x\n",
1461 			naddr->addr, naddr->type);
1462 
1463 		for_each_module(netcp, priv) {
1464 			module = priv->netcp_module;
1465 			if (!module->add_addr)
1466 				continue;
1467 			error = module->add_addr(priv->module_priv, naddr);
1468 			WARN_ON(error);
1469 		}
1470 	}
1471 }
1472 
1473 static void netcp_set_rx_mode(struct net_device *ndev)
1474 {
1475 	struct netcp_intf *netcp = netdev_priv(ndev);
1476 	struct netdev_hw_addr *ndev_addr;
1477 	bool promisc;
1478 
1479 	promisc = (ndev->flags & IFF_PROMISC ||
1480 		   ndev->flags & IFF_ALLMULTI ||
1481 		   netdev_mc_count(ndev) > NETCP_MAX_MCAST_ADDR);
1482 
1483 	spin_lock(&netcp->lock);
1484 	/* first clear all marks */
1485 	netcp_addr_clear_mark(netcp);
1486 
1487 	/* next add new entries, mark existing ones */
1488 	netcp_addr_add_mark(netcp, ndev->broadcast, ADDR_BCAST);
1489 	for_each_dev_addr(ndev, ndev_addr)
1490 		netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_DEV);
1491 	netdev_for_each_uc_addr(ndev_addr, ndev)
1492 		netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_UCAST);
1493 	netdev_for_each_mc_addr(ndev_addr, ndev)
1494 		netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_MCAST);
1495 
1496 	if (promisc)
1497 		netcp_addr_add_mark(netcp, NULL, ADDR_ANY);
1498 
1499 	/* finally sweep and callout into modules */
1500 	netcp_addr_sweep_del(netcp);
1501 	netcp_addr_sweep_add(netcp);
1502 	spin_unlock(&netcp->lock);
1503 }
1504 
1505 static void netcp_free_navigator_resources(struct netcp_intf *netcp)
1506 {
1507 	int i;
1508 
1509 	if (netcp->rx_channel) {
1510 		knav_dma_close_channel(netcp->rx_channel);
1511 		netcp->rx_channel = NULL;
1512 	}
1513 
1514 	if (!IS_ERR_OR_NULL(netcp->rx_pool))
1515 		netcp_rxpool_free(netcp);
1516 
1517 	if (!IS_ERR_OR_NULL(netcp->rx_queue)) {
1518 		knav_queue_close(netcp->rx_queue);
1519 		netcp->rx_queue = NULL;
1520 	}
1521 
1522 	for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN &&
1523 	     !IS_ERR_OR_NULL(netcp->rx_fdq[i]) ; ++i) {
1524 		knav_queue_close(netcp->rx_fdq[i]);
1525 		netcp->rx_fdq[i] = NULL;
1526 	}
1527 
1528 	if (!IS_ERR_OR_NULL(netcp->tx_compl_q)) {
1529 		knav_queue_close(netcp->tx_compl_q);
1530 		netcp->tx_compl_q = NULL;
1531 	}
1532 
1533 	if (!IS_ERR_OR_NULL(netcp->tx_pool)) {
1534 		knav_pool_destroy(netcp->tx_pool);
1535 		netcp->tx_pool = NULL;
1536 	}
1537 }
1538 
1539 static int netcp_setup_navigator_resources(struct net_device *ndev)
1540 {
1541 	struct netcp_intf *netcp = netdev_priv(ndev);
1542 	struct knav_queue_notify_config notify_cfg;
1543 	struct knav_dma_cfg config;
1544 	u32 last_fdq = 0;
1545 	u8 name[16];
1546 	int ret;
1547 	int i;
1548 
1549 	/* Create Rx/Tx descriptor pools */
1550 	snprintf(name, sizeof(name), "rx-pool-%s", ndev->name);
1551 	netcp->rx_pool = knav_pool_create(name, netcp->rx_pool_size,
1552 						netcp->rx_pool_region_id);
1553 	if (IS_ERR_OR_NULL(netcp->rx_pool)) {
1554 		dev_err(netcp->ndev_dev, "Couldn't create rx pool\n");
1555 		ret = PTR_ERR(netcp->rx_pool);
1556 		goto fail;
1557 	}
1558 
1559 	snprintf(name, sizeof(name), "tx-pool-%s", ndev->name);
1560 	netcp->tx_pool = knav_pool_create(name, netcp->tx_pool_size,
1561 						netcp->tx_pool_region_id);
1562 	if (IS_ERR_OR_NULL(netcp->tx_pool)) {
1563 		dev_err(netcp->ndev_dev, "Couldn't create tx pool\n");
1564 		ret = PTR_ERR(netcp->tx_pool);
1565 		goto fail;
1566 	}
1567 
1568 	/* open Tx completion queue */
1569 	snprintf(name, sizeof(name), "tx-compl-%s", ndev->name);
1570 	netcp->tx_compl_q = knav_queue_open(name, netcp->tx_compl_qid, 0);
1571 	if (IS_ERR_OR_NULL(netcp->tx_compl_q)) {
1572 		ret = PTR_ERR(netcp->tx_compl_q);
1573 		goto fail;
1574 	}
1575 	netcp->tx_compl_qid = knav_queue_get_id(netcp->tx_compl_q);
1576 
1577 	/* Set notification for Tx completion */
1578 	notify_cfg.fn = netcp_tx_notify;
1579 	notify_cfg.fn_arg = netcp;
1580 	ret = knav_queue_device_control(netcp->tx_compl_q,
1581 					KNAV_QUEUE_SET_NOTIFIER,
1582 					(unsigned long)&notify_cfg);
1583 	if (ret)
1584 		goto fail;
1585 
1586 	knav_queue_disable_notify(netcp->tx_compl_q);
1587 
1588 	/* open Rx completion queue */
1589 	snprintf(name, sizeof(name), "rx-compl-%s", ndev->name);
1590 	netcp->rx_queue = knav_queue_open(name, netcp->rx_queue_id, 0);
1591 	if (IS_ERR_OR_NULL(netcp->rx_queue)) {
1592 		ret = PTR_ERR(netcp->rx_queue);
1593 		goto fail;
1594 	}
1595 	netcp->rx_queue_id = knav_queue_get_id(netcp->rx_queue);
1596 
1597 	/* Set notification for Rx completion */
1598 	notify_cfg.fn = netcp_rx_notify;
1599 	notify_cfg.fn_arg = netcp;
1600 	ret = knav_queue_device_control(netcp->rx_queue,
1601 					KNAV_QUEUE_SET_NOTIFIER,
1602 					(unsigned long)&notify_cfg);
1603 	if (ret)
1604 		goto fail;
1605 
1606 	knav_queue_disable_notify(netcp->rx_queue);
1607 
1608 	/* open Rx FDQs */
1609 	for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_queue_depths[i];
1610 	     ++i) {
1611 		snprintf(name, sizeof(name), "rx-fdq-%s-%d", ndev->name, i);
1612 		netcp->rx_fdq[i] = knav_queue_open(name, KNAV_QUEUE_GP, 0);
1613 		if (IS_ERR_OR_NULL(netcp->rx_fdq[i])) {
1614 			ret = PTR_ERR(netcp->rx_fdq[i]);
1615 			goto fail;
1616 		}
1617 	}
1618 
1619 	memset(&config, 0, sizeof(config));
1620 	config.direction		= DMA_DEV_TO_MEM;
1621 	config.u.rx.einfo_present	= true;
1622 	config.u.rx.psinfo_present	= true;
1623 	config.u.rx.err_mode		= DMA_DROP;
1624 	config.u.rx.desc_type		= DMA_DESC_HOST;
1625 	config.u.rx.psinfo_at_sop	= false;
1626 	config.u.rx.sop_offset		= NETCP_SOP_OFFSET;
1627 	config.u.rx.dst_q		= netcp->rx_queue_id;
1628 	config.u.rx.thresh		= DMA_THRESH_NONE;
1629 
1630 	for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN; ++i) {
1631 		if (netcp->rx_fdq[i])
1632 			last_fdq = knav_queue_get_id(netcp->rx_fdq[i]);
1633 		config.u.rx.fdq[i] = last_fdq;
1634 	}
1635 
1636 	netcp->rx_channel = knav_dma_open_channel(netcp->netcp_device->device,
1637 					netcp->dma_chan_name, &config);
1638 	if (IS_ERR_OR_NULL(netcp->rx_channel)) {
1639 		dev_err(netcp->ndev_dev, "failed opening rx chan(%s\n",
1640 			netcp->dma_chan_name);
1641 		goto fail;
1642 	}
1643 
1644 	dev_dbg(netcp->ndev_dev, "opened RX channel: %p\n", netcp->rx_channel);
1645 	return 0;
1646 
1647 fail:
1648 	netcp_free_navigator_resources(netcp);
1649 	return ret;
1650 }
1651 
1652 /* Open the device */
1653 static int netcp_ndo_open(struct net_device *ndev)
1654 {
1655 	struct netcp_intf *netcp = netdev_priv(ndev);
1656 	struct netcp_intf_modpriv *intf_modpriv;
1657 	struct netcp_module *module;
1658 	int ret;
1659 
1660 	netif_carrier_off(ndev);
1661 	ret = netcp_setup_navigator_resources(ndev);
1662 	if (ret) {
1663 		dev_err(netcp->ndev_dev, "Failed to setup navigator resources\n");
1664 		goto fail;
1665 	}
1666 
1667 	for_each_module(netcp, intf_modpriv) {
1668 		module = intf_modpriv->netcp_module;
1669 		if (module->open) {
1670 			ret = module->open(intf_modpriv->module_priv, ndev);
1671 			if (ret != 0) {
1672 				dev_err(netcp->ndev_dev, "module open failed\n");
1673 				goto fail_open;
1674 			}
1675 		}
1676 	}
1677 
1678 	napi_enable(&netcp->rx_napi);
1679 	napi_enable(&netcp->tx_napi);
1680 	knav_queue_enable_notify(netcp->tx_compl_q);
1681 	knav_queue_enable_notify(netcp->rx_queue);
1682 	netcp_rxpool_refill(netcp);
1683 	netif_tx_wake_all_queues(ndev);
1684 	dev_dbg(netcp->ndev_dev, "netcp device %s opened\n", ndev->name);
1685 	return 0;
1686 
1687 fail_open:
1688 	for_each_module(netcp, intf_modpriv) {
1689 		module = intf_modpriv->netcp_module;
1690 		if (module->close)
1691 			module->close(intf_modpriv->module_priv, ndev);
1692 	}
1693 
1694 fail:
1695 	netcp_free_navigator_resources(netcp);
1696 	return ret;
1697 }
1698 
1699 /* Close the device */
1700 static int netcp_ndo_stop(struct net_device *ndev)
1701 {
1702 	struct netcp_intf *netcp = netdev_priv(ndev);
1703 	struct netcp_intf_modpriv *intf_modpriv;
1704 	struct netcp_module *module;
1705 	int err = 0;
1706 
1707 	netif_tx_stop_all_queues(ndev);
1708 	netif_carrier_off(ndev);
1709 	netcp_addr_clear_mark(netcp);
1710 	netcp_addr_sweep_del(netcp);
1711 	knav_queue_disable_notify(netcp->rx_queue);
1712 	knav_queue_disable_notify(netcp->tx_compl_q);
1713 	napi_disable(&netcp->rx_napi);
1714 	napi_disable(&netcp->tx_napi);
1715 
1716 	for_each_module(netcp, intf_modpriv) {
1717 		module = intf_modpriv->netcp_module;
1718 		if (module->close) {
1719 			err = module->close(intf_modpriv->module_priv, ndev);
1720 			if (err != 0)
1721 				dev_err(netcp->ndev_dev, "Close failed\n");
1722 		}
1723 	}
1724 
1725 	/* Recycle Rx descriptors from completion queue */
1726 	netcp_empty_rx_queue(netcp);
1727 
1728 	/* Recycle Tx descriptors from completion queue */
1729 	netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size);
1730 
1731 	if (knav_pool_count(netcp->tx_pool) != netcp->tx_pool_size)
1732 		dev_err(netcp->ndev_dev, "Lost (%d) Tx descs\n",
1733 			netcp->tx_pool_size - knav_pool_count(netcp->tx_pool));
1734 
1735 	netcp_free_navigator_resources(netcp);
1736 	dev_dbg(netcp->ndev_dev, "netcp device %s stopped\n", ndev->name);
1737 	return 0;
1738 }
1739 
1740 static int netcp_ndo_ioctl(struct net_device *ndev,
1741 			   struct ifreq *req, int cmd)
1742 {
1743 	struct netcp_intf *netcp = netdev_priv(ndev);
1744 	struct netcp_intf_modpriv *intf_modpriv;
1745 	struct netcp_module *module;
1746 	int ret = -1, err = -EOPNOTSUPP;
1747 
1748 	if (!netif_running(ndev))
1749 		return -EINVAL;
1750 
1751 	for_each_module(netcp, intf_modpriv) {
1752 		module = intf_modpriv->netcp_module;
1753 		if (!module->ioctl)
1754 			continue;
1755 
1756 		err = module->ioctl(intf_modpriv->module_priv, req, cmd);
1757 		if ((err < 0) && (err != -EOPNOTSUPP)) {
1758 			ret = err;
1759 			goto out;
1760 		}
1761 		if (err == 0)
1762 			ret = err;
1763 	}
1764 
1765 out:
1766 	return (ret == 0) ? 0 : err;
1767 }
1768 
1769 static int netcp_ndo_change_mtu(struct net_device *ndev, int new_mtu)
1770 {
1771 	struct netcp_intf *netcp = netdev_priv(ndev);
1772 
1773 	/* MTU < 68 is an error for IPv4 traffic */
1774 	if ((new_mtu < 68) ||
1775 	    (new_mtu > (NETCP_MAX_FRAME_SIZE - ETH_HLEN - ETH_FCS_LEN))) {
1776 		dev_err(netcp->ndev_dev, "Invalid mtu size = %d\n", new_mtu);
1777 		return -EINVAL;
1778 	}
1779 
1780 	ndev->mtu = new_mtu;
1781 	return 0;
1782 }
1783 
1784 static void netcp_ndo_tx_timeout(struct net_device *ndev)
1785 {
1786 	struct netcp_intf *netcp = netdev_priv(ndev);
1787 	unsigned int descs = knav_pool_count(netcp->tx_pool);
1788 
1789 	dev_err(netcp->ndev_dev, "transmit timed out tx descs(%d)\n", descs);
1790 	netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size);
1791 	netif_trans_update(ndev);
1792 	netif_tx_wake_all_queues(ndev);
1793 }
1794 
1795 static int netcp_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
1796 {
1797 	struct netcp_intf *netcp = netdev_priv(ndev);
1798 	struct netcp_intf_modpriv *intf_modpriv;
1799 	struct netcp_module *module;
1800 	unsigned long flags;
1801 	int err = 0;
1802 
1803 	dev_dbg(netcp->ndev_dev, "adding rx vlan id: %d\n", vid);
1804 
1805 	spin_lock_irqsave(&netcp->lock, flags);
1806 	for_each_module(netcp, intf_modpriv) {
1807 		module = intf_modpriv->netcp_module;
1808 		if ((module->add_vid) && (vid != 0)) {
1809 			err = module->add_vid(intf_modpriv->module_priv, vid);
1810 			if (err != 0) {
1811 				dev_err(netcp->ndev_dev, "Could not add vlan id = %d\n",
1812 					vid);
1813 				break;
1814 			}
1815 		}
1816 	}
1817 	spin_unlock_irqrestore(&netcp->lock, flags);
1818 
1819 	return err;
1820 }
1821 
1822 static int netcp_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
1823 {
1824 	struct netcp_intf *netcp = netdev_priv(ndev);
1825 	struct netcp_intf_modpriv *intf_modpriv;
1826 	struct netcp_module *module;
1827 	unsigned long flags;
1828 	int err = 0;
1829 
1830 	dev_dbg(netcp->ndev_dev, "removing rx vlan id: %d\n", vid);
1831 
1832 	spin_lock_irqsave(&netcp->lock, flags);
1833 	for_each_module(netcp, intf_modpriv) {
1834 		module = intf_modpriv->netcp_module;
1835 		if (module->del_vid) {
1836 			err = module->del_vid(intf_modpriv->module_priv, vid);
1837 			if (err != 0) {
1838 				dev_err(netcp->ndev_dev, "Could not delete vlan id = %d\n",
1839 					vid);
1840 				break;
1841 			}
1842 		}
1843 	}
1844 	spin_unlock_irqrestore(&netcp->lock, flags);
1845 	return err;
1846 }
1847 
1848 static u16 netcp_select_queue(struct net_device *dev, struct sk_buff *skb,
1849 			      void *accel_priv,
1850 			      select_queue_fallback_t fallback)
1851 {
1852 	return 0;
1853 }
1854 
1855 static int netcp_setup_tc(struct net_device *dev, u32 handle, __be16 proto,
1856 			  struct tc_to_netdev *tc)
1857 {
1858 	int i;
1859 
1860 	/* setup tc must be called under rtnl lock */
1861 	ASSERT_RTNL();
1862 
1863 	if (tc->type != TC_SETUP_MQPRIO)
1864 		return -EINVAL;
1865 
1866 	/* Sanity-check the number of traffic classes requested */
1867 	if ((dev->real_num_tx_queues <= 1) ||
1868 	    (dev->real_num_tx_queues < tc->tc))
1869 		return -EINVAL;
1870 
1871 	/* Configure traffic class to queue mappings */
1872 	if (tc->tc) {
1873 		netdev_set_num_tc(dev, tc->tc);
1874 		for (i = 0; i < tc->tc; i++)
1875 			netdev_set_tc_queue(dev, i, 1, i);
1876 	} else {
1877 		netdev_reset_tc(dev);
1878 	}
1879 
1880 	return 0;
1881 }
1882 
1883 static const struct net_device_ops netcp_netdev_ops = {
1884 	.ndo_open		= netcp_ndo_open,
1885 	.ndo_stop		= netcp_ndo_stop,
1886 	.ndo_start_xmit		= netcp_ndo_start_xmit,
1887 	.ndo_set_rx_mode	= netcp_set_rx_mode,
1888 	.ndo_do_ioctl           = netcp_ndo_ioctl,
1889 	.ndo_change_mtu		= netcp_ndo_change_mtu,
1890 	.ndo_set_mac_address	= eth_mac_addr,
1891 	.ndo_validate_addr	= eth_validate_addr,
1892 	.ndo_vlan_rx_add_vid	= netcp_rx_add_vid,
1893 	.ndo_vlan_rx_kill_vid	= netcp_rx_kill_vid,
1894 	.ndo_tx_timeout		= netcp_ndo_tx_timeout,
1895 	.ndo_select_queue	= netcp_select_queue,
1896 	.ndo_setup_tc		= netcp_setup_tc,
1897 };
1898 
1899 static int netcp_create_interface(struct netcp_device *netcp_device,
1900 				  struct device_node *node_interface)
1901 {
1902 	struct device *dev = netcp_device->device;
1903 	struct device_node *node = dev->of_node;
1904 	struct netcp_intf *netcp;
1905 	struct net_device *ndev;
1906 	resource_size_t size;
1907 	struct resource res;
1908 	void __iomem *efuse = NULL;
1909 	u32 efuse_mac = 0;
1910 	const void *mac_addr;
1911 	u8 efuse_mac_addr[6];
1912 	u32 temp[2];
1913 	int ret = 0;
1914 
1915 	ndev = alloc_etherdev_mqs(sizeof(*netcp), 1, 1);
1916 	if (!ndev) {
1917 		dev_err(dev, "Error allocating netdev\n");
1918 		return -ENOMEM;
1919 	}
1920 
1921 	ndev->features |= NETIF_F_SG;
1922 	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
1923 	ndev->hw_features = ndev->features;
1924 	ndev->vlan_features |=  NETIF_F_SG;
1925 
1926 	netcp = netdev_priv(ndev);
1927 	spin_lock_init(&netcp->lock);
1928 	INIT_LIST_HEAD(&netcp->module_head);
1929 	INIT_LIST_HEAD(&netcp->txhook_list_head);
1930 	INIT_LIST_HEAD(&netcp->rxhook_list_head);
1931 	INIT_LIST_HEAD(&netcp->addr_list);
1932 	netcp->netcp_device = netcp_device;
1933 	netcp->dev = netcp_device->device;
1934 	netcp->ndev = ndev;
1935 	netcp->ndev_dev  = &ndev->dev;
1936 	netcp->msg_enable = netif_msg_init(netcp_debug_level, NETCP_DEBUG);
1937 	netcp->tx_pause_threshold = MAX_SKB_FRAGS;
1938 	netcp->tx_resume_threshold = netcp->tx_pause_threshold;
1939 	netcp->node_interface = node_interface;
1940 
1941 	ret = of_property_read_u32(node_interface, "efuse-mac", &efuse_mac);
1942 	if (efuse_mac) {
1943 		if (of_address_to_resource(node, NETCP_EFUSE_REG_INDEX, &res)) {
1944 			dev_err(dev, "could not find efuse-mac reg resource\n");
1945 			ret = -ENODEV;
1946 			goto quit;
1947 		}
1948 		size = resource_size(&res);
1949 
1950 		if (!devm_request_mem_region(dev, res.start, size,
1951 					     dev_name(dev))) {
1952 			dev_err(dev, "could not reserve resource\n");
1953 			ret = -ENOMEM;
1954 			goto quit;
1955 		}
1956 
1957 		efuse = devm_ioremap_nocache(dev, res.start, size);
1958 		if (!efuse) {
1959 			dev_err(dev, "could not map resource\n");
1960 			devm_release_mem_region(dev, res.start, size);
1961 			ret = -ENOMEM;
1962 			goto quit;
1963 		}
1964 
1965 		emac_arch_get_mac_addr(efuse_mac_addr, efuse, efuse_mac);
1966 		if (is_valid_ether_addr(efuse_mac_addr))
1967 			ether_addr_copy(ndev->dev_addr, efuse_mac_addr);
1968 		else
1969 			random_ether_addr(ndev->dev_addr);
1970 
1971 		devm_iounmap(dev, efuse);
1972 		devm_release_mem_region(dev, res.start, size);
1973 	} else {
1974 		mac_addr = of_get_mac_address(node_interface);
1975 		if (mac_addr)
1976 			ether_addr_copy(ndev->dev_addr, mac_addr);
1977 		else
1978 			random_ether_addr(ndev->dev_addr);
1979 	}
1980 
1981 	ret = of_property_read_string(node_interface, "rx-channel",
1982 				      &netcp->dma_chan_name);
1983 	if (ret < 0) {
1984 		dev_err(dev, "missing \"rx-channel\" parameter\n");
1985 		ret = -ENODEV;
1986 		goto quit;
1987 	}
1988 
1989 	ret = of_property_read_u32(node_interface, "rx-queue",
1990 				   &netcp->rx_queue_id);
1991 	if (ret < 0) {
1992 		dev_warn(dev, "missing \"rx-queue\" parameter\n");
1993 		netcp->rx_queue_id = KNAV_QUEUE_QPEND;
1994 	}
1995 
1996 	ret = of_property_read_u32_array(node_interface, "rx-queue-depth",
1997 					 netcp->rx_queue_depths,
1998 					 KNAV_DMA_FDQ_PER_CHAN);
1999 	if (ret < 0) {
2000 		dev_err(dev, "missing \"rx-queue-depth\" parameter\n");
2001 		netcp->rx_queue_depths[0] = 128;
2002 	}
2003 
2004 	ret = of_property_read_u32_array(node_interface, "rx-pool", temp, 2);
2005 	if (ret < 0) {
2006 		dev_err(dev, "missing \"rx-pool\" parameter\n");
2007 		ret = -ENODEV;
2008 		goto quit;
2009 	}
2010 	netcp->rx_pool_size = temp[0];
2011 	netcp->rx_pool_region_id = temp[1];
2012 
2013 	ret = of_property_read_u32_array(node_interface, "tx-pool", temp, 2);
2014 	if (ret < 0) {
2015 		dev_err(dev, "missing \"tx-pool\" parameter\n");
2016 		ret = -ENODEV;
2017 		goto quit;
2018 	}
2019 	netcp->tx_pool_size = temp[0];
2020 	netcp->tx_pool_region_id = temp[1];
2021 
2022 	if (netcp->tx_pool_size < MAX_SKB_FRAGS) {
2023 		dev_err(dev, "tx-pool size too small, must be atleast(%ld)\n",
2024 			MAX_SKB_FRAGS);
2025 		ret = -ENODEV;
2026 		goto quit;
2027 	}
2028 
2029 	ret = of_property_read_u32(node_interface, "tx-completion-queue",
2030 				   &netcp->tx_compl_qid);
2031 	if (ret < 0) {
2032 		dev_warn(dev, "missing \"tx-completion-queue\" parameter\n");
2033 		netcp->tx_compl_qid = KNAV_QUEUE_QPEND;
2034 	}
2035 
2036 	/* NAPI register */
2037 	netif_napi_add(ndev, &netcp->rx_napi, netcp_rx_poll, NETCP_NAPI_WEIGHT);
2038 	netif_tx_napi_add(ndev, &netcp->tx_napi, netcp_tx_poll, NETCP_NAPI_WEIGHT);
2039 
2040 	/* Register the network device */
2041 	ndev->dev_id		= 0;
2042 	ndev->watchdog_timeo	= NETCP_TX_TIMEOUT;
2043 	ndev->netdev_ops	= &netcp_netdev_ops;
2044 	SET_NETDEV_DEV(ndev, dev);
2045 
2046 	list_add_tail(&netcp->interface_list, &netcp_device->interface_head);
2047 	return 0;
2048 
2049 quit:
2050 	free_netdev(ndev);
2051 	return ret;
2052 }
2053 
2054 static void netcp_delete_interface(struct netcp_device *netcp_device,
2055 				   struct net_device *ndev)
2056 {
2057 	struct netcp_intf_modpriv *intf_modpriv, *tmp;
2058 	struct netcp_intf *netcp = netdev_priv(ndev);
2059 	struct netcp_module *module;
2060 
2061 	dev_dbg(netcp_device->device, "Removing interface \"%s\"\n",
2062 		ndev->name);
2063 
2064 	/* Notify each of the modules that the interface is going away */
2065 	list_for_each_entry_safe(intf_modpriv, tmp, &netcp->module_head,
2066 				 intf_list) {
2067 		module = intf_modpriv->netcp_module;
2068 		dev_dbg(netcp_device->device, "Releasing module \"%s\"\n",
2069 			module->name);
2070 		if (module->release)
2071 			module->release(intf_modpriv->module_priv);
2072 		list_del(&intf_modpriv->intf_list);
2073 		kfree(intf_modpriv);
2074 	}
2075 	WARN(!list_empty(&netcp->module_head), "%s interface module list is not empty!\n",
2076 	     ndev->name);
2077 
2078 	list_del(&netcp->interface_list);
2079 
2080 	of_node_put(netcp->node_interface);
2081 	unregister_netdev(ndev);
2082 	netif_napi_del(&netcp->rx_napi);
2083 	free_netdev(ndev);
2084 }
2085 
2086 static int netcp_probe(struct platform_device *pdev)
2087 {
2088 	struct device_node *node = pdev->dev.of_node;
2089 	struct netcp_intf *netcp_intf, *netcp_tmp;
2090 	struct device_node *child, *interfaces;
2091 	struct netcp_device *netcp_device;
2092 	struct device *dev = &pdev->dev;
2093 	int ret;
2094 
2095 	if (!node) {
2096 		dev_err(dev, "could not find device info\n");
2097 		return -ENODEV;
2098 	}
2099 
2100 	/* Allocate a new NETCP device instance */
2101 	netcp_device = devm_kzalloc(dev, sizeof(*netcp_device), GFP_KERNEL);
2102 	if (!netcp_device)
2103 		return -ENOMEM;
2104 
2105 	pm_runtime_enable(&pdev->dev);
2106 	ret = pm_runtime_get_sync(&pdev->dev);
2107 	if (ret < 0) {
2108 		dev_err(dev, "Failed to enable NETCP power-domain\n");
2109 		pm_runtime_disable(&pdev->dev);
2110 		return ret;
2111 	}
2112 
2113 	/* Initialize the NETCP device instance */
2114 	INIT_LIST_HEAD(&netcp_device->interface_head);
2115 	INIT_LIST_HEAD(&netcp_device->modpriv_head);
2116 	netcp_device->device = dev;
2117 	platform_set_drvdata(pdev, netcp_device);
2118 
2119 	/* create interfaces */
2120 	interfaces = of_get_child_by_name(node, "netcp-interfaces");
2121 	if (!interfaces) {
2122 		dev_err(dev, "could not find netcp-interfaces node\n");
2123 		ret = -ENODEV;
2124 		goto probe_quit;
2125 	}
2126 
2127 	for_each_available_child_of_node(interfaces, child) {
2128 		ret = netcp_create_interface(netcp_device, child);
2129 		if (ret) {
2130 			dev_err(dev, "could not create interface(%s)\n",
2131 				child->name);
2132 			goto probe_quit_interface;
2133 		}
2134 	}
2135 
2136 	/* Add the device instance to the list */
2137 	list_add_tail(&netcp_device->device_list, &netcp_devices);
2138 
2139 	return 0;
2140 
2141 probe_quit_interface:
2142 	list_for_each_entry_safe(netcp_intf, netcp_tmp,
2143 				 &netcp_device->interface_head,
2144 				 interface_list) {
2145 		netcp_delete_interface(netcp_device, netcp_intf->ndev);
2146 	}
2147 
2148 probe_quit:
2149 	pm_runtime_put_sync(&pdev->dev);
2150 	pm_runtime_disable(&pdev->dev);
2151 	platform_set_drvdata(pdev, NULL);
2152 	return ret;
2153 }
2154 
2155 static int netcp_remove(struct platform_device *pdev)
2156 {
2157 	struct netcp_device *netcp_device = platform_get_drvdata(pdev);
2158 	struct netcp_intf *netcp_intf, *netcp_tmp;
2159 	struct netcp_inst_modpriv *inst_modpriv, *tmp;
2160 	struct netcp_module *module;
2161 
2162 	list_for_each_entry_safe(inst_modpriv, tmp, &netcp_device->modpriv_head,
2163 				 inst_list) {
2164 		module = inst_modpriv->netcp_module;
2165 		dev_dbg(&pdev->dev, "Removing module \"%s\"\n", module->name);
2166 		module->remove(netcp_device, inst_modpriv->module_priv);
2167 		list_del(&inst_modpriv->inst_list);
2168 		kfree(inst_modpriv);
2169 	}
2170 
2171 	/* now that all modules are removed, clean up the interfaces */
2172 	list_for_each_entry_safe(netcp_intf, netcp_tmp,
2173 				 &netcp_device->interface_head,
2174 				 interface_list) {
2175 		netcp_delete_interface(netcp_device, netcp_intf->ndev);
2176 	}
2177 
2178 	WARN(!list_empty(&netcp_device->interface_head),
2179 	     "%s interface list not empty!\n", pdev->name);
2180 
2181 	pm_runtime_put_sync(&pdev->dev);
2182 	pm_runtime_disable(&pdev->dev);
2183 	platform_set_drvdata(pdev, NULL);
2184 	return 0;
2185 }
2186 
2187 static const struct of_device_id of_match[] = {
2188 	{ .compatible = "ti,netcp-1.0", },
2189 	{},
2190 };
2191 MODULE_DEVICE_TABLE(of, of_match);
2192 
2193 static struct platform_driver netcp_driver = {
2194 	.driver = {
2195 		.name		= "netcp-1.0",
2196 		.of_match_table	= of_match,
2197 	},
2198 	.probe = netcp_probe,
2199 	.remove = netcp_remove,
2200 };
2201 module_platform_driver(netcp_driver);
2202 
2203 MODULE_LICENSE("GPL v2");
2204 MODULE_DESCRIPTION("TI NETCP driver for Keystone SOCs");
2205 MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com");
2206