1 /* 2 * Keystone NetCP Core driver 3 * 4 * Copyright (C) 2014 Texas Instruments Incorporated 5 * Authors: Sandeep Nair <sandeep_n@ti.com> 6 * Sandeep Paulraj <s-paulraj@ti.com> 7 * Cyril Chemparathy <cyril@ti.com> 8 * Santosh Shilimkar <santosh.shilimkar@ti.com> 9 * Murali Karicheri <m-karicheri2@ti.com> 10 * Wingman Kwok <w-kwok2@ti.com> 11 * 12 * This program is free software; you can redistribute it and/or 13 * modify it under the terms of the GNU General Public License as 14 * published by the Free Software Foundation version 2. 15 * 16 * This program is distributed "as is" WITHOUT ANY WARRANTY of any 17 * kind, whether express or implied; without even the implied warranty 18 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 19 * GNU General Public License for more details. 20 */ 21 22 #include <linux/io.h> 23 #include <linux/module.h> 24 #include <linux/of_net.h> 25 #include <linux/of_address.h> 26 #include <linux/if_vlan.h> 27 #include <linux/pm_runtime.h> 28 #include <linux/platform_device.h> 29 #include <linux/soc/ti/knav_qmss.h> 30 #include <linux/soc/ti/knav_dma.h> 31 32 #include "netcp.h" 33 34 #define NETCP_SOP_OFFSET (NET_IP_ALIGN + NET_SKB_PAD) 35 #define NETCP_NAPI_WEIGHT 64 36 #define NETCP_TX_TIMEOUT (5 * HZ) 37 #define NETCP_PACKET_SIZE (ETH_FRAME_LEN + ETH_FCS_LEN) 38 #define NETCP_MIN_PACKET_SIZE ETH_ZLEN 39 #define NETCP_MAX_MCAST_ADDR 16 40 41 #define NETCP_EFUSE_REG_INDEX 0 42 43 #define NETCP_MOD_PROBE_SKIPPED 1 44 #define NETCP_MOD_PROBE_FAILED 2 45 46 #define NETCP_DEBUG (NETIF_MSG_HW | NETIF_MSG_WOL | \ 47 NETIF_MSG_DRV | NETIF_MSG_LINK | \ 48 NETIF_MSG_IFUP | NETIF_MSG_INTR | \ 49 NETIF_MSG_PROBE | NETIF_MSG_TIMER | \ 50 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | \ 51 NETIF_MSG_TX_ERR | NETIF_MSG_TX_DONE | \ 52 NETIF_MSG_PKTDATA | NETIF_MSG_TX_QUEUED | \ 53 NETIF_MSG_RX_STATUS) 54 55 #define knav_queue_get_id(q) knav_queue_device_control(q, \ 56 KNAV_QUEUE_GET_ID, (unsigned long)NULL) 57 58 #define knav_queue_enable_notify(q) knav_queue_device_control(q, \ 59 KNAV_QUEUE_ENABLE_NOTIFY, \ 60 (unsigned long)NULL) 61 62 #define knav_queue_disable_notify(q) knav_queue_device_control(q, \ 63 KNAV_QUEUE_DISABLE_NOTIFY, \ 64 (unsigned long)NULL) 65 66 #define knav_queue_get_count(q) knav_queue_device_control(q, \ 67 KNAV_QUEUE_GET_COUNT, (unsigned long)NULL) 68 69 #define for_each_netcp_module(module) \ 70 list_for_each_entry(module, &netcp_modules, module_list) 71 72 #define for_each_netcp_device_module(netcp_device, inst_modpriv) \ 73 list_for_each_entry(inst_modpriv, \ 74 &((netcp_device)->modpriv_head), inst_list) 75 76 #define for_each_module(netcp, intf_modpriv) \ 77 list_for_each_entry(intf_modpriv, &netcp->module_head, intf_list) 78 79 /* Module management structures */ 80 struct netcp_device { 81 struct list_head device_list; 82 struct list_head interface_head; 83 struct list_head modpriv_head; 84 struct device *device; 85 }; 86 87 struct netcp_inst_modpriv { 88 struct netcp_device *netcp_device; 89 struct netcp_module *netcp_module; 90 struct list_head inst_list; 91 void *module_priv; 92 }; 93 94 struct netcp_intf_modpriv { 95 struct netcp_intf *netcp_priv; 96 struct netcp_module *netcp_module; 97 struct list_head intf_list; 98 void *module_priv; 99 }; 100 101 static LIST_HEAD(netcp_devices); 102 static LIST_HEAD(netcp_modules); 103 static DEFINE_MUTEX(netcp_modules_lock); 104 105 static int netcp_debug_level = -1; 106 module_param(netcp_debug_level, int, 0); 107 MODULE_PARM_DESC(netcp_debug_level, "Netcp debug level (NETIF_MSG bits) (0=none,...,16=all)"); 108 109 /* Helper functions - Get/Set */ 110 static void get_pkt_info(u32 *buff, u32 *buff_len, u32 *ndesc, 111 struct knav_dma_desc *desc) 112 { 113 *buff_len = desc->buff_len; 114 *buff = desc->buff; 115 *ndesc = desc->next_desc; 116 } 117 118 static void get_pad_info(u32 *pad0, u32 *pad1, struct knav_dma_desc *desc) 119 { 120 *pad0 = desc->pad[0]; 121 *pad1 = desc->pad[1]; 122 } 123 124 static void get_org_pkt_info(u32 *buff, u32 *buff_len, 125 struct knav_dma_desc *desc) 126 { 127 *buff = desc->orig_buff; 128 *buff_len = desc->orig_len; 129 } 130 131 static void get_words(u32 *words, int num_words, u32 *desc) 132 { 133 int i; 134 135 for (i = 0; i < num_words; i++) 136 words[i] = desc[i]; 137 } 138 139 static void set_pkt_info(u32 buff, u32 buff_len, u32 ndesc, 140 struct knav_dma_desc *desc) 141 { 142 desc->buff_len = buff_len; 143 desc->buff = buff; 144 desc->next_desc = ndesc; 145 } 146 147 static void set_desc_info(u32 desc_info, u32 pkt_info, 148 struct knav_dma_desc *desc) 149 { 150 desc->desc_info = desc_info; 151 desc->packet_info = pkt_info; 152 } 153 154 static void set_pad_info(u32 pad0, u32 pad1, struct knav_dma_desc *desc) 155 { 156 desc->pad[0] = pad0; 157 desc->pad[1] = pad1; 158 } 159 160 static void set_org_pkt_info(u32 buff, u32 buff_len, 161 struct knav_dma_desc *desc) 162 { 163 desc->orig_buff = buff; 164 desc->orig_len = buff_len; 165 } 166 167 static void set_words(u32 *words, int num_words, u32 *desc) 168 { 169 int i; 170 171 for (i = 0; i < num_words; i++) 172 desc[i] = words[i]; 173 } 174 175 /* Read the e-fuse value as 32 bit values to be endian independent */ 176 static int emac_arch_get_mac_addr(char *x, void __iomem *efuse_mac) 177 { 178 unsigned int addr0, addr1; 179 180 addr1 = readl(efuse_mac + 4); 181 addr0 = readl(efuse_mac); 182 183 x[0] = (addr1 & 0x0000ff00) >> 8; 184 x[1] = addr1 & 0x000000ff; 185 x[2] = (addr0 & 0xff000000) >> 24; 186 x[3] = (addr0 & 0x00ff0000) >> 16; 187 x[4] = (addr0 & 0x0000ff00) >> 8; 188 x[5] = addr0 & 0x000000ff; 189 190 return 0; 191 } 192 193 static const char *netcp_node_name(struct device_node *node) 194 { 195 const char *name; 196 197 if (of_property_read_string(node, "label", &name) < 0) 198 name = node->name; 199 if (!name) 200 name = "unknown"; 201 return name; 202 } 203 204 /* Module management routines */ 205 static int netcp_register_interface(struct netcp_intf *netcp) 206 { 207 int ret; 208 209 ret = register_netdev(netcp->ndev); 210 if (!ret) 211 netcp->netdev_registered = true; 212 return ret; 213 } 214 215 static int netcp_module_probe(struct netcp_device *netcp_device, 216 struct netcp_module *module) 217 { 218 struct device *dev = netcp_device->device; 219 struct device_node *devices, *interface, *node = dev->of_node; 220 struct device_node *child; 221 struct netcp_inst_modpriv *inst_modpriv; 222 struct netcp_intf *netcp_intf; 223 struct netcp_module *tmp; 224 bool primary_module_registered = false; 225 int ret; 226 227 /* Find this module in the sub-tree for this device */ 228 devices = of_get_child_by_name(node, "netcp-devices"); 229 if (!devices) { 230 dev_err(dev, "could not find netcp-devices node\n"); 231 return NETCP_MOD_PROBE_SKIPPED; 232 } 233 234 for_each_available_child_of_node(devices, child) { 235 const char *name = netcp_node_name(child); 236 237 if (!strcasecmp(module->name, name)) 238 break; 239 } 240 241 of_node_put(devices); 242 /* If module not used for this device, skip it */ 243 if (!child) { 244 dev_warn(dev, "module(%s) not used for device\n", module->name); 245 return NETCP_MOD_PROBE_SKIPPED; 246 } 247 248 inst_modpriv = devm_kzalloc(dev, sizeof(*inst_modpriv), GFP_KERNEL); 249 if (!inst_modpriv) { 250 of_node_put(child); 251 return -ENOMEM; 252 } 253 254 inst_modpriv->netcp_device = netcp_device; 255 inst_modpriv->netcp_module = module; 256 list_add_tail(&inst_modpriv->inst_list, &netcp_device->modpriv_head); 257 258 ret = module->probe(netcp_device, dev, child, 259 &inst_modpriv->module_priv); 260 of_node_put(child); 261 if (ret) { 262 dev_err(dev, "Probe of module(%s) failed with %d\n", 263 module->name, ret); 264 list_del(&inst_modpriv->inst_list); 265 devm_kfree(dev, inst_modpriv); 266 return NETCP_MOD_PROBE_FAILED; 267 } 268 269 /* Attach modules only if the primary module is probed */ 270 for_each_netcp_module(tmp) { 271 if (tmp->primary) 272 primary_module_registered = true; 273 } 274 275 if (!primary_module_registered) 276 return 0; 277 278 /* Attach module to interfaces */ 279 list_for_each_entry(netcp_intf, &netcp_device->interface_head, 280 interface_list) { 281 struct netcp_intf_modpriv *intf_modpriv; 282 283 /* If interface not registered then register now */ 284 if (!netcp_intf->netdev_registered) 285 ret = netcp_register_interface(netcp_intf); 286 287 if (ret) 288 return -ENODEV; 289 290 intf_modpriv = devm_kzalloc(dev, sizeof(*intf_modpriv), 291 GFP_KERNEL); 292 if (!intf_modpriv) 293 return -ENOMEM; 294 295 interface = of_parse_phandle(netcp_intf->node_interface, 296 module->name, 0); 297 298 intf_modpriv->netcp_priv = netcp_intf; 299 intf_modpriv->netcp_module = module; 300 list_add_tail(&intf_modpriv->intf_list, 301 &netcp_intf->module_head); 302 303 ret = module->attach(inst_modpriv->module_priv, 304 netcp_intf->ndev, interface, 305 &intf_modpriv->module_priv); 306 of_node_put(interface); 307 if (ret) { 308 dev_dbg(dev, "Attach of module %s declined with %d\n", 309 module->name, ret); 310 list_del(&intf_modpriv->intf_list); 311 devm_kfree(dev, intf_modpriv); 312 continue; 313 } 314 } 315 return 0; 316 } 317 318 int netcp_register_module(struct netcp_module *module) 319 { 320 struct netcp_device *netcp_device; 321 struct netcp_module *tmp; 322 int ret; 323 324 if (!module->name) { 325 WARN(1, "error registering netcp module: no name\n"); 326 return -EINVAL; 327 } 328 329 if (!module->probe) { 330 WARN(1, "error registering netcp module: no probe\n"); 331 return -EINVAL; 332 } 333 334 mutex_lock(&netcp_modules_lock); 335 336 for_each_netcp_module(tmp) { 337 if (!strcasecmp(tmp->name, module->name)) { 338 mutex_unlock(&netcp_modules_lock); 339 return -EEXIST; 340 } 341 } 342 list_add_tail(&module->module_list, &netcp_modules); 343 344 list_for_each_entry(netcp_device, &netcp_devices, device_list) { 345 ret = netcp_module_probe(netcp_device, module); 346 if (ret < 0) 347 goto fail; 348 } 349 350 mutex_unlock(&netcp_modules_lock); 351 return 0; 352 353 fail: 354 mutex_unlock(&netcp_modules_lock); 355 netcp_unregister_module(module); 356 return ret; 357 } 358 EXPORT_SYMBOL_GPL(netcp_register_module); 359 360 static void netcp_release_module(struct netcp_device *netcp_device, 361 struct netcp_module *module) 362 { 363 struct netcp_inst_modpriv *inst_modpriv, *inst_tmp; 364 struct netcp_intf *netcp_intf, *netcp_tmp; 365 struct device *dev = netcp_device->device; 366 367 /* Release the module from each interface */ 368 list_for_each_entry_safe(netcp_intf, netcp_tmp, 369 &netcp_device->interface_head, 370 interface_list) { 371 struct netcp_intf_modpriv *intf_modpriv, *intf_tmp; 372 373 list_for_each_entry_safe(intf_modpriv, intf_tmp, 374 &netcp_intf->module_head, 375 intf_list) { 376 if (intf_modpriv->netcp_module == module) { 377 module->release(intf_modpriv->module_priv); 378 list_del(&intf_modpriv->intf_list); 379 devm_kfree(dev, intf_modpriv); 380 break; 381 } 382 } 383 } 384 385 /* Remove the module from each instance */ 386 list_for_each_entry_safe(inst_modpriv, inst_tmp, 387 &netcp_device->modpriv_head, inst_list) { 388 if (inst_modpriv->netcp_module == module) { 389 module->remove(netcp_device, 390 inst_modpriv->module_priv); 391 list_del(&inst_modpriv->inst_list); 392 devm_kfree(dev, inst_modpriv); 393 break; 394 } 395 } 396 } 397 398 void netcp_unregister_module(struct netcp_module *module) 399 { 400 struct netcp_device *netcp_device; 401 struct netcp_module *module_tmp; 402 403 mutex_lock(&netcp_modules_lock); 404 405 list_for_each_entry(netcp_device, &netcp_devices, device_list) { 406 netcp_release_module(netcp_device, module); 407 } 408 409 /* Remove the module from the module list */ 410 for_each_netcp_module(module_tmp) { 411 if (module == module_tmp) { 412 list_del(&module->module_list); 413 break; 414 } 415 } 416 417 mutex_unlock(&netcp_modules_lock); 418 } 419 EXPORT_SYMBOL_GPL(netcp_unregister_module); 420 421 void *netcp_module_get_intf_data(struct netcp_module *module, 422 struct netcp_intf *intf) 423 { 424 struct netcp_intf_modpriv *intf_modpriv; 425 426 list_for_each_entry(intf_modpriv, &intf->module_head, intf_list) 427 if (intf_modpriv->netcp_module == module) 428 return intf_modpriv->module_priv; 429 return NULL; 430 } 431 EXPORT_SYMBOL_GPL(netcp_module_get_intf_data); 432 433 /* Module TX and RX Hook management */ 434 struct netcp_hook_list { 435 struct list_head list; 436 netcp_hook_rtn *hook_rtn; 437 void *hook_data; 438 int order; 439 }; 440 441 int netcp_register_txhook(struct netcp_intf *netcp_priv, int order, 442 netcp_hook_rtn *hook_rtn, void *hook_data) 443 { 444 struct netcp_hook_list *entry; 445 struct netcp_hook_list *next; 446 unsigned long flags; 447 448 entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL); 449 if (!entry) 450 return -ENOMEM; 451 452 entry->hook_rtn = hook_rtn; 453 entry->hook_data = hook_data; 454 entry->order = order; 455 456 spin_lock_irqsave(&netcp_priv->lock, flags); 457 list_for_each_entry(next, &netcp_priv->txhook_list_head, list) { 458 if (next->order > order) 459 break; 460 } 461 __list_add(&entry->list, next->list.prev, &next->list); 462 spin_unlock_irqrestore(&netcp_priv->lock, flags); 463 464 return 0; 465 } 466 EXPORT_SYMBOL_GPL(netcp_register_txhook); 467 468 int netcp_unregister_txhook(struct netcp_intf *netcp_priv, int order, 469 netcp_hook_rtn *hook_rtn, void *hook_data) 470 { 471 struct netcp_hook_list *next, *n; 472 unsigned long flags; 473 474 spin_lock_irqsave(&netcp_priv->lock, flags); 475 list_for_each_entry_safe(next, n, &netcp_priv->txhook_list_head, list) { 476 if ((next->order == order) && 477 (next->hook_rtn == hook_rtn) && 478 (next->hook_data == hook_data)) { 479 list_del(&next->list); 480 spin_unlock_irqrestore(&netcp_priv->lock, flags); 481 devm_kfree(netcp_priv->dev, next); 482 return 0; 483 } 484 } 485 spin_unlock_irqrestore(&netcp_priv->lock, flags); 486 return -ENOENT; 487 } 488 EXPORT_SYMBOL_GPL(netcp_unregister_txhook); 489 490 int netcp_register_rxhook(struct netcp_intf *netcp_priv, int order, 491 netcp_hook_rtn *hook_rtn, void *hook_data) 492 { 493 struct netcp_hook_list *entry; 494 struct netcp_hook_list *next; 495 unsigned long flags; 496 497 entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL); 498 if (!entry) 499 return -ENOMEM; 500 501 entry->hook_rtn = hook_rtn; 502 entry->hook_data = hook_data; 503 entry->order = order; 504 505 spin_lock_irqsave(&netcp_priv->lock, flags); 506 list_for_each_entry(next, &netcp_priv->rxhook_list_head, list) { 507 if (next->order > order) 508 break; 509 } 510 __list_add(&entry->list, next->list.prev, &next->list); 511 spin_unlock_irqrestore(&netcp_priv->lock, flags); 512 513 return 0; 514 } 515 516 int netcp_unregister_rxhook(struct netcp_intf *netcp_priv, int order, 517 netcp_hook_rtn *hook_rtn, void *hook_data) 518 { 519 struct netcp_hook_list *next, *n; 520 unsigned long flags; 521 522 spin_lock_irqsave(&netcp_priv->lock, flags); 523 list_for_each_entry_safe(next, n, &netcp_priv->rxhook_list_head, list) { 524 if ((next->order == order) && 525 (next->hook_rtn == hook_rtn) && 526 (next->hook_data == hook_data)) { 527 list_del(&next->list); 528 spin_unlock_irqrestore(&netcp_priv->lock, flags); 529 devm_kfree(netcp_priv->dev, next); 530 return 0; 531 } 532 } 533 spin_unlock_irqrestore(&netcp_priv->lock, flags); 534 535 return -ENOENT; 536 } 537 538 static void netcp_frag_free(bool is_frag, void *ptr) 539 { 540 if (is_frag) 541 skb_free_frag(ptr); 542 else 543 kfree(ptr); 544 } 545 546 static void netcp_free_rx_desc_chain(struct netcp_intf *netcp, 547 struct knav_dma_desc *desc) 548 { 549 struct knav_dma_desc *ndesc; 550 dma_addr_t dma_desc, dma_buf; 551 unsigned int buf_len, dma_sz = sizeof(*ndesc); 552 void *buf_ptr; 553 u32 tmp; 554 555 get_words(&dma_desc, 1, &desc->next_desc); 556 557 while (dma_desc) { 558 ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz); 559 if (unlikely(!ndesc)) { 560 dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n"); 561 break; 562 } 563 get_pkt_info(&dma_buf, &tmp, &dma_desc, ndesc); 564 get_pad_info((u32 *)&buf_ptr, &tmp, ndesc); 565 dma_unmap_page(netcp->dev, dma_buf, PAGE_SIZE, DMA_FROM_DEVICE); 566 __free_page(buf_ptr); 567 knav_pool_desc_put(netcp->rx_pool, desc); 568 } 569 570 get_pad_info((u32 *)&buf_ptr, &buf_len, desc); 571 if (buf_ptr) 572 netcp_frag_free(buf_len <= PAGE_SIZE, buf_ptr); 573 knav_pool_desc_put(netcp->rx_pool, desc); 574 } 575 576 static void netcp_empty_rx_queue(struct netcp_intf *netcp) 577 { 578 struct knav_dma_desc *desc; 579 unsigned int dma_sz; 580 dma_addr_t dma; 581 582 for (; ;) { 583 dma = knav_queue_pop(netcp->rx_queue, &dma_sz); 584 if (!dma) 585 break; 586 587 desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz); 588 if (unlikely(!desc)) { 589 dev_err(netcp->ndev_dev, "%s: failed to unmap Rx desc\n", 590 __func__); 591 netcp->ndev->stats.rx_errors++; 592 continue; 593 } 594 netcp_free_rx_desc_chain(netcp, desc); 595 netcp->ndev->stats.rx_dropped++; 596 } 597 } 598 599 static int netcp_process_one_rx_packet(struct netcp_intf *netcp) 600 { 601 unsigned int dma_sz, buf_len, org_buf_len; 602 struct knav_dma_desc *desc, *ndesc; 603 unsigned int pkt_sz = 0, accum_sz; 604 struct netcp_hook_list *rx_hook; 605 dma_addr_t dma_desc, dma_buff; 606 struct netcp_packet p_info; 607 struct sk_buff *skb; 608 void *org_buf_ptr; 609 u32 tmp; 610 611 dma_desc = knav_queue_pop(netcp->rx_queue, &dma_sz); 612 if (!dma_desc) 613 return -1; 614 615 desc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz); 616 if (unlikely(!desc)) { 617 dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n"); 618 return 0; 619 } 620 621 get_pkt_info(&dma_buff, &buf_len, &dma_desc, desc); 622 get_pad_info((u32 *)&org_buf_ptr, &org_buf_len, desc); 623 624 if (unlikely(!org_buf_ptr)) { 625 dev_err(netcp->ndev_dev, "NULL bufptr in desc\n"); 626 goto free_desc; 627 } 628 629 pkt_sz &= KNAV_DMA_DESC_PKT_LEN_MASK; 630 accum_sz = buf_len; 631 dma_unmap_single(netcp->dev, dma_buff, buf_len, DMA_FROM_DEVICE); 632 633 /* Build a new sk_buff for the primary buffer */ 634 skb = build_skb(org_buf_ptr, org_buf_len); 635 if (unlikely(!skb)) { 636 dev_err(netcp->ndev_dev, "build_skb() failed\n"); 637 goto free_desc; 638 } 639 640 /* update data, tail and len */ 641 skb_reserve(skb, NETCP_SOP_OFFSET); 642 __skb_put(skb, buf_len); 643 644 /* Fill in the page fragment list */ 645 while (dma_desc) { 646 struct page *page; 647 648 ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz); 649 if (unlikely(!ndesc)) { 650 dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n"); 651 goto free_desc; 652 } 653 654 get_pkt_info(&dma_buff, &buf_len, &dma_desc, ndesc); 655 get_pad_info((u32 *)&page, &tmp, ndesc); 656 657 if (likely(dma_buff && buf_len && page)) { 658 dma_unmap_page(netcp->dev, dma_buff, PAGE_SIZE, 659 DMA_FROM_DEVICE); 660 } else { 661 dev_err(netcp->ndev_dev, "Bad Rx desc dma_buff(%p), len(%d), page(%p)\n", 662 (void *)dma_buff, buf_len, page); 663 goto free_desc; 664 } 665 666 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, 667 offset_in_page(dma_buff), buf_len, PAGE_SIZE); 668 accum_sz += buf_len; 669 670 /* Free the descriptor */ 671 knav_pool_desc_put(netcp->rx_pool, ndesc); 672 } 673 674 /* Free the primary descriptor */ 675 knav_pool_desc_put(netcp->rx_pool, desc); 676 677 /* check for packet len and warn */ 678 if (unlikely(pkt_sz != accum_sz)) 679 dev_dbg(netcp->ndev_dev, "mismatch in packet size(%d) & sum of fragments(%d)\n", 680 pkt_sz, accum_sz); 681 682 /* Remove ethernet FCS from the packet */ 683 __pskb_trim(skb, skb->len - ETH_FCS_LEN); 684 685 /* Call each of the RX hooks */ 686 p_info.skb = skb; 687 p_info.rxtstamp_complete = false; 688 list_for_each_entry(rx_hook, &netcp->rxhook_list_head, list) { 689 int ret; 690 691 ret = rx_hook->hook_rtn(rx_hook->order, rx_hook->hook_data, 692 &p_info); 693 if (unlikely(ret)) { 694 dev_err(netcp->ndev_dev, "RX hook %d failed: %d\n", 695 rx_hook->order, ret); 696 netcp->ndev->stats.rx_errors++; 697 dev_kfree_skb(skb); 698 return 0; 699 } 700 } 701 702 netcp->ndev->stats.rx_packets++; 703 netcp->ndev->stats.rx_bytes += skb->len; 704 705 /* push skb up the stack */ 706 skb->protocol = eth_type_trans(skb, netcp->ndev); 707 netif_receive_skb(skb); 708 return 0; 709 710 free_desc: 711 netcp_free_rx_desc_chain(netcp, desc); 712 netcp->ndev->stats.rx_errors++; 713 return 0; 714 } 715 716 static int netcp_process_rx_packets(struct netcp_intf *netcp, 717 unsigned int budget) 718 { 719 int i; 720 721 for (i = 0; (i < budget) && !netcp_process_one_rx_packet(netcp); i++) 722 ; 723 return i; 724 } 725 726 /* Release descriptors and attached buffers from Rx FDQ */ 727 static void netcp_free_rx_buf(struct netcp_intf *netcp, int fdq) 728 { 729 struct knav_dma_desc *desc; 730 unsigned int buf_len, dma_sz; 731 dma_addr_t dma; 732 void *buf_ptr; 733 u32 tmp; 734 735 /* Allocate descriptor */ 736 while ((dma = knav_queue_pop(netcp->rx_fdq[fdq], &dma_sz))) { 737 desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz); 738 if (unlikely(!desc)) { 739 dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n"); 740 continue; 741 } 742 743 get_org_pkt_info(&dma, &buf_len, desc); 744 get_pad_info((u32 *)&buf_ptr, &tmp, desc); 745 746 if (unlikely(!dma)) { 747 dev_err(netcp->ndev_dev, "NULL orig_buff in desc\n"); 748 knav_pool_desc_put(netcp->rx_pool, desc); 749 continue; 750 } 751 752 if (unlikely(!buf_ptr)) { 753 dev_err(netcp->ndev_dev, "NULL bufptr in desc\n"); 754 knav_pool_desc_put(netcp->rx_pool, desc); 755 continue; 756 } 757 758 if (fdq == 0) { 759 dma_unmap_single(netcp->dev, dma, buf_len, 760 DMA_FROM_DEVICE); 761 netcp_frag_free((buf_len <= PAGE_SIZE), buf_ptr); 762 } else { 763 dma_unmap_page(netcp->dev, dma, buf_len, 764 DMA_FROM_DEVICE); 765 __free_page(buf_ptr); 766 } 767 768 knav_pool_desc_put(netcp->rx_pool, desc); 769 } 770 } 771 772 static void netcp_rxpool_free(struct netcp_intf *netcp) 773 { 774 int i; 775 776 for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && 777 !IS_ERR_OR_NULL(netcp->rx_fdq[i]); i++) 778 netcp_free_rx_buf(netcp, i); 779 780 if (knav_pool_count(netcp->rx_pool) != netcp->rx_pool_size) 781 dev_err(netcp->ndev_dev, "Lost Rx (%d) descriptors\n", 782 netcp->rx_pool_size - knav_pool_count(netcp->rx_pool)); 783 784 knav_pool_destroy(netcp->rx_pool); 785 netcp->rx_pool = NULL; 786 } 787 788 static void netcp_allocate_rx_buf(struct netcp_intf *netcp, int fdq) 789 { 790 struct knav_dma_desc *hwdesc; 791 unsigned int buf_len, dma_sz; 792 u32 desc_info, pkt_info; 793 struct page *page; 794 dma_addr_t dma; 795 void *bufptr; 796 u32 pad[2]; 797 798 /* Allocate descriptor */ 799 hwdesc = knav_pool_desc_get(netcp->rx_pool); 800 if (IS_ERR_OR_NULL(hwdesc)) { 801 dev_dbg(netcp->ndev_dev, "out of rx pool desc\n"); 802 return; 803 } 804 805 if (likely(fdq == 0)) { 806 unsigned int primary_buf_len; 807 /* Allocate a primary receive queue entry */ 808 buf_len = NETCP_PACKET_SIZE + NETCP_SOP_OFFSET; 809 primary_buf_len = SKB_DATA_ALIGN(buf_len) + 810 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 811 812 bufptr = netdev_alloc_frag(primary_buf_len); 813 pad[1] = primary_buf_len; 814 815 if (unlikely(!bufptr)) { 816 dev_warn_ratelimited(netcp->ndev_dev, 817 "Primary RX buffer alloc failed\n"); 818 goto fail; 819 } 820 dma = dma_map_single(netcp->dev, bufptr, buf_len, 821 DMA_TO_DEVICE); 822 if (unlikely(dma_mapping_error(netcp->dev, dma))) 823 goto fail; 824 825 pad[0] = (u32)bufptr; 826 827 } else { 828 /* Allocate a secondary receive queue entry */ 829 page = alloc_page(GFP_ATOMIC | GFP_DMA | __GFP_COLD); 830 if (unlikely(!page)) { 831 dev_warn_ratelimited(netcp->ndev_dev, "Secondary page alloc failed\n"); 832 goto fail; 833 } 834 buf_len = PAGE_SIZE; 835 dma = dma_map_page(netcp->dev, page, 0, buf_len, DMA_TO_DEVICE); 836 pad[0] = (u32)page; 837 pad[1] = 0; 838 } 839 840 desc_info = KNAV_DMA_DESC_PS_INFO_IN_DESC; 841 desc_info |= buf_len & KNAV_DMA_DESC_PKT_LEN_MASK; 842 pkt_info = KNAV_DMA_DESC_HAS_EPIB; 843 pkt_info |= KNAV_DMA_NUM_PS_WORDS << KNAV_DMA_DESC_PSLEN_SHIFT; 844 pkt_info |= (netcp->rx_queue_id & KNAV_DMA_DESC_RETQ_MASK) << 845 KNAV_DMA_DESC_RETQ_SHIFT; 846 set_org_pkt_info(dma, buf_len, hwdesc); 847 set_pad_info(pad[0], pad[1], hwdesc); 848 set_desc_info(desc_info, pkt_info, hwdesc); 849 850 /* Push to FDQs */ 851 knav_pool_desc_map(netcp->rx_pool, hwdesc, sizeof(*hwdesc), &dma, 852 &dma_sz); 853 knav_queue_push(netcp->rx_fdq[fdq], dma, sizeof(*hwdesc), 0); 854 return; 855 856 fail: 857 knav_pool_desc_put(netcp->rx_pool, hwdesc); 858 } 859 860 /* Refill Rx FDQ with descriptors & attached buffers */ 861 static void netcp_rxpool_refill(struct netcp_intf *netcp) 862 { 863 u32 fdq_deficit[KNAV_DMA_FDQ_PER_CHAN] = {0}; 864 int i; 865 866 /* Calculate the FDQ deficit and refill */ 867 for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_fdq[i]; i++) { 868 fdq_deficit[i] = netcp->rx_queue_depths[i] - 869 knav_queue_get_count(netcp->rx_fdq[i]); 870 871 while (fdq_deficit[i]--) 872 netcp_allocate_rx_buf(netcp, i); 873 } /* end for fdqs */ 874 } 875 876 /* NAPI poll */ 877 static int netcp_rx_poll(struct napi_struct *napi, int budget) 878 { 879 struct netcp_intf *netcp = container_of(napi, struct netcp_intf, 880 rx_napi); 881 unsigned int packets; 882 883 packets = netcp_process_rx_packets(netcp, budget); 884 885 if (packets < budget) { 886 napi_complete(&netcp->rx_napi); 887 knav_queue_enable_notify(netcp->rx_queue); 888 } 889 890 netcp_rxpool_refill(netcp); 891 return packets; 892 } 893 894 static void netcp_rx_notify(void *arg) 895 { 896 struct netcp_intf *netcp = arg; 897 898 knav_queue_disable_notify(netcp->rx_queue); 899 napi_schedule(&netcp->rx_napi); 900 } 901 902 static void netcp_free_tx_desc_chain(struct netcp_intf *netcp, 903 struct knav_dma_desc *desc, 904 unsigned int desc_sz) 905 { 906 struct knav_dma_desc *ndesc = desc; 907 dma_addr_t dma_desc, dma_buf; 908 unsigned int buf_len; 909 910 while (ndesc) { 911 get_pkt_info(&dma_buf, &buf_len, &dma_desc, ndesc); 912 913 if (dma_buf && buf_len) 914 dma_unmap_single(netcp->dev, dma_buf, buf_len, 915 DMA_TO_DEVICE); 916 else 917 dev_warn(netcp->ndev_dev, "bad Tx desc buf(%p), len(%d)\n", 918 (void *)dma_buf, buf_len); 919 920 knav_pool_desc_put(netcp->tx_pool, ndesc); 921 ndesc = NULL; 922 if (dma_desc) { 923 ndesc = knav_pool_desc_unmap(netcp->tx_pool, dma_desc, 924 desc_sz); 925 if (!ndesc) 926 dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n"); 927 } 928 } 929 } 930 931 static int netcp_process_tx_compl_packets(struct netcp_intf *netcp, 932 unsigned int budget) 933 { 934 struct knav_dma_desc *desc; 935 struct sk_buff *skb; 936 unsigned int dma_sz; 937 dma_addr_t dma; 938 int pkts = 0; 939 u32 tmp; 940 941 while (budget--) { 942 dma = knav_queue_pop(netcp->tx_compl_q, &dma_sz); 943 if (!dma) 944 break; 945 desc = knav_pool_desc_unmap(netcp->tx_pool, dma, dma_sz); 946 if (unlikely(!desc)) { 947 dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n"); 948 netcp->ndev->stats.tx_errors++; 949 continue; 950 } 951 952 get_pad_info((u32 *)&skb, &tmp, desc); 953 netcp_free_tx_desc_chain(netcp, desc, dma_sz); 954 if (!skb) { 955 dev_err(netcp->ndev_dev, "No skb in Tx desc\n"); 956 netcp->ndev->stats.tx_errors++; 957 continue; 958 } 959 960 if (netif_subqueue_stopped(netcp->ndev, skb) && 961 netif_running(netcp->ndev) && 962 (knav_pool_count(netcp->tx_pool) > 963 netcp->tx_resume_threshold)) { 964 u16 subqueue = skb_get_queue_mapping(skb); 965 966 netif_wake_subqueue(netcp->ndev, subqueue); 967 } 968 969 netcp->ndev->stats.tx_packets++; 970 netcp->ndev->stats.tx_bytes += skb->len; 971 dev_kfree_skb(skb); 972 pkts++; 973 } 974 return pkts; 975 } 976 977 static int netcp_tx_poll(struct napi_struct *napi, int budget) 978 { 979 int packets; 980 struct netcp_intf *netcp = container_of(napi, struct netcp_intf, 981 tx_napi); 982 983 packets = netcp_process_tx_compl_packets(netcp, budget); 984 if (packets < budget) { 985 napi_complete(&netcp->tx_napi); 986 knav_queue_enable_notify(netcp->tx_compl_q); 987 } 988 989 return packets; 990 } 991 992 static void netcp_tx_notify(void *arg) 993 { 994 struct netcp_intf *netcp = arg; 995 996 knav_queue_disable_notify(netcp->tx_compl_q); 997 napi_schedule(&netcp->tx_napi); 998 } 999 1000 static struct knav_dma_desc* 1001 netcp_tx_map_skb(struct sk_buff *skb, struct netcp_intf *netcp) 1002 { 1003 struct knav_dma_desc *desc, *ndesc, *pdesc; 1004 unsigned int pkt_len = skb_headlen(skb); 1005 struct device *dev = netcp->dev; 1006 dma_addr_t dma_addr; 1007 unsigned int dma_sz; 1008 int i; 1009 1010 /* Map the linear buffer */ 1011 dma_addr = dma_map_single(dev, skb->data, pkt_len, DMA_TO_DEVICE); 1012 if (unlikely(dma_mapping_error(dev, dma_addr))) { 1013 dev_err(netcp->ndev_dev, "Failed to map skb buffer\n"); 1014 return NULL; 1015 } 1016 1017 desc = knav_pool_desc_get(netcp->tx_pool); 1018 if (unlikely(IS_ERR_OR_NULL(desc))) { 1019 dev_err(netcp->ndev_dev, "out of TX desc\n"); 1020 dma_unmap_single(dev, dma_addr, pkt_len, DMA_TO_DEVICE); 1021 return NULL; 1022 } 1023 1024 set_pkt_info(dma_addr, pkt_len, 0, desc); 1025 if (skb_is_nonlinear(skb)) { 1026 prefetchw(skb_shinfo(skb)); 1027 } else { 1028 desc->next_desc = 0; 1029 goto upd_pkt_len; 1030 } 1031 1032 pdesc = desc; 1033 1034 /* Handle the case where skb is fragmented in pages */ 1035 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1036 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1037 struct page *page = skb_frag_page(frag); 1038 u32 page_offset = frag->page_offset; 1039 u32 buf_len = skb_frag_size(frag); 1040 dma_addr_t desc_dma; 1041 u32 pkt_info; 1042 1043 dma_addr = dma_map_page(dev, page, page_offset, buf_len, 1044 DMA_TO_DEVICE); 1045 if (unlikely(!dma_addr)) { 1046 dev_err(netcp->ndev_dev, "Failed to map skb page\n"); 1047 goto free_descs; 1048 } 1049 1050 ndesc = knav_pool_desc_get(netcp->tx_pool); 1051 if (unlikely(IS_ERR_OR_NULL(ndesc))) { 1052 dev_err(netcp->ndev_dev, "out of TX desc for frags\n"); 1053 dma_unmap_page(dev, dma_addr, buf_len, DMA_TO_DEVICE); 1054 goto free_descs; 1055 } 1056 1057 desc_dma = knav_pool_desc_virt_to_dma(netcp->tx_pool, 1058 (void *)ndesc); 1059 pkt_info = 1060 (netcp->tx_compl_qid & KNAV_DMA_DESC_RETQ_MASK) << 1061 KNAV_DMA_DESC_RETQ_SHIFT; 1062 set_pkt_info(dma_addr, buf_len, 0, ndesc); 1063 set_words(&desc_dma, 1, &pdesc->next_desc); 1064 pkt_len += buf_len; 1065 if (pdesc != desc) 1066 knav_pool_desc_map(netcp->tx_pool, pdesc, 1067 sizeof(*pdesc), &desc_dma, &dma_sz); 1068 pdesc = ndesc; 1069 } 1070 if (pdesc != desc) 1071 knav_pool_desc_map(netcp->tx_pool, pdesc, sizeof(*pdesc), 1072 &dma_addr, &dma_sz); 1073 1074 /* frag list based linkage is not supported for now. */ 1075 if (skb_shinfo(skb)->frag_list) { 1076 dev_err_ratelimited(netcp->ndev_dev, "NETIF_F_FRAGLIST not supported\n"); 1077 goto free_descs; 1078 } 1079 1080 upd_pkt_len: 1081 WARN_ON(pkt_len != skb->len); 1082 1083 pkt_len &= KNAV_DMA_DESC_PKT_LEN_MASK; 1084 set_words(&pkt_len, 1, &desc->desc_info); 1085 return desc; 1086 1087 free_descs: 1088 netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc)); 1089 return NULL; 1090 } 1091 1092 static int netcp_tx_submit_skb(struct netcp_intf *netcp, 1093 struct sk_buff *skb, 1094 struct knav_dma_desc *desc) 1095 { 1096 struct netcp_tx_pipe *tx_pipe = NULL; 1097 struct netcp_hook_list *tx_hook; 1098 struct netcp_packet p_info; 1099 unsigned int dma_sz; 1100 dma_addr_t dma; 1101 u32 tmp = 0; 1102 int ret = 0; 1103 1104 p_info.netcp = netcp; 1105 p_info.skb = skb; 1106 p_info.tx_pipe = NULL; 1107 p_info.psdata_len = 0; 1108 p_info.ts_context = NULL; 1109 p_info.txtstamp_complete = NULL; 1110 p_info.epib = desc->epib; 1111 p_info.psdata = desc->psdata; 1112 memset(p_info.epib, 0, KNAV_DMA_NUM_EPIB_WORDS * sizeof(u32)); 1113 1114 /* Find out where to inject the packet for transmission */ 1115 list_for_each_entry(tx_hook, &netcp->txhook_list_head, list) { 1116 ret = tx_hook->hook_rtn(tx_hook->order, tx_hook->hook_data, 1117 &p_info); 1118 if (unlikely(ret != 0)) { 1119 dev_err(netcp->ndev_dev, "TX hook %d rejected the packet with reason(%d)\n", 1120 tx_hook->order, ret); 1121 ret = (ret < 0) ? ret : NETDEV_TX_OK; 1122 goto out; 1123 } 1124 } 1125 1126 /* Make sure some TX hook claimed the packet */ 1127 tx_pipe = p_info.tx_pipe; 1128 if (!tx_pipe) { 1129 dev_err(netcp->ndev_dev, "No TX hook claimed the packet!\n"); 1130 ret = -ENXIO; 1131 goto out; 1132 } 1133 1134 /* update descriptor */ 1135 if (p_info.psdata_len) { 1136 u32 *psdata = p_info.psdata; 1137 1138 memmove(p_info.psdata, p_info.psdata + p_info.psdata_len, 1139 p_info.psdata_len); 1140 set_words(psdata, p_info.psdata_len, psdata); 1141 tmp |= (p_info.psdata_len & KNAV_DMA_DESC_PSLEN_MASK) << 1142 KNAV_DMA_DESC_PSLEN_SHIFT; 1143 } 1144 1145 tmp |= KNAV_DMA_DESC_HAS_EPIB | 1146 ((netcp->tx_compl_qid & KNAV_DMA_DESC_RETQ_MASK) << 1147 KNAV_DMA_DESC_RETQ_SHIFT); 1148 1149 if (!(tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO)) { 1150 tmp |= ((tx_pipe->switch_to_port & KNAV_DMA_DESC_PSFLAG_MASK) << 1151 KNAV_DMA_DESC_PSFLAG_SHIFT); 1152 } 1153 1154 set_words(&tmp, 1, &desc->packet_info); 1155 set_words((u32 *)&skb, 1, &desc->pad[0]); 1156 1157 if (tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO) { 1158 tmp = tx_pipe->switch_to_port; 1159 set_words((u32 *)&tmp, 1, &desc->tag_info); 1160 } 1161 1162 /* submit packet descriptor */ 1163 ret = knav_pool_desc_map(netcp->tx_pool, desc, sizeof(*desc), &dma, 1164 &dma_sz); 1165 if (unlikely(ret)) { 1166 dev_err(netcp->ndev_dev, "%s() failed to map desc\n", __func__); 1167 ret = -ENOMEM; 1168 goto out; 1169 } 1170 skb_tx_timestamp(skb); 1171 knav_queue_push(tx_pipe->dma_queue, dma, dma_sz, 0); 1172 1173 out: 1174 return ret; 1175 } 1176 1177 /* Submit the packet */ 1178 static int netcp_ndo_start_xmit(struct sk_buff *skb, struct net_device *ndev) 1179 { 1180 struct netcp_intf *netcp = netdev_priv(ndev); 1181 int subqueue = skb_get_queue_mapping(skb); 1182 struct knav_dma_desc *desc; 1183 int desc_count, ret = 0; 1184 1185 if (unlikely(skb->len <= 0)) { 1186 dev_kfree_skb(skb); 1187 return NETDEV_TX_OK; 1188 } 1189 1190 if (unlikely(skb->len < NETCP_MIN_PACKET_SIZE)) { 1191 ret = skb_padto(skb, NETCP_MIN_PACKET_SIZE); 1192 if (ret < 0) { 1193 /* If we get here, the skb has already been dropped */ 1194 dev_warn(netcp->ndev_dev, "padding failed (%d), packet dropped\n", 1195 ret); 1196 ndev->stats.tx_dropped++; 1197 return ret; 1198 } 1199 skb->len = NETCP_MIN_PACKET_SIZE; 1200 } 1201 1202 desc = netcp_tx_map_skb(skb, netcp); 1203 if (unlikely(!desc)) { 1204 netif_stop_subqueue(ndev, subqueue); 1205 ret = -ENOBUFS; 1206 goto drop; 1207 } 1208 1209 ret = netcp_tx_submit_skb(netcp, skb, desc); 1210 if (ret) 1211 goto drop; 1212 1213 ndev->trans_start = jiffies; 1214 1215 /* Check Tx pool count & stop subqueue if needed */ 1216 desc_count = knav_pool_count(netcp->tx_pool); 1217 if (desc_count < netcp->tx_pause_threshold) { 1218 dev_dbg(netcp->ndev_dev, "pausing tx, count(%d)\n", desc_count); 1219 netif_stop_subqueue(ndev, subqueue); 1220 } 1221 return NETDEV_TX_OK; 1222 1223 drop: 1224 ndev->stats.tx_dropped++; 1225 if (desc) 1226 netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc)); 1227 dev_kfree_skb(skb); 1228 return ret; 1229 } 1230 1231 int netcp_txpipe_close(struct netcp_tx_pipe *tx_pipe) 1232 { 1233 if (tx_pipe->dma_channel) { 1234 knav_dma_close_channel(tx_pipe->dma_channel); 1235 tx_pipe->dma_channel = NULL; 1236 } 1237 return 0; 1238 } 1239 EXPORT_SYMBOL_GPL(netcp_txpipe_close); 1240 1241 int netcp_txpipe_open(struct netcp_tx_pipe *tx_pipe) 1242 { 1243 struct device *dev = tx_pipe->netcp_device->device; 1244 struct knav_dma_cfg config; 1245 int ret = 0; 1246 u8 name[16]; 1247 1248 memset(&config, 0, sizeof(config)); 1249 config.direction = DMA_MEM_TO_DEV; 1250 config.u.tx.filt_einfo = false; 1251 config.u.tx.filt_pswords = false; 1252 config.u.tx.priority = DMA_PRIO_MED_L; 1253 1254 tx_pipe->dma_channel = knav_dma_open_channel(dev, 1255 tx_pipe->dma_chan_name, &config); 1256 if (IS_ERR_OR_NULL(tx_pipe->dma_channel)) { 1257 dev_err(dev, "failed opening tx chan(%s)\n", 1258 tx_pipe->dma_chan_name); 1259 goto err; 1260 } 1261 1262 snprintf(name, sizeof(name), "tx-pipe-%s", dev_name(dev)); 1263 tx_pipe->dma_queue = knav_queue_open(name, tx_pipe->dma_queue_id, 1264 KNAV_QUEUE_SHARED); 1265 if (IS_ERR(tx_pipe->dma_queue)) { 1266 dev_err(dev, "Could not open DMA queue for channel \"%s\": %d\n", 1267 name, ret); 1268 ret = PTR_ERR(tx_pipe->dma_queue); 1269 goto err; 1270 } 1271 1272 dev_dbg(dev, "opened tx pipe %s\n", name); 1273 return 0; 1274 1275 err: 1276 if (!IS_ERR_OR_NULL(tx_pipe->dma_channel)) 1277 knav_dma_close_channel(tx_pipe->dma_channel); 1278 tx_pipe->dma_channel = NULL; 1279 return ret; 1280 } 1281 EXPORT_SYMBOL_GPL(netcp_txpipe_open); 1282 1283 int netcp_txpipe_init(struct netcp_tx_pipe *tx_pipe, 1284 struct netcp_device *netcp_device, 1285 const char *dma_chan_name, unsigned int dma_queue_id) 1286 { 1287 memset(tx_pipe, 0, sizeof(*tx_pipe)); 1288 tx_pipe->netcp_device = netcp_device; 1289 tx_pipe->dma_chan_name = dma_chan_name; 1290 tx_pipe->dma_queue_id = dma_queue_id; 1291 return 0; 1292 } 1293 EXPORT_SYMBOL_GPL(netcp_txpipe_init); 1294 1295 static struct netcp_addr *netcp_addr_find(struct netcp_intf *netcp, 1296 const u8 *addr, 1297 enum netcp_addr_type type) 1298 { 1299 struct netcp_addr *naddr; 1300 1301 list_for_each_entry(naddr, &netcp->addr_list, node) { 1302 if (naddr->type != type) 1303 continue; 1304 if (addr && memcmp(addr, naddr->addr, ETH_ALEN)) 1305 continue; 1306 return naddr; 1307 } 1308 1309 return NULL; 1310 } 1311 1312 static struct netcp_addr *netcp_addr_add(struct netcp_intf *netcp, 1313 const u8 *addr, 1314 enum netcp_addr_type type) 1315 { 1316 struct netcp_addr *naddr; 1317 1318 naddr = devm_kmalloc(netcp->dev, sizeof(*naddr), GFP_ATOMIC); 1319 if (!naddr) 1320 return NULL; 1321 1322 naddr->type = type; 1323 naddr->flags = 0; 1324 naddr->netcp = netcp; 1325 if (addr) 1326 ether_addr_copy(naddr->addr, addr); 1327 else 1328 eth_zero_addr(naddr->addr); 1329 list_add_tail(&naddr->node, &netcp->addr_list); 1330 1331 return naddr; 1332 } 1333 1334 static void netcp_addr_del(struct netcp_intf *netcp, struct netcp_addr *naddr) 1335 { 1336 list_del(&naddr->node); 1337 devm_kfree(netcp->dev, naddr); 1338 } 1339 1340 static void netcp_addr_clear_mark(struct netcp_intf *netcp) 1341 { 1342 struct netcp_addr *naddr; 1343 1344 list_for_each_entry(naddr, &netcp->addr_list, node) 1345 naddr->flags = 0; 1346 } 1347 1348 static void netcp_addr_add_mark(struct netcp_intf *netcp, const u8 *addr, 1349 enum netcp_addr_type type) 1350 { 1351 struct netcp_addr *naddr; 1352 1353 naddr = netcp_addr_find(netcp, addr, type); 1354 if (naddr) { 1355 naddr->flags |= ADDR_VALID; 1356 return; 1357 } 1358 1359 naddr = netcp_addr_add(netcp, addr, type); 1360 if (!WARN_ON(!naddr)) 1361 naddr->flags |= ADDR_NEW; 1362 } 1363 1364 static void netcp_addr_sweep_del(struct netcp_intf *netcp) 1365 { 1366 struct netcp_addr *naddr, *tmp; 1367 struct netcp_intf_modpriv *priv; 1368 struct netcp_module *module; 1369 int error; 1370 1371 list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) { 1372 if (naddr->flags & (ADDR_VALID | ADDR_NEW)) 1373 continue; 1374 dev_dbg(netcp->ndev_dev, "deleting address %pM, type %x\n", 1375 naddr->addr, naddr->type); 1376 mutex_lock(&netcp_modules_lock); 1377 for_each_module(netcp, priv) { 1378 module = priv->netcp_module; 1379 if (!module->del_addr) 1380 continue; 1381 error = module->del_addr(priv->module_priv, 1382 naddr); 1383 WARN_ON(error); 1384 } 1385 mutex_unlock(&netcp_modules_lock); 1386 netcp_addr_del(netcp, naddr); 1387 } 1388 } 1389 1390 static void netcp_addr_sweep_add(struct netcp_intf *netcp) 1391 { 1392 struct netcp_addr *naddr, *tmp; 1393 struct netcp_intf_modpriv *priv; 1394 struct netcp_module *module; 1395 int error; 1396 1397 list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) { 1398 if (!(naddr->flags & ADDR_NEW)) 1399 continue; 1400 dev_dbg(netcp->ndev_dev, "adding address %pM, type %x\n", 1401 naddr->addr, naddr->type); 1402 mutex_lock(&netcp_modules_lock); 1403 for_each_module(netcp, priv) { 1404 module = priv->netcp_module; 1405 if (!module->add_addr) 1406 continue; 1407 error = module->add_addr(priv->module_priv, naddr); 1408 WARN_ON(error); 1409 } 1410 mutex_unlock(&netcp_modules_lock); 1411 } 1412 } 1413 1414 static void netcp_set_rx_mode(struct net_device *ndev) 1415 { 1416 struct netcp_intf *netcp = netdev_priv(ndev); 1417 struct netdev_hw_addr *ndev_addr; 1418 bool promisc; 1419 1420 promisc = (ndev->flags & IFF_PROMISC || 1421 ndev->flags & IFF_ALLMULTI || 1422 netdev_mc_count(ndev) > NETCP_MAX_MCAST_ADDR); 1423 1424 /* first clear all marks */ 1425 netcp_addr_clear_mark(netcp); 1426 1427 /* next add new entries, mark existing ones */ 1428 netcp_addr_add_mark(netcp, ndev->broadcast, ADDR_BCAST); 1429 for_each_dev_addr(ndev, ndev_addr) 1430 netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_DEV); 1431 netdev_for_each_uc_addr(ndev_addr, ndev) 1432 netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_UCAST); 1433 netdev_for_each_mc_addr(ndev_addr, ndev) 1434 netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_MCAST); 1435 1436 if (promisc) 1437 netcp_addr_add_mark(netcp, NULL, ADDR_ANY); 1438 1439 /* finally sweep and callout into modules */ 1440 netcp_addr_sweep_del(netcp); 1441 netcp_addr_sweep_add(netcp); 1442 } 1443 1444 static void netcp_free_navigator_resources(struct netcp_intf *netcp) 1445 { 1446 int i; 1447 1448 if (netcp->rx_channel) { 1449 knav_dma_close_channel(netcp->rx_channel); 1450 netcp->rx_channel = NULL; 1451 } 1452 1453 if (!IS_ERR_OR_NULL(netcp->rx_pool)) 1454 netcp_rxpool_free(netcp); 1455 1456 if (!IS_ERR_OR_NULL(netcp->rx_queue)) { 1457 knav_queue_close(netcp->rx_queue); 1458 netcp->rx_queue = NULL; 1459 } 1460 1461 for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && 1462 !IS_ERR_OR_NULL(netcp->rx_fdq[i]) ; ++i) { 1463 knav_queue_close(netcp->rx_fdq[i]); 1464 netcp->rx_fdq[i] = NULL; 1465 } 1466 1467 if (!IS_ERR_OR_NULL(netcp->tx_compl_q)) { 1468 knav_queue_close(netcp->tx_compl_q); 1469 netcp->tx_compl_q = NULL; 1470 } 1471 1472 if (!IS_ERR_OR_NULL(netcp->tx_pool)) { 1473 knav_pool_destroy(netcp->tx_pool); 1474 netcp->tx_pool = NULL; 1475 } 1476 } 1477 1478 static int netcp_setup_navigator_resources(struct net_device *ndev) 1479 { 1480 struct netcp_intf *netcp = netdev_priv(ndev); 1481 struct knav_queue_notify_config notify_cfg; 1482 struct knav_dma_cfg config; 1483 u32 last_fdq = 0; 1484 u8 name[16]; 1485 int ret; 1486 int i; 1487 1488 /* Create Rx/Tx descriptor pools */ 1489 snprintf(name, sizeof(name), "rx-pool-%s", ndev->name); 1490 netcp->rx_pool = knav_pool_create(name, netcp->rx_pool_size, 1491 netcp->rx_pool_region_id); 1492 if (IS_ERR_OR_NULL(netcp->rx_pool)) { 1493 dev_err(netcp->ndev_dev, "Couldn't create rx pool\n"); 1494 ret = PTR_ERR(netcp->rx_pool); 1495 goto fail; 1496 } 1497 1498 snprintf(name, sizeof(name), "tx-pool-%s", ndev->name); 1499 netcp->tx_pool = knav_pool_create(name, netcp->tx_pool_size, 1500 netcp->tx_pool_region_id); 1501 if (IS_ERR_OR_NULL(netcp->tx_pool)) { 1502 dev_err(netcp->ndev_dev, "Couldn't create tx pool\n"); 1503 ret = PTR_ERR(netcp->tx_pool); 1504 goto fail; 1505 } 1506 1507 /* open Tx completion queue */ 1508 snprintf(name, sizeof(name), "tx-compl-%s", ndev->name); 1509 netcp->tx_compl_q = knav_queue_open(name, netcp->tx_compl_qid, 0); 1510 if (IS_ERR_OR_NULL(netcp->tx_compl_q)) { 1511 ret = PTR_ERR(netcp->tx_compl_q); 1512 goto fail; 1513 } 1514 netcp->tx_compl_qid = knav_queue_get_id(netcp->tx_compl_q); 1515 1516 /* Set notification for Tx completion */ 1517 notify_cfg.fn = netcp_tx_notify; 1518 notify_cfg.fn_arg = netcp; 1519 ret = knav_queue_device_control(netcp->tx_compl_q, 1520 KNAV_QUEUE_SET_NOTIFIER, 1521 (unsigned long)¬ify_cfg); 1522 if (ret) 1523 goto fail; 1524 1525 knav_queue_disable_notify(netcp->tx_compl_q); 1526 1527 /* open Rx completion queue */ 1528 snprintf(name, sizeof(name), "rx-compl-%s", ndev->name); 1529 netcp->rx_queue = knav_queue_open(name, netcp->rx_queue_id, 0); 1530 if (IS_ERR_OR_NULL(netcp->rx_queue)) { 1531 ret = PTR_ERR(netcp->rx_queue); 1532 goto fail; 1533 } 1534 netcp->rx_queue_id = knav_queue_get_id(netcp->rx_queue); 1535 1536 /* Set notification for Rx completion */ 1537 notify_cfg.fn = netcp_rx_notify; 1538 notify_cfg.fn_arg = netcp; 1539 ret = knav_queue_device_control(netcp->rx_queue, 1540 KNAV_QUEUE_SET_NOTIFIER, 1541 (unsigned long)¬ify_cfg); 1542 if (ret) 1543 goto fail; 1544 1545 knav_queue_disable_notify(netcp->rx_queue); 1546 1547 /* open Rx FDQs */ 1548 for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_queue_depths[i]; 1549 ++i) { 1550 snprintf(name, sizeof(name), "rx-fdq-%s-%d", ndev->name, i); 1551 netcp->rx_fdq[i] = knav_queue_open(name, KNAV_QUEUE_GP, 0); 1552 if (IS_ERR_OR_NULL(netcp->rx_fdq[i])) { 1553 ret = PTR_ERR(netcp->rx_fdq[i]); 1554 goto fail; 1555 } 1556 } 1557 1558 memset(&config, 0, sizeof(config)); 1559 config.direction = DMA_DEV_TO_MEM; 1560 config.u.rx.einfo_present = true; 1561 config.u.rx.psinfo_present = true; 1562 config.u.rx.err_mode = DMA_DROP; 1563 config.u.rx.desc_type = DMA_DESC_HOST; 1564 config.u.rx.psinfo_at_sop = false; 1565 config.u.rx.sop_offset = NETCP_SOP_OFFSET; 1566 config.u.rx.dst_q = netcp->rx_queue_id; 1567 config.u.rx.thresh = DMA_THRESH_NONE; 1568 1569 for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN; ++i) { 1570 if (netcp->rx_fdq[i]) 1571 last_fdq = knav_queue_get_id(netcp->rx_fdq[i]); 1572 config.u.rx.fdq[i] = last_fdq; 1573 } 1574 1575 netcp->rx_channel = knav_dma_open_channel(netcp->netcp_device->device, 1576 netcp->dma_chan_name, &config); 1577 if (IS_ERR_OR_NULL(netcp->rx_channel)) { 1578 dev_err(netcp->ndev_dev, "failed opening rx chan(%s\n", 1579 netcp->dma_chan_name); 1580 goto fail; 1581 } 1582 1583 dev_dbg(netcp->ndev_dev, "opened RX channel: %p\n", netcp->rx_channel); 1584 return 0; 1585 1586 fail: 1587 netcp_free_navigator_resources(netcp); 1588 return ret; 1589 } 1590 1591 /* Open the device */ 1592 static int netcp_ndo_open(struct net_device *ndev) 1593 { 1594 struct netcp_intf *netcp = netdev_priv(ndev); 1595 struct netcp_intf_modpriv *intf_modpriv; 1596 struct netcp_module *module; 1597 int ret; 1598 1599 netif_carrier_off(ndev); 1600 ret = netcp_setup_navigator_resources(ndev); 1601 if (ret) { 1602 dev_err(netcp->ndev_dev, "Failed to setup navigator resources\n"); 1603 goto fail; 1604 } 1605 1606 mutex_lock(&netcp_modules_lock); 1607 for_each_module(netcp, intf_modpriv) { 1608 module = intf_modpriv->netcp_module; 1609 if (module->open) { 1610 ret = module->open(intf_modpriv->module_priv, ndev); 1611 if (ret != 0) { 1612 dev_err(netcp->ndev_dev, "module open failed\n"); 1613 goto fail_open; 1614 } 1615 } 1616 } 1617 mutex_unlock(&netcp_modules_lock); 1618 1619 napi_enable(&netcp->rx_napi); 1620 napi_enable(&netcp->tx_napi); 1621 knav_queue_enable_notify(netcp->tx_compl_q); 1622 knav_queue_enable_notify(netcp->rx_queue); 1623 netcp_rxpool_refill(netcp); 1624 netif_tx_wake_all_queues(ndev); 1625 dev_dbg(netcp->ndev_dev, "netcp device %s opened\n", ndev->name); 1626 return 0; 1627 1628 fail_open: 1629 for_each_module(netcp, intf_modpriv) { 1630 module = intf_modpriv->netcp_module; 1631 if (module->close) 1632 module->close(intf_modpriv->module_priv, ndev); 1633 } 1634 mutex_unlock(&netcp_modules_lock); 1635 1636 fail: 1637 netcp_free_navigator_resources(netcp); 1638 return ret; 1639 } 1640 1641 /* Close the device */ 1642 static int netcp_ndo_stop(struct net_device *ndev) 1643 { 1644 struct netcp_intf *netcp = netdev_priv(ndev); 1645 struct netcp_intf_modpriv *intf_modpriv; 1646 struct netcp_module *module; 1647 int err = 0; 1648 1649 netif_tx_stop_all_queues(ndev); 1650 netif_carrier_off(ndev); 1651 netcp_addr_clear_mark(netcp); 1652 netcp_addr_sweep_del(netcp); 1653 knav_queue_disable_notify(netcp->rx_queue); 1654 knav_queue_disable_notify(netcp->tx_compl_q); 1655 napi_disable(&netcp->rx_napi); 1656 napi_disable(&netcp->tx_napi); 1657 1658 mutex_lock(&netcp_modules_lock); 1659 for_each_module(netcp, intf_modpriv) { 1660 module = intf_modpriv->netcp_module; 1661 if (module->close) { 1662 err = module->close(intf_modpriv->module_priv, ndev); 1663 if (err != 0) 1664 dev_err(netcp->ndev_dev, "Close failed\n"); 1665 } 1666 } 1667 mutex_unlock(&netcp_modules_lock); 1668 1669 /* Recycle Rx descriptors from completion queue */ 1670 netcp_empty_rx_queue(netcp); 1671 1672 /* Recycle Tx descriptors from completion queue */ 1673 netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size); 1674 1675 if (knav_pool_count(netcp->tx_pool) != netcp->tx_pool_size) 1676 dev_err(netcp->ndev_dev, "Lost (%d) Tx descs\n", 1677 netcp->tx_pool_size - knav_pool_count(netcp->tx_pool)); 1678 1679 netcp_free_navigator_resources(netcp); 1680 dev_dbg(netcp->ndev_dev, "netcp device %s stopped\n", ndev->name); 1681 return 0; 1682 } 1683 1684 static int netcp_ndo_ioctl(struct net_device *ndev, 1685 struct ifreq *req, int cmd) 1686 { 1687 struct netcp_intf *netcp = netdev_priv(ndev); 1688 struct netcp_intf_modpriv *intf_modpriv; 1689 struct netcp_module *module; 1690 int ret = -1, err = -EOPNOTSUPP; 1691 1692 if (!netif_running(ndev)) 1693 return -EINVAL; 1694 1695 mutex_lock(&netcp_modules_lock); 1696 for_each_module(netcp, intf_modpriv) { 1697 module = intf_modpriv->netcp_module; 1698 if (!module->ioctl) 1699 continue; 1700 1701 err = module->ioctl(intf_modpriv->module_priv, req, cmd); 1702 if ((err < 0) && (err != -EOPNOTSUPP)) { 1703 ret = err; 1704 goto out; 1705 } 1706 if (err == 0) 1707 ret = err; 1708 } 1709 1710 out: 1711 mutex_unlock(&netcp_modules_lock); 1712 return (ret == 0) ? 0 : err; 1713 } 1714 1715 static int netcp_ndo_change_mtu(struct net_device *ndev, int new_mtu) 1716 { 1717 struct netcp_intf *netcp = netdev_priv(ndev); 1718 1719 /* MTU < 68 is an error for IPv4 traffic */ 1720 if ((new_mtu < 68) || 1721 (new_mtu > (NETCP_MAX_FRAME_SIZE - ETH_HLEN - ETH_FCS_LEN))) { 1722 dev_err(netcp->ndev_dev, "Invalid mtu size = %d\n", new_mtu); 1723 return -EINVAL; 1724 } 1725 1726 ndev->mtu = new_mtu; 1727 return 0; 1728 } 1729 1730 static void netcp_ndo_tx_timeout(struct net_device *ndev) 1731 { 1732 struct netcp_intf *netcp = netdev_priv(ndev); 1733 unsigned int descs = knav_pool_count(netcp->tx_pool); 1734 1735 dev_err(netcp->ndev_dev, "transmit timed out tx descs(%d)\n", descs); 1736 netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size); 1737 ndev->trans_start = jiffies; 1738 netif_tx_wake_all_queues(ndev); 1739 } 1740 1741 static int netcp_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid) 1742 { 1743 struct netcp_intf *netcp = netdev_priv(ndev); 1744 struct netcp_intf_modpriv *intf_modpriv; 1745 struct netcp_module *module; 1746 int err = 0; 1747 1748 dev_dbg(netcp->ndev_dev, "adding rx vlan id: %d\n", vid); 1749 1750 mutex_lock(&netcp_modules_lock); 1751 for_each_module(netcp, intf_modpriv) { 1752 module = intf_modpriv->netcp_module; 1753 if ((module->add_vid) && (vid != 0)) { 1754 err = module->add_vid(intf_modpriv->module_priv, vid); 1755 if (err != 0) { 1756 dev_err(netcp->ndev_dev, "Could not add vlan id = %d\n", 1757 vid); 1758 break; 1759 } 1760 } 1761 } 1762 mutex_unlock(&netcp_modules_lock); 1763 return err; 1764 } 1765 1766 static int netcp_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid) 1767 { 1768 struct netcp_intf *netcp = netdev_priv(ndev); 1769 struct netcp_intf_modpriv *intf_modpriv; 1770 struct netcp_module *module; 1771 int err = 0; 1772 1773 dev_dbg(netcp->ndev_dev, "removing rx vlan id: %d\n", vid); 1774 1775 mutex_lock(&netcp_modules_lock); 1776 for_each_module(netcp, intf_modpriv) { 1777 module = intf_modpriv->netcp_module; 1778 if (module->del_vid) { 1779 err = module->del_vid(intf_modpriv->module_priv, vid); 1780 if (err != 0) { 1781 dev_err(netcp->ndev_dev, "Could not delete vlan id = %d\n", 1782 vid); 1783 break; 1784 } 1785 } 1786 } 1787 mutex_unlock(&netcp_modules_lock); 1788 return err; 1789 } 1790 1791 static u16 netcp_select_queue(struct net_device *dev, struct sk_buff *skb, 1792 void *accel_priv, 1793 select_queue_fallback_t fallback) 1794 { 1795 return 0; 1796 } 1797 1798 static int netcp_setup_tc(struct net_device *dev, u8 num_tc) 1799 { 1800 int i; 1801 1802 /* setup tc must be called under rtnl lock */ 1803 ASSERT_RTNL(); 1804 1805 /* Sanity-check the number of traffic classes requested */ 1806 if ((dev->real_num_tx_queues <= 1) || 1807 (dev->real_num_tx_queues < num_tc)) 1808 return -EINVAL; 1809 1810 /* Configure traffic class to queue mappings */ 1811 if (num_tc) { 1812 netdev_set_num_tc(dev, num_tc); 1813 for (i = 0; i < num_tc; i++) 1814 netdev_set_tc_queue(dev, i, 1, i); 1815 } else { 1816 netdev_reset_tc(dev); 1817 } 1818 1819 return 0; 1820 } 1821 1822 static const struct net_device_ops netcp_netdev_ops = { 1823 .ndo_open = netcp_ndo_open, 1824 .ndo_stop = netcp_ndo_stop, 1825 .ndo_start_xmit = netcp_ndo_start_xmit, 1826 .ndo_set_rx_mode = netcp_set_rx_mode, 1827 .ndo_do_ioctl = netcp_ndo_ioctl, 1828 .ndo_change_mtu = netcp_ndo_change_mtu, 1829 .ndo_set_mac_address = eth_mac_addr, 1830 .ndo_validate_addr = eth_validate_addr, 1831 .ndo_vlan_rx_add_vid = netcp_rx_add_vid, 1832 .ndo_vlan_rx_kill_vid = netcp_rx_kill_vid, 1833 .ndo_tx_timeout = netcp_ndo_tx_timeout, 1834 .ndo_select_queue = netcp_select_queue, 1835 .ndo_setup_tc = netcp_setup_tc, 1836 }; 1837 1838 static int netcp_create_interface(struct netcp_device *netcp_device, 1839 struct device_node *node_interface) 1840 { 1841 struct device *dev = netcp_device->device; 1842 struct device_node *node = dev->of_node; 1843 struct netcp_intf *netcp; 1844 struct net_device *ndev; 1845 resource_size_t size; 1846 struct resource res; 1847 void __iomem *efuse = NULL; 1848 u32 efuse_mac = 0; 1849 const void *mac_addr; 1850 u8 efuse_mac_addr[6]; 1851 u32 temp[2]; 1852 int ret = 0; 1853 1854 ndev = alloc_etherdev_mqs(sizeof(*netcp), 1, 1); 1855 if (!ndev) { 1856 dev_err(dev, "Error allocating netdev\n"); 1857 return -ENOMEM; 1858 } 1859 1860 ndev->features |= NETIF_F_SG; 1861 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 1862 ndev->hw_features = ndev->features; 1863 ndev->vlan_features |= NETIF_F_SG; 1864 1865 netcp = netdev_priv(ndev); 1866 spin_lock_init(&netcp->lock); 1867 INIT_LIST_HEAD(&netcp->module_head); 1868 INIT_LIST_HEAD(&netcp->txhook_list_head); 1869 INIT_LIST_HEAD(&netcp->rxhook_list_head); 1870 INIT_LIST_HEAD(&netcp->addr_list); 1871 netcp->netcp_device = netcp_device; 1872 netcp->dev = netcp_device->device; 1873 netcp->ndev = ndev; 1874 netcp->ndev_dev = &ndev->dev; 1875 netcp->msg_enable = netif_msg_init(netcp_debug_level, NETCP_DEBUG); 1876 netcp->tx_pause_threshold = MAX_SKB_FRAGS; 1877 netcp->tx_resume_threshold = netcp->tx_pause_threshold; 1878 netcp->node_interface = node_interface; 1879 1880 ret = of_property_read_u32(node_interface, "efuse-mac", &efuse_mac); 1881 if (efuse_mac) { 1882 if (of_address_to_resource(node, NETCP_EFUSE_REG_INDEX, &res)) { 1883 dev_err(dev, "could not find efuse-mac reg resource\n"); 1884 ret = -ENODEV; 1885 goto quit; 1886 } 1887 size = resource_size(&res); 1888 1889 if (!devm_request_mem_region(dev, res.start, size, 1890 dev_name(dev))) { 1891 dev_err(dev, "could not reserve resource\n"); 1892 ret = -ENOMEM; 1893 goto quit; 1894 } 1895 1896 efuse = devm_ioremap_nocache(dev, res.start, size); 1897 if (!efuse) { 1898 dev_err(dev, "could not map resource\n"); 1899 devm_release_mem_region(dev, res.start, size); 1900 ret = -ENOMEM; 1901 goto quit; 1902 } 1903 1904 emac_arch_get_mac_addr(efuse_mac_addr, efuse); 1905 if (is_valid_ether_addr(efuse_mac_addr)) 1906 ether_addr_copy(ndev->dev_addr, efuse_mac_addr); 1907 else 1908 random_ether_addr(ndev->dev_addr); 1909 1910 devm_iounmap(dev, efuse); 1911 devm_release_mem_region(dev, res.start, size); 1912 } else { 1913 mac_addr = of_get_mac_address(node_interface); 1914 if (mac_addr) 1915 ether_addr_copy(ndev->dev_addr, mac_addr); 1916 else 1917 random_ether_addr(ndev->dev_addr); 1918 } 1919 1920 ret = of_property_read_string(node_interface, "rx-channel", 1921 &netcp->dma_chan_name); 1922 if (ret < 0) { 1923 dev_err(dev, "missing \"rx-channel\" parameter\n"); 1924 ret = -ENODEV; 1925 goto quit; 1926 } 1927 1928 ret = of_property_read_u32(node_interface, "rx-queue", 1929 &netcp->rx_queue_id); 1930 if (ret < 0) { 1931 dev_warn(dev, "missing \"rx-queue\" parameter\n"); 1932 netcp->rx_queue_id = KNAV_QUEUE_QPEND; 1933 } 1934 1935 ret = of_property_read_u32_array(node_interface, "rx-queue-depth", 1936 netcp->rx_queue_depths, 1937 KNAV_DMA_FDQ_PER_CHAN); 1938 if (ret < 0) { 1939 dev_err(dev, "missing \"rx-queue-depth\" parameter\n"); 1940 netcp->rx_queue_depths[0] = 128; 1941 } 1942 1943 ret = of_property_read_u32_array(node_interface, "rx-pool", temp, 2); 1944 if (ret < 0) { 1945 dev_err(dev, "missing \"rx-pool\" parameter\n"); 1946 ret = -ENODEV; 1947 goto quit; 1948 } 1949 netcp->rx_pool_size = temp[0]; 1950 netcp->rx_pool_region_id = temp[1]; 1951 1952 ret = of_property_read_u32_array(node_interface, "tx-pool", temp, 2); 1953 if (ret < 0) { 1954 dev_err(dev, "missing \"tx-pool\" parameter\n"); 1955 ret = -ENODEV; 1956 goto quit; 1957 } 1958 netcp->tx_pool_size = temp[0]; 1959 netcp->tx_pool_region_id = temp[1]; 1960 1961 if (netcp->tx_pool_size < MAX_SKB_FRAGS) { 1962 dev_err(dev, "tx-pool size too small, must be atleast(%ld)\n", 1963 MAX_SKB_FRAGS); 1964 ret = -ENODEV; 1965 goto quit; 1966 } 1967 1968 ret = of_property_read_u32(node_interface, "tx-completion-queue", 1969 &netcp->tx_compl_qid); 1970 if (ret < 0) { 1971 dev_warn(dev, "missing \"tx-completion-queue\" parameter\n"); 1972 netcp->tx_compl_qid = KNAV_QUEUE_QPEND; 1973 } 1974 1975 /* NAPI register */ 1976 netif_napi_add(ndev, &netcp->rx_napi, netcp_rx_poll, NETCP_NAPI_WEIGHT); 1977 netif_napi_add(ndev, &netcp->tx_napi, netcp_tx_poll, NETCP_NAPI_WEIGHT); 1978 1979 /* Register the network device */ 1980 ndev->dev_id = 0; 1981 ndev->watchdog_timeo = NETCP_TX_TIMEOUT; 1982 ndev->netdev_ops = &netcp_netdev_ops; 1983 SET_NETDEV_DEV(ndev, dev); 1984 1985 list_add_tail(&netcp->interface_list, &netcp_device->interface_head); 1986 return 0; 1987 1988 quit: 1989 free_netdev(ndev); 1990 return ret; 1991 } 1992 1993 static void netcp_delete_interface(struct netcp_device *netcp_device, 1994 struct net_device *ndev) 1995 { 1996 struct netcp_intf_modpriv *intf_modpriv, *tmp; 1997 struct netcp_intf *netcp = netdev_priv(ndev); 1998 struct netcp_module *module; 1999 2000 dev_dbg(netcp_device->device, "Removing interface \"%s\"\n", 2001 ndev->name); 2002 2003 /* Notify each of the modules that the interface is going away */ 2004 list_for_each_entry_safe(intf_modpriv, tmp, &netcp->module_head, 2005 intf_list) { 2006 module = intf_modpriv->netcp_module; 2007 dev_dbg(netcp_device->device, "Releasing module \"%s\"\n", 2008 module->name); 2009 if (module->release) 2010 module->release(intf_modpriv->module_priv); 2011 list_del(&intf_modpriv->intf_list); 2012 kfree(intf_modpriv); 2013 } 2014 WARN(!list_empty(&netcp->module_head), "%s interface module list is not empty!\n", 2015 ndev->name); 2016 2017 list_del(&netcp->interface_list); 2018 2019 of_node_put(netcp->node_interface); 2020 unregister_netdev(ndev); 2021 netif_napi_del(&netcp->rx_napi); 2022 free_netdev(ndev); 2023 } 2024 2025 static int netcp_probe(struct platform_device *pdev) 2026 { 2027 struct device_node *node = pdev->dev.of_node; 2028 struct netcp_intf *netcp_intf, *netcp_tmp; 2029 struct device_node *child, *interfaces; 2030 struct netcp_device *netcp_device; 2031 struct device *dev = &pdev->dev; 2032 struct netcp_module *module; 2033 int ret; 2034 2035 if (!node) { 2036 dev_err(dev, "could not find device info\n"); 2037 return -ENODEV; 2038 } 2039 2040 /* Allocate a new NETCP device instance */ 2041 netcp_device = devm_kzalloc(dev, sizeof(*netcp_device), GFP_KERNEL); 2042 if (!netcp_device) 2043 return -ENOMEM; 2044 2045 pm_runtime_enable(&pdev->dev); 2046 ret = pm_runtime_get_sync(&pdev->dev); 2047 if (ret < 0) { 2048 dev_err(dev, "Failed to enable NETCP power-domain\n"); 2049 pm_runtime_disable(&pdev->dev); 2050 return ret; 2051 } 2052 2053 /* Initialize the NETCP device instance */ 2054 INIT_LIST_HEAD(&netcp_device->interface_head); 2055 INIT_LIST_HEAD(&netcp_device->modpriv_head); 2056 netcp_device->device = dev; 2057 platform_set_drvdata(pdev, netcp_device); 2058 2059 /* create interfaces */ 2060 interfaces = of_get_child_by_name(node, "netcp-interfaces"); 2061 if (!interfaces) { 2062 dev_err(dev, "could not find netcp-interfaces node\n"); 2063 ret = -ENODEV; 2064 goto probe_quit; 2065 } 2066 2067 for_each_available_child_of_node(interfaces, child) { 2068 ret = netcp_create_interface(netcp_device, child); 2069 if (ret) { 2070 dev_err(dev, "could not create interface(%s)\n", 2071 child->name); 2072 goto probe_quit_interface; 2073 } 2074 } 2075 2076 /* Add the device instance to the list */ 2077 list_add_tail(&netcp_device->device_list, &netcp_devices); 2078 2079 /* Probe & attach any modules already registered */ 2080 mutex_lock(&netcp_modules_lock); 2081 for_each_netcp_module(module) { 2082 ret = netcp_module_probe(netcp_device, module); 2083 if (ret < 0) 2084 dev_err(dev, "module(%s) probe failed\n", module->name); 2085 } 2086 mutex_unlock(&netcp_modules_lock); 2087 return 0; 2088 2089 probe_quit_interface: 2090 list_for_each_entry_safe(netcp_intf, netcp_tmp, 2091 &netcp_device->interface_head, 2092 interface_list) { 2093 netcp_delete_interface(netcp_device, netcp_intf->ndev); 2094 } 2095 2096 probe_quit: 2097 pm_runtime_put_sync(&pdev->dev); 2098 pm_runtime_disable(&pdev->dev); 2099 platform_set_drvdata(pdev, NULL); 2100 return ret; 2101 } 2102 2103 static int netcp_remove(struct platform_device *pdev) 2104 { 2105 struct netcp_device *netcp_device = platform_get_drvdata(pdev); 2106 struct netcp_intf *netcp_intf, *netcp_tmp; 2107 struct netcp_inst_modpriv *inst_modpriv, *tmp; 2108 struct netcp_module *module; 2109 2110 list_for_each_entry_safe(inst_modpriv, tmp, &netcp_device->modpriv_head, 2111 inst_list) { 2112 module = inst_modpriv->netcp_module; 2113 dev_dbg(&pdev->dev, "Removing module \"%s\"\n", module->name); 2114 module->remove(netcp_device, inst_modpriv->module_priv); 2115 list_del(&inst_modpriv->inst_list); 2116 kfree(inst_modpriv); 2117 } 2118 2119 /* now that all modules are removed, clean up the interfaces */ 2120 list_for_each_entry_safe(netcp_intf, netcp_tmp, 2121 &netcp_device->interface_head, 2122 interface_list) { 2123 netcp_delete_interface(netcp_device, netcp_intf->ndev); 2124 } 2125 2126 WARN(!list_empty(&netcp_device->interface_head), 2127 "%s interface list not empty!\n", pdev->name); 2128 2129 pm_runtime_put_sync(&pdev->dev); 2130 pm_runtime_disable(&pdev->dev); 2131 platform_set_drvdata(pdev, NULL); 2132 return 0; 2133 } 2134 2135 static const struct of_device_id of_match[] = { 2136 { .compatible = "ti,netcp-1.0", }, 2137 {}, 2138 }; 2139 MODULE_DEVICE_TABLE(of, of_match); 2140 2141 static struct platform_driver netcp_driver = { 2142 .driver = { 2143 .name = "netcp-1.0", 2144 .owner = THIS_MODULE, 2145 .of_match_table = of_match, 2146 }, 2147 .probe = netcp_probe, 2148 .remove = netcp_remove, 2149 }; 2150 module_platform_driver(netcp_driver); 2151 2152 MODULE_LICENSE("GPL v2"); 2153 MODULE_DESCRIPTION("TI NETCP driver for Keystone SOCs"); 2154 MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com"); 2155