1 /*
2  * Keystone NetCP Core driver
3  *
4  * Copyright (C) 2014 Texas Instruments Incorporated
5  * Authors:	Sandeep Nair <sandeep_n@ti.com>
6  *		Sandeep Paulraj <s-paulraj@ti.com>
7  *		Cyril Chemparathy <cyril@ti.com>
8  *		Santosh Shilimkar <santosh.shilimkar@ti.com>
9  *		Murali Karicheri <m-karicheri2@ti.com>
10  *		Wingman Kwok <w-kwok2@ti.com>
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License as
14  * published by the Free Software Foundation version 2.
15  *
16  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
17  * kind, whether express or implied; without even the implied warranty
18  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  */
21 
22 #include <linux/io.h>
23 #include <linux/module.h>
24 #include <linux/of_net.h>
25 #include <linux/of_address.h>
26 #include <linux/if_vlan.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/platform_device.h>
29 #include <linux/soc/ti/knav_qmss.h>
30 #include <linux/soc/ti/knav_dma.h>
31 
32 #include "netcp.h"
33 
34 #define NETCP_SOP_OFFSET	(NET_IP_ALIGN + NET_SKB_PAD)
35 #define NETCP_NAPI_WEIGHT	64
36 #define NETCP_TX_TIMEOUT	(5 * HZ)
37 #define NETCP_PACKET_SIZE	(ETH_FRAME_LEN + ETH_FCS_LEN)
38 #define NETCP_MIN_PACKET_SIZE	ETH_ZLEN
39 #define NETCP_MAX_MCAST_ADDR	16
40 
41 #define NETCP_EFUSE_REG_INDEX	0
42 
43 #define NETCP_MOD_PROBE_SKIPPED	1
44 #define NETCP_MOD_PROBE_FAILED	2
45 
46 #define NETCP_DEBUG (NETIF_MSG_HW	| NETIF_MSG_WOL		|	\
47 		    NETIF_MSG_DRV	| NETIF_MSG_LINK	|	\
48 		    NETIF_MSG_IFUP	| NETIF_MSG_INTR	|	\
49 		    NETIF_MSG_PROBE	| NETIF_MSG_TIMER	|	\
50 		    NETIF_MSG_IFDOWN	| NETIF_MSG_RX_ERR	|	\
51 		    NETIF_MSG_TX_ERR	| NETIF_MSG_TX_DONE	|	\
52 		    NETIF_MSG_PKTDATA	| NETIF_MSG_TX_QUEUED	|	\
53 		    NETIF_MSG_RX_STATUS)
54 
55 #define NETCP_EFUSE_ADDR_SWAP	2
56 
57 #define knav_queue_get_id(q)	knav_queue_device_control(q, \
58 				KNAV_QUEUE_GET_ID, (unsigned long)NULL)
59 
60 #define knav_queue_enable_notify(q) knav_queue_device_control(q,	\
61 					KNAV_QUEUE_ENABLE_NOTIFY,	\
62 					(unsigned long)NULL)
63 
64 #define knav_queue_disable_notify(q) knav_queue_device_control(q,	\
65 					KNAV_QUEUE_DISABLE_NOTIFY,	\
66 					(unsigned long)NULL)
67 
68 #define knav_queue_get_count(q)	knav_queue_device_control(q, \
69 				KNAV_QUEUE_GET_COUNT, (unsigned long)NULL)
70 
71 #define for_each_netcp_module(module)			\
72 	list_for_each_entry(module, &netcp_modules, module_list)
73 
74 #define for_each_netcp_device_module(netcp_device, inst_modpriv) \
75 	list_for_each_entry(inst_modpriv, \
76 		&((netcp_device)->modpriv_head), inst_list)
77 
78 #define for_each_module(netcp, intf_modpriv)			\
79 	list_for_each_entry(intf_modpriv, &netcp->module_head, intf_list)
80 
81 /* Module management structures */
82 struct netcp_device {
83 	struct list_head	device_list;
84 	struct list_head	interface_head;
85 	struct list_head	modpriv_head;
86 	struct device		*device;
87 };
88 
89 struct netcp_inst_modpriv {
90 	struct netcp_device	*netcp_device;
91 	struct netcp_module	*netcp_module;
92 	struct list_head	inst_list;
93 	void			*module_priv;
94 };
95 
96 struct netcp_intf_modpriv {
97 	struct netcp_intf	*netcp_priv;
98 	struct netcp_module	*netcp_module;
99 	struct list_head	intf_list;
100 	void			*module_priv;
101 };
102 
103 struct netcp_tx_cb {
104 	void	*ts_context;
105 	void	(*txtstamp)(void *context, struct sk_buff *skb);
106 };
107 
108 static LIST_HEAD(netcp_devices);
109 static LIST_HEAD(netcp_modules);
110 static DEFINE_MUTEX(netcp_modules_lock);
111 
112 static int netcp_debug_level = -1;
113 module_param(netcp_debug_level, int, 0);
114 MODULE_PARM_DESC(netcp_debug_level, "Netcp debug level (NETIF_MSG bits) (0=none,...,16=all)");
115 
116 /* Helper functions - Get/Set */
117 static void get_pkt_info(dma_addr_t *buff, u32 *buff_len, dma_addr_t *ndesc,
118 			 struct knav_dma_desc *desc)
119 {
120 	*buff_len = le32_to_cpu(desc->buff_len);
121 	*buff = le32_to_cpu(desc->buff);
122 	*ndesc = le32_to_cpu(desc->next_desc);
123 }
124 
125 static void get_desc_info(u32 *desc_info, u32 *pkt_info,
126 			  struct knav_dma_desc *desc)
127 {
128 	*desc_info = le32_to_cpu(desc->desc_info);
129 	*pkt_info = le32_to_cpu(desc->packet_info);
130 }
131 
132 static u32 get_sw_data(int index, struct knav_dma_desc *desc)
133 {
134 	/* No Endian conversion needed as this data is untouched by hw */
135 	return desc->sw_data[index];
136 }
137 
138 /* use these macros to get sw data */
139 #define GET_SW_DATA0(desc) get_sw_data(0, desc)
140 #define GET_SW_DATA1(desc) get_sw_data(1, desc)
141 #define GET_SW_DATA2(desc) get_sw_data(2, desc)
142 #define GET_SW_DATA3(desc) get_sw_data(3, desc)
143 
144 static void get_org_pkt_info(dma_addr_t *buff, u32 *buff_len,
145 			     struct knav_dma_desc *desc)
146 {
147 	*buff = le32_to_cpu(desc->orig_buff);
148 	*buff_len = le32_to_cpu(desc->orig_len);
149 }
150 
151 static void get_words(dma_addr_t *words, int num_words, __le32 *desc)
152 {
153 	int i;
154 
155 	for (i = 0; i < num_words; i++)
156 		words[i] = le32_to_cpu(desc[i]);
157 }
158 
159 static void set_pkt_info(dma_addr_t buff, u32 buff_len, u32 ndesc,
160 			 struct knav_dma_desc *desc)
161 {
162 	desc->buff_len = cpu_to_le32(buff_len);
163 	desc->buff = cpu_to_le32(buff);
164 	desc->next_desc = cpu_to_le32(ndesc);
165 }
166 
167 static void set_desc_info(u32 desc_info, u32 pkt_info,
168 			  struct knav_dma_desc *desc)
169 {
170 	desc->desc_info = cpu_to_le32(desc_info);
171 	desc->packet_info = cpu_to_le32(pkt_info);
172 }
173 
174 static void set_sw_data(int index, u32 data, struct knav_dma_desc *desc)
175 {
176 	/* No Endian conversion needed as this data is untouched by hw */
177 	desc->sw_data[index] = data;
178 }
179 
180 /* use these macros to set sw data */
181 #define SET_SW_DATA0(data, desc) set_sw_data(0, data, desc)
182 #define SET_SW_DATA1(data, desc) set_sw_data(1, data, desc)
183 #define SET_SW_DATA2(data, desc) set_sw_data(2, data, desc)
184 #define SET_SW_DATA3(data, desc) set_sw_data(3, data, desc)
185 
186 static void set_org_pkt_info(dma_addr_t buff, u32 buff_len,
187 			     struct knav_dma_desc *desc)
188 {
189 	desc->orig_buff = cpu_to_le32(buff);
190 	desc->orig_len = cpu_to_le32(buff_len);
191 }
192 
193 static void set_words(u32 *words, int num_words, __le32 *desc)
194 {
195 	int i;
196 
197 	for (i = 0; i < num_words; i++)
198 		desc[i] = cpu_to_le32(words[i]);
199 }
200 
201 /* Read the e-fuse value as 32 bit values to be endian independent */
202 static int emac_arch_get_mac_addr(char *x, void __iomem *efuse_mac, u32 swap)
203 {
204 	unsigned int addr0, addr1;
205 
206 	addr1 = readl(efuse_mac + 4);
207 	addr0 = readl(efuse_mac);
208 
209 	switch (swap) {
210 	case NETCP_EFUSE_ADDR_SWAP:
211 		addr0 = addr1;
212 		addr1 = readl(efuse_mac);
213 		break;
214 	default:
215 		break;
216 	}
217 
218 	x[0] = (addr1 & 0x0000ff00) >> 8;
219 	x[1] = addr1 & 0x000000ff;
220 	x[2] = (addr0 & 0xff000000) >> 24;
221 	x[3] = (addr0 & 0x00ff0000) >> 16;
222 	x[4] = (addr0 & 0x0000ff00) >> 8;
223 	x[5] = addr0 & 0x000000ff;
224 
225 	return 0;
226 }
227 
228 /* Module management routines */
229 static int netcp_register_interface(struct netcp_intf *netcp)
230 {
231 	int ret;
232 
233 	ret = register_netdev(netcp->ndev);
234 	if (!ret)
235 		netcp->netdev_registered = true;
236 	return ret;
237 }
238 
239 static int netcp_module_probe(struct netcp_device *netcp_device,
240 			      struct netcp_module *module)
241 {
242 	struct device *dev = netcp_device->device;
243 	struct device_node *devices, *interface, *node = dev->of_node;
244 	struct device_node *child;
245 	struct netcp_inst_modpriv *inst_modpriv;
246 	struct netcp_intf *netcp_intf;
247 	struct netcp_module *tmp;
248 	bool primary_module_registered = false;
249 	int ret;
250 
251 	/* Find this module in the sub-tree for this device */
252 	devices = of_get_child_by_name(node, "netcp-devices");
253 	if (!devices) {
254 		dev_err(dev, "could not find netcp-devices node\n");
255 		return NETCP_MOD_PROBE_SKIPPED;
256 	}
257 
258 	for_each_available_child_of_node(devices, child) {
259 		const char *name;
260 		char node_name[32];
261 
262 		if (of_property_read_string(node, "label", &name) < 0) {
263 			snprintf(node_name, sizeof(node_name), "%pOFn", child);
264 			name = node_name;
265 		}
266 		if (!strcasecmp(module->name, name))
267 			break;
268 	}
269 
270 	of_node_put(devices);
271 	/* If module not used for this device, skip it */
272 	if (!child) {
273 		dev_warn(dev, "module(%s) not used for device\n", module->name);
274 		return NETCP_MOD_PROBE_SKIPPED;
275 	}
276 
277 	inst_modpriv = devm_kzalloc(dev, sizeof(*inst_modpriv), GFP_KERNEL);
278 	if (!inst_modpriv) {
279 		of_node_put(child);
280 		return -ENOMEM;
281 	}
282 
283 	inst_modpriv->netcp_device = netcp_device;
284 	inst_modpriv->netcp_module = module;
285 	list_add_tail(&inst_modpriv->inst_list, &netcp_device->modpriv_head);
286 
287 	ret = module->probe(netcp_device, dev, child,
288 			    &inst_modpriv->module_priv);
289 	of_node_put(child);
290 	if (ret) {
291 		dev_err(dev, "Probe of module(%s) failed with %d\n",
292 			module->name, ret);
293 		list_del(&inst_modpriv->inst_list);
294 		devm_kfree(dev, inst_modpriv);
295 		return NETCP_MOD_PROBE_FAILED;
296 	}
297 
298 	/* Attach modules only if the primary module is probed */
299 	for_each_netcp_module(tmp) {
300 		if (tmp->primary)
301 			primary_module_registered = true;
302 	}
303 
304 	if (!primary_module_registered)
305 		return 0;
306 
307 	/* Attach module to interfaces */
308 	list_for_each_entry(netcp_intf, &netcp_device->interface_head,
309 			    interface_list) {
310 		struct netcp_intf_modpriv *intf_modpriv;
311 
312 		intf_modpriv = devm_kzalloc(dev, sizeof(*intf_modpriv),
313 					    GFP_KERNEL);
314 		if (!intf_modpriv)
315 			return -ENOMEM;
316 
317 		interface = of_parse_phandle(netcp_intf->node_interface,
318 					     module->name, 0);
319 
320 		if (!interface) {
321 			devm_kfree(dev, intf_modpriv);
322 			continue;
323 		}
324 
325 		intf_modpriv->netcp_priv = netcp_intf;
326 		intf_modpriv->netcp_module = module;
327 		list_add_tail(&intf_modpriv->intf_list,
328 			      &netcp_intf->module_head);
329 
330 		ret = module->attach(inst_modpriv->module_priv,
331 				     netcp_intf->ndev, interface,
332 				     &intf_modpriv->module_priv);
333 		of_node_put(interface);
334 		if (ret) {
335 			dev_dbg(dev, "Attach of module %s declined with %d\n",
336 				module->name, ret);
337 			list_del(&intf_modpriv->intf_list);
338 			devm_kfree(dev, intf_modpriv);
339 			continue;
340 		}
341 	}
342 
343 	/* Now register the interface with netdev */
344 	list_for_each_entry(netcp_intf,
345 			    &netcp_device->interface_head,
346 			    interface_list) {
347 		/* If interface not registered then register now */
348 		if (!netcp_intf->netdev_registered) {
349 			ret = netcp_register_interface(netcp_intf);
350 			if (ret)
351 				return -ENODEV;
352 		}
353 	}
354 	return 0;
355 }
356 
357 int netcp_register_module(struct netcp_module *module)
358 {
359 	struct netcp_device *netcp_device;
360 	struct netcp_module *tmp;
361 	int ret;
362 
363 	if (!module->name) {
364 		WARN(1, "error registering netcp module: no name\n");
365 		return -EINVAL;
366 	}
367 
368 	if (!module->probe) {
369 		WARN(1, "error registering netcp module: no probe\n");
370 		return -EINVAL;
371 	}
372 
373 	mutex_lock(&netcp_modules_lock);
374 
375 	for_each_netcp_module(tmp) {
376 		if (!strcasecmp(tmp->name, module->name)) {
377 			mutex_unlock(&netcp_modules_lock);
378 			return -EEXIST;
379 		}
380 	}
381 	list_add_tail(&module->module_list, &netcp_modules);
382 
383 	list_for_each_entry(netcp_device, &netcp_devices, device_list) {
384 		ret = netcp_module_probe(netcp_device, module);
385 		if (ret < 0)
386 			goto fail;
387 	}
388 	mutex_unlock(&netcp_modules_lock);
389 	return 0;
390 
391 fail:
392 	mutex_unlock(&netcp_modules_lock);
393 	netcp_unregister_module(module);
394 	return ret;
395 }
396 EXPORT_SYMBOL_GPL(netcp_register_module);
397 
398 static void netcp_release_module(struct netcp_device *netcp_device,
399 				 struct netcp_module *module)
400 {
401 	struct netcp_inst_modpriv *inst_modpriv, *inst_tmp;
402 	struct netcp_intf *netcp_intf, *netcp_tmp;
403 	struct device *dev = netcp_device->device;
404 
405 	/* Release the module from each interface */
406 	list_for_each_entry_safe(netcp_intf, netcp_tmp,
407 				 &netcp_device->interface_head,
408 				 interface_list) {
409 		struct netcp_intf_modpriv *intf_modpriv, *intf_tmp;
410 
411 		list_for_each_entry_safe(intf_modpriv, intf_tmp,
412 					 &netcp_intf->module_head,
413 					 intf_list) {
414 			if (intf_modpriv->netcp_module == module) {
415 				module->release(intf_modpriv->module_priv);
416 				list_del(&intf_modpriv->intf_list);
417 				devm_kfree(dev, intf_modpriv);
418 				break;
419 			}
420 		}
421 	}
422 
423 	/* Remove the module from each instance */
424 	list_for_each_entry_safe(inst_modpriv, inst_tmp,
425 				 &netcp_device->modpriv_head, inst_list) {
426 		if (inst_modpriv->netcp_module == module) {
427 			module->remove(netcp_device,
428 				       inst_modpriv->module_priv);
429 			list_del(&inst_modpriv->inst_list);
430 			devm_kfree(dev, inst_modpriv);
431 			break;
432 		}
433 	}
434 }
435 
436 void netcp_unregister_module(struct netcp_module *module)
437 {
438 	struct netcp_device *netcp_device;
439 	struct netcp_module *module_tmp;
440 
441 	mutex_lock(&netcp_modules_lock);
442 
443 	list_for_each_entry(netcp_device, &netcp_devices, device_list) {
444 		netcp_release_module(netcp_device, module);
445 	}
446 
447 	/* Remove the module from the module list */
448 	for_each_netcp_module(module_tmp) {
449 		if (module == module_tmp) {
450 			list_del(&module->module_list);
451 			break;
452 		}
453 	}
454 
455 	mutex_unlock(&netcp_modules_lock);
456 }
457 EXPORT_SYMBOL_GPL(netcp_unregister_module);
458 
459 void *netcp_module_get_intf_data(struct netcp_module *module,
460 				 struct netcp_intf *intf)
461 {
462 	struct netcp_intf_modpriv *intf_modpriv;
463 
464 	list_for_each_entry(intf_modpriv, &intf->module_head, intf_list)
465 		if (intf_modpriv->netcp_module == module)
466 			return intf_modpriv->module_priv;
467 	return NULL;
468 }
469 EXPORT_SYMBOL_GPL(netcp_module_get_intf_data);
470 
471 /* Module TX and RX Hook management */
472 struct netcp_hook_list {
473 	struct list_head	 list;
474 	netcp_hook_rtn		*hook_rtn;
475 	void			*hook_data;
476 	int			 order;
477 };
478 
479 int netcp_register_txhook(struct netcp_intf *netcp_priv, int order,
480 			  netcp_hook_rtn *hook_rtn, void *hook_data)
481 {
482 	struct netcp_hook_list *entry;
483 	struct netcp_hook_list *next;
484 	unsigned long flags;
485 
486 	entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL);
487 	if (!entry)
488 		return -ENOMEM;
489 
490 	entry->hook_rtn  = hook_rtn;
491 	entry->hook_data = hook_data;
492 	entry->order     = order;
493 
494 	spin_lock_irqsave(&netcp_priv->lock, flags);
495 	list_for_each_entry(next, &netcp_priv->txhook_list_head, list) {
496 		if (next->order > order)
497 			break;
498 	}
499 	__list_add(&entry->list, next->list.prev, &next->list);
500 	spin_unlock_irqrestore(&netcp_priv->lock, flags);
501 
502 	return 0;
503 }
504 EXPORT_SYMBOL_GPL(netcp_register_txhook);
505 
506 int netcp_unregister_txhook(struct netcp_intf *netcp_priv, int order,
507 			    netcp_hook_rtn *hook_rtn, void *hook_data)
508 {
509 	struct netcp_hook_list *next, *n;
510 	unsigned long flags;
511 
512 	spin_lock_irqsave(&netcp_priv->lock, flags);
513 	list_for_each_entry_safe(next, n, &netcp_priv->txhook_list_head, list) {
514 		if ((next->order     == order) &&
515 		    (next->hook_rtn  == hook_rtn) &&
516 		    (next->hook_data == hook_data)) {
517 			list_del(&next->list);
518 			spin_unlock_irqrestore(&netcp_priv->lock, flags);
519 			devm_kfree(netcp_priv->dev, next);
520 			return 0;
521 		}
522 	}
523 	spin_unlock_irqrestore(&netcp_priv->lock, flags);
524 	return -ENOENT;
525 }
526 EXPORT_SYMBOL_GPL(netcp_unregister_txhook);
527 
528 int netcp_register_rxhook(struct netcp_intf *netcp_priv, int order,
529 			  netcp_hook_rtn *hook_rtn, void *hook_data)
530 {
531 	struct netcp_hook_list *entry;
532 	struct netcp_hook_list *next;
533 	unsigned long flags;
534 
535 	entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL);
536 	if (!entry)
537 		return -ENOMEM;
538 
539 	entry->hook_rtn  = hook_rtn;
540 	entry->hook_data = hook_data;
541 	entry->order     = order;
542 
543 	spin_lock_irqsave(&netcp_priv->lock, flags);
544 	list_for_each_entry(next, &netcp_priv->rxhook_list_head, list) {
545 		if (next->order > order)
546 			break;
547 	}
548 	__list_add(&entry->list, next->list.prev, &next->list);
549 	spin_unlock_irqrestore(&netcp_priv->lock, flags);
550 
551 	return 0;
552 }
553 EXPORT_SYMBOL_GPL(netcp_register_rxhook);
554 
555 int netcp_unregister_rxhook(struct netcp_intf *netcp_priv, int order,
556 			    netcp_hook_rtn *hook_rtn, void *hook_data)
557 {
558 	struct netcp_hook_list *next, *n;
559 	unsigned long flags;
560 
561 	spin_lock_irqsave(&netcp_priv->lock, flags);
562 	list_for_each_entry_safe(next, n, &netcp_priv->rxhook_list_head, list) {
563 		if ((next->order     == order) &&
564 		    (next->hook_rtn  == hook_rtn) &&
565 		    (next->hook_data == hook_data)) {
566 			list_del(&next->list);
567 			spin_unlock_irqrestore(&netcp_priv->lock, flags);
568 			devm_kfree(netcp_priv->dev, next);
569 			return 0;
570 		}
571 	}
572 	spin_unlock_irqrestore(&netcp_priv->lock, flags);
573 
574 	return -ENOENT;
575 }
576 EXPORT_SYMBOL_GPL(netcp_unregister_rxhook);
577 
578 static void netcp_frag_free(bool is_frag, void *ptr)
579 {
580 	if (is_frag)
581 		skb_free_frag(ptr);
582 	else
583 		kfree(ptr);
584 }
585 
586 static void netcp_free_rx_desc_chain(struct netcp_intf *netcp,
587 				     struct knav_dma_desc *desc)
588 {
589 	struct knav_dma_desc *ndesc;
590 	dma_addr_t dma_desc, dma_buf;
591 	unsigned int buf_len, dma_sz = sizeof(*ndesc);
592 	void *buf_ptr;
593 	u32 tmp;
594 
595 	get_words(&dma_desc, 1, &desc->next_desc);
596 
597 	while (dma_desc) {
598 		ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
599 		if (unlikely(!ndesc)) {
600 			dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
601 			break;
602 		}
603 		get_pkt_info(&dma_buf, &tmp, &dma_desc, ndesc);
604 		/* warning!!!! We are retrieving the virtual ptr in the sw_data
605 		 * field as a 32bit value. Will not work on 64bit machines
606 		 */
607 		buf_ptr = (void *)GET_SW_DATA0(ndesc);
608 		buf_len = (int)GET_SW_DATA1(desc);
609 		dma_unmap_page(netcp->dev, dma_buf, PAGE_SIZE, DMA_FROM_DEVICE);
610 		__free_page(buf_ptr);
611 		knav_pool_desc_put(netcp->rx_pool, desc);
612 	}
613 	/* warning!!!! We are retrieving the virtual ptr in the sw_data
614 	 * field as a 32bit value. Will not work on 64bit machines
615 	 */
616 	buf_ptr = (void *)GET_SW_DATA0(desc);
617 	buf_len = (int)GET_SW_DATA1(desc);
618 
619 	if (buf_ptr)
620 		netcp_frag_free(buf_len <= PAGE_SIZE, buf_ptr);
621 	knav_pool_desc_put(netcp->rx_pool, desc);
622 }
623 
624 static void netcp_empty_rx_queue(struct netcp_intf *netcp)
625 {
626 	struct netcp_stats *rx_stats = &netcp->stats;
627 	struct knav_dma_desc *desc;
628 	unsigned int dma_sz;
629 	dma_addr_t dma;
630 
631 	for (; ;) {
632 		dma = knav_queue_pop(netcp->rx_queue, &dma_sz);
633 		if (!dma)
634 			break;
635 
636 		desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz);
637 		if (unlikely(!desc)) {
638 			dev_err(netcp->ndev_dev, "%s: failed to unmap Rx desc\n",
639 				__func__);
640 			rx_stats->rx_errors++;
641 			continue;
642 		}
643 		netcp_free_rx_desc_chain(netcp, desc);
644 		rx_stats->rx_dropped++;
645 	}
646 }
647 
648 static int netcp_process_one_rx_packet(struct netcp_intf *netcp)
649 {
650 	struct netcp_stats *rx_stats = &netcp->stats;
651 	unsigned int dma_sz, buf_len, org_buf_len;
652 	struct knav_dma_desc *desc, *ndesc;
653 	unsigned int pkt_sz = 0, accum_sz;
654 	struct netcp_hook_list *rx_hook;
655 	dma_addr_t dma_desc, dma_buff;
656 	struct netcp_packet p_info;
657 	struct sk_buff *skb;
658 	void *org_buf_ptr;
659 	u32 tmp;
660 
661 	dma_desc = knav_queue_pop(netcp->rx_queue, &dma_sz);
662 	if (!dma_desc)
663 		return -1;
664 
665 	desc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
666 	if (unlikely(!desc)) {
667 		dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
668 		return 0;
669 	}
670 
671 	get_pkt_info(&dma_buff, &buf_len, &dma_desc, desc);
672 	/* warning!!!! We are retrieving the virtual ptr in the sw_data
673 	 * field as a 32bit value. Will not work on 64bit machines
674 	 */
675 	org_buf_ptr = (void *)GET_SW_DATA0(desc);
676 	org_buf_len = (int)GET_SW_DATA1(desc);
677 
678 	if (unlikely(!org_buf_ptr)) {
679 		dev_err(netcp->ndev_dev, "NULL bufptr in desc\n");
680 		goto free_desc;
681 	}
682 
683 	pkt_sz &= KNAV_DMA_DESC_PKT_LEN_MASK;
684 	accum_sz = buf_len;
685 	dma_unmap_single(netcp->dev, dma_buff, buf_len, DMA_FROM_DEVICE);
686 
687 	/* Build a new sk_buff for the primary buffer */
688 	skb = build_skb(org_buf_ptr, org_buf_len);
689 	if (unlikely(!skb)) {
690 		dev_err(netcp->ndev_dev, "build_skb() failed\n");
691 		goto free_desc;
692 	}
693 
694 	/* update data, tail and len */
695 	skb_reserve(skb, NETCP_SOP_OFFSET);
696 	__skb_put(skb, buf_len);
697 
698 	/* Fill in the page fragment list */
699 	while (dma_desc) {
700 		struct page *page;
701 
702 		ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
703 		if (unlikely(!ndesc)) {
704 			dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
705 			goto free_desc;
706 		}
707 
708 		get_pkt_info(&dma_buff, &buf_len, &dma_desc, ndesc);
709 		/* warning!!!! We are retrieving the virtual ptr in the sw_data
710 		 * field as a 32bit value. Will not work on 64bit machines
711 		 */
712 		page = (struct page *)GET_SW_DATA0(ndesc);
713 
714 		if (likely(dma_buff && buf_len && page)) {
715 			dma_unmap_page(netcp->dev, dma_buff, PAGE_SIZE,
716 				       DMA_FROM_DEVICE);
717 		} else {
718 			dev_err(netcp->ndev_dev, "Bad Rx desc dma_buff(%pad), len(%d), page(%p)\n",
719 				&dma_buff, buf_len, page);
720 			goto free_desc;
721 		}
722 
723 		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
724 				offset_in_page(dma_buff), buf_len, PAGE_SIZE);
725 		accum_sz += buf_len;
726 
727 		/* Free the descriptor */
728 		knav_pool_desc_put(netcp->rx_pool, ndesc);
729 	}
730 
731 	/* check for packet len and warn */
732 	if (unlikely(pkt_sz != accum_sz))
733 		dev_dbg(netcp->ndev_dev, "mismatch in packet size(%d) & sum of fragments(%d)\n",
734 			pkt_sz, accum_sz);
735 
736 	/* Newer version of the Ethernet switch can trim the Ethernet FCS
737 	 * from the packet and is indicated in hw_cap. So trim it only for
738 	 * older h/w
739 	 */
740 	if (!(netcp->hw_cap & ETH_SW_CAN_REMOVE_ETH_FCS))
741 		__pskb_trim(skb, skb->len - ETH_FCS_LEN);
742 
743 	/* Call each of the RX hooks */
744 	p_info.skb = skb;
745 	skb->dev = netcp->ndev;
746 	p_info.rxtstamp_complete = false;
747 	get_desc_info(&tmp, &p_info.eflags, desc);
748 	p_info.epib = desc->epib;
749 	p_info.psdata = (u32 __force *)desc->psdata;
750 	p_info.eflags = ((p_info.eflags >> KNAV_DMA_DESC_EFLAGS_SHIFT) &
751 			 KNAV_DMA_DESC_EFLAGS_MASK);
752 	list_for_each_entry(rx_hook, &netcp->rxhook_list_head, list) {
753 		int ret;
754 
755 		ret = rx_hook->hook_rtn(rx_hook->order, rx_hook->hook_data,
756 					&p_info);
757 		if (unlikely(ret)) {
758 			dev_err(netcp->ndev_dev, "RX hook %d failed: %d\n",
759 				rx_hook->order, ret);
760 			/* Free the primary descriptor */
761 			rx_stats->rx_dropped++;
762 			knav_pool_desc_put(netcp->rx_pool, desc);
763 			dev_kfree_skb(skb);
764 			return 0;
765 		}
766 	}
767 	/* Free the primary descriptor */
768 	knav_pool_desc_put(netcp->rx_pool, desc);
769 
770 	u64_stats_update_begin(&rx_stats->syncp_rx);
771 	rx_stats->rx_packets++;
772 	rx_stats->rx_bytes += skb->len;
773 	u64_stats_update_end(&rx_stats->syncp_rx);
774 
775 	/* push skb up the stack */
776 	skb->protocol = eth_type_trans(skb, netcp->ndev);
777 	netif_receive_skb(skb);
778 	return 0;
779 
780 free_desc:
781 	netcp_free_rx_desc_chain(netcp, desc);
782 	rx_stats->rx_errors++;
783 	return 0;
784 }
785 
786 static int netcp_process_rx_packets(struct netcp_intf *netcp,
787 				    unsigned int budget)
788 {
789 	int i;
790 
791 	for (i = 0; (i < budget) && !netcp_process_one_rx_packet(netcp); i++)
792 		;
793 	return i;
794 }
795 
796 /* Release descriptors and attached buffers from Rx FDQ */
797 static void netcp_free_rx_buf(struct netcp_intf *netcp, int fdq)
798 {
799 	struct knav_dma_desc *desc;
800 	unsigned int buf_len, dma_sz;
801 	dma_addr_t dma;
802 	void *buf_ptr;
803 
804 	/* Allocate descriptor */
805 	while ((dma = knav_queue_pop(netcp->rx_fdq[fdq], &dma_sz))) {
806 		desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz);
807 		if (unlikely(!desc)) {
808 			dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
809 			continue;
810 		}
811 
812 		get_org_pkt_info(&dma, &buf_len, desc);
813 		/* warning!!!! We are retrieving the virtual ptr in the sw_data
814 		 * field as a 32bit value. Will not work on 64bit machines
815 		 */
816 		buf_ptr = (void *)GET_SW_DATA0(desc);
817 
818 		if (unlikely(!dma)) {
819 			dev_err(netcp->ndev_dev, "NULL orig_buff in desc\n");
820 			knav_pool_desc_put(netcp->rx_pool, desc);
821 			continue;
822 		}
823 
824 		if (unlikely(!buf_ptr)) {
825 			dev_err(netcp->ndev_dev, "NULL bufptr in desc\n");
826 			knav_pool_desc_put(netcp->rx_pool, desc);
827 			continue;
828 		}
829 
830 		if (fdq == 0) {
831 			dma_unmap_single(netcp->dev, dma, buf_len,
832 					 DMA_FROM_DEVICE);
833 			netcp_frag_free((buf_len <= PAGE_SIZE), buf_ptr);
834 		} else {
835 			dma_unmap_page(netcp->dev, dma, buf_len,
836 				       DMA_FROM_DEVICE);
837 			__free_page(buf_ptr);
838 		}
839 
840 		knav_pool_desc_put(netcp->rx_pool, desc);
841 	}
842 }
843 
844 static void netcp_rxpool_free(struct netcp_intf *netcp)
845 {
846 	int i;
847 
848 	for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN &&
849 	     !IS_ERR_OR_NULL(netcp->rx_fdq[i]); i++)
850 		netcp_free_rx_buf(netcp, i);
851 
852 	if (knav_pool_count(netcp->rx_pool) != netcp->rx_pool_size)
853 		dev_err(netcp->ndev_dev, "Lost Rx (%d) descriptors\n",
854 			netcp->rx_pool_size - knav_pool_count(netcp->rx_pool));
855 
856 	knav_pool_destroy(netcp->rx_pool);
857 	netcp->rx_pool = NULL;
858 }
859 
860 static int netcp_allocate_rx_buf(struct netcp_intf *netcp, int fdq)
861 {
862 	struct knav_dma_desc *hwdesc;
863 	unsigned int buf_len, dma_sz;
864 	u32 desc_info, pkt_info;
865 	struct page *page;
866 	dma_addr_t dma;
867 	void *bufptr;
868 	u32 sw_data[2];
869 
870 	/* Allocate descriptor */
871 	hwdesc = knav_pool_desc_get(netcp->rx_pool);
872 	if (IS_ERR_OR_NULL(hwdesc)) {
873 		dev_dbg(netcp->ndev_dev, "out of rx pool desc\n");
874 		return -ENOMEM;
875 	}
876 
877 	if (likely(fdq == 0)) {
878 		unsigned int primary_buf_len;
879 		/* Allocate a primary receive queue entry */
880 		buf_len = NETCP_PACKET_SIZE + NETCP_SOP_OFFSET;
881 		primary_buf_len = SKB_DATA_ALIGN(buf_len) +
882 				SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
883 
884 		bufptr = netdev_alloc_frag(primary_buf_len);
885 		sw_data[1] = primary_buf_len;
886 
887 		if (unlikely(!bufptr)) {
888 			dev_warn_ratelimited(netcp->ndev_dev,
889 					     "Primary RX buffer alloc failed\n");
890 			goto fail;
891 		}
892 		dma = dma_map_single(netcp->dev, bufptr, buf_len,
893 				     DMA_TO_DEVICE);
894 		if (unlikely(dma_mapping_error(netcp->dev, dma)))
895 			goto fail;
896 
897 		/* warning!!!! We are saving the virtual ptr in the sw_data
898 		 * field as a 32bit value. Will not work on 64bit machines
899 		 */
900 		sw_data[0] = (u32)bufptr;
901 	} else {
902 		/* Allocate a secondary receive queue entry */
903 		page = alloc_page(GFP_ATOMIC | GFP_DMA);
904 		if (unlikely(!page)) {
905 			dev_warn_ratelimited(netcp->ndev_dev, "Secondary page alloc failed\n");
906 			goto fail;
907 		}
908 		buf_len = PAGE_SIZE;
909 		dma = dma_map_page(netcp->dev, page, 0, buf_len, DMA_TO_DEVICE);
910 		/* warning!!!! We are saving the virtual ptr in the sw_data
911 		 * field as a 32bit value. Will not work on 64bit machines
912 		 */
913 		sw_data[0] = (u32)page;
914 		sw_data[1] = 0;
915 	}
916 
917 	desc_info =  KNAV_DMA_DESC_PS_INFO_IN_DESC;
918 	desc_info |= buf_len & KNAV_DMA_DESC_PKT_LEN_MASK;
919 	pkt_info =  KNAV_DMA_DESC_HAS_EPIB;
920 	pkt_info |= KNAV_DMA_NUM_PS_WORDS << KNAV_DMA_DESC_PSLEN_SHIFT;
921 	pkt_info |= (netcp->rx_queue_id & KNAV_DMA_DESC_RETQ_MASK) <<
922 		    KNAV_DMA_DESC_RETQ_SHIFT;
923 	set_org_pkt_info(dma, buf_len, hwdesc);
924 	SET_SW_DATA0(sw_data[0], hwdesc);
925 	SET_SW_DATA1(sw_data[1], hwdesc);
926 	set_desc_info(desc_info, pkt_info, hwdesc);
927 
928 	/* Push to FDQs */
929 	knav_pool_desc_map(netcp->rx_pool, hwdesc, sizeof(*hwdesc), &dma,
930 			   &dma_sz);
931 	knav_queue_push(netcp->rx_fdq[fdq], dma, sizeof(*hwdesc), 0);
932 	return 0;
933 
934 fail:
935 	knav_pool_desc_put(netcp->rx_pool, hwdesc);
936 	return -ENOMEM;
937 }
938 
939 /* Refill Rx FDQ with descriptors & attached buffers */
940 static void netcp_rxpool_refill(struct netcp_intf *netcp)
941 {
942 	u32 fdq_deficit[KNAV_DMA_FDQ_PER_CHAN] = {0};
943 	int i, ret = 0;
944 
945 	/* Calculate the FDQ deficit and refill */
946 	for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_fdq[i]; i++) {
947 		fdq_deficit[i] = netcp->rx_queue_depths[i] -
948 				 knav_queue_get_count(netcp->rx_fdq[i]);
949 
950 		while (fdq_deficit[i]-- && !ret)
951 			ret = netcp_allocate_rx_buf(netcp, i);
952 	} /* end for fdqs */
953 }
954 
955 /* NAPI poll */
956 static int netcp_rx_poll(struct napi_struct *napi, int budget)
957 {
958 	struct netcp_intf *netcp = container_of(napi, struct netcp_intf,
959 						rx_napi);
960 	unsigned int packets;
961 
962 	packets = netcp_process_rx_packets(netcp, budget);
963 
964 	netcp_rxpool_refill(netcp);
965 	if (packets < budget) {
966 		napi_complete_done(&netcp->rx_napi, packets);
967 		knav_queue_enable_notify(netcp->rx_queue);
968 	}
969 
970 	return packets;
971 }
972 
973 static void netcp_rx_notify(void *arg)
974 {
975 	struct netcp_intf *netcp = arg;
976 
977 	knav_queue_disable_notify(netcp->rx_queue);
978 	napi_schedule(&netcp->rx_napi);
979 }
980 
981 static void netcp_free_tx_desc_chain(struct netcp_intf *netcp,
982 				     struct knav_dma_desc *desc,
983 				     unsigned int desc_sz)
984 {
985 	struct knav_dma_desc *ndesc = desc;
986 	dma_addr_t dma_desc, dma_buf;
987 	unsigned int buf_len;
988 
989 	while (ndesc) {
990 		get_pkt_info(&dma_buf, &buf_len, &dma_desc, ndesc);
991 
992 		if (dma_buf && buf_len)
993 			dma_unmap_single(netcp->dev, dma_buf, buf_len,
994 					 DMA_TO_DEVICE);
995 		else
996 			dev_warn(netcp->ndev_dev, "bad Tx desc buf(%pad), len(%d)\n",
997 				 &dma_buf, buf_len);
998 
999 		knav_pool_desc_put(netcp->tx_pool, ndesc);
1000 		ndesc = NULL;
1001 		if (dma_desc) {
1002 			ndesc = knav_pool_desc_unmap(netcp->tx_pool, dma_desc,
1003 						     desc_sz);
1004 			if (!ndesc)
1005 				dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n");
1006 		}
1007 	}
1008 }
1009 
1010 static int netcp_process_tx_compl_packets(struct netcp_intf *netcp,
1011 					  unsigned int budget)
1012 {
1013 	struct netcp_stats *tx_stats = &netcp->stats;
1014 	struct knav_dma_desc *desc;
1015 	struct netcp_tx_cb *tx_cb;
1016 	struct sk_buff *skb;
1017 	unsigned int dma_sz;
1018 	dma_addr_t dma;
1019 	int pkts = 0;
1020 
1021 	while (budget--) {
1022 		dma = knav_queue_pop(netcp->tx_compl_q, &dma_sz);
1023 		if (!dma)
1024 			break;
1025 		desc = knav_pool_desc_unmap(netcp->tx_pool, dma, dma_sz);
1026 		if (unlikely(!desc)) {
1027 			dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n");
1028 			tx_stats->tx_errors++;
1029 			continue;
1030 		}
1031 
1032 		/* warning!!!! We are retrieving the virtual ptr in the sw_data
1033 		 * field as a 32bit value. Will not work on 64bit machines
1034 		 */
1035 		skb = (struct sk_buff *)GET_SW_DATA0(desc);
1036 		netcp_free_tx_desc_chain(netcp, desc, dma_sz);
1037 		if (!skb) {
1038 			dev_err(netcp->ndev_dev, "No skb in Tx desc\n");
1039 			tx_stats->tx_errors++;
1040 			continue;
1041 		}
1042 
1043 		tx_cb = (struct netcp_tx_cb *)skb->cb;
1044 		if (tx_cb->txtstamp)
1045 			tx_cb->txtstamp(tx_cb->ts_context, skb);
1046 
1047 		if (netif_subqueue_stopped(netcp->ndev, skb) &&
1048 		    netif_running(netcp->ndev) &&
1049 		    (knav_pool_count(netcp->tx_pool) >
1050 		    netcp->tx_resume_threshold)) {
1051 			u16 subqueue = skb_get_queue_mapping(skb);
1052 
1053 			netif_wake_subqueue(netcp->ndev, subqueue);
1054 		}
1055 
1056 		u64_stats_update_begin(&tx_stats->syncp_tx);
1057 		tx_stats->tx_packets++;
1058 		tx_stats->tx_bytes += skb->len;
1059 		u64_stats_update_end(&tx_stats->syncp_tx);
1060 		dev_kfree_skb(skb);
1061 		pkts++;
1062 	}
1063 	return pkts;
1064 }
1065 
1066 static int netcp_tx_poll(struct napi_struct *napi, int budget)
1067 {
1068 	int packets;
1069 	struct netcp_intf *netcp = container_of(napi, struct netcp_intf,
1070 						tx_napi);
1071 
1072 	packets = netcp_process_tx_compl_packets(netcp, budget);
1073 	if (packets < budget) {
1074 		napi_complete(&netcp->tx_napi);
1075 		knav_queue_enable_notify(netcp->tx_compl_q);
1076 	}
1077 
1078 	return packets;
1079 }
1080 
1081 static void netcp_tx_notify(void *arg)
1082 {
1083 	struct netcp_intf *netcp = arg;
1084 
1085 	knav_queue_disable_notify(netcp->tx_compl_q);
1086 	napi_schedule(&netcp->tx_napi);
1087 }
1088 
1089 static struct knav_dma_desc*
1090 netcp_tx_map_skb(struct sk_buff *skb, struct netcp_intf *netcp)
1091 {
1092 	struct knav_dma_desc *desc, *ndesc, *pdesc;
1093 	unsigned int pkt_len = skb_headlen(skb);
1094 	struct device *dev = netcp->dev;
1095 	dma_addr_t dma_addr;
1096 	unsigned int dma_sz;
1097 	int i;
1098 
1099 	/* Map the linear buffer */
1100 	dma_addr = dma_map_single(dev, skb->data, pkt_len, DMA_TO_DEVICE);
1101 	if (unlikely(dma_mapping_error(dev, dma_addr))) {
1102 		dev_err(netcp->ndev_dev, "Failed to map skb buffer\n");
1103 		return NULL;
1104 	}
1105 
1106 	desc = knav_pool_desc_get(netcp->tx_pool);
1107 	if (IS_ERR_OR_NULL(desc)) {
1108 		dev_err(netcp->ndev_dev, "out of TX desc\n");
1109 		dma_unmap_single(dev, dma_addr, pkt_len, DMA_TO_DEVICE);
1110 		return NULL;
1111 	}
1112 
1113 	set_pkt_info(dma_addr, pkt_len, 0, desc);
1114 	if (skb_is_nonlinear(skb)) {
1115 		prefetchw(skb_shinfo(skb));
1116 	} else {
1117 		desc->next_desc = 0;
1118 		goto upd_pkt_len;
1119 	}
1120 
1121 	pdesc = desc;
1122 
1123 	/* Handle the case where skb is fragmented in pages */
1124 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1125 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1126 		struct page *page = skb_frag_page(frag);
1127 		u32 page_offset = frag->page_offset;
1128 		u32 buf_len = skb_frag_size(frag);
1129 		dma_addr_t desc_dma;
1130 		u32 desc_dma_32;
1131 
1132 		dma_addr = dma_map_page(dev, page, page_offset, buf_len,
1133 					DMA_TO_DEVICE);
1134 		if (unlikely(!dma_addr)) {
1135 			dev_err(netcp->ndev_dev, "Failed to map skb page\n");
1136 			goto free_descs;
1137 		}
1138 
1139 		ndesc = knav_pool_desc_get(netcp->tx_pool);
1140 		if (IS_ERR_OR_NULL(ndesc)) {
1141 			dev_err(netcp->ndev_dev, "out of TX desc for frags\n");
1142 			dma_unmap_page(dev, dma_addr, buf_len, DMA_TO_DEVICE);
1143 			goto free_descs;
1144 		}
1145 
1146 		desc_dma = knav_pool_desc_virt_to_dma(netcp->tx_pool, ndesc);
1147 		set_pkt_info(dma_addr, buf_len, 0, ndesc);
1148 		desc_dma_32 = (u32)desc_dma;
1149 		set_words(&desc_dma_32, 1, &pdesc->next_desc);
1150 		pkt_len += buf_len;
1151 		if (pdesc != desc)
1152 			knav_pool_desc_map(netcp->tx_pool, pdesc,
1153 					   sizeof(*pdesc), &desc_dma, &dma_sz);
1154 		pdesc = ndesc;
1155 	}
1156 	if (pdesc != desc)
1157 		knav_pool_desc_map(netcp->tx_pool, pdesc, sizeof(*pdesc),
1158 				   &dma_addr, &dma_sz);
1159 
1160 	/* frag list based linkage is not supported for now. */
1161 	if (skb_shinfo(skb)->frag_list) {
1162 		dev_err_ratelimited(netcp->ndev_dev, "NETIF_F_FRAGLIST not supported\n");
1163 		goto free_descs;
1164 	}
1165 
1166 upd_pkt_len:
1167 	WARN_ON(pkt_len != skb->len);
1168 
1169 	pkt_len &= KNAV_DMA_DESC_PKT_LEN_MASK;
1170 	set_words(&pkt_len, 1, &desc->desc_info);
1171 	return desc;
1172 
1173 free_descs:
1174 	netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc));
1175 	return NULL;
1176 }
1177 
1178 static int netcp_tx_submit_skb(struct netcp_intf *netcp,
1179 			       struct sk_buff *skb,
1180 			       struct knav_dma_desc *desc)
1181 {
1182 	struct netcp_tx_pipe *tx_pipe = NULL;
1183 	struct netcp_hook_list *tx_hook;
1184 	struct netcp_packet p_info;
1185 	struct netcp_tx_cb *tx_cb;
1186 	unsigned int dma_sz;
1187 	dma_addr_t dma;
1188 	u32 tmp = 0;
1189 	int ret = 0;
1190 
1191 	p_info.netcp = netcp;
1192 	p_info.skb = skb;
1193 	p_info.tx_pipe = NULL;
1194 	p_info.psdata_len = 0;
1195 	p_info.ts_context = NULL;
1196 	p_info.txtstamp = NULL;
1197 	p_info.epib = desc->epib;
1198 	p_info.psdata = (u32 __force *)desc->psdata;
1199 	memset(p_info.epib, 0, KNAV_DMA_NUM_EPIB_WORDS * sizeof(__le32));
1200 
1201 	/* Find out where to inject the packet for transmission */
1202 	list_for_each_entry(tx_hook, &netcp->txhook_list_head, list) {
1203 		ret = tx_hook->hook_rtn(tx_hook->order, tx_hook->hook_data,
1204 					&p_info);
1205 		if (unlikely(ret != 0)) {
1206 			dev_err(netcp->ndev_dev, "TX hook %d rejected the packet with reason(%d)\n",
1207 				tx_hook->order, ret);
1208 			ret = (ret < 0) ? ret : NETDEV_TX_OK;
1209 			goto out;
1210 		}
1211 	}
1212 
1213 	/* Make sure some TX hook claimed the packet */
1214 	tx_pipe = p_info.tx_pipe;
1215 	if (!tx_pipe) {
1216 		dev_err(netcp->ndev_dev, "No TX hook claimed the packet!\n");
1217 		ret = -ENXIO;
1218 		goto out;
1219 	}
1220 
1221 	tx_cb = (struct netcp_tx_cb *)skb->cb;
1222 	tx_cb->ts_context = p_info.ts_context;
1223 	tx_cb->txtstamp = p_info.txtstamp;
1224 
1225 	/* update descriptor */
1226 	if (p_info.psdata_len) {
1227 		/* psdata points to both native-endian and device-endian data */
1228 		__le32 *psdata = (void __force *)p_info.psdata;
1229 
1230 		set_words((u32 *)psdata +
1231 			  (KNAV_DMA_NUM_PS_WORDS - p_info.psdata_len),
1232 			  p_info.psdata_len, psdata);
1233 		tmp |= (p_info.psdata_len & KNAV_DMA_DESC_PSLEN_MASK) <<
1234 			KNAV_DMA_DESC_PSLEN_SHIFT;
1235 	}
1236 
1237 	tmp |= KNAV_DMA_DESC_HAS_EPIB |
1238 		((netcp->tx_compl_qid & KNAV_DMA_DESC_RETQ_MASK) <<
1239 		KNAV_DMA_DESC_RETQ_SHIFT);
1240 
1241 	if (!(tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO)) {
1242 		tmp |= ((tx_pipe->switch_to_port & KNAV_DMA_DESC_PSFLAG_MASK) <<
1243 			KNAV_DMA_DESC_PSFLAG_SHIFT);
1244 	}
1245 
1246 	set_words(&tmp, 1, &desc->packet_info);
1247 	/* warning!!!! We are saving the virtual ptr in the sw_data
1248 	 * field as a 32bit value. Will not work on 64bit machines
1249 	 */
1250 	SET_SW_DATA0((u32)skb, desc);
1251 
1252 	if (tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO) {
1253 		tmp = tx_pipe->switch_to_port;
1254 		set_words(&tmp, 1, &desc->tag_info);
1255 	}
1256 
1257 	/* submit packet descriptor */
1258 	ret = knav_pool_desc_map(netcp->tx_pool, desc, sizeof(*desc), &dma,
1259 				 &dma_sz);
1260 	if (unlikely(ret)) {
1261 		dev_err(netcp->ndev_dev, "%s() failed to map desc\n", __func__);
1262 		ret = -ENOMEM;
1263 		goto out;
1264 	}
1265 	skb_tx_timestamp(skb);
1266 	knav_queue_push(tx_pipe->dma_queue, dma, dma_sz, 0);
1267 
1268 out:
1269 	return ret;
1270 }
1271 
1272 /* Submit the packet */
1273 static int netcp_ndo_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1274 {
1275 	struct netcp_intf *netcp = netdev_priv(ndev);
1276 	struct netcp_stats *tx_stats = &netcp->stats;
1277 	int subqueue = skb_get_queue_mapping(skb);
1278 	struct knav_dma_desc *desc;
1279 	int desc_count, ret = 0;
1280 
1281 	if (unlikely(skb->len <= 0)) {
1282 		dev_kfree_skb(skb);
1283 		return NETDEV_TX_OK;
1284 	}
1285 
1286 	if (unlikely(skb->len < NETCP_MIN_PACKET_SIZE)) {
1287 		ret = skb_padto(skb, NETCP_MIN_PACKET_SIZE);
1288 		if (ret < 0) {
1289 			/* If we get here, the skb has already been dropped */
1290 			dev_warn(netcp->ndev_dev, "padding failed (%d), packet dropped\n",
1291 				 ret);
1292 			tx_stats->tx_dropped++;
1293 			return ret;
1294 		}
1295 		skb->len = NETCP_MIN_PACKET_SIZE;
1296 	}
1297 
1298 	desc = netcp_tx_map_skb(skb, netcp);
1299 	if (unlikely(!desc)) {
1300 		netif_stop_subqueue(ndev, subqueue);
1301 		ret = -ENOBUFS;
1302 		goto drop;
1303 	}
1304 
1305 	ret = netcp_tx_submit_skb(netcp, skb, desc);
1306 	if (ret)
1307 		goto drop;
1308 
1309 	/* Check Tx pool count & stop subqueue if needed */
1310 	desc_count = knav_pool_count(netcp->tx_pool);
1311 	if (desc_count < netcp->tx_pause_threshold) {
1312 		dev_dbg(netcp->ndev_dev, "pausing tx, count(%d)\n", desc_count);
1313 		netif_stop_subqueue(ndev, subqueue);
1314 	}
1315 	return NETDEV_TX_OK;
1316 
1317 drop:
1318 	tx_stats->tx_dropped++;
1319 	if (desc)
1320 		netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc));
1321 	dev_kfree_skb(skb);
1322 	return ret;
1323 }
1324 
1325 int netcp_txpipe_close(struct netcp_tx_pipe *tx_pipe)
1326 {
1327 	if (tx_pipe->dma_channel) {
1328 		knav_dma_close_channel(tx_pipe->dma_channel);
1329 		tx_pipe->dma_channel = NULL;
1330 	}
1331 	return 0;
1332 }
1333 EXPORT_SYMBOL_GPL(netcp_txpipe_close);
1334 
1335 int netcp_txpipe_open(struct netcp_tx_pipe *tx_pipe)
1336 {
1337 	struct device *dev = tx_pipe->netcp_device->device;
1338 	struct knav_dma_cfg config;
1339 	int ret = 0;
1340 	u8 name[16];
1341 
1342 	memset(&config, 0, sizeof(config));
1343 	config.direction = DMA_MEM_TO_DEV;
1344 	config.u.tx.filt_einfo = false;
1345 	config.u.tx.filt_pswords = false;
1346 	config.u.tx.priority = DMA_PRIO_MED_L;
1347 
1348 	tx_pipe->dma_channel = knav_dma_open_channel(dev,
1349 				tx_pipe->dma_chan_name, &config);
1350 	if (IS_ERR(tx_pipe->dma_channel)) {
1351 		dev_err(dev, "failed opening tx chan(%s)\n",
1352 			tx_pipe->dma_chan_name);
1353 		ret = PTR_ERR(tx_pipe->dma_channel);
1354 		goto err;
1355 	}
1356 
1357 	snprintf(name, sizeof(name), "tx-pipe-%s", dev_name(dev));
1358 	tx_pipe->dma_queue = knav_queue_open(name, tx_pipe->dma_queue_id,
1359 					     KNAV_QUEUE_SHARED);
1360 	if (IS_ERR(tx_pipe->dma_queue)) {
1361 		dev_err(dev, "Could not open DMA queue for channel \"%s\": %d\n",
1362 			name, ret);
1363 		ret = PTR_ERR(tx_pipe->dma_queue);
1364 		goto err;
1365 	}
1366 
1367 	dev_dbg(dev, "opened tx pipe %s\n", name);
1368 	return 0;
1369 
1370 err:
1371 	if (!IS_ERR_OR_NULL(tx_pipe->dma_channel))
1372 		knav_dma_close_channel(tx_pipe->dma_channel);
1373 	tx_pipe->dma_channel = NULL;
1374 	return ret;
1375 }
1376 EXPORT_SYMBOL_GPL(netcp_txpipe_open);
1377 
1378 int netcp_txpipe_init(struct netcp_tx_pipe *tx_pipe,
1379 		      struct netcp_device *netcp_device,
1380 		      const char *dma_chan_name, unsigned int dma_queue_id)
1381 {
1382 	memset(tx_pipe, 0, sizeof(*tx_pipe));
1383 	tx_pipe->netcp_device = netcp_device;
1384 	tx_pipe->dma_chan_name = dma_chan_name;
1385 	tx_pipe->dma_queue_id = dma_queue_id;
1386 	return 0;
1387 }
1388 EXPORT_SYMBOL_GPL(netcp_txpipe_init);
1389 
1390 static struct netcp_addr *netcp_addr_find(struct netcp_intf *netcp,
1391 					  const u8 *addr,
1392 					  enum netcp_addr_type type)
1393 {
1394 	struct netcp_addr *naddr;
1395 
1396 	list_for_each_entry(naddr, &netcp->addr_list, node) {
1397 		if (naddr->type != type)
1398 			continue;
1399 		if (addr && memcmp(addr, naddr->addr, ETH_ALEN))
1400 			continue;
1401 		return naddr;
1402 	}
1403 
1404 	return NULL;
1405 }
1406 
1407 static struct netcp_addr *netcp_addr_add(struct netcp_intf *netcp,
1408 					 const u8 *addr,
1409 					 enum netcp_addr_type type)
1410 {
1411 	struct netcp_addr *naddr;
1412 
1413 	naddr = devm_kmalloc(netcp->dev, sizeof(*naddr), GFP_ATOMIC);
1414 	if (!naddr)
1415 		return NULL;
1416 
1417 	naddr->type = type;
1418 	naddr->flags = 0;
1419 	naddr->netcp = netcp;
1420 	if (addr)
1421 		ether_addr_copy(naddr->addr, addr);
1422 	else
1423 		eth_zero_addr(naddr->addr);
1424 	list_add_tail(&naddr->node, &netcp->addr_list);
1425 
1426 	return naddr;
1427 }
1428 
1429 static void netcp_addr_del(struct netcp_intf *netcp, struct netcp_addr *naddr)
1430 {
1431 	list_del(&naddr->node);
1432 	devm_kfree(netcp->dev, naddr);
1433 }
1434 
1435 static void netcp_addr_clear_mark(struct netcp_intf *netcp)
1436 {
1437 	struct netcp_addr *naddr;
1438 
1439 	list_for_each_entry(naddr, &netcp->addr_list, node)
1440 		naddr->flags = 0;
1441 }
1442 
1443 static void netcp_addr_add_mark(struct netcp_intf *netcp, const u8 *addr,
1444 				enum netcp_addr_type type)
1445 {
1446 	struct netcp_addr *naddr;
1447 
1448 	naddr = netcp_addr_find(netcp, addr, type);
1449 	if (naddr) {
1450 		naddr->flags |= ADDR_VALID;
1451 		return;
1452 	}
1453 
1454 	naddr = netcp_addr_add(netcp, addr, type);
1455 	if (!WARN_ON(!naddr))
1456 		naddr->flags |= ADDR_NEW;
1457 }
1458 
1459 static void netcp_addr_sweep_del(struct netcp_intf *netcp)
1460 {
1461 	struct netcp_addr *naddr, *tmp;
1462 	struct netcp_intf_modpriv *priv;
1463 	struct netcp_module *module;
1464 	int error;
1465 
1466 	list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) {
1467 		if (naddr->flags & (ADDR_VALID | ADDR_NEW))
1468 			continue;
1469 		dev_dbg(netcp->ndev_dev, "deleting address %pM, type %x\n",
1470 			naddr->addr, naddr->type);
1471 		for_each_module(netcp, priv) {
1472 			module = priv->netcp_module;
1473 			if (!module->del_addr)
1474 				continue;
1475 			error = module->del_addr(priv->module_priv,
1476 						 naddr);
1477 			WARN_ON(error);
1478 		}
1479 		netcp_addr_del(netcp, naddr);
1480 	}
1481 }
1482 
1483 static void netcp_addr_sweep_add(struct netcp_intf *netcp)
1484 {
1485 	struct netcp_addr *naddr, *tmp;
1486 	struct netcp_intf_modpriv *priv;
1487 	struct netcp_module *module;
1488 	int error;
1489 
1490 	list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) {
1491 		if (!(naddr->flags & ADDR_NEW))
1492 			continue;
1493 		dev_dbg(netcp->ndev_dev, "adding address %pM, type %x\n",
1494 			naddr->addr, naddr->type);
1495 
1496 		for_each_module(netcp, priv) {
1497 			module = priv->netcp_module;
1498 			if (!module->add_addr)
1499 				continue;
1500 			error = module->add_addr(priv->module_priv, naddr);
1501 			WARN_ON(error);
1502 		}
1503 	}
1504 }
1505 
1506 static int netcp_set_promiscuous(struct netcp_intf *netcp, bool promisc)
1507 {
1508 	struct netcp_intf_modpriv *priv;
1509 	struct netcp_module *module;
1510 	int error;
1511 
1512 	for_each_module(netcp, priv) {
1513 		module = priv->netcp_module;
1514 		if (!module->set_rx_mode)
1515 			continue;
1516 
1517 		error = module->set_rx_mode(priv->module_priv, promisc);
1518 		if (error)
1519 			return error;
1520 	}
1521 	return 0;
1522 }
1523 
1524 static void netcp_set_rx_mode(struct net_device *ndev)
1525 {
1526 	struct netcp_intf *netcp = netdev_priv(ndev);
1527 	struct netdev_hw_addr *ndev_addr;
1528 	bool promisc;
1529 
1530 	promisc = (ndev->flags & IFF_PROMISC ||
1531 		   ndev->flags & IFF_ALLMULTI ||
1532 		   netdev_mc_count(ndev) > NETCP_MAX_MCAST_ADDR);
1533 
1534 	spin_lock(&netcp->lock);
1535 	/* first clear all marks */
1536 	netcp_addr_clear_mark(netcp);
1537 
1538 	/* next add new entries, mark existing ones */
1539 	netcp_addr_add_mark(netcp, ndev->broadcast, ADDR_BCAST);
1540 	for_each_dev_addr(ndev, ndev_addr)
1541 		netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_DEV);
1542 	netdev_for_each_uc_addr(ndev_addr, ndev)
1543 		netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_UCAST);
1544 	netdev_for_each_mc_addr(ndev_addr, ndev)
1545 		netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_MCAST);
1546 
1547 	if (promisc)
1548 		netcp_addr_add_mark(netcp, NULL, ADDR_ANY);
1549 
1550 	/* finally sweep and callout into modules */
1551 	netcp_addr_sweep_del(netcp);
1552 	netcp_addr_sweep_add(netcp);
1553 	netcp_set_promiscuous(netcp, promisc);
1554 	spin_unlock(&netcp->lock);
1555 }
1556 
1557 static void netcp_free_navigator_resources(struct netcp_intf *netcp)
1558 {
1559 	int i;
1560 
1561 	if (netcp->rx_channel) {
1562 		knav_dma_close_channel(netcp->rx_channel);
1563 		netcp->rx_channel = NULL;
1564 	}
1565 
1566 	if (!IS_ERR_OR_NULL(netcp->rx_pool))
1567 		netcp_rxpool_free(netcp);
1568 
1569 	if (!IS_ERR_OR_NULL(netcp->rx_queue)) {
1570 		knav_queue_close(netcp->rx_queue);
1571 		netcp->rx_queue = NULL;
1572 	}
1573 
1574 	for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN &&
1575 	     !IS_ERR_OR_NULL(netcp->rx_fdq[i]) ; ++i) {
1576 		knav_queue_close(netcp->rx_fdq[i]);
1577 		netcp->rx_fdq[i] = NULL;
1578 	}
1579 
1580 	if (!IS_ERR_OR_NULL(netcp->tx_compl_q)) {
1581 		knav_queue_close(netcp->tx_compl_q);
1582 		netcp->tx_compl_q = NULL;
1583 	}
1584 
1585 	if (!IS_ERR_OR_NULL(netcp->tx_pool)) {
1586 		knav_pool_destroy(netcp->tx_pool);
1587 		netcp->tx_pool = NULL;
1588 	}
1589 }
1590 
1591 static int netcp_setup_navigator_resources(struct net_device *ndev)
1592 {
1593 	struct netcp_intf *netcp = netdev_priv(ndev);
1594 	struct knav_queue_notify_config notify_cfg;
1595 	struct knav_dma_cfg config;
1596 	u32 last_fdq = 0;
1597 	u8 name[16];
1598 	int ret;
1599 	int i;
1600 
1601 	/* Create Rx/Tx descriptor pools */
1602 	snprintf(name, sizeof(name), "rx-pool-%s", ndev->name);
1603 	netcp->rx_pool = knav_pool_create(name, netcp->rx_pool_size,
1604 						netcp->rx_pool_region_id);
1605 	if (IS_ERR_OR_NULL(netcp->rx_pool)) {
1606 		dev_err(netcp->ndev_dev, "Couldn't create rx pool\n");
1607 		ret = PTR_ERR(netcp->rx_pool);
1608 		goto fail;
1609 	}
1610 
1611 	snprintf(name, sizeof(name), "tx-pool-%s", ndev->name);
1612 	netcp->tx_pool = knav_pool_create(name, netcp->tx_pool_size,
1613 						netcp->tx_pool_region_id);
1614 	if (IS_ERR_OR_NULL(netcp->tx_pool)) {
1615 		dev_err(netcp->ndev_dev, "Couldn't create tx pool\n");
1616 		ret = PTR_ERR(netcp->tx_pool);
1617 		goto fail;
1618 	}
1619 
1620 	/* open Tx completion queue */
1621 	snprintf(name, sizeof(name), "tx-compl-%s", ndev->name);
1622 	netcp->tx_compl_q = knav_queue_open(name, netcp->tx_compl_qid, 0);
1623 	if (IS_ERR(netcp->tx_compl_q)) {
1624 		ret = PTR_ERR(netcp->tx_compl_q);
1625 		goto fail;
1626 	}
1627 	netcp->tx_compl_qid = knav_queue_get_id(netcp->tx_compl_q);
1628 
1629 	/* Set notification for Tx completion */
1630 	notify_cfg.fn = netcp_tx_notify;
1631 	notify_cfg.fn_arg = netcp;
1632 	ret = knav_queue_device_control(netcp->tx_compl_q,
1633 					KNAV_QUEUE_SET_NOTIFIER,
1634 					(unsigned long)&notify_cfg);
1635 	if (ret)
1636 		goto fail;
1637 
1638 	knav_queue_disable_notify(netcp->tx_compl_q);
1639 
1640 	/* open Rx completion queue */
1641 	snprintf(name, sizeof(name), "rx-compl-%s", ndev->name);
1642 	netcp->rx_queue = knav_queue_open(name, netcp->rx_queue_id, 0);
1643 	if (IS_ERR(netcp->rx_queue)) {
1644 		ret = PTR_ERR(netcp->rx_queue);
1645 		goto fail;
1646 	}
1647 	netcp->rx_queue_id = knav_queue_get_id(netcp->rx_queue);
1648 
1649 	/* Set notification for Rx completion */
1650 	notify_cfg.fn = netcp_rx_notify;
1651 	notify_cfg.fn_arg = netcp;
1652 	ret = knav_queue_device_control(netcp->rx_queue,
1653 					KNAV_QUEUE_SET_NOTIFIER,
1654 					(unsigned long)&notify_cfg);
1655 	if (ret)
1656 		goto fail;
1657 
1658 	knav_queue_disable_notify(netcp->rx_queue);
1659 
1660 	/* open Rx FDQs */
1661 	for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_queue_depths[i];
1662 	     ++i) {
1663 		snprintf(name, sizeof(name), "rx-fdq-%s-%d", ndev->name, i);
1664 		netcp->rx_fdq[i] = knav_queue_open(name, KNAV_QUEUE_GP, 0);
1665 		if (IS_ERR(netcp->rx_fdq[i])) {
1666 			ret = PTR_ERR(netcp->rx_fdq[i]);
1667 			goto fail;
1668 		}
1669 	}
1670 
1671 	memset(&config, 0, sizeof(config));
1672 	config.direction		= DMA_DEV_TO_MEM;
1673 	config.u.rx.einfo_present	= true;
1674 	config.u.rx.psinfo_present	= true;
1675 	config.u.rx.err_mode		= DMA_DROP;
1676 	config.u.rx.desc_type		= DMA_DESC_HOST;
1677 	config.u.rx.psinfo_at_sop	= false;
1678 	config.u.rx.sop_offset		= NETCP_SOP_OFFSET;
1679 	config.u.rx.dst_q		= netcp->rx_queue_id;
1680 	config.u.rx.thresh		= DMA_THRESH_NONE;
1681 
1682 	for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN; ++i) {
1683 		if (netcp->rx_fdq[i])
1684 			last_fdq = knav_queue_get_id(netcp->rx_fdq[i]);
1685 		config.u.rx.fdq[i] = last_fdq;
1686 	}
1687 
1688 	netcp->rx_channel = knav_dma_open_channel(netcp->netcp_device->device,
1689 					netcp->dma_chan_name, &config);
1690 	if (IS_ERR(netcp->rx_channel)) {
1691 		dev_err(netcp->ndev_dev, "failed opening rx chan(%s\n",
1692 			netcp->dma_chan_name);
1693 		ret = PTR_ERR(netcp->rx_channel);
1694 		goto fail;
1695 	}
1696 
1697 	dev_dbg(netcp->ndev_dev, "opened RX channel: %p\n", netcp->rx_channel);
1698 	return 0;
1699 
1700 fail:
1701 	netcp_free_navigator_resources(netcp);
1702 	return ret;
1703 }
1704 
1705 /* Open the device */
1706 static int netcp_ndo_open(struct net_device *ndev)
1707 {
1708 	struct netcp_intf *netcp = netdev_priv(ndev);
1709 	struct netcp_intf_modpriv *intf_modpriv;
1710 	struct netcp_module *module;
1711 	int ret;
1712 
1713 	netif_carrier_off(ndev);
1714 	ret = netcp_setup_navigator_resources(ndev);
1715 	if (ret) {
1716 		dev_err(netcp->ndev_dev, "Failed to setup navigator resources\n");
1717 		goto fail;
1718 	}
1719 
1720 	for_each_module(netcp, intf_modpriv) {
1721 		module = intf_modpriv->netcp_module;
1722 		if (module->open) {
1723 			ret = module->open(intf_modpriv->module_priv, ndev);
1724 			if (ret != 0) {
1725 				dev_err(netcp->ndev_dev, "module open failed\n");
1726 				goto fail_open;
1727 			}
1728 		}
1729 	}
1730 
1731 	napi_enable(&netcp->rx_napi);
1732 	napi_enable(&netcp->tx_napi);
1733 	knav_queue_enable_notify(netcp->tx_compl_q);
1734 	knav_queue_enable_notify(netcp->rx_queue);
1735 	netcp_rxpool_refill(netcp);
1736 	netif_tx_wake_all_queues(ndev);
1737 	dev_dbg(netcp->ndev_dev, "netcp device %s opened\n", ndev->name);
1738 	return 0;
1739 
1740 fail_open:
1741 	for_each_module(netcp, intf_modpriv) {
1742 		module = intf_modpriv->netcp_module;
1743 		if (module->close)
1744 			module->close(intf_modpriv->module_priv, ndev);
1745 	}
1746 
1747 fail:
1748 	netcp_free_navigator_resources(netcp);
1749 	return ret;
1750 }
1751 
1752 /* Close the device */
1753 static int netcp_ndo_stop(struct net_device *ndev)
1754 {
1755 	struct netcp_intf *netcp = netdev_priv(ndev);
1756 	struct netcp_intf_modpriv *intf_modpriv;
1757 	struct netcp_module *module;
1758 	int err = 0;
1759 
1760 	netif_tx_stop_all_queues(ndev);
1761 	netif_carrier_off(ndev);
1762 	netcp_addr_clear_mark(netcp);
1763 	netcp_addr_sweep_del(netcp);
1764 	knav_queue_disable_notify(netcp->rx_queue);
1765 	knav_queue_disable_notify(netcp->tx_compl_q);
1766 	napi_disable(&netcp->rx_napi);
1767 	napi_disable(&netcp->tx_napi);
1768 
1769 	for_each_module(netcp, intf_modpriv) {
1770 		module = intf_modpriv->netcp_module;
1771 		if (module->close) {
1772 			err = module->close(intf_modpriv->module_priv, ndev);
1773 			if (err != 0)
1774 				dev_err(netcp->ndev_dev, "Close failed\n");
1775 		}
1776 	}
1777 
1778 	/* Recycle Rx descriptors from completion queue */
1779 	netcp_empty_rx_queue(netcp);
1780 
1781 	/* Recycle Tx descriptors from completion queue */
1782 	netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size);
1783 
1784 	if (knav_pool_count(netcp->tx_pool) != netcp->tx_pool_size)
1785 		dev_err(netcp->ndev_dev, "Lost (%d) Tx descs\n",
1786 			netcp->tx_pool_size - knav_pool_count(netcp->tx_pool));
1787 
1788 	netcp_free_navigator_resources(netcp);
1789 	dev_dbg(netcp->ndev_dev, "netcp device %s stopped\n", ndev->name);
1790 	return 0;
1791 }
1792 
1793 static int netcp_ndo_ioctl(struct net_device *ndev,
1794 			   struct ifreq *req, int cmd)
1795 {
1796 	struct netcp_intf *netcp = netdev_priv(ndev);
1797 	struct netcp_intf_modpriv *intf_modpriv;
1798 	struct netcp_module *module;
1799 	int ret = -1, err = -EOPNOTSUPP;
1800 
1801 	if (!netif_running(ndev))
1802 		return -EINVAL;
1803 
1804 	for_each_module(netcp, intf_modpriv) {
1805 		module = intf_modpriv->netcp_module;
1806 		if (!module->ioctl)
1807 			continue;
1808 
1809 		err = module->ioctl(intf_modpriv->module_priv, req, cmd);
1810 		if ((err < 0) && (err != -EOPNOTSUPP)) {
1811 			ret = err;
1812 			goto out;
1813 		}
1814 		if (err == 0)
1815 			ret = err;
1816 	}
1817 
1818 out:
1819 	return (ret == 0) ? 0 : err;
1820 }
1821 
1822 static void netcp_ndo_tx_timeout(struct net_device *ndev)
1823 {
1824 	struct netcp_intf *netcp = netdev_priv(ndev);
1825 	unsigned int descs = knav_pool_count(netcp->tx_pool);
1826 
1827 	dev_err(netcp->ndev_dev, "transmit timed out tx descs(%d)\n", descs);
1828 	netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size);
1829 	netif_trans_update(ndev);
1830 	netif_tx_wake_all_queues(ndev);
1831 }
1832 
1833 static int netcp_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
1834 {
1835 	struct netcp_intf *netcp = netdev_priv(ndev);
1836 	struct netcp_intf_modpriv *intf_modpriv;
1837 	struct netcp_module *module;
1838 	unsigned long flags;
1839 	int err = 0;
1840 
1841 	dev_dbg(netcp->ndev_dev, "adding rx vlan id: %d\n", vid);
1842 
1843 	spin_lock_irqsave(&netcp->lock, flags);
1844 	for_each_module(netcp, intf_modpriv) {
1845 		module = intf_modpriv->netcp_module;
1846 		if ((module->add_vid) && (vid != 0)) {
1847 			err = module->add_vid(intf_modpriv->module_priv, vid);
1848 			if (err != 0) {
1849 				dev_err(netcp->ndev_dev, "Could not add vlan id = %d\n",
1850 					vid);
1851 				break;
1852 			}
1853 		}
1854 	}
1855 	spin_unlock_irqrestore(&netcp->lock, flags);
1856 
1857 	return err;
1858 }
1859 
1860 static int netcp_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
1861 {
1862 	struct netcp_intf *netcp = netdev_priv(ndev);
1863 	struct netcp_intf_modpriv *intf_modpriv;
1864 	struct netcp_module *module;
1865 	unsigned long flags;
1866 	int err = 0;
1867 
1868 	dev_dbg(netcp->ndev_dev, "removing rx vlan id: %d\n", vid);
1869 
1870 	spin_lock_irqsave(&netcp->lock, flags);
1871 	for_each_module(netcp, intf_modpriv) {
1872 		module = intf_modpriv->netcp_module;
1873 		if (module->del_vid) {
1874 			err = module->del_vid(intf_modpriv->module_priv, vid);
1875 			if (err != 0) {
1876 				dev_err(netcp->ndev_dev, "Could not delete vlan id = %d\n",
1877 					vid);
1878 				break;
1879 			}
1880 		}
1881 	}
1882 	spin_unlock_irqrestore(&netcp->lock, flags);
1883 	return err;
1884 }
1885 
1886 static int netcp_setup_tc(struct net_device *dev, enum tc_setup_type type,
1887 			  void *type_data)
1888 {
1889 	struct tc_mqprio_qopt *mqprio = type_data;
1890 	u8 num_tc;
1891 	int i;
1892 
1893 	/* setup tc must be called under rtnl lock */
1894 	ASSERT_RTNL();
1895 
1896 	if (type != TC_SETUP_QDISC_MQPRIO)
1897 		return -EOPNOTSUPP;
1898 
1899 	mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
1900 	num_tc = mqprio->num_tc;
1901 
1902 	/* Sanity-check the number of traffic classes requested */
1903 	if ((dev->real_num_tx_queues <= 1) ||
1904 	    (dev->real_num_tx_queues < num_tc))
1905 		return -EINVAL;
1906 
1907 	/* Configure traffic class to queue mappings */
1908 	if (num_tc) {
1909 		netdev_set_num_tc(dev, num_tc);
1910 		for (i = 0; i < num_tc; i++)
1911 			netdev_set_tc_queue(dev, i, 1, i);
1912 	} else {
1913 		netdev_reset_tc(dev);
1914 	}
1915 
1916 	return 0;
1917 }
1918 
1919 static void
1920 netcp_get_stats(struct net_device *ndev, struct rtnl_link_stats64 *stats)
1921 {
1922 	struct netcp_intf *netcp = netdev_priv(ndev);
1923 	struct netcp_stats *p = &netcp->stats;
1924 	u64 rxpackets, rxbytes, txpackets, txbytes;
1925 	unsigned int start;
1926 
1927 	do {
1928 		start = u64_stats_fetch_begin_irq(&p->syncp_rx);
1929 		rxpackets       = p->rx_packets;
1930 		rxbytes         = p->rx_bytes;
1931 	} while (u64_stats_fetch_retry_irq(&p->syncp_rx, start));
1932 
1933 	do {
1934 		start = u64_stats_fetch_begin_irq(&p->syncp_tx);
1935 		txpackets       = p->tx_packets;
1936 		txbytes         = p->tx_bytes;
1937 	} while (u64_stats_fetch_retry_irq(&p->syncp_tx, start));
1938 
1939 	stats->rx_packets = rxpackets;
1940 	stats->rx_bytes = rxbytes;
1941 	stats->tx_packets = txpackets;
1942 	stats->tx_bytes = txbytes;
1943 
1944 	/* The following are stored as 32 bit */
1945 	stats->rx_errors = p->rx_errors;
1946 	stats->rx_dropped = p->rx_dropped;
1947 	stats->tx_dropped = p->tx_dropped;
1948 }
1949 
1950 static const struct net_device_ops netcp_netdev_ops = {
1951 	.ndo_open		= netcp_ndo_open,
1952 	.ndo_stop		= netcp_ndo_stop,
1953 	.ndo_start_xmit		= netcp_ndo_start_xmit,
1954 	.ndo_set_rx_mode	= netcp_set_rx_mode,
1955 	.ndo_do_ioctl           = netcp_ndo_ioctl,
1956 	.ndo_get_stats64        = netcp_get_stats,
1957 	.ndo_set_mac_address	= eth_mac_addr,
1958 	.ndo_validate_addr	= eth_validate_addr,
1959 	.ndo_vlan_rx_add_vid	= netcp_rx_add_vid,
1960 	.ndo_vlan_rx_kill_vid	= netcp_rx_kill_vid,
1961 	.ndo_tx_timeout		= netcp_ndo_tx_timeout,
1962 	.ndo_select_queue	= dev_pick_tx_zero,
1963 	.ndo_setup_tc		= netcp_setup_tc,
1964 };
1965 
1966 static int netcp_create_interface(struct netcp_device *netcp_device,
1967 				  struct device_node *node_interface)
1968 {
1969 	struct device *dev = netcp_device->device;
1970 	struct device_node *node = dev->of_node;
1971 	struct netcp_intf *netcp;
1972 	struct net_device *ndev;
1973 	resource_size_t size;
1974 	struct resource res;
1975 	void __iomem *efuse = NULL;
1976 	u32 efuse_mac = 0;
1977 	const void *mac_addr;
1978 	u8 efuse_mac_addr[6];
1979 	u32 temp[2];
1980 	int ret = 0;
1981 
1982 	ndev = alloc_etherdev_mqs(sizeof(*netcp), 1, 1);
1983 	if (!ndev) {
1984 		dev_err(dev, "Error allocating netdev\n");
1985 		return -ENOMEM;
1986 	}
1987 
1988 	ndev->features |= NETIF_F_SG;
1989 	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
1990 	ndev->hw_features = ndev->features;
1991 	ndev->vlan_features |=  NETIF_F_SG;
1992 
1993 	/* MTU range: 68 - 9486 */
1994 	ndev->min_mtu = ETH_MIN_MTU;
1995 	ndev->max_mtu = NETCP_MAX_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN);
1996 
1997 	netcp = netdev_priv(ndev);
1998 	spin_lock_init(&netcp->lock);
1999 	INIT_LIST_HEAD(&netcp->module_head);
2000 	INIT_LIST_HEAD(&netcp->txhook_list_head);
2001 	INIT_LIST_HEAD(&netcp->rxhook_list_head);
2002 	INIT_LIST_HEAD(&netcp->addr_list);
2003 	u64_stats_init(&netcp->stats.syncp_rx);
2004 	u64_stats_init(&netcp->stats.syncp_tx);
2005 	netcp->netcp_device = netcp_device;
2006 	netcp->dev = netcp_device->device;
2007 	netcp->ndev = ndev;
2008 	netcp->ndev_dev  = &ndev->dev;
2009 	netcp->msg_enable = netif_msg_init(netcp_debug_level, NETCP_DEBUG);
2010 	netcp->tx_pause_threshold = MAX_SKB_FRAGS;
2011 	netcp->tx_resume_threshold = netcp->tx_pause_threshold;
2012 	netcp->node_interface = node_interface;
2013 
2014 	ret = of_property_read_u32(node_interface, "efuse-mac", &efuse_mac);
2015 	if (efuse_mac) {
2016 		if (of_address_to_resource(node, NETCP_EFUSE_REG_INDEX, &res)) {
2017 			dev_err(dev, "could not find efuse-mac reg resource\n");
2018 			ret = -ENODEV;
2019 			goto quit;
2020 		}
2021 		size = resource_size(&res);
2022 
2023 		if (!devm_request_mem_region(dev, res.start, size,
2024 					     dev_name(dev))) {
2025 			dev_err(dev, "could not reserve resource\n");
2026 			ret = -ENOMEM;
2027 			goto quit;
2028 		}
2029 
2030 		efuse = devm_ioremap_nocache(dev, res.start, size);
2031 		if (!efuse) {
2032 			dev_err(dev, "could not map resource\n");
2033 			devm_release_mem_region(dev, res.start, size);
2034 			ret = -ENOMEM;
2035 			goto quit;
2036 		}
2037 
2038 		emac_arch_get_mac_addr(efuse_mac_addr, efuse, efuse_mac);
2039 		if (is_valid_ether_addr(efuse_mac_addr))
2040 			ether_addr_copy(ndev->dev_addr, efuse_mac_addr);
2041 		else
2042 			eth_random_addr(ndev->dev_addr);
2043 
2044 		devm_iounmap(dev, efuse);
2045 		devm_release_mem_region(dev, res.start, size);
2046 	} else {
2047 		mac_addr = of_get_mac_address(node_interface);
2048 		if (mac_addr)
2049 			ether_addr_copy(ndev->dev_addr, mac_addr);
2050 		else
2051 			eth_random_addr(ndev->dev_addr);
2052 	}
2053 
2054 	ret = of_property_read_string(node_interface, "rx-channel",
2055 				      &netcp->dma_chan_name);
2056 	if (ret < 0) {
2057 		dev_err(dev, "missing \"rx-channel\" parameter\n");
2058 		ret = -ENODEV;
2059 		goto quit;
2060 	}
2061 
2062 	ret = of_property_read_u32(node_interface, "rx-queue",
2063 				   &netcp->rx_queue_id);
2064 	if (ret < 0) {
2065 		dev_warn(dev, "missing \"rx-queue\" parameter\n");
2066 		netcp->rx_queue_id = KNAV_QUEUE_QPEND;
2067 	}
2068 
2069 	ret = of_property_read_u32_array(node_interface, "rx-queue-depth",
2070 					 netcp->rx_queue_depths,
2071 					 KNAV_DMA_FDQ_PER_CHAN);
2072 	if (ret < 0) {
2073 		dev_err(dev, "missing \"rx-queue-depth\" parameter\n");
2074 		netcp->rx_queue_depths[0] = 128;
2075 	}
2076 
2077 	ret = of_property_read_u32_array(node_interface, "rx-pool", temp, 2);
2078 	if (ret < 0) {
2079 		dev_err(dev, "missing \"rx-pool\" parameter\n");
2080 		ret = -ENODEV;
2081 		goto quit;
2082 	}
2083 	netcp->rx_pool_size = temp[0];
2084 	netcp->rx_pool_region_id = temp[1];
2085 
2086 	ret = of_property_read_u32_array(node_interface, "tx-pool", temp, 2);
2087 	if (ret < 0) {
2088 		dev_err(dev, "missing \"tx-pool\" parameter\n");
2089 		ret = -ENODEV;
2090 		goto quit;
2091 	}
2092 	netcp->tx_pool_size = temp[0];
2093 	netcp->tx_pool_region_id = temp[1];
2094 
2095 	if (netcp->tx_pool_size < MAX_SKB_FRAGS) {
2096 		dev_err(dev, "tx-pool size too small, must be atleast(%ld)\n",
2097 			MAX_SKB_FRAGS);
2098 		ret = -ENODEV;
2099 		goto quit;
2100 	}
2101 
2102 	ret = of_property_read_u32(node_interface, "tx-completion-queue",
2103 				   &netcp->tx_compl_qid);
2104 	if (ret < 0) {
2105 		dev_warn(dev, "missing \"tx-completion-queue\" parameter\n");
2106 		netcp->tx_compl_qid = KNAV_QUEUE_QPEND;
2107 	}
2108 
2109 	/* NAPI register */
2110 	netif_napi_add(ndev, &netcp->rx_napi, netcp_rx_poll, NETCP_NAPI_WEIGHT);
2111 	netif_tx_napi_add(ndev, &netcp->tx_napi, netcp_tx_poll, NETCP_NAPI_WEIGHT);
2112 
2113 	/* Register the network device */
2114 	ndev->dev_id		= 0;
2115 	ndev->watchdog_timeo	= NETCP_TX_TIMEOUT;
2116 	ndev->netdev_ops	= &netcp_netdev_ops;
2117 	SET_NETDEV_DEV(ndev, dev);
2118 
2119 	list_add_tail(&netcp->interface_list, &netcp_device->interface_head);
2120 	return 0;
2121 
2122 quit:
2123 	free_netdev(ndev);
2124 	return ret;
2125 }
2126 
2127 static void netcp_delete_interface(struct netcp_device *netcp_device,
2128 				   struct net_device *ndev)
2129 {
2130 	struct netcp_intf_modpriv *intf_modpriv, *tmp;
2131 	struct netcp_intf *netcp = netdev_priv(ndev);
2132 	struct netcp_module *module;
2133 
2134 	dev_dbg(netcp_device->device, "Removing interface \"%s\"\n",
2135 		ndev->name);
2136 
2137 	/* Notify each of the modules that the interface is going away */
2138 	list_for_each_entry_safe(intf_modpriv, tmp, &netcp->module_head,
2139 				 intf_list) {
2140 		module = intf_modpriv->netcp_module;
2141 		dev_dbg(netcp_device->device, "Releasing module \"%s\"\n",
2142 			module->name);
2143 		if (module->release)
2144 			module->release(intf_modpriv->module_priv);
2145 		list_del(&intf_modpriv->intf_list);
2146 	}
2147 	WARN(!list_empty(&netcp->module_head), "%s interface module list is not empty!\n",
2148 	     ndev->name);
2149 
2150 	list_del(&netcp->interface_list);
2151 
2152 	of_node_put(netcp->node_interface);
2153 	unregister_netdev(ndev);
2154 	free_netdev(ndev);
2155 }
2156 
2157 static int netcp_probe(struct platform_device *pdev)
2158 {
2159 	struct device_node *node = pdev->dev.of_node;
2160 	struct netcp_intf *netcp_intf, *netcp_tmp;
2161 	struct device_node *child, *interfaces;
2162 	struct netcp_device *netcp_device;
2163 	struct device *dev = &pdev->dev;
2164 	struct netcp_module *module;
2165 	int ret;
2166 
2167 	if (!knav_dma_device_ready() ||
2168 	    !knav_qmss_device_ready())
2169 		return -EPROBE_DEFER;
2170 
2171 	if (!node) {
2172 		dev_err(dev, "could not find device info\n");
2173 		return -ENODEV;
2174 	}
2175 
2176 	/* Allocate a new NETCP device instance */
2177 	netcp_device = devm_kzalloc(dev, sizeof(*netcp_device), GFP_KERNEL);
2178 	if (!netcp_device)
2179 		return -ENOMEM;
2180 
2181 	pm_runtime_enable(&pdev->dev);
2182 	ret = pm_runtime_get_sync(&pdev->dev);
2183 	if (ret < 0) {
2184 		dev_err(dev, "Failed to enable NETCP power-domain\n");
2185 		pm_runtime_disable(&pdev->dev);
2186 		return ret;
2187 	}
2188 
2189 	/* Initialize the NETCP device instance */
2190 	INIT_LIST_HEAD(&netcp_device->interface_head);
2191 	INIT_LIST_HEAD(&netcp_device->modpriv_head);
2192 	netcp_device->device = dev;
2193 	platform_set_drvdata(pdev, netcp_device);
2194 
2195 	/* create interfaces */
2196 	interfaces = of_get_child_by_name(node, "netcp-interfaces");
2197 	if (!interfaces) {
2198 		dev_err(dev, "could not find netcp-interfaces node\n");
2199 		ret = -ENODEV;
2200 		goto probe_quit;
2201 	}
2202 
2203 	for_each_available_child_of_node(interfaces, child) {
2204 		ret = netcp_create_interface(netcp_device, child);
2205 		if (ret) {
2206 			dev_err(dev, "could not create interface(%pOFn)\n",
2207 				child);
2208 			goto probe_quit_interface;
2209 		}
2210 	}
2211 
2212 	of_node_put(interfaces);
2213 
2214 	/* Add the device instance to the list */
2215 	list_add_tail(&netcp_device->device_list, &netcp_devices);
2216 
2217 	/* Probe & attach any modules already registered */
2218 	mutex_lock(&netcp_modules_lock);
2219 	for_each_netcp_module(module) {
2220 		ret = netcp_module_probe(netcp_device, module);
2221 		if (ret < 0)
2222 			dev_err(dev, "module(%s) probe failed\n", module->name);
2223 	}
2224 	mutex_unlock(&netcp_modules_lock);
2225 	return 0;
2226 
2227 probe_quit_interface:
2228 	list_for_each_entry_safe(netcp_intf, netcp_tmp,
2229 				 &netcp_device->interface_head,
2230 				 interface_list) {
2231 		netcp_delete_interface(netcp_device, netcp_intf->ndev);
2232 	}
2233 
2234 	of_node_put(interfaces);
2235 
2236 probe_quit:
2237 	pm_runtime_put_sync(&pdev->dev);
2238 	pm_runtime_disable(&pdev->dev);
2239 	platform_set_drvdata(pdev, NULL);
2240 	return ret;
2241 }
2242 
2243 static int netcp_remove(struct platform_device *pdev)
2244 {
2245 	struct netcp_device *netcp_device = platform_get_drvdata(pdev);
2246 	struct netcp_intf *netcp_intf, *netcp_tmp;
2247 	struct netcp_inst_modpriv *inst_modpriv, *tmp;
2248 	struct netcp_module *module;
2249 
2250 	list_for_each_entry_safe(inst_modpriv, tmp, &netcp_device->modpriv_head,
2251 				 inst_list) {
2252 		module = inst_modpriv->netcp_module;
2253 		dev_dbg(&pdev->dev, "Removing module \"%s\"\n", module->name);
2254 		module->remove(netcp_device, inst_modpriv->module_priv);
2255 		list_del(&inst_modpriv->inst_list);
2256 	}
2257 
2258 	/* now that all modules are removed, clean up the interfaces */
2259 	list_for_each_entry_safe(netcp_intf, netcp_tmp,
2260 				 &netcp_device->interface_head,
2261 				 interface_list) {
2262 		netcp_delete_interface(netcp_device, netcp_intf->ndev);
2263 	}
2264 
2265 	WARN(!list_empty(&netcp_device->interface_head),
2266 	     "%s interface list not empty!\n", pdev->name);
2267 
2268 	pm_runtime_put_sync(&pdev->dev);
2269 	pm_runtime_disable(&pdev->dev);
2270 	platform_set_drvdata(pdev, NULL);
2271 	return 0;
2272 }
2273 
2274 static const struct of_device_id of_match[] = {
2275 	{ .compatible = "ti,netcp-1.0", },
2276 	{},
2277 };
2278 MODULE_DEVICE_TABLE(of, of_match);
2279 
2280 static struct platform_driver netcp_driver = {
2281 	.driver = {
2282 		.name		= "netcp-1.0",
2283 		.of_match_table	= of_match,
2284 	},
2285 	.probe = netcp_probe,
2286 	.remove = netcp_remove,
2287 };
2288 module_platform_driver(netcp_driver);
2289 
2290 MODULE_LICENSE("GPL v2");
2291 MODULE_DESCRIPTION("TI NETCP driver for Keystone SOCs");
2292 MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com");
2293