1 /* 2 * Keystone NetCP Core driver 3 * 4 * Copyright (C) 2014 Texas Instruments Incorporated 5 * Authors: Sandeep Nair <sandeep_n@ti.com> 6 * Sandeep Paulraj <s-paulraj@ti.com> 7 * Cyril Chemparathy <cyril@ti.com> 8 * Santosh Shilimkar <santosh.shilimkar@ti.com> 9 * Murali Karicheri <m-karicheri2@ti.com> 10 * Wingman Kwok <w-kwok2@ti.com> 11 * 12 * This program is free software; you can redistribute it and/or 13 * modify it under the terms of the GNU General Public License as 14 * published by the Free Software Foundation version 2. 15 * 16 * This program is distributed "as is" WITHOUT ANY WARRANTY of any 17 * kind, whether express or implied; without even the implied warranty 18 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 19 * GNU General Public License for more details. 20 */ 21 22 #include <linux/io.h> 23 #include <linux/module.h> 24 #include <linux/of_net.h> 25 #include <linux/of_address.h> 26 #include <linux/if_vlan.h> 27 #include <linux/pm_runtime.h> 28 #include <linux/platform_device.h> 29 #include <linux/soc/ti/knav_qmss.h> 30 #include <linux/soc/ti/knav_dma.h> 31 32 #include "netcp.h" 33 34 #define NETCP_SOP_OFFSET (NET_IP_ALIGN + NET_SKB_PAD) 35 #define NETCP_NAPI_WEIGHT 64 36 #define NETCP_TX_TIMEOUT (5 * HZ) 37 #define NETCP_PACKET_SIZE (ETH_FRAME_LEN + ETH_FCS_LEN) 38 #define NETCP_MIN_PACKET_SIZE ETH_ZLEN 39 #define NETCP_MAX_MCAST_ADDR 16 40 41 #define NETCP_EFUSE_REG_INDEX 0 42 43 #define NETCP_MOD_PROBE_SKIPPED 1 44 #define NETCP_MOD_PROBE_FAILED 2 45 46 #define NETCP_DEBUG (NETIF_MSG_HW | NETIF_MSG_WOL | \ 47 NETIF_MSG_DRV | NETIF_MSG_LINK | \ 48 NETIF_MSG_IFUP | NETIF_MSG_INTR | \ 49 NETIF_MSG_PROBE | NETIF_MSG_TIMER | \ 50 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | \ 51 NETIF_MSG_TX_ERR | NETIF_MSG_TX_DONE | \ 52 NETIF_MSG_PKTDATA | NETIF_MSG_TX_QUEUED | \ 53 NETIF_MSG_RX_STATUS) 54 55 #define NETCP_EFUSE_ADDR_SWAP 2 56 57 #define knav_queue_get_id(q) knav_queue_device_control(q, \ 58 KNAV_QUEUE_GET_ID, (unsigned long)NULL) 59 60 #define knav_queue_enable_notify(q) knav_queue_device_control(q, \ 61 KNAV_QUEUE_ENABLE_NOTIFY, \ 62 (unsigned long)NULL) 63 64 #define knav_queue_disable_notify(q) knav_queue_device_control(q, \ 65 KNAV_QUEUE_DISABLE_NOTIFY, \ 66 (unsigned long)NULL) 67 68 #define knav_queue_get_count(q) knav_queue_device_control(q, \ 69 KNAV_QUEUE_GET_COUNT, (unsigned long)NULL) 70 71 #define for_each_netcp_module(module) \ 72 list_for_each_entry(module, &netcp_modules, module_list) 73 74 #define for_each_netcp_device_module(netcp_device, inst_modpriv) \ 75 list_for_each_entry(inst_modpriv, \ 76 &((netcp_device)->modpriv_head), inst_list) 77 78 #define for_each_module(netcp, intf_modpriv) \ 79 list_for_each_entry(intf_modpriv, &netcp->module_head, intf_list) 80 81 /* Module management structures */ 82 struct netcp_device { 83 struct list_head device_list; 84 struct list_head interface_head; 85 struct list_head modpriv_head; 86 struct device *device; 87 }; 88 89 struct netcp_inst_modpriv { 90 struct netcp_device *netcp_device; 91 struct netcp_module *netcp_module; 92 struct list_head inst_list; 93 void *module_priv; 94 }; 95 96 struct netcp_intf_modpriv { 97 struct netcp_intf *netcp_priv; 98 struct netcp_module *netcp_module; 99 struct list_head intf_list; 100 void *module_priv; 101 }; 102 103 struct netcp_tx_cb { 104 void *ts_context; 105 void (*txtstamp)(void *context, struct sk_buff *skb); 106 }; 107 108 static LIST_HEAD(netcp_devices); 109 static LIST_HEAD(netcp_modules); 110 static DEFINE_MUTEX(netcp_modules_lock); 111 112 static int netcp_debug_level = -1; 113 module_param(netcp_debug_level, int, 0); 114 MODULE_PARM_DESC(netcp_debug_level, "Netcp debug level (NETIF_MSG bits) (0=none,...,16=all)"); 115 116 /* Helper functions - Get/Set */ 117 static void get_pkt_info(dma_addr_t *buff, u32 *buff_len, dma_addr_t *ndesc, 118 struct knav_dma_desc *desc) 119 { 120 *buff_len = le32_to_cpu(desc->buff_len); 121 *buff = le32_to_cpu(desc->buff); 122 *ndesc = le32_to_cpu(desc->next_desc); 123 } 124 125 static void get_desc_info(u32 *desc_info, u32 *pkt_info, 126 struct knav_dma_desc *desc) 127 { 128 *desc_info = le32_to_cpu(desc->desc_info); 129 *pkt_info = le32_to_cpu(desc->packet_info); 130 } 131 132 static u32 get_sw_data(int index, struct knav_dma_desc *desc) 133 { 134 /* No Endian conversion needed as this data is untouched by hw */ 135 return desc->sw_data[index]; 136 } 137 138 /* use these macros to get sw data */ 139 #define GET_SW_DATA0(desc) get_sw_data(0, desc) 140 #define GET_SW_DATA1(desc) get_sw_data(1, desc) 141 #define GET_SW_DATA2(desc) get_sw_data(2, desc) 142 #define GET_SW_DATA3(desc) get_sw_data(3, desc) 143 144 static void get_org_pkt_info(dma_addr_t *buff, u32 *buff_len, 145 struct knav_dma_desc *desc) 146 { 147 *buff = le32_to_cpu(desc->orig_buff); 148 *buff_len = le32_to_cpu(desc->orig_len); 149 } 150 151 static void get_words(dma_addr_t *words, int num_words, __le32 *desc) 152 { 153 int i; 154 155 for (i = 0; i < num_words; i++) 156 words[i] = le32_to_cpu(desc[i]); 157 } 158 159 static void set_pkt_info(dma_addr_t buff, u32 buff_len, u32 ndesc, 160 struct knav_dma_desc *desc) 161 { 162 desc->buff_len = cpu_to_le32(buff_len); 163 desc->buff = cpu_to_le32(buff); 164 desc->next_desc = cpu_to_le32(ndesc); 165 } 166 167 static void set_desc_info(u32 desc_info, u32 pkt_info, 168 struct knav_dma_desc *desc) 169 { 170 desc->desc_info = cpu_to_le32(desc_info); 171 desc->packet_info = cpu_to_le32(pkt_info); 172 } 173 174 static void set_sw_data(int index, u32 data, struct knav_dma_desc *desc) 175 { 176 /* No Endian conversion needed as this data is untouched by hw */ 177 desc->sw_data[index] = data; 178 } 179 180 /* use these macros to set sw data */ 181 #define SET_SW_DATA0(data, desc) set_sw_data(0, data, desc) 182 #define SET_SW_DATA1(data, desc) set_sw_data(1, data, desc) 183 #define SET_SW_DATA2(data, desc) set_sw_data(2, data, desc) 184 #define SET_SW_DATA3(data, desc) set_sw_data(3, data, desc) 185 186 static void set_org_pkt_info(dma_addr_t buff, u32 buff_len, 187 struct knav_dma_desc *desc) 188 { 189 desc->orig_buff = cpu_to_le32(buff); 190 desc->orig_len = cpu_to_le32(buff_len); 191 } 192 193 static void set_words(u32 *words, int num_words, __le32 *desc) 194 { 195 int i; 196 197 for (i = 0; i < num_words; i++) 198 desc[i] = cpu_to_le32(words[i]); 199 } 200 201 /* Read the e-fuse value as 32 bit values to be endian independent */ 202 static int emac_arch_get_mac_addr(char *x, void __iomem *efuse_mac, u32 swap) 203 { 204 unsigned int addr0, addr1; 205 206 addr1 = readl(efuse_mac + 4); 207 addr0 = readl(efuse_mac); 208 209 switch (swap) { 210 case NETCP_EFUSE_ADDR_SWAP: 211 addr0 = addr1; 212 addr1 = readl(efuse_mac); 213 break; 214 default: 215 break; 216 } 217 218 x[0] = (addr1 & 0x0000ff00) >> 8; 219 x[1] = addr1 & 0x000000ff; 220 x[2] = (addr0 & 0xff000000) >> 24; 221 x[3] = (addr0 & 0x00ff0000) >> 16; 222 x[4] = (addr0 & 0x0000ff00) >> 8; 223 x[5] = addr0 & 0x000000ff; 224 225 return 0; 226 } 227 228 /* Module management routines */ 229 static int netcp_register_interface(struct netcp_intf *netcp) 230 { 231 int ret; 232 233 ret = register_netdev(netcp->ndev); 234 if (!ret) 235 netcp->netdev_registered = true; 236 return ret; 237 } 238 239 static int netcp_module_probe(struct netcp_device *netcp_device, 240 struct netcp_module *module) 241 { 242 struct device *dev = netcp_device->device; 243 struct device_node *devices, *interface, *node = dev->of_node; 244 struct device_node *child; 245 struct netcp_inst_modpriv *inst_modpriv; 246 struct netcp_intf *netcp_intf; 247 struct netcp_module *tmp; 248 bool primary_module_registered = false; 249 int ret; 250 251 /* Find this module in the sub-tree for this device */ 252 devices = of_get_child_by_name(node, "netcp-devices"); 253 if (!devices) { 254 dev_err(dev, "could not find netcp-devices node\n"); 255 return NETCP_MOD_PROBE_SKIPPED; 256 } 257 258 for_each_available_child_of_node(devices, child) { 259 const char *name; 260 char node_name[32]; 261 262 if (of_property_read_string(node, "label", &name) < 0) { 263 snprintf(node_name, sizeof(node_name), "%pOFn", child); 264 name = node_name; 265 } 266 if (!strcasecmp(module->name, name)) 267 break; 268 } 269 270 of_node_put(devices); 271 /* If module not used for this device, skip it */ 272 if (!child) { 273 dev_warn(dev, "module(%s) not used for device\n", module->name); 274 return NETCP_MOD_PROBE_SKIPPED; 275 } 276 277 inst_modpriv = devm_kzalloc(dev, sizeof(*inst_modpriv), GFP_KERNEL); 278 if (!inst_modpriv) { 279 of_node_put(child); 280 return -ENOMEM; 281 } 282 283 inst_modpriv->netcp_device = netcp_device; 284 inst_modpriv->netcp_module = module; 285 list_add_tail(&inst_modpriv->inst_list, &netcp_device->modpriv_head); 286 287 ret = module->probe(netcp_device, dev, child, 288 &inst_modpriv->module_priv); 289 of_node_put(child); 290 if (ret) { 291 dev_err(dev, "Probe of module(%s) failed with %d\n", 292 module->name, ret); 293 list_del(&inst_modpriv->inst_list); 294 devm_kfree(dev, inst_modpriv); 295 return NETCP_MOD_PROBE_FAILED; 296 } 297 298 /* Attach modules only if the primary module is probed */ 299 for_each_netcp_module(tmp) { 300 if (tmp->primary) 301 primary_module_registered = true; 302 } 303 304 if (!primary_module_registered) 305 return 0; 306 307 /* Attach module to interfaces */ 308 list_for_each_entry(netcp_intf, &netcp_device->interface_head, 309 interface_list) { 310 struct netcp_intf_modpriv *intf_modpriv; 311 312 intf_modpriv = devm_kzalloc(dev, sizeof(*intf_modpriv), 313 GFP_KERNEL); 314 if (!intf_modpriv) 315 return -ENOMEM; 316 317 interface = of_parse_phandle(netcp_intf->node_interface, 318 module->name, 0); 319 320 if (!interface) { 321 devm_kfree(dev, intf_modpriv); 322 continue; 323 } 324 325 intf_modpriv->netcp_priv = netcp_intf; 326 intf_modpriv->netcp_module = module; 327 list_add_tail(&intf_modpriv->intf_list, 328 &netcp_intf->module_head); 329 330 ret = module->attach(inst_modpriv->module_priv, 331 netcp_intf->ndev, interface, 332 &intf_modpriv->module_priv); 333 of_node_put(interface); 334 if (ret) { 335 dev_dbg(dev, "Attach of module %s declined with %d\n", 336 module->name, ret); 337 list_del(&intf_modpriv->intf_list); 338 devm_kfree(dev, intf_modpriv); 339 continue; 340 } 341 } 342 343 /* Now register the interface with netdev */ 344 list_for_each_entry(netcp_intf, 345 &netcp_device->interface_head, 346 interface_list) { 347 /* If interface not registered then register now */ 348 if (!netcp_intf->netdev_registered) { 349 ret = netcp_register_interface(netcp_intf); 350 if (ret) 351 return -ENODEV; 352 } 353 } 354 return 0; 355 } 356 357 int netcp_register_module(struct netcp_module *module) 358 { 359 struct netcp_device *netcp_device; 360 struct netcp_module *tmp; 361 int ret; 362 363 if (!module->name) { 364 WARN(1, "error registering netcp module: no name\n"); 365 return -EINVAL; 366 } 367 368 if (!module->probe) { 369 WARN(1, "error registering netcp module: no probe\n"); 370 return -EINVAL; 371 } 372 373 mutex_lock(&netcp_modules_lock); 374 375 for_each_netcp_module(tmp) { 376 if (!strcasecmp(tmp->name, module->name)) { 377 mutex_unlock(&netcp_modules_lock); 378 return -EEXIST; 379 } 380 } 381 list_add_tail(&module->module_list, &netcp_modules); 382 383 list_for_each_entry(netcp_device, &netcp_devices, device_list) { 384 ret = netcp_module_probe(netcp_device, module); 385 if (ret < 0) 386 goto fail; 387 } 388 mutex_unlock(&netcp_modules_lock); 389 return 0; 390 391 fail: 392 mutex_unlock(&netcp_modules_lock); 393 netcp_unregister_module(module); 394 return ret; 395 } 396 EXPORT_SYMBOL_GPL(netcp_register_module); 397 398 static void netcp_release_module(struct netcp_device *netcp_device, 399 struct netcp_module *module) 400 { 401 struct netcp_inst_modpriv *inst_modpriv, *inst_tmp; 402 struct netcp_intf *netcp_intf, *netcp_tmp; 403 struct device *dev = netcp_device->device; 404 405 /* Release the module from each interface */ 406 list_for_each_entry_safe(netcp_intf, netcp_tmp, 407 &netcp_device->interface_head, 408 interface_list) { 409 struct netcp_intf_modpriv *intf_modpriv, *intf_tmp; 410 411 list_for_each_entry_safe(intf_modpriv, intf_tmp, 412 &netcp_intf->module_head, 413 intf_list) { 414 if (intf_modpriv->netcp_module == module) { 415 module->release(intf_modpriv->module_priv); 416 list_del(&intf_modpriv->intf_list); 417 devm_kfree(dev, intf_modpriv); 418 break; 419 } 420 } 421 } 422 423 /* Remove the module from each instance */ 424 list_for_each_entry_safe(inst_modpriv, inst_tmp, 425 &netcp_device->modpriv_head, inst_list) { 426 if (inst_modpriv->netcp_module == module) { 427 module->remove(netcp_device, 428 inst_modpriv->module_priv); 429 list_del(&inst_modpriv->inst_list); 430 devm_kfree(dev, inst_modpriv); 431 break; 432 } 433 } 434 } 435 436 void netcp_unregister_module(struct netcp_module *module) 437 { 438 struct netcp_device *netcp_device; 439 struct netcp_module *module_tmp; 440 441 mutex_lock(&netcp_modules_lock); 442 443 list_for_each_entry(netcp_device, &netcp_devices, device_list) { 444 netcp_release_module(netcp_device, module); 445 } 446 447 /* Remove the module from the module list */ 448 for_each_netcp_module(module_tmp) { 449 if (module == module_tmp) { 450 list_del(&module->module_list); 451 break; 452 } 453 } 454 455 mutex_unlock(&netcp_modules_lock); 456 } 457 EXPORT_SYMBOL_GPL(netcp_unregister_module); 458 459 void *netcp_module_get_intf_data(struct netcp_module *module, 460 struct netcp_intf *intf) 461 { 462 struct netcp_intf_modpriv *intf_modpriv; 463 464 list_for_each_entry(intf_modpriv, &intf->module_head, intf_list) 465 if (intf_modpriv->netcp_module == module) 466 return intf_modpriv->module_priv; 467 return NULL; 468 } 469 EXPORT_SYMBOL_GPL(netcp_module_get_intf_data); 470 471 /* Module TX and RX Hook management */ 472 struct netcp_hook_list { 473 struct list_head list; 474 netcp_hook_rtn *hook_rtn; 475 void *hook_data; 476 int order; 477 }; 478 479 int netcp_register_txhook(struct netcp_intf *netcp_priv, int order, 480 netcp_hook_rtn *hook_rtn, void *hook_data) 481 { 482 struct netcp_hook_list *entry; 483 struct netcp_hook_list *next; 484 unsigned long flags; 485 486 entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL); 487 if (!entry) 488 return -ENOMEM; 489 490 entry->hook_rtn = hook_rtn; 491 entry->hook_data = hook_data; 492 entry->order = order; 493 494 spin_lock_irqsave(&netcp_priv->lock, flags); 495 list_for_each_entry(next, &netcp_priv->txhook_list_head, list) { 496 if (next->order > order) 497 break; 498 } 499 __list_add(&entry->list, next->list.prev, &next->list); 500 spin_unlock_irqrestore(&netcp_priv->lock, flags); 501 502 return 0; 503 } 504 EXPORT_SYMBOL_GPL(netcp_register_txhook); 505 506 int netcp_unregister_txhook(struct netcp_intf *netcp_priv, int order, 507 netcp_hook_rtn *hook_rtn, void *hook_data) 508 { 509 struct netcp_hook_list *next, *n; 510 unsigned long flags; 511 512 spin_lock_irqsave(&netcp_priv->lock, flags); 513 list_for_each_entry_safe(next, n, &netcp_priv->txhook_list_head, list) { 514 if ((next->order == order) && 515 (next->hook_rtn == hook_rtn) && 516 (next->hook_data == hook_data)) { 517 list_del(&next->list); 518 spin_unlock_irqrestore(&netcp_priv->lock, flags); 519 devm_kfree(netcp_priv->dev, next); 520 return 0; 521 } 522 } 523 spin_unlock_irqrestore(&netcp_priv->lock, flags); 524 return -ENOENT; 525 } 526 EXPORT_SYMBOL_GPL(netcp_unregister_txhook); 527 528 int netcp_register_rxhook(struct netcp_intf *netcp_priv, int order, 529 netcp_hook_rtn *hook_rtn, void *hook_data) 530 { 531 struct netcp_hook_list *entry; 532 struct netcp_hook_list *next; 533 unsigned long flags; 534 535 entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL); 536 if (!entry) 537 return -ENOMEM; 538 539 entry->hook_rtn = hook_rtn; 540 entry->hook_data = hook_data; 541 entry->order = order; 542 543 spin_lock_irqsave(&netcp_priv->lock, flags); 544 list_for_each_entry(next, &netcp_priv->rxhook_list_head, list) { 545 if (next->order > order) 546 break; 547 } 548 __list_add(&entry->list, next->list.prev, &next->list); 549 spin_unlock_irqrestore(&netcp_priv->lock, flags); 550 551 return 0; 552 } 553 EXPORT_SYMBOL_GPL(netcp_register_rxhook); 554 555 int netcp_unregister_rxhook(struct netcp_intf *netcp_priv, int order, 556 netcp_hook_rtn *hook_rtn, void *hook_data) 557 { 558 struct netcp_hook_list *next, *n; 559 unsigned long flags; 560 561 spin_lock_irqsave(&netcp_priv->lock, flags); 562 list_for_each_entry_safe(next, n, &netcp_priv->rxhook_list_head, list) { 563 if ((next->order == order) && 564 (next->hook_rtn == hook_rtn) && 565 (next->hook_data == hook_data)) { 566 list_del(&next->list); 567 spin_unlock_irqrestore(&netcp_priv->lock, flags); 568 devm_kfree(netcp_priv->dev, next); 569 return 0; 570 } 571 } 572 spin_unlock_irqrestore(&netcp_priv->lock, flags); 573 574 return -ENOENT; 575 } 576 EXPORT_SYMBOL_GPL(netcp_unregister_rxhook); 577 578 static void netcp_frag_free(bool is_frag, void *ptr) 579 { 580 if (is_frag) 581 skb_free_frag(ptr); 582 else 583 kfree(ptr); 584 } 585 586 static void netcp_free_rx_desc_chain(struct netcp_intf *netcp, 587 struct knav_dma_desc *desc) 588 { 589 struct knav_dma_desc *ndesc; 590 dma_addr_t dma_desc, dma_buf; 591 unsigned int buf_len, dma_sz = sizeof(*ndesc); 592 void *buf_ptr; 593 u32 tmp; 594 595 get_words(&dma_desc, 1, &desc->next_desc); 596 597 while (dma_desc) { 598 ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz); 599 if (unlikely(!ndesc)) { 600 dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n"); 601 break; 602 } 603 get_pkt_info(&dma_buf, &tmp, &dma_desc, ndesc); 604 /* warning!!!! We are retrieving the virtual ptr in the sw_data 605 * field as a 32bit value. Will not work on 64bit machines 606 */ 607 buf_ptr = (void *)GET_SW_DATA0(ndesc); 608 buf_len = (int)GET_SW_DATA1(desc); 609 dma_unmap_page(netcp->dev, dma_buf, PAGE_SIZE, DMA_FROM_DEVICE); 610 __free_page(buf_ptr); 611 knav_pool_desc_put(netcp->rx_pool, desc); 612 } 613 /* warning!!!! We are retrieving the virtual ptr in the sw_data 614 * field as a 32bit value. Will not work on 64bit machines 615 */ 616 buf_ptr = (void *)GET_SW_DATA0(desc); 617 buf_len = (int)GET_SW_DATA1(desc); 618 619 if (buf_ptr) 620 netcp_frag_free(buf_len <= PAGE_SIZE, buf_ptr); 621 knav_pool_desc_put(netcp->rx_pool, desc); 622 } 623 624 static void netcp_empty_rx_queue(struct netcp_intf *netcp) 625 { 626 struct netcp_stats *rx_stats = &netcp->stats; 627 struct knav_dma_desc *desc; 628 unsigned int dma_sz; 629 dma_addr_t dma; 630 631 for (; ;) { 632 dma = knav_queue_pop(netcp->rx_queue, &dma_sz); 633 if (!dma) 634 break; 635 636 desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz); 637 if (unlikely(!desc)) { 638 dev_err(netcp->ndev_dev, "%s: failed to unmap Rx desc\n", 639 __func__); 640 rx_stats->rx_errors++; 641 continue; 642 } 643 netcp_free_rx_desc_chain(netcp, desc); 644 rx_stats->rx_dropped++; 645 } 646 } 647 648 static int netcp_process_one_rx_packet(struct netcp_intf *netcp) 649 { 650 struct netcp_stats *rx_stats = &netcp->stats; 651 unsigned int dma_sz, buf_len, org_buf_len; 652 struct knav_dma_desc *desc, *ndesc; 653 unsigned int pkt_sz = 0, accum_sz; 654 struct netcp_hook_list *rx_hook; 655 dma_addr_t dma_desc, dma_buff; 656 struct netcp_packet p_info; 657 struct sk_buff *skb; 658 void *org_buf_ptr; 659 u32 tmp; 660 661 dma_desc = knav_queue_pop(netcp->rx_queue, &dma_sz); 662 if (!dma_desc) 663 return -1; 664 665 desc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz); 666 if (unlikely(!desc)) { 667 dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n"); 668 return 0; 669 } 670 671 get_pkt_info(&dma_buff, &buf_len, &dma_desc, desc); 672 /* warning!!!! We are retrieving the virtual ptr in the sw_data 673 * field as a 32bit value. Will not work on 64bit machines 674 */ 675 org_buf_ptr = (void *)GET_SW_DATA0(desc); 676 org_buf_len = (int)GET_SW_DATA1(desc); 677 678 if (unlikely(!org_buf_ptr)) { 679 dev_err(netcp->ndev_dev, "NULL bufptr in desc\n"); 680 goto free_desc; 681 } 682 683 pkt_sz &= KNAV_DMA_DESC_PKT_LEN_MASK; 684 accum_sz = buf_len; 685 dma_unmap_single(netcp->dev, dma_buff, buf_len, DMA_FROM_DEVICE); 686 687 /* Build a new sk_buff for the primary buffer */ 688 skb = build_skb(org_buf_ptr, org_buf_len); 689 if (unlikely(!skb)) { 690 dev_err(netcp->ndev_dev, "build_skb() failed\n"); 691 goto free_desc; 692 } 693 694 /* update data, tail and len */ 695 skb_reserve(skb, NETCP_SOP_OFFSET); 696 __skb_put(skb, buf_len); 697 698 /* Fill in the page fragment list */ 699 while (dma_desc) { 700 struct page *page; 701 702 ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz); 703 if (unlikely(!ndesc)) { 704 dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n"); 705 goto free_desc; 706 } 707 708 get_pkt_info(&dma_buff, &buf_len, &dma_desc, ndesc); 709 /* warning!!!! We are retrieving the virtual ptr in the sw_data 710 * field as a 32bit value. Will not work on 64bit machines 711 */ 712 page = (struct page *)GET_SW_DATA0(ndesc); 713 714 if (likely(dma_buff && buf_len && page)) { 715 dma_unmap_page(netcp->dev, dma_buff, PAGE_SIZE, 716 DMA_FROM_DEVICE); 717 } else { 718 dev_err(netcp->ndev_dev, "Bad Rx desc dma_buff(%pad), len(%d), page(%p)\n", 719 &dma_buff, buf_len, page); 720 goto free_desc; 721 } 722 723 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, 724 offset_in_page(dma_buff), buf_len, PAGE_SIZE); 725 accum_sz += buf_len; 726 727 /* Free the descriptor */ 728 knav_pool_desc_put(netcp->rx_pool, ndesc); 729 } 730 731 /* check for packet len and warn */ 732 if (unlikely(pkt_sz != accum_sz)) 733 dev_dbg(netcp->ndev_dev, "mismatch in packet size(%d) & sum of fragments(%d)\n", 734 pkt_sz, accum_sz); 735 736 /* Newer version of the Ethernet switch can trim the Ethernet FCS 737 * from the packet and is indicated in hw_cap. So trim it only for 738 * older h/w 739 */ 740 if (!(netcp->hw_cap & ETH_SW_CAN_REMOVE_ETH_FCS)) 741 __pskb_trim(skb, skb->len - ETH_FCS_LEN); 742 743 /* Call each of the RX hooks */ 744 p_info.skb = skb; 745 skb->dev = netcp->ndev; 746 p_info.rxtstamp_complete = false; 747 get_desc_info(&tmp, &p_info.eflags, desc); 748 p_info.epib = desc->epib; 749 p_info.psdata = (u32 __force *)desc->psdata; 750 p_info.eflags = ((p_info.eflags >> KNAV_DMA_DESC_EFLAGS_SHIFT) & 751 KNAV_DMA_DESC_EFLAGS_MASK); 752 list_for_each_entry(rx_hook, &netcp->rxhook_list_head, list) { 753 int ret; 754 755 ret = rx_hook->hook_rtn(rx_hook->order, rx_hook->hook_data, 756 &p_info); 757 if (unlikely(ret)) { 758 dev_err(netcp->ndev_dev, "RX hook %d failed: %d\n", 759 rx_hook->order, ret); 760 /* Free the primary descriptor */ 761 rx_stats->rx_dropped++; 762 knav_pool_desc_put(netcp->rx_pool, desc); 763 dev_kfree_skb(skb); 764 return 0; 765 } 766 } 767 /* Free the primary descriptor */ 768 knav_pool_desc_put(netcp->rx_pool, desc); 769 770 u64_stats_update_begin(&rx_stats->syncp_rx); 771 rx_stats->rx_packets++; 772 rx_stats->rx_bytes += skb->len; 773 u64_stats_update_end(&rx_stats->syncp_rx); 774 775 /* push skb up the stack */ 776 skb->protocol = eth_type_trans(skb, netcp->ndev); 777 netif_receive_skb(skb); 778 return 0; 779 780 free_desc: 781 netcp_free_rx_desc_chain(netcp, desc); 782 rx_stats->rx_errors++; 783 return 0; 784 } 785 786 static int netcp_process_rx_packets(struct netcp_intf *netcp, 787 unsigned int budget) 788 { 789 int i; 790 791 for (i = 0; (i < budget) && !netcp_process_one_rx_packet(netcp); i++) 792 ; 793 return i; 794 } 795 796 /* Release descriptors and attached buffers from Rx FDQ */ 797 static void netcp_free_rx_buf(struct netcp_intf *netcp, int fdq) 798 { 799 struct knav_dma_desc *desc; 800 unsigned int buf_len, dma_sz; 801 dma_addr_t dma; 802 void *buf_ptr; 803 804 /* Allocate descriptor */ 805 while ((dma = knav_queue_pop(netcp->rx_fdq[fdq], &dma_sz))) { 806 desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz); 807 if (unlikely(!desc)) { 808 dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n"); 809 continue; 810 } 811 812 get_org_pkt_info(&dma, &buf_len, desc); 813 /* warning!!!! We are retrieving the virtual ptr in the sw_data 814 * field as a 32bit value. Will not work on 64bit machines 815 */ 816 buf_ptr = (void *)GET_SW_DATA0(desc); 817 818 if (unlikely(!dma)) { 819 dev_err(netcp->ndev_dev, "NULL orig_buff in desc\n"); 820 knav_pool_desc_put(netcp->rx_pool, desc); 821 continue; 822 } 823 824 if (unlikely(!buf_ptr)) { 825 dev_err(netcp->ndev_dev, "NULL bufptr in desc\n"); 826 knav_pool_desc_put(netcp->rx_pool, desc); 827 continue; 828 } 829 830 if (fdq == 0) { 831 dma_unmap_single(netcp->dev, dma, buf_len, 832 DMA_FROM_DEVICE); 833 netcp_frag_free((buf_len <= PAGE_SIZE), buf_ptr); 834 } else { 835 dma_unmap_page(netcp->dev, dma, buf_len, 836 DMA_FROM_DEVICE); 837 __free_page(buf_ptr); 838 } 839 840 knav_pool_desc_put(netcp->rx_pool, desc); 841 } 842 } 843 844 static void netcp_rxpool_free(struct netcp_intf *netcp) 845 { 846 int i; 847 848 for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && 849 !IS_ERR_OR_NULL(netcp->rx_fdq[i]); i++) 850 netcp_free_rx_buf(netcp, i); 851 852 if (knav_pool_count(netcp->rx_pool) != netcp->rx_pool_size) 853 dev_err(netcp->ndev_dev, "Lost Rx (%d) descriptors\n", 854 netcp->rx_pool_size - knav_pool_count(netcp->rx_pool)); 855 856 knav_pool_destroy(netcp->rx_pool); 857 netcp->rx_pool = NULL; 858 } 859 860 static int netcp_allocate_rx_buf(struct netcp_intf *netcp, int fdq) 861 { 862 struct knav_dma_desc *hwdesc; 863 unsigned int buf_len, dma_sz; 864 u32 desc_info, pkt_info; 865 struct page *page; 866 dma_addr_t dma; 867 void *bufptr; 868 u32 sw_data[2]; 869 870 /* Allocate descriptor */ 871 hwdesc = knav_pool_desc_get(netcp->rx_pool); 872 if (IS_ERR_OR_NULL(hwdesc)) { 873 dev_dbg(netcp->ndev_dev, "out of rx pool desc\n"); 874 return -ENOMEM; 875 } 876 877 if (likely(fdq == 0)) { 878 unsigned int primary_buf_len; 879 /* Allocate a primary receive queue entry */ 880 buf_len = NETCP_PACKET_SIZE + NETCP_SOP_OFFSET; 881 primary_buf_len = SKB_DATA_ALIGN(buf_len) + 882 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 883 884 bufptr = netdev_alloc_frag(primary_buf_len); 885 sw_data[1] = primary_buf_len; 886 887 if (unlikely(!bufptr)) { 888 dev_warn_ratelimited(netcp->ndev_dev, 889 "Primary RX buffer alloc failed\n"); 890 goto fail; 891 } 892 dma = dma_map_single(netcp->dev, bufptr, buf_len, 893 DMA_TO_DEVICE); 894 if (unlikely(dma_mapping_error(netcp->dev, dma))) 895 goto fail; 896 897 /* warning!!!! We are saving the virtual ptr in the sw_data 898 * field as a 32bit value. Will not work on 64bit machines 899 */ 900 sw_data[0] = (u32)bufptr; 901 } else { 902 /* Allocate a secondary receive queue entry */ 903 page = alloc_page(GFP_ATOMIC | GFP_DMA); 904 if (unlikely(!page)) { 905 dev_warn_ratelimited(netcp->ndev_dev, "Secondary page alloc failed\n"); 906 goto fail; 907 } 908 buf_len = PAGE_SIZE; 909 dma = dma_map_page(netcp->dev, page, 0, buf_len, DMA_TO_DEVICE); 910 /* warning!!!! We are saving the virtual ptr in the sw_data 911 * field as a 32bit value. Will not work on 64bit machines 912 */ 913 sw_data[0] = (u32)page; 914 sw_data[1] = 0; 915 } 916 917 desc_info = KNAV_DMA_DESC_PS_INFO_IN_DESC; 918 desc_info |= buf_len & KNAV_DMA_DESC_PKT_LEN_MASK; 919 pkt_info = KNAV_DMA_DESC_HAS_EPIB; 920 pkt_info |= KNAV_DMA_NUM_PS_WORDS << KNAV_DMA_DESC_PSLEN_SHIFT; 921 pkt_info |= (netcp->rx_queue_id & KNAV_DMA_DESC_RETQ_MASK) << 922 KNAV_DMA_DESC_RETQ_SHIFT; 923 set_org_pkt_info(dma, buf_len, hwdesc); 924 SET_SW_DATA0(sw_data[0], hwdesc); 925 SET_SW_DATA1(sw_data[1], hwdesc); 926 set_desc_info(desc_info, pkt_info, hwdesc); 927 928 /* Push to FDQs */ 929 knav_pool_desc_map(netcp->rx_pool, hwdesc, sizeof(*hwdesc), &dma, 930 &dma_sz); 931 knav_queue_push(netcp->rx_fdq[fdq], dma, sizeof(*hwdesc), 0); 932 return 0; 933 934 fail: 935 knav_pool_desc_put(netcp->rx_pool, hwdesc); 936 return -ENOMEM; 937 } 938 939 /* Refill Rx FDQ with descriptors & attached buffers */ 940 static void netcp_rxpool_refill(struct netcp_intf *netcp) 941 { 942 u32 fdq_deficit[KNAV_DMA_FDQ_PER_CHAN] = {0}; 943 int i, ret = 0; 944 945 /* Calculate the FDQ deficit and refill */ 946 for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_fdq[i]; i++) { 947 fdq_deficit[i] = netcp->rx_queue_depths[i] - 948 knav_queue_get_count(netcp->rx_fdq[i]); 949 950 while (fdq_deficit[i]-- && !ret) 951 ret = netcp_allocate_rx_buf(netcp, i); 952 } /* end for fdqs */ 953 } 954 955 /* NAPI poll */ 956 static int netcp_rx_poll(struct napi_struct *napi, int budget) 957 { 958 struct netcp_intf *netcp = container_of(napi, struct netcp_intf, 959 rx_napi); 960 unsigned int packets; 961 962 packets = netcp_process_rx_packets(netcp, budget); 963 964 netcp_rxpool_refill(netcp); 965 if (packets < budget) { 966 napi_complete_done(&netcp->rx_napi, packets); 967 knav_queue_enable_notify(netcp->rx_queue); 968 } 969 970 return packets; 971 } 972 973 static void netcp_rx_notify(void *arg) 974 { 975 struct netcp_intf *netcp = arg; 976 977 knav_queue_disable_notify(netcp->rx_queue); 978 napi_schedule(&netcp->rx_napi); 979 } 980 981 static void netcp_free_tx_desc_chain(struct netcp_intf *netcp, 982 struct knav_dma_desc *desc, 983 unsigned int desc_sz) 984 { 985 struct knav_dma_desc *ndesc = desc; 986 dma_addr_t dma_desc, dma_buf; 987 unsigned int buf_len; 988 989 while (ndesc) { 990 get_pkt_info(&dma_buf, &buf_len, &dma_desc, ndesc); 991 992 if (dma_buf && buf_len) 993 dma_unmap_single(netcp->dev, dma_buf, buf_len, 994 DMA_TO_DEVICE); 995 else 996 dev_warn(netcp->ndev_dev, "bad Tx desc buf(%pad), len(%d)\n", 997 &dma_buf, buf_len); 998 999 knav_pool_desc_put(netcp->tx_pool, ndesc); 1000 ndesc = NULL; 1001 if (dma_desc) { 1002 ndesc = knav_pool_desc_unmap(netcp->tx_pool, dma_desc, 1003 desc_sz); 1004 if (!ndesc) 1005 dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n"); 1006 } 1007 } 1008 } 1009 1010 static int netcp_process_tx_compl_packets(struct netcp_intf *netcp, 1011 unsigned int budget) 1012 { 1013 struct netcp_stats *tx_stats = &netcp->stats; 1014 struct knav_dma_desc *desc; 1015 struct netcp_tx_cb *tx_cb; 1016 struct sk_buff *skb; 1017 unsigned int dma_sz; 1018 dma_addr_t dma; 1019 int pkts = 0; 1020 1021 while (budget--) { 1022 dma = knav_queue_pop(netcp->tx_compl_q, &dma_sz); 1023 if (!dma) 1024 break; 1025 desc = knav_pool_desc_unmap(netcp->tx_pool, dma, dma_sz); 1026 if (unlikely(!desc)) { 1027 dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n"); 1028 tx_stats->tx_errors++; 1029 continue; 1030 } 1031 1032 /* warning!!!! We are retrieving the virtual ptr in the sw_data 1033 * field as a 32bit value. Will not work on 64bit machines 1034 */ 1035 skb = (struct sk_buff *)GET_SW_DATA0(desc); 1036 netcp_free_tx_desc_chain(netcp, desc, dma_sz); 1037 if (!skb) { 1038 dev_err(netcp->ndev_dev, "No skb in Tx desc\n"); 1039 tx_stats->tx_errors++; 1040 continue; 1041 } 1042 1043 tx_cb = (struct netcp_tx_cb *)skb->cb; 1044 if (tx_cb->txtstamp) 1045 tx_cb->txtstamp(tx_cb->ts_context, skb); 1046 1047 if (netif_subqueue_stopped(netcp->ndev, skb) && 1048 netif_running(netcp->ndev) && 1049 (knav_pool_count(netcp->tx_pool) > 1050 netcp->tx_resume_threshold)) { 1051 u16 subqueue = skb_get_queue_mapping(skb); 1052 1053 netif_wake_subqueue(netcp->ndev, subqueue); 1054 } 1055 1056 u64_stats_update_begin(&tx_stats->syncp_tx); 1057 tx_stats->tx_packets++; 1058 tx_stats->tx_bytes += skb->len; 1059 u64_stats_update_end(&tx_stats->syncp_tx); 1060 dev_kfree_skb(skb); 1061 pkts++; 1062 } 1063 return pkts; 1064 } 1065 1066 static int netcp_tx_poll(struct napi_struct *napi, int budget) 1067 { 1068 int packets; 1069 struct netcp_intf *netcp = container_of(napi, struct netcp_intf, 1070 tx_napi); 1071 1072 packets = netcp_process_tx_compl_packets(netcp, budget); 1073 if (packets < budget) { 1074 napi_complete(&netcp->tx_napi); 1075 knav_queue_enable_notify(netcp->tx_compl_q); 1076 } 1077 1078 return packets; 1079 } 1080 1081 static void netcp_tx_notify(void *arg) 1082 { 1083 struct netcp_intf *netcp = arg; 1084 1085 knav_queue_disable_notify(netcp->tx_compl_q); 1086 napi_schedule(&netcp->tx_napi); 1087 } 1088 1089 static struct knav_dma_desc* 1090 netcp_tx_map_skb(struct sk_buff *skb, struct netcp_intf *netcp) 1091 { 1092 struct knav_dma_desc *desc, *ndesc, *pdesc; 1093 unsigned int pkt_len = skb_headlen(skb); 1094 struct device *dev = netcp->dev; 1095 dma_addr_t dma_addr; 1096 unsigned int dma_sz; 1097 int i; 1098 1099 /* Map the linear buffer */ 1100 dma_addr = dma_map_single(dev, skb->data, pkt_len, DMA_TO_DEVICE); 1101 if (unlikely(dma_mapping_error(dev, dma_addr))) { 1102 dev_err(netcp->ndev_dev, "Failed to map skb buffer\n"); 1103 return NULL; 1104 } 1105 1106 desc = knav_pool_desc_get(netcp->tx_pool); 1107 if (IS_ERR_OR_NULL(desc)) { 1108 dev_err(netcp->ndev_dev, "out of TX desc\n"); 1109 dma_unmap_single(dev, dma_addr, pkt_len, DMA_TO_DEVICE); 1110 return NULL; 1111 } 1112 1113 set_pkt_info(dma_addr, pkt_len, 0, desc); 1114 if (skb_is_nonlinear(skb)) { 1115 prefetchw(skb_shinfo(skb)); 1116 } else { 1117 desc->next_desc = 0; 1118 goto upd_pkt_len; 1119 } 1120 1121 pdesc = desc; 1122 1123 /* Handle the case where skb is fragmented in pages */ 1124 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1125 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1126 struct page *page = skb_frag_page(frag); 1127 u32 page_offset = frag->page_offset; 1128 u32 buf_len = skb_frag_size(frag); 1129 dma_addr_t desc_dma; 1130 u32 desc_dma_32; 1131 1132 dma_addr = dma_map_page(dev, page, page_offset, buf_len, 1133 DMA_TO_DEVICE); 1134 if (unlikely(!dma_addr)) { 1135 dev_err(netcp->ndev_dev, "Failed to map skb page\n"); 1136 goto free_descs; 1137 } 1138 1139 ndesc = knav_pool_desc_get(netcp->tx_pool); 1140 if (IS_ERR_OR_NULL(ndesc)) { 1141 dev_err(netcp->ndev_dev, "out of TX desc for frags\n"); 1142 dma_unmap_page(dev, dma_addr, buf_len, DMA_TO_DEVICE); 1143 goto free_descs; 1144 } 1145 1146 desc_dma = knav_pool_desc_virt_to_dma(netcp->tx_pool, ndesc); 1147 set_pkt_info(dma_addr, buf_len, 0, ndesc); 1148 desc_dma_32 = (u32)desc_dma; 1149 set_words(&desc_dma_32, 1, &pdesc->next_desc); 1150 pkt_len += buf_len; 1151 if (pdesc != desc) 1152 knav_pool_desc_map(netcp->tx_pool, pdesc, 1153 sizeof(*pdesc), &desc_dma, &dma_sz); 1154 pdesc = ndesc; 1155 } 1156 if (pdesc != desc) 1157 knav_pool_desc_map(netcp->tx_pool, pdesc, sizeof(*pdesc), 1158 &dma_addr, &dma_sz); 1159 1160 /* frag list based linkage is not supported for now. */ 1161 if (skb_shinfo(skb)->frag_list) { 1162 dev_err_ratelimited(netcp->ndev_dev, "NETIF_F_FRAGLIST not supported\n"); 1163 goto free_descs; 1164 } 1165 1166 upd_pkt_len: 1167 WARN_ON(pkt_len != skb->len); 1168 1169 pkt_len &= KNAV_DMA_DESC_PKT_LEN_MASK; 1170 set_words(&pkt_len, 1, &desc->desc_info); 1171 return desc; 1172 1173 free_descs: 1174 netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc)); 1175 return NULL; 1176 } 1177 1178 static int netcp_tx_submit_skb(struct netcp_intf *netcp, 1179 struct sk_buff *skb, 1180 struct knav_dma_desc *desc) 1181 { 1182 struct netcp_tx_pipe *tx_pipe = NULL; 1183 struct netcp_hook_list *tx_hook; 1184 struct netcp_packet p_info; 1185 struct netcp_tx_cb *tx_cb; 1186 unsigned int dma_sz; 1187 dma_addr_t dma; 1188 u32 tmp = 0; 1189 int ret = 0; 1190 1191 p_info.netcp = netcp; 1192 p_info.skb = skb; 1193 p_info.tx_pipe = NULL; 1194 p_info.psdata_len = 0; 1195 p_info.ts_context = NULL; 1196 p_info.txtstamp = NULL; 1197 p_info.epib = desc->epib; 1198 p_info.psdata = (u32 __force *)desc->psdata; 1199 memset(p_info.epib, 0, KNAV_DMA_NUM_EPIB_WORDS * sizeof(__le32)); 1200 1201 /* Find out where to inject the packet for transmission */ 1202 list_for_each_entry(tx_hook, &netcp->txhook_list_head, list) { 1203 ret = tx_hook->hook_rtn(tx_hook->order, tx_hook->hook_data, 1204 &p_info); 1205 if (unlikely(ret != 0)) { 1206 dev_err(netcp->ndev_dev, "TX hook %d rejected the packet with reason(%d)\n", 1207 tx_hook->order, ret); 1208 ret = (ret < 0) ? ret : NETDEV_TX_OK; 1209 goto out; 1210 } 1211 } 1212 1213 /* Make sure some TX hook claimed the packet */ 1214 tx_pipe = p_info.tx_pipe; 1215 if (!tx_pipe) { 1216 dev_err(netcp->ndev_dev, "No TX hook claimed the packet!\n"); 1217 ret = -ENXIO; 1218 goto out; 1219 } 1220 1221 tx_cb = (struct netcp_tx_cb *)skb->cb; 1222 tx_cb->ts_context = p_info.ts_context; 1223 tx_cb->txtstamp = p_info.txtstamp; 1224 1225 /* update descriptor */ 1226 if (p_info.psdata_len) { 1227 /* psdata points to both native-endian and device-endian data */ 1228 __le32 *psdata = (void __force *)p_info.psdata; 1229 1230 set_words((u32 *)psdata + 1231 (KNAV_DMA_NUM_PS_WORDS - p_info.psdata_len), 1232 p_info.psdata_len, psdata); 1233 tmp |= (p_info.psdata_len & KNAV_DMA_DESC_PSLEN_MASK) << 1234 KNAV_DMA_DESC_PSLEN_SHIFT; 1235 } 1236 1237 tmp |= KNAV_DMA_DESC_HAS_EPIB | 1238 ((netcp->tx_compl_qid & KNAV_DMA_DESC_RETQ_MASK) << 1239 KNAV_DMA_DESC_RETQ_SHIFT); 1240 1241 if (!(tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO)) { 1242 tmp |= ((tx_pipe->switch_to_port & KNAV_DMA_DESC_PSFLAG_MASK) << 1243 KNAV_DMA_DESC_PSFLAG_SHIFT); 1244 } 1245 1246 set_words(&tmp, 1, &desc->packet_info); 1247 /* warning!!!! We are saving the virtual ptr in the sw_data 1248 * field as a 32bit value. Will not work on 64bit machines 1249 */ 1250 SET_SW_DATA0((u32)skb, desc); 1251 1252 if (tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO) { 1253 tmp = tx_pipe->switch_to_port; 1254 set_words(&tmp, 1, &desc->tag_info); 1255 } 1256 1257 /* submit packet descriptor */ 1258 ret = knav_pool_desc_map(netcp->tx_pool, desc, sizeof(*desc), &dma, 1259 &dma_sz); 1260 if (unlikely(ret)) { 1261 dev_err(netcp->ndev_dev, "%s() failed to map desc\n", __func__); 1262 ret = -ENOMEM; 1263 goto out; 1264 } 1265 skb_tx_timestamp(skb); 1266 knav_queue_push(tx_pipe->dma_queue, dma, dma_sz, 0); 1267 1268 out: 1269 return ret; 1270 } 1271 1272 /* Submit the packet */ 1273 static int netcp_ndo_start_xmit(struct sk_buff *skb, struct net_device *ndev) 1274 { 1275 struct netcp_intf *netcp = netdev_priv(ndev); 1276 struct netcp_stats *tx_stats = &netcp->stats; 1277 int subqueue = skb_get_queue_mapping(skb); 1278 struct knav_dma_desc *desc; 1279 int desc_count, ret = 0; 1280 1281 if (unlikely(skb->len <= 0)) { 1282 dev_kfree_skb(skb); 1283 return NETDEV_TX_OK; 1284 } 1285 1286 if (unlikely(skb->len < NETCP_MIN_PACKET_SIZE)) { 1287 ret = skb_padto(skb, NETCP_MIN_PACKET_SIZE); 1288 if (ret < 0) { 1289 /* If we get here, the skb has already been dropped */ 1290 dev_warn(netcp->ndev_dev, "padding failed (%d), packet dropped\n", 1291 ret); 1292 tx_stats->tx_dropped++; 1293 return ret; 1294 } 1295 skb->len = NETCP_MIN_PACKET_SIZE; 1296 } 1297 1298 desc = netcp_tx_map_skb(skb, netcp); 1299 if (unlikely(!desc)) { 1300 netif_stop_subqueue(ndev, subqueue); 1301 ret = -ENOBUFS; 1302 goto drop; 1303 } 1304 1305 ret = netcp_tx_submit_skb(netcp, skb, desc); 1306 if (ret) 1307 goto drop; 1308 1309 /* Check Tx pool count & stop subqueue if needed */ 1310 desc_count = knav_pool_count(netcp->tx_pool); 1311 if (desc_count < netcp->tx_pause_threshold) { 1312 dev_dbg(netcp->ndev_dev, "pausing tx, count(%d)\n", desc_count); 1313 netif_stop_subqueue(ndev, subqueue); 1314 } 1315 return NETDEV_TX_OK; 1316 1317 drop: 1318 tx_stats->tx_dropped++; 1319 if (desc) 1320 netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc)); 1321 dev_kfree_skb(skb); 1322 return ret; 1323 } 1324 1325 int netcp_txpipe_close(struct netcp_tx_pipe *tx_pipe) 1326 { 1327 if (tx_pipe->dma_channel) { 1328 knav_dma_close_channel(tx_pipe->dma_channel); 1329 tx_pipe->dma_channel = NULL; 1330 } 1331 return 0; 1332 } 1333 EXPORT_SYMBOL_GPL(netcp_txpipe_close); 1334 1335 int netcp_txpipe_open(struct netcp_tx_pipe *tx_pipe) 1336 { 1337 struct device *dev = tx_pipe->netcp_device->device; 1338 struct knav_dma_cfg config; 1339 int ret = 0; 1340 u8 name[16]; 1341 1342 memset(&config, 0, sizeof(config)); 1343 config.direction = DMA_MEM_TO_DEV; 1344 config.u.tx.filt_einfo = false; 1345 config.u.tx.filt_pswords = false; 1346 config.u.tx.priority = DMA_PRIO_MED_L; 1347 1348 tx_pipe->dma_channel = knav_dma_open_channel(dev, 1349 tx_pipe->dma_chan_name, &config); 1350 if (IS_ERR(tx_pipe->dma_channel)) { 1351 dev_err(dev, "failed opening tx chan(%s)\n", 1352 tx_pipe->dma_chan_name); 1353 ret = PTR_ERR(tx_pipe->dma_channel); 1354 goto err; 1355 } 1356 1357 snprintf(name, sizeof(name), "tx-pipe-%s", dev_name(dev)); 1358 tx_pipe->dma_queue = knav_queue_open(name, tx_pipe->dma_queue_id, 1359 KNAV_QUEUE_SHARED); 1360 if (IS_ERR(tx_pipe->dma_queue)) { 1361 dev_err(dev, "Could not open DMA queue for channel \"%s\": %d\n", 1362 name, ret); 1363 ret = PTR_ERR(tx_pipe->dma_queue); 1364 goto err; 1365 } 1366 1367 dev_dbg(dev, "opened tx pipe %s\n", name); 1368 return 0; 1369 1370 err: 1371 if (!IS_ERR_OR_NULL(tx_pipe->dma_channel)) 1372 knav_dma_close_channel(tx_pipe->dma_channel); 1373 tx_pipe->dma_channel = NULL; 1374 return ret; 1375 } 1376 EXPORT_SYMBOL_GPL(netcp_txpipe_open); 1377 1378 int netcp_txpipe_init(struct netcp_tx_pipe *tx_pipe, 1379 struct netcp_device *netcp_device, 1380 const char *dma_chan_name, unsigned int dma_queue_id) 1381 { 1382 memset(tx_pipe, 0, sizeof(*tx_pipe)); 1383 tx_pipe->netcp_device = netcp_device; 1384 tx_pipe->dma_chan_name = dma_chan_name; 1385 tx_pipe->dma_queue_id = dma_queue_id; 1386 return 0; 1387 } 1388 EXPORT_SYMBOL_GPL(netcp_txpipe_init); 1389 1390 static struct netcp_addr *netcp_addr_find(struct netcp_intf *netcp, 1391 const u8 *addr, 1392 enum netcp_addr_type type) 1393 { 1394 struct netcp_addr *naddr; 1395 1396 list_for_each_entry(naddr, &netcp->addr_list, node) { 1397 if (naddr->type != type) 1398 continue; 1399 if (addr && memcmp(addr, naddr->addr, ETH_ALEN)) 1400 continue; 1401 return naddr; 1402 } 1403 1404 return NULL; 1405 } 1406 1407 static struct netcp_addr *netcp_addr_add(struct netcp_intf *netcp, 1408 const u8 *addr, 1409 enum netcp_addr_type type) 1410 { 1411 struct netcp_addr *naddr; 1412 1413 naddr = devm_kmalloc(netcp->dev, sizeof(*naddr), GFP_ATOMIC); 1414 if (!naddr) 1415 return NULL; 1416 1417 naddr->type = type; 1418 naddr->flags = 0; 1419 naddr->netcp = netcp; 1420 if (addr) 1421 ether_addr_copy(naddr->addr, addr); 1422 else 1423 eth_zero_addr(naddr->addr); 1424 list_add_tail(&naddr->node, &netcp->addr_list); 1425 1426 return naddr; 1427 } 1428 1429 static void netcp_addr_del(struct netcp_intf *netcp, struct netcp_addr *naddr) 1430 { 1431 list_del(&naddr->node); 1432 devm_kfree(netcp->dev, naddr); 1433 } 1434 1435 static void netcp_addr_clear_mark(struct netcp_intf *netcp) 1436 { 1437 struct netcp_addr *naddr; 1438 1439 list_for_each_entry(naddr, &netcp->addr_list, node) 1440 naddr->flags = 0; 1441 } 1442 1443 static void netcp_addr_add_mark(struct netcp_intf *netcp, const u8 *addr, 1444 enum netcp_addr_type type) 1445 { 1446 struct netcp_addr *naddr; 1447 1448 naddr = netcp_addr_find(netcp, addr, type); 1449 if (naddr) { 1450 naddr->flags |= ADDR_VALID; 1451 return; 1452 } 1453 1454 naddr = netcp_addr_add(netcp, addr, type); 1455 if (!WARN_ON(!naddr)) 1456 naddr->flags |= ADDR_NEW; 1457 } 1458 1459 static void netcp_addr_sweep_del(struct netcp_intf *netcp) 1460 { 1461 struct netcp_addr *naddr, *tmp; 1462 struct netcp_intf_modpriv *priv; 1463 struct netcp_module *module; 1464 int error; 1465 1466 list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) { 1467 if (naddr->flags & (ADDR_VALID | ADDR_NEW)) 1468 continue; 1469 dev_dbg(netcp->ndev_dev, "deleting address %pM, type %x\n", 1470 naddr->addr, naddr->type); 1471 for_each_module(netcp, priv) { 1472 module = priv->netcp_module; 1473 if (!module->del_addr) 1474 continue; 1475 error = module->del_addr(priv->module_priv, 1476 naddr); 1477 WARN_ON(error); 1478 } 1479 netcp_addr_del(netcp, naddr); 1480 } 1481 } 1482 1483 static void netcp_addr_sweep_add(struct netcp_intf *netcp) 1484 { 1485 struct netcp_addr *naddr, *tmp; 1486 struct netcp_intf_modpriv *priv; 1487 struct netcp_module *module; 1488 int error; 1489 1490 list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) { 1491 if (!(naddr->flags & ADDR_NEW)) 1492 continue; 1493 dev_dbg(netcp->ndev_dev, "adding address %pM, type %x\n", 1494 naddr->addr, naddr->type); 1495 1496 for_each_module(netcp, priv) { 1497 module = priv->netcp_module; 1498 if (!module->add_addr) 1499 continue; 1500 error = module->add_addr(priv->module_priv, naddr); 1501 WARN_ON(error); 1502 } 1503 } 1504 } 1505 1506 static int netcp_set_promiscuous(struct netcp_intf *netcp, bool promisc) 1507 { 1508 struct netcp_intf_modpriv *priv; 1509 struct netcp_module *module; 1510 int error; 1511 1512 for_each_module(netcp, priv) { 1513 module = priv->netcp_module; 1514 if (!module->set_rx_mode) 1515 continue; 1516 1517 error = module->set_rx_mode(priv->module_priv, promisc); 1518 if (error) 1519 return error; 1520 } 1521 return 0; 1522 } 1523 1524 static void netcp_set_rx_mode(struct net_device *ndev) 1525 { 1526 struct netcp_intf *netcp = netdev_priv(ndev); 1527 struct netdev_hw_addr *ndev_addr; 1528 bool promisc; 1529 1530 promisc = (ndev->flags & IFF_PROMISC || 1531 ndev->flags & IFF_ALLMULTI || 1532 netdev_mc_count(ndev) > NETCP_MAX_MCAST_ADDR); 1533 1534 spin_lock(&netcp->lock); 1535 /* first clear all marks */ 1536 netcp_addr_clear_mark(netcp); 1537 1538 /* next add new entries, mark existing ones */ 1539 netcp_addr_add_mark(netcp, ndev->broadcast, ADDR_BCAST); 1540 for_each_dev_addr(ndev, ndev_addr) 1541 netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_DEV); 1542 netdev_for_each_uc_addr(ndev_addr, ndev) 1543 netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_UCAST); 1544 netdev_for_each_mc_addr(ndev_addr, ndev) 1545 netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_MCAST); 1546 1547 if (promisc) 1548 netcp_addr_add_mark(netcp, NULL, ADDR_ANY); 1549 1550 /* finally sweep and callout into modules */ 1551 netcp_addr_sweep_del(netcp); 1552 netcp_addr_sweep_add(netcp); 1553 netcp_set_promiscuous(netcp, promisc); 1554 spin_unlock(&netcp->lock); 1555 } 1556 1557 static void netcp_free_navigator_resources(struct netcp_intf *netcp) 1558 { 1559 int i; 1560 1561 if (netcp->rx_channel) { 1562 knav_dma_close_channel(netcp->rx_channel); 1563 netcp->rx_channel = NULL; 1564 } 1565 1566 if (!IS_ERR_OR_NULL(netcp->rx_pool)) 1567 netcp_rxpool_free(netcp); 1568 1569 if (!IS_ERR_OR_NULL(netcp->rx_queue)) { 1570 knav_queue_close(netcp->rx_queue); 1571 netcp->rx_queue = NULL; 1572 } 1573 1574 for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && 1575 !IS_ERR_OR_NULL(netcp->rx_fdq[i]) ; ++i) { 1576 knav_queue_close(netcp->rx_fdq[i]); 1577 netcp->rx_fdq[i] = NULL; 1578 } 1579 1580 if (!IS_ERR_OR_NULL(netcp->tx_compl_q)) { 1581 knav_queue_close(netcp->tx_compl_q); 1582 netcp->tx_compl_q = NULL; 1583 } 1584 1585 if (!IS_ERR_OR_NULL(netcp->tx_pool)) { 1586 knav_pool_destroy(netcp->tx_pool); 1587 netcp->tx_pool = NULL; 1588 } 1589 } 1590 1591 static int netcp_setup_navigator_resources(struct net_device *ndev) 1592 { 1593 struct netcp_intf *netcp = netdev_priv(ndev); 1594 struct knav_queue_notify_config notify_cfg; 1595 struct knav_dma_cfg config; 1596 u32 last_fdq = 0; 1597 u8 name[16]; 1598 int ret; 1599 int i; 1600 1601 /* Create Rx/Tx descriptor pools */ 1602 snprintf(name, sizeof(name), "rx-pool-%s", ndev->name); 1603 netcp->rx_pool = knav_pool_create(name, netcp->rx_pool_size, 1604 netcp->rx_pool_region_id); 1605 if (IS_ERR_OR_NULL(netcp->rx_pool)) { 1606 dev_err(netcp->ndev_dev, "Couldn't create rx pool\n"); 1607 ret = PTR_ERR(netcp->rx_pool); 1608 goto fail; 1609 } 1610 1611 snprintf(name, sizeof(name), "tx-pool-%s", ndev->name); 1612 netcp->tx_pool = knav_pool_create(name, netcp->tx_pool_size, 1613 netcp->tx_pool_region_id); 1614 if (IS_ERR_OR_NULL(netcp->tx_pool)) { 1615 dev_err(netcp->ndev_dev, "Couldn't create tx pool\n"); 1616 ret = PTR_ERR(netcp->tx_pool); 1617 goto fail; 1618 } 1619 1620 /* open Tx completion queue */ 1621 snprintf(name, sizeof(name), "tx-compl-%s", ndev->name); 1622 netcp->tx_compl_q = knav_queue_open(name, netcp->tx_compl_qid, 0); 1623 if (IS_ERR(netcp->tx_compl_q)) { 1624 ret = PTR_ERR(netcp->tx_compl_q); 1625 goto fail; 1626 } 1627 netcp->tx_compl_qid = knav_queue_get_id(netcp->tx_compl_q); 1628 1629 /* Set notification for Tx completion */ 1630 notify_cfg.fn = netcp_tx_notify; 1631 notify_cfg.fn_arg = netcp; 1632 ret = knav_queue_device_control(netcp->tx_compl_q, 1633 KNAV_QUEUE_SET_NOTIFIER, 1634 (unsigned long)¬ify_cfg); 1635 if (ret) 1636 goto fail; 1637 1638 knav_queue_disable_notify(netcp->tx_compl_q); 1639 1640 /* open Rx completion queue */ 1641 snprintf(name, sizeof(name), "rx-compl-%s", ndev->name); 1642 netcp->rx_queue = knav_queue_open(name, netcp->rx_queue_id, 0); 1643 if (IS_ERR(netcp->rx_queue)) { 1644 ret = PTR_ERR(netcp->rx_queue); 1645 goto fail; 1646 } 1647 netcp->rx_queue_id = knav_queue_get_id(netcp->rx_queue); 1648 1649 /* Set notification for Rx completion */ 1650 notify_cfg.fn = netcp_rx_notify; 1651 notify_cfg.fn_arg = netcp; 1652 ret = knav_queue_device_control(netcp->rx_queue, 1653 KNAV_QUEUE_SET_NOTIFIER, 1654 (unsigned long)¬ify_cfg); 1655 if (ret) 1656 goto fail; 1657 1658 knav_queue_disable_notify(netcp->rx_queue); 1659 1660 /* open Rx FDQs */ 1661 for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_queue_depths[i]; 1662 ++i) { 1663 snprintf(name, sizeof(name), "rx-fdq-%s-%d", ndev->name, i); 1664 netcp->rx_fdq[i] = knav_queue_open(name, KNAV_QUEUE_GP, 0); 1665 if (IS_ERR(netcp->rx_fdq[i])) { 1666 ret = PTR_ERR(netcp->rx_fdq[i]); 1667 goto fail; 1668 } 1669 } 1670 1671 memset(&config, 0, sizeof(config)); 1672 config.direction = DMA_DEV_TO_MEM; 1673 config.u.rx.einfo_present = true; 1674 config.u.rx.psinfo_present = true; 1675 config.u.rx.err_mode = DMA_DROP; 1676 config.u.rx.desc_type = DMA_DESC_HOST; 1677 config.u.rx.psinfo_at_sop = false; 1678 config.u.rx.sop_offset = NETCP_SOP_OFFSET; 1679 config.u.rx.dst_q = netcp->rx_queue_id; 1680 config.u.rx.thresh = DMA_THRESH_NONE; 1681 1682 for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN; ++i) { 1683 if (netcp->rx_fdq[i]) 1684 last_fdq = knav_queue_get_id(netcp->rx_fdq[i]); 1685 config.u.rx.fdq[i] = last_fdq; 1686 } 1687 1688 netcp->rx_channel = knav_dma_open_channel(netcp->netcp_device->device, 1689 netcp->dma_chan_name, &config); 1690 if (IS_ERR(netcp->rx_channel)) { 1691 dev_err(netcp->ndev_dev, "failed opening rx chan(%s\n", 1692 netcp->dma_chan_name); 1693 ret = PTR_ERR(netcp->rx_channel); 1694 goto fail; 1695 } 1696 1697 dev_dbg(netcp->ndev_dev, "opened RX channel: %p\n", netcp->rx_channel); 1698 return 0; 1699 1700 fail: 1701 netcp_free_navigator_resources(netcp); 1702 return ret; 1703 } 1704 1705 /* Open the device */ 1706 static int netcp_ndo_open(struct net_device *ndev) 1707 { 1708 struct netcp_intf *netcp = netdev_priv(ndev); 1709 struct netcp_intf_modpriv *intf_modpriv; 1710 struct netcp_module *module; 1711 int ret; 1712 1713 netif_carrier_off(ndev); 1714 ret = netcp_setup_navigator_resources(ndev); 1715 if (ret) { 1716 dev_err(netcp->ndev_dev, "Failed to setup navigator resources\n"); 1717 goto fail; 1718 } 1719 1720 for_each_module(netcp, intf_modpriv) { 1721 module = intf_modpriv->netcp_module; 1722 if (module->open) { 1723 ret = module->open(intf_modpriv->module_priv, ndev); 1724 if (ret != 0) { 1725 dev_err(netcp->ndev_dev, "module open failed\n"); 1726 goto fail_open; 1727 } 1728 } 1729 } 1730 1731 napi_enable(&netcp->rx_napi); 1732 napi_enable(&netcp->tx_napi); 1733 knav_queue_enable_notify(netcp->tx_compl_q); 1734 knav_queue_enable_notify(netcp->rx_queue); 1735 netcp_rxpool_refill(netcp); 1736 netif_tx_wake_all_queues(ndev); 1737 dev_dbg(netcp->ndev_dev, "netcp device %s opened\n", ndev->name); 1738 return 0; 1739 1740 fail_open: 1741 for_each_module(netcp, intf_modpriv) { 1742 module = intf_modpriv->netcp_module; 1743 if (module->close) 1744 module->close(intf_modpriv->module_priv, ndev); 1745 } 1746 1747 fail: 1748 netcp_free_navigator_resources(netcp); 1749 return ret; 1750 } 1751 1752 /* Close the device */ 1753 static int netcp_ndo_stop(struct net_device *ndev) 1754 { 1755 struct netcp_intf *netcp = netdev_priv(ndev); 1756 struct netcp_intf_modpriv *intf_modpriv; 1757 struct netcp_module *module; 1758 int err = 0; 1759 1760 netif_tx_stop_all_queues(ndev); 1761 netif_carrier_off(ndev); 1762 netcp_addr_clear_mark(netcp); 1763 netcp_addr_sweep_del(netcp); 1764 knav_queue_disable_notify(netcp->rx_queue); 1765 knav_queue_disable_notify(netcp->tx_compl_q); 1766 napi_disable(&netcp->rx_napi); 1767 napi_disable(&netcp->tx_napi); 1768 1769 for_each_module(netcp, intf_modpriv) { 1770 module = intf_modpriv->netcp_module; 1771 if (module->close) { 1772 err = module->close(intf_modpriv->module_priv, ndev); 1773 if (err != 0) 1774 dev_err(netcp->ndev_dev, "Close failed\n"); 1775 } 1776 } 1777 1778 /* Recycle Rx descriptors from completion queue */ 1779 netcp_empty_rx_queue(netcp); 1780 1781 /* Recycle Tx descriptors from completion queue */ 1782 netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size); 1783 1784 if (knav_pool_count(netcp->tx_pool) != netcp->tx_pool_size) 1785 dev_err(netcp->ndev_dev, "Lost (%d) Tx descs\n", 1786 netcp->tx_pool_size - knav_pool_count(netcp->tx_pool)); 1787 1788 netcp_free_navigator_resources(netcp); 1789 dev_dbg(netcp->ndev_dev, "netcp device %s stopped\n", ndev->name); 1790 return 0; 1791 } 1792 1793 static int netcp_ndo_ioctl(struct net_device *ndev, 1794 struct ifreq *req, int cmd) 1795 { 1796 struct netcp_intf *netcp = netdev_priv(ndev); 1797 struct netcp_intf_modpriv *intf_modpriv; 1798 struct netcp_module *module; 1799 int ret = -1, err = -EOPNOTSUPP; 1800 1801 if (!netif_running(ndev)) 1802 return -EINVAL; 1803 1804 for_each_module(netcp, intf_modpriv) { 1805 module = intf_modpriv->netcp_module; 1806 if (!module->ioctl) 1807 continue; 1808 1809 err = module->ioctl(intf_modpriv->module_priv, req, cmd); 1810 if ((err < 0) && (err != -EOPNOTSUPP)) { 1811 ret = err; 1812 goto out; 1813 } 1814 if (err == 0) 1815 ret = err; 1816 } 1817 1818 out: 1819 return (ret == 0) ? 0 : err; 1820 } 1821 1822 static void netcp_ndo_tx_timeout(struct net_device *ndev) 1823 { 1824 struct netcp_intf *netcp = netdev_priv(ndev); 1825 unsigned int descs = knav_pool_count(netcp->tx_pool); 1826 1827 dev_err(netcp->ndev_dev, "transmit timed out tx descs(%d)\n", descs); 1828 netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size); 1829 netif_trans_update(ndev); 1830 netif_tx_wake_all_queues(ndev); 1831 } 1832 1833 static int netcp_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid) 1834 { 1835 struct netcp_intf *netcp = netdev_priv(ndev); 1836 struct netcp_intf_modpriv *intf_modpriv; 1837 struct netcp_module *module; 1838 unsigned long flags; 1839 int err = 0; 1840 1841 dev_dbg(netcp->ndev_dev, "adding rx vlan id: %d\n", vid); 1842 1843 spin_lock_irqsave(&netcp->lock, flags); 1844 for_each_module(netcp, intf_modpriv) { 1845 module = intf_modpriv->netcp_module; 1846 if ((module->add_vid) && (vid != 0)) { 1847 err = module->add_vid(intf_modpriv->module_priv, vid); 1848 if (err != 0) { 1849 dev_err(netcp->ndev_dev, "Could not add vlan id = %d\n", 1850 vid); 1851 break; 1852 } 1853 } 1854 } 1855 spin_unlock_irqrestore(&netcp->lock, flags); 1856 1857 return err; 1858 } 1859 1860 static int netcp_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid) 1861 { 1862 struct netcp_intf *netcp = netdev_priv(ndev); 1863 struct netcp_intf_modpriv *intf_modpriv; 1864 struct netcp_module *module; 1865 unsigned long flags; 1866 int err = 0; 1867 1868 dev_dbg(netcp->ndev_dev, "removing rx vlan id: %d\n", vid); 1869 1870 spin_lock_irqsave(&netcp->lock, flags); 1871 for_each_module(netcp, intf_modpriv) { 1872 module = intf_modpriv->netcp_module; 1873 if (module->del_vid) { 1874 err = module->del_vid(intf_modpriv->module_priv, vid); 1875 if (err != 0) { 1876 dev_err(netcp->ndev_dev, "Could not delete vlan id = %d\n", 1877 vid); 1878 break; 1879 } 1880 } 1881 } 1882 spin_unlock_irqrestore(&netcp->lock, flags); 1883 return err; 1884 } 1885 1886 static int netcp_setup_tc(struct net_device *dev, enum tc_setup_type type, 1887 void *type_data) 1888 { 1889 struct tc_mqprio_qopt *mqprio = type_data; 1890 u8 num_tc; 1891 int i; 1892 1893 /* setup tc must be called under rtnl lock */ 1894 ASSERT_RTNL(); 1895 1896 if (type != TC_SETUP_QDISC_MQPRIO) 1897 return -EOPNOTSUPP; 1898 1899 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 1900 num_tc = mqprio->num_tc; 1901 1902 /* Sanity-check the number of traffic classes requested */ 1903 if ((dev->real_num_tx_queues <= 1) || 1904 (dev->real_num_tx_queues < num_tc)) 1905 return -EINVAL; 1906 1907 /* Configure traffic class to queue mappings */ 1908 if (num_tc) { 1909 netdev_set_num_tc(dev, num_tc); 1910 for (i = 0; i < num_tc; i++) 1911 netdev_set_tc_queue(dev, i, 1, i); 1912 } else { 1913 netdev_reset_tc(dev); 1914 } 1915 1916 return 0; 1917 } 1918 1919 static void 1920 netcp_get_stats(struct net_device *ndev, struct rtnl_link_stats64 *stats) 1921 { 1922 struct netcp_intf *netcp = netdev_priv(ndev); 1923 struct netcp_stats *p = &netcp->stats; 1924 u64 rxpackets, rxbytes, txpackets, txbytes; 1925 unsigned int start; 1926 1927 do { 1928 start = u64_stats_fetch_begin_irq(&p->syncp_rx); 1929 rxpackets = p->rx_packets; 1930 rxbytes = p->rx_bytes; 1931 } while (u64_stats_fetch_retry_irq(&p->syncp_rx, start)); 1932 1933 do { 1934 start = u64_stats_fetch_begin_irq(&p->syncp_tx); 1935 txpackets = p->tx_packets; 1936 txbytes = p->tx_bytes; 1937 } while (u64_stats_fetch_retry_irq(&p->syncp_tx, start)); 1938 1939 stats->rx_packets = rxpackets; 1940 stats->rx_bytes = rxbytes; 1941 stats->tx_packets = txpackets; 1942 stats->tx_bytes = txbytes; 1943 1944 /* The following are stored as 32 bit */ 1945 stats->rx_errors = p->rx_errors; 1946 stats->rx_dropped = p->rx_dropped; 1947 stats->tx_dropped = p->tx_dropped; 1948 } 1949 1950 static const struct net_device_ops netcp_netdev_ops = { 1951 .ndo_open = netcp_ndo_open, 1952 .ndo_stop = netcp_ndo_stop, 1953 .ndo_start_xmit = netcp_ndo_start_xmit, 1954 .ndo_set_rx_mode = netcp_set_rx_mode, 1955 .ndo_do_ioctl = netcp_ndo_ioctl, 1956 .ndo_get_stats64 = netcp_get_stats, 1957 .ndo_set_mac_address = eth_mac_addr, 1958 .ndo_validate_addr = eth_validate_addr, 1959 .ndo_vlan_rx_add_vid = netcp_rx_add_vid, 1960 .ndo_vlan_rx_kill_vid = netcp_rx_kill_vid, 1961 .ndo_tx_timeout = netcp_ndo_tx_timeout, 1962 .ndo_select_queue = dev_pick_tx_zero, 1963 .ndo_setup_tc = netcp_setup_tc, 1964 }; 1965 1966 static int netcp_create_interface(struct netcp_device *netcp_device, 1967 struct device_node *node_interface) 1968 { 1969 struct device *dev = netcp_device->device; 1970 struct device_node *node = dev->of_node; 1971 struct netcp_intf *netcp; 1972 struct net_device *ndev; 1973 resource_size_t size; 1974 struct resource res; 1975 void __iomem *efuse = NULL; 1976 u32 efuse_mac = 0; 1977 const void *mac_addr; 1978 u8 efuse_mac_addr[6]; 1979 u32 temp[2]; 1980 int ret = 0; 1981 1982 ndev = alloc_etherdev_mqs(sizeof(*netcp), 1, 1); 1983 if (!ndev) { 1984 dev_err(dev, "Error allocating netdev\n"); 1985 return -ENOMEM; 1986 } 1987 1988 ndev->features |= NETIF_F_SG; 1989 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 1990 ndev->hw_features = ndev->features; 1991 ndev->vlan_features |= NETIF_F_SG; 1992 1993 /* MTU range: 68 - 9486 */ 1994 ndev->min_mtu = ETH_MIN_MTU; 1995 ndev->max_mtu = NETCP_MAX_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN); 1996 1997 netcp = netdev_priv(ndev); 1998 spin_lock_init(&netcp->lock); 1999 INIT_LIST_HEAD(&netcp->module_head); 2000 INIT_LIST_HEAD(&netcp->txhook_list_head); 2001 INIT_LIST_HEAD(&netcp->rxhook_list_head); 2002 INIT_LIST_HEAD(&netcp->addr_list); 2003 u64_stats_init(&netcp->stats.syncp_rx); 2004 u64_stats_init(&netcp->stats.syncp_tx); 2005 netcp->netcp_device = netcp_device; 2006 netcp->dev = netcp_device->device; 2007 netcp->ndev = ndev; 2008 netcp->ndev_dev = &ndev->dev; 2009 netcp->msg_enable = netif_msg_init(netcp_debug_level, NETCP_DEBUG); 2010 netcp->tx_pause_threshold = MAX_SKB_FRAGS; 2011 netcp->tx_resume_threshold = netcp->tx_pause_threshold; 2012 netcp->node_interface = node_interface; 2013 2014 ret = of_property_read_u32(node_interface, "efuse-mac", &efuse_mac); 2015 if (efuse_mac) { 2016 if (of_address_to_resource(node, NETCP_EFUSE_REG_INDEX, &res)) { 2017 dev_err(dev, "could not find efuse-mac reg resource\n"); 2018 ret = -ENODEV; 2019 goto quit; 2020 } 2021 size = resource_size(&res); 2022 2023 if (!devm_request_mem_region(dev, res.start, size, 2024 dev_name(dev))) { 2025 dev_err(dev, "could not reserve resource\n"); 2026 ret = -ENOMEM; 2027 goto quit; 2028 } 2029 2030 efuse = devm_ioremap_nocache(dev, res.start, size); 2031 if (!efuse) { 2032 dev_err(dev, "could not map resource\n"); 2033 devm_release_mem_region(dev, res.start, size); 2034 ret = -ENOMEM; 2035 goto quit; 2036 } 2037 2038 emac_arch_get_mac_addr(efuse_mac_addr, efuse, efuse_mac); 2039 if (is_valid_ether_addr(efuse_mac_addr)) 2040 ether_addr_copy(ndev->dev_addr, efuse_mac_addr); 2041 else 2042 eth_random_addr(ndev->dev_addr); 2043 2044 devm_iounmap(dev, efuse); 2045 devm_release_mem_region(dev, res.start, size); 2046 } else { 2047 mac_addr = of_get_mac_address(node_interface); 2048 if (mac_addr) 2049 ether_addr_copy(ndev->dev_addr, mac_addr); 2050 else 2051 eth_random_addr(ndev->dev_addr); 2052 } 2053 2054 ret = of_property_read_string(node_interface, "rx-channel", 2055 &netcp->dma_chan_name); 2056 if (ret < 0) { 2057 dev_err(dev, "missing \"rx-channel\" parameter\n"); 2058 ret = -ENODEV; 2059 goto quit; 2060 } 2061 2062 ret = of_property_read_u32(node_interface, "rx-queue", 2063 &netcp->rx_queue_id); 2064 if (ret < 0) { 2065 dev_warn(dev, "missing \"rx-queue\" parameter\n"); 2066 netcp->rx_queue_id = KNAV_QUEUE_QPEND; 2067 } 2068 2069 ret = of_property_read_u32_array(node_interface, "rx-queue-depth", 2070 netcp->rx_queue_depths, 2071 KNAV_DMA_FDQ_PER_CHAN); 2072 if (ret < 0) { 2073 dev_err(dev, "missing \"rx-queue-depth\" parameter\n"); 2074 netcp->rx_queue_depths[0] = 128; 2075 } 2076 2077 ret = of_property_read_u32_array(node_interface, "rx-pool", temp, 2); 2078 if (ret < 0) { 2079 dev_err(dev, "missing \"rx-pool\" parameter\n"); 2080 ret = -ENODEV; 2081 goto quit; 2082 } 2083 netcp->rx_pool_size = temp[0]; 2084 netcp->rx_pool_region_id = temp[1]; 2085 2086 ret = of_property_read_u32_array(node_interface, "tx-pool", temp, 2); 2087 if (ret < 0) { 2088 dev_err(dev, "missing \"tx-pool\" parameter\n"); 2089 ret = -ENODEV; 2090 goto quit; 2091 } 2092 netcp->tx_pool_size = temp[0]; 2093 netcp->tx_pool_region_id = temp[1]; 2094 2095 if (netcp->tx_pool_size < MAX_SKB_FRAGS) { 2096 dev_err(dev, "tx-pool size too small, must be atleast(%ld)\n", 2097 MAX_SKB_FRAGS); 2098 ret = -ENODEV; 2099 goto quit; 2100 } 2101 2102 ret = of_property_read_u32(node_interface, "tx-completion-queue", 2103 &netcp->tx_compl_qid); 2104 if (ret < 0) { 2105 dev_warn(dev, "missing \"tx-completion-queue\" parameter\n"); 2106 netcp->tx_compl_qid = KNAV_QUEUE_QPEND; 2107 } 2108 2109 /* NAPI register */ 2110 netif_napi_add(ndev, &netcp->rx_napi, netcp_rx_poll, NETCP_NAPI_WEIGHT); 2111 netif_tx_napi_add(ndev, &netcp->tx_napi, netcp_tx_poll, NETCP_NAPI_WEIGHT); 2112 2113 /* Register the network device */ 2114 ndev->dev_id = 0; 2115 ndev->watchdog_timeo = NETCP_TX_TIMEOUT; 2116 ndev->netdev_ops = &netcp_netdev_ops; 2117 SET_NETDEV_DEV(ndev, dev); 2118 2119 list_add_tail(&netcp->interface_list, &netcp_device->interface_head); 2120 return 0; 2121 2122 quit: 2123 free_netdev(ndev); 2124 return ret; 2125 } 2126 2127 static void netcp_delete_interface(struct netcp_device *netcp_device, 2128 struct net_device *ndev) 2129 { 2130 struct netcp_intf_modpriv *intf_modpriv, *tmp; 2131 struct netcp_intf *netcp = netdev_priv(ndev); 2132 struct netcp_module *module; 2133 2134 dev_dbg(netcp_device->device, "Removing interface \"%s\"\n", 2135 ndev->name); 2136 2137 /* Notify each of the modules that the interface is going away */ 2138 list_for_each_entry_safe(intf_modpriv, tmp, &netcp->module_head, 2139 intf_list) { 2140 module = intf_modpriv->netcp_module; 2141 dev_dbg(netcp_device->device, "Releasing module \"%s\"\n", 2142 module->name); 2143 if (module->release) 2144 module->release(intf_modpriv->module_priv); 2145 list_del(&intf_modpriv->intf_list); 2146 } 2147 WARN(!list_empty(&netcp->module_head), "%s interface module list is not empty!\n", 2148 ndev->name); 2149 2150 list_del(&netcp->interface_list); 2151 2152 of_node_put(netcp->node_interface); 2153 unregister_netdev(ndev); 2154 free_netdev(ndev); 2155 } 2156 2157 static int netcp_probe(struct platform_device *pdev) 2158 { 2159 struct device_node *node = pdev->dev.of_node; 2160 struct netcp_intf *netcp_intf, *netcp_tmp; 2161 struct device_node *child, *interfaces; 2162 struct netcp_device *netcp_device; 2163 struct device *dev = &pdev->dev; 2164 struct netcp_module *module; 2165 int ret; 2166 2167 if (!knav_dma_device_ready() || 2168 !knav_qmss_device_ready()) 2169 return -EPROBE_DEFER; 2170 2171 if (!node) { 2172 dev_err(dev, "could not find device info\n"); 2173 return -ENODEV; 2174 } 2175 2176 /* Allocate a new NETCP device instance */ 2177 netcp_device = devm_kzalloc(dev, sizeof(*netcp_device), GFP_KERNEL); 2178 if (!netcp_device) 2179 return -ENOMEM; 2180 2181 pm_runtime_enable(&pdev->dev); 2182 ret = pm_runtime_get_sync(&pdev->dev); 2183 if (ret < 0) { 2184 dev_err(dev, "Failed to enable NETCP power-domain\n"); 2185 pm_runtime_disable(&pdev->dev); 2186 return ret; 2187 } 2188 2189 /* Initialize the NETCP device instance */ 2190 INIT_LIST_HEAD(&netcp_device->interface_head); 2191 INIT_LIST_HEAD(&netcp_device->modpriv_head); 2192 netcp_device->device = dev; 2193 platform_set_drvdata(pdev, netcp_device); 2194 2195 /* create interfaces */ 2196 interfaces = of_get_child_by_name(node, "netcp-interfaces"); 2197 if (!interfaces) { 2198 dev_err(dev, "could not find netcp-interfaces node\n"); 2199 ret = -ENODEV; 2200 goto probe_quit; 2201 } 2202 2203 for_each_available_child_of_node(interfaces, child) { 2204 ret = netcp_create_interface(netcp_device, child); 2205 if (ret) { 2206 dev_err(dev, "could not create interface(%pOFn)\n", 2207 child); 2208 goto probe_quit_interface; 2209 } 2210 } 2211 2212 of_node_put(interfaces); 2213 2214 /* Add the device instance to the list */ 2215 list_add_tail(&netcp_device->device_list, &netcp_devices); 2216 2217 /* Probe & attach any modules already registered */ 2218 mutex_lock(&netcp_modules_lock); 2219 for_each_netcp_module(module) { 2220 ret = netcp_module_probe(netcp_device, module); 2221 if (ret < 0) 2222 dev_err(dev, "module(%s) probe failed\n", module->name); 2223 } 2224 mutex_unlock(&netcp_modules_lock); 2225 return 0; 2226 2227 probe_quit_interface: 2228 list_for_each_entry_safe(netcp_intf, netcp_tmp, 2229 &netcp_device->interface_head, 2230 interface_list) { 2231 netcp_delete_interface(netcp_device, netcp_intf->ndev); 2232 } 2233 2234 of_node_put(interfaces); 2235 2236 probe_quit: 2237 pm_runtime_put_sync(&pdev->dev); 2238 pm_runtime_disable(&pdev->dev); 2239 platform_set_drvdata(pdev, NULL); 2240 return ret; 2241 } 2242 2243 static int netcp_remove(struct platform_device *pdev) 2244 { 2245 struct netcp_device *netcp_device = platform_get_drvdata(pdev); 2246 struct netcp_intf *netcp_intf, *netcp_tmp; 2247 struct netcp_inst_modpriv *inst_modpriv, *tmp; 2248 struct netcp_module *module; 2249 2250 list_for_each_entry_safe(inst_modpriv, tmp, &netcp_device->modpriv_head, 2251 inst_list) { 2252 module = inst_modpriv->netcp_module; 2253 dev_dbg(&pdev->dev, "Removing module \"%s\"\n", module->name); 2254 module->remove(netcp_device, inst_modpriv->module_priv); 2255 list_del(&inst_modpriv->inst_list); 2256 } 2257 2258 /* now that all modules are removed, clean up the interfaces */ 2259 list_for_each_entry_safe(netcp_intf, netcp_tmp, 2260 &netcp_device->interface_head, 2261 interface_list) { 2262 netcp_delete_interface(netcp_device, netcp_intf->ndev); 2263 } 2264 2265 WARN(!list_empty(&netcp_device->interface_head), 2266 "%s interface list not empty!\n", pdev->name); 2267 2268 pm_runtime_put_sync(&pdev->dev); 2269 pm_runtime_disable(&pdev->dev); 2270 platform_set_drvdata(pdev, NULL); 2271 return 0; 2272 } 2273 2274 static const struct of_device_id of_match[] = { 2275 { .compatible = "ti,netcp-1.0", }, 2276 {}, 2277 }; 2278 MODULE_DEVICE_TABLE(of, of_match); 2279 2280 static struct platform_driver netcp_driver = { 2281 .driver = { 2282 .name = "netcp-1.0", 2283 .of_match_table = of_match, 2284 }, 2285 .probe = netcp_probe, 2286 .remove = netcp_remove, 2287 }; 2288 module_platform_driver(netcp_driver); 2289 2290 MODULE_LICENSE("GPL v2"); 2291 MODULE_DESCRIPTION("TI NETCP driver for Keystone SOCs"); 2292 MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com"); 2293