xref: /openbmc/linux/drivers/net/ethernet/ti/netcp_core.c (revision ae3473231e77a3f1909d48cd144cebe5e1d049b3)
1 /*
2  * Keystone NetCP Core driver
3  *
4  * Copyright (C) 2014 Texas Instruments Incorporated
5  * Authors:	Sandeep Nair <sandeep_n@ti.com>
6  *		Sandeep Paulraj <s-paulraj@ti.com>
7  *		Cyril Chemparathy <cyril@ti.com>
8  *		Santosh Shilimkar <santosh.shilimkar@ti.com>
9  *		Murali Karicheri <m-karicheri2@ti.com>
10  *		Wingman Kwok <w-kwok2@ti.com>
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License as
14  * published by the Free Software Foundation version 2.
15  *
16  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
17  * kind, whether express or implied; without even the implied warranty
18  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  */
21 
22 #include <linux/io.h>
23 #include <linux/module.h>
24 #include <linux/of_net.h>
25 #include <linux/of_address.h>
26 #include <linux/if_vlan.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/platform_device.h>
29 #include <linux/soc/ti/knav_qmss.h>
30 #include <linux/soc/ti/knav_dma.h>
31 
32 #include "netcp.h"
33 
34 #define NETCP_SOP_OFFSET	(NET_IP_ALIGN + NET_SKB_PAD)
35 #define NETCP_NAPI_WEIGHT	64
36 #define NETCP_TX_TIMEOUT	(5 * HZ)
37 #define NETCP_PACKET_SIZE	(ETH_FRAME_LEN + ETH_FCS_LEN)
38 #define NETCP_MIN_PACKET_SIZE	ETH_ZLEN
39 #define NETCP_MAX_MCAST_ADDR	16
40 
41 #define NETCP_EFUSE_REG_INDEX	0
42 
43 #define NETCP_MOD_PROBE_SKIPPED	1
44 #define NETCP_MOD_PROBE_FAILED	2
45 
46 #define NETCP_DEBUG (NETIF_MSG_HW	| NETIF_MSG_WOL		|	\
47 		    NETIF_MSG_DRV	| NETIF_MSG_LINK	|	\
48 		    NETIF_MSG_IFUP	| NETIF_MSG_INTR	|	\
49 		    NETIF_MSG_PROBE	| NETIF_MSG_TIMER	|	\
50 		    NETIF_MSG_IFDOWN	| NETIF_MSG_RX_ERR	|	\
51 		    NETIF_MSG_TX_ERR	| NETIF_MSG_TX_DONE	|	\
52 		    NETIF_MSG_PKTDATA	| NETIF_MSG_TX_QUEUED	|	\
53 		    NETIF_MSG_RX_STATUS)
54 
55 #define NETCP_EFUSE_ADDR_SWAP	2
56 
57 #define knav_queue_get_id(q)	knav_queue_device_control(q, \
58 				KNAV_QUEUE_GET_ID, (unsigned long)NULL)
59 
60 #define knav_queue_enable_notify(q) knav_queue_device_control(q,	\
61 					KNAV_QUEUE_ENABLE_NOTIFY,	\
62 					(unsigned long)NULL)
63 
64 #define knav_queue_disable_notify(q) knav_queue_device_control(q,	\
65 					KNAV_QUEUE_DISABLE_NOTIFY,	\
66 					(unsigned long)NULL)
67 
68 #define knav_queue_get_count(q)	knav_queue_device_control(q, \
69 				KNAV_QUEUE_GET_COUNT, (unsigned long)NULL)
70 
71 #define for_each_netcp_module(module)			\
72 	list_for_each_entry(module, &netcp_modules, module_list)
73 
74 #define for_each_netcp_device_module(netcp_device, inst_modpriv) \
75 	list_for_each_entry(inst_modpriv, \
76 		&((netcp_device)->modpriv_head), inst_list)
77 
78 #define for_each_module(netcp, intf_modpriv)			\
79 	list_for_each_entry(intf_modpriv, &netcp->module_head, intf_list)
80 
81 /* Module management structures */
82 struct netcp_device {
83 	struct list_head	device_list;
84 	struct list_head	interface_head;
85 	struct list_head	modpriv_head;
86 	struct device		*device;
87 };
88 
89 struct netcp_inst_modpriv {
90 	struct netcp_device	*netcp_device;
91 	struct netcp_module	*netcp_module;
92 	struct list_head	inst_list;
93 	void			*module_priv;
94 };
95 
96 struct netcp_intf_modpriv {
97 	struct netcp_intf	*netcp_priv;
98 	struct netcp_module	*netcp_module;
99 	struct list_head	intf_list;
100 	void			*module_priv;
101 };
102 
103 struct netcp_tx_cb {
104 	void	*ts_context;
105 	void	(*txtstamp)(void *context, struct sk_buff *skb);
106 };
107 
108 static LIST_HEAD(netcp_devices);
109 static LIST_HEAD(netcp_modules);
110 static DEFINE_MUTEX(netcp_modules_lock);
111 
112 static int netcp_debug_level = -1;
113 module_param(netcp_debug_level, int, 0);
114 MODULE_PARM_DESC(netcp_debug_level, "Netcp debug level (NETIF_MSG bits) (0=none,...,16=all)");
115 
116 /* Helper functions - Get/Set */
117 static void get_pkt_info(dma_addr_t *buff, u32 *buff_len, dma_addr_t *ndesc,
118 			 struct knav_dma_desc *desc)
119 {
120 	*buff_len = le32_to_cpu(desc->buff_len);
121 	*buff = le32_to_cpu(desc->buff);
122 	*ndesc = le32_to_cpu(desc->next_desc);
123 }
124 
125 static u32 get_sw_data(int index, struct knav_dma_desc *desc)
126 {
127 	/* No Endian conversion needed as this data is untouched by hw */
128 	return desc->sw_data[index];
129 }
130 
131 /* use these macros to get sw data */
132 #define GET_SW_DATA0(desc) get_sw_data(0, desc)
133 #define GET_SW_DATA1(desc) get_sw_data(1, desc)
134 #define GET_SW_DATA2(desc) get_sw_data(2, desc)
135 #define GET_SW_DATA3(desc) get_sw_data(3, desc)
136 
137 static void get_org_pkt_info(dma_addr_t *buff, u32 *buff_len,
138 			     struct knav_dma_desc *desc)
139 {
140 	*buff = le32_to_cpu(desc->orig_buff);
141 	*buff_len = le32_to_cpu(desc->orig_len);
142 }
143 
144 static void get_words(dma_addr_t *words, int num_words, __le32 *desc)
145 {
146 	int i;
147 
148 	for (i = 0; i < num_words; i++)
149 		words[i] = le32_to_cpu(desc[i]);
150 }
151 
152 static void set_pkt_info(dma_addr_t buff, u32 buff_len, u32 ndesc,
153 			 struct knav_dma_desc *desc)
154 {
155 	desc->buff_len = cpu_to_le32(buff_len);
156 	desc->buff = cpu_to_le32(buff);
157 	desc->next_desc = cpu_to_le32(ndesc);
158 }
159 
160 static void set_desc_info(u32 desc_info, u32 pkt_info,
161 			  struct knav_dma_desc *desc)
162 {
163 	desc->desc_info = cpu_to_le32(desc_info);
164 	desc->packet_info = cpu_to_le32(pkt_info);
165 }
166 
167 static void set_sw_data(int index, u32 data, struct knav_dma_desc *desc)
168 {
169 	/* No Endian conversion needed as this data is untouched by hw */
170 	desc->sw_data[index] = data;
171 }
172 
173 /* use these macros to set sw data */
174 #define SET_SW_DATA0(data, desc) set_sw_data(0, data, desc)
175 #define SET_SW_DATA1(data, desc) set_sw_data(1, data, desc)
176 #define SET_SW_DATA2(data, desc) set_sw_data(2, data, desc)
177 #define SET_SW_DATA3(data, desc) set_sw_data(3, data, desc)
178 
179 static void set_org_pkt_info(dma_addr_t buff, u32 buff_len,
180 			     struct knav_dma_desc *desc)
181 {
182 	desc->orig_buff = cpu_to_le32(buff);
183 	desc->orig_len = cpu_to_le32(buff_len);
184 }
185 
186 static void set_words(u32 *words, int num_words, __le32 *desc)
187 {
188 	int i;
189 
190 	for (i = 0; i < num_words; i++)
191 		desc[i] = cpu_to_le32(words[i]);
192 }
193 
194 /* Read the e-fuse value as 32 bit values to be endian independent */
195 static int emac_arch_get_mac_addr(char *x, void __iomem *efuse_mac, u32 swap)
196 {
197 	unsigned int addr0, addr1;
198 
199 	addr1 = readl(efuse_mac + 4);
200 	addr0 = readl(efuse_mac);
201 
202 	switch (swap) {
203 	case NETCP_EFUSE_ADDR_SWAP:
204 		addr0 = addr1;
205 		addr1 = readl(efuse_mac);
206 		break;
207 	default:
208 		break;
209 	}
210 
211 	x[0] = (addr1 & 0x0000ff00) >> 8;
212 	x[1] = addr1 & 0x000000ff;
213 	x[2] = (addr0 & 0xff000000) >> 24;
214 	x[3] = (addr0 & 0x00ff0000) >> 16;
215 	x[4] = (addr0 & 0x0000ff00) >> 8;
216 	x[5] = addr0 & 0x000000ff;
217 
218 	return 0;
219 }
220 
221 static const char *netcp_node_name(struct device_node *node)
222 {
223 	const char *name;
224 
225 	if (of_property_read_string(node, "label", &name) < 0)
226 		name = node->name;
227 	if (!name)
228 		name = "unknown";
229 	return name;
230 }
231 
232 /* Module management routines */
233 static int netcp_register_interface(struct netcp_intf *netcp)
234 {
235 	int ret;
236 
237 	ret = register_netdev(netcp->ndev);
238 	if (!ret)
239 		netcp->netdev_registered = true;
240 	return ret;
241 }
242 
243 static int netcp_module_probe(struct netcp_device *netcp_device,
244 			      struct netcp_module *module)
245 {
246 	struct device *dev = netcp_device->device;
247 	struct device_node *devices, *interface, *node = dev->of_node;
248 	struct device_node *child;
249 	struct netcp_inst_modpriv *inst_modpriv;
250 	struct netcp_intf *netcp_intf;
251 	struct netcp_module *tmp;
252 	bool primary_module_registered = false;
253 	int ret;
254 
255 	/* Find this module in the sub-tree for this device */
256 	devices = of_get_child_by_name(node, "netcp-devices");
257 	if (!devices) {
258 		dev_err(dev, "could not find netcp-devices node\n");
259 		return NETCP_MOD_PROBE_SKIPPED;
260 	}
261 
262 	for_each_available_child_of_node(devices, child) {
263 		const char *name = netcp_node_name(child);
264 
265 		if (!strcasecmp(module->name, name))
266 			break;
267 	}
268 
269 	of_node_put(devices);
270 	/* If module not used for this device, skip it */
271 	if (!child) {
272 		dev_warn(dev, "module(%s) not used for device\n", module->name);
273 		return NETCP_MOD_PROBE_SKIPPED;
274 	}
275 
276 	inst_modpriv = devm_kzalloc(dev, sizeof(*inst_modpriv), GFP_KERNEL);
277 	if (!inst_modpriv) {
278 		of_node_put(child);
279 		return -ENOMEM;
280 	}
281 
282 	inst_modpriv->netcp_device = netcp_device;
283 	inst_modpriv->netcp_module = module;
284 	list_add_tail(&inst_modpriv->inst_list, &netcp_device->modpriv_head);
285 
286 	ret = module->probe(netcp_device, dev, child,
287 			    &inst_modpriv->module_priv);
288 	of_node_put(child);
289 	if (ret) {
290 		dev_err(dev, "Probe of module(%s) failed with %d\n",
291 			module->name, ret);
292 		list_del(&inst_modpriv->inst_list);
293 		devm_kfree(dev, inst_modpriv);
294 		return NETCP_MOD_PROBE_FAILED;
295 	}
296 
297 	/* Attach modules only if the primary module is probed */
298 	for_each_netcp_module(tmp) {
299 		if (tmp->primary)
300 			primary_module_registered = true;
301 	}
302 
303 	if (!primary_module_registered)
304 		return 0;
305 
306 	/* Attach module to interfaces */
307 	list_for_each_entry(netcp_intf, &netcp_device->interface_head,
308 			    interface_list) {
309 		struct netcp_intf_modpriv *intf_modpriv;
310 
311 		intf_modpriv = devm_kzalloc(dev, sizeof(*intf_modpriv),
312 					    GFP_KERNEL);
313 		if (!intf_modpriv)
314 			return -ENOMEM;
315 
316 		interface = of_parse_phandle(netcp_intf->node_interface,
317 					     module->name, 0);
318 
319 		if (!interface) {
320 			devm_kfree(dev, intf_modpriv);
321 			continue;
322 		}
323 
324 		intf_modpriv->netcp_priv = netcp_intf;
325 		intf_modpriv->netcp_module = module;
326 		list_add_tail(&intf_modpriv->intf_list,
327 			      &netcp_intf->module_head);
328 
329 		ret = module->attach(inst_modpriv->module_priv,
330 				     netcp_intf->ndev, interface,
331 				     &intf_modpriv->module_priv);
332 		of_node_put(interface);
333 		if (ret) {
334 			dev_dbg(dev, "Attach of module %s declined with %d\n",
335 				module->name, ret);
336 			list_del(&intf_modpriv->intf_list);
337 			devm_kfree(dev, intf_modpriv);
338 			continue;
339 		}
340 	}
341 
342 	/* Now register the interface with netdev */
343 	list_for_each_entry(netcp_intf,
344 			    &netcp_device->interface_head,
345 			    interface_list) {
346 		/* If interface not registered then register now */
347 		if (!netcp_intf->netdev_registered) {
348 			ret = netcp_register_interface(netcp_intf);
349 			if (ret)
350 				return -ENODEV;
351 		}
352 	}
353 	return 0;
354 }
355 
356 int netcp_register_module(struct netcp_module *module)
357 {
358 	struct netcp_device *netcp_device;
359 	struct netcp_module *tmp;
360 	int ret;
361 
362 	if (!module->name) {
363 		WARN(1, "error registering netcp module: no name\n");
364 		return -EINVAL;
365 	}
366 
367 	if (!module->probe) {
368 		WARN(1, "error registering netcp module: no probe\n");
369 		return -EINVAL;
370 	}
371 
372 	mutex_lock(&netcp_modules_lock);
373 
374 	for_each_netcp_module(tmp) {
375 		if (!strcasecmp(tmp->name, module->name)) {
376 			mutex_unlock(&netcp_modules_lock);
377 			return -EEXIST;
378 		}
379 	}
380 	list_add_tail(&module->module_list, &netcp_modules);
381 
382 	list_for_each_entry(netcp_device, &netcp_devices, device_list) {
383 		ret = netcp_module_probe(netcp_device, module);
384 		if (ret < 0)
385 			goto fail;
386 	}
387 	mutex_unlock(&netcp_modules_lock);
388 	return 0;
389 
390 fail:
391 	mutex_unlock(&netcp_modules_lock);
392 	netcp_unregister_module(module);
393 	return ret;
394 }
395 EXPORT_SYMBOL_GPL(netcp_register_module);
396 
397 static void netcp_release_module(struct netcp_device *netcp_device,
398 				 struct netcp_module *module)
399 {
400 	struct netcp_inst_modpriv *inst_modpriv, *inst_tmp;
401 	struct netcp_intf *netcp_intf, *netcp_tmp;
402 	struct device *dev = netcp_device->device;
403 
404 	/* Release the module from each interface */
405 	list_for_each_entry_safe(netcp_intf, netcp_tmp,
406 				 &netcp_device->interface_head,
407 				 interface_list) {
408 		struct netcp_intf_modpriv *intf_modpriv, *intf_tmp;
409 
410 		list_for_each_entry_safe(intf_modpriv, intf_tmp,
411 					 &netcp_intf->module_head,
412 					 intf_list) {
413 			if (intf_modpriv->netcp_module == module) {
414 				module->release(intf_modpriv->module_priv);
415 				list_del(&intf_modpriv->intf_list);
416 				devm_kfree(dev, intf_modpriv);
417 				break;
418 			}
419 		}
420 	}
421 
422 	/* Remove the module from each instance */
423 	list_for_each_entry_safe(inst_modpriv, inst_tmp,
424 				 &netcp_device->modpriv_head, inst_list) {
425 		if (inst_modpriv->netcp_module == module) {
426 			module->remove(netcp_device,
427 				       inst_modpriv->module_priv);
428 			list_del(&inst_modpriv->inst_list);
429 			devm_kfree(dev, inst_modpriv);
430 			break;
431 		}
432 	}
433 }
434 
435 void netcp_unregister_module(struct netcp_module *module)
436 {
437 	struct netcp_device *netcp_device;
438 	struct netcp_module *module_tmp;
439 
440 	mutex_lock(&netcp_modules_lock);
441 
442 	list_for_each_entry(netcp_device, &netcp_devices, device_list) {
443 		netcp_release_module(netcp_device, module);
444 	}
445 
446 	/* Remove the module from the module list */
447 	for_each_netcp_module(module_tmp) {
448 		if (module == module_tmp) {
449 			list_del(&module->module_list);
450 			break;
451 		}
452 	}
453 
454 	mutex_unlock(&netcp_modules_lock);
455 }
456 EXPORT_SYMBOL_GPL(netcp_unregister_module);
457 
458 void *netcp_module_get_intf_data(struct netcp_module *module,
459 				 struct netcp_intf *intf)
460 {
461 	struct netcp_intf_modpriv *intf_modpriv;
462 
463 	list_for_each_entry(intf_modpriv, &intf->module_head, intf_list)
464 		if (intf_modpriv->netcp_module == module)
465 			return intf_modpriv->module_priv;
466 	return NULL;
467 }
468 EXPORT_SYMBOL_GPL(netcp_module_get_intf_data);
469 
470 /* Module TX and RX Hook management */
471 struct netcp_hook_list {
472 	struct list_head	 list;
473 	netcp_hook_rtn		*hook_rtn;
474 	void			*hook_data;
475 	int			 order;
476 };
477 
478 int netcp_register_txhook(struct netcp_intf *netcp_priv, int order,
479 			  netcp_hook_rtn *hook_rtn, void *hook_data)
480 {
481 	struct netcp_hook_list *entry;
482 	struct netcp_hook_list *next;
483 	unsigned long flags;
484 
485 	entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL);
486 	if (!entry)
487 		return -ENOMEM;
488 
489 	entry->hook_rtn  = hook_rtn;
490 	entry->hook_data = hook_data;
491 	entry->order     = order;
492 
493 	spin_lock_irqsave(&netcp_priv->lock, flags);
494 	list_for_each_entry(next, &netcp_priv->txhook_list_head, list) {
495 		if (next->order > order)
496 			break;
497 	}
498 	__list_add(&entry->list, next->list.prev, &next->list);
499 	spin_unlock_irqrestore(&netcp_priv->lock, flags);
500 
501 	return 0;
502 }
503 EXPORT_SYMBOL_GPL(netcp_register_txhook);
504 
505 int netcp_unregister_txhook(struct netcp_intf *netcp_priv, int order,
506 			    netcp_hook_rtn *hook_rtn, void *hook_data)
507 {
508 	struct netcp_hook_list *next, *n;
509 	unsigned long flags;
510 
511 	spin_lock_irqsave(&netcp_priv->lock, flags);
512 	list_for_each_entry_safe(next, n, &netcp_priv->txhook_list_head, list) {
513 		if ((next->order     == order) &&
514 		    (next->hook_rtn  == hook_rtn) &&
515 		    (next->hook_data == hook_data)) {
516 			list_del(&next->list);
517 			spin_unlock_irqrestore(&netcp_priv->lock, flags);
518 			devm_kfree(netcp_priv->dev, next);
519 			return 0;
520 		}
521 	}
522 	spin_unlock_irqrestore(&netcp_priv->lock, flags);
523 	return -ENOENT;
524 }
525 EXPORT_SYMBOL_GPL(netcp_unregister_txhook);
526 
527 int netcp_register_rxhook(struct netcp_intf *netcp_priv, int order,
528 			  netcp_hook_rtn *hook_rtn, void *hook_data)
529 {
530 	struct netcp_hook_list *entry;
531 	struct netcp_hook_list *next;
532 	unsigned long flags;
533 
534 	entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL);
535 	if (!entry)
536 		return -ENOMEM;
537 
538 	entry->hook_rtn  = hook_rtn;
539 	entry->hook_data = hook_data;
540 	entry->order     = order;
541 
542 	spin_lock_irqsave(&netcp_priv->lock, flags);
543 	list_for_each_entry(next, &netcp_priv->rxhook_list_head, list) {
544 		if (next->order > order)
545 			break;
546 	}
547 	__list_add(&entry->list, next->list.prev, &next->list);
548 	spin_unlock_irqrestore(&netcp_priv->lock, flags);
549 
550 	return 0;
551 }
552 EXPORT_SYMBOL_GPL(netcp_register_rxhook);
553 
554 int netcp_unregister_rxhook(struct netcp_intf *netcp_priv, int order,
555 			    netcp_hook_rtn *hook_rtn, void *hook_data)
556 {
557 	struct netcp_hook_list *next, *n;
558 	unsigned long flags;
559 
560 	spin_lock_irqsave(&netcp_priv->lock, flags);
561 	list_for_each_entry_safe(next, n, &netcp_priv->rxhook_list_head, list) {
562 		if ((next->order     == order) &&
563 		    (next->hook_rtn  == hook_rtn) &&
564 		    (next->hook_data == hook_data)) {
565 			list_del(&next->list);
566 			spin_unlock_irqrestore(&netcp_priv->lock, flags);
567 			devm_kfree(netcp_priv->dev, next);
568 			return 0;
569 		}
570 	}
571 	spin_unlock_irqrestore(&netcp_priv->lock, flags);
572 
573 	return -ENOENT;
574 }
575 EXPORT_SYMBOL_GPL(netcp_unregister_rxhook);
576 
577 static void netcp_frag_free(bool is_frag, void *ptr)
578 {
579 	if (is_frag)
580 		skb_free_frag(ptr);
581 	else
582 		kfree(ptr);
583 }
584 
585 static void netcp_free_rx_desc_chain(struct netcp_intf *netcp,
586 				     struct knav_dma_desc *desc)
587 {
588 	struct knav_dma_desc *ndesc;
589 	dma_addr_t dma_desc, dma_buf;
590 	unsigned int buf_len, dma_sz = sizeof(*ndesc);
591 	void *buf_ptr;
592 	u32 tmp;
593 
594 	get_words(&dma_desc, 1, &desc->next_desc);
595 
596 	while (dma_desc) {
597 		ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
598 		if (unlikely(!ndesc)) {
599 			dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
600 			break;
601 		}
602 		get_pkt_info(&dma_buf, &tmp, &dma_desc, ndesc);
603 		/* warning!!!! We are retrieving the virtual ptr in the sw_data
604 		 * field as a 32bit value. Will not work on 64bit machines
605 		 */
606 		buf_ptr = (void *)GET_SW_DATA0(ndesc);
607 		buf_len = (int)GET_SW_DATA1(desc);
608 		dma_unmap_page(netcp->dev, dma_buf, PAGE_SIZE, DMA_FROM_DEVICE);
609 		__free_page(buf_ptr);
610 		knav_pool_desc_put(netcp->rx_pool, desc);
611 	}
612 	/* warning!!!! We are retrieving the virtual ptr in the sw_data
613 	 * field as a 32bit value. Will not work on 64bit machines
614 	 */
615 	buf_ptr = (void *)GET_SW_DATA0(desc);
616 	buf_len = (int)GET_SW_DATA1(desc);
617 
618 	if (buf_ptr)
619 		netcp_frag_free(buf_len <= PAGE_SIZE, buf_ptr);
620 	knav_pool_desc_put(netcp->rx_pool, desc);
621 }
622 
623 static void netcp_empty_rx_queue(struct netcp_intf *netcp)
624 {
625 	struct knav_dma_desc *desc;
626 	unsigned int dma_sz;
627 	dma_addr_t dma;
628 
629 	for (; ;) {
630 		dma = knav_queue_pop(netcp->rx_queue, &dma_sz);
631 		if (!dma)
632 			break;
633 
634 		desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz);
635 		if (unlikely(!desc)) {
636 			dev_err(netcp->ndev_dev, "%s: failed to unmap Rx desc\n",
637 				__func__);
638 			netcp->ndev->stats.rx_errors++;
639 			continue;
640 		}
641 		netcp_free_rx_desc_chain(netcp, desc);
642 		netcp->ndev->stats.rx_dropped++;
643 	}
644 }
645 
646 static int netcp_process_one_rx_packet(struct netcp_intf *netcp)
647 {
648 	unsigned int dma_sz, buf_len, org_buf_len;
649 	struct knav_dma_desc *desc, *ndesc;
650 	unsigned int pkt_sz = 0, accum_sz;
651 	struct netcp_hook_list *rx_hook;
652 	dma_addr_t dma_desc, dma_buff;
653 	struct netcp_packet p_info;
654 	struct sk_buff *skb;
655 	void *org_buf_ptr;
656 
657 	dma_desc = knav_queue_pop(netcp->rx_queue, &dma_sz);
658 	if (!dma_desc)
659 		return -1;
660 
661 	desc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
662 	if (unlikely(!desc)) {
663 		dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
664 		return 0;
665 	}
666 
667 	get_pkt_info(&dma_buff, &buf_len, &dma_desc, desc);
668 	/* warning!!!! We are retrieving the virtual ptr in the sw_data
669 	 * field as a 32bit value. Will not work on 64bit machines
670 	 */
671 	org_buf_ptr = (void *)GET_SW_DATA0(desc);
672 	org_buf_len = (int)GET_SW_DATA1(desc);
673 
674 	if (unlikely(!org_buf_ptr)) {
675 		dev_err(netcp->ndev_dev, "NULL bufptr in desc\n");
676 		goto free_desc;
677 	}
678 
679 	pkt_sz &= KNAV_DMA_DESC_PKT_LEN_MASK;
680 	accum_sz = buf_len;
681 	dma_unmap_single(netcp->dev, dma_buff, buf_len, DMA_FROM_DEVICE);
682 
683 	/* Build a new sk_buff for the primary buffer */
684 	skb = build_skb(org_buf_ptr, org_buf_len);
685 	if (unlikely(!skb)) {
686 		dev_err(netcp->ndev_dev, "build_skb() failed\n");
687 		goto free_desc;
688 	}
689 
690 	/* update data, tail and len */
691 	skb_reserve(skb, NETCP_SOP_OFFSET);
692 	__skb_put(skb, buf_len);
693 
694 	/* Fill in the page fragment list */
695 	while (dma_desc) {
696 		struct page *page;
697 
698 		ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
699 		if (unlikely(!ndesc)) {
700 			dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
701 			goto free_desc;
702 		}
703 
704 		get_pkt_info(&dma_buff, &buf_len, &dma_desc, ndesc);
705 		/* warning!!!! We are retrieving the virtual ptr in the sw_data
706 		 * field as a 32bit value. Will not work on 64bit machines
707 		 */
708 		page = (struct page *)GET_SW_DATA0(desc);
709 
710 		if (likely(dma_buff && buf_len && page)) {
711 			dma_unmap_page(netcp->dev, dma_buff, PAGE_SIZE,
712 				       DMA_FROM_DEVICE);
713 		} else {
714 			dev_err(netcp->ndev_dev, "Bad Rx desc dma_buff(%pad), len(%d), page(%p)\n",
715 				&dma_buff, buf_len, page);
716 			goto free_desc;
717 		}
718 
719 		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
720 				offset_in_page(dma_buff), buf_len, PAGE_SIZE);
721 		accum_sz += buf_len;
722 
723 		/* Free the descriptor */
724 		knav_pool_desc_put(netcp->rx_pool, ndesc);
725 	}
726 
727 	/* Free the primary descriptor */
728 	knav_pool_desc_put(netcp->rx_pool, desc);
729 
730 	/* check for packet len and warn */
731 	if (unlikely(pkt_sz != accum_sz))
732 		dev_dbg(netcp->ndev_dev, "mismatch in packet size(%d) & sum of fragments(%d)\n",
733 			pkt_sz, accum_sz);
734 
735 	/* Remove ethernet FCS from the packet */
736 	__pskb_trim(skb, skb->len - ETH_FCS_LEN);
737 
738 	/* Call each of the RX hooks */
739 	p_info.skb = skb;
740 	skb->dev = netcp->ndev;
741 	p_info.rxtstamp_complete = false;
742 	list_for_each_entry(rx_hook, &netcp->rxhook_list_head, list) {
743 		int ret;
744 
745 		ret = rx_hook->hook_rtn(rx_hook->order, rx_hook->hook_data,
746 					&p_info);
747 		if (unlikely(ret)) {
748 			dev_err(netcp->ndev_dev, "RX hook %d failed: %d\n",
749 				rx_hook->order, ret);
750 			netcp->ndev->stats.rx_errors++;
751 			dev_kfree_skb(skb);
752 			return 0;
753 		}
754 	}
755 
756 	netcp->ndev->stats.rx_packets++;
757 	netcp->ndev->stats.rx_bytes += skb->len;
758 
759 	/* push skb up the stack */
760 	skb->protocol = eth_type_trans(skb, netcp->ndev);
761 	netif_receive_skb(skb);
762 	return 0;
763 
764 free_desc:
765 	netcp_free_rx_desc_chain(netcp, desc);
766 	netcp->ndev->stats.rx_errors++;
767 	return 0;
768 }
769 
770 static int netcp_process_rx_packets(struct netcp_intf *netcp,
771 				    unsigned int budget)
772 {
773 	int i;
774 
775 	for (i = 0; (i < budget) && !netcp_process_one_rx_packet(netcp); i++)
776 		;
777 	return i;
778 }
779 
780 /* Release descriptors and attached buffers from Rx FDQ */
781 static void netcp_free_rx_buf(struct netcp_intf *netcp, int fdq)
782 {
783 	struct knav_dma_desc *desc;
784 	unsigned int buf_len, dma_sz;
785 	dma_addr_t dma;
786 	void *buf_ptr;
787 
788 	/* Allocate descriptor */
789 	while ((dma = knav_queue_pop(netcp->rx_fdq[fdq], &dma_sz))) {
790 		desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz);
791 		if (unlikely(!desc)) {
792 			dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
793 			continue;
794 		}
795 
796 		get_org_pkt_info(&dma, &buf_len, desc);
797 		/* warning!!!! We are retrieving the virtual ptr in the sw_data
798 		 * field as a 32bit value. Will not work on 64bit machines
799 		 */
800 		buf_ptr = (void *)GET_SW_DATA0(desc);
801 
802 		if (unlikely(!dma)) {
803 			dev_err(netcp->ndev_dev, "NULL orig_buff in desc\n");
804 			knav_pool_desc_put(netcp->rx_pool, desc);
805 			continue;
806 		}
807 
808 		if (unlikely(!buf_ptr)) {
809 			dev_err(netcp->ndev_dev, "NULL bufptr in desc\n");
810 			knav_pool_desc_put(netcp->rx_pool, desc);
811 			continue;
812 		}
813 
814 		if (fdq == 0) {
815 			dma_unmap_single(netcp->dev, dma, buf_len,
816 					 DMA_FROM_DEVICE);
817 			netcp_frag_free((buf_len <= PAGE_SIZE), buf_ptr);
818 		} else {
819 			dma_unmap_page(netcp->dev, dma, buf_len,
820 				       DMA_FROM_DEVICE);
821 			__free_page(buf_ptr);
822 		}
823 
824 		knav_pool_desc_put(netcp->rx_pool, desc);
825 	}
826 }
827 
828 static void netcp_rxpool_free(struct netcp_intf *netcp)
829 {
830 	int i;
831 
832 	for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN &&
833 	     !IS_ERR_OR_NULL(netcp->rx_fdq[i]); i++)
834 		netcp_free_rx_buf(netcp, i);
835 
836 	if (knav_pool_count(netcp->rx_pool) != netcp->rx_pool_size)
837 		dev_err(netcp->ndev_dev, "Lost Rx (%d) descriptors\n",
838 			netcp->rx_pool_size - knav_pool_count(netcp->rx_pool));
839 
840 	knav_pool_destroy(netcp->rx_pool);
841 	netcp->rx_pool = NULL;
842 }
843 
844 static int netcp_allocate_rx_buf(struct netcp_intf *netcp, int fdq)
845 {
846 	struct knav_dma_desc *hwdesc;
847 	unsigned int buf_len, dma_sz;
848 	u32 desc_info, pkt_info;
849 	struct page *page;
850 	dma_addr_t dma;
851 	void *bufptr;
852 	u32 sw_data[2];
853 
854 	/* Allocate descriptor */
855 	hwdesc = knav_pool_desc_get(netcp->rx_pool);
856 	if (IS_ERR_OR_NULL(hwdesc)) {
857 		dev_dbg(netcp->ndev_dev, "out of rx pool desc\n");
858 		return -ENOMEM;
859 	}
860 
861 	if (likely(fdq == 0)) {
862 		unsigned int primary_buf_len;
863 		/* Allocate a primary receive queue entry */
864 		buf_len = NETCP_PACKET_SIZE + NETCP_SOP_OFFSET;
865 		primary_buf_len = SKB_DATA_ALIGN(buf_len) +
866 				SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
867 
868 		bufptr = netdev_alloc_frag(primary_buf_len);
869 		sw_data[1] = primary_buf_len;
870 
871 		if (unlikely(!bufptr)) {
872 			dev_warn_ratelimited(netcp->ndev_dev,
873 					     "Primary RX buffer alloc failed\n");
874 			goto fail;
875 		}
876 		dma = dma_map_single(netcp->dev, bufptr, buf_len,
877 				     DMA_TO_DEVICE);
878 		if (unlikely(dma_mapping_error(netcp->dev, dma)))
879 			goto fail;
880 
881 		/* warning!!!! We are saving the virtual ptr in the sw_data
882 		 * field as a 32bit value. Will not work on 64bit machines
883 		 */
884 		sw_data[0] = (u32)bufptr;
885 	} else {
886 		/* Allocate a secondary receive queue entry */
887 		page = alloc_page(GFP_ATOMIC | GFP_DMA | __GFP_COLD);
888 		if (unlikely(!page)) {
889 			dev_warn_ratelimited(netcp->ndev_dev, "Secondary page alloc failed\n");
890 			goto fail;
891 		}
892 		buf_len = PAGE_SIZE;
893 		dma = dma_map_page(netcp->dev, page, 0, buf_len, DMA_TO_DEVICE);
894 		/* warning!!!! We are saving the virtual ptr in the sw_data
895 		 * field as a 32bit value. Will not work on 64bit machines
896 		 */
897 		sw_data[0] = (u32)page;
898 		sw_data[1] = 0;
899 	}
900 
901 	desc_info =  KNAV_DMA_DESC_PS_INFO_IN_DESC;
902 	desc_info |= buf_len & KNAV_DMA_DESC_PKT_LEN_MASK;
903 	pkt_info =  KNAV_DMA_DESC_HAS_EPIB;
904 	pkt_info |= KNAV_DMA_NUM_PS_WORDS << KNAV_DMA_DESC_PSLEN_SHIFT;
905 	pkt_info |= (netcp->rx_queue_id & KNAV_DMA_DESC_RETQ_MASK) <<
906 		    KNAV_DMA_DESC_RETQ_SHIFT;
907 	set_org_pkt_info(dma, buf_len, hwdesc);
908 	SET_SW_DATA0(sw_data[0], hwdesc);
909 	SET_SW_DATA1(sw_data[1], hwdesc);
910 	set_desc_info(desc_info, pkt_info, hwdesc);
911 
912 	/* Push to FDQs */
913 	knav_pool_desc_map(netcp->rx_pool, hwdesc, sizeof(*hwdesc), &dma,
914 			   &dma_sz);
915 	knav_queue_push(netcp->rx_fdq[fdq], dma, sizeof(*hwdesc), 0);
916 	return 0;
917 
918 fail:
919 	knav_pool_desc_put(netcp->rx_pool, hwdesc);
920 	return -ENOMEM;
921 }
922 
923 /* Refill Rx FDQ with descriptors & attached buffers */
924 static void netcp_rxpool_refill(struct netcp_intf *netcp)
925 {
926 	u32 fdq_deficit[KNAV_DMA_FDQ_PER_CHAN] = {0};
927 	int i, ret = 0;
928 
929 	/* Calculate the FDQ deficit and refill */
930 	for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_fdq[i]; i++) {
931 		fdq_deficit[i] = netcp->rx_queue_depths[i] -
932 				 knav_queue_get_count(netcp->rx_fdq[i]);
933 
934 		while (fdq_deficit[i]-- && !ret)
935 			ret = netcp_allocate_rx_buf(netcp, i);
936 	} /* end for fdqs */
937 }
938 
939 /* NAPI poll */
940 static int netcp_rx_poll(struct napi_struct *napi, int budget)
941 {
942 	struct netcp_intf *netcp = container_of(napi, struct netcp_intf,
943 						rx_napi);
944 	unsigned int packets;
945 
946 	packets = netcp_process_rx_packets(netcp, budget);
947 
948 	netcp_rxpool_refill(netcp);
949 	if (packets < budget) {
950 		napi_complete(&netcp->rx_napi);
951 		knav_queue_enable_notify(netcp->rx_queue);
952 	}
953 
954 	return packets;
955 }
956 
957 static void netcp_rx_notify(void *arg)
958 {
959 	struct netcp_intf *netcp = arg;
960 
961 	knav_queue_disable_notify(netcp->rx_queue);
962 	napi_schedule(&netcp->rx_napi);
963 }
964 
965 static void netcp_free_tx_desc_chain(struct netcp_intf *netcp,
966 				     struct knav_dma_desc *desc,
967 				     unsigned int desc_sz)
968 {
969 	struct knav_dma_desc *ndesc = desc;
970 	dma_addr_t dma_desc, dma_buf;
971 	unsigned int buf_len;
972 
973 	while (ndesc) {
974 		get_pkt_info(&dma_buf, &buf_len, &dma_desc, ndesc);
975 
976 		if (dma_buf && buf_len)
977 			dma_unmap_single(netcp->dev, dma_buf, buf_len,
978 					 DMA_TO_DEVICE);
979 		else
980 			dev_warn(netcp->ndev_dev, "bad Tx desc buf(%pad), len(%d)\n",
981 				 &dma_buf, buf_len);
982 
983 		knav_pool_desc_put(netcp->tx_pool, ndesc);
984 		ndesc = NULL;
985 		if (dma_desc) {
986 			ndesc = knav_pool_desc_unmap(netcp->tx_pool, dma_desc,
987 						     desc_sz);
988 			if (!ndesc)
989 				dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n");
990 		}
991 	}
992 }
993 
994 static int netcp_process_tx_compl_packets(struct netcp_intf *netcp,
995 					  unsigned int budget)
996 {
997 	struct knav_dma_desc *desc;
998 	struct netcp_tx_cb *tx_cb;
999 	struct sk_buff *skb;
1000 	unsigned int dma_sz;
1001 	dma_addr_t dma;
1002 	int pkts = 0;
1003 
1004 	while (budget--) {
1005 		dma = knav_queue_pop(netcp->tx_compl_q, &dma_sz);
1006 		if (!dma)
1007 			break;
1008 		desc = knav_pool_desc_unmap(netcp->tx_pool, dma, dma_sz);
1009 		if (unlikely(!desc)) {
1010 			dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n");
1011 			netcp->ndev->stats.tx_errors++;
1012 			continue;
1013 		}
1014 
1015 		/* warning!!!! We are retrieving the virtual ptr in the sw_data
1016 		 * field as a 32bit value. Will not work on 64bit machines
1017 		 */
1018 		skb = (struct sk_buff *)GET_SW_DATA0(desc);
1019 		netcp_free_tx_desc_chain(netcp, desc, dma_sz);
1020 		if (!skb) {
1021 			dev_err(netcp->ndev_dev, "No skb in Tx desc\n");
1022 			netcp->ndev->stats.tx_errors++;
1023 			continue;
1024 		}
1025 
1026 		tx_cb = (struct netcp_tx_cb *)skb->cb;
1027 		if (tx_cb->txtstamp)
1028 			tx_cb->txtstamp(tx_cb->ts_context, skb);
1029 
1030 		if (netif_subqueue_stopped(netcp->ndev, skb) &&
1031 		    netif_running(netcp->ndev) &&
1032 		    (knav_pool_count(netcp->tx_pool) >
1033 		    netcp->tx_resume_threshold)) {
1034 			u16 subqueue = skb_get_queue_mapping(skb);
1035 
1036 			netif_wake_subqueue(netcp->ndev, subqueue);
1037 		}
1038 
1039 		netcp->ndev->stats.tx_packets++;
1040 		netcp->ndev->stats.tx_bytes += skb->len;
1041 		dev_kfree_skb(skb);
1042 		pkts++;
1043 	}
1044 	return pkts;
1045 }
1046 
1047 static int netcp_tx_poll(struct napi_struct *napi, int budget)
1048 {
1049 	int packets;
1050 	struct netcp_intf *netcp = container_of(napi, struct netcp_intf,
1051 						tx_napi);
1052 
1053 	packets = netcp_process_tx_compl_packets(netcp, budget);
1054 	if (packets < budget) {
1055 		napi_complete(&netcp->tx_napi);
1056 		knav_queue_enable_notify(netcp->tx_compl_q);
1057 	}
1058 
1059 	return packets;
1060 }
1061 
1062 static void netcp_tx_notify(void *arg)
1063 {
1064 	struct netcp_intf *netcp = arg;
1065 
1066 	knav_queue_disable_notify(netcp->tx_compl_q);
1067 	napi_schedule(&netcp->tx_napi);
1068 }
1069 
1070 static struct knav_dma_desc*
1071 netcp_tx_map_skb(struct sk_buff *skb, struct netcp_intf *netcp)
1072 {
1073 	struct knav_dma_desc *desc, *ndesc, *pdesc;
1074 	unsigned int pkt_len = skb_headlen(skb);
1075 	struct device *dev = netcp->dev;
1076 	dma_addr_t dma_addr;
1077 	unsigned int dma_sz;
1078 	int i;
1079 
1080 	/* Map the linear buffer */
1081 	dma_addr = dma_map_single(dev, skb->data, pkt_len, DMA_TO_DEVICE);
1082 	if (unlikely(dma_mapping_error(dev, dma_addr))) {
1083 		dev_err(netcp->ndev_dev, "Failed to map skb buffer\n");
1084 		return NULL;
1085 	}
1086 
1087 	desc = knav_pool_desc_get(netcp->tx_pool);
1088 	if (IS_ERR_OR_NULL(desc)) {
1089 		dev_err(netcp->ndev_dev, "out of TX desc\n");
1090 		dma_unmap_single(dev, dma_addr, pkt_len, DMA_TO_DEVICE);
1091 		return NULL;
1092 	}
1093 
1094 	set_pkt_info(dma_addr, pkt_len, 0, desc);
1095 	if (skb_is_nonlinear(skb)) {
1096 		prefetchw(skb_shinfo(skb));
1097 	} else {
1098 		desc->next_desc = 0;
1099 		goto upd_pkt_len;
1100 	}
1101 
1102 	pdesc = desc;
1103 
1104 	/* Handle the case where skb is fragmented in pages */
1105 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1106 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1107 		struct page *page = skb_frag_page(frag);
1108 		u32 page_offset = frag->page_offset;
1109 		u32 buf_len = skb_frag_size(frag);
1110 		dma_addr_t desc_dma;
1111 		u32 desc_dma_32;
1112 		u32 pkt_info;
1113 
1114 		dma_addr = dma_map_page(dev, page, page_offset, buf_len,
1115 					DMA_TO_DEVICE);
1116 		if (unlikely(!dma_addr)) {
1117 			dev_err(netcp->ndev_dev, "Failed to map skb page\n");
1118 			goto free_descs;
1119 		}
1120 
1121 		ndesc = knav_pool_desc_get(netcp->tx_pool);
1122 		if (IS_ERR_OR_NULL(ndesc)) {
1123 			dev_err(netcp->ndev_dev, "out of TX desc for frags\n");
1124 			dma_unmap_page(dev, dma_addr, buf_len, DMA_TO_DEVICE);
1125 			goto free_descs;
1126 		}
1127 
1128 		desc_dma = knav_pool_desc_virt_to_dma(netcp->tx_pool, ndesc);
1129 		pkt_info =
1130 			(netcp->tx_compl_qid & KNAV_DMA_DESC_RETQ_MASK) <<
1131 				KNAV_DMA_DESC_RETQ_SHIFT;
1132 		set_pkt_info(dma_addr, buf_len, 0, ndesc);
1133 		desc_dma_32 = (u32)desc_dma;
1134 		set_words(&desc_dma_32, 1, &pdesc->next_desc);
1135 		pkt_len += buf_len;
1136 		if (pdesc != desc)
1137 			knav_pool_desc_map(netcp->tx_pool, pdesc,
1138 					   sizeof(*pdesc), &desc_dma, &dma_sz);
1139 		pdesc = ndesc;
1140 	}
1141 	if (pdesc != desc)
1142 		knav_pool_desc_map(netcp->tx_pool, pdesc, sizeof(*pdesc),
1143 				   &dma_addr, &dma_sz);
1144 
1145 	/* frag list based linkage is not supported for now. */
1146 	if (skb_shinfo(skb)->frag_list) {
1147 		dev_err_ratelimited(netcp->ndev_dev, "NETIF_F_FRAGLIST not supported\n");
1148 		goto free_descs;
1149 	}
1150 
1151 upd_pkt_len:
1152 	WARN_ON(pkt_len != skb->len);
1153 
1154 	pkt_len &= KNAV_DMA_DESC_PKT_LEN_MASK;
1155 	set_words(&pkt_len, 1, &desc->desc_info);
1156 	return desc;
1157 
1158 free_descs:
1159 	netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc));
1160 	return NULL;
1161 }
1162 
1163 static int netcp_tx_submit_skb(struct netcp_intf *netcp,
1164 			       struct sk_buff *skb,
1165 			       struct knav_dma_desc *desc)
1166 {
1167 	struct netcp_tx_pipe *tx_pipe = NULL;
1168 	struct netcp_hook_list *tx_hook;
1169 	struct netcp_packet p_info;
1170 	struct netcp_tx_cb *tx_cb;
1171 	unsigned int dma_sz;
1172 	dma_addr_t dma;
1173 	u32 tmp = 0;
1174 	int ret = 0;
1175 
1176 	p_info.netcp = netcp;
1177 	p_info.skb = skb;
1178 	p_info.tx_pipe = NULL;
1179 	p_info.psdata_len = 0;
1180 	p_info.ts_context = NULL;
1181 	p_info.txtstamp = NULL;
1182 	p_info.epib = desc->epib;
1183 	p_info.psdata = (u32 __force *)desc->psdata;
1184 	memset(p_info.epib, 0, KNAV_DMA_NUM_EPIB_WORDS * sizeof(__le32));
1185 
1186 	/* Find out where to inject the packet for transmission */
1187 	list_for_each_entry(tx_hook, &netcp->txhook_list_head, list) {
1188 		ret = tx_hook->hook_rtn(tx_hook->order, tx_hook->hook_data,
1189 					&p_info);
1190 		if (unlikely(ret != 0)) {
1191 			dev_err(netcp->ndev_dev, "TX hook %d rejected the packet with reason(%d)\n",
1192 				tx_hook->order, ret);
1193 			ret = (ret < 0) ? ret : NETDEV_TX_OK;
1194 			goto out;
1195 		}
1196 	}
1197 
1198 	/* Make sure some TX hook claimed the packet */
1199 	tx_pipe = p_info.tx_pipe;
1200 	if (!tx_pipe) {
1201 		dev_err(netcp->ndev_dev, "No TX hook claimed the packet!\n");
1202 		ret = -ENXIO;
1203 		goto out;
1204 	}
1205 
1206 	tx_cb = (struct netcp_tx_cb *)skb->cb;
1207 	tx_cb->ts_context = p_info.ts_context;
1208 	tx_cb->txtstamp = p_info.txtstamp;
1209 
1210 	/* update descriptor */
1211 	if (p_info.psdata_len) {
1212 		/* psdata points to both native-endian and device-endian data */
1213 		__le32 *psdata = (void __force *)p_info.psdata;
1214 
1215 		memmove(p_info.psdata, p_info.psdata + p_info.psdata_len,
1216 			p_info.psdata_len);
1217 		set_words(p_info.psdata, p_info.psdata_len, psdata);
1218 		tmp |= (p_info.psdata_len & KNAV_DMA_DESC_PSLEN_MASK) <<
1219 			KNAV_DMA_DESC_PSLEN_SHIFT;
1220 	}
1221 
1222 	tmp |= KNAV_DMA_DESC_HAS_EPIB |
1223 		((netcp->tx_compl_qid & KNAV_DMA_DESC_RETQ_MASK) <<
1224 		KNAV_DMA_DESC_RETQ_SHIFT);
1225 
1226 	if (!(tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO)) {
1227 		tmp |= ((tx_pipe->switch_to_port & KNAV_DMA_DESC_PSFLAG_MASK) <<
1228 			KNAV_DMA_DESC_PSFLAG_SHIFT);
1229 	}
1230 
1231 	set_words(&tmp, 1, &desc->packet_info);
1232 	/* warning!!!! We are saving the virtual ptr in the sw_data
1233 	 * field as a 32bit value. Will not work on 64bit machines
1234 	 */
1235 	SET_SW_DATA0((u32)skb, desc);
1236 
1237 	if (tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO) {
1238 		tmp = tx_pipe->switch_to_port;
1239 		set_words(&tmp, 1, &desc->tag_info);
1240 	}
1241 
1242 	/* submit packet descriptor */
1243 	ret = knav_pool_desc_map(netcp->tx_pool, desc, sizeof(*desc), &dma,
1244 				 &dma_sz);
1245 	if (unlikely(ret)) {
1246 		dev_err(netcp->ndev_dev, "%s() failed to map desc\n", __func__);
1247 		ret = -ENOMEM;
1248 		goto out;
1249 	}
1250 	skb_tx_timestamp(skb);
1251 	knav_queue_push(tx_pipe->dma_queue, dma, dma_sz, 0);
1252 
1253 out:
1254 	return ret;
1255 }
1256 
1257 /* Submit the packet */
1258 static int netcp_ndo_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1259 {
1260 	struct netcp_intf *netcp = netdev_priv(ndev);
1261 	int subqueue = skb_get_queue_mapping(skb);
1262 	struct knav_dma_desc *desc;
1263 	int desc_count, ret = 0;
1264 
1265 	if (unlikely(skb->len <= 0)) {
1266 		dev_kfree_skb(skb);
1267 		return NETDEV_TX_OK;
1268 	}
1269 
1270 	if (unlikely(skb->len < NETCP_MIN_PACKET_SIZE)) {
1271 		ret = skb_padto(skb, NETCP_MIN_PACKET_SIZE);
1272 		if (ret < 0) {
1273 			/* If we get here, the skb has already been dropped */
1274 			dev_warn(netcp->ndev_dev, "padding failed (%d), packet dropped\n",
1275 				 ret);
1276 			ndev->stats.tx_dropped++;
1277 			return ret;
1278 		}
1279 		skb->len = NETCP_MIN_PACKET_SIZE;
1280 	}
1281 
1282 	desc = netcp_tx_map_skb(skb, netcp);
1283 	if (unlikely(!desc)) {
1284 		netif_stop_subqueue(ndev, subqueue);
1285 		ret = -ENOBUFS;
1286 		goto drop;
1287 	}
1288 
1289 	ret = netcp_tx_submit_skb(netcp, skb, desc);
1290 	if (ret)
1291 		goto drop;
1292 
1293 	netif_trans_update(ndev);
1294 
1295 	/* Check Tx pool count & stop subqueue if needed */
1296 	desc_count = knav_pool_count(netcp->tx_pool);
1297 	if (desc_count < netcp->tx_pause_threshold) {
1298 		dev_dbg(netcp->ndev_dev, "pausing tx, count(%d)\n", desc_count);
1299 		netif_stop_subqueue(ndev, subqueue);
1300 	}
1301 	return NETDEV_TX_OK;
1302 
1303 drop:
1304 	ndev->stats.tx_dropped++;
1305 	if (desc)
1306 		netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc));
1307 	dev_kfree_skb(skb);
1308 	return ret;
1309 }
1310 
1311 int netcp_txpipe_close(struct netcp_tx_pipe *tx_pipe)
1312 {
1313 	if (tx_pipe->dma_channel) {
1314 		knav_dma_close_channel(tx_pipe->dma_channel);
1315 		tx_pipe->dma_channel = NULL;
1316 	}
1317 	return 0;
1318 }
1319 EXPORT_SYMBOL_GPL(netcp_txpipe_close);
1320 
1321 int netcp_txpipe_open(struct netcp_tx_pipe *tx_pipe)
1322 {
1323 	struct device *dev = tx_pipe->netcp_device->device;
1324 	struct knav_dma_cfg config;
1325 	int ret = 0;
1326 	u8 name[16];
1327 
1328 	memset(&config, 0, sizeof(config));
1329 	config.direction = DMA_MEM_TO_DEV;
1330 	config.u.tx.filt_einfo = false;
1331 	config.u.tx.filt_pswords = false;
1332 	config.u.tx.priority = DMA_PRIO_MED_L;
1333 
1334 	tx_pipe->dma_channel = knav_dma_open_channel(dev,
1335 				tx_pipe->dma_chan_name, &config);
1336 	if (IS_ERR_OR_NULL(tx_pipe->dma_channel)) {
1337 		dev_err(dev, "failed opening tx chan(%s)\n",
1338 			tx_pipe->dma_chan_name);
1339 		goto err;
1340 	}
1341 
1342 	snprintf(name, sizeof(name), "tx-pipe-%s", dev_name(dev));
1343 	tx_pipe->dma_queue = knav_queue_open(name, tx_pipe->dma_queue_id,
1344 					     KNAV_QUEUE_SHARED);
1345 	if (IS_ERR(tx_pipe->dma_queue)) {
1346 		dev_err(dev, "Could not open DMA queue for channel \"%s\": %d\n",
1347 			name, ret);
1348 		ret = PTR_ERR(tx_pipe->dma_queue);
1349 		goto err;
1350 	}
1351 
1352 	dev_dbg(dev, "opened tx pipe %s\n", name);
1353 	return 0;
1354 
1355 err:
1356 	if (!IS_ERR_OR_NULL(tx_pipe->dma_channel))
1357 		knav_dma_close_channel(tx_pipe->dma_channel);
1358 	tx_pipe->dma_channel = NULL;
1359 	return ret;
1360 }
1361 EXPORT_SYMBOL_GPL(netcp_txpipe_open);
1362 
1363 int netcp_txpipe_init(struct netcp_tx_pipe *tx_pipe,
1364 		      struct netcp_device *netcp_device,
1365 		      const char *dma_chan_name, unsigned int dma_queue_id)
1366 {
1367 	memset(tx_pipe, 0, sizeof(*tx_pipe));
1368 	tx_pipe->netcp_device = netcp_device;
1369 	tx_pipe->dma_chan_name = dma_chan_name;
1370 	tx_pipe->dma_queue_id = dma_queue_id;
1371 	return 0;
1372 }
1373 EXPORT_SYMBOL_GPL(netcp_txpipe_init);
1374 
1375 static struct netcp_addr *netcp_addr_find(struct netcp_intf *netcp,
1376 					  const u8 *addr,
1377 					  enum netcp_addr_type type)
1378 {
1379 	struct netcp_addr *naddr;
1380 
1381 	list_for_each_entry(naddr, &netcp->addr_list, node) {
1382 		if (naddr->type != type)
1383 			continue;
1384 		if (addr && memcmp(addr, naddr->addr, ETH_ALEN))
1385 			continue;
1386 		return naddr;
1387 	}
1388 
1389 	return NULL;
1390 }
1391 
1392 static struct netcp_addr *netcp_addr_add(struct netcp_intf *netcp,
1393 					 const u8 *addr,
1394 					 enum netcp_addr_type type)
1395 {
1396 	struct netcp_addr *naddr;
1397 
1398 	naddr = devm_kmalloc(netcp->dev, sizeof(*naddr), GFP_ATOMIC);
1399 	if (!naddr)
1400 		return NULL;
1401 
1402 	naddr->type = type;
1403 	naddr->flags = 0;
1404 	naddr->netcp = netcp;
1405 	if (addr)
1406 		ether_addr_copy(naddr->addr, addr);
1407 	else
1408 		eth_zero_addr(naddr->addr);
1409 	list_add_tail(&naddr->node, &netcp->addr_list);
1410 
1411 	return naddr;
1412 }
1413 
1414 static void netcp_addr_del(struct netcp_intf *netcp, struct netcp_addr *naddr)
1415 {
1416 	list_del(&naddr->node);
1417 	devm_kfree(netcp->dev, naddr);
1418 }
1419 
1420 static void netcp_addr_clear_mark(struct netcp_intf *netcp)
1421 {
1422 	struct netcp_addr *naddr;
1423 
1424 	list_for_each_entry(naddr, &netcp->addr_list, node)
1425 		naddr->flags = 0;
1426 }
1427 
1428 static void netcp_addr_add_mark(struct netcp_intf *netcp, const u8 *addr,
1429 				enum netcp_addr_type type)
1430 {
1431 	struct netcp_addr *naddr;
1432 
1433 	naddr = netcp_addr_find(netcp, addr, type);
1434 	if (naddr) {
1435 		naddr->flags |= ADDR_VALID;
1436 		return;
1437 	}
1438 
1439 	naddr = netcp_addr_add(netcp, addr, type);
1440 	if (!WARN_ON(!naddr))
1441 		naddr->flags |= ADDR_NEW;
1442 }
1443 
1444 static void netcp_addr_sweep_del(struct netcp_intf *netcp)
1445 {
1446 	struct netcp_addr *naddr, *tmp;
1447 	struct netcp_intf_modpriv *priv;
1448 	struct netcp_module *module;
1449 	int error;
1450 
1451 	list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) {
1452 		if (naddr->flags & (ADDR_VALID | ADDR_NEW))
1453 			continue;
1454 		dev_dbg(netcp->ndev_dev, "deleting address %pM, type %x\n",
1455 			naddr->addr, naddr->type);
1456 		for_each_module(netcp, priv) {
1457 			module = priv->netcp_module;
1458 			if (!module->del_addr)
1459 				continue;
1460 			error = module->del_addr(priv->module_priv,
1461 						 naddr);
1462 			WARN_ON(error);
1463 		}
1464 		netcp_addr_del(netcp, naddr);
1465 	}
1466 }
1467 
1468 static void netcp_addr_sweep_add(struct netcp_intf *netcp)
1469 {
1470 	struct netcp_addr *naddr, *tmp;
1471 	struct netcp_intf_modpriv *priv;
1472 	struct netcp_module *module;
1473 	int error;
1474 
1475 	list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) {
1476 		if (!(naddr->flags & ADDR_NEW))
1477 			continue;
1478 		dev_dbg(netcp->ndev_dev, "adding address %pM, type %x\n",
1479 			naddr->addr, naddr->type);
1480 
1481 		for_each_module(netcp, priv) {
1482 			module = priv->netcp_module;
1483 			if (!module->add_addr)
1484 				continue;
1485 			error = module->add_addr(priv->module_priv, naddr);
1486 			WARN_ON(error);
1487 		}
1488 	}
1489 }
1490 
1491 static void netcp_set_rx_mode(struct net_device *ndev)
1492 {
1493 	struct netcp_intf *netcp = netdev_priv(ndev);
1494 	struct netdev_hw_addr *ndev_addr;
1495 	bool promisc;
1496 
1497 	promisc = (ndev->flags & IFF_PROMISC ||
1498 		   ndev->flags & IFF_ALLMULTI ||
1499 		   netdev_mc_count(ndev) > NETCP_MAX_MCAST_ADDR);
1500 
1501 	spin_lock(&netcp->lock);
1502 	/* first clear all marks */
1503 	netcp_addr_clear_mark(netcp);
1504 
1505 	/* next add new entries, mark existing ones */
1506 	netcp_addr_add_mark(netcp, ndev->broadcast, ADDR_BCAST);
1507 	for_each_dev_addr(ndev, ndev_addr)
1508 		netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_DEV);
1509 	netdev_for_each_uc_addr(ndev_addr, ndev)
1510 		netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_UCAST);
1511 	netdev_for_each_mc_addr(ndev_addr, ndev)
1512 		netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_MCAST);
1513 
1514 	if (promisc)
1515 		netcp_addr_add_mark(netcp, NULL, ADDR_ANY);
1516 
1517 	/* finally sweep and callout into modules */
1518 	netcp_addr_sweep_del(netcp);
1519 	netcp_addr_sweep_add(netcp);
1520 	spin_unlock(&netcp->lock);
1521 }
1522 
1523 static void netcp_free_navigator_resources(struct netcp_intf *netcp)
1524 {
1525 	int i;
1526 
1527 	if (netcp->rx_channel) {
1528 		knav_dma_close_channel(netcp->rx_channel);
1529 		netcp->rx_channel = NULL;
1530 	}
1531 
1532 	if (!IS_ERR_OR_NULL(netcp->rx_pool))
1533 		netcp_rxpool_free(netcp);
1534 
1535 	if (!IS_ERR_OR_NULL(netcp->rx_queue)) {
1536 		knav_queue_close(netcp->rx_queue);
1537 		netcp->rx_queue = NULL;
1538 	}
1539 
1540 	for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN &&
1541 	     !IS_ERR_OR_NULL(netcp->rx_fdq[i]) ; ++i) {
1542 		knav_queue_close(netcp->rx_fdq[i]);
1543 		netcp->rx_fdq[i] = NULL;
1544 	}
1545 
1546 	if (!IS_ERR_OR_NULL(netcp->tx_compl_q)) {
1547 		knav_queue_close(netcp->tx_compl_q);
1548 		netcp->tx_compl_q = NULL;
1549 	}
1550 
1551 	if (!IS_ERR_OR_NULL(netcp->tx_pool)) {
1552 		knav_pool_destroy(netcp->tx_pool);
1553 		netcp->tx_pool = NULL;
1554 	}
1555 }
1556 
1557 static int netcp_setup_navigator_resources(struct net_device *ndev)
1558 {
1559 	struct netcp_intf *netcp = netdev_priv(ndev);
1560 	struct knav_queue_notify_config notify_cfg;
1561 	struct knav_dma_cfg config;
1562 	u32 last_fdq = 0;
1563 	u8 name[16];
1564 	int ret;
1565 	int i;
1566 
1567 	/* Create Rx/Tx descriptor pools */
1568 	snprintf(name, sizeof(name), "rx-pool-%s", ndev->name);
1569 	netcp->rx_pool = knav_pool_create(name, netcp->rx_pool_size,
1570 						netcp->rx_pool_region_id);
1571 	if (IS_ERR_OR_NULL(netcp->rx_pool)) {
1572 		dev_err(netcp->ndev_dev, "Couldn't create rx pool\n");
1573 		ret = PTR_ERR(netcp->rx_pool);
1574 		goto fail;
1575 	}
1576 
1577 	snprintf(name, sizeof(name), "tx-pool-%s", ndev->name);
1578 	netcp->tx_pool = knav_pool_create(name, netcp->tx_pool_size,
1579 						netcp->tx_pool_region_id);
1580 	if (IS_ERR_OR_NULL(netcp->tx_pool)) {
1581 		dev_err(netcp->ndev_dev, "Couldn't create tx pool\n");
1582 		ret = PTR_ERR(netcp->tx_pool);
1583 		goto fail;
1584 	}
1585 
1586 	/* open Tx completion queue */
1587 	snprintf(name, sizeof(name), "tx-compl-%s", ndev->name);
1588 	netcp->tx_compl_q = knav_queue_open(name, netcp->tx_compl_qid, 0);
1589 	if (IS_ERR(netcp->tx_compl_q)) {
1590 		ret = PTR_ERR(netcp->tx_compl_q);
1591 		goto fail;
1592 	}
1593 	netcp->tx_compl_qid = knav_queue_get_id(netcp->tx_compl_q);
1594 
1595 	/* Set notification for Tx completion */
1596 	notify_cfg.fn = netcp_tx_notify;
1597 	notify_cfg.fn_arg = netcp;
1598 	ret = knav_queue_device_control(netcp->tx_compl_q,
1599 					KNAV_QUEUE_SET_NOTIFIER,
1600 					(unsigned long)&notify_cfg);
1601 	if (ret)
1602 		goto fail;
1603 
1604 	knav_queue_disable_notify(netcp->tx_compl_q);
1605 
1606 	/* open Rx completion queue */
1607 	snprintf(name, sizeof(name), "rx-compl-%s", ndev->name);
1608 	netcp->rx_queue = knav_queue_open(name, netcp->rx_queue_id, 0);
1609 	if (IS_ERR(netcp->rx_queue)) {
1610 		ret = PTR_ERR(netcp->rx_queue);
1611 		goto fail;
1612 	}
1613 	netcp->rx_queue_id = knav_queue_get_id(netcp->rx_queue);
1614 
1615 	/* Set notification for Rx completion */
1616 	notify_cfg.fn = netcp_rx_notify;
1617 	notify_cfg.fn_arg = netcp;
1618 	ret = knav_queue_device_control(netcp->rx_queue,
1619 					KNAV_QUEUE_SET_NOTIFIER,
1620 					(unsigned long)&notify_cfg);
1621 	if (ret)
1622 		goto fail;
1623 
1624 	knav_queue_disable_notify(netcp->rx_queue);
1625 
1626 	/* open Rx FDQs */
1627 	for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_queue_depths[i];
1628 	     ++i) {
1629 		snprintf(name, sizeof(name), "rx-fdq-%s-%d", ndev->name, i);
1630 		netcp->rx_fdq[i] = knav_queue_open(name, KNAV_QUEUE_GP, 0);
1631 		if (IS_ERR(netcp->rx_fdq[i])) {
1632 			ret = PTR_ERR(netcp->rx_fdq[i]);
1633 			goto fail;
1634 		}
1635 	}
1636 
1637 	memset(&config, 0, sizeof(config));
1638 	config.direction		= DMA_DEV_TO_MEM;
1639 	config.u.rx.einfo_present	= true;
1640 	config.u.rx.psinfo_present	= true;
1641 	config.u.rx.err_mode		= DMA_DROP;
1642 	config.u.rx.desc_type		= DMA_DESC_HOST;
1643 	config.u.rx.psinfo_at_sop	= false;
1644 	config.u.rx.sop_offset		= NETCP_SOP_OFFSET;
1645 	config.u.rx.dst_q		= netcp->rx_queue_id;
1646 	config.u.rx.thresh		= DMA_THRESH_NONE;
1647 
1648 	for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN; ++i) {
1649 		if (netcp->rx_fdq[i])
1650 			last_fdq = knav_queue_get_id(netcp->rx_fdq[i]);
1651 		config.u.rx.fdq[i] = last_fdq;
1652 	}
1653 
1654 	netcp->rx_channel = knav_dma_open_channel(netcp->netcp_device->device,
1655 					netcp->dma_chan_name, &config);
1656 	if (IS_ERR_OR_NULL(netcp->rx_channel)) {
1657 		dev_err(netcp->ndev_dev, "failed opening rx chan(%s\n",
1658 			netcp->dma_chan_name);
1659 		goto fail;
1660 	}
1661 
1662 	dev_dbg(netcp->ndev_dev, "opened RX channel: %p\n", netcp->rx_channel);
1663 	return 0;
1664 
1665 fail:
1666 	netcp_free_navigator_resources(netcp);
1667 	return ret;
1668 }
1669 
1670 /* Open the device */
1671 static int netcp_ndo_open(struct net_device *ndev)
1672 {
1673 	struct netcp_intf *netcp = netdev_priv(ndev);
1674 	struct netcp_intf_modpriv *intf_modpriv;
1675 	struct netcp_module *module;
1676 	int ret;
1677 
1678 	netif_carrier_off(ndev);
1679 	ret = netcp_setup_navigator_resources(ndev);
1680 	if (ret) {
1681 		dev_err(netcp->ndev_dev, "Failed to setup navigator resources\n");
1682 		goto fail;
1683 	}
1684 
1685 	for_each_module(netcp, intf_modpriv) {
1686 		module = intf_modpriv->netcp_module;
1687 		if (module->open) {
1688 			ret = module->open(intf_modpriv->module_priv, ndev);
1689 			if (ret != 0) {
1690 				dev_err(netcp->ndev_dev, "module open failed\n");
1691 				goto fail_open;
1692 			}
1693 		}
1694 	}
1695 
1696 	napi_enable(&netcp->rx_napi);
1697 	napi_enable(&netcp->tx_napi);
1698 	knav_queue_enable_notify(netcp->tx_compl_q);
1699 	knav_queue_enable_notify(netcp->rx_queue);
1700 	netcp_rxpool_refill(netcp);
1701 	netif_tx_wake_all_queues(ndev);
1702 	dev_dbg(netcp->ndev_dev, "netcp device %s opened\n", ndev->name);
1703 	return 0;
1704 
1705 fail_open:
1706 	for_each_module(netcp, intf_modpriv) {
1707 		module = intf_modpriv->netcp_module;
1708 		if (module->close)
1709 			module->close(intf_modpriv->module_priv, ndev);
1710 	}
1711 
1712 fail:
1713 	netcp_free_navigator_resources(netcp);
1714 	return ret;
1715 }
1716 
1717 /* Close the device */
1718 static int netcp_ndo_stop(struct net_device *ndev)
1719 {
1720 	struct netcp_intf *netcp = netdev_priv(ndev);
1721 	struct netcp_intf_modpriv *intf_modpriv;
1722 	struct netcp_module *module;
1723 	int err = 0;
1724 
1725 	netif_tx_stop_all_queues(ndev);
1726 	netif_carrier_off(ndev);
1727 	netcp_addr_clear_mark(netcp);
1728 	netcp_addr_sweep_del(netcp);
1729 	knav_queue_disable_notify(netcp->rx_queue);
1730 	knav_queue_disable_notify(netcp->tx_compl_q);
1731 	napi_disable(&netcp->rx_napi);
1732 	napi_disable(&netcp->tx_napi);
1733 
1734 	for_each_module(netcp, intf_modpriv) {
1735 		module = intf_modpriv->netcp_module;
1736 		if (module->close) {
1737 			err = module->close(intf_modpriv->module_priv, ndev);
1738 			if (err != 0)
1739 				dev_err(netcp->ndev_dev, "Close failed\n");
1740 		}
1741 	}
1742 
1743 	/* Recycle Rx descriptors from completion queue */
1744 	netcp_empty_rx_queue(netcp);
1745 
1746 	/* Recycle Tx descriptors from completion queue */
1747 	netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size);
1748 
1749 	if (knav_pool_count(netcp->tx_pool) != netcp->tx_pool_size)
1750 		dev_err(netcp->ndev_dev, "Lost (%d) Tx descs\n",
1751 			netcp->tx_pool_size - knav_pool_count(netcp->tx_pool));
1752 
1753 	netcp_free_navigator_resources(netcp);
1754 	dev_dbg(netcp->ndev_dev, "netcp device %s stopped\n", ndev->name);
1755 	return 0;
1756 }
1757 
1758 static int netcp_ndo_ioctl(struct net_device *ndev,
1759 			   struct ifreq *req, int cmd)
1760 {
1761 	struct netcp_intf *netcp = netdev_priv(ndev);
1762 	struct netcp_intf_modpriv *intf_modpriv;
1763 	struct netcp_module *module;
1764 	int ret = -1, err = -EOPNOTSUPP;
1765 
1766 	if (!netif_running(ndev))
1767 		return -EINVAL;
1768 
1769 	for_each_module(netcp, intf_modpriv) {
1770 		module = intf_modpriv->netcp_module;
1771 		if (!module->ioctl)
1772 			continue;
1773 
1774 		err = module->ioctl(intf_modpriv->module_priv, req, cmd);
1775 		if ((err < 0) && (err != -EOPNOTSUPP)) {
1776 			ret = err;
1777 			goto out;
1778 		}
1779 		if (err == 0)
1780 			ret = err;
1781 	}
1782 
1783 out:
1784 	return (ret == 0) ? 0 : err;
1785 }
1786 
1787 static void netcp_ndo_tx_timeout(struct net_device *ndev)
1788 {
1789 	struct netcp_intf *netcp = netdev_priv(ndev);
1790 	unsigned int descs = knav_pool_count(netcp->tx_pool);
1791 
1792 	dev_err(netcp->ndev_dev, "transmit timed out tx descs(%d)\n", descs);
1793 	netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size);
1794 	netif_trans_update(ndev);
1795 	netif_tx_wake_all_queues(ndev);
1796 }
1797 
1798 static int netcp_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
1799 {
1800 	struct netcp_intf *netcp = netdev_priv(ndev);
1801 	struct netcp_intf_modpriv *intf_modpriv;
1802 	struct netcp_module *module;
1803 	unsigned long flags;
1804 	int err = 0;
1805 
1806 	dev_dbg(netcp->ndev_dev, "adding rx vlan id: %d\n", vid);
1807 
1808 	spin_lock_irqsave(&netcp->lock, flags);
1809 	for_each_module(netcp, intf_modpriv) {
1810 		module = intf_modpriv->netcp_module;
1811 		if ((module->add_vid) && (vid != 0)) {
1812 			err = module->add_vid(intf_modpriv->module_priv, vid);
1813 			if (err != 0) {
1814 				dev_err(netcp->ndev_dev, "Could not add vlan id = %d\n",
1815 					vid);
1816 				break;
1817 			}
1818 		}
1819 	}
1820 	spin_unlock_irqrestore(&netcp->lock, flags);
1821 
1822 	return err;
1823 }
1824 
1825 static int netcp_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
1826 {
1827 	struct netcp_intf *netcp = netdev_priv(ndev);
1828 	struct netcp_intf_modpriv *intf_modpriv;
1829 	struct netcp_module *module;
1830 	unsigned long flags;
1831 	int err = 0;
1832 
1833 	dev_dbg(netcp->ndev_dev, "removing rx vlan id: %d\n", vid);
1834 
1835 	spin_lock_irqsave(&netcp->lock, flags);
1836 	for_each_module(netcp, intf_modpriv) {
1837 		module = intf_modpriv->netcp_module;
1838 		if (module->del_vid) {
1839 			err = module->del_vid(intf_modpriv->module_priv, vid);
1840 			if (err != 0) {
1841 				dev_err(netcp->ndev_dev, "Could not delete vlan id = %d\n",
1842 					vid);
1843 				break;
1844 			}
1845 		}
1846 	}
1847 	spin_unlock_irqrestore(&netcp->lock, flags);
1848 	return err;
1849 }
1850 
1851 static u16 netcp_select_queue(struct net_device *dev, struct sk_buff *skb,
1852 			      void *accel_priv,
1853 			      select_queue_fallback_t fallback)
1854 {
1855 	return 0;
1856 }
1857 
1858 static int netcp_setup_tc(struct net_device *dev, u32 handle, __be16 proto,
1859 			  struct tc_to_netdev *tc)
1860 {
1861 	int i;
1862 
1863 	/* setup tc must be called under rtnl lock */
1864 	ASSERT_RTNL();
1865 
1866 	if (tc->type != TC_SETUP_MQPRIO)
1867 		return -EINVAL;
1868 
1869 	/* Sanity-check the number of traffic classes requested */
1870 	if ((dev->real_num_tx_queues <= 1) ||
1871 	    (dev->real_num_tx_queues < tc->tc))
1872 		return -EINVAL;
1873 
1874 	/* Configure traffic class to queue mappings */
1875 	if (tc->tc) {
1876 		netdev_set_num_tc(dev, tc->tc);
1877 		for (i = 0; i < tc->tc; i++)
1878 			netdev_set_tc_queue(dev, i, 1, i);
1879 	} else {
1880 		netdev_reset_tc(dev);
1881 	}
1882 
1883 	return 0;
1884 }
1885 
1886 static const struct net_device_ops netcp_netdev_ops = {
1887 	.ndo_open		= netcp_ndo_open,
1888 	.ndo_stop		= netcp_ndo_stop,
1889 	.ndo_start_xmit		= netcp_ndo_start_xmit,
1890 	.ndo_set_rx_mode	= netcp_set_rx_mode,
1891 	.ndo_do_ioctl           = netcp_ndo_ioctl,
1892 	.ndo_set_mac_address	= eth_mac_addr,
1893 	.ndo_validate_addr	= eth_validate_addr,
1894 	.ndo_vlan_rx_add_vid	= netcp_rx_add_vid,
1895 	.ndo_vlan_rx_kill_vid	= netcp_rx_kill_vid,
1896 	.ndo_tx_timeout		= netcp_ndo_tx_timeout,
1897 	.ndo_select_queue	= netcp_select_queue,
1898 	.ndo_setup_tc		= netcp_setup_tc,
1899 };
1900 
1901 static int netcp_create_interface(struct netcp_device *netcp_device,
1902 				  struct device_node *node_interface)
1903 {
1904 	struct device *dev = netcp_device->device;
1905 	struct device_node *node = dev->of_node;
1906 	struct netcp_intf *netcp;
1907 	struct net_device *ndev;
1908 	resource_size_t size;
1909 	struct resource res;
1910 	void __iomem *efuse = NULL;
1911 	u32 efuse_mac = 0;
1912 	const void *mac_addr;
1913 	u8 efuse_mac_addr[6];
1914 	u32 temp[2];
1915 	int ret = 0;
1916 
1917 	ndev = alloc_etherdev_mqs(sizeof(*netcp), 1, 1);
1918 	if (!ndev) {
1919 		dev_err(dev, "Error allocating netdev\n");
1920 		return -ENOMEM;
1921 	}
1922 
1923 	ndev->features |= NETIF_F_SG;
1924 	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
1925 	ndev->hw_features = ndev->features;
1926 	ndev->vlan_features |=  NETIF_F_SG;
1927 
1928 	/* MTU range: 68 - 9486 */
1929 	ndev->min_mtu = ETH_MIN_MTU;
1930 	ndev->max_mtu = NETCP_MAX_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN);
1931 
1932 	netcp = netdev_priv(ndev);
1933 	spin_lock_init(&netcp->lock);
1934 	INIT_LIST_HEAD(&netcp->module_head);
1935 	INIT_LIST_HEAD(&netcp->txhook_list_head);
1936 	INIT_LIST_HEAD(&netcp->rxhook_list_head);
1937 	INIT_LIST_HEAD(&netcp->addr_list);
1938 	netcp->netcp_device = netcp_device;
1939 	netcp->dev = netcp_device->device;
1940 	netcp->ndev = ndev;
1941 	netcp->ndev_dev  = &ndev->dev;
1942 	netcp->msg_enable = netif_msg_init(netcp_debug_level, NETCP_DEBUG);
1943 	netcp->tx_pause_threshold = MAX_SKB_FRAGS;
1944 	netcp->tx_resume_threshold = netcp->tx_pause_threshold;
1945 	netcp->node_interface = node_interface;
1946 
1947 	ret = of_property_read_u32(node_interface, "efuse-mac", &efuse_mac);
1948 	if (efuse_mac) {
1949 		if (of_address_to_resource(node, NETCP_EFUSE_REG_INDEX, &res)) {
1950 			dev_err(dev, "could not find efuse-mac reg resource\n");
1951 			ret = -ENODEV;
1952 			goto quit;
1953 		}
1954 		size = resource_size(&res);
1955 
1956 		if (!devm_request_mem_region(dev, res.start, size,
1957 					     dev_name(dev))) {
1958 			dev_err(dev, "could not reserve resource\n");
1959 			ret = -ENOMEM;
1960 			goto quit;
1961 		}
1962 
1963 		efuse = devm_ioremap_nocache(dev, res.start, size);
1964 		if (!efuse) {
1965 			dev_err(dev, "could not map resource\n");
1966 			devm_release_mem_region(dev, res.start, size);
1967 			ret = -ENOMEM;
1968 			goto quit;
1969 		}
1970 
1971 		emac_arch_get_mac_addr(efuse_mac_addr, efuse, efuse_mac);
1972 		if (is_valid_ether_addr(efuse_mac_addr))
1973 			ether_addr_copy(ndev->dev_addr, efuse_mac_addr);
1974 		else
1975 			random_ether_addr(ndev->dev_addr);
1976 
1977 		devm_iounmap(dev, efuse);
1978 		devm_release_mem_region(dev, res.start, size);
1979 	} else {
1980 		mac_addr = of_get_mac_address(node_interface);
1981 		if (mac_addr)
1982 			ether_addr_copy(ndev->dev_addr, mac_addr);
1983 		else
1984 			random_ether_addr(ndev->dev_addr);
1985 	}
1986 
1987 	ret = of_property_read_string(node_interface, "rx-channel",
1988 				      &netcp->dma_chan_name);
1989 	if (ret < 0) {
1990 		dev_err(dev, "missing \"rx-channel\" parameter\n");
1991 		ret = -ENODEV;
1992 		goto quit;
1993 	}
1994 
1995 	ret = of_property_read_u32(node_interface, "rx-queue",
1996 				   &netcp->rx_queue_id);
1997 	if (ret < 0) {
1998 		dev_warn(dev, "missing \"rx-queue\" parameter\n");
1999 		netcp->rx_queue_id = KNAV_QUEUE_QPEND;
2000 	}
2001 
2002 	ret = of_property_read_u32_array(node_interface, "rx-queue-depth",
2003 					 netcp->rx_queue_depths,
2004 					 KNAV_DMA_FDQ_PER_CHAN);
2005 	if (ret < 0) {
2006 		dev_err(dev, "missing \"rx-queue-depth\" parameter\n");
2007 		netcp->rx_queue_depths[0] = 128;
2008 	}
2009 
2010 	ret = of_property_read_u32_array(node_interface, "rx-pool", temp, 2);
2011 	if (ret < 0) {
2012 		dev_err(dev, "missing \"rx-pool\" parameter\n");
2013 		ret = -ENODEV;
2014 		goto quit;
2015 	}
2016 	netcp->rx_pool_size = temp[0];
2017 	netcp->rx_pool_region_id = temp[1];
2018 
2019 	ret = of_property_read_u32_array(node_interface, "tx-pool", temp, 2);
2020 	if (ret < 0) {
2021 		dev_err(dev, "missing \"tx-pool\" parameter\n");
2022 		ret = -ENODEV;
2023 		goto quit;
2024 	}
2025 	netcp->tx_pool_size = temp[0];
2026 	netcp->tx_pool_region_id = temp[1];
2027 
2028 	if (netcp->tx_pool_size < MAX_SKB_FRAGS) {
2029 		dev_err(dev, "tx-pool size too small, must be atleast(%ld)\n",
2030 			MAX_SKB_FRAGS);
2031 		ret = -ENODEV;
2032 		goto quit;
2033 	}
2034 
2035 	ret = of_property_read_u32(node_interface, "tx-completion-queue",
2036 				   &netcp->tx_compl_qid);
2037 	if (ret < 0) {
2038 		dev_warn(dev, "missing \"tx-completion-queue\" parameter\n");
2039 		netcp->tx_compl_qid = KNAV_QUEUE_QPEND;
2040 	}
2041 
2042 	/* NAPI register */
2043 	netif_napi_add(ndev, &netcp->rx_napi, netcp_rx_poll, NETCP_NAPI_WEIGHT);
2044 	netif_tx_napi_add(ndev, &netcp->tx_napi, netcp_tx_poll, NETCP_NAPI_WEIGHT);
2045 
2046 	/* Register the network device */
2047 	ndev->dev_id		= 0;
2048 	ndev->watchdog_timeo	= NETCP_TX_TIMEOUT;
2049 	ndev->netdev_ops	= &netcp_netdev_ops;
2050 	SET_NETDEV_DEV(ndev, dev);
2051 
2052 	list_add_tail(&netcp->interface_list, &netcp_device->interface_head);
2053 	return 0;
2054 
2055 quit:
2056 	free_netdev(ndev);
2057 	return ret;
2058 }
2059 
2060 static void netcp_delete_interface(struct netcp_device *netcp_device,
2061 				   struct net_device *ndev)
2062 {
2063 	struct netcp_intf_modpriv *intf_modpriv, *tmp;
2064 	struct netcp_intf *netcp = netdev_priv(ndev);
2065 	struct netcp_module *module;
2066 
2067 	dev_dbg(netcp_device->device, "Removing interface \"%s\"\n",
2068 		ndev->name);
2069 
2070 	/* Notify each of the modules that the interface is going away */
2071 	list_for_each_entry_safe(intf_modpriv, tmp, &netcp->module_head,
2072 				 intf_list) {
2073 		module = intf_modpriv->netcp_module;
2074 		dev_dbg(netcp_device->device, "Releasing module \"%s\"\n",
2075 			module->name);
2076 		if (module->release)
2077 			module->release(intf_modpriv->module_priv);
2078 		list_del(&intf_modpriv->intf_list);
2079 	}
2080 	WARN(!list_empty(&netcp->module_head), "%s interface module list is not empty!\n",
2081 	     ndev->name);
2082 
2083 	list_del(&netcp->interface_list);
2084 
2085 	of_node_put(netcp->node_interface);
2086 	unregister_netdev(ndev);
2087 	netif_napi_del(&netcp->rx_napi);
2088 	free_netdev(ndev);
2089 }
2090 
2091 static int netcp_probe(struct platform_device *pdev)
2092 {
2093 	struct device_node *node = pdev->dev.of_node;
2094 	struct netcp_intf *netcp_intf, *netcp_tmp;
2095 	struct device_node *child, *interfaces;
2096 	struct netcp_device *netcp_device;
2097 	struct device *dev = &pdev->dev;
2098 	int ret;
2099 
2100 	if (!node) {
2101 		dev_err(dev, "could not find device info\n");
2102 		return -ENODEV;
2103 	}
2104 
2105 	/* Allocate a new NETCP device instance */
2106 	netcp_device = devm_kzalloc(dev, sizeof(*netcp_device), GFP_KERNEL);
2107 	if (!netcp_device)
2108 		return -ENOMEM;
2109 
2110 	pm_runtime_enable(&pdev->dev);
2111 	ret = pm_runtime_get_sync(&pdev->dev);
2112 	if (ret < 0) {
2113 		dev_err(dev, "Failed to enable NETCP power-domain\n");
2114 		pm_runtime_disable(&pdev->dev);
2115 		return ret;
2116 	}
2117 
2118 	/* Initialize the NETCP device instance */
2119 	INIT_LIST_HEAD(&netcp_device->interface_head);
2120 	INIT_LIST_HEAD(&netcp_device->modpriv_head);
2121 	netcp_device->device = dev;
2122 	platform_set_drvdata(pdev, netcp_device);
2123 
2124 	/* create interfaces */
2125 	interfaces = of_get_child_by_name(node, "netcp-interfaces");
2126 	if (!interfaces) {
2127 		dev_err(dev, "could not find netcp-interfaces node\n");
2128 		ret = -ENODEV;
2129 		goto probe_quit;
2130 	}
2131 
2132 	for_each_available_child_of_node(interfaces, child) {
2133 		ret = netcp_create_interface(netcp_device, child);
2134 		if (ret) {
2135 			dev_err(dev, "could not create interface(%s)\n",
2136 				child->name);
2137 			goto probe_quit_interface;
2138 		}
2139 	}
2140 
2141 	of_node_put(interfaces);
2142 
2143 	/* Add the device instance to the list */
2144 	list_add_tail(&netcp_device->device_list, &netcp_devices);
2145 
2146 	return 0;
2147 
2148 probe_quit_interface:
2149 	list_for_each_entry_safe(netcp_intf, netcp_tmp,
2150 				 &netcp_device->interface_head,
2151 				 interface_list) {
2152 		netcp_delete_interface(netcp_device, netcp_intf->ndev);
2153 	}
2154 
2155 	of_node_put(interfaces);
2156 
2157 probe_quit:
2158 	pm_runtime_put_sync(&pdev->dev);
2159 	pm_runtime_disable(&pdev->dev);
2160 	platform_set_drvdata(pdev, NULL);
2161 	return ret;
2162 }
2163 
2164 static int netcp_remove(struct platform_device *pdev)
2165 {
2166 	struct netcp_device *netcp_device = platform_get_drvdata(pdev);
2167 	struct netcp_intf *netcp_intf, *netcp_tmp;
2168 	struct netcp_inst_modpriv *inst_modpriv, *tmp;
2169 	struct netcp_module *module;
2170 
2171 	list_for_each_entry_safe(inst_modpriv, tmp, &netcp_device->modpriv_head,
2172 				 inst_list) {
2173 		module = inst_modpriv->netcp_module;
2174 		dev_dbg(&pdev->dev, "Removing module \"%s\"\n", module->name);
2175 		module->remove(netcp_device, inst_modpriv->module_priv);
2176 		list_del(&inst_modpriv->inst_list);
2177 	}
2178 
2179 	/* now that all modules are removed, clean up the interfaces */
2180 	list_for_each_entry_safe(netcp_intf, netcp_tmp,
2181 				 &netcp_device->interface_head,
2182 				 interface_list) {
2183 		netcp_delete_interface(netcp_device, netcp_intf->ndev);
2184 	}
2185 
2186 	WARN(!list_empty(&netcp_device->interface_head),
2187 	     "%s interface list not empty!\n", pdev->name);
2188 
2189 	pm_runtime_put_sync(&pdev->dev);
2190 	pm_runtime_disable(&pdev->dev);
2191 	platform_set_drvdata(pdev, NULL);
2192 	return 0;
2193 }
2194 
2195 static const struct of_device_id of_match[] = {
2196 	{ .compatible = "ti,netcp-1.0", },
2197 	{},
2198 };
2199 MODULE_DEVICE_TABLE(of, of_match);
2200 
2201 static struct platform_driver netcp_driver = {
2202 	.driver = {
2203 		.name		= "netcp-1.0",
2204 		.of_match_table	= of_match,
2205 	},
2206 	.probe = netcp_probe,
2207 	.remove = netcp_remove,
2208 };
2209 module_platform_driver(netcp_driver);
2210 
2211 MODULE_LICENSE("GPL v2");
2212 MODULE_DESCRIPTION("TI NETCP driver for Keystone SOCs");
2213 MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com");
2214