1 /* 2 * Keystone NetCP Core driver 3 * 4 * Copyright (C) 2014 Texas Instruments Incorporated 5 * Authors: Sandeep Nair <sandeep_n@ti.com> 6 * Sandeep Paulraj <s-paulraj@ti.com> 7 * Cyril Chemparathy <cyril@ti.com> 8 * Santosh Shilimkar <santosh.shilimkar@ti.com> 9 * Murali Karicheri <m-karicheri2@ti.com> 10 * Wingman Kwok <w-kwok2@ti.com> 11 * 12 * This program is free software; you can redistribute it and/or 13 * modify it under the terms of the GNU General Public License as 14 * published by the Free Software Foundation version 2. 15 * 16 * This program is distributed "as is" WITHOUT ANY WARRANTY of any 17 * kind, whether express or implied; without even the implied warranty 18 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 19 * GNU General Public License for more details. 20 */ 21 22 #include <linux/io.h> 23 #include <linux/module.h> 24 #include <linux/of_net.h> 25 #include <linux/of_address.h> 26 #include <linux/if_vlan.h> 27 #include <linux/pm_runtime.h> 28 #include <linux/platform_device.h> 29 #include <linux/soc/ti/knav_qmss.h> 30 #include <linux/soc/ti/knav_dma.h> 31 32 #include "netcp.h" 33 34 #define NETCP_SOP_OFFSET (NET_IP_ALIGN + NET_SKB_PAD) 35 #define NETCP_NAPI_WEIGHT 64 36 #define NETCP_TX_TIMEOUT (5 * HZ) 37 #define NETCP_PACKET_SIZE (ETH_FRAME_LEN + ETH_FCS_LEN) 38 #define NETCP_MIN_PACKET_SIZE ETH_ZLEN 39 #define NETCP_MAX_MCAST_ADDR 16 40 41 #define NETCP_EFUSE_REG_INDEX 0 42 43 #define NETCP_MOD_PROBE_SKIPPED 1 44 #define NETCP_MOD_PROBE_FAILED 2 45 46 #define NETCP_DEBUG (NETIF_MSG_HW | NETIF_MSG_WOL | \ 47 NETIF_MSG_DRV | NETIF_MSG_LINK | \ 48 NETIF_MSG_IFUP | NETIF_MSG_INTR | \ 49 NETIF_MSG_PROBE | NETIF_MSG_TIMER | \ 50 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | \ 51 NETIF_MSG_TX_ERR | NETIF_MSG_TX_DONE | \ 52 NETIF_MSG_PKTDATA | NETIF_MSG_TX_QUEUED | \ 53 NETIF_MSG_RX_STATUS) 54 55 #define NETCP_EFUSE_ADDR_SWAP 2 56 57 #define knav_queue_get_id(q) knav_queue_device_control(q, \ 58 KNAV_QUEUE_GET_ID, (unsigned long)NULL) 59 60 #define knav_queue_enable_notify(q) knav_queue_device_control(q, \ 61 KNAV_QUEUE_ENABLE_NOTIFY, \ 62 (unsigned long)NULL) 63 64 #define knav_queue_disable_notify(q) knav_queue_device_control(q, \ 65 KNAV_QUEUE_DISABLE_NOTIFY, \ 66 (unsigned long)NULL) 67 68 #define knav_queue_get_count(q) knav_queue_device_control(q, \ 69 KNAV_QUEUE_GET_COUNT, (unsigned long)NULL) 70 71 #define for_each_netcp_module(module) \ 72 list_for_each_entry(module, &netcp_modules, module_list) 73 74 #define for_each_netcp_device_module(netcp_device, inst_modpriv) \ 75 list_for_each_entry(inst_modpriv, \ 76 &((netcp_device)->modpriv_head), inst_list) 77 78 #define for_each_module(netcp, intf_modpriv) \ 79 list_for_each_entry(intf_modpriv, &netcp->module_head, intf_list) 80 81 /* Module management structures */ 82 struct netcp_device { 83 struct list_head device_list; 84 struct list_head interface_head; 85 struct list_head modpriv_head; 86 struct device *device; 87 }; 88 89 struct netcp_inst_modpriv { 90 struct netcp_device *netcp_device; 91 struct netcp_module *netcp_module; 92 struct list_head inst_list; 93 void *module_priv; 94 }; 95 96 struct netcp_intf_modpriv { 97 struct netcp_intf *netcp_priv; 98 struct netcp_module *netcp_module; 99 struct list_head intf_list; 100 void *module_priv; 101 }; 102 103 struct netcp_tx_cb { 104 void *ts_context; 105 void (*txtstamp)(void *context, struct sk_buff *skb); 106 }; 107 108 static LIST_HEAD(netcp_devices); 109 static LIST_HEAD(netcp_modules); 110 static DEFINE_MUTEX(netcp_modules_lock); 111 112 static int netcp_debug_level = -1; 113 module_param(netcp_debug_level, int, 0); 114 MODULE_PARM_DESC(netcp_debug_level, "Netcp debug level (NETIF_MSG bits) (0=none,...,16=all)"); 115 116 /* Helper functions - Get/Set */ 117 static void get_pkt_info(dma_addr_t *buff, u32 *buff_len, dma_addr_t *ndesc, 118 struct knav_dma_desc *desc) 119 { 120 *buff_len = le32_to_cpu(desc->buff_len); 121 *buff = le32_to_cpu(desc->buff); 122 *ndesc = le32_to_cpu(desc->next_desc); 123 } 124 125 static u32 get_sw_data(int index, struct knav_dma_desc *desc) 126 { 127 /* No Endian conversion needed as this data is untouched by hw */ 128 return desc->sw_data[index]; 129 } 130 131 /* use these macros to get sw data */ 132 #define GET_SW_DATA0(desc) get_sw_data(0, desc) 133 #define GET_SW_DATA1(desc) get_sw_data(1, desc) 134 #define GET_SW_DATA2(desc) get_sw_data(2, desc) 135 #define GET_SW_DATA3(desc) get_sw_data(3, desc) 136 137 static void get_org_pkt_info(dma_addr_t *buff, u32 *buff_len, 138 struct knav_dma_desc *desc) 139 { 140 *buff = le32_to_cpu(desc->orig_buff); 141 *buff_len = le32_to_cpu(desc->orig_len); 142 } 143 144 static void get_words(dma_addr_t *words, int num_words, __le32 *desc) 145 { 146 int i; 147 148 for (i = 0; i < num_words; i++) 149 words[i] = le32_to_cpu(desc[i]); 150 } 151 152 static void set_pkt_info(dma_addr_t buff, u32 buff_len, u32 ndesc, 153 struct knav_dma_desc *desc) 154 { 155 desc->buff_len = cpu_to_le32(buff_len); 156 desc->buff = cpu_to_le32(buff); 157 desc->next_desc = cpu_to_le32(ndesc); 158 } 159 160 static void set_desc_info(u32 desc_info, u32 pkt_info, 161 struct knav_dma_desc *desc) 162 { 163 desc->desc_info = cpu_to_le32(desc_info); 164 desc->packet_info = cpu_to_le32(pkt_info); 165 } 166 167 static void set_sw_data(int index, u32 data, struct knav_dma_desc *desc) 168 { 169 /* No Endian conversion needed as this data is untouched by hw */ 170 desc->sw_data[index] = data; 171 } 172 173 /* use these macros to set sw data */ 174 #define SET_SW_DATA0(data, desc) set_sw_data(0, data, desc) 175 #define SET_SW_DATA1(data, desc) set_sw_data(1, data, desc) 176 #define SET_SW_DATA2(data, desc) set_sw_data(2, data, desc) 177 #define SET_SW_DATA3(data, desc) set_sw_data(3, data, desc) 178 179 static void set_org_pkt_info(dma_addr_t buff, u32 buff_len, 180 struct knav_dma_desc *desc) 181 { 182 desc->orig_buff = cpu_to_le32(buff); 183 desc->orig_len = cpu_to_le32(buff_len); 184 } 185 186 static void set_words(u32 *words, int num_words, __le32 *desc) 187 { 188 int i; 189 190 for (i = 0; i < num_words; i++) 191 desc[i] = cpu_to_le32(words[i]); 192 } 193 194 /* Read the e-fuse value as 32 bit values to be endian independent */ 195 static int emac_arch_get_mac_addr(char *x, void __iomem *efuse_mac, u32 swap) 196 { 197 unsigned int addr0, addr1; 198 199 addr1 = readl(efuse_mac + 4); 200 addr0 = readl(efuse_mac); 201 202 switch (swap) { 203 case NETCP_EFUSE_ADDR_SWAP: 204 addr0 = addr1; 205 addr1 = readl(efuse_mac); 206 break; 207 default: 208 break; 209 } 210 211 x[0] = (addr1 & 0x0000ff00) >> 8; 212 x[1] = addr1 & 0x000000ff; 213 x[2] = (addr0 & 0xff000000) >> 24; 214 x[3] = (addr0 & 0x00ff0000) >> 16; 215 x[4] = (addr0 & 0x0000ff00) >> 8; 216 x[5] = addr0 & 0x000000ff; 217 218 return 0; 219 } 220 221 static const char *netcp_node_name(struct device_node *node) 222 { 223 const char *name; 224 225 if (of_property_read_string(node, "label", &name) < 0) 226 name = node->name; 227 if (!name) 228 name = "unknown"; 229 return name; 230 } 231 232 /* Module management routines */ 233 static int netcp_register_interface(struct netcp_intf *netcp) 234 { 235 int ret; 236 237 ret = register_netdev(netcp->ndev); 238 if (!ret) 239 netcp->netdev_registered = true; 240 return ret; 241 } 242 243 static int netcp_module_probe(struct netcp_device *netcp_device, 244 struct netcp_module *module) 245 { 246 struct device *dev = netcp_device->device; 247 struct device_node *devices, *interface, *node = dev->of_node; 248 struct device_node *child; 249 struct netcp_inst_modpriv *inst_modpriv; 250 struct netcp_intf *netcp_intf; 251 struct netcp_module *tmp; 252 bool primary_module_registered = false; 253 int ret; 254 255 /* Find this module in the sub-tree for this device */ 256 devices = of_get_child_by_name(node, "netcp-devices"); 257 if (!devices) { 258 dev_err(dev, "could not find netcp-devices node\n"); 259 return NETCP_MOD_PROBE_SKIPPED; 260 } 261 262 for_each_available_child_of_node(devices, child) { 263 const char *name = netcp_node_name(child); 264 265 if (!strcasecmp(module->name, name)) 266 break; 267 } 268 269 of_node_put(devices); 270 /* If module not used for this device, skip it */ 271 if (!child) { 272 dev_warn(dev, "module(%s) not used for device\n", module->name); 273 return NETCP_MOD_PROBE_SKIPPED; 274 } 275 276 inst_modpriv = devm_kzalloc(dev, sizeof(*inst_modpriv), GFP_KERNEL); 277 if (!inst_modpriv) { 278 of_node_put(child); 279 return -ENOMEM; 280 } 281 282 inst_modpriv->netcp_device = netcp_device; 283 inst_modpriv->netcp_module = module; 284 list_add_tail(&inst_modpriv->inst_list, &netcp_device->modpriv_head); 285 286 ret = module->probe(netcp_device, dev, child, 287 &inst_modpriv->module_priv); 288 of_node_put(child); 289 if (ret) { 290 dev_err(dev, "Probe of module(%s) failed with %d\n", 291 module->name, ret); 292 list_del(&inst_modpriv->inst_list); 293 devm_kfree(dev, inst_modpriv); 294 return NETCP_MOD_PROBE_FAILED; 295 } 296 297 /* Attach modules only if the primary module is probed */ 298 for_each_netcp_module(tmp) { 299 if (tmp->primary) 300 primary_module_registered = true; 301 } 302 303 if (!primary_module_registered) 304 return 0; 305 306 /* Attach module to interfaces */ 307 list_for_each_entry(netcp_intf, &netcp_device->interface_head, 308 interface_list) { 309 struct netcp_intf_modpriv *intf_modpriv; 310 311 intf_modpriv = devm_kzalloc(dev, sizeof(*intf_modpriv), 312 GFP_KERNEL); 313 if (!intf_modpriv) 314 return -ENOMEM; 315 316 interface = of_parse_phandle(netcp_intf->node_interface, 317 module->name, 0); 318 319 if (!interface) { 320 devm_kfree(dev, intf_modpriv); 321 continue; 322 } 323 324 intf_modpriv->netcp_priv = netcp_intf; 325 intf_modpriv->netcp_module = module; 326 list_add_tail(&intf_modpriv->intf_list, 327 &netcp_intf->module_head); 328 329 ret = module->attach(inst_modpriv->module_priv, 330 netcp_intf->ndev, interface, 331 &intf_modpriv->module_priv); 332 of_node_put(interface); 333 if (ret) { 334 dev_dbg(dev, "Attach of module %s declined with %d\n", 335 module->name, ret); 336 list_del(&intf_modpriv->intf_list); 337 devm_kfree(dev, intf_modpriv); 338 continue; 339 } 340 } 341 342 /* Now register the interface with netdev */ 343 list_for_each_entry(netcp_intf, 344 &netcp_device->interface_head, 345 interface_list) { 346 /* If interface not registered then register now */ 347 if (!netcp_intf->netdev_registered) { 348 ret = netcp_register_interface(netcp_intf); 349 if (ret) 350 return -ENODEV; 351 } 352 } 353 return 0; 354 } 355 356 int netcp_register_module(struct netcp_module *module) 357 { 358 struct netcp_device *netcp_device; 359 struct netcp_module *tmp; 360 int ret; 361 362 if (!module->name) { 363 WARN(1, "error registering netcp module: no name\n"); 364 return -EINVAL; 365 } 366 367 if (!module->probe) { 368 WARN(1, "error registering netcp module: no probe\n"); 369 return -EINVAL; 370 } 371 372 mutex_lock(&netcp_modules_lock); 373 374 for_each_netcp_module(tmp) { 375 if (!strcasecmp(tmp->name, module->name)) { 376 mutex_unlock(&netcp_modules_lock); 377 return -EEXIST; 378 } 379 } 380 list_add_tail(&module->module_list, &netcp_modules); 381 382 list_for_each_entry(netcp_device, &netcp_devices, device_list) { 383 ret = netcp_module_probe(netcp_device, module); 384 if (ret < 0) 385 goto fail; 386 } 387 mutex_unlock(&netcp_modules_lock); 388 return 0; 389 390 fail: 391 mutex_unlock(&netcp_modules_lock); 392 netcp_unregister_module(module); 393 return ret; 394 } 395 EXPORT_SYMBOL_GPL(netcp_register_module); 396 397 static void netcp_release_module(struct netcp_device *netcp_device, 398 struct netcp_module *module) 399 { 400 struct netcp_inst_modpriv *inst_modpriv, *inst_tmp; 401 struct netcp_intf *netcp_intf, *netcp_tmp; 402 struct device *dev = netcp_device->device; 403 404 /* Release the module from each interface */ 405 list_for_each_entry_safe(netcp_intf, netcp_tmp, 406 &netcp_device->interface_head, 407 interface_list) { 408 struct netcp_intf_modpriv *intf_modpriv, *intf_tmp; 409 410 list_for_each_entry_safe(intf_modpriv, intf_tmp, 411 &netcp_intf->module_head, 412 intf_list) { 413 if (intf_modpriv->netcp_module == module) { 414 module->release(intf_modpriv->module_priv); 415 list_del(&intf_modpriv->intf_list); 416 devm_kfree(dev, intf_modpriv); 417 break; 418 } 419 } 420 } 421 422 /* Remove the module from each instance */ 423 list_for_each_entry_safe(inst_modpriv, inst_tmp, 424 &netcp_device->modpriv_head, inst_list) { 425 if (inst_modpriv->netcp_module == module) { 426 module->remove(netcp_device, 427 inst_modpriv->module_priv); 428 list_del(&inst_modpriv->inst_list); 429 devm_kfree(dev, inst_modpriv); 430 break; 431 } 432 } 433 } 434 435 void netcp_unregister_module(struct netcp_module *module) 436 { 437 struct netcp_device *netcp_device; 438 struct netcp_module *module_tmp; 439 440 mutex_lock(&netcp_modules_lock); 441 442 list_for_each_entry(netcp_device, &netcp_devices, device_list) { 443 netcp_release_module(netcp_device, module); 444 } 445 446 /* Remove the module from the module list */ 447 for_each_netcp_module(module_tmp) { 448 if (module == module_tmp) { 449 list_del(&module->module_list); 450 break; 451 } 452 } 453 454 mutex_unlock(&netcp_modules_lock); 455 } 456 EXPORT_SYMBOL_GPL(netcp_unregister_module); 457 458 void *netcp_module_get_intf_data(struct netcp_module *module, 459 struct netcp_intf *intf) 460 { 461 struct netcp_intf_modpriv *intf_modpriv; 462 463 list_for_each_entry(intf_modpriv, &intf->module_head, intf_list) 464 if (intf_modpriv->netcp_module == module) 465 return intf_modpriv->module_priv; 466 return NULL; 467 } 468 EXPORT_SYMBOL_GPL(netcp_module_get_intf_data); 469 470 /* Module TX and RX Hook management */ 471 struct netcp_hook_list { 472 struct list_head list; 473 netcp_hook_rtn *hook_rtn; 474 void *hook_data; 475 int order; 476 }; 477 478 int netcp_register_txhook(struct netcp_intf *netcp_priv, int order, 479 netcp_hook_rtn *hook_rtn, void *hook_data) 480 { 481 struct netcp_hook_list *entry; 482 struct netcp_hook_list *next; 483 unsigned long flags; 484 485 entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL); 486 if (!entry) 487 return -ENOMEM; 488 489 entry->hook_rtn = hook_rtn; 490 entry->hook_data = hook_data; 491 entry->order = order; 492 493 spin_lock_irqsave(&netcp_priv->lock, flags); 494 list_for_each_entry(next, &netcp_priv->txhook_list_head, list) { 495 if (next->order > order) 496 break; 497 } 498 __list_add(&entry->list, next->list.prev, &next->list); 499 spin_unlock_irqrestore(&netcp_priv->lock, flags); 500 501 return 0; 502 } 503 EXPORT_SYMBOL_GPL(netcp_register_txhook); 504 505 int netcp_unregister_txhook(struct netcp_intf *netcp_priv, int order, 506 netcp_hook_rtn *hook_rtn, void *hook_data) 507 { 508 struct netcp_hook_list *next, *n; 509 unsigned long flags; 510 511 spin_lock_irqsave(&netcp_priv->lock, flags); 512 list_for_each_entry_safe(next, n, &netcp_priv->txhook_list_head, list) { 513 if ((next->order == order) && 514 (next->hook_rtn == hook_rtn) && 515 (next->hook_data == hook_data)) { 516 list_del(&next->list); 517 spin_unlock_irqrestore(&netcp_priv->lock, flags); 518 devm_kfree(netcp_priv->dev, next); 519 return 0; 520 } 521 } 522 spin_unlock_irqrestore(&netcp_priv->lock, flags); 523 return -ENOENT; 524 } 525 EXPORT_SYMBOL_GPL(netcp_unregister_txhook); 526 527 int netcp_register_rxhook(struct netcp_intf *netcp_priv, int order, 528 netcp_hook_rtn *hook_rtn, void *hook_data) 529 { 530 struct netcp_hook_list *entry; 531 struct netcp_hook_list *next; 532 unsigned long flags; 533 534 entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL); 535 if (!entry) 536 return -ENOMEM; 537 538 entry->hook_rtn = hook_rtn; 539 entry->hook_data = hook_data; 540 entry->order = order; 541 542 spin_lock_irqsave(&netcp_priv->lock, flags); 543 list_for_each_entry(next, &netcp_priv->rxhook_list_head, list) { 544 if (next->order > order) 545 break; 546 } 547 __list_add(&entry->list, next->list.prev, &next->list); 548 spin_unlock_irqrestore(&netcp_priv->lock, flags); 549 550 return 0; 551 } 552 EXPORT_SYMBOL_GPL(netcp_register_rxhook); 553 554 int netcp_unregister_rxhook(struct netcp_intf *netcp_priv, int order, 555 netcp_hook_rtn *hook_rtn, void *hook_data) 556 { 557 struct netcp_hook_list *next, *n; 558 unsigned long flags; 559 560 spin_lock_irqsave(&netcp_priv->lock, flags); 561 list_for_each_entry_safe(next, n, &netcp_priv->rxhook_list_head, list) { 562 if ((next->order == order) && 563 (next->hook_rtn == hook_rtn) && 564 (next->hook_data == hook_data)) { 565 list_del(&next->list); 566 spin_unlock_irqrestore(&netcp_priv->lock, flags); 567 devm_kfree(netcp_priv->dev, next); 568 return 0; 569 } 570 } 571 spin_unlock_irqrestore(&netcp_priv->lock, flags); 572 573 return -ENOENT; 574 } 575 EXPORT_SYMBOL_GPL(netcp_unregister_rxhook); 576 577 static void netcp_frag_free(bool is_frag, void *ptr) 578 { 579 if (is_frag) 580 skb_free_frag(ptr); 581 else 582 kfree(ptr); 583 } 584 585 static void netcp_free_rx_desc_chain(struct netcp_intf *netcp, 586 struct knav_dma_desc *desc) 587 { 588 struct knav_dma_desc *ndesc; 589 dma_addr_t dma_desc, dma_buf; 590 unsigned int buf_len, dma_sz = sizeof(*ndesc); 591 void *buf_ptr; 592 u32 tmp; 593 594 get_words(&dma_desc, 1, &desc->next_desc); 595 596 while (dma_desc) { 597 ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz); 598 if (unlikely(!ndesc)) { 599 dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n"); 600 break; 601 } 602 get_pkt_info(&dma_buf, &tmp, &dma_desc, ndesc); 603 /* warning!!!! We are retrieving the virtual ptr in the sw_data 604 * field as a 32bit value. Will not work on 64bit machines 605 */ 606 buf_ptr = (void *)GET_SW_DATA0(ndesc); 607 buf_len = (int)GET_SW_DATA1(desc); 608 dma_unmap_page(netcp->dev, dma_buf, PAGE_SIZE, DMA_FROM_DEVICE); 609 __free_page(buf_ptr); 610 knav_pool_desc_put(netcp->rx_pool, desc); 611 } 612 /* warning!!!! We are retrieving the virtual ptr in the sw_data 613 * field as a 32bit value. Will not work on 64bit machines 614 */ 615 buf_ptr = (void *)GET_SW_DATA0(desc); 616 buf_len = (int)GET_SW_DATA1(desc); 617 618 if (buf_ptr) 619 netcp_frag_free(buf_len <= PAGE_SIZE, buf_ptr); 620 knav_pool_desc_put(netcp->rx_pool, desc); 621 } 622 623 static void netcp_empty_rx_queue(struct netcp_intf *netcp) 624 { 625 struct knav_dma_desc *desc; 626 unsigned int dma_sz; 627 dma_addr_t dma; 628 629 for (; ;) { 630 dma = knav_queue_pop(netcp->rx_queue, &dma_sz); 631 if (!dma) 632 break; 633 634 desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz); 635 if (unlikely(!desc)) { 636 dev_err(netcp->ndev_dev, "%s: failed to unmap Rx desc\n", 637 __func__); 638 netcp->ndev->stats.rx_errors++; 639 continue; 640 } 641 netcp_free_rx_desc_chain(netcp, desc); 642 netcp->ndev->stats.rx_dropped++; 643 } 644 } 645 646 static int netcp_process_one_rx_packet(struct netcp_intf *netcp) 647 { 648 unsigned int dma_sz, buf_len, org_buf_len; 649 struct knav_dma_desc *desc, *ndesc; 650 unsigned int pkt_sz = 0, accum_sz; 651 struct netcp_hook_list *rx_hook; 652 dma_addr_t dma_desc, dma_buff; 653 struct netcp_packet p_info; 654 struct sk_buff *skb; 655 void *org_buf_ptr; 656 657 dma_desc = knav_queue_pop(netcp->rx_queue, &dma_sz); 658 if (!dma_desc) 659 return -1; 660 661 desc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz); 662 if (unlikely(!desc)) { 663 dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n"); 664 return 0; 665 } 666 667 get_pkt_info(&dma_buff, &buf_len, &dma_desc, desc); 668 /* warning!!!! We are retrieving the virtual ptr in the sw_data 669 * field as a 32bit value. Will not work on 64bit machines 670 */ 671 org_buf_ptr = (void *)GET_SW_DATA0(desc); 672 org_buf_len = (int)GET_SW_DATA1(desc); 673 674 if (unlikely(!org_buf_ptr)) { 675 dev_err(netcp->ndev_dev, "NULL bufptr in desc\n"); 676 goto free_desc; 677 } 678 679 pkt_sz &= KNAV_DMA_DESC_PKT_LEN_MASK; 680 accum_sz = buf_len; 681 dma_unmap_single(netcp->dev, dma_buff, buf_len, DMA_FROM_DEVICE); 682 683 /* Build a new sk_buff for the primary buffer */ 684 skb = build_skb(org_buf_ptr, org_buf_len); 685 if (unlikely(!skb)) { 686 dev_err(netcp->ndev_dev, "build_skb() failed\n"); 687 goto free_desc; 688 } 689 690 /* update data, tail and len */ 691 skb_reserve(skb, NETCP_SOP_OFFSET); 692 __skb_put(skb, buf_len); 693 694 /* Fill in the page fragment list */ 695 while (dma_desc) { 696 struct page *page; 697 698 ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz); 699 if (unlikely(!ndesc)) { 700 dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n"); 701 goto free_desc; 702 } 703 704 get_pkt_info(&dma_buff, &buf_len, &dma_desc, ndesc); 705 /* warning!!!! We are retrieving the virtual ptr in the sw_data 706 * field as a 32bit value. Will not work on 64bit machines 707 */ 708 page = (struct page *)GET_SW_DATA0(desc); 709 710 if (likely(dma_buff && buf_len && page)) { 711 dma_unmap_page(netcp->dev, dma_buff, PAGE_SIZE, 712 DMA_FROM_DEVICE); 713 } else { 714 dev_err(netcp->ndev_dev, "Bad Rx desc dma_buff(%pad), len(%d), page(%p)\n", 715 &dma_buff, buf_len, page); 716 goto free_desc; 717 } 718 719 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, 720 offset_in_page(dma_buff), buf_len, PAGE_SIZE); 721 accum_sz += buf_len; 722 723 /* Free the descriptor */ 724 knav_pool_desc_put(netcp->rx_pool, ndesc); 725 } 726 727 /* Free the primary descriptor */ 728 knav_pool_desc_put(netcp->rx_pool, desc); 729 730 /* check for packet len and warn */ 731 if (unlikely(pkt_sz != accum_sz)) 732 dev_dbg(netcp->ndev_dev, "mismatch in packet size(%d) & sum of fragments(%d)\n", 733 pkt_sz, accum_sz); 734 735 /* Remove ethernet FCS from the packet */ 736 __pskb_trim(skb, skb->len - ETH_FCS_LEN); 737 738 /* Call each of the RX hooks */ 739 p_info.skb = skb; 740 skb->dev = netcp->ndev; 741 p_info.rxtstamp_complete = false; 742 list_for_each_entry(rx_hook, &netcp->rxhook_list_head, list) { 743 int ret; 744 745 ret = rx_hook->hook_rtn(rx_hook->order, rx_hook->hook_data, 746 &p_info); 747 if (unlikely(ret)) { 748 dev_err(netcp->ndev_dev, "RX hook %d failed: %d\n", 749 rx_hook->order, ret); 750 netcp->ndev->stats.rx_errors++; 751 dev_kfree_skb(skb); 752 return 0; 753 } 754 } 755 756 netcp->ndev->stats.rx_packets++; 757 netcp->ndev->stats.rx_bytes += skb->len; 758 759 /* push skb up the stack */ 760 skb->protocol = eth_type_trans(skb, netcp->ndev); 761 netif_receive_skb(skb); 762 return 0; 763 764 free_desc: 765 netcp_free_rx_desc_chain(netcp, desc); 766 netcp->ndev->stats.rx_errors++; 767 return 0; 768 } 769 770 static int netcp_process_rx_packets(struct netcp_intf *netcp, 771 unsigned int budget) 772 { 773 int i; 774 775 for (i = 0; (i < budget) && !netcp_process_one_rx_packet(netcp); i++) 776 ; 777 return i; 778 } 779 780 /* Release descriptors and attached buffers from Rx FDQ */ 781 static void netcp_free_rx_buf(struct netcp_intf *netcp, int fdq) 782 { 783 struct knav_dma_desc *desc; 784 unsigned int buf_len, dma_sz; 785 dma_addr_t dma; 786 void *buf_ptr; 787 788 /* Allocate descriptor */ 789 while ((dma = knav_queue_pop(netcp->rx_fdq[fdq], &dma_sz))) { 790 desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz); 791 if (unlikely(!desc)) { 792 dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n"); 793 continue; 794 } 795 796 get_org_pkt_info(&dma, &buf_len, desc); 797 /* warning!!!! We are retrieving the virtual ptr in the sw_data 798 * field as a 32bit value. Will not work on 64bit machines 799 */ 800 buf_ptr = (void *)GET_SW_DATA0(desc); 801 802 if (unlikely(!dma)) { 803 dev_err(netcp->ndev_dev, "NULL orig_buff in desc\n"); 804 knav_pool_desc_put(netcp->rx_pool, desc); 805 continue; 806 } 807 808 if (unlikely(!buf_ptr)) { 809 dev_err(netcp->ndev_dev, "NULL bufptr in desc\n"); 810 knav_pool_desc_put(netcp->rx_pool, desc); 811 continue; 812 } 813 814 if (fdq == 0) { 815 dma_unmap_single(netcp->dev, dma, buf_len, 816 DMA_FROM_DEVICE); 817 netcp_frag_free((buf_len <= PAGE_SIZE), buf_ptr); 818 } else { 819 dma_unmap_page(netcp->dev, dma, buf_len, 820 DMA_FROM_DEVICE); 821 __free_page(buf_ptr); 822 } 823 824 knav_pool_desc_put(netcp->rx_pool, desc); 825 } 826 } 827 828 static void netcp_rxpool_free(struct netcp_intf *netcp) 829 { 830 int i; 831 832 for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && 833 !IS_ERR_OR_NULL(netcp->rx_fdq[i]); i++) 834 netcp_free_rx_buf(netcp, i); 835 836 if (knav_pool_count(netcp->rx_pool) != netcp->rx_pool_size) 837 dev_err(netcp->ndev_dev, "Lost Rx (%d) descriptors\n", 838 netcp->rx_pool_size - knav_pool_count(netcp->rx_pool)); 839 840 knav_pool_destroy(netcp->rx_pool); 841 netcp->rx_pool = NULL; 842 } 843 844 static int netcp_allocate_rx_buf(struct netcp_intf *netcp, int fdq) 845 { 846 struct knav_dma_desc *hwdesc; 847 unsigned int buf_len, dma_sz; 848 u32 desc_info, pkt_info; 849 struct page *page; 850 dma_addr_t dma; 851 void *bufptr; 852 u32 sw_data[2]; 853 854 /* Allocate descriptor */ 855 hwdesc = knav_pool_desc_get(netcp->rx_pool); 856 if (IS_ERR_OR_NULL(hwdesc)) { 857 dev_dbg(netcp->ndev_dev, "out of rx pool desc\n"); 858 return -ENOMEM; 859 } 860 861 if (likely(fdq == 0)) { 862 unsigned int primary_buf_len; 863 /* Allocate a primary receive queue entry */ 864 buf_len = NETCP_PACKET_SIZE + NETCP_SOP_OFFSET; 865 primary_buf_len = SKB_DATA_ALIGN(buf_len) + 866 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 867 868 bufptr = netdev_alloc_frag(primary_buf_len); 869 sw_data[1] = primary_buf_len; 870 871 if (unlikely(!bufptr)) { 872 dev_warn_ratelimited(netcp->ndev_dev, 873 "Primary RX buffer alloc failed\n"); 874 goto fail; 875 } 876 dma = dma_map_single(netcp->dev, bufptr, buf_len, 877 DMA_TO_DEVICE); 878 if (unlikely(dma_mapping_error(netcp->dev, dma))) 879 goto fail; 880 881 /* warning!!!! We are saving the virtual ptr in the sw_data 882 * field as a 32bit value. Will not work on 64bit machines 883 */ 884 sw_data[0] = (u32)bufptr; 885 } else { 886 /* Allocate a secondary receive queue entry */ 887 page = alloc_page(GFP_ATOMIC | GFP_DMA | __GFP_COLD); 888 if (unlikely(!page)) { 889 dev_warn_ratelimited(netcp->ndev_dev, "Secondary page alloc failed\n"); 890 goto fail; 891 } 892 buf_len = PAGE_SIZE; 893 dma = dma_map_page(netcp->dev, page, 0, buf_len, DMA_TO_DEVICE); 894 /* warning!!!! We are saving the virtual ptr in the sw_data 895 * field as a 32bit value. Will not work on 64bit machines 896 */ 897 sw_data[0] = (u32)page; 898 sw_data[1] = 0; 899 } 900 901 desc_info = KNAV_DMA_DESC_PS_INFO_IN_DESC; 902 desc_info |= buf_len & KNAV_DMA_DESC_PKT_LEN_MASK; 903 pkt_info = KNAV_DMA_DESC_HAS_EPIB; 904 pkt_info |= KNAV_DMA_NUM_PS_WORDS << KNAV_DMA_DESC_PSLEN_SHIFT; 905 pkt_info |= (netcp->rx_queue_id & KNAV_DMA_DESC_RETQ_MASK) << 906 KNAV_DMA_DESC_RETQ_SHIFT; 907 set_org_pkt_info(dma, buf_len, hwdesc); 908 SET_SW_DATA0(sw_data[0], hwdesc); 909 SET_SW_DATA1(sw_data[1], hwdesc); 910 set_desc_info(desc_info, pkt_info, hwdesc); 911 912 /* Push to FDQs */ 913 knav_pool_desc_map(netcp->rx_pool, hwdesc, sizeof(*hwdesc), &dma, 914 &dma_sz); 915 knav_queue_push(netcp->rx_fdq[fdq], dma, sizeof(*hwdesc), 0); 916 return 0; 917 918 fail: 919 knav_pool_desc_put(netcp->rx_pool, hwdesc); 920 return -ENOMEM; 921 } 922 923 /* Refill Rx FDQ with descriptors & attached buffers */ 924 static void netcp_rxpool_refill(struct netcp_intf *netcp) 925 { 926 u32 fdq_deficit[KNAV_DMA_FDQ_PER_CHAN] = {0}; 927 int i, ret = 0; 928 929 /* Calculate the FDQ deficit and refill */ 930 for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_fdq[i]; i++) { 931 fdq_deficit[i] = netcp->rx_queue_depths[i] - 932 knav_queue_get_count(netcp->rx_fdq[i]); 933 934 while (fdq_deficit[i]-- && !ret) 935 ret = netcp_allocate_rx_buf(netcp, i); 936 } /* end for fdqs */ 937 } 938 939 /* NAPI poll */ 940 static int netcp_rx_poll(struct napi_struct *napi, int budget) 941 { 942 struct netcp_intf *netcp = container_of(napi, struct netcp_intf, 943 rx_napi); 944 unsigned int packets; 945 946 packets = netcp_process_rx_packets(netcp, budget); 947 948 netcp_rxpool_refill(netcp); 949 if (packets < budget) { 950 napi_complete(&netcp->rx_napi); 951 knav_queue_enable_notify(netcp->rx_queue); 952 } 953 954 return packets; 955 } 956 957 static void netcp_rx_notify(void *arg) 958 { 959 struct netcp_intf *netcp = arg; 960 961 knav_queue_disable_notify(netcp->rx_queue); 962 napi_schedule(&netcp->rx_napi); 963 } 964 965 static void netcp_free_tx_desc_chain(struct netcp_intf *netcp, 966 struct knav_dma_desc *desc, 967 unsigned int desc_sz) 968 { 969 struct knav_dma_desc *ndesc = desc; 970 dma_addr_t dma_desc, dma_buf; 971 unsigned int buf_len; 972 973 while (ndesc) { 974 get_pkt_info(&dma_buf, &buf_len, &dma_desc, ndesc); 975 976 if (dma_buf && buf_len) 977 dma_unmap_single(netcp->dev, dma_buf, buf_len, 978 DMA_TO_DEVICE); 979 else 980 dev_warn(netcp->ndev_dev, "bad Tx desc buf(%pad), len(%d)\n", 981 &dma_buf, buf_len); 982 983 knav_pool_desc_put(netcp->tx_pool, ndesc); 984 ndesc = NULL; 985 if (dma_desc) { 986 ndesc = knav_pool_desc_unmap(netcp->tx_pool, dma_desc, 987 desc_sz); 988 if (!ndesc) 989 dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n"); 990 } 991 } 992 } 993 994 static int netcp_process_tx_compl_packets(struct netcp_intf *netcp, 995 unsigned int budget) 996 { 997 struct knav_dma_desc *desc; 998 struct netcp_tx_cb *tx_cb; 999 struct sk_buff *skb; 1000 unsigned int dma_sz; 1001 dma_addr_t dma; 1002 int pkts = 0; 1003 1004 while (budget--) { 1005 dma = knav_queue_pop(netcp->tx_compl_q, &dma_sz); 1006 if (!dma) 1007 break; 1008 desc = knav_pool_desc_unmap(netcp->tx_pool, dma, dma_sz); 1009 if (unlikely(!desc)) { 1010 dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n"); 1011 netcp->ndev->stats.tx_errors++; 1012 continue; 1013 } 1014 1015 /* warning!!!! We are retrieving the virtual ptr in the sw_data 1016 * field as a 32bit value. Will not work on 64bit machines 1017 */ 1018 skb = (struct sk_buff *)GET_SW_DATA0(desc); 1019 netcp_free_tx_desc_chain(netcp, desc, dma_sz); 1020 if (!skb) { 1021 dev_err(netcp->ndev_dev, "No skb in Tx desc\n"); 1022 netcp->ndev->stats.tx_errors++; 1023 continue; 1024 } 1025 1026 tx_cb = (struct netcp_tx_cb *)skb->cb; 1027 if (tx_cb->txtstamp) 1028 tx_cb->txtstamp(tx_cb->ts_context, skb); 1029 1030 if (netif_subqueue_stopped(netcp->ndev, skb) && 1031 netif_running(netcp->ndev) && 1032 (knav_pool_count(netcp->tx_pool) > 1033 netcp->tx_resume_threshold)) { 1034 u16 subqueue = skb_get_queue_mapping(skb); 1035 1036 netif_wake_subqueue(netcp->ndev, subqueue); 1037 } 1038 1039 netcp->ndev->stats.tx_packets++; 1040 netcp->ndev->stats.tx_bytes += skb->len; 1041 dev_kfree_skb(skb); 1042 pkts++; 1043 } 1044 return pkts; 1045 } 1046 1047 static int netcp_tx_poll(struct napi_struct *napi, int budget) 1048 { 1049 int packets; 1050 struct netcp_intf *netcp = container_of(napi, struct netcp_intf, 1051 tx_napi); 1052 1053 packets = netcp_process_tx_compl_packets(netcp, budget); 1054 if (packets < budget) { 1055 napi_complete(&netcp->tx_napi); 1056 knav_queue_enable_notify(netcp->tx_compl_q); 1057 } 1058 1059 return packets; 1060 } 1061 1062 static void netcp_tx_notify(void *arg) 1063 { 1064 struct netcp_intf *netcp = arg; 1065 1066 knav_queue_disable_notify(netcp->tx_compl_q); 1067 napi_schedule(&netcp->tx_napi); 1068 } 1069 1070 static struct knav_dma_desc* 1071 netcp_tx_map_skb(struct sk_buff *skb, struct netcp_intf *netcp) 1072 { 1073 struct knav_dma_desc *desc, *ndesc, *pdesc; 1074 unsigned int pkt_len = skb_headlen(skb); 1075 struct device *dev = netcp->dev; 1076 dma_addr_t dma_addr; 1077 unsigned int dma_sz; 1078 int i; 1079 1080 /* Map the linear buffer */ 1081 dma_addr = dma_map_single(dev, skb->data, pkt_len, DMA_TO_DEVICE); 1082 if (unlikely(dma_mapping_error(dev, dma_addr))) { 1083 dev_err(netcp->ndev_dev, "Failed to map skb buffer\n"); 1084 return NULL; 1085 } 1086 1087 desc = knav_pool_desc_get(netcp->tx_pool); 1088 if (IS_ERR_OR_NULL(desc)) { 1089 dev_err(netcp->ndev_dev, "out of TX desc\n"); 1090 dma_unmap_single(dev, dma_addr, pkt_len, DMA_TO_DEVICE); 1091 return NULL; 1092 } 1093 1094 set_pkt_info(dma_addr, pkt_len, 0, desc); 1095 if (skb_is_nonlinear(skb)) { 1096 prefetchw(skb_shinfo(skb)); 1097 } else { 1098 desc->next_desc = 0; 1099 goto upd_pkt_len; 1100 } 1101 1102 pdesc = desc; 1103 1104 /* Handle the case where skb is fragmented in pages */ 1105 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1106 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1107 struct page *page = skb_frag_page(frag); 1108 u32 page_offset = frag->page_offset; 1109 u32 buf_len = skb_frag_size(frag); 1110 dma_addr_t desc_dma; 1111 u32 desc_dma_32; 1112 u32 pkt_info; 1113 1114 dma_addr = dma_map_page(dev, page, page_offset, buf_len, 1115 DMA_TO_DEVICE); 1116 if (unlikely(!dma_addr)) { 1117 dev_err(netcp->ndev_dev, "Failed to map skb page\n"); 1118 goto free_descs; 1119 } 1120 1121 ndesc = knav_pool_desc_get(netcp->tx_pool); 1122 if (IS_ERR_OR_NULL(ndesc)) { 1123 dev_err(netcp->ndev_dev, "out of TX desc for frags\n"); 1124 dma_unmap_page(dev, dma_addr, buf_len, DMA_TO_DEVICE); 1125 goto free_descs; 1126 } 1127 1128 desc_dma = knav_pool_desc_virt_to_dma(netcp->tx_pool, ndesc); 1129 pkt_info = 1130 (netcp->tx_compl_qid & KNAV_DMA_DESC_RETQ_MASK) << 1131 KNAV_DMA_DESC_RETQ_SHIFT; 1132 set_pkt_info(dma_addr, buf_len, 0, ndesc); 1133 desc_dma_32 = (u32)desc_dma; 1134 set_words(&desc_dma_32, 1, &pdesc->next_desc); 1135 pkt_len += buf_len; 1136 if (pdesc != desc) 1137 knav_pool_desc_map(netcp->tx_pool, pdesc, 1138 sizeof(*pdesc), &desc_dma, &dma_sz); 1139 pdesc = ndesc; 1140 } 1141 if (pdesc != desc) 1142 knav_pool_desc_map(netcp->tx_pool, pdesc, sizeof(*pdesc), 1143 &dma_addr, &dma_sz); 1144 1145 /* frag list based linkage is not supported for now. */ 1146 if (skb_shinfo(skb)->frag_list) { 1147 dev_err_ratelimited(netcp->ndev_dev, "NETIF_F_FRAGLIST not supported\n"); 1148 goto free_descs; 1149 } 1150 1151 upd_pkt_len: 1152 WARN_ON(pkt_len != skb->len); 1153 1154 pkt_len &= KNAV_DMA_DESC_PKT_LEN_MASK; 1155 set_words(&pkt_len, 1, &desc->desc_info); 1156 return desc; 1157 1158 free_descs: 1159 netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc)); 1160 return NULL; 1161 } 1162 1163 static int netcp_tx_submit_skb(struct netcp_intf *netcp, 1164 struct sk_buff *skb, 1165 struct knav_dma_desc *desc) 1166 { 1167 struct netcp_tx_pipe *tx_pipe = NULL; 1168 struct netcp_hook_list *tx_hook; 1169 struct netcp_packet p_info; 1170 struct netcp_tx_cb *tx_cb; 1171 unsigned int dma_sz; 1172 dma_addr_t dma; 1173 u32 tmp = 0; 1174 int ret = 0; 1175 1176 p_info.netcp = netcp; 1177 p_info.skb = skb; 1178 p_info.tx_pipe = NULL; 1179 p_info.psdata_len = 0; 1180 p_info.ts_context = NULL; 1181 p_info.txtstamp = NULL; 1182 p_info.epib = desc->epib; 1183 p_info.psdata = (u32 __force *)desc->psdata; 1184 memset(p_info.epib, 0, KNAV_DMA_NUM_EPIB_WORDS * sizeof(__le32)); 1185 1186 /* Find out where to inject the packet for transmission */ 1187 list_for_each_entry(tx_hook, &netcp->txhook_list_head, list) { 1188 ret = tx_hook->hook_rtn(tx_hook->order, tx_hook->hook_data, 1189 &p_info); 1190 if (unlikely(ret != 0)) { 1191 dev_err(netcp->ndev_dev, "TX hook %d rejected the packet with reason(%d)\n", 1192 tx_hook->order, ret); 1193 ret = (ret < 0) ? ret : NETDEV_TX_OK; 1194 goto out; 1195 } 1196 } 1197 1198 /* Make sure some TX hook claimed the packet */ 1199 tx_pipe = p_info.tx_pipe; 1200 if (!tx_pipe) { 1201 dev_err(netcp->ndev_dev, "No TX hook claimed the packet!\n"); 1202 ret = -ENXIO; 1203 goto out; 1204 } 1205 1206 tx_cb = (struct netcp_tx_cb *)skb->cb; 1207 tx_cb->ts_context = p_info.ts_context; 1208 tx_cb->txtstamp = p_info.txtstamp; 1209 1210 /* update descriptor */ 1211 if (p_info.psdata_len) { 1212 /* psdata points to both native-endian and device-endian data */ 1213 __le32 *psdata = (void __force *)p_info.psdata; 1214 1215 memmove(p_info.psdata, p_info.psdata + p_info.psdata_len, 1216 p_info.psdata_len); 1217 set_words(p_info.psdata, p_info.psdata_len, psdata); 1218 tmp |= (p_info.psdata_len & KNAV_DMA_DESC_PSLEN_MASK) << 1219 KNAV_DMA_DESC_PSLEN_SHIFT; 1220 } 1221 1222 tmp |= KNAV_DMA_DESC_HAS_EPIB | 1223 ((netcp->tx_compl_qid & KNAV_DMA_DESC_RETQ_MASK) << 1224 KNAV_DMA_DESC_RETQ_SHIFT); 1225 1226 if (!(tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO)) { 1227 tmp |= ((tx_pipe->switch_to_port & KNAV_DMA_DESC_PSFLAG_MASK) << 1228 KNAV_DMA_DESC_PSFLAG_SHIFT); 1229 } 1230 1231 set_words(&tmp, 1, &desc->packet_info); 1232 /* warning!!!! We are saving the virtual ptr in the sw_data 1233 * field as a 32bit value. Will not work on 64bit machines 1234 */ 1235 SET_SW_DATA0((u32)skb, desc); 1236 1237 if (tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO) { 1238 tmp = tx_pipe->switch_to_port; 1239 set_words(&tmp, 1, &desc->tag_info); 1240 } 1241 1242 /* submit packet descriptor */ 1243 ret = knav_pool_desc_map(netcp->tx_pool, desc, sizeof(*desc), &dma, 1244 &dma_sz); 1245 if (unlikely(ret)) { 1246 dev_err(netcp->ndev_dev, "%s() failed to map desc\n", __func__); 1247 ret = -ENOMEM; 1248 goto out; 1249 } 1250 skb_tx_timestamp(skb); 1251 knav_queue_push(tx_pipe->dma_queue, dma, dma_sz, 0); 1252 1253 out: 1254 return ret; 1255 } 1256 1257 /* Submit the packet */ 1258 static int netcp_ndo_start_xmit(struct sk_buff *skb, struct net_device *ndev) 1259 { 1260 struct netcp_intf *netcp = netdev_priv(ndev); 1261 int subqueue = skb_get_queue_mapping(skb); 1262 struct knav_dma_desc *desc; 1263 int desc_count, ret = 0; 1264 1265 if (unlikely(skb->len <= 0)) { 1266 dev_kfree_skb(skb); 1267 return NETDEV_TX_OK; 1268 } 1269 1270 if (unlikely(skb->len < NETCP_MIN_PACKET_SIZE)) { 1271 ret = skb_padto(skb, NETCP_MIN_PACKET_SIZE); 1272 if (ret < 0) { 1273 /* If we get here, the skb has already been dropped */ 1274 dev_warn(netcp->ndev_dev, "padding failed (%d), packet dropped\n", 1275 ret); 1276 ndev->stats.tx_dropped++; 1277 return ret; 1278 } 1279 skb->len = NETCP_MIN_PACKET_SIZE; 1280 } 1281 1282 desc = netcp_tx_map_skb(skb, netcp); 1283 if (unlikely(!desc)) { 1284 netif_stop_subqueue(ndev, subqueue); 1285 ret = -ENOBUFS; 1286 goto drop; 1287 } 1288 1289 ret = netcp_tx_submit_skb(netcp, skb, desc); 1290 if (ret) 1291 goto drop; 1292 1293 netif_trans_update(ndev); 1294 1295 /* Check Tx pool count & stop subqueue if needed */ 1296 desc_count = knav_pool_count(netcp->tx_pool); 1297 if (desc_count < netcp->tx_pause_threshold) { 1298 dev_dbg(netcp->ndev_dev, "pausing tx, count(%d)\n", desc_count); 1299 netif_stop_subqueue(ndev, subqueue); 1300 } 1301 return NETDEV_TX_OK; 1302 1303 drop: 1304 ndev->stats.tx_dropped++; 1305 if (desc) 1306 netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc)); 1307 dev_kfree_skb(skb); 1308 return ret; 1309 } 1310 1311 int netcp_txpipe_close(struct netcp_tx_pipe *tx_pipe) 1312 { 1313 if (tx_pipe->dma_channel) { 1314 knav_dma_close_channel(tx_pipe->dma_channel); 1315 tx_pipe->dma_channel = NULL; 1316 } 1317 return 0; 1318 } 1319 EXPORT_SYMBOL_GPL(netcp_txpipe_close); 1320 1321 int netcp_txpipe_open(struct netcp_tx_pipe *tx_pipe) 1322 { 1323 struct device *dev = tx_pipe->netcp_device->device; 1324 struct knav_dma_cfg config; 1325 int ret = 0; 1326 u8 name[16]; 1327 1328 memset(&config, 0, sizeof(config)); 1329 config.direction = DMA_MEM_TO_DEV; 1330 config.u.tx.filt_einfo = false; 1331 config.u.tx.filt_pswords = false; 1332 config.u.tx.priority = DMA_PRIO_MED_L; 1333 1334 tx_pipe->dma_channel = knav_dma_open_channel(dev, 1335 tx_pipe->dma_chan_name, &config); 1336 if (IS_ERR_OR_NULL(tx_pipe->dma_channel)) { 1337 dev_err(dev, "failed opening tx chan(%s)\n", 1338 tx_pipe->dma_chan_name); 1339 goto err; 1340 } 1341 1342 snprintf(name, sizeof(name), "tx-pipe-%s", dev_name(dev)); 1343 tx_pipe->dma_queue = knav_queue_open(name, tx_pipe->dma_queue_id, 1344 KNAV_QUEUE_SHARED); 1345 if (IS_ERR(tx_pipe->dma_queue)) { 1346 dev_err(dev, "Could not open DMA queue for channel \"%s\": %d\n", 1347 name, ret); 1348 ret = PTR_ERR(tx_pipe->dma_queue); 1349 goto err; 1350 } 1351 1352 dev_dbg(dev, "opened tx pipe %s\n", name); 1353 return 0; 1354 1355 err: 1356 if (!IS_ERR_OR_NULL(tx_pipe->dma_channel)) 1357 knav_dma_close_channel(tx_pipe->dma_channel); 1358 tx_pipe->dma_channel = NULL; 1359 return ret; 1360 } 1361 EXPORT_SYMBOL_GPL(netcp_txpipe_open); 1362 1363 int netcp_txpipe_init(struct netcp_tx_pipe *tx_pipe, 1364 struct netcp_device *netcp_device, 1365 const char *dma_chan_name, unsigned int dma_queue_id) 1366 { 1367 memset(tx_pipe, 0, sizeof(*tx_pipe)); 1368 tx_pipe->netcp_device = netcp_device; 1369 tx_pipe->dma_chan_name = dma_chan_name; 1370 tx_pipe->dma_queue_id = dma_queue_id; 1371 return 0; 1372 } 1373 EXPORT_SYMBOL_GPL(netcp_txpipe_init); 1374 1375 static struct netcp_addr *netcp_addr_find(struct netcp_intf *netcp, 1376 const u8 *addr, 1377 enum netcp_addr_type type) 1378 { 1379 struct netcp_addr *naddr; 1380 1381 list_for_each_entry(naddr, &netcp->addr_list, node) { 1382 if (naddr->type != type) 1383 continue; 1384 if (addr && memcmp(addr, naddr->addr, ETH_ALEN)) 1385 continue; 1386 return naddr; 1387 } 1388 1389 return NULL; 1390 } 1391 1392 static struct netcp_addr *netcp_addr_add(struct netcp_intf *netcp, 1393 const u8 *addr, 1394 enum netcp_addr_type type) 1395 { 1396 struct netcp_addr *naddr; 1397 1398 naddr = devm_kmalloc(netcp->dev, sizeof(*naddr), GFP_ATOMIC); 1399 if (!naddr) 1400 return NULL; 1401 1402 naddr->type = type; 1403 naddr->flags = 0; 1404 naddr->netcp = netcp; 1405 if (addr) 1406 ether_addr_copy(naddr->addr, addr); 1407 else 1408 eth_zero_addr(naddr->addr); 1409 list_add_tail(&naddr->node, &netcp->addr_list); 1410 1411 return naddr; 1412 } 1413 1414 static void netcp_addr_del(struct netcp_intf *netcp, struct netcp_addr *naddr) 1415 { 1416 list_del(&naddr->node); 1417 devm_kfree(netcp->dev, naddr); 1418 } 1419 1420 static void netcp_addr_clear_mark(struct netcp_intf *netcp) 1421 { 1422 struct netcp_addr *naddr; 1423 1424 list_for_each_entry(naddr, &netcp->addr_list, node) 1425 naddr->flags = 0; 1426 } 1427 1428 static void netcp_addr_add_mark(struct netcp_intf *netcp, const u8 *addr, 1429 enum netcp_addr_type type) 1430 { 1431 struct netcp_addr *naddr; 1432 1433 naddr = netcp_addr_find(netcp, addr, type); 1434 if (naddr) { 1435 naddr->flags |= ADDR_VALID; 1436 return; 1437 } 1438 1439 naddr = netcp_addr_add(netcp, addr, type); 1440 if (!WARN_ON(!naddr)) 1441 naddr->flags |= ADDR_NEW; 1442 } 1443 1444 static void netcp_addr_sweep_del(struct netcp_intf *netcp) 1445 { 1446 struct netcp_addr *naddr, *tmp; 1447 struct netcp_intf_modpriv *priv; 1448 struct netcp_module *module; 1449 int error; 1450 1451 list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) { 1452 if (naddr->flags & (ADDR_VALID | ADDR_NEW)) 1453 continue; 1454 dev_dbg(netcp->ndev_dev, "deleting address %pM, type %x\n", 1455 naddr->addr, naddr->type); 1456 for_each_module(netcp, priv) { 1457 module = priv->netcp_module; 1458 if (!module->del_addr) 1459 continue; 1460 error = module->del_addr(priv->module_priv, 1461 naddr); 1462 WARN_ON(error); 1463 } 1464 netcp_addr_del(netcp, naddr); 1465 } 1466 } 1467 1468 static void netcp_addr_sweep_add(struct netcp_intf *netcp) 1469 { 1470 struct netcp_addr *naddr, *tmp; 1471 struct netcp_intf_modpriv *priv; 1472 struct netcp_module *module; 1473 int error; 1474 1475 list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) { 1476 if (!(naddr->flags & ADDR_NEW)) 1477 continue; 1478 dev_dbg(netcp->ndev_dev, "adding address %pM, type %x\n", 1479 naddr->addr, naddr->type); 1480 1481 for_each_module(netcp, priv) { 1482 module = priv->netcp_module; 1483 if (!module->add_addr) 1484 continue; 1485 error = module->add_addr(priv->module_priv, naddr); 1486 WARN_ON(error); 1487 } 1488 } 1489 } 1490 1491 static void netcp_set_rx_mode(struct net_device *ndev) 1492 { 1493 struct netcp_intf *netcp = netdev_priv(ndev); 1494 struct netdev_hw_addr *ndev_addr; 1495 bool promisc; 1496 1497 promisc = (ndev->flags & IFF_PROMISC || 1498 ndev->flags & IFF_ALLMULTI || 1499 netdev_mc_count(ndev) > NETCP_MAX_MCAST_ADDR); 1500 1501 spin_lock(&netcp->lock); 1502 /* first clear all marks */ 1503 netcp_addr_clear_mark(netcp); 1504 1505 /* next add new entries, mark existing ones */ 1506 netcp_addr_add_mark(netcp, ndev->broadcast, ADDR_BCAST); 1507 for_each_dev_addr(ndev, ndev_addr) 1508 netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_DEV); 1509 netdev_for_each_uc_addr(ndev_addr, ndev) 1510 netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_UCAST); 1511 netdev_for_each_mc_addr(ndev_addr, ndev) 1512 netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_MCAST); 1513 1514 if (promisc) 1515 netcp_addr_add_mark(netcp, NULL, ADDR_ANY); 1516 1517 /* finally sweep and callout into modules */ 1518 netcp_addr_sweep_del(netcp); 1519 netcp_addr_sweep_add(netcp); 1520 spin_unlock(&netcp->lock); 1521 } 1522 1523 static void netcp_free_navigator_resources(struct netcp_intf *netcp) 1524 { 1525 int i; 1526 1527 if (netcp->rx_channel) { 1528 knav_dma_close_channel(netcp->rx_channel); 1529 netcp->rx_channel = NULL; 1530 } 1531 1532 if (!IS_ERR_OR_NULL(netcp->rx_pool)) 1533 netcp_rxpool_free(netcp); 1534 1535 if (!IS_ERR_OR_NULL(netcp->rx_queue)) { 1536 knav_queue_close(netcp->rx_queue); 1537 netcp->rx_queue = NULL; 1538 } 1539 1540 for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && 1541 !IS_ERR_OR_NULL(netcp->rx_fdq[i]) ; ++i) { 1542 knav_queue_close(netcp->rx_fdq[i]); 1543 netcp->rx_fdq[i] = NULL; 1544 } 1545 1546 if (!IS_ERR_OR_NULL(netcp->tx_compl_q)) { 1547 knav_queue_close(netcp->tx_compl_q); 1548 netcp->tx_compl_q = NULL; 1549 } 1550 1551 if (!IS_ERR_OR_NULL(netcp->tx_pool)) { 1552 knav_pool_destroy(netcp->tx_pool); 1553 netcp->tx_pool = NULL; 1554 } 1555 } 1556 1557 static int netcp_setup_navigator_resources(struct net_device *ndev) 1558 { 1559 struct netcp_intf *netcp = netdev_priv(ndev); 1560 struct knav_queue_notify_config notify_cfg; 1561 struct knav_dma_cfg config; 1562 u32 last_fdq = 0; 1563 u8 name[16]; 1564 int ret; 1565 int i; 1566 1567 /* Create Rx/Tx descriptor pools */ 1568 snprintf(name, sizeof(name), "rx-pool-%s", ndev->name); 1569 netcp->rx_pool = knav_pool_create(name, netcp->rx_pool_size, 1570 netcp->rx_pool_region_id); 1571 if (IS_ERR_OR_NULL(netcp->rx_pool)) { 1572 dev_err(netcp->ndev_dev, "Couldn't create rx pool\n"); 1573 ret = PTR_ERR(netcp->rx_pool); 1574 goto fail; 1575 } 1576 1577 snprintf(name, sizeof(name), "tx-pool-%s", ndev->name); 1578 netcp->tx_pool = knav_pool_create(name, netcp->tx_pool_size, 1579 netcp->tx_pool_region_id); 1580 if (IS_ERR_OR_NULL(netcp->tx_pool)) { 1581 dev_err(netcp->ndev_dev, "Couldn't create tx pool\n"); 1582 ret = PTR_ERR(netcp->tx_pool); 1583 goto fail; 1584 } 1585 1586 /* open Tx completion queue */ 1587 snprintf(name, sizeof(name), "tx-compl-%s", ndev->name); 1588 netcp->tx_compl_q = knav_queue_open(name, netcp->tx_compl_qid, 0); 1589 if (IS_ERR(netcp->tx_compl_q)) { 1590 ret = PTR_ERR(netcp->tx_compl_q); 1591 goto fail; 1592 } 1593 netcp->tx_compl_qid = knav_queue_get_id(netcp->tx_compl_q); 1594 1595 /* Set notification for Tx completion */ 1596 notify_cfg.fn = netcp_tx_notify; 1597 notify_cfg.fn_arg = netcp; 1598 ret = knav_queue_device_control(netcp->tx_compl_q, 1599 KNAV_QUEUE_SET_NOTIFIER, 1600 (unsigned long)¬ify_cfg); 1601 if (ret) 1602 goto fail; 1603 1604 knav_queue_disable_notify(netcp->tx_compl_q); 1605 1606 /* open Rx completion queue */ 1607 snprintf(name, sizeof(name), "rx-compl-%s", ndev->name); 1608 netcp->rx_queue = knav_queue_open(name, netcp->rx_queue_id, 0); 1609 if (IS_ERR(netcp->rx_queue)) { 1610 ret = PTR_ERR(netcp->rx_queue); 1611 goto fail; 1612 } 1613 netcp->rx_queue_id = knav_queue_get_id(netcp->rx_queue); 1614 1615 /* Set notification for Rx completion */ 1616 notify_cfg.fn = netcp_rx_notify; 1617 notify_cfg.fn_arg = netcp; 1618 ret = knav_queue_device_control(netcp->rx_queue, 1619 KNAV_QUEUE_SET_NOTIFIER, 1620 (unsigned long)¬ify_cfg); 1621 if (ret) 1622 goto fail; 1623 1624 knav_queue_disable_notify(netcp->rx_queue); 1625 1626 /* open Rx FDQs */ 1627 for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_queue_depths[i]; 1628 ++i) { 1629 snprintf(name, sizeof(name), "rx-fdq-%s-%d", ndev->name, i); 1630 netcp->rx_fdq[i] = knav_queue_open(name, KNAV_QUEUE_GP, 0); 1631 if (IS_ERR(netcp->rx_fdq[i])) { 1632 ret = PTR_ERR(netcp->rx_fdq[i]); 1633 goto fail; 1634 } 1635 } 1636 1637 memset(&config, 0, sizeof(config)); 1638 config.direction = DMA_DEV_TO_MEM; 1639 config.u.rx.einfo_present = true; 1640 config.u.rx.psinfo_present = true; 1641 config.u.rx.err_mode = DMA_DROP; 1642 config.u.rx.desc_type = DMA_DESC_HOST; 1643 config.u.rx.psinfo_at_sop = false; 1644 config.u.rx.sop_offset = NETCP_SOP_OFFSET; 1645 config.u.rx.dst_q = netcp->rx_queue_id; 1646 config.u.rx.thresh = DMA_THRESH_NONE; 1647 1648 for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN; ++i) { 1649 if (netcp->rx_fdq[i]) 1650 last_fdq = knav_queue_get_id(netcp->rx_fdq[i]); 1651 config.u.rx.fdq[i] = last_fdq; 1652 } 1653 1654 netcp->rx_channel = knav_dma_open_channel(netcp->netcp_device->device, 1655 netcp->dma_chan_name, &config); 1656 if (IS_ERR_OR_NULL(netcp->rx_channel)) { 1657 dev_err(netcp->ndev_dev, "failed opening rx chan(%s\n", 1658 netcp->dma_chan_name); 1659 goto fail; 1660 } 1661 1662 dev_dbg(netcp->ndev_dev, "opened RX channel: %p\n", netcp->rx_channel); 1663 return 0; 1664 1665 fail: 1666 netcp_free_navigator_resources(netcp); 1667 return ret; 1668 } 1669 1670 /* Open the device */ 1671 static int netcp_ndo_open(struct net_device *ndev) 1672 { 1673 struct netcp_intf *netcp = netdev_priv(ndev); 1674 struct netcp_intf_modpriv *intf_modpriv; 1675 struct netcp_module *module; 1676 int ret; 1677 1678 netif_carrier_off(ndev); 1679 ret = netcp_setup_navigator_resources(ndev); 1680 if (ret) { 1681 dev_err(netcp->ndev_dev, "Failed to setup navigator resources\n"); 1682 goto fail; 1683 } 1684 1685 for_each_module(netcp, intf_modpriv) { 1686 module = intf_modpriv->netcp_module; 1687 if (module->open) { 1688 ret = module->open(intf_modpriv->module_priv, ndev); 1689 if (ret != 0) { 1690 dev_err(netcp->ndev_dev, "module open failed\n"); 1691 goto fail_open; 1692 } 1693 } 1694 } 1695 1696 napi_enable(&netcp->rx_napi); 1697 napi_enable(&netcp->tx_napi); 1698 knav_queue_enable_notify(netcp->tx_compl_q); 1699 knav_queue_enable_notify(netcp->rx_queue); 1700 netcp_rxpool_refill(netcp); 1701 netif_tx_wake_all_queues(ndev); 1702 dev_dbg(netcp->ndev_dev, "netcp device %s opened\n", ndev->name); 1703 return 0; 1704 1705 fail_open: 1706 for_each_module(netcp, intf_modpriv) { 1707 module = intf_modpriv->netcp_module; 1708 if (module->close) 1709 module->close(intf_modpriv->module_priv, ndev); 1710 } 1711 1712 fail: 1713 netcp_free_navigator_resources(netcp); 1714 return ret; 1715 } 1716 1717 /* Close the device */ 1718 static int netcp_ndo_stop(struct net_device *ndev) 1719 { 1720 struct netcp_intf *netcp = netdev_priv(ndev); 1721 struct netcp_intf_modpriv *intf_modpriv; 1722 struct netcp_module *module; 1723 int err = 0; 1724 1725 netif_tx_stop_all_queues(ndev); 1726 netif_carrier_off(ndev); 1727 netcp_addr_clear_mark(netcp); 1728 netcp_addr_sweep_del(netcp); 1729 knav_queue_disable_notify(netcp->rx_queue); 1730 knav_queue_disable_notify(netcp->tx_compl_q); 1731 napi_disable(&netcp->rx_napi); 1732 napi_disable(&netcp->tx_napi); 1733 1734 for_each_module(netcp, intf_modpriv) { 1735 module = intf_modpriv->netcp_module; 1736 if (module->close) { 1737 err = module->close(intf_modpriv->module_priv, ndev); 1738 if (err != 0) 1739 dev_err(netcp->ndev_dev, "Close failed\n"); 1740 } 1741 } 1742 1743 /* Recycle Rx descriptors from completion queue */ 1744 netcp_empty_rx_queue(netcp); 1745 1746 /* Recycle Tx descriptors from completion queue */ 1747 netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size); 1748 1749 if (knav_pool_count(netcp->tx_pool) != netcp->tx_pool_size) 1750 dev_err(netcp->ndev_dev, "Lost (%d) Tx descs\n", 1751 netcp->tx_pool_size - knav_pool_count(netcp->tx_pool)); 1752 1753 netcp_free_navigator_resources(netcp); 1754 dev_dbg(netcp->ndev_dev, "netcp device %s stopped\n", ndev->name); 1755 return 0; 1756 } 1757 1758 static int netcp_ndo_ioctl(struct net_device *ndev, 1759 struct ifreq *req, int cmd) 1760 { 1761 struct netcp_intf *netcp = netdev_priv(ndev); 1762 struct netcp_intf_modpriv *intf_modpriv; 1763 struct netcp_module *module; 1764 int ret = -1, err = -EOPNOTSUPP; 1765 1766 if (!netif_running(ndev)) 1767 return -EINVAL; 1768 1769 for_each_module(netcp, intf_modpriv) { 1770 module = intf_modpriv->netcp_module; 1771 if (!module->ioctl) 1772 continue; 1773 1774 err = module->ioctl(intf_modpriv->module_priv, req, cmd); 1775 if ((err < 0) && (err != -EOPNOTSUPP)) { 1776 ret = err; 1777 goto out; 1778 } 1779 if (err == 0) 1780 ret = err; 1781 } 1782 1783 out: 1784 return (ret == 0) ? 0 : err; 1785 } 1786 1787 static void netcp_ndo_tx_timeout(struct net_device *ndev) 1788 { 1789 struct netcp_intf *netcp = netdev_priv(ndev); 1790 unsigned int descs = knav_pool_count(netcp->tx_pool); 1791 1792 dev_err(netcp->ndev_dev, "transmit timed out tx descs(%d)\n", descs); 1793 netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size); 1794 netif_trans_update(ndev); 1795 netif_tx_wake_all_queues(ndev); 1796 } 1797 1798 static int netcp_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid) 1799 { 1800 struct netcp_intf *netcp = netdev_priv(ndev); 1801 struct netcp_intf_modpriv *intf_modpriv; 1802 struct netcp_module *module; 1803 unsigned long flags; 1804 int err = 0; 1805 1806 dev_dbg(netcp->ndev_dev, "adding rx vlan id: %d\n", vid); 1807 1808 spin_lock_irqsave(&netcp->lock, flags); 1809 for_each_module(netcp, intf_modpriv) { 1810 module = intf_modpriv->netcp_module; 1811 if ((module->add_vid) && (vid != 0)) { 1812 err = module->add_vid(intf_modpriv->module_priv, vid); 1813 if (err != 0) { 1814 dev_err(netcp->ndev_dev, "Could not add vlan id = %d\n", 1815 vid); 1816 break; 1817 } 1818 } 1819 } 1820 spin_unlock_irqrestore(&netcp->lock, flags); 1821 1822 return err; 1823 } 1824 1825 static int netcp_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid) 1826 { 1827 struct netcp_intf *netcp = netdev_priv(ndev); 1828 struct netcp_intf_modpriv *intf_modpriv; 1829 struct netcp_module *module; 1830 unsigned long flags; 1831 int err = 0; 1832 1833 dev_dbg(netcp->ndev_dev, "removing rx vlan id: %d\n", vid); 1834 1835 spin_lock_irqsave(&netcp->lock, flags); 1836 for_each_module(netcp, intf_modpriv) { 1837 module = intf_modpriv->netcp_module; 1838 if (module->del_vid) { 1839 err = module->del_vid(intf_modpriv->module_priv, vid); 1840 if (err != 0) { 1841 dev_err(netcp->ndev_dev, "Could not delete vlan id = %d\n", 1842 vid); 1843 break; 1844 } 1845 } 1846 } 1847 spin_unlock_irqrestore(&netcp->lock, flags); 1848 return err; 1849 } 1850 1851 static u16 netcp_select_queue(struct net_device *dev, struct sk_buff *skb, 1852 void *accel_priv, 1853 select_queue_fallback_t fallback) 1854 { 1855 return 0; 1856 } 1857 1858 static int netcp_setup_tc(struct net_device *dev, u32 handle, __be16 proto, 1859 struct tc_to_netdev *tc) 1860 { 1861 int i; 1862 1863 /* setup tc must be called under rtnl lock */ 1864 ASSERT_RTNL(); 1865 1866 if (tc->type != TC_SETUP_MQPRIO) 1867 return -EINVAL; 1868 1869 /* Sanity-check the number of traffic classes requested */ 1870 if ((dev->real_num_tx_queues <= 1) || 1871 (dev->real_num_tx_queues < tc->tc)) 1872 return -EINVAL; 1873 1874 /* Configure traffic class to queue mappings */ 1875 if (tc->tc) { 1876 netdev_set_num_tc(dev, tc->tc); 1877 for (i = 0; i < tc->tc; i++) 1878 netdev_set_tc_queue(dev, i, 1, i); 1879 } else { 1880 netdev_reset_tc(dev); 1881 } 1882 1883 return 0; 1884 } 1885 1886 static const struct net_device_ops netcp_netdev_ops = { 1887 .ndo_open = netcp_ndo_open, 1888 .ndo_stop = netcp_ndo_stop, 1889 .ndo_start_xmit = netcp_ndo_start_xmit, 1890 .ndo_set_rx_mode = netcp_set_rx_mode, 1891 .ndo_do_ioctl = netcp_ndo_ioctl, 1892 .ndo_set_mac_address = eth_mac_addr, 1893 .ndo_validate_addr = eth_validate_addr, 1894 .ndo_vlan_rx_add_vid = netcp_rx_add_vid, 1895 .ndo_vlan_rx_kill_vid = netcp_rx_kill_vid, 1896 .ndo_tx_timeout = netcp_ndo_tx_timeout, 1897 .ndo_select_queue = netcp_select_queue, 1898 .ndo_setup_tc = netcp_setup_tc, 1899 }; 1900 1901 static int netcp_create_interface(struct netcp_device *netcp_device, 1902 struct device_node *node_interface) 1903 { 1904 struct device *dev = netcp_device->device; 1905 struct device_node *node = dev->of_node; 1906 struct netcp_intf *netcp; 1907 struct net_device *ndev; 1908 resource_size_t size; 1909 struct resource res; 1910 void __iomem *efuse = NULL; 1911 u32 efuse_mac = 0; 1912 const void *mac_addr; 1913 u8 efuse_mac_addr[6]; 1914 u32 temp[2]; 1915 int ret = 0; 1916 1917 ndev = alloc_etherdev_mqs(sizeof(*netcp), 1, 1); 1918 if (!ndev) { 1919 dev_err(dev, "Error allocating netdev\n"); 1920 return -ENOMEM; 1921 } 1922 1923 ndev->features |= NETIF_F_SG; 1924 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 1925 ndev->hw_features = ndev->features; 1926 ndev->vlan_features |= NETIF_F_SG; 1927 1928 /* MTU range: 68 - 9486 */ 1929 ndev->min_mtu = ETH_MIN_MTU; 1930 ndev->max_mtu = NETCP_MAX_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN); 1931 1932 netcp = netdev_priv(ndev); 1933 spin_lock_init(&netcp->lock); 1934 INIT_LIST_HEAD(&netcp->module_head); 1935 INIT_LIST_HEAD(&netcp->txhook_list_head); 1936 INIT_LIST_HEAD(&netcp->rxhook_list_head); 1937 INIT_LIST_HEAD(&netcp->addr_list); 1938 netcp->netcp_device = netcp_device; 1939 netcp->dev = netcp_device->device; 1940 netcp->ndev = ndev; 1941 netcp->ndev_dev = &ndev->dev; 1942 netcp->msg_enable = netif_msg_init(netcp_debug_level, NETCP_DEBUG); 1943 netcp->tx_pause_threshold = MAX_SKB_FRAGS; 1944 netcp->tx_resume_threshold = netcp->tx_pause_threshold; 1945 netcp->node_interface = node_interface; 1946 1947 ret = of_property_read_u32(node_interface, "efuse-mac", &efuse_mac); 1948 if (efuse_mac) { 1949 if (of_address_to_resource(node, NETCP_EFUSE_REG_INDEX, &res)) { 1950 dev_err(dev, "could not find efuse-mac reg resource\n"); 1951 ret = -ENODEV; 1952 goto quit; 1953 } 1954 size = resource_size(&res); 1955 1956 if (!devm_request_mem_region(dev, res.start, size, 1957 dev_name(dev))) { 1958 dev_err(dev, "could not reserve resource\n"); 1959 ret = -ENOMEM; 1960 goto quit; 1961 } 1962 1963 efuse = devm_ioremap_nocache(dev, res.start, size); 1964 if (!efuse) { 1965 dev_err(dev, "could not map resource\n"); 1966 devm_release_mem_region(dev, res.start, size); 1967 ret = -ENOMEM; 1968 goto quit; 1969 } 1970 1971 emac_arch_get_mac_addr(efuse_mac_addr, efuse, efuse_mac); 1972 if (is_valid_ether_addr(efuse_mac_addr)) 1973 ether_addr_copy(ndev->dev_addr, efuse_mac_addr); 1974 else 1975 random_ether_addr(ndev->dev_addr); 1976 1977 devm_iounmap(dev, efuse); 1978 devm_release_mem_region(dev, res.start, size); 1979 } else { 1980 mac_addr = of_get_mac_address(node_interface); 1981 if (mac_addr) 1982 ether_addr_copy(ndev->dev_addr, mac_addr); 1983 else 1984 random_ether_addr(ndev->dev_addr); 1985 } 1986 1987 ret = of_property_read_string(node_interface, "rx-channel", 1988 &netcp->dma_chan_name); 1989 if (ret < 0) { 1990 dev_err(dev, "missing \"rx-channel\" parameter\n"); 1991 ret = -ENODEV; 1992 goto quit; 1993 } 1994 1995 ret = of_property_read_u32(node_interface, "rx-queue", 1996 &netcp->rx_queue_id); 1997 if (ret < 0) { 1998 dev_warn(dev, "missing \"rx-queue\" parameter\n"); 1999 netcp->rx_queue_id = KNAV_QUEUE_QPEND; 2000 } 2001 2002 ret = of_property_read_u32_array(node_interface, "rx-queue-depth", 2003 netcp->rx_queue_depths, 2004 KNAV_DMA_FDQ_PER_CHAN); 2005 if (ret < 0) { 2006 dev_err(dev, "missing \"rx-queue-depth\" parameter\n"); 2007 netcp->rx_queue_depths[0] = 128; 2008 } 2009 2010 ret = of_property_read_u32_array(node_interface, "rx-pool", temp, 2); 2011 if (ret < 0) { 2012 dev_err(dev, "missing \"rx-pool\" parameter\n"); 2013 ret = -ENODEV; 2014 goto quit; 2015 } 2016 netcp->rx_pool_size = temp[0]; 2017 netcp->rx_pool_region_id = temp[1]; 2018 2019 ret = of_property_read_u32_array(node_interface, "tx-pool", temp, 2); 2020 if (ret < 0) { 2021 dev_err(dev, "missing \"tx-pool\" parameter\n"); 2022 ret = -ENODEV; 2023 goto quit; 2024 } 2025 netcp->tx_pool_size = temp[0]; 2026 netcp->tx_pool_region_id = temp[1]; 2027 2028 if (netcp->tx_pool_size < MAX_SKB_FRAGS) { 2029 dev_err(dev, "tx-pool size too small, must be atleast(%ld)\n", 2030 MAX_SKB_FRAGS); 2031 ret = -ENODEV; 2032 goto quit; 2033 } 2034 2035 ret = of_property_read_u32(node_interface, "tx-completion-queue", 2036 &netcp->tx_compl_qid); 2037 if (ret < 0) { 2038 dev_warn(dev, "missing \"tx-completion-queue\" parameter\n"); 2039 netcp->tx_compl_qid = KNAV_QUEUE_QPEND; 2040 } 2041 2042 /* NAPI register */ 2043 netif_napi_add(ndev, &netcp->rx_napi, netcp_rx_poll, NETCP_NAPI_WEIGHT); 2044 netif_tx_napi_add(ndev, &netcp->tx_napi, netcp_tx_poll, NETCP_NAPI_WEIGHT); 2045 2046 /* Register the network device */ 2047 ndev->dev_id = 0; 2048 ndev->watchdog_timeo = NETCP_TX_TIMEOUT; 2049 ndev->netdev_ops = &netcp_netdev_ops; 2050 SET_NETDEV_DEV(ndev, dev); 2051 2052 list_add_tail(&netcp->interface_list, &netcp_device->interface_head); 2053 return 0; 2054 2055 quit: 2056 free_netdev(ndev); 2057 return ret; 2058 } 2059 2060 static void netcp_delete_interface(struct netcp_device *netcp_device, 2061 struct net_device *ndev) 2062 { 2063 struct netcp_intf_modpriv *intf_modpriv, *tmp; 2064 struct netcp_intf *netcp = netdev_priv(ndev); 2065 struct netcp_module *module; 2066 2067 dev_dbg(netcp_device->device, "Removing interface \"%s\"\n", 2068 ndev->name); 2069 2070 /* Notify each of the modules that the interface is going away */ 2071 list_for_each_entry_safe(intf_modpriv, tmp, &netcp->module_head, 2072 intf_list) { 2073 module = intf_modpriv->netcp_module; 2074 dev_dbg(netcp_device->device, "Releasing module \"%s\"\n", 2075 module->name); 2076 if (module->release) 2077 module->release(intf_modpriv->module_priv); 2078 list_del(&intf_modpriv->intf_list); 2079 } 2080 WARN(!list_empty(&netcp->module_head), "%s interface module list is not empty!\n", 2081 ndev->name); 2082 2083 list_del(&netcp->interface_list); 2084 2085 of_node_put(netcp->node_interface); 2086 unregister_netdev(ndev); 2087 netif_napi_del(&netcp->rx_napi); 2088 free_netdev(ndev); 2089 } 2090 2091 static int netcp_probe(struct platform_device *pdev) 2092 { 2093 struct device_node *node = pdev->dev.of_node; 2094 struct netcp_intf *netcp_intf, *netcp_tmp; 2095 struct device_node *child, *interfaces; 2096 struct netcp_device *netcp_device; 2097 struct device *dev = &pdev->dev; 2098 int ret; 2099 2100 if (!node) { 2101 dev_err(dev, "could not find device info\n"); 2102 return -ENODEV; 2103 } 2104 2105 /* Allocate a new NETCP device instance */ 2106 netcp_device = devm_kzalloc(dev, sizeof(*netcp_device), GFP_KERNEL); 2107 if (!netcp_device) 2108 return -ENOMEM; 2109 2110 pm_runtime_enable(&pdev->dev); 2111 ret = pm_runtime_get_sync(&pdev->dev); 2112 if (ret < 0) { 2113 dev_err(dev, "Failed to enable NETCP power-domain\n"); 2114 pm_runtime_disable(&pdev->dev); 2115 return ret; 2116 } 2117 2118 /* Initialize the NETCP device instance */ 2119 INIT_LIST_HEAD(&netcp_device->interface_head); 2120 INIT_LIST_HEAD(&netcp_device->modpriv_head); 2121 netcp_device->device = dev; 2122 platform_set_drvdata(pdev, netcp_device); 2123 2124 /* create interfaces */ 2125 interfaces = of_get_child_by_name(node, "netcp-interfaces"); 2126 if (!interfaces) { 2127 dev_err(dev, "could not find netcp-interfaces node\n"); 2128 ret = -ENODEV; 2129 goto probe_quit; 2130 } 2131 2132 for_each_available_child_of_node(interfaces, child) { 2133 ret = netcp_create_interface(netcp_device, child); 2134 if (ret) { 2135 dev_err(dev, "could not create interface(%s)\n", 2136 child->name); 2137 goto probe_quit_interface; 2138 } 2139 } 2140 2141 of_node_put(interfaces); 2142 2143 /* Add the device instance to the list */ 2144 list_add_tail(&netcp_device->device_list, &netcp_devices); 2145 2146 return 0; 2147 2148 probe_quit_interface: 2149 list_for_each_entry_safe(netcp_intf, netcp_tmp, 2150 &netcp_device->interface_head, 2151 interface_list) { 2152 netcp_delete_interface(netcp_device, netcp_intf->ndev); 2153 } 2154 2155 of_node_put(interfaces); 2156 2157 probe_quit: 2158 pm_runtime_put_sync(&pdev->dev); 2159 pm_runtime_disable(&pdev->dev); 2160 platform_set_drvdata(pdev, NULL); 2161 return ret; 2162 } 2163 2164 static int netcp_remove(struct platform_device *pdev) 2165 { 2166 struct netcp_device *netcp_device = platform_get_drvdata(pdev); 2167 struct netcp_intf *netcp_intf, *netcp_tmp; 2168 struct netcp_inst_modpriv *inst_modpriv, *tmp; 2169 struct netcp_module *module; 2170 2171 list_for_each_entry_safe(inst_modpriv, tmp, &netcp_device->modpriv_head, 2172 inst_list) { 2173 module = inst_modpriv->netcp_module; 2174 dev_dbg(&pdev->dev, "Removing module \"%s\"\n", module->name); 2175 module->remove(netcp_device, inst_modpriv->module_priv); 2176 list_del(&inst_modpriv->inst_list); 2177 } 2178 2179 /* now that all modules are removed, clean up the interfaces */ 2180 list_for_each_entry_safe(netcp_intf, netcp_tmp, 2181 &netcp_device->interface_head, 2182 interface_list) { 2183 netcp_delete_interface(netcp_device, netcp_intf->ndev); 2184 } 2185 2186 WARN(!list_empty(&netcp_device->interface_head), 2187 "%s interface list not empty!\n", pdev->name); 2188 2189 pm_runtime_put_sync(&pdev->dev); 2190 pm_runtime_disable(&pdev->dev); 2191 platform_set_drvdata(pdev, NULL); 2192 return 0; 2193 } 2194 2195 static const struct of_device_id of_match[] = { 2196 { .compatible = "ti,netcp-1.0", }, 2197 {}, 2198 }; 2199 MODULE_DEVICE_TABLE(of, of_match); 2200 2201 static struct platform_driver netcp_driver = { 2202 .driver = { 2203 .name = "netcp-1.0", 2204 .of_match_table = of_match, 2205 }, 2206 .probe = netcp_probe, 2207 .remove = netcp_remove, 2208 }; 2209 module_platform_driver(netcp_driver); 2210 2211 MODULE_LICENSE("GPL v2"); 2212 MODULE_DESCRIPTION("TI NETCP driver for Keystone SOCs"); 2213 MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com"); 2214