1 /*
2  * Keystone NetCP Core driver
3  *
4  * Copyright (C) 2014 Texas Instruments Incorporated
5  * Authors:	Sandeep Nair <sandeep_n@ti.com>
6  *		Sandeep Paulraj <s-paulraj@ti.com>
7  *		Cyril Chemparathy <cyril@ti.com>
8  *		Santosh Shilimkar <santosh.shilimkar@ti.com>
9  *		Murali Karicheri <m-karicheri2@ti.com>
10  *		Wingman Kwok <w-kwok2@ti.com>
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License as
14  * published by the Free Software Foundation version 2.
15  *
16  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
17  * kind, whether express or implied; without even the implied warranty
18  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  */
21 
22 #include <linux/io.h>
23 #include <linux/module.h>
24 #include <linux/of_net.h>
25 #include <linux/of_address.h>
26 #include <linux/if_vlan.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/platform_device.h>
29 #include <linux/soc/ti/knav_qmss.h>
30 #include <linux/soc/ti/knav_dma.h>
31 
32 #include "netcp.h"
33 
34 #define NETCP_SOP_OFFSET	(NET_IP_ALIGN + NET_SKB_PAD)
35 #define NETCP_NAPI_WEIGHT	64
36 #define NETCP_TX_TIMEOUT	(5 * HZ)
37 #define NETCP_PACKET_SIZE	(ETH_FRAME_LEN + ETH_FCS_LEN)
38 #define NETCP_MIN_PACKET_SIZE	ETH_ZLEN
39 #define NETCP_MAX_MCAST_ADDR	16
40 
41 #define NETCP_EFUSE_REG_INDEX	0
42 
43 #define NETCP_MOD_PROBE_SKIPPED	1
44 #define NETCP_MOD_PROBE_FAILED	2
45 
46 #define NETCP_DEBUG (NETIF_MSG_HW	| NETIF_MSG_WOL		|	\
47 		    NETIF_MSG_DRV	| NETIF_MSG_LINK	|	\
48 		    NETIF_MSG_IFUP	| NETIF_MSG_INTR	|	\
49 		    NETIF_MSG_PROBE	| NETIF_MSG_TIMER	|	\
50 		    NETIF_MSG_IFDOWN	| NETIF_MSG_RX_ERR	|	\
51 		    NETIF_MSG_TX_ERR	| NETIF_MSG_TX_DONE	|	\
52 		    NETIF_MSG_PKTDATA	| NETIF_MSG_TX_QUEUED	|	\
53 		    NETIF_MSG_RX_STATUS)
54 
55 #define NETCP_EFUSE_ADDR_SWAP	2
56 
57 #define knav_queue_get_id(q)	knav_queue_device_control(q, \
58 				KNAV_QUEUE_GET_ID, (unsigned long)NULL)
59 
60 #define knav_queue_enable_notify(q) knav_queue_device_control(q,	\
61 					KNAV_QUEUE_ENABLE_NOTIFY,	\
62 					(unsigned long)NULL)
63 
64 #define knav_queue_disable_notify(q) knav_queue_device_control(q,	\
65 					KNAV_QUEUE_DISABLE_NOTIFY,	\
66 					(unsigned long)NULL)
67 
68 #define knav_queue_get_count(q)	knav_queue_device_control(q, \
69 				KNAV_QUEUE_GET_COUNT, (unsigned long)NULL)
70 
71 #define for_each_netcp_module(module)			\
72 	list_for_each_entry(module, &netcp_modules, module_list)
73 
74 #define for_each_netcp_device_module(netcp_device, inst_modpriv) \
75 	list_for_each_entry(inst_modpriv, \
76 		&((netcp_device)->modpriv_head), inst_list)
77 
78 #define for_each_module(netcp, intf_modpriv)			\
79 	list_for_each_entry(intf_modpriv, &netcp->module_head, intf_list)
80 
81 /* Module management structures */
82 struct netcp_device {
83 	struct list_head	device_list;
84 	struct list_head	interface_head;
85 	struct list_head	modpriv_head;
86 	struct device		*device;
87 };
88 
89 struct netcp_inst_modpriv {
90 	struct netcp_device	*netcp_device;
91 	struct netcp_module	*netcp_module;
92 	struct list_head	inst_list;
93 	void			*module_priv;
94 };
95 
96 struct netcp_intf_modpriv {
97 	struct netcp_intf	*netcp_priv;
98 	struct netcp_module	*netcp_module;
99 	struct list_head	intf_list;
100 	void			*module_priv;
101 };
102 
103 static LIST_HEAD(netcp_devices);
104 static LIST_HEAD(netcp_modules);
105 static DEFINE_MUTEX(netcp_modules_lock);
106 
107 static int netcp_debug_level = -1;
108 module_param(netcp_debug_level, int, 0);
109 MODULE_PARM_DESC(netcp_debug_level, "Netcp debug level (NETIF_MSG bits) (0=none,...,16=all)");
110 
111 /* Helper functions - Get/Set */
112 static void get_pkt_info(u32 *buff, u32 *buff_len, u32 *ndesc,
113 			 struct knav_dma_desc *desc)
114 {
115 	*buff_len = desc->buff_len;
116 	*buff = desc->buff;
117 	*ndesc = desc->next_desc;
118 }
119 
120 static void get_pad_info(u32 *pad0, u32 *pad1, struct knav_dma_desc *desc)
121 {
122 	*pad0 = desc->pad[0];
123 	*pad1 = desc->pad[1];
124 }
125 
126 static void get_org_pkt_info(u32 *buff, u32 *buff_len,
127 			     struct knav_dma_desc *desc)
128 {
129 	*buff = desc->orig_buff;
130 	*buff_len = desc->orig_len;
131 }
132 
133 static void get_words(u32 *words, int num_words, u32 *desc)
134 {
135 	int i;
136 
137 	for (i = 0; i < num_words; i++)
138 		words[i] = desc[i];
139 }
140 
141 static void set_pkt_info(u32 buff, u32 buff_len, u32 ndesc,
142 			 struct knav_dma_desc *desc)
143 {
144 	desc->buff_len = buff_len;
145 	desc->buff = buff;
146 	desc->next_desc = ndesc;
147 }
148 
149 static void set_desc_info(u32 desc_info, u32 pkt_info,
150 			  struct knav_dma_desc *desc)
151 {
152 	desc->desc_info = desc_info;
153 	desc->packet_info = pkt_info;
154 }
155 
156 static void set_pad_info(u32 pad0, u32 pad1, struct knav_dma_desc *desc)
157 {
158 	desc->pad[0] = pad0;
159 	desc->pad[1] = pad1;
160 }
161 
162 static void set_org_pkt_info(u32 buff, u32 buff_len,
163 			     struct knav_dma_desc *desc)
164 {
165 	desc->orig_buff = buff;
166 	desc->orig_len = buff_len;
167 }
168 
169 static void set_words(u32 *words, int num_words, u32 *desc)
170 {
171 	int i;
172 
173 	for (i = 0; i < num_words; i++)
174 		desc[i] = words[i];
175 }
176 
177 /* Read the e-fuse value as 32 bit values to be endian independent */
178 static int emac_arch_get_mac_addr(char *x, void __iomem *efuse_mac, u32 swap)
179 {
180 	unsigned int addr0, addr1;
181 
182 	addr1 = readl(efuse_mac + 4);
183 	addr0 = readl(efuse_mac);
184 
185 	switch (swap) {
186 	case NETCP_EFUSE_ADDR_SWAP:
187 		addr0 = addr1;
188 		addr1 = readl(efuse_mac);
189 		break;
190 	default:
191 		break;
192 	}
193 
194 	x[0] = (addr1 & 0x0000ff00) >> 8;
195 	x[1] = addr1 & 0x000000ff;
196 	x[2] = (addr0 & 0xff000000) >> 24;
197 	x[3] = (addr0 & 0x00ff0000) >> 16;
198 	x[4] = (addr0 & 0x0000ff00) >> 8;
199 	x[5] = addr0 & 0x000000ff;
200 
201 	return 0;
202 }
203 
204 static const char *netcp_node_name(struct device_node *node)
205 {
206 	const char *name;
207 
208 	if (of_property_read_string(node, "label", &name) < 0)
209 		name = node->name;
210 	if (!name)
211 		name = "unknown";
212 	return name;
213 }
214 
215 /* Module management routines */
216 static int netcp_register_interface(struct netcp_intf *netcp)
217 {
218 	int ret;
219 
220 	ret = register_netdev(netcp->ndev);
221 	if (!ret)
222 		netcp->netdev_registered = true;
223 	return ret;
224 }
225 
226 static int netcp_module_probe(struct netcp_device *netcp_device,
227 			      struct netcp_module *module)
228 {
229 	struct device *dev = netcp_device->device;
230 	struct device_node *devices, *interface, *node = dev->of_node;
231 	struct device_node *child;
232 	struct netcp_inst_modpriv *inst_modpriv;
233 	struct netcp_intf *netcp_intf;
234 	struct netcp_module *tmp;
235 	bool primary_module_registered = false;
236 	int ret;
237 
238 	/* Find this module in the sub-tree for this device */
239 	devices = of_get_child_by_name(node, "netcp-devices");
240 	if (!devices) {
241 		dev_err(dev, "could not find netcp-devices node\n");
242 		return NETCP_MOD_PROBE_SKIPPED;
243 	}
244 
245 	for_each_available_child_of_node(devices, child) {
246 		const char *name = netcp_node_name(child);
247 
248 		if (!strcasecmp(module->name, name))
249 			break;
250 	}
251 
252 	of_node_put(devices);
253 	/* If module not used for this device, skip it */
254 	if (!child) {
255 		dev_warn(dev, "module(%s) not used for device\n", module->name);
256 		return NETCP_MOD_PROBE_SKIPPED;
257 	}
258 
259 	inst_modpriv = devm_kzalloc(dev, sizeof(*inst_modpriv), GFP_KERNEL);
260 	if (!inst_modpriv) {
261 		of_node_put(child);
262 		return -ENOMEM;
263 	}
264 
265 	inst_modpriv->netcp_device = netcp_device;
266 	inst_modpriv->netcp_module = module;
267 	list_add_tail(&inst_modpriv->inst_list, &netcp_device->modpriv_head);
268 
269 	ret = module->probe(netcp_device, dev, child,
270 			    &inst_modpriv->module_priv);
271 	of_node_put(child);
272 	if (ret) {
273 		dev_err(dev, "Probe of module(%s) failed with %d\n",
274 			module->name, ret);
275 		list_del(&inst_modpriv->inst_list);
276 		devm_kfree(dev, inst_modpriv);
277 		return NETCP_MOD_PROBE_FAILED;
278 	}
279 
280 	/* Attach modules only if the primary module is probed */
281 	for_each_netcp_module(tmp) {
282 		if (tmp->primary)
283 			primary_module_registered = true;
284 	}
285 
286 	if (!primary_module_registered)
287 		return 0;
288 
289 	/* Attach module to interfaces */
290 	list_for_each_entry(netcp_intf, &netcp_device->interface_head,
291 			    interface_list) {
292 		struct netcp_intf_modpriv *intf_modpriv;
293 
294 		intf_modpriv = devm_kzalloc(dev, sizeof(*intf_modpriv),
295 					    GFP_KERNEL);
296 		if (!intf_modpriv)
297 			return -ENOMEM;
298 
299 		interface = of_parse_phandle(netcp_intf->node_interface,
300 					     module->name, 0);
301 
302 		if (!interface) {
303 			devm_kfree(dev, intf_modpriv);
304 			continue;
305 		}
306 
307 		intf_modpriv->netcp_priv = netcp_intf;
308 		intf_modpriv->netcp_module = module;
309 		list_add_tail(&intf_modpriv->intf_list,
310 			      &netcp_intf->module_head);
311 
312 		ret = module->attach(inst_modpriv->module_priv,
313 				     netcp_intf->ndev, interface,
314 				     &intf_modpriv->module_priv);
315 		of_node_put(interface);
316 		if (ret) {
317 			dev_dbg(dev, "Attach of module %s declined with %d\n",
318 				module->name, ret);
319 			list_del(&intf_modpriv->intf_list);
320 			devm_kfree(dev, intf_modpriv);
321 			continue;
322 		}
323 	}
324 
325 	/* Now register the interface with netdev */
326 	list_for_each_entry(netcp_intf,
327 			    &netcp_device->interface_head,
328 			    interface_list) {
329 		/* If interface not registered then register now */
330 		if (!netcp_intf->netdev_registered) {
331 			ret = netcp_register_interface(netcp_intf);
332 			if (ret)
333 				return -ENODEV;
334 		}
335 	}
336 	return 0;
337 }
338 
339 int netcp_register_module(struct netcp_module *module)
340 {
341 	struct netcp_device *netcp_device;
342 	struct netcp_module *tmp;
343 	int ret;
344 
345 	if (!module->name) {
346 		WARN(1, "error registering netcp module: no name\n");
347 		return -EINVAL;
348 	}
349 
350 	if (!module->probe) {
351 		WARN(1, "error registering netcp module: no probe\n");
352 		return -EINVAL;
353 	}
354 
355 	mutex_lock(&netcp_modules_lock);
356 
357 	for_each_netcp_module(tmp) {
358 		if (!strcasecmp(tmp->name, module->name)) {
359 			mutex_unlock(&netcp_modules_lock);
360 			return -EEXIST;
361 		}
362 	}
363 	list_add_tail(&module->module_list, &netcp_modules);
364 
365 	list_for_each_entry(netcp_device, &netcp_devices, device_list) {
366 		ret = netcp_module_probe(netcp_device, module);
367 		if (ret < 0)
368 			goto fail;
369 	}
370 	mutex_unlock(&netcp_modules_lock);
371 	return 0;
372 
373 fail:
374 	mutex_unlock(&netcp_modules_lock);
375 	netcp_unregister_module(module);
376 	return ret;
377 }
378 EXPORT_SYMBOL_GPL(netcp_register_module);
379 
380 static void netcp_release_module(struct netcp_device *netcp_device,
381 				 struct netcp_module *module)
382 {
383 	struct netcp_inst_modpriv *inst_modpriv, *inst_tmp;
384 	struct netcp_intf *netcp_intf, *netcp_tmp;
385 	struct device *dev = netcp_device->device;
386 
387 	/* Release the module from each interface */
388 	list_for_each_entry_safe(netcp_intf, netcp_tmp,
389 				 &netcp_device->interface_head,
390 				 interface_list) {
391 		struct netcp_intf_modpriv *intf_modpriv, *intf_tmp;
392 
393 		list_for_each_entry_safe(intf_modpriv, intf_tmp,
394 					 &netcp_intf->module_head,
395 					 intf_list) {
396 			if (intf_modpriv->netcp_module == module) {
397 				module->release(intf_modpriv->module_priv);
398 				list_del(&intf_modpriv->intf_list);
399 				devm_kfree(dev, intf_modpriv);
400 				break;
401 			}
402 		}
403 	}
404 
405 	/* Remove the module from each instance */
406 	list_for_each_entry_safe(inst_modpriv, inst_tmp,
407 				 &netcp_device->modpriv_head, inst_list) {
408 		if (inst_modpriv->netcp_module == module) {
409 			module->remove(netcp_device,
410 				       inst_modpriv->module_priv);
411 			list_del(&inst_modpriv->inst_list);
412 			devm_kfree(dev, inst_modpriv);
413 			break;
414 		}
415 	}
416 }
417 
418 void netcp_unregister_module(struct netcp_module *module)
419 {
420 	struct netcp_device *netcp_device;
421 	struct netcp_module *module_tmp;
422 
423 	mutex_lock(&netcp_modules_lock);
424 
425 	list_for_each_entry(netcp_device, &netcp_devices, device_list) {
426 		netcp_release_module(netcp_device, module);
427 	}
428 
429 	/* Remove the module from the module list */
430 	for_each_netcp_module(module_tmp) {
431 		if (module == module_tmp) {
432 			list_del(&module->module_list);
433 			break;
434 		}
435 	}
436 
437 	mutex_unlock(&netcp_modules_lock);
438 }
439 EXPORT_SYMBOL_GPL(netcp_unregister_module);
440 
441 void *netcp_module_get_intf_data(struct netcp_module *module,
442 				 struct netcp_intf *intf)
443 {
444 	struct netcp_intf_modpriv *intf_modpriv;
445 
446 	list_for_each_entry(intf_modpriv, &intf->module_head, intf_list)
447 		if (intf_modpriv->netcp_module == module)
448 			return intf_modpriv->module_priv;
449 	return NULL;
450 }
451 EXPORT_SYMBOL_GPL(netcp_module_get_intf_data);
452 
453 /* Module TX and RX Hook management */
454 struct netcp_hook_list {
455 	struct list_head	 list;
456 	netcp_hook_rtn		*hook_rtn;
457 	void			*hook_data;
458 	int			 order;
459 };
460 
461 int netcp_register_txhook(struct netcp_intf *netcp_priv, int order,
462 			  netcp_hook_rtn *hook_rtn, void *hook_data)
463 {
464 	struct netcp_hook_list *entry;
465 	struct netcp_hook_list *next;
466 	unsigned long flags;
467 
468 	entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL);
469 	if (!entry)
470 		return -ENOMEM;
471 
472 	entry->hook_rtn  = hook_rtn;
473 	entry->hook_data = hook_data;
474 	entry->order     = order;
475 
476 	spin_lock_irqsave(&netcp_priv->lock, flags);
477 	list_for_each_entry(next, &netcp_priv->txhook_list_head, list) {
478 		if (next->order > order)
479 			break;
480 	}
481 	__list_add(&entry->list, next->list.prev, &next->list);
482 	spin_unlock_irqrestore(&netcp_priv->lock, flags);
483 
484 	return 0;
485 }
486 EXPORT_SYMBOL_GPL(netcp_register_txhook);
487 
488 int netcp_unregister_txhook(struct netcp_intf *netcp_priv, int order,
489 			    netcp_hook_rtn *hook_rtn, void *hook_data)
490 {
491 	struct netcp_hook_list *next, *n;
492 	unsigned long flags;
493 
494 	spin_lock_irqsave(&netcp_priv->lock, flags);
495 	list_for_each_entry_safe(next, n, &netcp_priv->txhook_list_head, list) {
496 		if ((next->order     == order) &&
497 		    (next->hook_rtn  == hook_rtn) &&
498 		    (next->hook_data == hook_data)) {
499 			list_del(&next->list);
500 			spin_unlock_irqrestore(&netcp_priv->lock, flags);
501 			devm_kfree(netcp_priv->dev, next);
502 			return 0;
503 		}
504 	}
505 	spin_unlock_irqrestore(&netcp_priv->lock, flags);
506 	return -ENOENT;
507 }
508 EXPORT_SYMBOL_GPL(netcp_unregister_txhook);
509 
510 int netcp_register_rxhook(struct netcp_intf *netcp_priv, int order,
511 			  netcp_hook_rtn *hook_rtn, void *hook_data)
512 {
513 	struct netcp_hook_list *entry;
514 	struct netcp_hook_list *next;
515 	unsigned long flags;
516 
517 	entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL);
518 	if (!entry)
519 		return -ENOMEM;
520 
521 	entry->hook_rtn  = hook_rtn;
522 	entry->hook_data = hook_data;
523 	entry->order     = order;
524 
525 	spin_lock_irqsave(&netcp_priv->lock, flags);
526 	list_for_each_entry(next, &netcp_priv->rxhook_list_head, list) {
527 		if (next->order > order)
528 			break;
529 	}
530 	__list_add(&entry->list, next->list.prev, &next->list);
531 	spin_unlock_irqrestore(&netcp_priv->lock, flags);
532 
533 	return 0;
534 }
535 
536 int netcp_unregister_rxhook(struct netcp_intf *netcp_priv, int order,
537 			    netcp_hook_rtn *hook_rtn, void *hook_data)
538 {
539 	struct netcp_hook_list *next, *n;
540 	unsigned long flags;
541 
542 	spin_lock_irqsave(&netcp_priv->lock, flags);
543 	list_for_each_entry_safe(next, n, &netcp_priv->rxhook_list_head, list) {
544 		if ((next->order     == order) &&
545 		    (next->hook_rtn  == hook_rtn) &&
546 		    (next->hook_data == hook_data)) {
547 			list_del(&next->list);
548 			spin_unlock_irqrestore(&netcp_priv->lock, flags);
549 			devm_kfree(netcp_priv->dev, next);
550 			return 0;
551 		}
552 	}
553 	spin_unlock_irqrestore(&netcp_priv->lock, flags);
554 
555 	return -ENOENT;
556 }
557 
558 static void netcp_frag_free(bool is_frag, void *ptr)
559 {
560 	if (is_frag)
561 		skb_free_frag(ptr);
562 	else
563 		kfree(ptr);
564 }
565 
566 static void netcp_free_rx_desc_chain(struct netcp_intf *netcp,
567 				     struct knav_dma_desc *desc)
568 {
569 	struct knav_dma_desc *ndesc;
570 	dma_addr_t dma_desc, dma_buf;
571 	unsigned int buf_len, dma_sz = sizeof(*ndesc);
572 	void *buf_ptr;
573 	u32 tmp;
574 
575 	get_words(&dma_desc, 1, &desc->next_desc);
576 
577 	while (dma_desc) {
578 		ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
579 		if (unlikely(!ndesc)) {
580 			dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
581 			break;
582 		}
583 		get_pkt_info(&dma_buf, &tmp, &dma_desc, ndesc);
584 		get_pad_info((u32 *)&buf_ptr, &tmp, ndesc);
585 		dma_unmap_page(netcp->dev, dma_buf, PAGE_SIZE, DMA_FROM_DEVICE);
586 		__free_page(buf_ptr);
587 		knav_pool_desc_put(netcp->rx_pool, desc);
588 	}
589 
590 	get_pad_info((u32 *)&buf_ptr, &buf_len, desc);
591 	if (buf_ptr)
592 		netcp_frag_free(buf_len <= PAGE_SIZE, buf_ptr);
593 	knav_pool_desc_put(netcp->rx_pool, desc);
594 }
595 
596 static void netcp_empty_rx_queue(struct netcp_intf *netcp)
597 {
598 	struct knav_dma_desc *desc;
599 	unsigned int dma_sz;
600 	dma_addr_t dma;
601 
602 	for (; ;) {
603 		dma = knav_queue_pop(netcp->rx_queue, &dma_sz);
604 		if (!dma)
605 			break;
606 
607 		desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz);
608 		if (unlikely(!desc)) {
609 			dev_err(netcp->ndev_dev, "%s: failed to unmap Rx desc\n",
610 				__func__);
611 			netcp->ndev->stats.rx_errors++;
612 			continue;
613 		}
614 		netcp_free_rx_desc_chain(netcp, desc);
615 		netcp->ndev->stats.rx_dropped++;
616 	}
617 }
618 
619 static int netcp_process_one_rx_packet(struct netcp_intf *netcp)
620 {
621 	unsigned int dma_sz, buf_len, org_buf_len;
622 	struct knav_dma_desc *desc, *ndesc;
623 	unsigned int pkt_sz = 0, accum_sz;
624 	struct netcp_hook_list *rx_hook;
625 	dma_addr_t dma_desc, dma_buff;
626 	struct netcp_packet p_info;
627 	struct sk_buff *skb;
628 	void *org_buf_ptr;
629 	u32 tmp;
630 
631 	dma_desc = knav_queue_pop(netcp->rx_queue, &dma_sz);
632 	if (!dma_desc)
633 		return -1;
634 
635 	desc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
636 	if (unlikely(!desc)) {
637 		dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
638 		return 0;
639 	}
640 
641 	get_pkt_info(&dma_buff, &buf_len, &dma_desc, desc);
642 	get_pad_info((u32 *)&org_buf_ptr, &org_buf_len, desc);
643 
644 	if (unlikely(!org_buf_ptr)) {
645 		dev_err(netcp->ndev_dev, "NULL bufptr in desc\n");
646 		goto free_desc;
647 	}
648 
649 	pkt_sz &= KNAV_DMA_DESC_PKT_LEN_MASK;
650 	accum_sz = buf_len;
651 	dma_unmap_single(netcp->dev, dma_buff, buf_len, DMA_FROM_DEVICE);
652 
653 	/* Build a new sk_buff for the primary buffer */
654 	skb = build_skb(org_buf_ptr, org_buf_len);
655 	if (unlikely(!skb)) {
656 		dev_err(netcp->ndev_dev, "build_skb() failed\n");
657 		goto free_desc;
658 	}
659 
660 	/* update data, tail and len */
661 	skb_reserve(skb, NETCP_SOP_OFFSET);
662 	__skb_put(skb, buf_len);
663 
664 	/* Fill in the page fragment list */
665 	while (dma_desc) {
666 		struct page *page;
667 
668 		ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
669 		if (unlikely(!ndesc)) {
670 			dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
671 			goto free_desc;
672 		}
673 
674 		get_pkt_info(&dma_buff, &buf_len, &dma_desc, ndesc);
675 		get_pad_info((u32 *)&page, &tmp, ndesc);
676 
677 		if (likely(dma_buff && buf_len && page)) {
678 			dma_unmap_page(netcp->dev, dma_buff, PAGE_SIZE,
679 				       DMA_FROM_DEVICE);
680 		} else {
681 			dev_err(netcp->ndev_dev, "Bad Rx desc dma_buff(%p), len(%d), page(%p)\n",
682 				(void *)dma_buff, buf_len, page);
683 			goto free_desc;
684 		}
685 
686 		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
687 				offset_in_page(dma_buff), buf_len, PAGE_SIZE);
688 		accum_sz += buf_len;
689 
690 		/* Free the descriptor */
691 		knav_pool_desc_put(netcp->rx_pool, ndesc);
692 	}
693 
694 	/* Free the primary descriptor */
695 	knav_pool_desc_put(netcp->rx_pool, desc);
696 
697 	/* check for packet len and warn */
698 	if (unlikely(pkt_sz != accum_sz))
699 		dev_dbg(netcp->ndev_dev, "mismatch in packet size(%d) & sum of fragments(%d)\n",
700 			pkt_sz, accum_sz);
701 
702 	/* Remove ethernet FCS from the packet */
703 	__pskb_trim(skb, skb->len - ETH_FCS_LEN);
704 
705 	/* Call each of the RX hooks */
706 	p_info.skb = skb;
707 	p_info.rxtstamp_complete = false;
708 	list_for_each_entry(rx_hook, &netcp->rxhook_list_head, list) {
709 		int ret;
710 
711 		ret = rx_hook->hook_rtn(rx_hook->order, rx_hook->hook_data,
712 					&p_info);
713 		if (unlikely(ret)) {
714 			dev_err(netcp->ndev_dev, "RX hook %d failed: %d\n",
715 				rx_hook->order, ret);
716 			netcp->ndev->stats.rx_errors++;
717 			dev_kfree_skb(skb);
718 			return 0;
719 		}
720 	}
721 
722 	netcp->ndev->stats.rx_packets++;
723 	netcp->ndev->stats.rx_bytes += skb->len;
724 
725 	/* push skb up the stack */
726 	skb->protocol = eth_type_trans(skb, netcp->ndev);
727 	netif_receive_skb(skb);
728 	return 0;
729 
730 free_desc:
731 	netcp_free_rx_desc_chain(netcp, desc);
732 	netcp->ndev->stats.rx_errors++;
733 	return 0;
734 }
735 
736 static int netcp_process_rx_packets(struct netcp_intf *netcp,
737 				    unsigned int budget)
738 {
739 	int i;
740 
741 	for (i = 0; (i < budget) && !netcp_process_one_rx_packet(netcp); i++)
742 		;
743 	return i;
744 }
745 
746 /* Release descriptors and attached buffers from Rx FDQ */
747 static void netcp_free_rx_buf(struct netcp_intf *netcp, int fdq)
748 {
749 	struct knav_dma_desc *desc;
750 	unsigned int buf_len, dma_sz;
751 	dma_addr_t dma;
752 	void *buf_ptr;
753 	u32 tmp;
754 
755 	/* Allocate descriptor */
756 	while ((dma = knav_queue_pop(netcp->rx_fdq[fdq], &dma_sz))) {
757 		desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz);
758 		if (unlikely(!desc)) {
759 			dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
760 			continue;
761 		}
762 
763 		get_org_pkt_info(&dma, &buf_len, desc);
764 		get_pad_info((u32 *)&buf_ptr, &tmp, desc);
765 
766 		if (unlikely(!dma)) {
767 			dev_err(netcp->ndev_dev, "NULL orig_buff in desc\n");
768 			knav_pool_desc_put(netcp->rx_pool, desc);
769 			continue;
770 		}
771 
772 		if (unlikely(!buf_ptr)) {
773 			dev_err(netcp->ndev_dev, "NULL bufptr in desc\n");
774 			knav_pool_desc_put(netcp->rx_pool, desc);
775 			continue;
776 		}
777 
778 		if (fdq == 0) {
779 			dma_unmap_single(netcp->dev, dma, buf_len,
780 					 DMA_FROM_DEVICE);
781 			netcp_frag_free((buf_len <= PAGE_SIZE), buf_ptr);
782 		} else {
783 			dma_unmap_page(netcp->dev, dma, buf_len,
784 				       DMA_FROM_DEVICE);
785 			__free_page(buf_ptr);
786 		}
787 
788 		knav_pool_desc_put(netcp->rx_pool, desc);
789 	}
790 }
791 
792 static void netcp_rxpool_free(struct netcp_intf *netcp)
793 {
794 	int i;
795 
796 	for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN &&
797 	     !IS_ERR_OR_NULL(netcp->rx_fdq[i]); i++)
798 		netcp_free_rx_buf(netcp, i);
799 
800 	if (knav_pool_count(netcp->rx_pool) != netcp->rx_pool_size)
801 		dev_err(netcp->ndev_dev, "Lost Rx (%d) descriptors\n",
802 			netcp->rx_pool_size - knav_pool_count(netcp->rx_pool));
803 
804 	knav_pool_destroy(netcp->rx_pool);
805 	netcp->rx_pool = NULL;
806 }
807 
808 static int netcp_allocate_rx_buf(struct netcp_intf *netcp, int fdq)
809 {
810 	struct knav_dma_desc *hwdesc;
811 	unsigned int buf_len, dma_sz;
812 	u32 desc_info, pkt_info;
813 	struct page *page;
814 	dma_addr_t dma;
815 	void *bufptr;
816 	u32 pad[2];
817 
818 	/* Allocate descriptor */
819 	hwdesc = knav_pool_desc_get(netcp->rx_pool);
820 	if (IS_ERR_OR_NULL(hwdesc)) {
821 		dev_dbg(netcp->ndev_dev, "out of rx pool desc\n");
822 		return -ENOMEM;
823 	}
824 
825 	if (likely(fdq == 0)) {
826 		unsigned int primary_buf_len;
827 		/* Allocate a primary receive queue entry */
828 		buf_len = NETCP_PACKET_SIZE + NETCP_SOP_OFFSET;
829 		primary_buf_len = SKB_DATA_ALIGN(buf_len) +
830 				SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
831 
832 		bufptr = netdev_alloc_frag(primary_buf_len);
833 		pad[1] = primary_buf_len;
834 
835 		if (unlikely(!bufptr)) {
836 			dev_warn_ratelimited(netcp->ndev_dev,
837 					     "Primary RX buffer alloc failed\n");
838 			goto fail;
839 		}
840 		dma = dma_map_single(netcp->dev, bufptr, buf_len,
841 				     DMA_TO_DEVICE);
842 		if (unlikely(dma_mapping_error(netcp->dev, dma)))
843 			goto fail;
844 
845 		pad[0] = (u32)bufptr;
846 
847 	} else {
848 		/* Allocate a secondary receive queue entry */
849 		page = alloc_page(GFP_ATOMIC | GFP_DMA | __GFP_COLD);
850 		if (unlikely(!page)) {
851 			dev_warn_ratelimited(netcp->ndev_dev, "Secondary page alloc failed\n");
852 			goto fail;
853 		}
854 		buf_len = PAGE_SIZE;
855 		dma = dma_map_page(netcp->dev, page, 0, buf_len, DMA_TO_DEVICE);
856 		pad[0] = (u32)page;
857 		pad[1] = 0;
858 	}
859 
860 	desc_info =  KNAV_DMA_DESC_PS_INFO_IN_DESC;
861 	desc_info |= buf_len & KNAV_DMA_DESC_PKT_LEN_MASK;
862 	pkt_info =  KNAV_DMA_DESC_HAS_EPIB;
863 	pkt_info |= KNAV_DMA_NUM_PS_WORDS << KNAV_DMA_DESC_PSLEN_SHIFT;
864 	pkt_info |= (netcp->rx_queue_id & KNAV_DMA_DESC_RETQ_MASK) <<
865 		    KNAV_DMA_DESC_RETQ_SHIFT;
866 	set_org_pkt_info(dma, buf_len, hwdesc);
867 	set_pad_info(pad[0], pad[1], hwdesc);
868 	set_desc_info(desc_info, pkt_info, hwdesc);
869 
870 	/* Push to FDQs */
871 	knav_pool_desc_map(netcp->rx_pool, hwdesc, sizeof(*hwdesc), &dma,
872 			   &dma_sz);
873 	knav_queue_push(netcp->rx_fdq[fdq], dma, sizeof(*hwdesc), 0);
874 	return 0;
875 
876 fail:
877 	knav_pool_desc_put(netcp->rx_pool, hwdesc);
878 	return -ENOMEM;
879 }
880 
881 /* Refill Rx FDQ with descriptors & attached buffers */
882 static void netcp_rxpool_refill(struct netcp_intf *netcp)
883 {
884 	u32 fdq_deficit[KNAV_DMA_FDQ_PER_CHAN] = {0};
885 	int i, ret = 0;
886 
887 	/* Calculate the FDQ deficit and refill */
888 	for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_fdq[i]; i++) {
889 		fdq_deficit[i] = netcp->rx_queue_depths[i] -
890 				 knav_queue_get_count(netcp->rx_fdq[i]);
891 
892 		while (fdq_deficit[i]-- && !ret)
893 			ret = netcp_allocate_rx_buf(netcp, i);
894 	} /* end for fdqs */
895 }
896 
897 /* NAPI poll */
898 static int netcp_rx_poll(struct napi_struct *napi, int budget)
899 {
900 	struct netcp_intf *netcp = container_of(napi, struct netcp_intf,
901 						rx_napi);
902 	unsigned int packets;
903 
904 	packets = netcp_process_rx_packets(netcp, budget);
905 
906 	netcp_rxpool_refill(netcp);
907 	if (packets < budget) {
908 		napi_complete(&netcp->rx_napi);
909 		knav_queue_enable_notify(netcp->rx_queue);
910 	}
911 
912 	return packets;
913 }
914 
915 static void netcp_rx_notify(void *arg)
916 {
917 	struct netcp_intf *netcp = arg;
918 
919 	knav_queue_disable_notify(netcp->rx_queue);
920 	napi_schedule(&netcp->rx_napi);
921 }
922 
923 static void netcp_free_tx_desc_chain(struct netcp_intf *netcp,
924 				     struct knav_dma_desc *desc,
925 				     unsigned int desc_sz)
926 {
927 	struct knav_dma_desc *ndesc = desc;
928 	dma_addr_t dma_desc, dma_buf;
929 	unsigned int buf_len;
930 
931 	while (ndesc) {
932 		get_pkt_info(&dma_buf, &buf_len, &dma_desc, ndesc);
933 
934 		if (dma_buf && buf_len)
935 			dma_unmap_single(netcp->dev, dma_buf, buf_len,
936 					 DMA_TO_DEVICE);
937 		else
938 			dev_warn(netcp->ndev_dev, "bad Tx desc buf(%p), len(%d)\n",
939 				 (void *)dma_buf, buf_len);
940 
941 		knav_pool_desc_put(netcp->tx_pool, ndesc);
942 		ndesc = NULL;
943 		if (dma_desc) {
944 			ndesc = knav_pool_desc_unmap(netcp->tx_pool, dma_desc,
945 						     desc_sz);
946 			if (!ndesc)
947 				dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n");
948 		}
949 	}
950 }
951 
952 static int netcp_process_tx_compl_packets(struct netcp_intf *netcp,
953 					  unsigned int budget)
954 {
955 	struct knav_dma_desc *desc;
956 	struct sk_buff *skb;
957 	unsigned int dma_sz;
958 	dma_addr_t dma;
959 	int pkts = 0;
960 	u32 tmp;
961 
962 	while (budget--) {
963 		dma = knav_queue_pop(netcp->tx_compl_q, &dma_sz);
964 		if (!dma)
965 			break;
966 		desc = knav_pool_desc_unmap(netcp->tx_pool, dma, dma_sz);
967 		if (unlikely(!desc)) {
968 			dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n");
969 			netcp->ndev->stats.tx_errors++;
970 			continue;
971 		}
972 
973 		get_pad_info((u32 *)&skb, &tmp, desc);
974 		netcp_free_tx_desc_chain(netcp, desc, dma_sz);
975 		if (!skb) {
976 			dev_err(netcp->ndev_dev, "No skb in Tx desc\n");
977 			netcp->ndev->stats.tx_errors++;
978 			continue;
979 		}
980 
981 		if (netif_subqueue_stopped(netcp->ndev, skb) &&
982 		    netif_running(netcp->ndev) &&
983 		    (knav_pool_count(netcp->tx_pool) >
984 		    netcp->tx_resume_threshold)) {
985 			u16 subqueue = skb_get_queue_mapping(skb);
986 
987 			netif_wake_subqueue(netcp->ndev, subqueue);
988 		}
989 
990 		netcp->ndev->stats.tx_packets++;
991 		netcp->ndev->stats.tx_bytes += skb->len;
992 		dev_kfree_skb(skb);
993 		pkts++;
994 	}
995 	return pkts;
996 }
997 
998 static int netcp_tx_poll(struct napi_struct *napi, int budget)
999 {
1000 	int packets;
1001 	struct netcp_intf *netcp = container_of(napi, struct netcp_intf,
1002 						tx_napi);
1003 
1004 	packets = netcp_process_tx_compl_packets(netcp, budget);
1005 	if (packets < budget) {
1006 		napi_complete(&netcp->tx_napi);
1007 		knav_queue_enable_notify(netcp->tx_compl_q);
1008 	}
1009 
1010 	return packets;
1011 }
1012 
1013 static void netcp_tx_notify(void *arg)
1014 {
1015 	struct netcp_intf *netcp = arg;
1016 
1017 	knav_queue_disable_notify(netcp->tx_compl_q);
1018 	napi_schedule(&netcp->tx_napi);
1019 }
1020 
1021 static struct knav_dma_desc*
1022 netcp_tx_map_skb(struct sk_buff *skb, struct netcp_intf *netcp)
1023 {
1024 	struct knav_dma_desc *desc, *ndesc, *pdesc;
1025 	unsigned int pkt_len = skb_headlen(skb);
1026 	struct device *dev = netcp->dev;
1027 	dma_addr_t dma_addr;
1028 	unsigned int dma_sz;
1029 	int i;
1030 
1031 	/* Map the linear buffer */
1032 	dma_addr = dma_map_single(dev, skb->data, pkt_len, DMA_TO_DEVICE);
1033 	if (unlikely(dma_mapping_error(dev, dma_addr))) {
1034 		dev_err(netcp->ndev_dev, "Failed to map skb buffer\n");
1035 		return NULL;
1036 	}
1037 
1038 	desc = knav_pool_desc_get(netcp->tx_pool);
1039 	if (IS_ERR_OR_NULL(desc)) {
1040 		dev_err(netcp->ndev_dev, "out of TX desc\n");
1041 		dma_unmap_single(dev, dma_addr, pkt_len, DMA_TO_DEVICE);
1042 		return NULL;
1043 	}
1044 
1045 	set_pkt_info(dma_addr, pkt_len, 0, desc);
1046 	if (skb_is_nonlinear(skb)) {
1047 		prefetchw(skb_shinfo(skb));
1048 	} else {
1049 		desc->next_desc = 0;
1050 		goto upd_pkt_len;
1051 	}
1052 
1053 	pdesc = desc;
1054 
1055 	/* Handle the case where skb is fragmented in pages */
1056 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1057 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1058 		struct page *page = skb_frag_page(frag);
1059 		u32 page_offset = frag->page_offset;
1060 		u32 buf_len = skb_frag_size(frag);
1061 		dma_addr_t desc_dma;
1062 		u32 pkt_info;
1063 
1064 		dma_addr = dma_map_page(dev, page, page_offset, buf_len,
1065 					DMA_TO_DEVICE);
1066 		if (unlikely(!dma_addr)) {
1067 			dev_err(netcp->ndev_dev, "Failed to map skb page\n");
1068 			goto free_descs;
1069 		}
1070 
1071 		ndesc = knav_pool_desc_get(netcp->tx_pool);
1072 		if (IS_ERR_OR_NULL(ndesc)) {
1073 			dev_err(netcp->ndev_dev, "out of TX desc for frags\n");
1074 			dma_unmap_page(dev, dma_addr, buf_len, DMA_TO_DEVICE);
1075 			goto free_descs;
1076 		}
1077 
1078 		desc_dma = knav_pool_desc_virt_to_dma(netcp->tx_pool,
1079 						      (void *)ndesc);
1080 		pkt_info =
1081 			(netcp->tx_compl_qid & KNAV_DMA_DESC_RETQ_MASK) <<
1082 				KNAV_DMA_DESC_RETQ_SHIFT;
1083 		set_pkt_info(dma_addr, buf_len, 0, ndesc);
1084 		set_words(&desc_dma, 1, &pdesc->next_desc);
1085 		pkt_len += buf_len;
1086 		if (pdesc != desc)
1087 			knav_pool_desc_map(netcp->tx_pool, pdesc,
1088 					   sizeof(*pdesc), &desc_dma, &dma_sz);
1089 		pdesc = ndesc;
1090 	}
1091 	if (pdesc != desc)
1092 		knav_pool_desc_map(netcp->tx_pool, pdesc, sizeof(*pdesc),
1093 				   &dma_addr, &dma_sz);
1094 
1095 	/* frag list based linkage is not supported for now. */
1096 	if (skb_shinfo(skb)->frag_list) {
1097 		dev_err_ratelimited(netcp->ndev_dev, "NETIF_F_FRAGLIST not supported\n");
1098 		goto free_descs;
1099 	}
1100 
1101 upd_pkt_len:
1102 	WARN_ON(pkt_len != skb->len);
1103 
1104 	pkt_len &= KNAV_DMA_DESC_PKT_LEN_MASK;
1105 	set_words(&pkt_len, 1, &desc->desc_info);
1106 	return desc;
1107 
1108 free_descs:
1109 	netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc));
1110 	return NULL;
1111 }
1112 
1113 static int netcp_tx_submit_skb(struct netcp_intf *netcp,
1114 			       struct sk_buff *skb,
1115 			       struct knav_dma_desc *desc)
1116 {
1117 	struct netcp_tx_pipe *tx_pipe = NULL;
1118 	struct netcp_hook_list *tx_hook;
1119 	struct netcp_packet p_info;
1120 	unsigned int dma_sz;
1121 	dma_addr_t dma;
1122 	u32 tmp = 0;
1123 	int ret = 0;
1124 
1125 	p_info.netcp = netcp;
1126 	p_info.skb = skb;
1127 	p_info.tx_pipe = NULL;
1128 	p_info.psdata_len = 0;
1129 	p_info.ts_context = NULL;
1130 	p_info.txtstamp_complete = NULL;
1131 	p_info.epib = desc->epib;
1132 	p_info.psdata = desc->psdata;
1133 	memset(p_info.epib, 0, KNAV_DMA_NUM_EPIB_WORDS * sizeof(u32));
1134 
1135 	/* Find out where to inject the packet for transmission */
1136 	list_for_each_entry(tx_hook, &netcp->txhook_list_head, list) {
1137 		ret = tx_hook->hook_rtn(tx_hook->order, tx_hook->hook_data,
1138 					&p_info);
1139 		if (unlikely(ret != 0)) {
1140 			dev_err(netcp->ndev_dev, "TX hook %d rejected the packet with reason(%d)\n",
1141 				tx_hook->order, ret);
1142 			ret = (ret < 0) ? ret : NETDEV_TX_OK;
1143 			goto out;
1144 		}
1145 	}
1146 
1147 	/* Make sure some TX hook claimed the packet */
1148 	tx_pipe = p_info.tx_pipe;
1149 	if (!tx_pipe) {
1150 		dev_err(netcp->ndev_dev, "No TX hook claimed the packet!\n");
1151 		ret = -ENXIO;
1152 		goto out;
1153 	}
1154 
1155 	/* update descriptor */
1156 	if (p_info.psdata_len) {
1157 		u32 *psdata = p_info.psdata;
1158 
1159 		memmove(p_info.psdata, p_info.psdata + p_info.psdata_len,
1160 			p_info.psdata_len);
1161 		set_words(psdata, p_info.psdata_len, psdata);
1162 		tmp |= (p_info.psdata_len & KNAV_DMA_DESC_PSLEN_MASK) <<
1163 			KNAV_DMA_DESC_PSLEN_SHIFT;
1164 	}
1165 
1166 	tmp |= KNAV_DMA_DESC_HAS_EPIB |
1167 		((netcp->tx_compl_qid & KNAV_DMA_DESC_RETQ_MASK) <<
1168 		KNAV_DMA_DESC_RETQ_SHIFT);
1169 
1170 	if (!(tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO)) {
1171 		tmp |= ((tx_pipe->switch_to_port & KNAV_DMA_DESC_PSFLAG_MASK) <<
1172 			KNAV_DMA_DESC_PSFLAG_SHIFT);
1173 	}
1174 
1175 	set_words(&tmp, 1, &desc->packet_info);
1176 	set_words((u32 *)&skb, 1, &desc->pad[0]);
1177 
1178 	if (tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO) {
1179 		tmp = tx_pipe->switch_to_port;
1180 		set_words((u32 *)&tmp, 1, &desc->tag_info);
1181 	}
1182 
1183 	/* submit packet descriptor */
1184 	ret = knav_pool_desc_map(netcp->tx_pool, desc, sizeof(*desc), &dma,
1185 				 &dma_sz);
1186 	if (unlikely(ret)) {
1187 		dev_err(netcp->ndev_dev, "%s() failed to map desc\n", __func__);
1188 		ret = -ENOMEM;
1189 		goto out;
1190 	}
1191 	skb_tx_timestamp(skb);
1192 	knav_queue_push(tx_pipe->dma_queue, dma, dma_sz, 0);
1193 
1194 out:
1195 	return ret;
1196 }
1197 
1198 /* Submit the packet */
1199 static int netcp_ndo_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1200 {
1201 	struct netcp_intf *netcp = netdev_priv(ndev);
1202 	int subqueue = skb_get_queue_mapping(skb);
1203 	struct knav_dma_desc *desc;
1204 	int desc_count, ret = 0;
1205 
1206 	if (unlikely(skb->len <= 0)) {
1207 		dev_kfree_skb(skb);
1208 		return NETDEV_TX_OK;
1209 	}
1210 
1211 	if (unlikely(skb->len < NETCP_MIN_PACKET_SIZE)) {
1212 		ret = skb_padto(skb, NETCP_MIN_PACKET_SIZE);
1213 		if (ret < 0) {
1214 			/* If we get here, the skb has already been dropped */
1215 			dev_warn(netcp->ndev_dev, "padding failed (%d), packet dropped\n",
1216 				 ret);
1217 			ndev->stats.tx_dropped++;
1218 			return ret;
1219 		}
1220 		skb->len = NETCP_MIN_PACKET_SIZE;
1221 	}
1222 
1223 	desc = netcp_tx_map_skb(skb, netcp);
1224 	if (unlikely(!desc)) {
1225 		netif_stop_subqueue(ndev, subqueue);
1226 		ret = -ENOBUFS;
1227 		goto drop;
1228 	}
1229 
1230 	ret = netcp_tx_submit_skb(netcp, skb, desc);
1231 	if (ret)
1232 		goto drop;
1233 
1234 	ndev->trans_start = jiffies;
1235 
1236 	/* Check Tx pool count & stop subqueue if needed */
1237 	desc_count = knav_pool_count(netcp->tx_pool);
1238 	if (desc_count < netcp->tx_pause_threshold) {
1239 		dev_dbg(netcp->ndev_dev, "pausing tx, count(%d)\n", desc_count);
1240 		netif_stop_subqueue(ndev, subqueue);
1241 	}
1242 	return NETDEV_TX_OK;
1243 
1244 drop:
1245 	ndev->stats.tx_dropped++;
1246 	if (desc)
1247 		netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc));
1248 	dev_kfree_skb(skb);
1249 	return ret;
1250 }
1251 
1252 int netcp_txpipe_close(struct netcp_tx_pipe *tx_pipe)
1253 {
1254 	if (tx_pipe->dma_channel) {
1255 		knav_dma_close_channel(tx_pipe->dma_channel);
1256 		tx_pipe->dma_channel = NULL;
1257 	}
1258 	return 0;
1259 }
1260 EXPORT_SYMBOL_GPL(netcp_txpipe_close);
1261 
1262 int netcp_txpipe_open(struct netcp_tx_pipe *tx_pipe)
1263 {
1264 	struct device *dev = tx_pipe->netcp_device->device;
1265 	struct knav_dma_cfg config;
1266 	int ret = 0;
1267 	u8 name[16];
1268 
1269 	memset(&config, 0, sizeof(config));
1270 	config.direction = DMA_MEM_TO_DEV;
1271 	config.u.tx.filt_einfo = false;
1272 	config.u.tx.filt_pswords = false;
1273 	config.u.tx.priority = DMA_PRIO_MED_L;
1274 
1275 	tx_pipe->dma_channel = knav_dma_open_channel(dev,
1276 				tx_pipe->dma_chan_name, &config);
1277 	if (IS_ERR_OR_NULL(tx_pipe->dma_channel)) {
1278 		dev_err(dev, "failed opening tx chan(%s)\n",
1279 			tx_pipe->dma_chan_name);
1280 		goto err;
1281 	}
1282 
1283 	snprintf(name, sizeof(name), "tx-pipe-%s", dev_name(dev));
1284 	tx_pipe->dma_queue = knav_queue_open(name, tx_pipe->dma_queue_id,
1285 					     KNAV_QUEUE_SHARED);
1286 	if (IS_ERR(tx_pipe->dma_queue)) {
1287 		dev_err(dev, "Could not open DMA queue for channel \"%s\": %d\n",
1288 			name, ret);
1289 		ret = PTR_ERR(tx_pipe->dma_queue);
1290 		goto err;
1291 	}
1292 
1293 	dev_dbg(dev, "opened tx pipe %s\n", name);
1294 	return 0;
1295 
1296 err:
1297 	if (!IS_ERR_OR_NULL(tx_pipe->dma_channel))
1298 		knav_dma_close_channel(tx_pipe->dma_channel);
1299 	tx_pipe->dma_channel = NULL;
1300 	return ret;
1301 }
1302 EXPORT_SYMBOL_GPL(netcp_txpipe_open);
1303 
1304 int netcp_txpipe_init(struct netcp_tx_pipe *tx_pipe,
1305 		      struct netcp_device *netcp_device,
1306 		      const char *dma_chan_name, unsigned int dma_queue_id)
1307 {
1308 	memset(tx_pipe, 0, sizeof(*tx_pipe));
1309 	tx_pipe->netcp_device = netcp_device;
1310 	tx_pipe->dma_chan_name = dma_chan_name;
1311 	tx_pipe->dma_queue_id = dma_queue_id;
1312 	return 0;
1313 }
1314 EXPORT_SYMBOL_GPL(netcp_txpipe_init);
1315 
1316 static struct netcp_addr *netcp_addr_find(struct netcp_intf *netcp,
1317 					  const u8 *addr,
1318 					  enum netcp_addr_type type)
1319 {
1320 	struct netcp_addr *naddr;
1321 
1322 	list_for_each_entry(naddr, &netcp->addr_list, node) {
1323 		if (naddr->type != type)
1324 			continue;
1325 		if (addr && memcmp(addr, naddr->addr, ETH_ALEN))
1326 			continue;
1327 		return naddr;
1328 	}
1329 
1330 	return NULL;
1331 }
1332 
1333 static struct netcp_addr *netcp_addr_add(struct netcp_intf *netcp,
1334 					 const u8 *addr,
1335 					 enum netcp_addr_type type)
1336 {
1337 	struct netcp_addr *naddr;
1338 
1339 	naddr = devm_kmalloc(netcp->dev, sizeof(*naddr), GFP_ATOMIC);
1340 	if (!naddr)
1341 		return NULL;
1342 
1343 	naddr->type = type;
1344 	naddr->flags = 0;
1345 	naddr->netcp = netcp;
1346 	if (addr)
1347 		ether_addr_copy(naddr->addr, addr);
1348 	else
1349 		eth_zero_addr(naddr->addr);
1350 	list_add_tail(&naddr->node, &netcp->addr_list);
1351 
1352 	return naddr;
1353 }
1354 
1355 static void netcp_addr_del(struct netcp_intf *netcp, struct netcp_addr *naddr)
1356 {
1357 	list_del(&naddr->node);
1358 	devm_kfree(netcp->dev, naddr);
1359 }
1360 
1361 static void netcp_addr_clear_mark(struct netcp_intf *netcp)
1362 {
1363 	struct netcp_addr *naddr;
1364 
1365 	list_for_each_entry(naddr, &netcp->addr_list, node)
1366 		naddr->flags = 0;
1367 }
1368 
1369 static void netcp_addr_add_mark(struct netcp_intf *netcp, const u8 *addr,
1370 				enum netcp_addr_type type)
1371 {
1372 	struct netcp_addr *naddr;
1373 
1374 	naddr = netcp_addr_find(netcp, addr, type);
1375 	if (naddr) {
1376 		naddr->flags |= ADDR_VALID;
1377 		return;
1378 	}
1379 
1380 	naddr = netcp_addr_add(netcp, addr, type);
1381 	if (!WARN_ON(!naddr))
1382 		naddr->flags |= ADDR_NEW;
1383 }
1384 
1385 static void netcp_addr_sweep_del(struct netcp_intf *netcp)
1386 {
1387 	struct netcp_addr *naddr, *tmp;
1388 	struct netcp_intf_modpriv *priv;
1389 	struct netcp_module *module;
1390 	int error;
1391 
1392 	list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) {
1393 		if (naddr->flags & (ADDR_VALID | ADDR_NEW))
1394 			continue;
1395 		dev_dbg(netcp->ndev_dev, "deleting address %pM, type %x\n",
1396 			naddr->addr, naddr->type);
1397 		for_each_module(netcp, priv) {
1398 			module = priv->netcp_module;
1399 			if (!module->del_addr)
1400 				continue;
1401 			error = module->del_addr(priv->module_priv,
1402 						 naddr);
1403 			WARN_ON(error);
1404 		}
1405 		netcp_addr_del(netcp, naddr);
1406 	}
1407 }
1408 
1409 static void netcp_addr_sweep_add(struct netcp_intf *netcp)
1410 {
1411 	struct netcp_addr *naddr, *tmp;
1412 	struct netcp_intf_modpriv *priv;
1413 	struct netcp_module *module;
1414 	int error;
1415 
1416 	list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) {
1417 		if (!(naddr->flags & ADDR_NEW))
1418 			continue;
1419 		dev_dbg(netcp->ndev_dev, "adding address %pM, type %x\n",
1420 			naddr->addr, naddr->type);
1421 
1422 		for_each_module(netcp, priv) {
1423 			module = priv->netcp_module;
1424 			if (!module->add_addr)
1425 				continue;
1426 			error = module->add_addr(priv->module_priv, naddr);
1427 			WARN_ON(error);
1428 		}
1429 	}
1430 }
1431 
1432 static void netcp_set_rx_mode(struct net_device *ndev)
1433 {
1434 	struct netcp_intf *netcp = netdev_priv(ndev);
1435 	struct netdev_hw_addr *ndev_addr;
1436 	bool promisc;
1437 
1438 	promisc = (ndev->flags & IFF_PROMISC ||
1439 		   ndev->flags & IFF_ALLMULTI ||
1440 		   netdev_mc_count(ndev) > NETCP_MAX_MCAST_ADDR);
1441 
1442 	spin_lock(&netcp->lock);
1443 	/* first clear all marks */
1444 	netcp_addr_clear_mark(netcp);
1445 
1446 	/* next add new entries, mark existing ones */
1447 	netcp_addr_add_mark(netcp, ndev->broadcast, ADDR_BCAST);
1448 	for_each_dev_addr(ndev, ndev_addr)
1449 		netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_DEV);
1450 	netdev_for_each_uc_addr(ndev_addr, ndev)
1451 		netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_UCAST);
1452 	netdev_for_each_mc_addr(ndev_addr, ndev)
1453 		netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_MCAST);
1454 
1455 	if (promisc)
1456 		netcp_addr_add_mark(netcp, NULL, ADDR_ANY);
1457 
1458 	/* finally sweep and callout into modules */
1459 	netcp_addr_sweep_del(netcp);
1460 	netcp_addr_sweep_add(netcp);
1461 	spin_unlock(&netcp->lock);
1462 }
1463 
1464 static void netcp_free_navigator_resources(struct netcp_intf *netcp)
1465 {
1466 	int i;
1467 
1468 	if (netcp->rx_channel) {
1469 		knav_dma_close_channel(netcp->rx_channel);
1470 		netcp->rx_channel = NULL;
1471 	}
1472 
1473 	if (!IS_ERR_OR_NULL(netcp->rx_pool))
1474 		netcp_rxpool_free(netcp);
1475 
1476 	if (!IS_ERR_OR_NULL(netcp->rx_queue)) {
1477 		knav_queue_close(netcp->rx_queue);
1478 		netcp->rx_queue = NULL;
1479 	}
1480 
1481 	for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN &&
1482 	     !IS_ERR_OR_NULL(netcp->rx_fdq[i]) ; ++i) {
1483 		knav_queue_close(netcp->rx_fdq[i]);
1484 		netcp->rx_fdq[i] = NULL;
1485 	}
1486 
1487 	if (!IS_ERR_OR_NULL(netcp->tx_compl_q)) {
1488 		knav_queue_close(netcp->tx_compl_q);
1489 		netcp->tx_compl_q = NULL;
1490 	}
1491 
1492 	if (!IS_ERR_OR_NULL(netcp->tx_pool)) {
1493 		knav_pool_destroy(netcp->tx_pool);
1494 		netcp->tx_pool = NULL;
1495 	}
1496 }
1497 
1498 static int netcp_setup_navigator_resources(struct net_device *ndev)
1499 {
1500 	struct netcp_intf *netcp = netdev_priv(ndev);
1501 	struct knav_queue_notify_config notify_cfg;
1502 	struct knav_dma_cfg config;
1503 	u32 last_fdq = 0;
1504 	u8 name[16];
1505 	int ret;
1506 	int i;
1507 
1508 	/* Create Rx/Tx descriptor pools */
1509 	snprintf(name, sizeof(name), "rx-pool-%s", ndev->name);
1510 	netcp->rx_pool = knav_pool_create(name, netcp->rx_pool_size,
1511 						netcp->rx_pool_region_id);
1512 	if (IS_ERR_OR_NULL(netcp->rx_pool)) {
1513 		dev_err(netcp->ndev_dev, "Couldn't create rx pool\n");
1514 		ret = PTR_ERR(netcp->rx_pool);
1515 		goto fail;
1516 	}
1517 
1518 	snprintf(name, sizeof(name), "tx-pool-%s", ndev->name);
1519 	netcp->tx_pool = knav_pool_create(name, netcp->tx_pool_size,
1520 						netcp->tx_pool_region_id);
1521 	if (IS_ERR_OR_NULL(netcp->tx_pool)) {
1522 		dev_err(netcp->ndev_dev, "Couldn't create tx pool\n");
1523 		ret = PTR_ERR(netcp->tx_pool);
1524 		goto fail;
1525 	}
1526 
1527 	/* open Tx completion queue */
1528 	snprintf(name, sizeof(name), "tx-compl-%s", ndev->name);
1529 	netcp->tx_compl_q = knav_queue_open(name, netcp->tx_compl_qid, 0);
1530 	if (IS_ERR_OR_NULL(netcp->tx_compl_q)) {
1531 		ret = PTR_ERR(netcp->tx_compl_q);
1532 		goto fail;
1533 	}
1534 	netcp->tx_compl_qid = knav_queue_get_id(netcp->tx_compl_q);
1535 
1536 	/* Set notification for Tx completion */
1537 	notify_cfg.fn = netcp_tx_notify;
1538 	notify_cfg.fn_arg = netcp;
1539 	ret = knav_queue_device_control(netcp->tx_compl_q,
1540 					KNAV_QUEUE_SET_NOTIFIER,
1541 					(unsigned long)&notify_cfg);
1542 	if (ret)
1543 		goto fail;
1544 
1545 	knav_queue_disable_notify(netcp->tx_compl_q);
1546 
1547 	/* open Rx completion queue */
1548 	snprintf(name, sizeof(name), "rx-compl-%s", ndev->name);
1549 	netcp->rx_queue = knav_queue_open(name, netcp->rx_queue_id, 0);
1550 	if (IS_ERR_OR_NULL(netcp->rx_queue)) {
1551 		ret = PTR_ERR(netcp->rx_queue);
1552 		goto fail;
1553 	}
1554 	netcp->rx_queue_id = knav_queue_get_id(netcp->rx_queue);
1555 
1556 	/* Set notification for Rx completion */
1557 	notify_cfg.fn = netcp_rx_notify;
1558 	notify_cfg.fn_arg = netcp;
1559 	ret = knav_queue_device_control(netcp->rx_queue,
1560 					KNAV_QUEUE_SET_NOTIFIER,
1561 					(unsigned long)&notify_cfg);
1562 	if (ret)
1563 		goto fail;
1564 
1565 	knav_queue_disable_notify(netcp->rx_queue);
1566 
1567 	/* open Rx FDQs */
1568 	for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_queue_depths[i];
1569 	     ++i) {
1570 		snprintf(name, sizeof(name), "rx-fdq-%s-%d", ndev->name, i);
1571 		netcp->rx_fdq[i] = knav_queue_open(name, KNAV_QUEUE_GP, 0);
1572 		if (IS_ERR_OR_NULL(netcp->rx_fdq[i])) {
1573 			ret = PTR_ERR(netcp->rx_fdq[i]);
1574 			goto fail;
1575 		}
1576 	}
1577 
1578 	memset(&config, 0, sizeof(config));
1579 	config.direction		= DMA_DEV_TO_MEM;
1580 	config.u.rx.einfo_present	= true;
1581 	config.u.rx.psinfo_present	= true;
1582 	config.u.rx.err_mode		= DMA_DROP;
1583 	config.u.rx.desc_type		= DMA_DESC_HOST;
1584 	config.u.rx.psinfo_at_sop	= false;
1585 	config.u.rx.sop_offset		= NETCP_SOP_OFFSET;
1586 	config.u.rx.dst_q		= netcp->rx_queue_id;
1587 	config.u.rx.thresh		= DMA_THRESH_NONE;
1588 
1589 	for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN; ++i) {
1590 		if (netcp->rx_fdq[i])
1591 			last_fdq = knav_queue_get_id(netcp->rx_fdq[i]);
1592 		config.u.rx.fdq[i] = last_fdq;
1593 	}
1594 
1595 	netcp->rx_channel = knav_dma_open_channel(netcp->netcp_device->device,
1596 					netcp->dma_chan_name, &config);
1597 	if (IS_ERR_OR_NULL(netcp->rx_channel)) {
1598 		dev_err(netcp->ndev_dev, "failed opening rx chan(%s\n",
1599 			netcp->dma_chan_name);
1600 		goto fail;
1601 	}
1602 
1603 	dev_dbg(netcp->ndev_dev, "opened RX channel: %p\n", netcp->rx_channel);
1604 	return 0;
1605 
1606 fail:
1607 	netcp_free_navigator_resources(netcp);
1608 	return ret;
1609 }
1610 
1611 /* Open the device */
1612 static int netcp_ndo_open(struct net_device *ndev)
1613 {
1614 	struct netcp_intf *netcp = netdev_priv(ndev);
1615 	struct netcp_intf_modpriv *intf_modpriv;
1616 	struct netcp_module *module;
1617 	int ret;
1618 
1619 	netif_carrier_off(ndev);
1620 	ret = netcp_setup_navigator_resources(ndev);
1621 	if (ret) {
1622 		dev_err(netcp->ndev_dev, "Failed to setup navigator resources\n");
1623 		goto fail;
1624 	}
1625 
1626 	for_each_module(netcp, intf_modpriv) {
1627 		module = intf_modpriv->netcp_module;
1628 		if (module->open) {
1629 			ret = module->open(intf_modpriv->module_priv, ndev);
1630 			if (ret != 0) {
1631 				dev_err(netcp->ndev_dev, "module open failed\n");
1632 				goto fail_open;
1633 			}
1634 		}
1635 	}
1636 
1637 	napi_enable(&netcp->rx_napi);
1638 	napi_enable(&netcp->tx_napi);
1639 	knav_queue_enable_notify(netcp->tx_compl_q);
1640 	knav_queue_enable_notify(netcp->rx_queue);
1641 	netcp_rxpool_refill(netcp);
1642 	netif_tx_wake_all_queues(ndev);
1643 	dev_dbg(netcp->ndev_dev, "netcp device %s opened\n", ndev->name);
1644 	return 0;
1645 
1646 fail_open:
1647 	for_each_module(netcp, intf_modpriv) {
1648 		module = intf_modpriv->netcp_module;
1649 		if (module->close)
1650 			module->close(intf_modpriv->module_priv, ndev);
1651 	}
1652 
1653 fail:
1654 	netcp_free_navigator_resources(netcp);
1655 	return ret;
1656 }
1657 
1658 /* Close the device */
1659 static int netcp_ndo_stop(struct net_device *ndev)
1660 {
1661 	struct netcp_intf *netcp = netdev_priv(ndev);
1662 	struct netcp_intf_modpriv *intf_modpriv;
1663 	struct netcp_module *module;
1664 	int err = 0;
1665 
1666 	netif_tx_stop_all_queues(ndev);
1667 	netif_carrier_off(ndev);
1668 	netcp_addr_clear_mark(netcp);
1669 	netcp_addr_sweep_del(netcp);
1670 	knav_queue_disable_notify(netcp->rx_queue);
1671 	knav_queue_disable_notify(netcp->tx_compl_q);
1672 	napi_disable(&netcp->rx_napi);
1673 	napi_disable(&netcp->tx_napi);
1674 
1675 	for_each_module(netcp, intf_modpriv) {
1676 		module = intf_modpriv->netcp_module;
1677 		if (module->close) {
1678 			err = module->close(intf_modpriv->module_priv, ndev);
1679 			if (err != 0)
1680 				dev_err(netcp->ndev_dev, "Close failed\n");
1681 		}
1682 	}
1683 
1684 	/* Recycle Rx descriptors from completion queue */
1685 	netcp_empty_rx_queue(netcp);
1686 
1687 	/* Recycle Tx descriptors from completion queue */
1688 	netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size);
1689 
1690 	if (knav_pool_count(netcp->tx_pool) != netcp->tx_pool_size)
1691 		dev_err(netcp->ndev_dev, "Lost (%d) Tx descs\n",
1692 			netcp->tx_pool_size - knav_pool_count(netcp->tx_pool));
1693 
1694 	netcp_free_navigator_resources(netcp);
1695 	dev_dbg(netcp->ndev_dev, "netcp device %s stopped\n", ndev->name);
1696 	return 0;
1697 }
1698 
1699 static int netcp_ndo_ioctl(struct net_device *ndev,
1700 			   struct ifreq *req, int cmd)
1701 {
1702 	struct netcp_intf *netcp = netdev_priv(ndev);
1703 	struct netcp_intf_modpriv *intf_modpriv;
1704 	struct netcp_module *module;
1705 	int ret = -1, err = -EOPNOTSUPP;
1706 
1707 	if (!netif_running(ndev))
1708 		return -EINVAL;
1709 
1710 	for_each_module(netcp, intf_modpriv) {
1711 		module = intf_modpriv->netcp_module;
1712 		if (!module->ioctl)
1713 			continue;
1714 
1715 		err = module->ioctl(intf_modpriv->module_priv, req, cmd);
1716 		if ((err < 0) && (err != -EOPNOTSUPP)) {
1717 			ret = err;
1718 			goto out;
1719 		}
1720 		if (err == 0)
1721 			ret = err;
1722 	}
1723 
1724 out:
1725 	return (ret == 0) ? 0 : err;
1726 }
1727 
1728 static int netcp_ndo_change_mtu(struct net_device *ndev, int new_mtu)
1729 {
1730 	struct netcp_intf *netcp = netdev_priv(ndev);
1731 
1732 	/* MTU < 68 is an error for IPv4 traffic */
1733 	if ((new_mtu < 68) ||
1734 	    (new_mtu > (NETCP_MAX_FRAME_SIZE - ETH_HLEN - ETH_FCS_LEN))) {
1735 		dev_err(netcp->ndev_dev, "Invalid mtu size = %d\n", new_mtu);
1736 		return -EINVAL;
1737 	}
1738 
1739 	ndev->mtu = new_mtu;
1740 	return 0;
1741 }
1742 
1743 static void netcp_ndo_tx_timeout(struct net_device *ndev)
1744 {
1745 	struct netcp_intf *netcp = netdev_priv(ndev);
1746 	unsigned int descs = knav_pool_count(netcp->tx_pool);
1747 
1748 	dev_err(netcp->ndev_dev, "transmit timed out tx descs(%d)\n", descs);
1749 	netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size);
1750 	ndev->trans_start = jiffies;
1751 	netif_tx_wake_all_queues(ndev);
1752 }
1753 
1754 static int netcp_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
1755 {
1756 	struct netcp_intf *netcp = netdev_priv(ndev);
1757 	struct netcp_intf_modpriv *intf_modpriv;
1758 	struct netcp_module *module;
1759 	unsigned long flags;
1760 	int err = 0;
1761 
1762 	dev_dbg(netcp->ndev_dev, "adding rx vlan id: %d\n", vid);
1763 
1764 	spin_lock_irqsave(&netcp->lock, flags);
1765 	for_each_module(netcp, intf_modpriv) {
1766 		module = intf_modpriv->netcp_module;
1767 		if ((module->add_vid) && (vid != 0)) {
1768 			err = module->add_vid(intf_modpriv->module_priv, vid);
1769 			if (err != 0) {
1770 				dev_err(netcp->ndev_dev, "Could not add vlan id = %d\n",
1771 					vid);
1772 				break;
1773 			}
1774 		}
1775 	}
1776 	spin_unlock_irqrestore(&netcp->lock, flags);
1777 
1778 	return err;
1779 }
1780 
1781 static int netcp_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
1782 {
1783 	struct netcp_intf *netcp = netdev_priv(ndev);
1784 	struct netcp_intf_modpriv *intf_modpriv;
1785 	struct netcp_module *module;
1786 	unsigned long flags;
1787 	int err = 0;
1788 
1789 	dev_dbg(netcp->ndev_dev, "removing rx vlan id: %d\n", vid);
1790 
1791 	spin_lock_irqsave(&netcp->lock, flags);
1792 	for_each_module(netcp, intf_modpriv) {
1793 		module = intf_modpriv->netcp_module;
1794 		if (module->del_vid) {
1795 			err = module->del_vid(intf_modpriv->module_priv, vid);
1796 			if (err != 0) {
1797 				dev_err(netcp->ndev_dev, "Could not delete vlan id = %d\n",
1798 					vid);
1799 				break;
1800 			}
1801 		}
1802 	}
1803 	spin_unlock_irqrestore(&netcp->lock, flags);
1804 	return err;
1805 }
1806 
1807 static u16 netcp_select_queue(struct net_device *dev, struct sk_buff *skb,
1808 			      void *accel_priv,
1809 			      select_queue_fallback_t fallback)
1810 {
1811 	return 0;
1812 }
1813 
1814 static int netcp_setup_tc(struct net_device *dev, u8 num_tc)
1815 {
1816 	int i;
1817 
1818 	/* setup tc must be called under rtnl lock */
1819 	ASSERT_RTNL();
1820 
1821 	/* Sanity-check the number of traffic classes requested */
1822 	if ((dev->real_num_tx_queues <= 1) ||
1823 	    (dev->real_num_tx_queues < num_tc))
1824 		return -EINVAL;
1825 
1826 	/* Configure traffic class to queue mappings */
1827 	if (num_tc) {
1828 		netdev_set_num_tc(dev, num_tc);
1829 		for (i = 0; i < num_tc; i++)
1830 			netdev_set_tc_queue(dev, i, 1, i);
1831 	} else {
1832 		netdev_reset_tc(dev);
1833 	}
1834 
1835 	return 0;
1836 }
1837 
1838 static const struct net_device_ops netcp_netdev_ops = {
1839 	.ndo_open		= netcp_ndo_open,
1840 	.ndo_stop		= netcp_ndo_stop,
1841 	.ndo_start_xmit		= netcp_ndo_start_xmit,
1842 	.ndo_set_rx_mode	= netcp_set_rx_mode,
1843 	.ndo_do_ioctl           = netcp_ndo_ioctl,
1844 	.ndo_change_mtu		= netcp_ndo_change_mtu,
1845 	.ndo_set_mac_address	= eth_mac_addr,
1846 	.ndo_validate_addr	= eth_validate_addr,
1847 	.ndo_vlan_rx_add_vid	= netcp_rx_add_vid,
1848 	.ndo_vlan_rx_kill_vid	= netcp_rx_kill_vid,
1849 	.ndo_tx_timeout		= netcp_ndo_tx_timeout,
1850 	.ndo_select_queue	= netcp_select_queue,
1851 	.ndo_setup_tc		= netcp_setup_tc,
1852 };
1853 
1854 static int netcp_create_interface(struct netcp_device *netcp_device,
1855 				  struct device_node *node_interface)
1856 {
1857 	struct device *dev = netcp_device->device;
1858 	struct device_node *node = dev->of_node;
1859 	struct netcp_intf *netcp;
1860 	struct net_device *ndev;
1861 	resource_size_t size;
1862 	struct resource res;
1863 	void __iomem *efuse = NULL;
1864 	u32 efuse_mac = 0;
1865 	const void *mac_addr;
1866 	u8 efuse_mac_addr[6];
1867 	u32 temp[2];
1868 	int ret = 0;
1869 
1870 	ndev = alloc_etherdev_mqs(sizeof(*netcp), 1, 1);
1871 	if (!ndev) {
1872 		dev_err(dev, "Error allocating netdev\n");
1873 		return -ENOMEM;
1874 	}
1875 
1876 	ndev->features |= NETIF_F_SG;
1877 	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
1878 	ndev->hw_features = ndev->features;
1879 	ndev->vlan_features |=  NETIF_F_SG;
1880 
1881 	netcp = netdev_priv(ndev);
1882 	spin_lock_init(&netcp->lock);
1883 	INIT_LIST_HEAD(&netcp->module_head);
1884 	INIT_LIST_HEAD(&netcp->txhook_list_head);
1885 	INIT_LIST_HEAD(&netcp->rxhook_list_head);
1886 	INIT_LIST_HEAD(&netcp->addr_list);
1887 	netcp->netcp_device = netcp_device;
1888 	netcp->dev = netcp_device->device;
1889 	netcp->ndev = ndev;
1890 	netcp->ndev_dev  = &ndev->dev;
1891 	netcp->msg_enable = netif_msg_init(netcp_debug_level, NETCP_DEBUG);
1892 	netcp->tx_pause_threshold = MAX_SKB_FRAGS;
1893 	netcp->tx_resume_threshold = netcp->tx_pause_threshold;
1894 	netcp->node_interface = node_interface;
1895 
1896 	ret = of_property_read_u32(node_interface, "efuse-mac", &efuse_mac);
1897 	if (efuse_mac) {
1898 		if (of_address_to_resource(node, NETCP_EFUSE_REG_INDEX, &res)) {
1899 			dev_err(dev, "could not find efuse-mac reg resource\n");
1900 			ret = -ENODEV;
1901 			goto quit;
1902 		}
1903 		size = resource_size(&res);
1904 
1905 		if (!devm_request_mem_region(dev, res.start, size,
1906 					     dev_name(dev))) {
1907 			dev_err(dev, "could not reserve resource\n");
1908 			ret = -ENOMEM;
1909 			goto quit;
1910 		}
1911 
1912 		efuse = devm_ioremap_nocache(dev, res.start, size);
1913 		if (!efuse) {
1914 			dev_err(dev, "could not map resource\n");
1915 			devm_release_mem_region(dev, res.start, size);
1916 			ret = -ENOMEM;
1917 			goto quit;
1918 		}
1919 
1920 		emac_arch_get_mac_addr(efuse_mac_addr, efuse, efuse_mac);
1921 		if (is_valid_ether_addr(efuse_mac_addr))
1922 			ether_addr_copy(ndev->dev_addr, efuse_mac_addr);
1923 		else
1924 			random_ether_addr(ndev->dev_addr);
1925 
1926 		devm_iounmap(dev, efuse);
1927 		devm_release_mem_region(dev, res.start, size);
1928 	} else {
1929 		mac_addr = of_get_mac_address(node_interface);
1930 		if (mac_addr)
1931 			ether_addr_copy(ndev->dev_addr, mac_addr);
1932 		else
1933 			random_ether_addr(ndev->dev_addr);
1934 	}
1935 
1936 	ret = of_property_read_string(node_interface, "rx-channel",
1937 				      &netcp->dma_chan_name);
1938 	if (ret < 0) {
1939 		dev_err(dev, "missing \"rx-channel\" parameter\n");
1940 		ret = -ENODEV;
1941 		goto quit;
1942 	}
1943 
1944 	ret = of_property_read_u32(node_interface, "rx-queue",
1945 				   &netcp->rx_queue_id);
1946 	if (ret < 0) {
1947 		dev_warn(dev, "missing \"rx-queue\" parameter\n");
1948 		netcp->rx_queue_id = KNAV_QUEUE_QPEND;
1949 	}
1950 
1951 	ret = of_property_read_u32_array(node_interface, "rx-queue-depth",
1952 					 netcp->rx_queue_depths,
1953 					 KNAV_DMA_FDQ_PER_CHAN);
1954 	if (ret < 0) {
1955 		dev_err(dev, "missing \"rx-queue-depth\" parameter\n");
1956 		netcp->rx_queue_depths[0] = 128;
1957 	}
1958 
1959 	ret = of_property_read_u32_array(node_interface, "rx-pool", temp, 2);
1960 	if (ret < 0) {
1961 		dev_err(dev, "missing \"rx-pool\" parameter\n");
1962 		ret = -ENODEV;
1963 		goto quit;
1964 	}
1965 	netcp->rx_pool_size = temp[0];
1966 	netcp->rx_pool_region_id = temp[1];
1967 
1968 	ret = of_property_read_u32_array(node_interface, "tx-pool", temp, 2);
1969 	if (ret < 0) {
1970 		dev_err(dev, "missing \"tx-pool\" parameter\n");
1971 		ret = -ENODEV;
1972 		goto quit;
1973 	}
1974 	netcp->tx_pool_size = temp[0];
1975 	netcp->tx_pool_region_id = temp[1];
1976 
1977 	if (netcp->tx_pool_size < MAX_SKB_FRAGS) {
1978 		dev_err(dev, "tx-pool size too small, must be atleast(%ld)\n",
1979 			MAX_SKB_FRAGS);
1980 		ret = -ENODEV;
1981 		goto quit;
1982 	}
1983 
1984 	ret = of_property_read_u32(node_interface, "tx-completion-queue",
1985 				   &netcp->tx_compl_qid);
1986 	if (ret < 0) {
1987 		dev_warn(dev, "missing \"tx-completion-queue\" parameter\n");
1988 		netcp->tx_compl_qid = KNAV_QUEUE_QPEND;
1989 	}
1990 
1991 	/* NAPI register */
1992 	netif_napi_add(ndev, &netcp->rx_napi, netcp_rx_poll, NETCP_NAPI_WEIGHT);
1993 	netif_napi_add(ndev, &netcp->tx_napi, netcp_tx_poll, NETCP_NAPI_WEIGHT);
1994 
1995 	/* Register the network device */
1996 	ndev->dev_id		= 0;
1997 	ndev->watchdog_timeo	= NETCP_TX_TIMEOUT;
1998 	ndev->netdev_ops	= &netcp_netdev_ops;
1999 	SET_NETDEV_DEV(ndev, dev);
2000 
2001 	list_add_tail(&netcp->interface_list, &netcp_device->interface_head);
2002 	return 0;
2003 
2004 quit:
2005 	free_netdev(ndev);
2006 	return ret;
2007 }
2008 
2009 static void netcp_delete_interface(struct netcp_device *netcp_device,
2010 				   struct net_device *ndev)
2011 {
2012 	struct netcp_intf_modpriv *intf_modpriv, *tmp;
2013 	struct netcp_intf *netcp = netdev_priv(ndev);
2014 	struct netcp_module *module;
2015 
2016 	dev_dbg(netcp_device->device, "Removing interface \"%s\"\n",
2017 		ndev->name);
2018 
2019 	/* Notify each of the modules that the interface is going away */
2020 	list_for_each_entry_safe(intf_modpriv, tmp, &netcp->module_head,
2021 				 intf_list) {
2022 		module = intf_modpriv->netcp_module;
2023 		dev_dbg(netcp_device->device, "Releasing module \"%s\"\n",
2024 			module->name);
2025 		if (module->release)
2026 			module->release(intf_modpriv->module_priv);
2027 		list_del(&intf_modpriv->intf_list);
2028 		kfree(intf_modpriv);
2029 	}
2030 	WARN(!list_empty(&netcp->module_head), "%s interface module list is not empty!\n",
2031 	     ndev->name);
2032 
2033 	list_del(&netcp->interface_list);
2034 
2035 	of_node_put(netcp->node_interface);
2036 	unregister_netdev(ndev);
2037 	netif_napi_del(&netcp->rx_napi);
2038 	free_netdev(ndev);
2039 }
2040 
2041 static int netcp_probe(struct platform_device *pdev)
2042 {
2043 	struct device_node *node = pdev->dev.of_node;
2044 	struct netcp_intf *netcp_intf, *netcp_tmp;
2045 	struct device_node *child, *interfaces;
2046 	struct netcp_device *netcp_device;
2047 	struct device *dev = &pdev->dev;
2048 	int ret;
2049 
2050 	if (!node) {
2051 		dev_err(dev, "could not find device info\n");
2052 		return -ENODEV;
2053 	}
2054 
2055 	/* Allocate a new NETCP device instance */
2056 	netcp_device = devm_kzalloc(dev, sizeof(*netcp_device), GFP_KERNEL);
2057 	if (!netcp_device)
2058 		return -ENOMEM;
2059 
2060 	pm_runtime_enable(&pdev->dev);
2061 	ret = pm_runtime_get_sync(&pdev->dev);
2062 	if (ret < 0) {
2063 		dev_err(dev, "Failed to enable NETCP power-domain\n");
2064 		pm_runtime_disable(&pdev->dev);
2065 		return ret;
2066 	}
2067 
2068 	/* Initialize the NETCP device instance */
2069 	INIT_LIST_HEAD(&netcp_device->interface_head);
2070 	INIT_LIST_HEAD(&netcp_device->modpriv_head);
2071 	netcp_device->device = dev;
2072 	platform_set_drvdata(pdev, netcp_device);
2073 
2074 	/* create interfaces */
2075 	interfaces = of_get_child_by_name(node, "netcp-interfaces");
2076 	if (!interfaces) {
2077 		dev_err(dev, "could not find netcp-interfaces node\n");
2078 		ret = -ENODEV;
2079 		goto probe_quit;
2080 	}
2081 
2082 	for_each_available_child_of_node(interfaces, child) {
2083 		ret = netcp_create_interface(netcp_device, child);
2084 		if (ret) {
2085 			dev_err(dev, "could not create interface(%s)\n",
2086 				child->name);
2087 			goto probe_quit_interface;
2088 		}
2089 	}
2090 
2091 	/* Add the device instance to the list */
2092 	list_add_tail(&netcp_device->device_list, &netcp_devices);
2093 
2094 	return 0;
2095 
2096 probe_quit_interface:
2097 	list_for_each_entry_safe(netcp_intf, netcp_tmp,
2098 				 &netcp_device->interface_head,
2099 				 interface_list) {
2100 		netcp_delete_interface(netcp_device, netcp_intf->ndev);
2101 	}
2102 
2103 probe_quit:
2104 	pm_runtime_put_sync(&pdev->dev);
2105 	pm_runtime_disable(&pdev->dev);
2106 	platform_set_drvdata(pdev, NULL);
2107 	return ret;
2108 }
2109 
2110 static int netcp_remove(struct platform_device *pdev)
2111 {
2112 	struct netcp_device *netcp_device = platform_get_drvdata(pdev);
2113 	struct netcp_intf *netcp_intf, *netcp_tmp;
2114 	struct netcp_inst_modpriv *inst_modpriv, *tmp;
2115 	struct netcp_module *module;
2116 
2117 	list_for_each_entry_safe(inst_modpriv, tmp, &netcp_device->modpriv_head,
2118 				 inst_list) {
2119 		module = inst_modpriv->netcp_module;
2120 		dev_dbg(&pdev->dev, "Removing module \"%s\"\n", module->name);
2121 		module->remove(netcp_device, inst_modpriv->module_priv);
2122 		list_del(&inst_modpriv->inst_list);
2123 		kfree(inst_modpriv);
2124 	}
2125 
2126 	/* now that all modules are removed, clean up the interfaces */
2127 	list_for_each_entry_safe(netcp_intf, netcp_tmp,
2128 				 &netcp_device->interface_head,
2129 				 interface_list) {
2130 		netcp_delete_interface(netcp_device, netcp_intf->ndev);
2131 	}
2132 
2133 	WARN(!list_empty(&netcp_device->interface_head),
2134 	     "%s interface list not empty!\n", pdev->name);
2135 
2136 	pm_runtime_put_sync(&pdev->dev);
2137 	pm_runtime_disable(&pdev->dev);
2138 	platform_set_drvdata(pdev, NULL);
2139 	return 0;
2140 }
2141 
2142 static const struct of_device_id of_match[] = {
2143 	{ .compatible = "ti,netcp-1.0", },
2144 	{},
2145 };
2146 MODULE_DEVICE_TABLE(of, of_match);
2147 
2148 static struct platform_driver netcp_driver = {
2149 	.driver = {
2150 		.name		= "netcp-1.0",
2151 		.of_match_table	= of_match,
2152 	},
2153 	.probe = netcp_probe,
2154 	.remove = netcp_remove,
2155 };
2156 module_platform_driver(netcp_driver);
2157 
2158 MODULE_LICENSE("GPL v2");
2159 MODULE_DESCRIPTION("TI NETCP driver for Keystone SOCs");
2160 MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com");
2161