1 /* 2 * Keystone NetCP Core driver 3 * 4 * Copyright (C) 2014 Texas Instruments Incorporated 5 * Authors: Sandeep Nair <sandeep_n@ti.com> 6 * Sandeep Paulraj <s-paulraj@ti.com> 7 * Cyril Chemparathy <cyril@ti.com> 8 * Santosh Shilimkar <santosh.shilimkar@ti.com> 9 * Murali Karicheri <m-karicheri2@ti.com> 10 * Wingman Kwok <w-kwok2@ti.com> 11 * 12 * This program is free software; you can redistribute it and/or 13 * modify it under the terms of the GNU General Public License as 14 * published by the Free Software Foundation version 2. 15 * 16 * This program is distributed "as is" WITHOUT ANY WARRANTY of any 17 * kind, whether express or implied; without even the implied warranty 18 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 19 * GNU General Public License for more details. 20 */ 21 22 #include <linux/io.h> 23 #include <linux/module.h> 24 #include <linux/of_net.h> 25 #include <linux/of_address.h> 26 #include <linux/if_vlan.h> 27 #include <linux/pm_runtime.h> 28 #include <linux/platform_device.h> 29 #include <linux/soc/ti/knav_qmss.h> 30 #include <linux/soc/ti/knav_dma.h> 31 32 #include "netcp.h" 33 34 #define NETCP_SOP_OFFSET (NET_IP_ALIGN + NET_SKB_PAD) 35 #define NETCP_NAPI_WEIGHT 64 36 #define NETCP_TX_TIMEOUT (5 * HZ) 37 #define NETCP_PACKET_SIZE (ETH_FRAME_LEN + ETH_FCS_LEN) 38 #define NETCP_MIN_PACKET_SIZE ETH_ZLEN 39 #define NETCP_MAX_MCAST_ADDR 16 40 41 #define NETCP_EFUSE_REG_INDEX 0 42 43 #define NETCP_MOD_PROBE_SKIPPED 1 44 #define NETCP_MOD_PROBE_FAILED 2 45 46 #define NETCP_DEBUG (NETIF_MSG_HW | NETIF_MSG_WOL | \ 47 NETIF_MSG_DRV | NETIF_MSG_LINK | \ 48 NETIF_MSG_IFUP | NETIF_MSG_INTR | \ 49 NETIF_MSG_PROBE | NETIF_MSG_TIMER | \ 50 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | \ 51 NETIF_MSG_TX_ERR | NETIF_MSG_TX_DONE | \ 52 NETIF_MSG_PKTDATA | NETIF_MSG_TX_QUEUED | \ 53 NETIF_MSG_RX_STATUS) 54 55 #define NETCP_EFUSE_ADDR_SWAP 2 56 57 #define knav_queue_get_id(q) knav_queue_device_control(q, \ 58 KNAV_QUEUE_GET_ID, (unsigned long)NULL) 59 60 #define knav_queue_enable_notify(q) knav_queue_device_control(q, \ 61 KNAV_QUEUE_ENABLE_NOTIFY, \ 62 (unsigned long)NULL) 63 64 #define knav_queue_disable_notify(q) knav_queue_device_control(q, \ 65 KNAV_QUEUE_DISABLE_NOTIFY, \ 66 (unsigned long)NULL) 67 68 #define knav_queue_get_count(q) knav_queue_device_control(q, \ 69 KNAV_QUEUE_GET_COUNT, (unsigned long)NULL) 70 71 #define for_each_netcp_module(module) \ 72 list_for_each_entry(module, &netcp_modules, module_list) 73 74 #define for_each_netcp_device_module(netcp_device, inst_modpriv) \ 75 list_for_each_entry(inst_modpriv, \ 76 &((netcp_device)->modpriv_head), inst_list) 77 78 #define for_each_module(netcp, intf_modpriv) \ 79 list_for_each_entry(intf_modpriv, &netcp->module_head, intf_list) 80 81 /* Module management structures */ 82 struct netcp_device { 83 struct list_head device_list; 84 struct list_head interface_head; 85 struct list_head modpriv_head; 86 struct device *device; 87 }; 88 89 struct netcp_inst_modpriv { 90 struct netcp_device *netcp_device; 91 struct netcp_module *netcp_module; 92 struct list_head inst_list; 93 void *module_priv; 94 }; 95 96 struct netcp_intf_modpriv { 97 struct netcp_intf *netcp_priv; 98 struct netcp_module *netcp_module; 99 struct list_head intf_list; 100 void *module_priv; 101 }; 102 103 static LIST_HEAD(netcp_devices); 104 static LIST_HEAD(netcp_modules); 105 static DEFINE_MUTEX(netcp_modules_lock); 106 107 static int netcp_debug_level = -1; 108 module_param(netcp_debug_level, int, 0); 109 MODULE_PARM_DESC(netcp_debug_level, "Netcp debug level (NETIF_MSG bits) (0=none,...,16=all)"); 110 111 /* Helper functions - Get/Set */ 112 static void get_pkt_info(dma_addr_t *buff, u32 *buff_len, dma_addr_t *ndesc, 113 struct knav_dma_desc *desc) 114 { 115 *buff_len = le32_to_cpu(desc->buff_len); 116 *buff = le32_to_cpu(desc->buff); 117 *ndesc = le32_to_cpu(desc->next_desc); 118 } 119 120 static u32 get_sw_data(int index, struct knav_dma_desc *desc) 121 { 122 /* No Endian conversion needed as this data is untouched by hw */ 123 return desc->sw_data[index]; 124 } 125 126 /* use these macros to get sw data */ 127 #define GET_SW_DATA0(desc) get_sw_data(0, desc) 128 #define GET_SW_DATA1(desc) get_sw_data(1, desc) 129 #define GET_SW_DATA2(desc) get_sw_data(2, desc) 130 #define GET_SW_DATA3(desc) get_sw_data(3, desc) 131 132 static void get_org_pkt_info(dma_addr_t *buff, u32 *buff_len, 133 struct knav_dma_desc *desc) 134 { 135 *buff = le32_to_cpu(desc->orig_buff); 136 *buff_len = le32_to_cpu(desc->orig_len); 137 } 138 139 static void get_words(dma_addr_t *words, int num_words, __le32 *desc) 140 { 141 int i; 142 143 for (i = 0; i < num_words; i++) 144 words[i] = le32_to_cpu(desc[i]); 145 } 146 147 static void set_pkt_info(dma_addr_t buff, u32 buff_len, u32 ndesc, 148 struct knav_dma_desc *desc) 149 { 150 desc->buff_len = cpu_to_le32(buff_len); 151 desc->buff = cpu_to_le32(buff); 152 desc->next_desc = cpu_to_le32(ndesc); 153 } 154 155 static void set_desc_info(u32 desc_info, u32 pkt_info, 156 struct knav_dma_desc *desc) 157 { 158 desc->desc_info = cpu_to_le32(desc_info); 159 desc->packet_info = cpu_to_le32(pkt_info); 160 } 161 162 static void set_sw_data(int index, u32 data, struct knav_dma_desc *desc) 163 { 164 /* No Endian conversion needed as this data is untouched by hw */ 165 desc->sw_data[index] = data; 166 } 167 168 /* use these macros to set sw data */ 169 #define SET_SW_DATA0(data, desc) set_sw_data(0, data, desc) 170 #define SET_SW_DATA1(data, desc) set_sw_data(1, data, desc) 171 #define SET_SW_DATA2(data, desc) set_sw_data(2, data, desc) 172 #define SET_SW_DATA3(data, desc) set_sw_data(3, data, desc) 173 174 static void set_org_pkt_info(dma_addr_t buff, u32 buff_len, 175 struct knav_dma_desc *desc) 176 { 177 desc->orig_buff = cpu_to_le32(buff); 178 desc->orig_len = cpu_to_le32(buff_len); 179 } 180 181 static void set_words(u32 *words, int num_words, __le32 *desc) 182 { 183 int i; 184 185 for (i = 0; i < num_words; i++) 186 desc[i] = cpu_to_le32(words[i]); 187 } 188 189 /* Read the e-fuse value as 32 bit values to be endian independent */ 190 static int emac_arch_get_mac_addr(char *x, void __iomem *efuse_mac, u32 swap) 191 { 192 unsigned int addr0, addr1; 193 194 addr1 = readl(efuse_mac + 4); 195 addr0 = readl(efuse_mac); 196 197 switch (swap) { 198 case NETCP_EFUSE_ADDR_SWAP: 199 addr0 = addr1; 200 addr1 = readl(efuse_mac); 201 break; 202 default: 203 break; 204 } 205 206 x[0] = (addr1 & 0x0000ff00) >> 8; 207 x[1] = addr1 & 0x000000ff; 208 x[2] = (addr0 & 0xff000000) >> 24; 209 x[3] = (addr0 & 0x00ff0000) >> 16; 210 x[4] = (addr0 & 0x0000ff00) >> 8; 211 x[5] = addr0 & 0x000000ff; 212 213 return 0; 214 } 215 216 static const char *netcp_node_name(struct device_node *node) 217 { 218 const char *name; 219 220 if (of_property_read_string(node, "label", &name) < 0) 221 name = node->name; 222 if (!name) 223 name = "unknown"; 224 return name; 225 } 226 227 /* Module management routines */ 228 static int netcp_register_interface(struct netcp_intf *netcp) 229 { 230 int ret; 231 232 ret = register_netdev(netcp->ndev); 233 if (!ret) 234 netcp->netdev_registered = true; 235 return ret; 236 } 237 238 static int netcp_module_probe(struct netcp_device *netcp_device, 239 struct netcp_module *module) 240 { 241 struct device *dev = netcp_device->device; 242 struct device_node *devices, *interface, *node = dev->of_node; 243 struct device_node *child; 244 struct netcp_inst_modpriv *inst_modpriv; 245 struct netcp_intf *netcp_intf; 246 struct netcp_module *tmp; 247 bool primary_module_registered = false; 248 int ret; 249 250 /* Find this module in the sub-tree for this device */ 251 devices = of_get_child_by_name(node, "netcp-devices"); 252 if (!devices) { 253 dev_err(dev, "could not find netcp-devices node\n"); 254 return NETCP_MOD_PROBE_SKIPPED; 255 } 256 257 for_each_available_child_of_node(devices, child) { 258 const char *name = netcp_node_name(child); 259 260 if (!strcasecmp(module->name, name)) 261 break; 262 } 263 264 of_node_put(devices); 265 /* If module not used for this device, skip it */ 266 if (!child) { 267 dev_warn(dev, "module(%s) not used for device\n", module->name); 268 return NETCP_MOD_PROBE_SKIPPED; 269 } 270 271 inst_modpriv = devm_kzalloc(dev, sizeof(*inst_modpriv), GFP_KERNEL); 272 if (!inst_modpriv) { 273 of_node_put(child); 274 return -ENOMEM; 275 } 276 277 inst_modpriv->netcp_device = netcp_device; 278 inst_modpriv->netcp_module = module; 279 list_add_tail(&inst_modpriv->inst_list, &netcp_device->modpriv_head); 280 281 ret = module->probe(netcp_device, dev, child, 282 &inst_modpriv->module_priv); 283 of_node_put(child); 284 if (ret) { 285 dev_err(dev, "Probe of module(%s) failed with %d\n", 286 module->name, ret); 287 list_del(&inst_modpriv->inst_list); 288 devm_kfree(dev, inst_modpriv); 289 return NETCP_MOD_PROBE_FAILED; 290 } 291 292 /* Attach modules only if the primary module is probed */ 293 for_each_netcp_module(tmp) { 294 if (tmp->primary) 295 primary_module_registered = true; 296 } 297 298 if (!primary_module_registered) 299 return 0; 300 301 /* Attach module to interfaces */ 302 list_for_each_entry(netcp_intf, &netcp_device->interface_head, 303 interface_list) { 304 struct netcp_intf_modpriv *intf_modpriv; 305 306 intf_modpriv = devm_kzalloc(dev, sizeof(*intf_modpriv), 307 GFP_KERNEL); 308 if (!intf_modpriv) 309 return -ENOMEM; 310 311 interface = of_parse_phandle(netcp_intf->node_interface, 312 module->name, 0); 313 314 if (!interface) { 315 devm_kfree(dev, intf_modpriv); 316 continue; 317 } 318 319 intf_modpriv->netcp_priv = netcp_intf; 320 intf_modpriv->netcp_module = module; 321 list_add_tail(&intf_modpriv->intf_list, 322 &netcp_intf->module_head); 323 324 ret = module->attach(inst_modpriv->module_priv, 325 netcp_intf->ndev, interface, 326 &intf_modpriv->module_priv); 327 of_node_put(interface); 328 if (ret) { 329 dev_dbg(dev, "Attach of module %s declined with %d\n", 330 module->name, ret); 331 list_del(&intf_modpriv->intf_list); 332 devm_kfree(dev, intf_modpriv); 333 continue; 334 } 335 } 336 337 /* Now register the interface with netdev */ 338 list_for_each_entry(netcp_intf, 339 &netcp_device->interface_head, 340 interface_list) { 341 /* If interface not registered then register now */ 342 if (!netcp_intf->netdev_registered) { 343 ret = netcp_register_interface(netcp_intf); 344 if (ret) 345 return -ENODEV; 346 } 347 } 348 return 0; 349 } 350 351 int netcp_register_module(struct netcp_module *module) 352 { 353 struct netcp_device *netcp_device; 354 struct netcp_module *tmp; 355 int ret; 356 357 if (!module->name) { 358 WARN(1, "error registering netcp module: no name\n"); 359 return -EINVAL; 360 } 361 362 if (!module->probe) { 363 WARN(1, "error registering netcp module: no probe\n"); 364 return -EINVAL; 365 } 366 367 mutex_lock(&netcp_modules_lock); 368 369 for_each_netcp_module(tmp) { 370 if (!strcasecmp(tmp->name, module->name)) { 371 mutex_unlock(&netcp_modules_lock); 372 return -EEXIST; 373 } 374 } 375 list_add_tail(&module->module_list, &netcp_modules); 376 377 list_for_each_entry(netcp_device, &netcp_devices, device_list) { 378 ret = netcp_module_probe(netcp_device, module); 379 if (ret < 0) 380 goto fail; 381 } 382 mutex_unlock(&netcp_modules_lock); 383 return 0; 384 385 fail: 386 mutex_unlock(&netcp_modules_lock); 387 netcp_unregister_module(module); 388 return ret; 389 } 390 EXPORT_SYMBOL_GPL(netcp_register_module); 391 392 static void netcp_release_module(struct netcp_device *netcp_device, 393 struct netcp_module *module) 394 { 395 struct netcp_inst_modpriv *inst_modpriv, *inst_tmp; 396 struct netcp_intf *netcp_intf, *netcp_tmp; 397 struct device *dev = netcp_device->device; 398 399 /* Release the module from each interface */ 400 list_for_each_entry_safe(netcp_intf, netcp_tmp, 401 &netcp_device->interface_head, 402 interface_list) { 403 struct netcp_intf_modpriv *intf_modpriv, *intf_tmp; 404 405 list_for_each_entry_safe(intf_modpriv, intf_tmp, 406 &netcp_intf->module_head, 407 intf_list) { 408 if (intf_modpriv->netcp_module == module) { 409 module->release(intf_modpriv->module_priv); 410 list_del(&intf_modpriv->intf_list); 411 devm_kfree(dev, intf_modpriv); 412 break; 413 } 414 } 415 } 416 417 /* Remove the module from each instance */ 418 list_for_each_entry_safe(inst_modpriv, inst_tmp, 419 &netcp_device->modpriv_head, inst_list) { 420 if (inst_modpriv->netcp_module == module) { 421 module->remove(netcp_device, 422 inst_modpriv->module_priv); 423 list_del(&inst_modpriv->inst_list); 424 devm_kfree(dev, inst_modpriv); 425 break; 426 } 427 } 428 } 429 430 void netcp_unregister_module(struct netcp_module *module) 431 { 432 struct netcp_device *netcp_device; 433 struct netcp_module *module_tmp; 434 435 mutex_lock(&netcp_modules_lock); 436 437 list_for_each_entry(netcp_device, &netcp_devices, device_list) { 438 netcp_release_module(netcp_device, module); 439 } 440 441 /* Remove the module from the module list */ 442 for_each_netcp_module(module_tmp) { 443 if (module == module_tmp) { 444 list_del(&module->module_list); 445 break; 446 } 447 } 448 449 mutex_unlock(&netcp_modules_lock); 450 } 451 EXPORT_SYMBOL_GPL(netcp_unregister_module); 452 453 void *netcp_module_get_intf_data(struct netcp_module *module, 454 struct netcp_intf *intf) 455 { 456 struct netcp_intf_modpriv *intf_modpriv; 457 458 list_for_each_entry(intf_modpriv, &intf->module_head, intf_list) 459 if (intf_modpriv->netcp_module == module) 460 return intf_modpriv->module_priv; 461 return NULL; 462 } 463 EXPORT_SYMBOL_GPL(netcp_module_get_intf_data); 464 465 /* Module TX and RX Hook management */ 466 struct netcp_hook_list { 467 struct list_head list; 468 netcp_hook_rtn *hook_rtn; 469 void *hook_data; 470 int order; 471 }; 472 473 int netcp_register_txhook(struct netcp_intf *netcp_priv, int order, 474 netcp_hook_rtn *hook_rtn, void *hook_data) 475 { 476 struct netcp_hook_list *entry; 477 struct netcp_hook_list *next; 478 unsigned long flags; 479 480 entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL); 481 if (!entry) 482 return -ENOMEM; 483 484 entry->hook_rtn = hook_rtn; 485 entry->hook_data = hook_data; 486 entry->order = order; 487 488 spin_lock_irqsave(&netcp_priv->lock, flags); 489 list_for_each_entry(next, &netcp_priv->txhook_list_head, list) { 490 if (next->order > order) 491 break; 492 } 493 __list_add(&entry->list, next->list.prev, &next->list); 494 spin_unlock_irqrestore(&netcp_priv->lock, flags); 495 496 return 0; 497 } 498 EXPORT_SYMBOL_GPL(netcp_register_txhook); 499 500 int netcp_unregister_txhook(struct netcp_intf *netcp_priv, int order, 501 netcp_hook_rtn *hook_rtn, void *hook_data) 502 { 503 struct netcp_hook_list *next, *n; 504 unsigned long flags; 505 506 spin_lock_irqsave(&netcp_priv->lock, flags); 507 list_for_each_entry_safe(next, n, &netcp_priv->txhook_list_head, list) { 508 if ((next->order == order) && 509 (next->hook_rtn == hook_rtn) && 510 (next->hook_data == hook_data)) { 511 list_del(&next->list); 512 spin_unlock_irqrestore(&netcp_priv->lock, flags); 513 devm_kfree(netcp_priv->dev, next); 514 return 0; 515 } 516 } 517 spin_unlock_irqrestore(&netcp_priv->lock, flags); 518 return -ENOENT; 519 } 520 EXPORT_SYMBOL_GPL(netcp_unregister_txhook); 521 522 int netcp_register_rxhook(struct netcp_intf *netcp_priv, int order, 523 netcp_hook_rtn *hook_rtn, void *hook_data) 524 { 525 struct netcp_hook_list *entry; 526 struct netcp_hook_list *next; 527 unsigned long flags; 528 529 entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL); 530 if (!entry) 531 return -ENOMEM; 532 533 entry->hook_rtn = hook_rtn; 534 entry->hook_data = hook_data; 535 entry->order = order; 536 537 spin_lock_irqsave(&netcp_priv->lock, flags); 538 list_for_each_entry(next, &netcp_priv->rxhook_list_head, list) { 539 if (next->order > order) 540 break; 541 } 542 __list_add(&entry->list, next->list.prev, &next->list); 543 spin_unlock_irqrestore(&netcp_priv->lock, flags); 544 545 return 0; 546 } 547 548 int netcp_unregister_rxhook(struct netcp_intf *netcp_priv, int order, 549 netcp_hook_rtn *hook_rtn, void *hook_data) 550 { 551 struct netcp_hook_list *next, *n; 552 unsigned long flags; 553 554 spin_lock_irqsave(&netcp_priv->lock, flags); 555 list_for_each_entry_safe(next, n, &netcp_priv->rxhook_list_head, list) { 556 if ((next->order == order) && 557 (next->hook_rtn == hook_rtn) && 558 (next->hook_data == hook_data)) { 559 list_del(&next->list); 560 spin_unlock_irqrestore(&netcp_priv->lock, flags); 561 devm_kfree(netcp_priv->dev, next); 562 return 0; 563 } 564 } 565 spin_unlock_irqrestore(&netcp_priv->lock, flags); 566 567 return -ENOENT; 568 } 569 570 static void netcp_frag_free(bool is_frag, void *ptr) 571 { 572 if (is_frag) 573 skb_free_frag(ptr); 574 else 575 kfree(ptr); 576 } 577 578 static void netcp_free_rx_desc_chain(struct netcp_intf *netcp, 579 struct knav_dma_desc *desc) 580 { 581 struct knav_dma_desc *ndesc; 582 dma_addr_t dma_desc, dma_buf; 583 unsigned int buf_len, dma_sz = sizeof(*ndesc); 584 void *buf_ptr; 585 u32 tmp; 586 587 get_words(&dma_desc, 1, &desc->next_desc); 588 589 while (dma_desc) { 590 ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz); 591 if (unlikely(!ndesc)) { 592 dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n"); 593 break; 594 } 595 get_pkt_info(&dma_buf, &tmp, &dma_desc, ndesc); 596 /* warning!!!! We are retrieving the virtual ptr in the sw_data 597 * field as a 32bit value. Will not work on 64bit machines 598 */ 599 buf_ptr = (void *)GET_SW_DATA0(ndesc); 600 buf_len = (int)GET_SW_DATA1(desc); 601 dma_unmap_page(netcp->dev, dma_buf, PAGE_SIZE, DMA_FROM_DEVICE); 602 __free_page(buf_ptr); 603 knav_pool_desc_put(netcp->rx_pool, desc); 604 } 605 /* warning!!!! We are retrieving the virtual ptr in the sw_data 606 * field as a 32bit value. Will not work on 64bit machines 607 */ 608 buf_ptr = (void *)GET_SW_DATA0(desc); 609 buf_len = (int)GET_SW_DATA1(desc); 610 611 if (buf_ptr) 612 netcp_frag_free(buf_len <= PAGE_SIZE, buf_ptr); 613 knav_pool_desc_put(netcp->rx_pool, desc); 614 } 615 616 static void netcp_empty_rx_queue(struct netcp_intf *netcp) 617 { 618 struct knav_dma_desc *desc; 619 unsigned int dma_sz; 620 dma_addr_t dma; 621 622 for (; ;) { 623 dma = knav_queue_pop(netcp->rx_queue, &dma_sz); 624 if (!dma) 625 break; 626 627 desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz); 628 if (unlikely(!desc)) { 629 dev_err(netcp->ndev_dev, "%s: failed to unmap Rx desc\n", 630 __func__); 631 netcp->ndev->stats.rx_errors++; 632 continue; 633 } 634 netcp_free_rx_desc_chain(netcp, desc); 635 netcp->ndev->stats.rx_dropped++; 636 } 637 } 638 639 static int netcp_process_one_rx_packet(struct netcp_intf *netcp) 640 { 641 unsigned int dma_sz, buf_len, org_buf_len; 642 struct knav_dma_desc *desc, *ndesc; 643 unsigned int pkt_sz = 0, accum_sz; 644 struct netcp_hook_list *rx_hook; 645 dma_addr_t dma_desc, dma_buff; 646 struct netcp_packet p_info; 647 struct sk_buff *skb; 648 void *org_buf_ptr; 649 650 dma_desc = knav_queue_pop(netcp->rx_queue, &dma_sz); 651 if (!dma_desc) 652 return -1; 653 654 desc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz); 655 if (unlikely(!desc)) { 656 dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n"); 657 return 0; 658 } 659 660 get_pkt_info(&dma_buff, &buf_len, &dma_desc, desc); 661 /* warning!!!! We are retrieving the virtual ptr in the sw_data 662 * field as a 32bit value. Will not work on 64bit machines 663 */ 664 org_buf_ptr = (void *)GET_SW_DATA0(desc); 665 org_buf_len = (int)GET_SW_DATA1(desc); 666 667 if (unlikely(!org_buf_ptr)) { 668 dev_err(netcp->ndev_dev, "NULL bufptr in desc\n"); 669 goto free_desc; 670 } 671 672 pkt_sz &= KNAV_DMA_DESC_PKT_LEN_MASK; 673 accum_sz = buf_len; 674 dma_unmap_single(netcp->dev, dma_buff, buf_len, DMA_FROM_DEVICE); 675 676 /* Build a new sk_buff for the primary buffer */ 677 skb = build_skb(org_buf_ptr, org_buf_len); 678 if (unlikely(!skb)) { 679 dev_err(netcp->ndev_dev, "build_skb() failed\n"); 680 goto free_desc; 681 } 682 683 /* update data, tail and len */ 684 skb_reserve(skb, NETCP_SOP_OFFSET); 685 __skb_put(skb, buf_len); 686 687 /* Fill in the page fragment list */ 688 while (dma_desc) { 689 struct page *page; 690 691 ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz); 692 if (unlikely(!ndesc)) { 693 dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n"); 694 goto free_desc; 695 } 696 697 get_pkt_info(&dma_buff, &buf_len, &dma_desc, ndesc); 698 /* warning!!!! We are retrieving the virtual ptr in the sw_data 699 * field as a 32bit value. Will not work on 64bit machines 700 */ 701 page = (struct page *)GET_SW_DATA0(desc); 702 703 if (likely(dma_buff && buf_len && page)) { 704 dma_unmap_page(netcp->dev, dma_buff, PAGE_SIZE, 705 DMA_FROM_DEVICE); 706 } else { 707 dev_err(netcp->ndev_dev, "Bad Rx desc dma_buff(%pad), len(%d), page(%p)\n", 708 &dma_buff, buf_len, page); 709 goto free_desc; 710 } 711 712 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, 713 offset_in_page(dma_buff), buf_len, PAGE_SIZE); 714 accum_sz += buf_len; 715 716 /* Free the descriptor */ 717 knav_pool_desc_put(netcp->rx_pool, ndesc); 718 } 719 720 /* Free the primary descriptor */ 721 knav_pool_desc_put(netcp->rx_pool, desc); 722 723 /* check for packet len and warn */ 724 if (unlikely(pkt_sz != accum_sz)) 725 dev_dbg(netcp->ndev_dev, "mismatch in packet size(%d) & sum of fragments(%d)\n", 726 pkt_sz, accum_sz); 727 728 /* Remove ethernet FCS from the packet */ 729 __pskb_trim(skb, skb->len - ETH_FCS_LEN); 730 731 /* Call each of the RX hooks */ 732 p_info.skb = skb; 733 p_info.rxtstamp_complete = false; 734 list_for_each_entry(rx_hook, &netcp->rxhook_list_head, list) { 735 int ret; 736 737 ret = rx_hook->hook_rtn(rx_hook->order, rx_hook->hook_data, 738 &p_info); 739 if (unlikely(ret)) { 740 dev_err(netcp->ndev_dev, "RX hook %d failed: %d\n", 741 rx_hook->order, ret); 742 netcp->ndev->stats.rx_errors++; 743 dev_kfree_skb(skb); 744 return 0; 745 } 746 } 747 748 netcp->ndev->stats.rx_packets++; 749 netcp->ndev->stats.rx_bytes += skb->len; 750 751 /* push skb up the stack */ 752 skb->protocol = eth_type_trans(skb, netcp->ndev); 753 netif_receive_skb(skb); 754 return 0; 755 756 free_desc: 757 netcp_free_rx_desc_chain(netcp, desc); 758 netcp->ndev->stats.rx_errors++; 759 return 0; 760 } 761 762 static int netcp_process_rx_packets(struct netcp_intf *netcp, 763 unsigned int budget) 764 { 765 int i; 766 767 for (i = 0; (i < budget) && !netcp_process_one_rx_packet(netcp); i++) 768 ; 769 return i; 770 } 771 772 /* Release descriptors and attached buffers from Rx FDQ */ 773 static void netcp_free_rx_buf(struct netcp_intf *netcp, int fdq) 774 { 775 struct knav_dma_desc *desc; 776 unsigned int buf_len, dma_sz; 777 dma_addr_t dma; 778 void *buf_ptr; 779 780 /* Allocate descriptor */ 781 while ((dma = knav_queue_pop(netcp->rx_fdq[fdq], &dma_sz))) { 782 desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz); 783 if (unlikely(!desc)) { 784 dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n"); 785 continue; 786 } 787 788 get_org_pkt_info(&dma, &buf_len, desc); 789 /* warning!!!! We are retrieving the virtual ptr in the sw_data 790 * field as a 32bit value. Will not work on 64bit machines 791 */ 792 buf_ptr = (void *)GET_SW_DATA0(desc); 793 794 if (unlikely(!dma)) { 795 dev_err(netcp->ndev_dev, "NULL orig_buff in desc\n"); 796 knav_pool_desc_put(netcp->rx_pool, desc); 797 continue; 798 } 799 800 if (unlikely(!buf_ptr)) { 801 dev_err(netcp->ndev_dev, "NULL bufptr in desc\n"); 802 knav_pool_desc_put(netcp->rx_pool, desc); 803 continue; 804 } 805 806 if (fdq == 0) { 807 dma_unmap_single(netcp->dev, dma, buf_len, 808 DMA_FROM_DEVICE); 809 netcp_frag_free((buf_len <= PAGE_SIZE), buf_ptr); 810 } else { 811 dma_unmap_page(netcp->dev, dma, buf_len, 812 DMA_FROM_DEVICE); 813 __free_page(buf_ptr); 814 } 815 816 knav_pool_desc_put(netcp->rx_pool, desc); 817 } 818 } 819 820 static void netcp_rxpool_free(struct netcp_intf *netcp) 821 { 822 int i; 823 824 for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && 825 !IS_ERR_OR_NULL(netcp->rx_fdq[i]); i++) 826 netcp_free_rx_buf(netcp, i); 827 828 if (knav_pool_count(netcp->rx_pool) != netcp->rx_pool_size) 829 dev_err(netcp->ndev_dev, "Lost Rx (%d) descriptors\n", 830 netcp->rx_pool_size - knav_pool_count(netcp->rx_pool)); 831 832 knav_pool_destroy(netcp->rx_pool); 833 netcp->rx_pool = NULL; 834 } 835 836 static int netcp_allocate_rx_buf(struct netcp_intf *netcp, int fdq) 837 { 838 struct knav_dma_desc *hwdesc; 839 unsigned int buf_len, dma_sz; 840 u32 desc_info, pkt_info; 841 struct page *page; 842 dma_addr_t dma; 843 void *bufptr; 844 u32 sw_data[2]; 845 846 /* Allocate descriptor */ 847 hwdesc = knav_pool_desc_get(netcp->rx_pool); 848 if (IS_ERR_OR_NULL(hwdesc)) { 849 dev_dbg(netcp->ndev_dev, "out of rx pool desc\n"); 850 return -ENOMEM; 851 } 852 853 if (likely(fdq == 0)) { 854 unsigned int primary_buf_len; 855 /* Allocate a primary receive queue entry */ 856 buf_len = NETCP_PACKET_SIZE + NETCP_SOP_OFFSET; 857 primary_buf_len = SKB_DATA_ALIGN(buf_len) + 858 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 859 860 bufptr = netdev_alloc_frag(primary_buf_len); 861 sw_data[1] = primary_buf_len; 862 863 if (unlikely(!bufptr)) { 864 dev_warn_ratelimited(netcp->ndev_dev, 865 "Primary RX buffer alloc failed\n"); 866 goto fail; 867 } 868 dma = dma_map_single(netcp->dev, bufptr, buf_len, 869 DMA_TO_DEVICE); 870 if (unlikely(dma_mapping_error(netcp->dev, dma))) 871 goto fail; 872 873 /* warning!!!! We are saving the virtual ptr in the sw_data 874 * field as a 32bit value. Will not work on 64bit machines 875 */ 876 sw_data[0] = (u32)bufptr; 877 } else { 878 /* Allocate a secondary receive queue entry */ 879 page = alloc_page(GFP_ATOMIC | GFP_DMA | __GFP_COLD); 880 if (unlikely(!page)) { 881 dev_warn_ratelimited(netcp->ndev_dev, "Secondary page alloc failed\n"); 882 goto fail; 883 } 884 buf_len = PAGE_SIZE; 885 dma = dma_map_page(netcp->dev, page, 0, buf_len, DMA_TO_DEVICE); 886 /* warning!!!! We are saving the virtual ptr in the sw_data 887 * field as a 32bit value. Will not work on 64bit machines 888 */ 889 sw_data[0] = (u32)page; 890 sw_data[1] = 0; 891 } 892 893 desc_info = KNAV_DMA_DESC_PS_INFO_IN_DESC; 894 desc_info |= buf_len & KNAV_DMA_DESC_PKT_LEN_MASK; 895 pkt_info = KNAV_DMA_DESC_HAS_EPIB; 896 pkt_info |= KNAV_DMA_NUM_PS_WORDS << KNAV_DMA_DESC_PSLEN_SHIFT; 897 pkt_info |= (netcp->rx_queue_id & KNAV_DMA_DESC_RETQ_MASK) << 898 KNAV_DMA_DESC_RETQ_SHIFT; 899 set_org_pkt_info(dma, buf_len, hwdesc); 900 SET_SW_DATA0(sw_data[0], hwdesc); 901 SET_SW_DATA1(sw_data[1], hwdesc); 902 set_desc_info(desc_info, pkt_info, hwdesc); 903 904 /* Push to FDQs */ 905 knav_pool_desc_map(netcp->rx_pool, hwdesc, sizeof(*hwdesc), &dma, 906 &dma_sz); 907 knav_queue_push(netcp->rx_fdq[fdq], dma, sizeof(*hwdesc), 0); 908 return 0; 909 910 fail: 911 knav_pool_desc_put(netcp->rx_pool, hwdesc); 912 return -ENOMEM; 913 } 914 915 /* Refill Rx FDQ with descriptors & attached buffers */ 916 static void netcp_rxpool_refill(struct netcp_intf *netcp) 917 { 918 u32 fdq_deficit[KNAV_DMA_FDQ_PER_CHAN] = {0}; 919 int i, ret = 0; 920 921 /* Calculate the FDQ deficit and refill */ 922 for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_fdq[i]; i++) { 923 fdq_deficit[i] = netcp->rx_queue_depths[i] - 924 knav_queue_get_count(netcp->rx_fdq[i]); 925 926 while (fdq_deficit[i]-- && !ret) 927 ret = netcp_allocate_rx_buf(netcp, i); 928 } /* end for fdqs */ 929 } 930 931 /* NAPI poll */ 932 static int netcp_rx_poll(struct napi_struct *napi, int budget) 933 { 934 struct netcp_intf *netcp = container_of(napi, struct netcp_intf, 935 rx_napi); 936 unsigned int packets; 937 938 packets = netcp_process_rx_packets(netcp, budget); 939 940 netcp_rxpool_refill(netcp); 941 if (packets < budget) { 942 napi_complete(&netcp->rx_napi); 943 knav_queue_enable_notify(netcp->rx_queue); 944 } 945 946 return packets; 947 } 948 949 static void netcp_rx_notify(void *arg) 950 { 951 struct netcp_intf *netcp = arg; 952 953 knav_queue_disable_notify(netcp->rx_queue); 954 napi_schedule(&netcp->rx_napi); 955 } 956 957 static void netcp_free_tx_desc_chain(struct netcp_intf *netcp, 958 struct knav_dma_desc *desc, 959 unsigned int desc_sz) 960 { 961 struct knav_dma_desc *ndesc = desc; 962 dma_addr_t dma_desc, dma_buf; 963 unsigned int buf_len; 964 965 while (ndesc) { 966 get_pkt_info(&dma_buf, &buf_len, &dma_desc, ndesc); 967 968 if (dma_buf && buf_len) 969 dma_unmap_single(netcp->dev, dma_buf, buf_len, 970 DMA_TO_DEVICE); 971 else 972 dev_warn(netcp->ndev_dev, "bad Tx desc buf(%pad), len(%d)\n", 973 &dma_buf, buf_len); 974 975 knav_pool_desc_put(netcp->tx_pool, ndesc); 976 ndesc = NULL; 977 if (dma_desc) { 978 ndesc = knav_pool_desc_unmap(netcp->tx_pool, dma_desc, 979 desc_sz); 980 if (!ndesc) 981 dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n"); 982 } 983 } 984 } 985 986 static int netcp_process_tx_compl_packets(struct netcp_intf *netcp, 987 unsigned int budget) 988 { 989 struct knav_dma_desc *desc; 990 struct sk_buff *skb; 991 unsigned int dma_sz; 992 dma_addr_t dma; 993 int pkts = 0; 994 995 while (budget--) { 996 dma = knav_queue_pop(netcp->tx_compl_q, &dma_sz); 997 if (!dma) 998 break; 999 desc = knav_pool_desc_unmap(netcp->tx_pool, dma, dma_sz); 1000 if (unlikely(!desc)) { 1001 dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n"); 1002 netcp->ndev->stats.tx_errors++; 1003 continue; 1004 } 1005 1006 /* warning!!!! We are retrieving the virtual ptr in the sw_data 1007 * field as a 32bit value. Will not work on 64bit machines 1008 */ 1009 skb = (struct sk_buff *)GET_SW_DATA0(desc); 1010 netcp_free_tx_desc_chain(netcp, desc, dma_sz); 1011 if (!skb) { 1012 dev_err(netcp->ndev_dev, "No skb in Tx desc\n"); 1013 netcp->ndev->stats.tx_errors++; 1014 continue; 1015 } 1016 1017 if (netif_subqueue_stopped(netcp->ndev, skb) && 1018 netif_running(netcp->ndev) && 1019 (knav_pool_count(netcp->tx_pool) > 1020 netcp->tx_resume_threshold)) { 1021 u16 subqueue = skb_get_queue_mapping(skb); 1022 1023 netif_wake_subqueue(netcp->ndev, subqueue); 1024 } 1025 1026 netcp->ndev->stats.tx_packets++; 1027 netcp->ndev->stats.tx_bytes += skb->len; 1028 dev_kfree_skb(skb); 1029 pkts++; 1030 } 1031 return pkts; 1032 } 1033 1034 static int netcp_tx_poll(struct napi_struct *napi, int budget) 1035 { 1036 int packets; 1037 struct netcp_intf *netcp = container_of(napi, struct netcp_intf, 1038 tx_napi); 1039 1040 packets = netcp_process_tx_compl_packets(netcp, budget); 1041 if (packets < budget) { 1042 napi_complete(&netcp->tx_napi); 1043 knav_queue_enable_notify(netcp->tx_compl_q); 1044 } 1045 1046 return packets; 1047 } 1048 1049 static void netcp_tx_notify(void *arg) 1050 { 1051 struct netcp_intf *netcp = arg; 1052 1053 knav_queue_disable_notify(netcp->tx_compl_q); 1054 napi_schedule(&netcp->tx_napi); 1055 } 1056 1057 static struct knav_dma_desc* 1058 netcp_tx_map_skb(struct sk_buff *skb, struct netcp_intf *netcp) 1059 { 1060 struct knav_dma_desc *desc, *ndesc, *pdesc; 1061 unsigned int pkt_len = skb_headlen(skb); 1062 struct device *dev = netcp->dev; 1063 dma_addr_t dma_addr; 1064 unsigned int dma_sz; 1065 int i; 1066 1067 /* Map the linear buffer */ 1068 dma_addr = dma_map_single(dev, skb->data, pkt_len, DMA_TO_DEVICE); 1069 if (unlikely(dma_mapping_error(dev, dma_addr))) { 1070 dev_err(netcp->ndev_dev, "Failed to map skb buffer\n"); 1071 return NULL; 1072 } 1073 1074 desc = knav_pool_desc_get(netcp->tx_pool); 1075 if (IS_ERR_OR_NULL(desc)) { 1076 dev_err(netcp->ndev_dev, "out of TX desc\n"); 1077 dma_unmap_single(dev, dma_addr, pkt_len, DMA_TO_DEVICE); 1078 return NULL; 1079 } 1080 1081 set_pkt_info(dma_addr, pkt_len, 0, desc); 1082 if (skb_is_nonlinear(skb)) { 1083 prefetchw(skb_shinfo(skb)); 1084 } else { 1085 desc->next_desc = 0; 1086 goto upd_pkt_len; 1087 } 1088 1089 pdesc = desc; 1090 1091 /* Handle the case where skb is fragmented in pages */ 1092 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1093 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1094 struct page *page = skb_frag_page(frag); 1095 u32 page_offset = frag->page_offset; 1096 u32 buf_len = skb_frag_size(frag); 1097 dma_addr_t desc_dma; 1098 u32 desc_dma_32; 1099 u32 pkt_info; 1100 1101 dma_addr = dma_map_page(dev, page, page_offset, buf_len, 1102 DMA_TO_DEVICE); 1103 if (unlikely(!dma_addr)) { 1104 dev_err(netcp->ndev_dev, "Failed to map skb page\n"); 1105 goto free_descs; 1106 } 1107 1108 ndesc = knav_pool_desc_get(netcp->tx_pool); 1109 if (IS_ERR_OR_NULL(ndesc)) { 1110 dev_err(netcp->ndev_dev, "out of TX desc for frags\n"); 1111 dma_unmap_page(dev, dma_addr, buf_len, DMA_TO_DEVICE); 1112 goto free_descs; 1113 } 1114 1115 desc_dma = knav_pool_desc_virt_to_dma(netcp->tx_pool, ndesc); 1116 pkt_info = 1117 (netcp->tx_compl_qid & KNAV_DMA_DESC_RETQ_MASK) << 1118 KNAV_DMA_DESC_RETQ_SHIFT; 1119 set_pkt_info(dma_addr, buf_len, 0, ndesc); 1120 desc_dma_32 = (u32)desc_dma; 1121 set_words(&desc_dma_32, 1, &pdesc->next_desc); 1122 pkt_len += buf_len; 1123 if (pdesc != desc) 1124 knav_pool_desc_map(netcp->tx_pool, pdesc, 1125 sizeof(*pdesc), &desc_dma, &dma_sz); 1126 pdesc = ndesc; 1127 } 1128 if (pdesc != desc) 1129 knav_pool_desc_map(netcp->tx_pool, pdesc, sizeof(*pdesc), 1130 &dma_addr, &dma_sz); 1131 1132 /* frag list based linkage is not supported for now. */ 1133 if (skb_shinfo(skb)->frag_list) { 1134 dev_err_ratelimited(netcp->ndev_dev, "NETIF_F_FRAGLIST not supported\n"); 1135 goto free_descs; 1136 } 1137 1138 upd_pkt_len: 1139 WARN_ON(pkt_len != skb->len); 1140 1141 pkt_len &= KNAV_DMA_DESC_PKT_LEN_MASK; 1142 set_words(&pkt_len, 1, &desc->desc_info); 1143 return desc; 1144 1145 free_descs: 1146 netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc)); 1147 return NULL; 1148 } 1149 1150 static int netcp_tx_submit_skb(struct netcp_intf *netcp, 1151 struct sk_buff *skb, 1152 struct knav_dma_desc *desc) 1153 { 1154 struct netcp_tx_pipe *tx_pipe = NULL; 1155 struct netcp_hook_list *tx_hook; 1156 struct netcp_packet p_info; 1157 unsigned int dma_sz; 1158 dma_addr_t dma; 1159 u32 tmp = 0; 1160 int ret = 0; 1161 1162 p_info.netcp = netcp; 1163 p_info.skb = skb; 1164 p_info.tx_pipe = NULL; 1165 p_info.psdata_len = 0; 1166 p_info.ts_context = NULL; 1167 p_info.txtstamp_complete = NULL; 1168 p_info.epib = desc->epib; 1169 p_info.psdata = (u32 __force *)desc->psdata; 1170 memset(p_info.epib, 0, KNAV_DMA_NUM_EPIB_WORDS * sizeof(__le32)); 1171 1172 /* Find out where to inject the packet for transmission */ 1173 list_for_each_entry(tx_hook, &netcp->txhook_list_head, list) { 1174 ret = tx_hook->hook_rtn(tx_hook->order, tx_hook->hook_data, 1175 &p_info); 1176 if (unlikely(ret != 0)) { 1177 dev_err(netcp->ndev_dev, "TX hook %d rejected the packet with reason(%d)\n", 1178 tx_hook->order, ret); 1179 ret = (ret < 0) ? ret : NETDEV_TX_OK; 1180 goto out; 1181 } 1182 } 1183 1184 /* Make sure some TX hook claimed the packet */ 1185 tx_pipe = p_info.tx_pipe; 1186 if (!tx_pipe) { 1187 dev_err(netcp->ndev_dev, "No TX hook claimed the packet!\n"); 1188 ret = -ENXIO; 1189 goto out; 1190 } 1191 1192 /* update descriptor */ 1193 if (p_info.psdata_len) { 1194 /* psdata points to both native-endian and device-endian data */ 1195 __le32 *psdata = (void __force *)p_info.psdata; 1196 1197 memmove(p_info.psdata, p_info.psdata + p_info.psdata_len, 1198 p_info.psdata_len); 1199 set_words(p_info.psdata, p_info.psdata_len, psdata); 1200 tmp |= (p_info.psdata_len & KNAV_DMA_DESC_PSLEN_MASK) << 1201 KNAV_DMA_DESC_PSLEN_SHIFT; 1202 } 1203 1204 tmp |= KNAV_DMA_DESC_HAS_EPIB | 1205 ((netcp->tx_compl_qid & KNAV_DMA_DESC_RETQ_MASK) << 1206 KNAV_DMA_DESC_RETQ_SHIFT); 1207 1208 if (!(tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO)) { 1209 tmp |= ((tx_pipe->switch_to_port & KNAV_DMA_DESC_PSFLAG_MASK) << 1210 KNAV_DMA_DESC_PSFLAG_SHIFT); 1211 } 1212 1213 set_words(&tmp, 1, &desc->packet_info); 1214 /* warning!!!! We are saving the virtual ptr in the sw_data 1215 * field as a 32bit value. Will not work on 64bit machines 1216 */ 1217 SET_SW_DATA0((u32)skb, desc); 1218 1219 if (tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO) { 1220 tmp = tx_pipe->switch_to_port; 1221 set_words(&tmp, 1, &desc->tag_info); 1222 } 1223 1224 /* submit packet descriptor */ 1225 ret = knav_pool_desc_map(netcp->tx_pool, desc, sizeof(*desc), &dma, 1226 &dma_sz); 1227 if (unlikely(ret)) { 1228 dev_err(netcp->ndev_dev, "%s() failed to map desc\n", __func__); 1229 ret = -ENOMEM; 1230 goto out; 1231 } 1232 skb_tx_timestamp(skb); 1233 knav_queue_push(tx_pipe->dma_queue, dma, dma_sz, 0); 1234 1235 out: 1236 return ret; 1237 } 1238 1239 /* Submit the packet */ 1240 static int netcp_ndo_start_xmit(struct sk_buff *skb, struct net_device *ndev) 1241 { 1242 struct netcp_intf *netcp = netdev_priv(ndev); 1243 int subqueue = skb_get_queue_mapping(skb); 1244 struct knav_dma_desc *desc; 1245 int desc_count, ret = 0; 1246 1247 if (unlikely(skb->len <= 0)) { 1248 dev_kfree_skb(skb); 1249 return NETDEV_TX_OK; 1250 } 1251 1252 if (unlikely(skb->len < NETCP_MIN_PACKET_SIZE)) { 1253 ret = skb_padto(skb, NETCP_MIN_PACKET_SIZE); 1254 if (ret < 0) { 1255 /* If we get here, the skb has already been dropped */ 1256 dev_warn(netcp->ndev_dev, "padding failed (%d), packet dropped\n", 1257 ret); 1258 ndev->stats.tx_dropped++; 1259 return ret; 1260 } 1261 skb->len = NETCP_MIN_PACKET_SIZE; 1262 } 1263 1264 desc = netcp_tx_map_skb(skb, netcp); 1265 if (unlikely(!desc)) { 1266 netif_stop_subqueue(ndev, subqueue); 1267 ret = -ENOBUFS; 1268 goto drop; 1269 } 1270 1271 ret = netcp_tx_submit_skb(netcp, skb, desc); 1272 if (ret) 1273 goto drop; 1274 1275 ndev->trans_start = jiffies; 1276 1277 /* Check Tx pool count & stop subqueue if needed */ 1278 desc_count = knav_pool_count(netcp->tx_pool); 1279 if (desc_count < netcp->tx_pause_threshold) { 1280 dev_dbg(netcp->ndev_dev, "pausing tx, count(%d)\n", desc_count); 1281 netif_stop_subqueue(ndev, subqueue); 1282 } 1283 return NETDEV_TX_OK; 1284 1285 drop: 1286 ndev->stats.tx_dropped++; 1287 if (desc) 1288 netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc)); 1289 dev_kfree_skb(skb); 1290 return ret; 1291 } 1292 1293 int netcp_txpipe_close(struct netcp_tx_pipe *tx_pipe) 1294 { 1295 if (tx_pipe->dma_channel) { 1296 knav_dma_close_channel(tx_pipe->dma_channel); 1297 tx_pipe->dma_channel = NULL; 1298 } 1299 return 0; 1300 } 1301 EXPORT_SYMBOL_GPL(netcp_txpipe_close); 1302 1303 int netcp_txpipe_open(struct netcp_tx_pipe *tx_pipe) 1304 { 1305 struct device *dev = tx_pipe->netcp_device->device; 1306 struct knav_dma_cfg config; 1307 int ret = 0; 1308 u8 name[16]; 1309 1310 memset(&config, 0, sizeof(config)); 1311 config.direction = DMA_MEM_TO_DEV; 1312 config.u.tx.filt_einfo = false; 1313 config.u.tx.filt_pswords = false; 1314 config.u.tx.priority = DMA_PRIO_MED_L; 1315 1316 tx_pipe->dma_channel = knav_dma_open_channel(dev, 1317 tx_pipe->dma_chan_name, &config); 1318 if (IS_ERR_OR_NULL(tx_pipe->dma_channel)) { 1319 dev_err(dev, "failed opening tx chan(%s)\n", 1320 tx_pipe->dma_chan_name); 1321 goto err; 1322 } 1323 1324 snprintf(name, sizeof(name), "tx-pipe-%s", dev_name(dev)); 1325 tx_pipe->dma_queue = knav_queue_open(name, tx_pipe->dma_queue_id, 1326 KNAV_QUEUE_SHARED); 1327 if (IS_ERR(tx_pipe->dma_queue)) { 1328 dev_err(dev, "Could not open DMA queue for channel \"%s\": %d\n", 1329 name, ret); 1330 ret = PTR_ERR(tx_pipe->dma_queue); 1331 goto err; 1332 } 1333 1334 dev_dbg(dev, "opened tx pipe %s\n", name); 1335 return 0; 1336 1337 err: 1338 if (!IS_ERR_OR_NULL(tx_pipe->dma_channel)) 1339 knav_dma_close_channel(tx_pipe->dma_channel); 1340 tx_pipe->dma_channel = NULL; 1341 return ret; 1342 } 1343 EXPORT_SYMBOL_GPL(netcp_txpipe_open); 1344 1345 int netcp_txpipe_init(struct netcp_tx_pipe *tx_pipe, 1346 struct netcp_device *netcp_device, 1347 const char *dma_chan_name, unsigned int dma_queue_id) 1348 { 1349 memset(tx_pipe, 0, sizeof(*tx_pipe)); 1350 tx_pipe->netcp_device = netcp_device; 1351 tx_pipe->dma_chan_name = dma_chan_name; 1352 tx_pipe->dma_queue_id = dma_queue_id; 1353 return 0; 1354 } 1355 EXPORT_SYMBOL_GPL(netcp_txpipe_init); 1356 1357 static struct netcp_addr *netcp_addr_find(struct netcp_intf *netcp, 1358 const u8 *addr, 1359 enum netcp_addr_type type) 1360 { 1361 struct netcp_addr *naddr; 1362 1363 list_for_each_entry(naddr, &netcp->addr_list, node) { 1364 if (naddr->type != type) 1365 continue; 1366 if (addr && memcmp(addr, naddr->addr, ETH_ALEN)) 1367 continue; 1368 return naddr; 1369 } 1370 1371 return NULL; 1372 } 1373 1374 static struct netcp_addr *netcp_addr_add(struct netcp_intf *netcp, 1375 const u8 *addr, 1376 enum netcp_addr_type type) 1377 { 1378 struct netcp_addr *naddr; 1379 1380 naddr = devm_kmalloc(netcp->dev, sizeof(*naddr), GFP_ATOMIC); 1381 if (!naddr) 1382 return NULL; 1383 1384 naddr->type = type; 1385 naddr->flags = 0; 1386 naddr->netcp = netcp; 1387 if (addr) 1388 ether_addr_copy(naddr->addr, addr); 1389 else 1390 eth_zero_addr(naddr->addr); 1391 list_add_tail(&naddr->node, &netcp->addr_list); 1392 1393 return naddr; 1394 } 1395 1396 static void netcp_addr_del(struct netcp_intf *netcp, struct netcp_addr *naddr) 1397 { 1398 list_del(&naddr->node); 1399 devm_kfree(netcp->dev, naddr); 1400 } 1401 1402 static void netcp_addr_clear_mark(struct netcp_intf *netcp) 1403 { 1404 struct netcp_addr *naddr; 1405 1406 list_for_each_entry(naddr, &netcp->addr_list, node) 1407 naddr->flags = 0; 1408 } 1409 1410 static void netcp_addr_add_mark(struct netcp_intf *netcp, const u8 *addr, 1411 enum netcp_addr_type type) 1412 { 1413 struct netcp_addr *naddr; 1414 1415 naddr = netcp_addr_find(netcp, addr, type); 1416 if (naddr) { 1417 naddr->flags |= ADDR_VALID; 1418 return; 1419 } 1420 1421 naddr = netcp_addr_add(netcp, addr, type); 1422 if (!WARN_ON(!naddr)) 1423 naddr->flags |= ADDR_NEW; 1424 } 1425 1426 static void netcp_addr_sweep_del(struct netcp_intf *netcp) 1427 { 1428 struct netcp_addr *naddr, *tmp; 1429 struct netcp_intf_modpriv *priv; 1430 struct netcp_module *module; 1431 int error; 1432 1433 list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) { 1434 if (naddr->flags & (ADDR_VALID | ADDR_NEW)) 1435 continue; 1436 dev_dbg(netcp->ndev_dev, "deleting address %pM, type %x\n", 1437 naddr->addr, naddr->type); 1438 for_each_module(netcp, priv) { 1439 module = priv->netcp_module; 1440 if (!module->del_addr) 1441 continue; 1442 error = module->del_addr(priv->module_priv, 1443 naddr); 1444 WARN_ON(error); 1445 } 1446 netcp_addr_del(netcp, naddr); 1447 } 1448 } 1449 1450 static void netcp_addr_sweep_add(struct netcp_intf *netcp) 1451 { 1452 struct netcp_addr *naddr, *tmp; 1453 struct netcp_intf_modpriv *priv; 1454 struct netcp_module *module; 1455 int error; 1456 1457 list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) { 1458 if (!(naddr->flags & ADDR_NEW)) 1459 continue; 1460 dev_dbg(netcp->ndev_dev, "adding address %pM, type %x\n", 1461 naddr->addr, naddr->type); 1462 1463 for_each_module(netcp, priv) { 1464 module = priv->netcp_module; 1465 if (!module->add_addr) 1466 continue; 1467 error = module->add_addr(priv->module_priv, naddr); 1468 WARN_ON(error); 1469 } 1470 } 1471 } 1472 1473 static void netcp_set_rx_mode(struct net_device *ndev) 1474 { 1475 struct netcp_intf *netcp = netdev_priv(ndev); 1476 struct netdev_hw_addr *ndev_addr; 1477 bool promisc; 1478 1479 promisc = (ndev->flags & IFF_PROMISC || 1480 ndev->flags & IFF_ALLMULTI || 1481 netdev_mc_count(ndev) > NETCP_MAX_MCAST_ADDR); 1482 1483 spin_lock(&netcp->lock); 1484 /* first clear all marks */ 1485 netcp_addr_clear_mark(netcp); 1486 1487 /* next add new entries, mark existing ones */ 1488 netcp_addr_add_mark(netcp, ndev->broadcast, ADDR_BCAST); 1489 for_each_dev_addr(ndev, ndev_addr) 1490 netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_DEV); 1491 netdev_for_each_uc_addr(ndev_addr, ndev) 1492 netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_UCAST); 1493 netdev_for_each_mc_addr(ndev_addr, ndev) 1494 netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_MCAST); 1495 1496 if (promisc) 1497 netcp_addr_add_mark(netcp, NULL, ADDR_ANY); 1498 1499 /* finally sweep and callout into modules */ 1500 netcp_addr_sweep_del(netcp); 1501 netcp_addr_sweep_add(netcp); 1502 spin_unlock(&netcp->lock); 1503 } 1504 1505 static void netcp_free_navigator_resources(struct netcp_intf *netcp) 1506 { 1507 int i; 1508 1509 if (netcp->rx_channel) { 1510 knav_dma_close_channel(netcp->rx_channel); 1511 netcp->rx_channel = NULL; 1512 } 1513 1514 if (!IS_ERR_OR_NULL(netcp->rx_pool)) 1515 netcp_rxpool_free(netcp); 1516 1517 if (!IS_ERR_OR_NULL(netcp->rx_queue)) { 1518 knav_queue_close(netcp->rx_queue); 1519 netcp->rx_queue = NULL; 1520 } 1521 1522 for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && 1523 !IS_ERR_OR_NULL(netcp->rx_fdq[i]) ; ++i) { 1524 knav_queue_close(netcp->rx_fdq[i]); 1525 netcp->rx_fdq[i] = NULL; 1526 } 1527 1528 if (!IS_ERR_OR_NULL(netcp->tx_compl_q)) { 1529 knav_queue_close(netcp->tx_compl_q); 1530 netcp->tx_compl_q = NULL; 1531 } 1532 1533 if (!IS_ERR_OR_NULL(netcp->tx_pool)) { 1534 knav_pool_destroy(netcp->tx_pool); 1535 netcp->tx_pool = NULL; 1536 } 1537 } 1538 1539 static int netcp_setup_navigator_resources(struct net_device *ndev) 1540 { 1541 struct netcp_intf *netcp = netdev_priv(ndev); 1542 struct knav_queue_notify_config notify_cfg; 1543 struct knav_dma_cfg config; 1544 u32 last_fdq = 0; 1545 u8 name[16]; 1546 int ret; 1547 int i; 1548 1549 /* Create Rx/Tx descriptor pools */ 1550 snprintf(name, sizeof(name), "rx-pool-%s", ndev->name); 1551 netcp->rx_pool = knav_pool_create(name, netcp->rx_pool_size, 1552 netcp->rx_pool_region_id); 1553 if (IS_ERR_OR_NULL(netcp->rx_pool)) { 1554 dev_err(netcp->ndev_dev, "Couldn't create rx pool\n"); 1555 ret = PTR_ERR(netcp->rx_pool); 1556 goto fail; 1557 } 1558 1559 snprintf(name, sizeof(name), "tx-pool-%s", ndev->name); 1560 netcp->tx_pool = knav_pool_create(name, netcp->tx_pool_size, 1561 netcp->tx_pool_region_id); 1562 if (IS_ERR_OR_NULL(netcp->tx_pool)) { 1563 dev_err(netcp->ndev_dev, "Couldn't create tx pool\n"); 1564 ret = PTR_ERR(netcp->tx_pool); 1565 goto fail; 1566 } 1567 1568 /* open Tx completion queue */ 1569 snprintf(name, sizeof(name), "tx-compl-%s", ndev->name); 1570 netcp->tx_compl_q = knav_queue_open(name, netcp->tx_compl_qid, 0); 1571 if (IS_ERR_OR_NULL(netcp->tx_compl_q)) { 1572 ret = PTR_ERR(netcp->tx_compl_q); 1573 goto fail; 1574 } 1575 netcp->tx_compl_qid = knav_queue_get_id(netcp->tx_compl_q); 1576 1577 /* Set notification for Tx completion */ 1578 notify_cfg.fn = netcp_tx_notify; 1579 notify_cfg.fn_arg = netcp; 1580 ret = knav_queue_device_control(netcp->tx_compl_q, 1581 KNAV_QUEUE_SET_NOTIFIER, 1582 (unsigned long)¬ify_cfg); 1583 if (ret) 1584 goto fail; 1585 1586 knav_queue_disable_notify(netcp->tx_compl_q); 1587 1588 /* open Rx completion queue */ 1589 snprintf(name, sizeof(name), "rx-compl-%s", ndev->name); 1590 netcp->rx_queue = knav_queue_open(name, netcp->rx_queue_id, 0); 1591 if (IS_ERR_OR_NULL(netcp->rx_queue)) { 1592 ret = PTR_ERR(netcp->rx_queue); 1593 goto fail; 1594 } 1595 netcp->rx_queue_id = knav_queue_get_id(netcp->rx_queue); 1596 1597 /* Set notification for Rx completion */ 1598 notify_cfg.fn = netcp_rx_notify; 1599 notify_cfg.fn_arg = netcp; 1600 ret = knav_queue_device_control(netcp->rx_queue, 1601 KNAV_QUEUE_SET_NOTIFIER, 1602 (unsigned long)¬ify_cfg); 1603 if (ret) 1604 goto fail; 1605 1606 knav_queue_disable_notify(netcp->rx_queue); 1607 1608 /* open Rx FDQs */ 1609 for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_queue_depths[i]; 1610 ++i) { 1611 snprintf(name, sizeof(name), "rx-fdq-%s-%d", ndev->name, i); 1612 netcp->rx_fdq[i] = knav_queue_open(name, KNAV_QUEUE_GP, 0); 1613 if (IS_ERR_OR_NULL(netcp->rx_fdq[i])) { 1614 ret = PTR_ERR(netcp->rx_fdq[i]); 1615 goto fail; 1616 } 1617 } 1618 1619 memset(&config, 0, sizeof(config)); 1620 config.direction = DMA_DEV_TO_MEM; 1621 config.u.rx.einfo_present = true; 1622 config.u.rx.psinfo_present = true; 1623 config.u.rx.err_mode = DMA_DROP; 1624 config.u.rx.desc_type = DMA_DESC_HOST; 1625 config.u.rx.psinfo_at_sop = false; 1626 config.u.rx.sop_offset = NETCP_SOP_OFFSET; 1627 config.u.rx.dst_q = netcp->rx_queue_id; 1628 config.u.rx.thresh = DMA_THRESH_NONE; 1629 1630 for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN; ++i) { 1631 if (netcp->rx_fdq[i]) 1632 last_fdq = knav_queue_get_id(netcp->rx_fdq[i]); 1633 config.u.rx.fdq[i] = last_fdq; 1634 } 1635 1636 netcp->rx_channel = knav_dma_open_channel(netcp->netcp_device->device, 1637 netcp->dma_chan_name, &config); 1638 if (IS_ERR_OR_NULL(netcp->rx_channel)) { 1639 dev_err(netcp->ndev_dev, "failed opening rx chan(%s\n", 1640 netcp->dma_chan_name); 1641 goto fail; 1642 } 1643 1644 dev_dbg(netcp->ndev_dev, "opened RX channel: %p\n", netcp->rx_channel); 1645 return 0; 1646 1647 fail: 1648 netcp_free_navigator_resources(netcp); 1649 return ret; 1650 } 1651 1652 /* Open the device */ 1653 static int netcp_ndo_open(struct net_device *ndev) 1654 { 1655 struct netcp_intf *netcp = netdev_priv(ndev); 1656 struct netcp_intf_modpriv *intf_modpriv; 1657 struct netcp_module *module; 1658 int ret; 1659 1660 netif_carrier_off(ndev); 1661 ret = netcp_setup_navigator_resources(ndev); 1662 if (ret) { 1663 dev_err(netcp->ndev_dev, "Failed to setup navigator resources\n"); 1664 goto fail; 1665 } 1666 1667 for_each_module(netcp, intf_modpriv) { 1668 module = intf_modpriv->netcp_module; 1669 if (module->open) { 1670 ret = module->open(intf_modpriv->module_priv, ndev); 1671 if (ret != 0) { 1672 dev_err(netcp->ndev_dev, "module open failed\n"); 1673 goto fail_open; 1674 } 1675 } 1676 } 1677 1678 napi_enable(&netcp->rx_napi); 1679 napi_enable(&netcp->tx_napi); 1680 knav_queue_enable_notify(netcp->tx_compl_q); 1681 knav_queue_enable_notify(netcp->rx_queue); 1682 netcp_rxpool_refill(netcp); 1683 netif_tx_wake_all_queues(ndev); 1684 dev_dbg(netcp->ndev_dev, "netcp device %s opened\n", ndev->name); 1685 return 0; 1686 1687 fail_open: 1688 for_each_module(netcp, intf_modpriv) { 1689 module = intf_modpriv->netcp_module; 1690 if (module->close) 1691 module->close(intf_modpriv->module_priv, ndev); 1692 } 1693 1694 fail: 1695 netcp_free_navigator_resources(netcp); 1696 return ret; 1697 } 1698 1699 /* Close the device */ 1700 static int netcp_ndo_stop(struct net_device *ndev) 1701 { 1702 struct netcp_intf *netcp = netdev_priv(ndev); 1703 struct netcp_intf_modpriv *intf_modpriv; 1704 struct netcp_module *module; 1705 int err = 0; 1706 1707 netif_tx_stop_all_queues(ndev); 1708 netif_carrier_off(ndev); 1709 netcp_addr_clear_mark(netcp); 1710 netcp_addr_sweep_del(netcp); 1711 knav_queue_disable_notify(netcp->rx_queue); 1712 knav_queue_disable_notify(netcp->tx_compl_q); 1713 napi_disable(&netcp->rx_napi); 1714 napi_disable(&netcp->tx_napi); 1715 1716 for_each_module(netcp, intf_modpriv) { 1717 module = intf_modpriv->netcp_module; 1718 if (module->close) { 1719 err = module->close(intf_modpriv->module_priv, ndev); 1720 if (err != 0) 1721 dev_err(netcp->ndev_dev, "Close failed\n"); 1722 } 1723 } 1724 1725 /* Recycle Rx descriptors from completion queue */ 1726 netcp_empty_rx_queue(netcp); 1727 1728 /* Recycle Tx descriptors from completion queue */ 1729 netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size); 1730 1731 if (knav_pool_count(netcp->tx_pool) != netcp->tx_pool_size) 1732 dev_err(netcp->ndev_dev, "Lost (%d) Tx descs\n", 1733 netcp->tx_pool_size - knav_pool_count(netcp->tx_pool)); 1734 1735 netcp_free_navigator_resources(netcp); 1736 dev_dbg(netcp->ndev_dev, "netcp device %s stopped\n", ndev->name); 1737 return 0; 1738 } 1739 1740 static int netcp_ndo_ioctl(struct net_device *ndev, 1741 struct ifreq *req, int cmd) 1742 { 1743 struct netcp_intf *netcp = netdev_priv(ndev); 1744 struct netcp_intf_modpriv *intf_modpriv; 1745 struct netcp_module *module; 1746 int ret = -1, err = -EOPNOTSUPP; 1747 1748 if (!netif_running(ndev)) 1749 return -EINVAL; 1750 1751 for_each_module(netcp, intf_modpriv) { 1752 module = intf_modpriv->netcp_module; 1753 if (!module->ioctl) 1754 continue; 1755 1756 err = module->ioctl(intf_modpriv->module_priv, req, cmd); 1757 if ((err < 0) && (err != -EOPNOTSUPP)) { 1758 ret = err; 1759 goto out; 1760 } 1761 if (err == 0) 1762 ret = err; 1763 } 1764 1765 out: 1766 return (ret == 0) ? 0 : err; 1767 } 1768 1769 static int netcp_ndo_change_mtu(struct net_device *ndev, int new_mtu) 1770 { 1771 struct netcp_intf *netcp = netdev_priv(ndev); 1772 1773 /* MTU < 68 is an error for IPv4 traffic */ 1774 if ((new_mtu < 68) || 1775 (new_mtu > (NETCP_MAX_FRAME_SIZE - ETH_HLEN - ETH_FCS_LEN))) { 1776 dev_err(netcp->ndev_dev, "Invalid mtu size = %d\n", new_mtu); 1777 return -EINVAL; 1778 } 1779 1780 ndev->mtu = new_mtu; 1781 return 0; 1782 } 1783 1784 static void netcp_ndo_tx_timeout(struct net_device *ndev) 1785 { 1786 struct netcp_intf *netcp = netdev_priv(ndev); 1787 unsigned int descs = knav_pool_count(netcp->tx_pool); 1788 1789 dev_err(netcp->ndev_dev, "transmit timed out tx descs(%d)\n", descs); 1790 netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size); 1791 ndev->trans_start = jiffies; 1792 netif_tx_wake_all_queues(ndev); 1793 } 1794 1795 static int netcp_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid) 1796 { 1797 struct netcp_intf *netcp = netdev_priv(ndev); 1798 struct netcp_intf_modpriv *intf_modpriv; 1799 struct netcp_module *module; 1800 unsigned long flags; 1801 int err = 0; 1802 1803 dev_dbg(netcp->ndev_dev, "adding rx vlan id: %d\n", vid); 1804 1805 spin_lock_irqsave(&netcp->lock, flags); 1806 for_each_module(netcp, intf_modpriv) { 1807 module = intf_modpriv->netcp_module; 1808 if ((module->add_vid) && (vid != 0)) { 1809 err = module->add_vid(intf_modpriv->module_priv, vid); 1810 if (err != 0) { 1811 dev_err(netcp->ndev_dev, "Could not add vlan id = %d\n", 1812 vid); 1813 break; 1814 } 1815 } 1816 } 1817 spin_unlock_irqrestore(&netcp->lock, flags); 1818 1819 return err; 1820 } 1821 1822 static int netcp_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid) 1823 { 1824 struct netcp_intf *netcp = netdev_priv(ndev); 1825 struct netcp_intf_modpriv *intf_modpriv; 1826 struct netcp_module *module; 1827 unsigned long flags; 1828 int err = 0; 1829 1830 dev_dbg(netcp->ndev_dev, "removing rx vlan id: %d\n", vid); 1831 1832 spin_lock_irqsave(&netcp->lock, flags); 1833 for_each_module(netcp, intf_modpriv) { 1834 module = intf_modpriv->netcp_module; 1835 if (module->del_vid) { 1836 err = module->del_vid(intf_modpriv->module_priv, vid); 1837 if (err != 0) { 1838 dev_err(netcp->ndev_dev, "Could not delete vlan id = %d\n", 1839 vid); 1840 break; 1841 } 1842 } 1843 } 1844 spin_unlock_irqrestore(&netcp->lock, flags); 1845 return err; 1846 } 1847 1848 static u16 netcp_select_queue(struct net_device *dev, struct sk_buff *skb, 1849 void *accel_priv, 1850 select_queue_fallback_t fallback) 1851 { 1852 return 0; 1853 } 1854 1855 static int netcp_setup_tc(struct net_device *dev, u8 num_tc) 1856 { 1857 int i; 1858 1859 /* setup tc must be called under rtnl lock */ 1860 ASSERT_RTNL(); 1861 1862 /* Sanity-check the number of traffic classes requested */ 1863 if ((dev->real_num_tx_queues <= 1) || 1864 (dev->real_num_tx_queues < num_tc)) 1865 return -EINVAL; 1866 1867 /* Configure traffic class to queue mappings */ 1868 if (num_tc) { 1869 netdev_set_num_tc(dev, num_tc); 1870 for (i = 0; i < num_tc; i++) 1871 netdev_set_tc_queue(dev, i, 1, i); 1872 } else { 1873 netdev_reset_tc(dev); 1874 } 1875 1876 return 0; 1877 } 1878 1879 static const struct net_device_ops netcp_netdev_ops = { 1880 .ndo_open = netcp_ndo_open, 1881 .ndo_stop = netcp_ndo_stop, 1882 .ndo_start_xmit = netcp_ndo_start_xmit, 1883 .ndo_set_rx_mode = netcp_set_rx_mode, 1884 .ndo_do_ioctl = netcp_ndo_ioctl, 1885 .ndo_change_mtu = netcp_ndo_change_mtu, 1886 .ndo_set_mac_address = eth_mac_addr, 1887 .ndo_validate_addr = eth_validate_addr, 1888 .ndo_vlan_rx_add_vid = netcp_rx_add_vid, 1889 .ndo_vlan_rx_kill_vid = netcp_rx_kill_vid, 1890 .ndo_tx_timeout = netcp_ndo_tx_timeout, 1891 .ndo_select_queue = netcp_select_queue, 1892 .ndo_setup_tc = netcp_setup_tc, 1893 }; 1894 1895 static int netcp_create_interface(struct netcp_device *netcp_device, 1896 struct device_node *node_interface) 1897 { 1898 struct device *dev = netcp_device->device; 1899 struct device_node *node = dev->of_node; 1900 struct netcp_intf *netcp; 1901 struct net_device *ndev; 1902 resource_size_t size; 1903 struct resource res; 1904 void __iomem *efuse = NULL; 1905 u32 efuse_mac = 0; 1906 const void *mac_addr; 1907 u8 efuse_mac_addr[6]; 1908 u32 temp[2]; 1909 int ret = 0; 1910 1911 ndev = alloc_etherdev_mqs(sizeof(*netcp), 1, 1); 1912 if (!ndev) { 1913 dev_err(dev, "Error allocating netdev\n"); 1914 return -ENOMEM; 1915 } 1916 1917 ndev->features |= NETIF_F_SG; 1918 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 1919 ndev->hw_features = ndev->features; 1920 ndev->vlan_features |= NETIF_F_SG; 1921 1922 netcp = netdev_priv(ndev); 1923 spin_lock_init(&netcp->lock); 1924 INIT_LIST_HEAD(&netcp->module_head); 1925 INIT_LIST_HEAD(&netcp->txhook_list_head); 1926 INIT_LIST_HEAD(&netcp->rxhook_list_head); 1927 INIT_LIST_HEAD(&netcp->addr_list); 1928 netcp->netcp_device = netcp_device; 1929 netcp->dev = netcp_device->device; 1930 netcp->ndev = ndev; 1931 netcp->ndev_dev = &ndev->dev; 1932 netcp->msg_enable = netif_msg_init(netcp_debug_level, NETCP_DEBUG); 1933 netcp->tx_pause_threshold = MAX_SKB_FRAGS; 1934 netcp->tx_resume_threshold = netcp->tx_pause_threshold; 1935 netcp->node_interface = node_interface; 1936 1937 ret = of_property_read_u32(node_interface, "efuse-mac", &efuse_mac); 1938 if (efuse_mac) { 1939 if (of_address_to_resource(node, NETCP_EFUSE_REG_INDEX, &res)) { 1940 dev_err(dev, "could not find efuse-mac reg resource\n"); 1941 ret = -ENODEV; 1942 goto quit; 1943 } 1944 size = resource_size(&res); 1945 1946 if (!devm_request_mem_region(dev, res.start, size, 1947 dev_name(dev))) { 1948 dev_err(dev, "could not reserve resource\n"); 1949 ret = -ENOMEM; 1950 goto quit; 1951 } 1952 1953 efuse = devm_ioremap_nocache(dev, res.start, size); 1954 if (!efuse) { 1955 dev_err(dev, "could not map resource\n"); 1956 devm_release_mem_region(dev, res.start, size); 1957 ret = -ENOMEM; 1958 goto quit; 1959 } 1960 1961 emac_arch_get_mac_addr(efuse_mac_addr, efuse, efuse_mac); 1962 if (is_valid_ether_addr(efuse_mac_addr)) 1963 ether_addr_copy(ndev->dev_addr, efuse_mac_addr); 1964 else 1965 random_ether_addr(ndev->dev_addr); 1966 1967 devm_iounmap(dev, efuse); 1968 devm_release_mem_region(dev, res.start, size); 1969 } else { 1970 mac_addr = of_get_mac_address(node_interface); 1971 if (mac_addr) 1972 ether_addr_copy(ndev->dev_addr, mac_addr); 1973 else 1974 random_ether_addr(ndev->dev_addr); 1975 } 1976 1977 ret = of_property_read_string(node_interface, "rx-channel", 1978 &netcp->dma_chan_name); 1979 if (ret < 0) { 1980 dev_err(dev, "missing \"rx-channel\" parameter\n"); 1981 ret = -ENODEV; 1982 goto quit; 1983 } 1984 1985 ret = of_property_read_u32(node_interface, "rx-queue", 1986 &netcp->rx_queue_id); 1987 if (ret < 0) { 1988 dev_warn(dev, "missing \"rx-queue\" parameter\n"); 1989 netcp->rx_queue_id = KNAV_QUEUE_QPEND; 1990 } 1991 1992 ret = of_property_read_u32_array(node_interface, "rx-queue-depth", 1993 netcp->rx_queue_depths, 1994 KNAV_DMA_FDQ_PER_CHAN); 1995 if (ret < 0) { 1996 dev_err(dev, "missing \"rx-queue-depth\" parameter\n"); 1997 netcp->rx_queue_depths[0] = 128; 1998 } 1999 2000 ret = of_property_read_u32_array(node_interface, "rx-pool", temp, 2); 2001 if (ret < 0) { 2002 dev_err(dev, "missing \"rx-pool\" parameter\n"); 2003 ret = -ENODEV; 2004 goto quit; 2005 } 2006 netcp->rx_pool_size = temp[0]; 2007 netcp->rx_pool_region_id = temp[1]; 2008 2009 ret = of_property_read_u32_array(node_interface, "tx-pool", temp, 2); 2010 if (ret < 0) { 2011 dev_err(dev, "missing \"tx-pool\" parameter\n"); 2012 ret = -ENODEV; 2013 goto quit; 2014 } 2015 netcp->tx_pool_size = temp[0]; 2016 netcp->tx_pool_region_id = temp[1]; 2017 2018 if (netcp->tx_pool_size < MAX_SKB_FRAGS) { 2019 dev_err(dev, "tx-pool size too small, must be atleast(%ld)\n", 2020 MAX_SKB_FRAGS); 2021 ret = -ENODEV; 2022 goto quit; 2023 } 2024 2025 ret = of_property_read_u32(node_interface, "tx-completion-queue", 2026 &netcp->tx_compl_qid); 2027 if (ret < 0) { 2028 dev_warn(dev, "missing \"tx-completion-queue\" parameter\n"); 2029 netcp->tx_compl_qid = KNAV_QUEUE_QPEND; 2030 } 2031 2032 /* NAPI register */ 2033 netif_napi_add(ndev, &netcp->rx_napi, netcp_rx_poll, NETCP_NAPI_WEIGHT); 2034 netif_tx_napi_add(ndev, &netcp->tx_napi, netcp_tx_poll, NETCP_NAPI_WEIGHT); 2035 2036 /* Register the network device */ 2037 ndev->dev_id = 0; 2038 ndev->watchdog_timeo = NETCP_TX_TIMEOUT; 2039 ndev->netdev_ops = &netcp_netdev_ops; 2040 SET_NETDEV_DEV(ndev, dev); 2041 2042 list_add_tail(&netcp->interface_list, &netcp_device->interface_head); 2043 return 0; 2044 2045 quit: 2046 free_netdev(ndev); 2047 return ret; 2048 } 2049 2050 static void netcp_delete_interface(struct netcp_device *netcp_device, 2051 struct net_device *ndev) 2052 { 2053 struct netcp_intf_modpriv *intf_modpriv, *tmp; 2054 struct netcp_intf *netcp = netdev_priv(ndev); 2055 struct netcp_module *module; 2056 2057 dev_dbg(netcp_device->device, "Removing interface \"%s\"\n", 2058 ndev->name); 2059 2060 /* Notify each of the modules that the interface is going away */ 2061 list_for_each_entry_safe(intf_modpriv, tmp, &netcp->module_head, 2062 intf_list) { 2063 module = intf_modpriv->netcp_module; 2064 dev_dbg(netcp_device->device, "Releasing module \"%s\"\n", 2065 module->name); 2066 if (module->release) 2067 module->release(intf_modpriv->module_priv); 2068 list_del(&intf_modpriv->intf_list); 2069 kfree(intf_modpriv); 2070 } 2071 WARN(!list_empty(&netcp->module_head), "%s interface module list is not empty!\n", 2072 ndev->name); 2073 2074 list_del(&netcp->interface_list); 2075 2076 of_node_put(netcp->node_interface); 2077 unregister_netdev(ndev); 2078 netif_napi_del(&netcp->rx_napi); 2079 free_netdev(ndev); 2080 } 2081 2082 static int netcp_probe(struct platform_device *pdev) 2083 { 2084 struct device_node *node = pdev->dev.of_node; 2085 struct netcp_intf *netcp_intf, *netcp_tmp; 2086 struct device_node *child, *interfaces; 2087 struct netcp_device *netcp_device; 2088 struct device *dev = &pdev->dev; 2089 int ret; 2090 2091 if (!node) { 2092 dev_err(dev, "could not find device info\n"); 2093 return -ENODEV; 2094 } 2095 2096 /* Allocate a new NETCP device instance */ 2097 netcp_device = devm_kzalloc(dev, sizeof(*netcp_device), GFP_KERNEL); 2098 if (!netcp_device) 2099 return -ENOMEM; 2100 2101 pm_runtime_enable(&pdev->dev); 2102 ret = pm_runtime_get_sync(&pdev->dev); 2103 if (ret < 0) { 2104 dev_err(dev, "Failed to enable NETCP power-domain\n"); 2105 pm_runtime_disable(&pdev->dev); 2106 return ret; 2107 } 2108 2109 /* Initialize the NETCP device instance */ 2110 INIT_LIST_HEAD(&netcp_device->interface_head); 2111 INIT_LIST_HEAD(&netcp_device->modpriv_head); 2112 netcp_device->device = dev; 2113 platform_set_drvdata(pdev, netcp_device); 2114 2115 /* create interfaces */ 2116 interfaces = of_get_child_by_name(node, "netcp-interfaces"); 2117 if (!interfaces) { 2118 dev_err(dev, "could not find netcp-interfaces node\n"); 2119 ret = -ENODEV; 2120 goto probe_quit; 2121 } 2122 2123 for_each_available_child_of_node(interfaces, child) { 2124 ret = netcp_create_interface(netcp_device, child); 2125 if (ret) { 2126 dev_err(dev, "could not create interface(%s)\n", 2127 child->name); 2128 goto probe_quit_interface; 2129 } 2130 } 2131 2132 /* Add the device instance to the list */ 2133 list_add_tail(&netcp_device->device_list, &netcp_devices); 2134 2135 return 0; 2136 2137 probe_quit_interface: 2138 list_for_each_entry_safe(netcp_intf, netcp_tmp, 2139 &netcp_device->interface_head, 2140 interface_list) { 2141 netcp_delete_interface(netcp_device, netcp_intf->ndev); 2142 } 2143 2144 probe_quit: 2145 pm_runtime_put_sync(&pdev->dev); 2146 pm_runtime_disable(&pdev->dev); 2147 platform_set_drvdata(pdev, NULL); 2148 return ret; 2149 } 2150 2151 static int netcp_remove(struct platform_device *pdev) 2152 { 2153 struct netcp_device *netcp_device = platform_get_drvdata(pdev); 2154 struct netcp_intf *netcp_intf, *netcp_tmp; 2155 struct netcp_inst_modpriv *inst_modpriv, *tmp; 2156 struct netcp_module *module; 2157 2158 list_for_each_entry_safe(inst_modpriv, tmp, &netcp_device->modpriv_head, 2159 inst_list) { 2160 module = inst_modpriv->netcp_module; 2161 dev_dbg(&pdev->dev, "Removing module \"%s\"\n", module->name); 2162 module->remove(netcp_device, inst_modpriv->module_priv); 2163 list_del(&inst_modpriv->inst_list); 2164 kfree(inst_modpriv); 2165 } 2166 2167 /* now that all modules are removed, clean up the interfaces */ 2168 list_for_each_entry_safe(netcp_intf, netcp_tmp, 2169 &netcp_device->interface_head, 2170 interface_list) { 2171 netcp_delete_interface(netcp_device, netcp_intf->ndev); 2172 } 2173 2174 WARN(!list_empty(&netcp_device->interface_head), 2175 "%s interface list not empty!\n", pdev->name); 2176 2177 pm_runtime_put_sync(&pdev->dev); 2178 pm_runtime_disable(&pdev->dev); 2179 platform_set_drvdata(pdev, NULL); 2180 return 0; 2181 } 2182 2183 static const struct of_device_id of_match[] = { 2184 { .compatible = "ti,netcp-1.0", }, 2185 {}, 2186 }; 2187 MODULE_DEVICE_TABLE(of, of_match); 2188 2189 static struct platform_driver netcp_driver = { 2190 .driver = { 2191 .name = "netcp-1.0", 2192 .of_match_table = of_match, 2193 }, 2194 .probe = netcp_probe, 2195 .remove = netcp_remove, 2196 }; 2197 module_platform_driver(netcp_driver); 2198 2199 MODULE_LICENSE("GPL v2"); 2200 MODULE_DESCRIPTION("TI NETCP driver for Keystone SOCs"); 2201 MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com"); 2202