xref: /openbmc/linux/drivers/net/ethernet/ti/icssg/icssg_prueth.c (revision cd1e565a5b7fa60c349ca8a16db1e61715fe8230)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /* Texas Instruments ICSSG Ethernet Driver
4  *
5  * Copyright (C) 2018-2022 Texas Instruments Incorporated - https://www.ti.com/
6  *
7  */
8 
9 #include <linux/bitops.h>
10 #include <linux/clk.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dma/ti-cppi5.h>
14 #include <linux/etherdevice.h>
15 #include <linux/genalloc.h>
16 #include <linux/if_vlan.h>
17 #include <linux/interrupt.h>
18 #include <linux/io-64-nonatomic-hi-lo.h>
19 #include <linux/kernel.h>
20 #include <linux/mfd/syscon.h>
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/of_irq.h>
24 #include <linux/of_mdio.h>
25 #include <linux/of_net.h>
26 #include <linux/of_platform.h>
27 #include <linux/phy.h>
28 #include <linux/remoteproc/pruss.h>
29 #include <linux/regmap.h>
30 #include <linux/remoteproc.h>
31 
32 #include "icssg_prueth.h"
33 #include "icssg_mii_rt.h"
34 #include "../k3-cppi-desc-pool.h"
35 
36 #define PRUETH_MODULE_DESCRIPTION "PRUSS ICSSG Ethernet driver"
37 
38 /* Netif debug messages possible */
39 #define PRUETH_EMAC_DEBUG       (NETIF_MSG_DRV | \
40 				 NETIF_MSG_PROBE | \
41 				 NETIF_MSG_LINK | \
42 				 NETIF_MSG_TIMER | \
43 				 NETIF_MSG_IFDOWN | \
44 				 NETIF_MSG_IFUP | \
45 				 NETIF_MSG_RX_ERR | \
46 				 NETIF_MSG_TX_ERR | \
47 				 NETIF_MSG_TX_QUEUED | \
48 				 NETIF_MSG_INTR | \
49 				 NETIF_MSG_TX_DONE | \
50 				 NETIF_MSG_RX_STATUS | \
51 				 NETIF_MSG_PKTDATA | \
52 				 NETIF_MSG_HW | \
53 				 NETIF_MSG_WOL)
54 
55 #define prueth_napi_to_emac(napi) container_of(napi, struct prueth_emac, napi_rx)
56 
57 /* CTRLMMR_ICSSG_RGMII_CTRL register bits */
58 #define ICSSG_CTRL_RGMII_ID_MODE                BIT(24)
59 
60 #define IEP_DEFAULT_CYCLE_TIME_NS	1000000	/* 1 ms */
61 
62 static void prueth_cleanup_rx_chns(struct prueth_emac *emac,
63 				   struct prueth_rx_chn *rx_chn,
64 				   int max_rflows)
65 {
66 	if (rx_chn->desc_pool)
67 		k3_cppi_desc_pool_destroy(rx_chn->desc_pool);
68 
69 	if (rx_chn->rx_chn)
70 		k3_udma_glue_release_rx_chn(rx_chn->rx_chn);
71 }
72 
73 static void prueth_cleanup_tx_chns(struct prueth_emac *emac)
74 {
75 	int i;
76 
77 	for (i = 0; i < emac->tx_ch_num; i++) {
78 		struct prueth_tx_chn *tx_chn = &emac->tx_chns[i];
79 
80 		if (tx_chn->desc_pool)
81 			k3_cppi_desc_pool_destroy(tx_chn->desc_pool);
82 
83 		if (tx_chn->tx_chn)
84 			k3_udma_glue_release_tx_chn(tx_chn->tx_chn);
85 
86 		/* Assume prueth_cleanup_tx_chns() is called at the
87 		 * end after all channel resources are freed
88 		 */
89 		memset(tx_chn, 0, sizeof(*tx_chn));
90 	}
91 }
92 
93 static void prueth_ndev_del_tx_napi(struct prueth_emac *emac, int num)
94 {
95 	int i;
96 
97 	for (i = 0; i < num; i++) {
98 		struct prueth_tx_chn *tx_chn = &emac->tx_chns[i];
99 
100 		if (tx_chn->irq)
101 			free_irq(tx_chn->irq, tx_chn);
102 		netif_napi_del(&tx_chn->napi_tx);
103 	}
104 }
105 
106 static void prueth_xmit_free(struct prueth_tx_chn *tx_chn,
107 			     struct cppi5_host_desc_t *desc)
108 {
109 	struct cppi5_host_desc_t *first_desc, *next_desc;
110 	dma_addr_t buf_dma, next_desc_dma;
111 	u32 buf_dma_len;
112 
113 	first_desc = desc;
114 	next_desc = first_desc;
115 
116 	cppi5_hdesc_get_obuf(first_desc, &buf_dma, &buf_dma_len);
117 	k3_udma_glue_tx_cppi5_to_dma_addr(tx_chn->tx_chn, &buf_dma);
118 
119 	dma_unmap_single(tx_chn->dma_dev, buf_dma, buf_dma_len,
120 			 DMA_TO_DEVICE);
121 
122 	next_desc_dma = cppi5_hdesc_get_next_hbdesc(first_desc);
123 	k3_udma_glue_tx_cppi5_to_dma_addr(tx_chn->tx_chn, &next_desc_dma);
124 	while (next_desc_dma) {
125 		next_desc = k3_cppi_desc_pool_dma2virt(tx_chn->desc_pool,
126 						       next_desc_dma);
127 		cppi5_hdesc_get_obuf(next_desc, &buf_dma, &buf_dma_len);
128 		k3_udma_glue_tx_cppi5_to_dma_addr(tx_chn->tx_chn, &buf_dma);
129 
130 		dma_unmap_page(tx_chn->dma_dev, buf_dma, buf_dma_len,
131 			       DMA_TO_DEVICE);
132 
133 		next_desc_dma = cppi5_hdesc_get_next_hbdesc(next_desc);
134 		k3_udma_glue_tx_cppi5_to_dma_addr(tx_chn->tx_chn, &next_desc_dma);
135 
136 		k3_cppi_desc_pool_free(tx_chn->desc_pool, next_desc);
137 	}
138 
139 	k3_cppi_desc_pool_free(tx_chn->desc_pool, first_desc);
140 }
141 
142 static int emac_tx_complete_packets(struct prueth_emac *emac, int chn,
143 				    int budget)
144 {
145 	struct net_device *ndev = emac->ndev;
146 	struct cppi5_host_desc_t *desc_tx;
147 	struct netdev_queue *netif_txq;
148 	struct prueth_tx_chn *tx_chn;
149 	unsigned int total_bytes = 0;
150 	struct sk_buff *skb;
151 	dma_addr_t desc_dma;
152 	int res, num_tx = 0;
153 	void **swdata;
154 
155 	tx_chn = &emac->tx_chns[chn];
156 
157 	while (true) {
158 		res = k3_udma_glue_pop_tx_chn(tx_chn->tx_chn, &desc_dma);
159 		if (res == -ENODATA)
160 			break;
161 
162 		/* teardown completion */
163 		if (cppi5_desc_is_tdcm(desc_dma)) {
164 			if (atomic_dec_and_test(&emac->tdown_cnt))
165 				complete(&emac->tdown_complete);
166 			break;
167 		}
168 
169 		desc_tx = k3_cppi_desc_pool_dma2virt(tx_chn->desc_pool,
170 						     desc_dma);
171 		swdata = cppi5_hdesc_get_swdata(desc_tx);
172 
173 		skb = *(swdata);
174 		prueth_xmit_free(tx_chn, desc_tx);
175 
176 		ndev = skb->dev;
177 		ndev->stats.tx_packets++;
178 		ndev->stats.tx_bytes += skb->len;
179 		total_bytes += skb->len;
180 		napi_consume_skb(skb, budget);
181 		num_tx++;
182 	}
183 
184 	if (!num_tx)
185 		return 0;
186 
187 	netif_txq = netdev_get_tx_queue(ndev, chn);
188 	netdev_tx_completed_queue(netif_txq, num_tx, total_bytes);
189 
190 	if (netif_tx_queue_stopped(netif_txq)) {
191 		/* If the TX queue was stopped, wake it now
192 		 * if we have enough room.
193 		 */
194 		__netif_tx_lock(netif_txq, smp_processor_id());
195 		if (netif_running(ndev) &&
196 		    (k3_cppi_desc_pool_avail(tx_chn->desc_pool) >=
197 		     MAX_SKB_FRAGS))
198 			netif_tx_wake_queue(netif_txq);
199 		__netif_tx_unlock(netif_txq);
200 	}
201 
202 	return num_tx;
203 }
204 
205 static int emac_napi_tx_poll(struct napi_struct *napi_tx, int budget)
206 {
207 	struct prueth_tx_chn *tx_chn = prueth_napi_to_tx_chn(napi_tx);
208 	struct prueth_emac *emac = tx_chn->emac;
209 	int num_tx_packets;
210 
211 	num_tx_packets = emac_tx_complete_packets(emac, tx_chn->id, budget);
212 
213 	if (num_tx_packets >= budget)
214 		return budget;
215 
216 	if (napi_complete_done(napi_tx, num_tx_packets))
217 		enable_irq(tx_chn->irq);
218 
219 	return num_tx_packets;
220 }
221 
222 static irqreturn_t prueth_tx_irq(int irq, void *dev_id)
223 {
224 	struct prueth_tx_chn *tx_chn = dev_id;
225 
226 	disable_irq_nosync(irq);
227 	napi_schedule(&tx_chn->napi_tx);
228 
229 	return IRQ_HANDLED;
230 }
231 
232 static int prueth_ndev_add_tx_napi(struct prueth_emac *emac)
233 {
234 	struct prueth *prueth = emac->prueth;
235 	int i, ret;
236 
237 	for (i = 0; i < emac->tx_ch_num; i++) {
238 		struct prueth_tx_chn *tx_chn = &emac->tx_chns[i];
239 
240 		netif_napi_add_tx(emac->ndev, &tx_chn->napi_tx, emac_napi_tx_poll);
241 		ret = request_irq(tx_chn->irq, prueth_tx_irq,
242 				  IRQF_TRIGGER_HIGH, tx_chn->name,
243 				  tx_chn);
244 		if (ret) {
245 			netif_napi_del(&tx_chn->napi_tx);
246 			dev_err(prueth->dev, "unable to request TX IRQ %d\n",
247 				tx_chn->irq);
248 			goto fail;
249 		}
250 	}
251 
252 	return 0;
253 fail:
254 	prueth_ndev_del_tx_napi(emac, i);
255 	return ret;
256 }
257 
258 static int prueth_init_tx_chns(struct prueth_emac *emac)
259 {
260 	static const struct k3_ring_cfg ring_cfg = {
261 		.elm_size = K3_RINGACC_RING_ELSIZE_8,
262 		.mode = K3_RINGACC_RING_MODE_RING,
263 		.flags = 0,
264 		.size = PRUETH_MAX_TX_DESC,
265 	};
266 	struct k3_udma_glue_tx_channel_cfg tx_cfg;
267 	struct device *dev = emac->prueth->dev;
268 	struct net_device *ndev = emac->ndev;
269 	int ret, slice, i;
270 	u32 hdesc_size;
271 
272 	slice = prueth_emac_slice(emac);
273 	if (slice < 0)
274 		return slice;
275 
276 	init_completion(&emac->tdown_complete);
277 
278 	hdesc_size = cppi5_hdesc_calc_size(true, PRUETH_NAV_PS_DATA_SIZE,
279 					   PRUETH_NAV_SW_DATA_SIZE);
280 	memset(&tx_cfg, 0, sizeof(tx_cfg));
281 	tx_cfg.swdata_size = PRUETH_NAV_SW_DATA_SIZE;
282 	tx_cfg.tx_cfg = ring_cfg;
283 	tx_cfg.txcq_cfg = ring_cfg;
284 
285 	for (i = 0; i < emac->tx_ch_num; i++) {
286 		struct prueth_tx_chn *tx_chn = &emac->tx_chns[i];
287 
288 		/* To differentiate channels for SLICE0 vs SLICE1 */
289 		snprintf(tx_chn->name, sizeof(tx_chn->name),
290 			 "tx%d-%d", slice, i);
291 
292 		tx_chn->emac = emac;
293 		tx_chn->id = i;
294 		tx_chn->descs_num = PRUETH_MAX_TX_DESC;
295 
296 		tx_chn->tx_chn =
297 			k3_udma_glue_request_tx_chn(dev, tx_chn->name,
298 						    &tx_cfg);
299 		if (IS_ERR(tx_chn->tx_chn)) {
300 			ret = PTR_ERR(tx_chn->tx_chn);
301 			tx_chn->tx_chn = NULL;
302 			netdev_err(ndev,
303 				   "Failed to request tx dma ch: %d\n", ret);
304 			goto fail;
305 		}
306 
307 		tx_chn->dma_dev = k3_udma_glue_tx_get_dma_device(tx_chn->tx_chn);
308 		tx_chn->desc_pool =
309 			k3_cppi_desc_pool_create_name(tx_chn->dma_dev,
310 						      tx_chn->descs_num,
311 						      hdesc_size,
312 						      tx_chn->name);
313 		if (IS_ERR(tx_chn->desc_pool)) {
314 			ret = PTR_ERR(tx_chn->desc_pool);
315 			tx_chn->desc_pool = NULL;
316 			netdev_err(ndev, "Failed to create tx pool: %d\n", ret);
317 			goto fail;
318 		}
319 
320 		ret = k3_udma_glue_tx_get_irq(tx_chn->tx_chn);
321 		if (ret < 0) {
322 			netdev_err(ndev, "failed to get tx irq\n");
323 			goto fail;
324 		}
325 		tx_chn->irq = ret;
326 
327 		snprintf(tx_chn->name, sizeof(tx_chn->name), "%s-tx%d",
328 			 dev_name(dev), tx_chn->id);
329 	}
330 
331 	return 0;
332 
333 fail:
334 	prueth_cleanup_tx_chns(emac);
335 	return ret;
336 }
337 
338 static int prueth_init_rx_chns(struct prueth_emac *emac,
339 			       struct prueth_rx_chn *rx_chn,
340 			       char *name, u32 max_rflows,
341 			       u32 max_desc_num)
342 {
343 	struct k3_udma_glue_rx_channel_cfg rx_cfg;
344 	struct device *dev = emac->prueth->dev;
345 	struct net_device *ndev = emac->ndev;
346 	u32 fdqring_id, hdesc_size;
347 	int i, ret = 0, slice;
348 
349 	slice = prueth_emac_slice(emac);
350 	if (slice < 0)
351 		return slice;
352 
353 	/* To differentiate channels for SLICE0 vs SLICE1 */
354 	snprintf(rx_chn->name, sizeof(rx_chn->name), "%s%d", name, slice);
355 
356 	hdesc_size = cppi5_hdesc_calc_size(true, PRUETH_NAV_PS_DATA_SIZE,
357 					   PRUETH_NAV_SW_DATA_SIZE);
358 	memset(&rx_cfg, 0, sizeof(rx_cfg));
359 	rx_cfg.swdata_size = PRUETH_NAV_SW_DATA_SIZE;
360 	rx_cfg.flow_id_num = max_rflows;
361 	rx_cfg.flow_id_base = -1; /* udmax will auto select flow id base */
362 
363 	/* init all flows */
364 	rx_chn->dev = dev;
365 	rx_chn->descs_num = max_desc_num;
366 
367 	rx_chn->rx_chn = k3_udma_glue_request_rx_chn(dev, rx_chn->name,
368 						     &rx_cfg);
369 	if (IS_ERR(rx_chn->rx_chn)) {
370 		ret = PTR_ERR(rx_chn->rx_chn);
371 		rx_chn->rx_chn = NULL;
372 		netdev_err(ndev, "Failed to request rx dma ch: %d\n", ret);
373 		goto fail;
374 	}
375 
376 	rx_chn->dma_dev = k3_udma_glue_rx_get_dma_device(rx_chn->rx_chn);
377 	rx_chn->desc_pool = k3_cppi_desc_pool_create_name(rx_chn->dma_dev,
378 							  rx_chn->descs_num,
379 							  hdesc_size,
380 							  rx_chn->name);
381 	if (IS_ERR(rx_chn->desc_pool)) {
382 		ret = PTR_ERR(rx_chn->desc_pool);
383 		rx_chn->desc_pool = NULL;
384 		netdev_err(ndev, "Failed to create rx pool: %d\n", ret);
385 		goto fail;
386 	}
387 
388 	emac->rx_flow_id_base = k3_udma_glue_rx_get_flow_id_base(rx_chn->rx_chn);
389 	netdev_dbg(ndev, "flow id base = %d\n", emac->rx_flow_id_base);
390 
391 	fdqring_id = K3_RINGACC_RING_ID_ANY;
392 	for (i = 0; i < rx_cfg.flow_id_num; i++) {
393 		struct k3_ring_cfg rxring_cfg = {
394 			.elm_size = K3_RINGACC_RING_ELSIZE_8,
395 			.mode = K3_RINGACC_RING_MODE_RING,
396 			.flags = 0,
397 		};
398 		struct k3_ring_cfg fdqring_cfg = {
399 			.elm_size = K3_RINGACC_RING_ELSIZE_8,
400 			.flags = K3_RINGACC_RING_SHARED,
401 		};
402 		struct k3_udma_glue_rx_flow_cfg rx_flow_cfg = {
403 			.rx_cfg = rxring_cfg,
404 			.rxfdq_cfg = fdqring_cfg,
405 			.ring_rxq_id = K3_RINGACC_RING_ID_ANY,
406 			.src_tag_lo_sel =
407 				K3_UDMA_GLUE_SRC_TAG_LO_USE_REMOTE_SRC_TAG,
408 		};
409 
410 		rx_flow_cfg.ring_rxfdq0_id = fdqring_id;
411 		rx_flow_cfg.rx_cfg.size = max_desc_num;
412 		rx_flow_cfg.rxfdq_cfg.size = max_desc_num;
413 		rx_flow_cfg.rxfdq_cfg.mode = emac->prueth->pdata.fdqring_mode;
414 
415 		ret = k3_udma_glue_rx_flow_init(rx_chn->rx_chn,
416 						i, &rx_flow_cfg);
417 		if (ret) {
418 			netdev_err(ndev, "Failed to init rx flow%d %d\n",
419 				   i, ret);
420 			goto fail;
421 		}
422 		if (!i)
423 			fdqring_id = k3_udma_glue_rx_flow_get_fdq_id(rx_chn->rx_chn,
424 								     i);
425 		ret = k3_udma_glue_rx_get_irq(rx_chn->rx_chn, i);
426 		if (ret <= 0) {
427 			if (!ret)
428 				ret = -ENXIO;
429 			netdev_err(ndev, "Failed to get rx dma irq");
430 			goto fail;
431 		}
432 		rx_chn->irq[i] = ret;
433 	}
434 
435 	return 0;
436 
437 fail:
438 	prueth_cleanup_rx_chns(emac, rx_chn, max_rflows);
439 	return ret;
440 }
441 
442 static int prueth_dma_rx_push(struct prueth_emac *emac,
443 			      struct sk_buff *skb,
444 			      struct prueth_rx_chn *rx_chn)
445 {
446 	struct net_device *ndev = emac->ndev;
447 	struct cppi5_host_desc_t *desc_rx;
448 	u32 pkt_len = skb_tailroom(skb);
449 	dma_addr_t desc_dma;
450 	dma_addr_t buf_dma;
451 	void **swdata;
452 
453 	desc_rx = k3_cppi_desc_pool_alloc(rx_chn->desc_pool);
454 	if (!desc_rx) {
455 		netdev_err(ndev, "rx push: failed to allocate descriptor\n");
456 		return -ENOMEM;
457 	}
458 	desc_dma = k3_cppi_desc_pool_virt2dma(rx_chn->desc_pool, desc_rx);
459 
460 	buf_dma = dma_map_single(rx_chn->dma_dev, skb->data, pkt_len, DMA_FROM_DEVICE);
461 	if (unlikely(dma_mapping_error(rx_chn->dma_dev, buf_dma))) {
462 		k3_cppi_desc_pool_free(rx_chn->desc_pool, desc_rx);
463 		netdev_err(ndev, "rx push: failed to map rx pkt buffer\n");
464 		return -EINVAL;
465 	}
466 
467 	cppi5_hdesc_init(desc_rx, CPPI5_INFO0_HDESC_EPIB_PRESENT,
468 			 PRUETH_NAV_PS_DATA_SIZE);
469 	k3_udma_glue_rx_dma_to_cppi5_addr(rx_chn->rx_chn, &buf_dma);
470 	cppi5_hdesc_attach_buf(desc_rx, buf_dma, skb_tailroom(skb), buf_dma, skb_tailroom(skb));
471 
472 	swdata = cppi5_hdesc_get_swdata(desc_rx);
473 	*swdata = skb;
474 
475 	return k3_udma_glue_push_rx_chn(rx_chn->rx_chn, 0,
476 					desc_rx, desc_dma);
477 }
478 
479 static u64 icssg_ts_to_ns(u32 hi_sw, u32 hi, u32 lo, u32 cycle_time_ns)
480 {
481 	u32 iepcount_lo, iepcount_hi, hi_rollover_count;
482 	u64 ns;
483 
484 	iepcount_lo = lo & GENMASK(19, 0);
485 	iepcount_hi = (hi & GENMASK(11, 0)) << 12 | lo >> 20;
486 	hi_rollover_count = hi >> 11;
487 
488 	ns = ((u64)hi_rollover_count) << 23 | (iepcount_hi + hi_sw);
489 	ns = ns * cycle_time_ns + iepcount_lo;
490 
491 	return ns;
492 }
493 
494 static void emac_rx_timestamp(struct prueth_emac *emac,
495 			      struct sk_buff *skb, u32 *psdata)
496 {
497 	struct skb_shared_hwtstamps *ssh;
498 	u64 ns;
499 
500 	u32 hi_sw = readl(emac->prueth->shram.va +
501 			  TIMESYNC_FW_WC_COUNT_HI_SW_OFFSET_OFFSET);
502 	ns = icssg_ts_to_ns(hi_sw, psdata[1], psdata[0],
503 			    IEP_DEFAULT_CYCLE_TIME_NS);
504 
505 	ssh = skb_hwtstamps(skb);
506 	memset(ssh, 0, sizeof(*ssh));
507 	ssh->hwtstamp = ns_to_ktime(ns);
508 }
509 
510 static int emac_rx_packet(struct prueth_emac *emac, u32 flow_id)
511 {
512 	struct prueth_rx_chn *rx_chn = &emac->rx_chns;
513 	u32 buf_dma_len, pkt_len, port_id = 0;
514 	struct net_device *ndev = emac->ndev;
515 	struct cppi5_host_desc_t *desc_rx;
516 	struct sk_buff *skb, *new_skb;
517 	dma_addr_t desc_dma, buf_dma;
518 	void **swdata;
519 	u32 *psdata;
520 	int ret;
521 
522 	ret = k3_udma_glue_pop_rx_chn(rx_chn->rx_chn, flow_id, &desc_dma);
523 	if (ret) {
524 		if (ret != -ENODATA)
525 			netdev_err(ndev, "rx pop: failed: %d\n", ret);
526 		return ret;
527 	}
528 
529 	if (cppi5_desc_is_tdcm(desc_dma)) /* Teardown ? */
530 		return 0;
531 
532 	desc_rx = k3_cppi_desc_pool_dma2virt(rx_chn->desc_pool, desc_dma);
533 
534 	swdata = cppi5_hdesc_get_swdata(desc_rx);
535 	skb = *swdata;
536 
537 	psdata = cppi5_hdesc_get_psdata(desc_rx);
538 	/* RX HW timestamp */
539 	if (emac->rx_ts_enabled)
540 		emac_rx_timestamp(emac, skb, psdata);
541 
542 	cppi5_hdesc_get_obuf(desc_rx, &buf_dma, &buf_dma_len);
543 	k3_udma_glue_rx_cppi5_to_dma_addr(rx_chn->rx_chn, &buf_dma);
544 	pkt_len = cppi5_hdesc_get_pktlen(desc_rx);
545 	/* firmware adds 4 CRC bytes, strip them */
546 	pkt_len -= 4;
547 	cppi5_desc_get_tags_ids(&desc_rx->hdr, &port_id, NULL);
548 
549 	dma_unmap_single(rx_chn->dma_dev, buf_dma, buf_dma_len, DMA_FROM_DEVICE);
550 	k3_cppi_desc_pool_free(rx_chn->desc_pool, desc_rx);
551 
552 	skb->dev = ndev;
553 	new_skb = netdev_alloc_skb_ip_align(ndev, PRUETH_MAX_PKT_SIZE);
554 	/* if allocation fails we drop the packet but push the
555 	 * descriptor back to the ring with old skb to prevent a stall
556 	 */
557 	if (!new_skb) {
558 		ndev->stats.rx_dropped++;
559 		new_skb = skb;
560 	} else {
561 		/* send the filled skb up the n/w stack */
562 		skb_put(skb, pkt_len);
563 		skb->protocol = eth_type_trans(skb, ndev);
564 		napi_gro_receive(&emac->napi_rx, skb);
565 		ndev->stats.rx_bytes += pkt_len;
566 		ndev->stats.rx_packets++;
567 	}
568 
569 	/* queue another RX DMA */
570 	ret = prueth_dma_rx_push(emac, new_skb, &emac->rx_chns);
571 	if (WARN_ON(ret < 0)) {
572 		dev_kfree_skb_any(new_skb);
573 		ndev->stats.rx_errors++;
574 		ndev->stats.rx_dropped++;
575 	}
576 
577 	return ret;
578 }
579 
580 static void prueth_rx_cleanup(void *data, dma_addr_t desc_dma)
581 {
582 	struct prueth_rx_chn *rx_chn = data;
583 	struct cppi5_host_desc_t *desc_rx;
584 	struct sk_buff *skb;
585 	dma_addr_t buf_dma;
586 	u32 buf_dma_len;
587 	void **swdata;
588 
589 	desc_rx = k3_cppi_desc_pool_dma2virt(rx_chn->desc_pool, desc_dma);
590 	swdata = cppi5_hdesc_get_swdata(desc_rx);
591 	skb = *swdata;
592 	cppi5_hdesc_get_obuf(desc_rx, &buf_dma, &buf_dma_len);
593 	k3_udma_glue_rx_cppi5_to_dma_addr(rx_chn->rx_chn, &buf_dma);
594 
595 	dma_unmap_single(rx_chn->dma_dev, buf_dma, buf_dma_len,
596 			 DMA_FROM_DEVICE);
597 	k3_cppi_desc_pool_free(rx_chn->desc_pool, desc_rx);
598 
599 	dev_kfree_skb_any(skb);
600 }
601 
602 static int emac_get_tx_ts(struct prueth_emac *emac,
603 			  struct emac_tx_ts_response *rsp)
604 {
605 	struct prueth *prueth = emac->prueth;
606 	int slice = prueth_emac_slice(emac);
607 	int addr;
608 
609 	addr = icssg_queue_pop(prueth, slice == 0 ?
610 			       ICSSG_TS_POP_SLICE0 : ICSSG_TS_POP_SLICE1);
611 	if (addr < 0)
612 		return addr;
613 
614 	memcpy_fromio(rsp, prueth->shram.va + addr, sizeof(*rsp));
615 	/* return buffer back for to pool */
616 	icssg_queue_push(prueth, slice == 0 ?
617 			 ICSSG_TS_PUSH_SLICE0 : ICSSG_TS_PUSH_SLICE1, addr);
618 
619 	return 0;
620 }
621 
622 static void tx_ts_work(struct prueth_emac *emac)
623 {
624 	struct skb_shared_hwtstamps ssh;
625 	struct emac_tx_ts_response tsr;
626 	struct sk_buff *skb;
627 	int ret = 0;
628 	u32 hi_sw;
629 	u64 ns;
630 
631 	/* There may be more than one pending requests */
632 	while (1) {
633 		ret = emac_get_tx_ts(emac, &tsr);
634 		if (ret) /* nothing more */
635 			break;
636 
637 		if (tsr.cookie >= PRUETH_MAX_TX_TS_REQUESTS ||
638 		    !emac->tx_ts_skb[tsr.cookie]) {
639 			netdev_err(emac->ndev, "Invalid TX TS cookie 0x%x\n",
640 				   tsr.cookie);
641 			break;
642 		}
643 
644 		skb = emac->tx_ts_skb[tsr.cookie];
645 		emac->tx_ts_skb[tsr.cookie] = NULL;	/* free slot */
646 		if (!skb) {
647 			netdev_err(emac->ndev, "Driver Bug! got NULL skb\n");
648 			break;
649 		}
650 
651 		hi_sw = readl(emac->prueth->shram.va +
652 			      TIMESYNC_FW_WC_COUNT_HI_SW_OFFSET_OFFSET);
653 		ns = icssg_ts_to_ns(hi_sw, tsr.hi_ts, tsr.lo_ts,
654 				    IEP_DEFAULT_CYCLE_TIME_NS);
655 
656 		memset(&ssh, 0, sizeof(ssh));
657 		ssh.hwtstamp = ns_to_ktime(ns);
658 
659 		skb_tstamp_tx(skb, &ssh);
660 		dev_consume_skb_any(skb);
661 
662 		if (atomic_dec_and_test(&emac->tx_ts_pending))	/* no more? */
663 			break;
664 	}
665 }
666 
667 static int prueth_tx_ts_cookie_get(struct prueth_emac *emac)
668 {
669 	int i;
670 
671 	/* search and get the next free slot */
672 	for (i = 0; i < PRUETH_MAX_TX_TS_REQUESTS; i++) {
673 		if (!emac->tx_ts_skb[i]) {
674 			emac->tx_ts_skb[i] = ERR_PTR(-EBUSY); /* reserve slot */
675 			return i;
676 		}
677 	}
678 
679 	return -EBUSY;
680 }
681 
682 /**
683  * emac_ndo_start_xmit - EMAC Transmit function
684  * @skb: SKB pointer
685  * @ndev: EMAC network adapter
686  *
687  * Called by the system to transmit a packet  - we queue the packet in
688  * EMAC hardware transmit queue
689  * Doesn't wait for completion we'll check for TX completion in
690  * emac_tx_complete_packets().
691  *
692  * Return: enum netdev_tx
693  */
694 static enum netdev_tx emac_ndo_start_xmit(struct sk_buff *skb, struct net_device *ndev)
695 {
696 	struct cppi5_host_desc_t *first_desc, *next_desc, *cur_desc;
697 	struct prueth_emac *emac = netdev_priv(ndev);
698 	struct netdev_queue *netif_txq;
699 	struct prueth_tx_chn *tx_chn;
700 	dma_addr_t desc_dma, buf_dma;
701 	int i, ret = 0, q_idx;
702 	bool in_tx_ts = 0;
703 	int tx_ts_cookie;
704 	void **swdata;
705 	u32 pkt_len;
706 	u32 *epib;
707 
708 	pkt_len = skb_headlen(skb);
709 	q_idx = skb_get_queue_mapping(skb);
710 
711 	tx_chn = &emac->tx_chns[q_idx];
712 	netif_txq = netdev_get_tx_queue(ndev, q_idx);
713 
714 	/* Map the linear buffer */
715 	buf_dma = dma_map_single(tx_chn->dma_dev, skb->data, pkt_len, DMA_TO_DEVICE);
716 	if (dma_mapping_error(tx_chn->dma_dev, buf_dma)) {
717 		netdev_err(ndev, "tx: failed to map skb buffer\n");
718 		ret = NETDEV_TX_OK;
719 		goto drop_free_skb;
720 	}
721 
722 	first_desc = k3_cppi_desc_pool_alloc(tx_chn->desc_pool);
723 	if (!first_desc) {
724 		netdev_dbg(ndev, "tx: failed to allocate descriptor\n");
725 		dma_unmap_single(tx_chn->dma_dev, buf_dma, pkt_len, DMA_TO_DEVICE);
726 		goto drop_stop_q_busy;
727 	}
728 
729 	cppi5_hdesc_init(first_desc, CPPI5_INFO0_HDESC_EPIB_PRESENT,
730 			 PRUETH_NAV_PS_DATA_SIZE);
731 	cppi5_hdesc_set_pkttype(first_desc, 0);
732 	epib = first_desc->epib;
733 	epib[0] = 0;
734 	epib[1] = 0;
735 	if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
736 	    emac->tx_ts_enabled) {
737 		tx_ts_cookie = prueth_tx_ts_cookie_get(emac);
738 		if (tx_ts_cookie >= 0) {
739 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
740 			/* Request TX timestamp */
741 			epib[0] = (u32)tx_ts_cookie;
742 			epib[1] = 0x80000000;	/* TX TS request */
743 			emac->tx_ts_skb[tx_ts_cookie] = skb_get(skb);
744 			in_tx_ts = 1;
745 		}
746 	}
747 
748 	/* set dst tag to indicate internal qid at the firmware which is at
749 	 * bit8..bit15. bit0..bit7 indicates port num for directed
750 	 * packets in case of switch mode operation
751 	 */
752 	cppi5_desc_set_tags_ids(&first_desc->hdr, 0, (emac->port_id | (q_idx << 8)));
753 	k3_udma_glue_tx_dma_to_cppi5_addr(tx_chn->tx_chn, &buf_dma);
754 	cppi5_hdesc_attach_buf(first_desc, buf_dma, pkt_len, buf_dma, pkt_len);
755 	swdata = cppi5_hdesc_get_swdata(first_desc);
756 	*swdata = skb;
757 
758 	/* Handle the case where skb is fragmented in pages */
759 	cur_desc = first_desc;
760 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
761 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
762 		u32 frag_size = skb_frag_size(frag);
763 
764 		next_desc = k3_cppi_desc_pool_alloc(tx_chn->desc_pool);
765 		if (!next_desc) {
766 			netdev_err(ndev,
767 				   "tx: failed to allocate frag. descriptor\n");
768 			goto free_desc_stop_q_busy_cleanup_tx_ts;
769 		}
770 
771 		buf_dma = skb_frag_dma_map(tx_chn->dma_dev, frag, 0, frag_size,
772 					   DMA_TO_DEVICE);
773 		if (dma_mapping_error(tx_chn->dma_dev, buf_dma)) {
774 			netdev_err(ndev, "tx: Failed to map skb page\n");
775 			k3_cppi_desc_pool_free(tx_chn->desc_pool, next_desc);
776 			ret = NETDEV_TX_OK;
777 			goto cleanup_tx_ts;
778 		}
779 
780 		cppi5_hdesc_reset_hbdesc(next_desc);
781 		k3_udma_glue_tx_dma_to_cppi5_addr(tx_chn->tx_chn, &buf_dma);
782 		cppi5_hdesc_attach_buf(next_desc,
783 				       buf_dma, frag_size, buf_dma, frag_size);
784 
785 		desc_dma = k3_cppi_desc_pool_virt2dma(tx_chn->desc_pool,
786 						      next_desc);
787 		k3_udma_glue_tx_dma_to_cppi5_addr(tx_chn->tx_chn, &desc_dma);
788 		cppi5_hdesc_link_hbdesc(cur_desc, desc_dma);
789 
790 		pkt_len += frag_size;
791 		cur_desc = next_desc;
792 	}
793 	WARN_ON_ONCE(pkt_len != skb->len);
794 
795 	/* report bql before sending packet */
796 	netdev_tx_sent_queue(netif_txq, pkt_len);
797 
798 	cppi5_hdesc_set_pktlen(first_desc, pkt_len);
799 	desc_dma = k3_cppi_desc_pool_virt2dma(tx_chn->desc_pool, first_desc);
800 	/* cppi5_desc_dump(first_desc, 64); */
801 
802 	skb_tx_timestamp(skb);  /* SW timestamp if SKBTX_IN_PROGRESS not set */
803 	ret = k3_udma_glue_push_tx_chn(tx_chn->tx_chn, first_desc, desc_dma);
804 	if (ret) {
805 		netdev_err(ndev, "tx: push failed: %d\n", ret);
806 		goto drop_free_descs;
807 	}
808 
809 	if (in_tx_ts)
810 		atomic_inc(&emac->tx_ts_pending);
811 
812 	if (k3_cppi_desc_pool_avail(tx_chn->desc_pool) < MAX_SKB_FRAGS) {
813 		netif_tx_stop_queue(netif_txq);
814 		/* Barrier, so that stop_queue visible to other cpus */
815 		smp_mb__after_atomic();
816 
817 		if (k3_cppi_desc_pool_avail(tx_chn->desc_pool) >=
818 		    MAX_SKB_FRAGS)
819 			netif_tx_wake_queue(netif_txq);
820 	}
821 
822 	return NETDEV_TX_OK;
823 
824 cleanup_tx_ts:
825 	if (in_tx_ts) {
826 		dev_kfree_skb_any(emac->tx_ts_skb[tx_ts_cookie]);
827 		emac->tx_ts_skb[tx_ts_cookie] = NULL;
828 	}
829 
830 drop_free_descs:
831 	prueth_xmit_free(tx_chn, first_desc);
832 
833 drop_free_skb:
834 	dev_kfree_skb_any(skb);
835 
836 	/* error */
837 	ndev->stats.tx_dropped++;
838 	netdev_err(ndev, "tx: error: %d\n", ret);
839 
840 	return ret;
841 
842 free_desc_stop_q_busy_cleanup_tx_ts:
843 	if (in_tx_ts) {
844 		dev_kfree_skb_any(emac->tx_ts_skb[tx_ts_cookie]);
845 		emac->tx_ts_skb[tx_ts_cookie] = NULL;
846 	}
847 	prueth_xmit_free(tx_chn, first_desc);
848 
849 drop_stop_q_busy:
850 	netif_tx_stop_queue(netif_txq);
851 	return NETDEV_TX_BUSY;
852 }
853 
854 static void prueth_tx_cleanup(void *data, dma_addr_t desc_dma)
855 {
856 	struct prueth_tx_chn *tx_chn = data;
857 	struct cppi5_host_desc_t *desc_tx;
858 	struct sk_buff *skb;
859 	void **swdata;
860 
861 	desc_tx = k3_cppi_desc_pool_dma2virt(tx_chn->desc_pool, desc_dma);
862 	swdata = cppi5_hdesc_get_swdata(desc_tx);
863 	skb = *(swdata);
864 	prueth_xmit_free(tx_chn, desc_tx);
865 
866 	dev_kfree_skb_any(skb);
867 }
868 
869 static irqreturn_t prueth_tx_ts_irq(int irq, void *dev_id)
870 {
871 	struct prueth_emac *emac = dev_id;
872 
873 	/* currently only TX timestamp is being returned */
874 	tx_ts_work(emac);
875 
876 	return IRQ_HANDLED;
877 }
878 
879 static irqreturn_t prueth_rx_irq(int irq, void *dev_id)
880 {
881 	struct prueth_emac *emac = dev_id;
882 
883 	disable_irq_nosync(irq);
884 	napi_schedule(&emac->napi_rx);
885 
886 	return IRQ_HANDLED;
887 }
888 
889 struct icssg_firmwares {
890 	char *pru;
891 	char *rtu;
892 	char *txpru;
893 };
894 
895 static struct icssg_firmwares icssg_emac_firmwares[] = {
896 	{
897 		.pru = "ti-pruss/am65x-sr2-pru0-prueth-fw.elf",
898 		.rtu = "ti-pruss/am65x-sr2-rtu0-prueth-fw.elf",
899 		.txpru = "ti-pruss/am65x-sr2-txpru0-prueth-fw.elf",
900 	},
901 	{
902 		.pru = "ti-pruss/am65x-sr2-pru1-prueth-fw.elf",
903 		.rtu = "ti-pruss/am65x-sr2-rtu1-prueth-fw.elf",
904 		.txpru = "ti-pruss/am65x-sr2-txpru1-prueth-fw.elf",
905 	}
906 };
907 
908 static int prueth_emac_start(struct prueth *prueth, struct prueth_emac *emac)
909 {
910 	struct icssg_firmwares *firmwares;
911 	struct device *dev = prueth->dev;
912 	int slice, ret;
913 
914 	firmwares = icssg_emac_firmwares;
915 
916 	slice = prueth_emac_slice(emac);
917 	if (slice < 0) {
918 		netdev_err(emac->ndev, "invalid port\n");
919 		return -EINVAL;
920 	}
921 
922 	ret = icssg_config(prueth, emac, slice);
923 	if (ret)
924 		return ret;
925 
926 	ret = rproc_set_firmware(prueth->pru[slice], firmwares[slice].pru);
927 	ret = rproc_boot(prueth->pru[slice]);
928 	if (ret) {
929 		dev_err(dev, "failed to boot PRU%d: %d\n", slice, ret);
930 		return -EINVAL;
931 	}
932 
933 	ret = rproc_set_firmware(prueth->rtu[slice], firmwares[slice].rtu);
934 	ret = rproc_boot(prueth->rtu[slice]);
935 	if (ret) {
936 		dev_err(dev, "failed to boot RTU%d: %d\n", slice, ret);
937 		goto halt_pru;
938 	}
939 
940 	ret = rproc_set_firmware(prueth->txpru[slice], firmwares[slice].txpru);
941 	ret = rproc_boot(prueth->txpru[slice]);
942 	if (ret) {
943 		dev_err(dev, "failed to boot TX_PRU%d: %d\n", slice, ret);
944 		goto halt_rtu;
945 	}
946 
947 	emac->fw_running = 1;
948 	return 0;
949 
950 halt_rtu:
951 	rproc_shutdown(prueth->rtu[slice]);
952 
953 halt_pru:
954 	rproc_shutdown(prueth->pru[slice]);
955 
956 	return ret;
957 }
958 
959 static void prueth_emac_stop(struct prueth_emac *emac)
960 {
961 	struct prueth *prueth = emac->prueth;
962 	int slice;
963 
964 	switch (emac->port_id) {
965 	case PRUETH_PORT_MII0:
966 		slice = ICSS_SLICE0;
967 		break;
968 	case PRUETH_PORT_MII1:
969 		slice = ICSS_SLICE1;
970 		break;
971 	default:
972 		netdev_err(emac->ndev, "invalid port\n");
973 		return;
974 	}
975 
976 	emac->fw_running = 0;
977 	rproc_shutdown(prueth->txpru[slice]);
978 	rproc_shutdown(prueth->rtu[slice]);
979 	rproc_shutdown(prueth->pru[slice]);
980 }
981 
982 static void prueth_cleanup_tx_ts(struct prueth_emac *emac)
983 {
984 	int i;
985 
986 	for (i = 0; i < PRUETH_MAX_TX_TS_REQUESTS; i++) {
987 		if (emac->tx_ts_skb[i]) {
988 			dev_kfree_skb_any(emac->tx_ts_skb[i]);
989 			emac->tx_ts_skb[i] = NULL;
990 		}
991 	}
992 }
993 
994 /* called back by PHY layer if there is change in link state of hw port*/
995 static void emac_adjust_link(struct net_device *ndev)
996 {
997 	struct prueth_emac *emac = netdev_priv(ndev);
998 	struct phy_device *phydev = ndev->phydev;
999 	struct prueth *prueth = emac->prueth;
1000 	bool new_state = false;
1001 	unsigned long flags;
1002 
1003 	if (phydev->link) {
1004 		/* check the mode of operation - full/half duplex */
1005 		if (phydev->duplex != emac->duplex) {
1006 			new_state = true;
1007 			emac->duplex = phydev->duplex;
1008 		}
1009 		if (phydev->speed != emac->speed) {
1010 			new_state = true;
1011 			emac->speed = phydev->speed;
1012 		}
1013 		if (!emac->link) {
1014 			new_state = true;
1015 			emac->link = 1;
1016 		}
1017 	} else if (emac->link) {
1018 		new_state = true;
1019 		emac->link = 0;
1020 
1021 		/* f/w should support 100 & 1000 */
1022 		emac->speed = SPEED_1000;
1023 
1024 		/* half duplex may not be supported by f/w */
1025 		emac->duplex = DUPLEX_FULL;
1026 	}
1027 
1028 	if (new_state) {
1029 		phy_print_status(phydev);
1030 
1031 		/* update RGMII and MII configuration based on PHY negotiated
1032 		 * values
1033 		 */
1034 		if (emac->link) {
1035 			/* Set the RGMII cfg for gig en and full duplex */
1036 			icssg_update_rgmii_cfg(prueth->miig_rt, emac);
1037 
1038 			/* update the Tx IPG based on 100M/1G speed */
1039 			spin_lock_irqsave(&emac->lock, flags);
1040 			icssg_config_ipg(emac);
1041 			spin_unlock_irqrestore(&emac->lock, flags);
1042 			icssg_config_set_speed(emac);
1043 			emac_set_port_state(emac, ICSSG_EMAC_PORT_FORWARD);
1044 
1045 		} else {
1046 			emac_set_port_state(emac, ICSSG_EMAC_PORT_DISABLE);
1047 		}
1048 	}
1049 
1050 	if (emac->link) {
1051 		/* reactivate the transmit queue */
1052 		netif_tx_wake_all_queues(ndev);
1053 	} else {
1054 		netif_tx_stop_all_queues(ndev);
1055 		prueth_cleanup_tx_ts(emac);
1056 	}
1057 }
1058 
1059 static int emac_napi_rx_poll(struct napi_struct *napi_rx, int budget)
1060 {
1061 	struct prueth_emac *emac = prueth_napi_to_emac(napi_rx);
1062 	int rx_flow = PRUETH_RX_FLOW_DATA;
1063 	int flow = PRUETH_MAX_RX_FLOWS;
1064 	int num_rx = 0;
1065 	int cur_budget;
1066 	int ret;
1067 
1068 	while (flow--) {
1069 		cur_budget = budget - num_rx;
1070 
1071 		while (cur_budget--) {
1072 			ret = emac_rx_packet(emac, flow);
1073 			if (ret)
1074 				break;
1075 			num_rx++;
1076 		}
1077 
1078 		if (num_rx >= budget)
1079 			break;
1080 	}
1081 
1082 	if (num_rx < budget && napi_complete_done(napi_rx, num_rx))
1083 		enable_irq(emac->rx_chns.irq[rx_flow]);
1084 
1085 	return num_rx;
1086 }
1087 
1088 static int prueth_prepare_rx_chan(struct prueth_emac *emac,
1089 				  struct prueth_rx_chn *chn,
1090 				  int buf_size)
1091 {
1092 	struct sk_buff *skb;
1093 	int i, ret;
1094 
1095 	for (i = 0; i < chn->descs_num; i++) {
1096 		skb = __netdev_alloc_skb_ip_align(NULL, buf_size, GFP_KERNEL);
1097 		if (!skb)
1098 			return -ENOMEM;
1099 
1100 		ret = prueth_dma_rx_push(emac, skb, chn);
1101 		if (ret < 0) {
1102 			netdev_err(emac->ndev,
1103 				   "cannot submit skb for rx chan %s ret %d\n",
1104 				   chn->name, ret);
1105 			kfree_skb(skb);
1106 			return ret;
1107 		}
1108 	}
1109 
1110 	return 0;
1111 }
1112 
1113 static void prueth_reset_tx_chan(struct prueth_emac *emac, int ch_num,
1114 				 bool free_skb)
1115 {
1116 	int i;
1117 
1118 	for (i = 0; i < ch_num; i++) {
1119 		if (free_skb)
1120 			k3_udma_glue_reset_tx_chn(emac->tx_chns[i].tx_chn,
1121 						  &emac->tx_chns[i],
1122 						  prueth_tx_cleanup);
1123 		k3_udma_glue_disable_tx_chn(emac->tx_chns[i].tx_chn);
1124 	}
1125 }
1126 
1127 static void prueth_reset_rx_chan(struct prueth_rx_chn *chn,
1128 				 int num_flows, bool disable)
1129 {
1130 	int i;
1131 
1132 	for (i = 0; i < num_flows; i++)
1133 		k3_udma_glue_reset_rx_chn(chn->rx_chn, i, chn,
1134 					  prueth_rx_cleanup, !!i);
1135 	if (disable)
1136 		k3_udma_glue_disable_rx_chn(chn->rx_chn);
1137 }
1138 
1139 static int emac_phy_connect(struct prueth_emac *emac)
1140 {
1141 	struct prueth *prueth = emac->prueth;
1142 	struct net_device *ndev = emac->ndev;
1143 	/* connect PHY */
1144 	ndev->phydev = of_phy_connect(emac->ndev, emac->phy_node,
1145 				      &emac_adjust_link, 0,
1146 				      emac->phy_if);
1147 	if (!ndev->phydev) {
1148 		dev_err(prueth->dev, "couldn't connect to phy %s\n",
1149 			emac->phy_node->full_name);
1150 		return -ENODEV;
1151 	}
1152 
1153 	/* remove unsupported modes */
1154 	phy_remove_link_mode(ndev->phydev, ETHTOOL_LINK_MODE_10baseT_Half_BIT);
1155 	phy_remove_link_mode(ndev->phydev, ETHTOOL_LINK_MODE_100baseT_Half_BIT);
1156 	phy_remove_link_mode(ndev->phydev, ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
1157 	phy_remove_link_mode(ndev->phydev, ETHTOOL_LINK_MODE_Pause_BIT);
1158 	phy_remove_link_mode(ndev->phydev, ETHTOOL_LINK_MODE_Asym_Pause_BIT);
1159 
1160 	if (emac->phy_if == PHY_INTERFACE_MODE_MII)
1161 		phy_set_max_speed(ndev->phydev, SPEED_100);
1162 
1163 	return 0;
1164 }
1165 
1166 static u64 prueth_iep_gettime(void *clockops_data, struct ptp_system_timestamp *sts)
1167 {
1168 	u32 hi_rollover_count, hi_rollover_count_r;
1169 	struct prueth_emac *emac = clockops_data;
1170 	struct prueth *prueth = emac->prueth;
1171 	void __iomem *fw_hi_r_count_addr;
1172 	void __iomem *fw_count_hi_addr;
1173 	u32 iepcount_hi, iepcount_hi_r;
1174 	unsigned long flags;
1175 	u32 iepcount_lo;
1176 	u64 ts = 0;
1177 
1178 	fw_count_hi_addr = prueth->shram.va + TIMESYNC_FW_WC_COUNT_HI_SW_OFFSET_OFFSET;
1179 	fw_hi_r_count_addr = prueth->shram.va + TIMESYNC_FW_WC_HI_ROLLOVER_COUNT_OFFSET;
1180 
1181 	local_irq_save(flags);
1182 	do {
1183 		iepcount_hi = icss_iep_get_count_hi(emac->iep);
1184 		iepcount_hi += readl(fw_count_hi_addr);
1185 		hi_rollover_count = readl(fw_hi_r_count_addr);
1186 		ptp_read_system_prets(sts);
1187 		iepcount_lo = icss_iep_get_count_low(emac->iep);
1188 		ptp_read_system_postts(sts);
1189 
1190 		iepcount_hi_r = icss_iep_get_count_hi(emac->iep);
1191 		iepcount_hi_r += readl(fw_count_hi_addr);
1192 		hi_rollover_count_r = readl(fw_hi_r_count_addr);
1193 	} while ((iepcount_hi_r != iepcount_hi) ||
1194 		 (hi_rollover_count != hi_rollover_count_r));
1195 	local_irq_restore(flags);
1196 
1197 	ts = ((u64)hi_rollover_count) << 23 | iepcount_hi;
1198 	ts = ts * (u64)IEP_DEFAULT_CYCLE_TIME_NS + iepcount_lo;
1199 
1200 	return ts;
1201 }
1202 
1203 static void prueth_iep_settime(void *clockops_data, u64 ns)
1204 {
1205 	struct icssg_setclock_desc __iomem *sc_descp;
1206 	struct prueth_emac *emac = clockops_data;
1207 	struct icssg_setclock_desc sc_desc;
1208 	u64 cyclecount;
1209 	u32 cycletime;
1210 	int timeout;
1211 
1212 	if (!emac->fw_running)
1213 		return;
1214 
1215 	sc_descp = emac->prueth->shram.va + TIMESYNC_FW_WC_SETCLOCK_DESC_OFFSET;
1216 
1217 	cycletime = IEP_DEFAULT_CYCLE_TIME_NS;
1218 	cyclecount = ns / cycletime;
1219 
1220 	memset(&sc_desc, 0, sizeof(sc_desc));
1221 	sc_desc.margin = cycletime - 1000;
1222 	sc_desc.cyclecounter0_set = cyclecount & GENMASK(31, 0);
1223 	sc_desc.cyclecounter1_set = (cyclecount & GENMASK(63, 32)) >> 32;
1224 	sc_desc.iepcount_set = ns % cycletime;
1225 	sc_desc.CMP0_current = cycletime - 4; //Count from 0 to (cycle time)-4
1226 
1227 	memcpy_toio(sc_descp, &sc_desc, sizeof(sc_desc));
1228 
1229 	writeb(1, &sc_descp->request);
1230 
1231 	timeout = 5;	/* fw should take 2-3 ms */
1232 	while (timeout--) {
1233 		if (readb(&sc_descp->acknowledgment))
1234 			return;
1235 
1236 		usleep_range(500, 1000);
1237 	}
1238 
1239 	dev_err(emac->prueth->dev, "settime timeout\n");
1240 }
1241 
1242 static int prueth_perout_enable(void *clockops_data,
1243 				struct ptp_perout_request *req, int on,
1244 				u64 *cmp)
1245 {
1246 	struct prueth_emac *emac = clockops_data;
1247 	u32 reduction_factor = 0, offset = 0;
1248 	struct timespec64 ts;
1249 	u64 current_cycle;
1250 	u64 start_offset;
1251 	u64 ns_period;
1252 
1253 	if (!on)
1254 		return 0;
1255 
1256 	/* Any firmware specific stuff for PPS/PEROUT handling */
1257 	ts.tv_sec = req->period.sec;
1258 	ts.tv_nsec = req->period.nsec;
1259 	ns_period = timespec64_to_ns(&ts);
1260 
1261 	/* f/w doesn't support period less than cycle time */
1262 	if (ns_period < IEP_DEFAULT_CYCLE_TIME_NS)
1263 		return -ENXIO;
1264 
1265 	reduction_factor = ns_period / IEP_DEFAULT_CYCLE_TIME_NS;
1266 	offset = ns_period % IEP_DEFAULT_CYCLE_TIME_NS;
1267 
1268 	/* f/w requires at least 1uS within a cycle so CMP
1269 	 * can trigger after SYNC is enabled
1270 	 */
1271 	if (offset < 5 * NSEC_PER_USEC)
1272 		offset = 5 * NSEC_PER_USEC;
1273 
1274 	/* if offset is close to cycle time then we will miss
1275 	 * the CMP event for last tick when IEP rolls over.
1276 	 * In normal mode, IEP tick is 4ns.
1277 	 * In slow compensation it could be 0ns or 8ns at
1278 	 * every slow compensation cycle.
1279 	 */
1280 	if (offset > IEP_DEFAULT_CYCLE_TIME_NS - 8)
1281 		offset = IEP_DEFAULT_CYCLE_TIME_NS - 8;
1282 
1283 	/* we're in shadow mode so need to set upper 32-bits */
1284 	*cmp = (u64)offset << 32;
1285 
1286 	writel(reduction_factor, emac->prueth->shram.va +
1287 		TIMESYNC_FW_WC_SYNCOUT_REDUCTION_FACTOR_OFFSET);
1288 
1289 	current_cycle = icssg_read_time(emac->prueth->shram.va +
1290 					TIMESYNC_FW_WC_CYCLECOUNT_OFFSET);
1291 
1292 	/* Rounding of current_cycle count to next second */
1293 	start_offset = roundup(current_cycle, MSEC_PER_SEC);
1294 
1295 	hi_lo_writeq(start_offset, emac->prueth->shram.va +
1296 		     TIMESYNC_FW_WC_SYNCOUT_START_TIME_CYCLECOUNT_OFFSET);
1297 
1298 	return 0;
1299 }
1300 
1301 const struct icss_iep_clockops prueth_iep_clockops = {
1302 	.settime = prueth_iep_settime,
1303 	.gettime = prueth_iep_gettime,
1304 	.perout_enable = prueth_perout_enable,
1305 };
1306 
1307 /**
1308  * emac_ndo_open - EMAC device open
1309  * @ndev: network adapter device
1310  *
1311  * Called when system wants to start the interface.
1312  *
1313  * Return: 0 for a successful open, or appropriate error code
1314  */
1315 static int emac_ndo_open(struct net_device *ndev)
1316 {
1317 	struct prueth_emac *emac = netdev_priv(ndev);
1318 	int ret, i, num_data_chn = emac->tx_ch_num;
1319 	struct prueth *prueth = emac->prueth;
1320 	int slice = prueth_emac_slice(emac);
1321 	struct device *dev = prueth->dev;
1322 	int max_rx_flows;
1323 	int rx_flow;
1324 
1325 	/* clear SMEM and MSMC settings for all slices */
1326 	if (!prueth->emacs_initialized) {
1327 		memset_io(prueth->msmcram.va, 0, prueth->msmcram.size);
1328 		memset_io(prueth->shram.va, 0, ICSSG_CONFIG_OFFSET_SLICE1 * PRUETH_NUM_MACS);
1329 	}
1330 
1331 	/* set h/w MAC as user might have re-configured */
1332 	ether_addr_copy(emac->mac_addr, ndev->dev_addr);
1333 
1334 	icssg_class_set_mac_addr(prueth->miig_rt, slice, emac->mac_addr);
1335 	icssg_ft1_set_mac_addr(prueth->miig_rt, slice, emac->mac_addr);
1336 
1337 	icssg_class_default(prueth->miig_rt, slice, 0);
1338 
1339 	/* Notify the stack of the actual queue counts. */
1340 	ret = netif_set_real_num_tx_queues(ndev, num_data_chn);
1341 	if (ret) {
1342 		dev_err(dev, "cannot set real number of tx queues\n");
1343 		return ret;
1344 	}
1345 
1346 	init_completion(&emac->cmd_complete);
1347 	ret = prueth_init_tx_chns(emac);
1348 	if (ret) {
1349 		dev_err(dev, "failed to init tx channel: %d\n", ret);
1350 		return ret;
1351 	}
1352 
1353 	max_rx_flows = PRUETH_MAX_RX_FLOWS;
1354 	ret = prueth_init_rx_chns(emac, &emac->rx_chns, "rx",
1355 				  max_rx_flows, PRUETH_MAX_RX_DESC);
1356 	if (ret) {
1357 		dev_err(dev, "failed to init rx channel: %d\n", ret);
1358 		goto cleanup_tx;
1359 	}
1360 
1361 	ret = prueth_ndev_add_tx_napi(emac);
1362 	if (ret)
1363 		goto cleanup_rx;
1364 
1365 	/* we use only the highest priority flow for now i.e. @irq[3] */
1366 	rx_flow = PRUETH_RX_FLOW_DATA;
1367 	ret = request_irq(emac->rx_chns.irq[rx_flow], prueth_rx_irq,
1368 			  IRQF_TRIGGER_HIGH, dev_name(dev), emac);
1369 	if (ret) {
1370 		dev_err(dev, "unable to request RX IRQ\n");
1371 		goto cleanup_napi;
1372 	}
1373 
1374 	/* reset and start PRU firmware */
1375 	ret = prueth_emac_start(prueth, emac);
1376 	if (ret)
1377 		goto free_rx_irq;
1378 
1379 	icssg_mii_update_mtu(prueth->mii_rt, slice, ndev->max_mtu);
1380 
1381 	if (!prueth->emacs_initialized) {
1382 		ret = icss_iep_init(emac->iep, &prueth_iep_clockops,
1383 				    emac, IEP_DEFAULT_CYCLE_TIME_NS);
1384 	}
1385 
1386 	ret = request_threaded_irq(emac->tx_ts_irq, NULL, prueth_tx_ts_irq,
1387 				   IRQF_ONESHOT, dev_name(dev), emac);
1388 	if (ret)
1389 		goto stop;
1390 
1391 	/* Prepare RX */
1392 	ret = prueth_prepare_rx_chan(emac, &emac->rx_chns, PRUETH_MAX_PKT_SIZE);
1393 	if (ret)
1394 		goto free_tx_ts_irq;
1395 
1396 	ret = k3_udma_glue_enable_rx_chn(emac->rx_chns.rx_chn);
1397 	if (ret)
1398 		goto reset_rx_chn;
1399 
1400 	for (i = 0; i < emac->tx_ch_num; i++) {
1401 		ret = k3_udma_glue_enable_tx_chn(emac->tx_chns[i].tx_chn);
1402 		if (ret)
1403 			goto reset_tx_chan;
1404 	}
1405 
1406 	/* Enable NAPI in Tx and Rx direction */
1407 	for (i = 0; i < emac->tx_ch_num; i++)
1408 		napi_enable(&emac->tx_chns[i].napi_tx);
1409 	napi_enable(&emac->napi_rx);
1410 
1411 	/* start PHY */
1412 	phy_start(ndev->phydev);
1413 
1414 	prueth->emacs_initialized++;
1415 
1416 	queue_work(system_long_wq, &emac->stats_work.work);
1417 
1418 	return 0;
1419 
1420 reset_tx_chan:
1421 	/* Since interface is not yet up, there is wouldn't be
1422 	 * any SKB for completion. So set false to free_skb
1423 	 */
1424 	prueth_reset_tx_chan(emac, i, false);
1425 reset_rx_chn:
1426 	prueth_reset_rx_chan(&emac->rx_chns, max_rx_flows, false);
1427 free_tx_ts_irq:
1428 	free_irq(emac->tx_ts_irq, emac);
1429 stop:
1430 	prueth_emac_stop(emac);
1431 free_rx_irq:
1432 	free_irq(emac->rx_chns.irq[rx_flow], emac);
1433 cleanup_napi:
1434 	prueth_ndev_del_tx_napi(emac, emac->tx_ch_num);
1435 cleanup_rx:
1436 	prueth_cleanup_rx_chns(emac, &emac->rx_chns, max_rx_flows);
1437 cleanup_tx:
1438 	prueth_cleanup_tx_chns(emac);
1439 
1440 	return ret;
1441 }
1442 
1443 /**
1444  * emac_ndo_stop - EMAC device stop
1445  * @ndev: network adapter device
1446  *
1447  * Called when system wants to stop or down the interface.
1448  *
1449  * Return: Always 0 (Success)
1450  */
1451 static int emac_ndo_stop(struct net_device *ndev)
1452 {
1453 	struct prueth_emac *emac = netdev_priv(ndev);
1454 	struct prueth *prueth = emac->prueth;
1455 	int rx_flow = PRUETH_RX_FLOW_DATA;
1456 	int max_rx_flows;
1457 	int ret, i;
1458 
1459 	/* inform the upper layers. */
1460 	netif_tx_stop_all_queues(ndev);
1461 
1462 	/* block packets from wire */
1463 	if (ndev->phydev)
1464 		phy_stop(ndev->phydev);
1465 
1466 	icssg_class_disable(prueth->miig_rt, prueth_emac_slice(emac));
1467 
1468 	atomic_set(&emac->tdown_cnt, emac->tx_ch_num);
1469 	/* ensure new tdown_cnt value is visible */
1470 	smp_mb__after_atomic();
1471 	/* tear down and disable UDMA channels */
1472 	reinit_completion(&emac->tdown_complete);
1473 	for (i = 0; i < emac->tx_ch_num; i++)
1474 		k3_udma_glue_tdown_tx_chn(emac->tx_chns[i].tx_chn, false);
1475 
1476 	ret = wait_for_completion_timeout(&emac->tdown_complete,
1477 					  msecs_to_jiffies(1000));
1478 	if (!ret)
1479 		netdev_err(ndev, "tx teardown timeout\n");
1480 
1481 	prueth_reset_tx_chan(emac, emac->tx_ch_num, true);
1482 	for (i = 0; i < emac->tx_ch_num; i++)
1483 		napi_disable(&emac->tx_chns[i].napi_tx);
1484 
1485 	max_rx_flows = PRUETH_MAX_RX_FLOWS;
1486 	k3_udma_glue_tdown_rx_chn(emac->rx_chns.rx_chn, true);
1487 
1488 	prueth_reset_rx_chan(&emac->rx_chns, max_rx_flows, true);
1489 
1490 	napi_disable(&emac->napi_rx);
1491 
1492 	cancel_work_sync(&emac->rx_mode_work);
1493 
1494 	/* Destroying the queued work in ndo_stop() */
1495 	cancel_delayed_work_sync(&emac->stats_work);
1496 
1497 	/* stop PRUs */
1498 	prueth_emac_stop(emac);
1499 
1500 	if (prueth->emacs_initialized == 1)
1501 		icss_iep_exit(emac->iep);
1502 
1503 	/* stop PRUs */
1504 	prueth_emac_stop(emac);
1505 
1506 	free_irq(emac->tx_ts_irq, emac);
1507 
1508 	free_irq(emac->rx_chns.irq[rx_flow], emac);
1509 	prueth_ndev_del_tx_napi(emac, emac->tx_ch_num);
1510 	prueth_cleanup_tx_chns(emac);
1511 
1512 	prueth_cleanup_rx_chns(emac, &emac->rx_chns, max_rx_flows);
1513 	prueth_cleanup_tx_chns(emac);
1514 
1515 	prueth->emacs_initialized--;
1516 
1517 	return 0;
1518 }
1519 
1520 static void emac_ndo_tx_timeout(struct net_device *ndev, unsigned int txqueue)
1521 {
1522 	ndev->stats.tx_errors++;
1523 }
1524 
1525 static void emac_ndo_set_rx_mode_work(struct work_struct *work)
1526 {
1527 	struct prueth_emac *emac = container_of(work, struct prueth_emac, rx_mode_work);
1528 	struct net_device *ndev = emac->ndev;
1529 	bool promisc, allmulti;
1530 
1531 	if (!netif_running(ndev))
1532 		return;
1533 
1534 	promisc = ndev->flags & IFF_PROMISC;
1535 	allmulti = ndev->flags & IFF_ALLMULTI;
1536 	emac_set_port_state(emac, ICSSG_EMAC_PORT_UC_FLOODING_DISABLE);
1537 	emac_set_port_state(emac, ICSSG_EMAC_PORT_MC_FLOODING_DISABLE);
1538 
1539 	if (promisc) {
1540 		emac_set_port_state(emac, ICSSG_EMAC_PORT_UC_FLOODING_ENABLE);
1541 		emac_set_port_state(emac, ICSSG_EMAC_PORT_MC_FLOODING_ENABLE);
1542 		return;
1543 	}
1544 
1545 	if (allmulti) {
1546 		emac_set_port_state(emac, ICSSG_EMAC_PORT_MC_FLOODING_ENABLE);
1547 		return;
1548 	}
1549 
1550 	if (!netdev_mc_empty(ndev)) {
1551 		emac_set_port_state(emac, ICSSG_EMAC_PORT_MC_FLOODING_ENABLE);
1552 		return;
1553 	}
1554 }
1555 
1556 /**
1557  * emac_ndo_set_rx_mode - EMAC set receive mode function
1558  * @ndev: The EMAC network adapter
1559  *
1560  * Called when system wants to set the receive mode of the device.
1561  *
1562  */
1563 static void emac_ndo_set_rx_mode(struct net_device *ndev)
1564 {
1565 	struct prueth_emac *emac = netdev_priv(ndev);
1566 
1567 	queue_work(emac->cmd_wq, &emac->rx_mode_work);
1568 }
1569 
1570 static int emac_set_ts_config(struct net_device *ndev, struct ifreq *ifr)
1571 {
1572 	struct prueth_emac *emac = netdev_priv(ndev);
1573 	struct hwtstamp_config config;
1574 
1575 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1576 		return -EFAULT;
1577 
1578 	switch (config.tx_type) {
1579 	case HWTSTAMP_TX_OFF:
1580 		emac->tx_ts_enabled = 0;
1581 		break;
1582 	case HWTSTAMP_TX_ON:
1583 		emac->tx_ts_enabled = 1;
1584 		break;
1585 	default:
1586 		return -ERANGE;
1587 	}
1588 
1589 	switch (config.rx_filter) {
1590 	case HWTSTAMP_FILTER_NONE:
1591 		emac->rx_ts_enabled = 0;
1592 		break;
1593 	case HWTSTAMP_FILTER_ALL:
1594 	case HWTSTAMP_FILTER_SOME:
1595 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1596 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1597 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1598 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1599 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1600 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1601 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1602 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1603 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1604 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1605 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1606 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1607 	case HWTSTAMP_FILTER_NTP_ALL:
1608 		emac->rx_ts_enabled = 1;
1609 		config.rx_filter = HWTSTAMP_FILTER_ALL;
1610 		break;
1611 	default:
1612 		return -ERANGE;
1613 	}
1614 
1615 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1616 		-EFAULT : 0;
1617 }
1618 
1619 static int emac_get_ts_config(struct net_device *ndev, struct ifreq *ifr)
1620 {
1621 	struct prueth_emac *emac = netdev_priv(ndev);
1622 	struct hwtstamp_config config;
1623 
1624 	config.flags = 0;
1625 	config.tx_type = emac->tx_ts_enabled ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
1626 	config.rx_filter = emac->rx_ts_enabled ? HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE;
1627 
1628 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1629 			    -EFAULT : 0;
1630 }
1631 
1632 static int emac_ndo_ioctl(struct net_device *ndev, struct ifreq *ifr, int cmd)
1633 {
1634 	switch (cmd) {
1635 	case SIOCGHWTSTAMP:
1636 		return emac_get_ts_config(ndev, ifr);
1637 	case SIOCSHWTSTAMP:
1638 		return emac_set_ts_config(ndev, ifr);
1639 	default:
1640 		break;
1641 	}
1642 
1643 	return phy_do_ioctl(ndev, ifr, cmd);
1644 }
1645 
1646 static void emac_ndo_get_stats64(struct net_device *ndev,
1647 				 struct rtnl_link_stats64 *stats)
1648 {
1649 	struct prueth_emac *emac = netdev_priv(ndev);
1650 
1651 	emac_update_hardware_stats(emac);
1652 
1653 	stats->rx_packets     = emac_get_stat_by_name(emac, "rx_packets");
1654 	stats->rx_bytes       = emac_get_stat_by_name(emac, "rx_bytes");
1655 	stats->tx_packets     = emac_get_stat_by_name(emac, "tx_packets");
1656 	stats->tx_bytes       = emac_get_stat_by_name(emac, "tx_bytes");
1657 	stats->rx_crc_errors  = emac_get_stat_by_name(emac, "rx_crc_errors");
1658 	stats->rx_over_errors = emac_get_stat_by_name(emac, "rx_over_errors");
1659 	stats->multicast      = emac_get_stat_by_name(emac, "rx_multicast_frames");
1660 
1661 	stats->rx_errors  = ndev->stats.rx_errors;
1662 	stats->rx_dropped = ndev->stats.rx_dropped;
1663 	stats->tx_errors  = ndev->stats.tx_errors;
1664 	stats->tx_dropped = ndev->stats.tx_dropped;
1665 }
1666 
1667 static const struct net_device_ops emac_netdev_ops = {
1668 	.ndo_open = emac_ndo_open,
1669 	.ndo_stop = emac_ndo_stop,
1670 	.ndo_start_xmit = emac_ndo_start_xmit,
1671 	.ndo_set_mac_address = eth_mac_addr,
1672 	.ndo_validate_addr = eth_validate_addr,
1673 	.ndo_tx_timeout = emac_ndo_tx_timeout,
1674 	.ndo_set_rx_mode = emac_ndo_set_rx_mode,
1675 	.ndo_eth_ioctl = emac_ndo_ioctl,
1676 	.ndo_get_stats64 = emac_ndo_get_stats64,
1677 };
1678 
1679 /* get emac_port corresponding to eth_node name */
1680 static int prueth_node_port(struct device_node *eth_node)
1681 {
1682 	u32 port_id;
1683 	int ret;
1684 
1685 	ret = of_property_read_u32(eth_node, "reg", &port_id);
1686 	if (ret)
1687 		return ret;
1688 
1689 	if (port_id == 0)
1690 		return PRUETH_PORT_MII0;
1691 	else if (port_id == 1)
1692 		return PRUETH_PORT_MII1;
1693 	else
1694 		return PRUETH_PORT_INVALID;
1695 }
1696 
1697 /* get MAC instance corresponding to eth_node name */
1698 static int prueth_node_mac(struct device_node *eth_node)
1699 {
1700 	u32 port_id;
1701 	int ret;
1702 
1703 	ret = of_property_read_u32(eth_node, "reg", &port_id);
1704 	if (ret)
1705 		return ret;
1706 
1707 	if (port_id == 0)
1708 		return PRUETH_MAC0;
1709 	else if (port_id == 1)
1710 		return PRUETH_MAC1;
1711 	else
1712 		return PRUETH_MAC_INVALID;
1713 }
1714 
1715 static int prueth_netdev_init(struct prueth *prueth,
1716 			      struct device_node *eth_node)
1717 {
1718 	int ret, num_tx_chn = PRUETH_MAX_TX_QUEUES;
1719 	struct prueth_emac *emac;
1720 	struct net_device *ndev;
1721 	enum prueth_port port;
1722 	const char *irq_name;
1723 	enum prueth_mac mac;
1724 
1725 	port = prueth_node_port(eth_node);
1726 	if (port == PRUETH_PORT_INVALID)
1727 		return -EINVAL;
1728 
1729 	mac = prueth_node_mac(eth_node);
1730 	if (mac == PRUETH_MAC_INVALID)
1731 		return -EINVAL;
1732 
1733 	ndev = alloc_etherdev_mq(sizeof(*emac), num_tx_chn);
1734 	if (!ndev)
1735 		return -ENOMEM;
1736 
1737 	emac = netdev_priv(ndev);
1738 	emac->prueth = prueth;
1739 	emac->ndev = ndev;
1740 	emac->port_id = port;
1741 	emac->cmd_wq = create_singlethread_workqueue("icssg_cmd_wq");
1742 	if (!emac->cmd_wq) {
1743 		ret = -ENOMEM;
1744 		goto free_ndev;
1745 	}
1746 	INIT_WORK(&emac->rx_mode_work, emac_ndo_set_rx_mode_work);
1747 
1748 	INIT_DELAYED_WORK(&emac->stats_work, emac_stats_work_handler);
1749 
1750 	ret = pruss_request_mem_region(prueth->pruss,
1751 				       port == PRUETH_PORT_MII0 ?
1752 				       PRUSS_MEM_DRAM0 : PRUSS_MEM_DRAM1,
1753 				       &emac->dram);
1754 	if (ret) {
1755 		dev_err(prueth->dev, "unable to get DRAM: %d\n", ret);
1756 		ret = -ENOMEM;
1757 		goto free_wq;
1758 	}
1759 
1760 	emac->tx_ch_num = 1;
1761 
1762 	irq_name = "tx_ts0";
1763 	if (emac->port_id == PRUETH_PORT_MII1)
1764 		irq_name = "tx_ts1";
1765 	emac->tx_ts_irq = platform_get_irq_byname_optional(prueth->pdev, irq_name);
1766 	if (emac->tx_ts_irq < 0) {
1767 		ret = dev_err_probe(prueth->dev, emac->tx_ts_irq, "could not get tx_ts_irq\n");
1768 		goto free;
1769 	}
1770 
1771 	SET_NETDEV_DEV(ndev, prueth->dev);
1772 	spin_lock_init(&emac->lock);
1773 	mutex_init(&emac->cmd_lock);
1774 
1775 	emac->phy_node = of_parse_phandle(eth_node, "phy-handle", 0);
1776 	if (!emac->phy_node && !of_phy_is_fixed_link(eth_node)) {
1777 		dev_err(prueth->dev, "couldn't find phy-handle\n");
1778 		ret = -ENODEV;
1779 		goto free;
1780 	} else if (of_phy_is_fixed_link(eth_node)) {
1781 		ret = of_phy_register_fixed_link(eth_node);
1782 		if (ret) {
1783 			ret = dev_err_probe(prueth->dev, ret,
1784 					    "failed to register fixed-link phy\n");
1785 			goto free;
1786 		}
1787 
1788 		emac->phy_node = eth_node;
1789 	}
1790 
1791 	ret = of_get_phy_mode(eth_node, &emac->phy_if);
1792 	if (ret) {
1793 		dev_err(prueth->dev, "could not get phy-mode property\n");
1794 		goto free;
1795 	}
1796 
1797 	if (emac->phy_if != PHY_INTERFACE_MODE_MII &&
1798 	    !phy_interface_mode_is_rgmii(emac->phy_if)) {
1799 		dev_err(prueth->dev, "PHY mode unsupported %s\n", phy_modes(emac->phy_if));
1800 		ret = -EINVAL;
1801 		goto free;
1802 	}
1803 
1804 	/* AM65 SR2.0 has TX Internal delay always enabled by hardware
1805 	 * and it is not possible to disable TX Internal delay. The below
1806 	 * switch case block describes how we handle different phy modes
1807 	 * based on hardware restriction.
1808 	 */
1809 	switch (emac->phy_if) {
1810 	case PHY_INTERFACE_MODE_RGMII_ID:
1811 		emac->phy_if = PHY_INTERFACE_MODE_RGMII_RXID;
1812 		break;
1813 	case PHY_INTERFACE_MODE_RGMII_TXID:
1814 		emac->phy_if = PHY_INTERFACE_MODE_RGMII;
1815 		break;
1816 	case PHY_INTERFACE_MODE_RGMII:
1817 	case PHY_INTERFACE_MODE_RGMII_RXID:
1818 		dev_err(prueth->dev, "RGMII mode without TX delay is not supported");
1819 		ret = -EINVAL;
1820 		goto free;
1821 	default:
1822 		break;
1823 	}
1824 
1825 	/* get mac address from DT and set private and netdev addr */
1826 	ret = of_get_ethdev_address(eth_node, ndev);
1827 	if (!is_valid_ether_addr(ndev->dev_addr)) {
1828 		eth_hw_addr_random(ndev);
1829 		dev_warn(prueth->dev, "port %d: using random MAC addr: %pM\n",
1830 			 port, ndev->dev_addr);
1831 	}
1832 	ether_addr_copy(emac->mac_addr, ndev->dev_addr);
1833 
1834 	ndev->min_mtu = PRUETH_MIN_PKT_SIZE;
1835 	ndev->max_mtu = PRUETH_MAX_MTU;
1836 	ndev->netdev_ops = &emac_netdev_ops;
1837 	ndev->ethtool_ops = &icssg_ethtool_ops;
1838 	ndev->hw_features = NETIF_F_SG;
1839 	ndev->features = ndev->hw_features;
1840 
1841 	netif_napi_add(ndev, &emac->napi_rx, emac_napi_rx_poll);
1842 	prueth->emac[mac] = emac;
1843 
1844 	return 0;
1845 
1846 free:
1847 	pruss_release_mem_region(prueth->pruss, &emac->dram);
1848 free_wq:
1849 	destroy_workqueue(emac->cmd_wq);
1850 free_ndev:
1851 	emac->ndev = NULL;
1852 	prueth->emac[mac] = NULL;
1853 	free_netdev(ndev);
1854 
1855 	return ret;
1856 }
1857 
1858 static void prueth_netdev_exit(struct prueth *prueth,
1859 			       struct device_node *eth_node)
1860 {
1861 	struct prueth_emac *emac;
1862 	enum prueth_mac mac;
1863 
1864 	mac = prueth_node_mac(eth_node);
1865 	if (mac == PRUETH_MAC_INVALID)
1866 		return;
1867 
1868 	emac = prueth->emac[mac];
1869 	if (!emac)
1870 		return;
1871 
1872 	if (of_phy_is_fixed_link(emac->phy_node))
1873 		of_phy_deregister_fixed_link(emac->phy_node);
1874 
1875 	netif_napi_del(&emac->napi_rx);
1876 
1877 	pruss_release_mem_region(prueth->pruss, &emac->dram);
1878 	destroy_workqueue(emac->cmd_wq);
1879 	free_netdev(emac->ndev);
1880 	prueth->emac[mac] = NULL;
1881 }
1882 
1883 static int prueth_get_cores(struct prueth *prueth, int slice)
1884 {
1885 	struct device *dev = prueth->dev;
1886 	enum pruss_pru_id pruss_id;
1887 	struct device_node *np;
1888 	int idx = -1, ret;
1889 
1890 	np = dev->of_node;
1891 
1892 	switch (slice) {
1893 	case ICSS_SLICE0:
1894 		idx = 0;
1895 		break;
1896 	case ICSS_SLICE1:
1897 		idx = 3;
1898 		break;
1899 	default:
1900 		return -EINVAL;
1901 	}
1902 
1903 	prueth->pru[slice] = pru_rproc_get(np, idx, &pruss_id);
1904 	if (IS_ERR(prueth->pru[slice])) {
1905 		ret = PTR_ERR(prueth->pru[slice]);
1906 		prueth->pru[slice] = NULL;
1907 		return dev_err_probe(dev, ret, "unable to get PRU%d\n", slice);
1908 	}
1909 	prueth->pru_id[slice] = pruss_id;
1910 
1911 	idx++;
1912 	prueth->rtu[slice] = pru_rproc_get(np, idx, NULL);
1913 	if (IS_ERR(prueth->rtu[slice])) {
1914 		ret = PTR_ERR(prueth->rtu[slice]);
1915 		prueth->rtu[slice] = NULL;
1916 		return dev_err_probe(dev, ret, "unable to get RTU%d\n", slice);
1917 	}
1918 
1919 	idx++;
1920 	prueth->txpru[slice] = pru_rproc_get(np, idx, NULL);
1921 	if (IS_ERR(prueth->txpru[slice])) {
1922 		ret = PTR_ERR(prueth->txpru[slice]);
1923 		prueth->txpru[slice] = NULL;
1924 		return dev_err_probe(dev, ret, "unable to get TX_PRU%d\n", slice);
1925 	}
1926 
1927 	return 0;
1928 }
1929 
1930 static void prueth_put_cores(struct prueth *prueth, int slice)
1931 {
1932 	if (prueth->txpru[slice])
1933 		pru_rproc_put(prueth->txpru[slice]);
1934 
1935 	if (prueth->rtu[slice])
1936 		pru_rproc_put(prueth->rtu[slice]);
1937 
1938 	if (prueth->pru[slice])
1939 		pru_rproc_put(prueth->pru[slice]);
1940 }
1941 
1942 static const struct of_device_id prueth_dt_match[];
1943 
1944 static int prueth_probe(struct platform_device *pdev)
1945 {
1946 	struct device_node *eth_node, *eth_ports_node;
1947 	struct device_node  *eth0_node = NULL;
1948 	struct device_node  *eth1_node = NULL;
1949 	struct genpool_data_align gp_data = {
1950 		.align = SZ_64K,
1951 	};
1952 	const struct of_device_id *match;
1953 	struct device *dev = &pdev->dev;
1954 	struct device_node *np;
1955 	struct prueth *prueth;
1956 	struct pruss *pruss;
1957 	u32 msmc_ram_size;
1958 	int i, ret;
1959 
1960 	np = dev->of_node;
1961 
1962 	match = of_match_device(prueth_dt_match, dev);
1963 	if (!match)
1964 		return -ENODEV;
1965 
1966 	prueth = devm_kzalloc(dev, sizeof(*prueth), GFP_KERNEL);
1967 	if (!prueth)
1968 		return -ENOMEM;
1969 
1970 	dev_set_drvdata(dev, prueth);
1971 	prueth->pdev = pdev;
1972 	prueth->pdata = *(const struct prueth_pdata *)match->data;
1973 
1974 	prueth->dev = dev;
1975 	eth_ports_node = of_get_child_by_name(np, "ethernet-ports");
1976 	if (!eth_ports_node)
1977 		return -ENOENT;
1978 
1979 	for_each_child_of_node(eth_ports_node, eth_node) {
1980 		u32 reg;
1981 
1982 		if (strcmp(eth_node->name, "port"))
1983 			continue;
1984 		ret = of_property_read_u32(eth_node, "reg", &reg);
1985 		if (ret < 0) {
1986 			dev_err(dev, "%pOF error reading port_id %d\n",
1987 				eth_node, ret);
1988 		}
1989 
1990 		of_node_get(eth_node);
1991 
1992 		if (reg == 0) {
1993 			eth0_node = eth_node;
1994 			if (!of_device_is_available(eth0_node)) {
1995 				of_node_put(eth0_node);
1996 				eth0_node = NULL;
1997 			}
1998 		} else if (reg == 1) {
1999 			eth1_node = eth_node;
2000 			if (!of_device_is_available(eth1_node)) {
2001 				of_node_put(eth1_node);
2002 				eth1_node = NULL;
2003 			}
2004 		} else {
2005 			dev_err(dev, "port reg should be 0 or 1\n");
2006 		}
2007 	}
2008 
2009 	of_node_put(eth_ports_node);
2010 
2011 	/* At least one node must be present and available else we fail */
2012 	if (!eth0_node && !eth1_node) {
2013 		dev_err(dev, "neither port0 nor port1 node available\n");
2014 		return -ENODEV;
2015 	}
2016 
2017 	if (eth0_node == eth1_node) {
2018 		dev_err(dev, "port0 and port1 can't have same reg\n");
2019 		of_node_put(eth0_node);
2020 		return -ENODEV;
2021 	}
2022 
2023 	prueth->eth_node[PRUETH_MAC0] = eth0_node;
2024 	prueth->eth_node[PRUETH_MAC1] = eth1_node;
2025 
2026 	prueth->miig_rt = syscon_regmap_lookup_by_phandle(np, "ti,mii-g-rt");
2027 	if (IS_ERR(prueth->miig_rt)) {
2028 		dev_err(dev, "couldn't get ti,mii-g-rt syscon regmap\n");
2029 		return -ENODEV;
2030 	}
2031 
2032 	prueth->mii_rt = syscon_regmap_lookup_by_phandle(np, "ti,mii-rt");
2033 	if (IS_ERR(prueth->mii_rt)) {
2034 		dev_err(dev, "couldn't get ti,mii-rt syscon regmap\n");
2035 		return -ENODEV;
2036 	}
2037 
2038 	if (eth0_node) {
2039 		ret = prueth_get_cores(prueth, ICSS_SLICE0);
2040 		if (ret)
2041 			goto put_cores;
2042 	}
2043 
2044 	if (eth1_node) {
2045 		ret = prueth_get_cores(prueth, ICSS_SLICE1);
2046 		if (ret)
2047 			goto put_cores;
2048 	}
2049 
2050 	pruss = pruss_get(eth0_node ?
2051 			  prueth->pru[ICSS_SLICE0] : prueth->pru[ICSS_SLICE1]);
2052 	if (IS_ERR(pruss)) {
2053 		ret = PTR_ERR(pruss);
2054 		dev_err(dev, "unable to get pruss handle\n");
2055 		goto put_cores;
2056 	}
2057 
2058 	prueth->pruss = pruss;
2059 
2060 	ret = pruss_request_mem_region(pruss, PRUSS_MEM_SHRD_RAM2,
2061 				       &prueth->shram);
2062 	if (ret) {
2063 		dev_err(dev, "unable to get PRUSS SHRD RAM2: %d\n", ret);
2064 		goto put_pruss;
2065 	}
2066 
2067 	prueth->sram_pool = of_gen_pool_get(np, "sram", 0);
2068 	if (!prueth->sram_pool) {
2069 		dev_err(dev, "unable to get SRAM pool\n");
2070 		ret = -ENODEV;
2071 
2072 		goto put_mem;
2073 	}
2074 
2075 	msmc_ram_size = MSMC_RAM_SIZE;
2076 
2077 	/* NOTE: FW bug needs buffer base to be 64KB aligned */
2078 	prueth->msmcram.va =
2079 		(void __iomem *)gen_pool_alloc_algo(prueth->sram_pool,
2080 						    msmc_ram_size,
2081 						    gen_pool_first_fit_align,
2082 						    &gp_data);
2083 
2084 	if (!prueth->msmcram.va) {
2085 		ret = -ENOMEM;
2086 		dev_err(dev, "unable to allocate MSMC resource\n");
2087 		goto put_mem;
2088 	}
2089 	prueth->msmcram.pa = gen_pool_virt_to_phys(prueth->sram_pool,
2090 						   (unsigned long)prueth->msmcram.va);
2091 	prueth->msmcram.size = msmc_ram_size;
2092 	memset_io(prueth->msmcram.va, 0, msmc_ram_size);
2093 	dev_dbg(dev, "sram: pa %llx va %p size %zx\n", prueth->msmcram.pa,
2094 		prueth->msmcram.va, prueth->msmcram.size);
2095 
2096 	prueth->iep0 = icss_iep_get_idx(np, 0);
2097 	if (IS_ERR(prueth->iep0)) {
2098 		ret = dev_err_probe(dev, PTR_ERR(prueth->iep0), "iep0 get failed\n");
2099 		prueth->iep0 = NULL;
2100 		goto free_pool;
2101 	}
2102 
2103 	prueth->iep1 = icss_iep_get_idx(np, 1);
2104 	if (IS_ERR(prueth->iep1)) {
2105 		ret = dev_err_probe(dev, PTR_ERR(prueth->iep1), "iep1 get failed\n");
2106 		goto put_iep0;
2107 	}
2108 
2109 	if (prueth->pdata.quirk_10m_link_issue) {
2110 		/* Enable IEP1 for FW in 64bit mode as W/A for 10M FD link detect issue under TX
2111 		 * traffic.
2112 		 */
2113 		icss_iep_init_fw(prueth->iep1);
2114 	}
2115 
2116 	/* setup netdev interfaces */
2117 	if (eth0_node) {
2118 		ret = prueth_netdev_init(prueth, eth0_node);
2119 		if (ret) {
2120 			dev_err_probe(dev, ret, "netdev init %s failed\n",
2121 				      eth0_node->name);
2122 			goto exit_iep;
2123 		}
2124 		prueth->emac[PRUETH_MAC0]->iep = prueth->iep0;
2125 	}
2126 
2127 	if (eth1_node) {
2128 		ret = prueth_netdev_init(prueth, eth1_node);
2129 		if (ret) {
2130 			dev_err_probe(dev, ret, "netdev init %s failed\n",
2131 				      eth1_node->name);
2132 			goto netdev_exit;
2133 		}
2134 
2135 		prueth->emac[PRUETH_MAC1]->iep = prueth->iep0;
2136 	}
2137 
2138 	/* register the network devices */
2139 	if (eth0_node) {
2140 		ret = register_netdev(prueth->emac[PRUETH_MAC0]->ndev);
2141 		if (ret) {
2142 			dev_err(dev, "can't register netdev for port MII0");
2143 			goto netdev_exit;
2144 		}
2145 
2146 		prueth->registered_netdevs[PRUETH_MAC0] = prueth->emac[PRUETH_MAC0]->ndev;
2147 
2148 		ret = emac_phy_connect(prueth->emac[PRUETH_MAC0]);
2149 		if (ret) {
2150 			dev_err(dev,
2151 				"can't connect to MII0 PHY, error -%d", ret);
2152 			goto netdev_unregister;
2153 		}
2154 		phy_attached_info(prueth->emac[PRUETH_MAC0]->ndev->phydev);
2155 	}
2156 
2157 	if (eth1_node) {
2158 		ret = register_netdev(prueth->emac[PRUETH_MAC1]->ndev);
2159 		if (ret) {
2160 			dev_err(dev, "can't register netdev for port MII1");
2161 			goto netdev_unregister;
2162 		}
2163 
2164 		prueth->registered_netdevs[PRUETH_MAC1] = prueth->emac[PRUETH_MAC1]->ndev;
2165 		ret = emac_phy_connect(prueth->emac[PRUETH_MAC1]);
2166 		if (ret) {
2167 			dev_err(dev,
2168 				"can't connect to MII1 PHY, error %d", ret);
2169 			goto netdev_unregister;
2170 		}
2171 		phy_attached_info(prueth->emac[PRUETH_MAC1]->ndev->phydev);
2172 	}
2173 
2174 	dev_info(dev, "TI PRU ethernet driver initialized: %s EMAC mode\n",
2175 		 (!eth0_node || !eth1_node) ? "single" : "dual");
2176 
2177 	if (eth1_node)
2178 		of_node_put(eth1_node);
2179 	if (eth0_node)
2180 		of_node_put(eth0_node);
2181 	return 0;
2182 
2183 netdev_unregister:
2184 	for (i = 0; i < PRUETH_NUM_MACS; i++) {
2185 		if (!prueth->registered_netdevs[i])
2186 			continue;
2187 		if (prueth->emac[i]->ndev->phydev) {
2188 			phy_disconnect(prueth->emac[i]->ndev->phydev);
2189 			prueth->emac[i]->ndev->phydev = NULL;
2190 		}
2191 		unregister_netdev(prueth->registered_netdevs[i]);
2192 	}
2193 
2194 netdev_exit:
2195 	for (i = 0; i < PRUETH_NUM_MACS; i++) {
2196 		eth_node = prueth->eth_node[i];
2197 		if (!eth_node)
2198 			continue;
2199 
2200 		prueth_netdev_exit(prueth, eth_node);
2201 	}
2202 
2203 exit_iep:
2204 	if (prueth->pdata.quirk_10m_link_issue)
2205 		icss_iep_exit_fw(prueth->iep1);
2206 	icss_iep_put(prueth->iep1);
2207 
2208 put_iep0:
2209 	icss_iep_put(prueth->iep0);
2210 	prueth->iep0 = NULL;
2211 	prueth->iep1 = NULL;
2212 
2213 free_pool:
2214 	gen_pool_free(prueth->sram_pool,
2215 		      (unsigned long)prueth->msmcram.va, msmc_ram_size);
2216 
2217 put_mem:
2218 	pruss_release_mem_region(prueth->pruss, &prueth->shram);
2219 
2220 put_pruss:
2221 	pruss_put(prueth->pruss);
2222 
2223 put_cores:
2224 	if (eth1_node) {
2225 		prueth_put_cores(prueth, ICSS_SLICE1);
2226 		of_node_put(eth1_node);
2227 	}
2228 
2229 	if (eth0_node) {
2230 		prueth_put_cores(prueth, ICSS_SLICE0);
2231 		of_node_put(eth0_node);
2232 	}
2233 
2234 	return ret;
2235 }
2236 
2237 static void prueth_remove(struct platform_device *pdev)
2238 {
2239 	struct prueth *prueth = platform_get_drvdata(pdev);
2240 	struct device_node *eth_node;
2241 	int i;
2242 
2243 	for (i = 0; i < PRUETH_NUM_MACS; i++) {
2244 		if (!prueth->registered_netdevs[i])
2245 			continue;
2246 		phy_stop(prueth->emac[i]->ndev->phydev);
2247 		phy_disconnect(prueth->emac[i]->ndev->phydev);
2248 		prueth->emac[i]->ndev->phydev = NULL;
2249 		unregister_netdev(prueth->registered_netdevs[i]);
2250 	}
2251 
2252 	for (i = 0; i < PRUETH_NUM_MACS; i++) {
2253 		eth_node = prueth->eth_node[i];
2254 		if (!eth_node)
2255 			continue;
2256 
2257 		prueth_netdev_exit(prueth, eth_node);
2258 	}
2259 
2260 	if (prueth->pdata.quirk_10m_link_issue)
2261 		icss_iep_exit_fw(prueth->iep1);
2262 
2263 	icss_iep_put(prueth->iep1);
2264 	icss_iep_put(prueth->iep0);
2265 
2266 	gen_pool_free(prueth->sram_pool,
2267 		      (unsigned long)prueth->msmcram.va,
2268 		      MSMC_RAM_SIZE);
2269 
2270 	pruss_release_mem_region(prueth->pruss, &prueth->shram);
2271 
2272 	pruss_put(prueth->pruss);
2273 
2274 	if (prueth->eth_node[PRUETH_MAC1])
2275 		prueth_put_cores(prueth, ICSS_SLICE1);
2276 
2277 	if (prueth->eth_node[PRUETH_MAC0])
2278 		prueth_put_cores(prueth, ICSS_SLICE0);
2279 }
2280 
2281 #ifdef CONFIG_PM_SLEEP
2282 static int prueth_suspend(struct device *dev)
2283 {
2284 	struct prueth *prueth = dev_get_drvdata(dev);
2285 	struct net_device *ndev;
2286 	int i, ret;
2287 
2288 	for (i = 0; i < PRUETH_NUM_MACS; i++) {
2289 		ndev = prueth->registered_netdevs[i];
2290 
2291 		if (!ndev)
2292 			continue;
2293 
2294 		if (netif_running(ndev)) {
2295 			netif_device_detach(ndev);
2296 			ret = emac_ndo_stop(ndev);
2297 			if (ret < 0) {
2298 				netdev_err(ndev, "failed to stop: %d", ret);
2299 				return ret;
2300 			}
2301 		}
2302 	}
2303 
2304 	return 0;
2305 }
2306 
2307 static int prueth_resume(struct device *dev)
2308 {
2309 	struct prueth *prueth = dev_get_drvdata(dev);
2310 	struct net_device *ndev;
2311 	int i, ret;
2312 
2313 	for (i = 0; i < PRUETH_NUM_MACS; i++) {
2314 		ndev = prueth->registered_netdevs[i];
2315 
2316 		if (!ndev)
2317 			continue;
2318 
2319 		if (netif_running(ndev)) {
2320 			ret = emac_ndo_open(ndev);
2321 			if (ret < 0) {
2322 				netdev_err(ndev, "failed to start: %d", ret);
2323 				return ret;
2324 			}
2325 			netif_device_attach(ndev);
2326 		}
2327 	}
2328 
2329 	return 0;
2330 }
2331 #endif /* CONFIG_PM_SLEEP */
2332 
2333 static const struct dev_pm_ops prueth_dev_pm_ops = {
2334 	SET_SYSTEM_SLEEP_PM_OPS(prueth_suspend, prueth_resume)
2335 };
2336 
2337 static const struct prueth_pdata am654_icssg_pdata = {
2338 	.fdqring_mode = K3_RINGACC_RING_MODE_MESSAGE,
2339 	.quirk_10m_link_issue = 1,
2340 };
2341 
2342 static const struct of_device_id prueth_dt_match[] = {
2343 	{ .compatible = "ti,am654-icssg-prueth", .data = &am654_icssg_pdata },
2344 	{ /* sentinel */ }
2345 };
2346 MODULE_DEVICE_TABLE(of, prueth_dt_match);
2347 
2348 static struct platform_driver prueth_driver = {
2349 	.probe = prueth_probe,
2350 	.remove_new = prueth_remove,
2351 	.driver = {
2352 		.name = "icssg-prueth",
2353 		.of_match_table = prueth_dt_match,
2354 		.pm = &prueth_dev_pm_ops,
2355 	},
2356 };
2357 module_platform_driver(prueth_driver);
2358 
2359 MODULE_AUTHOR("Roger Quadros <rogerq@ti.com>");
2360 MODULE_AUTHOR("Md Danish Anwar <danishanwar@ti.com>");
2361 MODULE_DESCRIPTION("PRUSS ICSSG Ethernet Driver");
2362 MODULE_LICENSE("GPL");
2363