xref: /openbmc/linux/drivers/net/ethernet/ti/cpts.c (revision e0bf6c5c)
1 /*
2  * TI Common Platform Time Sync
3  *
4  * Copyright (C) 2012 Richard Cochran <richardcochran@gmail.com>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
19  */
20 #include <linux/err.h>
21 #include <linux/if.h>
22 #include <linux/hrtimer.h>
23 #include <linux/module.h>
24 #include <linux/net_tstamp.h>
25 #include <linux/ptp_classify.h>
26 #include <linux/time.h>
27 #include <linux/uaccess.h>
28 #include <linux/workqueue.h>
29 #include <linux/if_ether.h>
30 #include <linux/if_vlan.h>
31 
32 #include "cpts.h"
33 
34 #ifdef CONFIG_TI_CPTS
35 
36 #define cpts_read32(c, r)	__raw_readl(&c->reg->r)
37 #define cpts_write32(c, v, r)	__raw_writel(v, &c->reg->r)
38 
39 static int event_expired(struct cpts_event *event)
40 {
41 	return time_after(jiffies, event->tmo);
42 }
43 
44 static int event_type(struct cpts_event *event)
45 {
46 	return (event->high >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
47 }
48 
49 static int cpts_fifo_pop(struct cpts *cpts, u32 *high, u32 *low)
50 {
51 	u32 r = cpts_read32(cpts, intstat_raw);
52 
53 	if (r & TS_PEND_RAW) {
54 		*high = cpts_read32(cpts, event_high);
55 		*low  = cpts_read32(cpts, event_low);
56 		cpts_write32(cpts, EVENT_POP, event_pop);
57 		return 0;
58 	}
59 	return -1;
60 }
61 
62 /*
63  * Returns zero if matching event type was found.
64  */
65 static int cpts_fifo_read(struct cpts *cpts, int match)
66 {
67 	int i, type = -1;
68 	u32 hi, lo;
69 	struct cpts_event *event;
70 
71 	for (i = 0; i < CPTS_FIFO_DEPTH; i++) {
72 		if (cpts_fifo_pop(cpts, &hi, &lo))
73 			break;
74 		if (list_empty(&cpts->pool)) {
75 			pr_err("cpts: event pool is empty\n");
76 			return -1;
77 		}
78 		event = list_first_entry(&cpts->pool, struct cpts_event, list);
79 		event->tmo = jiffies + 2;
80 		event->high = hi;
81 		event->low = lo;
82 		type = event_type(event);
83 		switch (type) {
84 		case CPTS_EV_PUSH:
85 		case CPTS_EV_RX:
86 		case CPTS_EV_TX:
87 			list_del_init(&event->list);
88 			list_add_tail(&event->list, &cpts->events);
89 			break;
90 		case CPTS_EV_ROLL:
91 		case CPTS_EV_HALF:
92 		case CPTS_EV_HW:
93 			break;
94 		default:
95 			pr_err("cpts: unknown event type\n");
96 			break;
97 		}
98 		if (type == match)
99 			break;
100 	}
101 	return type == match ? 0 : -1;
102 }
103 
104 static cycle_t cpts_systim_read(const struct cyclecounter *cc)
105 {
106 	u64 val = 0;
107 	struct cpts_event *event;
108 	struct list_head *this, *next;
109 	struct cpts *cpts = container_of(cc, struct cpts, cc);
110 
111 	cpts_write32(cpts, TS_PUSH, ts_push);
112 	if (cpts_fifo_read(cpts, CPTS_EV_PUSH))
113 		pr_err("cpts: unable to obtain a time stamp\n");
114 
115 	list_for_each_safe(this, next, &cpts->events) {
116 		event = list_entry(this, struct cpts_event, list);
117 		if (event_type(event) == CPTS_EV_PUSH) {
118 			list_del_init(&event->list);
119 			list_add(&event->list, &cpts->pool);
120 			val = event->low;
121 			break;
122 		}
123 	}
124 
125 	return val;
126 }
127 
128 /* PTP clock operations */
129 
130 static int cpts_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
131 {
132 	u64 adj;
133 	u32 diff, mult;
134 	int neg_adj = 0;
135 	unsigned long flags;
136 	struct cpts *cpts = container_of(ptp, struct cpts, info);
137 
138 	if (ppb < 0) {
139 		neg_adj = 1;
140 		ppb = -ppb;
141 	}
142 	mult = cpts->cc_mult;
143 	adj = mult;
144 	adj *= ppb;
145 	diff = div_u64(adj, 1000000000ULL);
146 
147 	spin_lock_irqsave(&cpts->lock, flags);
148 
149 	timecounter_read(&cpts->tc);
150 
151 	cpts->cc.mult = neg_adj ? mult - diff : mult + diff;
152 
153 	spin_unlock_irqrestore(&cpts->lock, flags);
154 
155 	return 0;
156 }
157 
158 static int cpts_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
159 {
160 	unsigned long flags;
161 	struct cpts *cpts = container_of(ptp, struct cpts, info);
162 
163 	spin_lock_irqsave(&cpts->lock, flags);
164 	timecounter_adjtime(&cpts->tc, delta);
165 	spin_unlock_irqrestore(&cpts->lock, flags);
166 
167 	return 0;
168 }
169 
170 static int cpts_ptp_gettime(struct ptp_clock_info *ptp, struct timespec *ts)
171 {
172 	u64 ns;
173 	u32 remainder;
174 	unsigned long flags;
175 	struct cpts *cpts = container_of(ptp, struct cpts, info);
176 
177 	spin_lock_irqsave(&cpts->lock, flags);
178 	ns = timecounter_read(&cpts->tc);
179 	spin_unlock_irqrestore(&cpts->lock, flags);
180 
181 	ts->tv_sec = div_u64_rem(ns, 1000000000, &remainder);
182 	ts->tv_nsec = remainder;
183 
184 	return 0;
185 }
186 
187 static int cpts_ptp_settime(struct ptp_clock_info *ptp,
188 			    const struct timespec *ts)
189 {
190 	u64 ns;
191 	unsigned long flags;
192 	struct cpts *cpts = container_of(ptp, struct cpts, info);
193 
194 	ns = ts->tv_sec * 1000000000ULL;
195 	ns += ts->tv_nsec;
196 
197 	spin_lock_irqsave(&cpts->lock, flags);
198 	timecounter_init(&cpts->tc, &cpts->cc, ns);
199 	spin_unlock_irqrestore(&cpts->lock, flags);
200 
201 	return 0;
202 }
203 
204 static int cpts_ptp_enable(struct ptp_clock_info *ptp,
205 			   struct ptp_clock_request *rq, int on)
206 {
207 	return -EOPNOTSUPP;
208 }
209 
210 static struct ptp_clock_info cpts_info = {
211 	.owner		= THIS_MODULE,
212 	.name		= "CTPS timer",
213 	.max_adj	= 1000000,
214 	.n_ext_ts	= 0,
215 	.n_pins		= 0,
216 	.pps		= 0,
217 	.adjfreq	= cpts_ptp_adjfreq,
218 	.adjtime	= cpts_ptp_adjtime,
219 	.gettime	= cpts_ptp_gettime,
220 	.settime	= cpts_ptp_settime,
221 	.enable		= cpts_ptp_enable,
222 };
223 
224 static void cpts_overflow_check(struct work_struct *work)
225 {
226 	struct timespec ts;
227 	struct cpts *cpts = container_of(work, struct cpts, overflow_work.work);
228 
229 	cpts_write32(cpts, CPTS_EN, control);
230 	cpts_write32(cpts, TS_PEND_EN, int_enable);
231 	cpts_ptp_gettime(&cpts->info, &ts);
232 	pr_debug("cpts overflow check at %ld.%09lu\n", ts.tv_sec, ts.tv_nsec);
233 	schedule_delayed_work(&cpts->overflow_work, CPTS_OVERFLOW_PERIOD);
234 }
235 
236 static void cpts_clk_init(struct device *dev, struct cpts *cpts)
237 {
238 	cpts->refclk = devm_clk_get(dev, "cpts");
239 	if (IS_ERR(cpts->refclk)) {
240 		dev_err(dev, "Failed to get cpts refclk\n");
241 		cpts->refclk = NULL;
242 		return;
243 	}
244 	clk_prepare_enable(cpts->refclk);
245 }
246 
247 static void cpts_clk_release(struct cpts *cpts)
248 {
249 	clk_disable(cpts->refclk);
250 }
251 
252 static int cpts_match(struct sk_buff *skb, unsigned int ptp_class,
253 		      u16 ts_seqid, u8 ts_msgtype)
254 {
255 	u16 *seqid;
256 	unsigned int offset = 0;
257 	u8 *msgtype, *data = skb->data;
258 
259 	if (ptp_class & PTP_CLASS_VLAN)
260 		offset += VLAN_HLEN;
261 
262 	switch (ptp_class & PTP_CLASS_PMASK) {
263 	case PTP_CLASS_IPV4:
264 		offset += ETH_HLEN + IPV4_HLEN(data + offset) + UDP_HLEN;
265 		break;
266 	case PTP_CLASS_IPV6:
267 		offset += ETH_HLEN + IP6_HLEN + UDP_HLEN;
268 		break;
269 	case PTP_CLASS_L2:
270 		offset += ETH_HLEN;
271 		break;
272 	default:
273 		return 0;
274 	}
275 
276 	if (skb->len + ETH_HLEN < offset + OFF_PTP_SEQUENCE_ID + sizeof(*seqid))
277 		return 0;
278 
279 	if (unlikely(ptp_class & PTP_CLASS_V1))
280 		msgtype = data + offset + OFF_PTP_CONTROL;
281 	else
282 		msgtype = data + offset;
283 
284 	seqid = (u16 *)(data + offset + OFF_PTP_SEQUENCE_ID);
285 
286 	return (ts_msgtype == (*msgtype & 0xf) && ts_seqid == ntohs(*seqid));
287 }
288 
289 static u64 cpts_find_ts(struct cpts *cpts, struct sk_buff *skb, int ev_type)
290 {
291 	u64 ns = 0;
292 	struct cpts_event *event;
293 	struct list_head *this, *next;
294 	unsigned int class = ptp_classify_raw(skb);
295 	unsigned long flags;
296 	u16 seqid;
297 	u8 mtype;
298 
299 	if (class == PTP_CLASS_NONE)
300 		return 0;
301 
302 	spin_lock_irqsave(&cpts->lock, flags);
303 	cpts_fifo_read(cpts, CPTS_EV_PUSH);
304 	list_for_each_safe(this, next, &cpts->events) {
305 		event = list_entry(this, struct cpts_event, list);
306 		if (event_expired(event)) {
307 			list_del_init(&event->list);
308 			list_add(&event->list, &cpts->pool);
309 			continue;
310 		}
311 		mtype = (event->high >> MESSAGE_TYPE_SHIFT) & MESSAGE_TYPE_MASK;
312 		seqid = (event->high >> SEQUENCE_ID_SHIFT) & SEQUENCE_ID_MASK;
313 		if (ev_type == event_type(event) &&
314 		    cpts_match(skb, class, seqid, mtype)) {
315 			ns = timecounter_cyc2time(&cpts->tc, event->low);
316 			list_del_init(&event->list);
317 			list_add(&event->list, &cpts->pool);
318 			break;
319 		}
320 	}
321 	spin_unlock_irqrestore(&cpts->lock, flags);
322 
323 	return ns;
324 }
325 
326 void cpts_rx_timestamp(struct cpts *cpts, struct sk_buff *skb)
327 {
328 	u64 ns;
329 	struct skb_shared_hwtstamps *ssh;
330 
331 	if (!cpts->rx_enable)
332 		return;
333 	ns = cpts_find_ts(cpts, skb, CPTS_EV_RX);
334 	if (!ns)
335 		return;
336 	ssh = skb_hwtstamps(skb);
337 	memset(ssh, 0, sizeof(*ssh));
338 	ssh->hwtstamp = ns_to_ktime(ns);
339 }
340 
341 void cpts_tx_timestamp(struct cpts *cpts, struct sk_buff *skb)
342 {
343 	u64 ns;
344 	struct skb_shared_hwtstamps ssh;
345 
346 	if (!(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
347 		return;
348 	ns = cpts_find_ts(cpts, skb, CPTS_EV_TX);
349 	if (!ns)
350 		return;
351 	memset(&ssh, 0, sizeof(ssh));
352 	ssh.hwtstamp = ns_to_ktime(ns);
353 	skb_tstamp_tx(skb, &ssh);
354 }
355 
356 #endif /*CONFIG_TI_CPTS*/
357 
358 int cpts_register(struct device *dev, struct cpts *cpts,
359 		  u32 mult, u32 shift)
360 {
361 #ifdef CONFIG_TI_CPTS
362 	int err, i;
363 	unsigned long flags;
364 
365 	cpts->info = cpts_info;
366 	cpts->clock = ptp_clock_register(&cpts->info, dev);
367 	if (IS_ERR(cpts->clock)) {
368 		err = PTR_ERR(cpts->clock);
369 		cpts->clock = NULL;
370 		return err;
371 	}
372 	spin_lock_init(&cpts->lock);
373 
374 	cpts->cc.read = cpts_systim_read;
375 	cpts->cc.mask = CLOCKSOURCE_MASK(32);
376 	cpts->cc_mult = mult;
377 	cpts->cc.mult = mult;
378 	cpts->cc.shift = shift;
379 
380 	INIT_LIST_HEAD(&cpts->events);
381 	INIT_LIST_HEAD(&cpts->pool);
382 	for (i = 0; i < CPTS_MAX_EVENTS; i++)
383 		list_add(&cpts->pool_data[i].list, &cpts->pool);
384 
385 	cpts_clk_init(dev, cpts);
386 	cpts_write32(cpts, CPTS_EN, control);
387 	cpts_write32(cpts, TS_PEND_EN, int_enable);
388 
389 	spin_lock_irqsave(&cpts->lock, flags);
390 	timecounter_init(&cpts->tc, &cpts->cc, ktime_to_ns(ktime_get_real()));
391 	spin_unlock_irqrestore(&cpts->lock, flags);
392 
393 	INIT_DELAYED_WORK(&cpts->overflow_work, cpts_overflow_check);
394 	schedule_delayed_work(&cpts->overflow_work, CPTS_OVERFLOW_PERIOD);
395 
396 	cpts->phc_index = ptp_clock_index(cpts->clock);
397 #endif
398 	return 0;
399 }
400 
401 void cpts_unregister(struct cpts *cpts)
402 {
403 #ifdef CONFIG_TI_CPTS
404 	if (cpts->clock) {
405 		ptp_clock_unregister(cpts->clock);
406 		cancel_delayed_work_sync(&cpts->overflow_work);
407 	}
408 	if (cpts->refclk)
409 		cpts_clk_release(cpts);
410 #endif
411 }
412