xref: /openbmc/linux/drivers/net/ethernet/ti/cpts.c (revision d2999e1b)
1 /*
2  * TI Common Platform Time Sync
3  *
4  * Copyright (C) 2012 Richard Cochran <richardcochran@gmail.com>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
19  */
20 #include <linux/err.h>
21 #include <linux/if.h>
22 #include <linux/hrtimer.h>
23 #include <linux/module.h>
24 #include <linux/net_tstamp.h>
25 #include <linux/ptp_classify.h>
26 #include <linux/time.h>
27 #include <linux/uaccess.h>
28 #include <linux/workqueue.h>
29 #include <linux/if_ether.h>
30 #include <linux/if_vlan.h>
31 
32 #include "cpts.h"
33 
34 #ifdef CONFIG_TI_CPTS
35 
36 #define cpts_read32(c, r)	__raw_readl(&c->reg->r)
37 #define cpts_write32(c, v, r)	__raw_writel(v, &c->reg->r)
38 
39 static int event_expired(struct cpts_event *event)
40 {
41 	return time_after(jiffies, event->tmo);
42 }
43 
44 static int event_type(struct cpts_event *event)
45 {
46 	return (event->high >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
47 }
48 
49 static int cpts_fifo_pop(struct cpts *cpts, u32 *high, u32 *low)
50 {
51 	u32 r = cpts_read32(cpts, intstat_raw);
52 
53 	if (r & TS_PEND_RAW) {
54 		*high = cpts_read32(cpts, event_high);
55 		*low  = cpts_read32(cpts, event_low);
56 		cpts_write32(cpts, EVENT_POP, event_pop);
57 		return 0;
58 	}
59 	return -1;
60 }
61 
62 /*
63  * Returns zero if matching event type was found.
64  */
65 static int cpts_fifo_read(struct cpts *cpts, int match)
66 {
67 	int i, type = -1;
68 	u32 hi, lo;
69 	struct cpts_event *event;
70 
71 	for (i = 0; i < CPTS_FIFO_DEPTH; i++) {
72 		if (cpts_fifo_pop(cpts, &hi, &lo))
73 			break;
74 		if (list_empty(&cpts->pool)) {
75 			pr_err("cpts: event pool is empty\n");
76 			return -1;
77 		}
78 		event = list_first_entry(&cpts->pool, struct cpts_event, list);
79 		event->tmo = jiffies + 2;
80 		event->high = hi;
81 		event->low = lo;
82 		type = event_type(event);
83 		switch (type) {
84 		case CPTS_EV_PUSH:
85 		case CPTS_EV_RX:
86 		case CPTS_EV_TX:
87 			list_del_init(&event->list);
88 			list_add_tail(&event->list, &cpts->events);
89 			break;
90 		case CPTS_EV_ROLL:
91 		case CPTS_EV_HALF:
92 		case CPTS_EV_HW:
93 			break;
94 		default:
95 			pr_err("cpts: unknown event type\n");
96 			break;
97 		}
98 		if (type == match)
99 			break;
100 	}
101 	return type == match ? 0 : -1;
102 }
103 
104 static cycle_t cpts_systim_read(const struct cyclecounter *cc)
105 {
106 	u64 val = 0;
107 	struct cpts_event *event;
108 	struct list_head *this, *next;
109 	struct cpts *cpts = container_of(cc, struct cpts, cc);
110 
111 	cpts_write32(cpts, TS_PUSH, ts_push);
112 	if (cpts_fifo_read(cpts, CPTS_EV_PUSH))
113 		pr_err("cpts: unable to obtain a time stamp\n");
114 
115 	list_for_each_safe(this, next, &cpts->events) {
116 		event = list_entry(this, struct cpts_event, list);
117 		if (event_type(event) == CPTS_EV_PUSH) {
118 			list_del_init(&event->list);
119 			list_add(&event->list, &cpts->pool);
120 			val = event->low;
121 			break;
122 		}
123 	}
124 
125 	return val;
126 }
127 
128 /* PTP clock operations */
129 
130 static int cpts_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
131 {
132 	u64 adj;
133 	u32 diff, mult;
134 	int neg_adj = 0;
135 	unsigned long flags;
136 	struct cpts *cpts = container_of(ptp, struct cpts, info);
137 
138 	if (ppb < 0) {
139 		neg_adj = 1;
140 		ppb = -ppb;
141 	}
142 	mult = cpts->cc_mult;
143 	adj = mult;
144 	adj *= ppb;
145 	diff = div_u64(adj, 1000000000ULL);
146 
147 	spin_lock_irqsave(&cpts->lock, flags);
148 
149 	timecounter_read(&cpts->tc);
150 
151 	cpts->cc.mult = neg_adj ? mult - diff : mult + diff;
152 
153 	spin_unlock_irqrestore(&cpts->lock, flags);
154 
155 	return 0;
156 }
157 
158 static int cpts_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
159 {
160 	s64 now;
161 	unsigned long flags;
162 	struct cpts *cpts = container_of(ptp, struct cpts, info);
163 
164 	spin_lock_irqsave(&cpts->lock, flags);
165 	now = timecounter_read(&cpts->tc);
166 	now += delta;
167 	timecounter_init(&cpts->tc, &cpts->cc, now);
168 	spin_unlock_irqrestore(&cpts->lock, flags);
169 
170 	return 0;
171 }
172 
173 static int cpts_ptp_gettime(struct ptp_clock_info *ptp, struct timespec *ts)
174 {
175 	u64 ns;
176 	u32 remainder;
177 	unsigned long flags;
178 	struct cpts *cpts = container_of(ptp, struct cpts, info);
179 
180 	spin_lock_irqsave(&cpts->lock, flags);
181 	ns = timecounter_read(&cpts->tc);
182 	spin_unlock_irqrestore(&cpts->lock, flags);
183 
184 	ts->tv_sec = div_u64_rem(ns, 1000000000, &remainder);
185 	ts->tv_nsec = remainder;
186 
187 	return 0;
188 }
189 
190 static int cpts_ptp_settime(struct ptp_clock_info *ptp,
191 			    const struct timespec *ts)
192 {
193 	u64 ns;
194 	unsigned long flags;
195 	struct cpts *cpts = container_of(ptp, struct cpts, info);
196 
197 	ns = ts->tv_sec * 1000000000ULL;
198 	ns += ts->tv_nsec;
199 
200 	spin_lock_irqsave(&cpts->lock, flags);
201 	timecounter_init(&cpts->tc, &cpts->cc, ns);
202 	spin_unlock_irqrestore(&cpts->lock, flags);
203 
204 	return 0;
205 }
206 
207 static int cpts_ptp_enable(struct ptp_clock_info *ptp,
208 			   struct ptp_clock_request *rq, int on)
209 {
210 	return -EOPNOTSUPP;
211 }
212 
213 static struct ptp_clock_info cpts_info = {
214 	.owner		= THIS_MODULE,
215 	.name		= "CTPS timer",
216 	.max_adj	= 1000000,
217 	.n_ext_ts	= 0,
218 	.n_pins		= 0,
219 	.pps		= 0,
220 	.adjfreq	= cpts_ptp_adjfreq,
221 	.adjtime	= cpts_ptp_adjtime,
222 	.gettime	= cpts_ptp_gettime,
223 	.settime	= cpts_ptp_settime,
224 	.enable		= cpts_ptp_enable,
225 };
226 
227 static void cpts_overflow_check(struct work_struct *work)
228 {
229 	struct timespec ts;
230 	struct cpts *cpts = container_of(work, struct cpts, overflow_work.work);
231 
232 	cpts_write32(cpts, CPTS_EN, control);
233 	cpts_write32(cpts, TS_PEND_EN, int_enable);
234 	cpts_ptp_gettime(&cpts->info, &ts);
235 	pr_debug("cpts overflow check at %ld.%09lu\n", ts.tv_sec, ts.tv_nsec);
236 	schedule_delayed_work(&cpts->overflow_work, CPTS_OVERFLOW_PERIOD);
237 }
238 
239 static void cpts_clk_init(struct device *dev, struct cpts *cpts)
240 {
241 	cpts->refclk = devm_clk_get(dev, "cpts");
242 	if (IS_ERR(cpts->refclk)) {
243 		dev_err(dev, "Failed to get cpts refclk\n");
244 		cpts->refclk = NULL;
245 		return;
246 	}
247 	clk_prepare_enable(cpts->refclk);
248 }
249 
250 static void cpts_clk_release(struct cpts *cpts)
251 {
252 	clk_disable(cpts->refclk);
253 }
254 
255 static int cpts_match(struct sk_buff *skb, unsigned int ptp_class,
256 		      u16 ts_seqid, u8 ts_msgtype)
257 {
258 	u16 *seqid;
259 	unsigned int offset;
260 	u8 *msgtype, *data = skb->data;
261 
262 	switch (ptp_class) {
263 	case PTP_CLASS_V1_IPV4:
264 	case PTP_CLASS_V2_IPV4:
265 		offset = ETH_HLEN + IPV4_HLEN(data) + UDP_HLEN;
266 		break;
267 	case PTP_CLASS_V1_IPV6:
268 	case PTP_CLASS_V2_IPV6:
269 		offset = OFF_PTP6;
270 		break;
271 	case PTP_CLASS_V2_L2:
272 		offset = ETH_HLEN;
273 		break;
274 	case PTP_CLASS_V2_VLAN:
275 		offset = ETH_HLEN + VLAN_HLEN;
276 		break;
277 	default:
278 		return 0;
279 	}
280 
281 	if (skb->len + ETH_HLEN < offset + OFF_PTP_SEQUENCE_ID + sizeof(*seqid))
282 		return 0;
283 
284 	if (unlikely(ptp_class & PTP_CLASS_V1))
285 		msgtype = data + offset + OFF_PTP_CONTROL;
286 	else
287 		msgtype = data + offset;
288 
289 	seqid = (u16 *)(data + offset + OFF_PTP_SEQUENCE_ID);
290 
291 	return (ts_msgtype == (*msgtype & 0xf) && ts_seqid == ntohs(*seqid));
292 }
293 
294 static u64 cpts_find_ts(struct cpts *cpts, struct sk_buff *skb, int ev_type)
295 {
296 	u64 ns = 0;
297 	struct cpts_event *event;
298 	struct list_head *this, *next;
299 	unsigned int class = ptp_classify_raw(skb);
300 	unsigned long flags;
301 	u16 seqid;
302 	u8 mtype;
303 
304 	if (class == PTP_CLASS_NONE)
305 		return 0;
306 
307 	spin_lock_irqsave(&cpts->lock, flags);
308 	cpts_fifo_read(cpts, CPTS_EV_PUSH);
309 	list_for_each_safe(this, next, &cpts->events) {
310 		event = list_entry(this, struct cpts_event, list);
311 		if (event_expired(event)) {
312 			list_del_init(&event->list);
313 			list_add(&event->list, &cpts->pool);
314 			continue;
315 		}
316 		mtype = (event->high >> MESSAGE_TYPE_SHIFT) & MESSAGE_TYPE_MASK;
317 		seqid = (event->high >> SEQUENCE_ID_SHIFT) & SEQUENCE_ID_MASK;
318 		if (ev_type == event_type(event) &&
319 		    cpts_match(skb, class, seqid, mtype)) {
320 			ns = timecounter_cyc2time(&cpts->tc, event->low);
321 			list_del_init(&event->list);
322 			list_add(&event->list, &cpts->pool);
323 			break;
324 		}
325 	}
326 	spin_unlock_irqrestore(&cpts->lock, flags);
327 
328 	return ns;
329 }
330 
331 void cpts_rx_timestamp(struct cpts *cpts, struct sk_buff *skb)
332 {
333 	u64 ns;
334 	struct skb_shared_hwtstamps *ssh;
335 
336 	if (!cpts->rx_enable)
337 		return;
338 	ns = cpts_find_ts(cpts, skb, CPTS_EV_RX);
339 	if (!ns)
340 		return;
341 	ssh = skb_hwtstamps(skb);
342 	memset(ssh, 0, sizeof(*ssh));
343 	ssh->hwtstamp = ns_to_ktime(ns);
344 }
345 
346 void cpts_tx_timestamp(struct cpts *cpts, struct sk_buff *skb)
347 {
348 	u64 ns;
349 	struct skb_shared_hwtstamps ssh;
350 
351 	if (!(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
352 		return;
353 	ns = cpts_find_ts(cpts, skb, CPTS_EV_TX);
354 	if (!ns)
355 		return;
356 	memset(&ssh, 0, sizeof(ssh));
357 	ssh.hwtstamp = ns_to_ktime(ns);
358 	skb_tstamp_tx(skb, &ssh);
359 }
360 
361 #endif /*CONFIG_TI_CPTS*/
362 
363 int cpts_register(struct device *dev, struct cpts *cpts,
364 		  u32 mult, u32 shift)
365 {
366 #ifdef CONFIG_TI_CPTS
367 	int err, i;
368 	unsigned long flags;
369 
370 	cpts->info = cpts_info;
371 	cpts->clock = ptp_clock_register(&cpts->info, dev);
372 	if (IS_ERR(cpts->clock)) {
373 		err = PTR_ERR(cpts->clock);
374 		cpts->clock = NULL;
375 		return err;
376 	}
377 	spin_lock_init(&cpts->lock);
378 
379 	cpts->cc.read = cpts_systim_read;
380 	cpts->cc.mask = CLOCKSOURCE_MASK(32);
381 	cpts->cc_mult = mult;
382 	cpts->cc.mult = mult;
383 	cpts->cc.shift = shift;
384 
385 	INIT_LIST_HEAD(&cpts->events);
386 	INIT_LIST_HEAD(&cpts->pool);
387 	for (i = 0; i < CPTS_MAX_EVENTS; i++)
388 		list_add(&cpts->pool_data[i].list, &cpts->pool);
389 
390 	cpts_clk_init(dev, cpts);
391 	cpts_write32(cpts, CPTS_EN, control);
392 	cpts_write32(cpts, TS_PEND_EN, int_enable);
393 
394 	spin_lock_irqsave(&cpts->lock, flags);
395 	timecounter_init(&cpts->tc, &cpts->cc, ktime_to_ns(ktime_get_real()));
396 	spin_unlock_irqrestore(&cpts->lock, flags);
397 
398 	INIT_DELAYED_WORK(&cpts->overflow_work, cpts_overflow_check);
399 	schedule_delayed_work(&cpts->overflow_work, CPTS_OVERFLOW_PERIOD);
400 
401 	cpts->phc_index = ptp_clock_index(cpts->clock);
402 #endif
403 	return 0;
404 }
405 
406 void cpts_unregister(struct cpts *cpts)
407 {
408 #ifdef CONFIG_TI_CPTS
409 	if (cpts->clock) {
410 		ptp_clock_unregister(cpts->clock);
411 		cancel_delayed_work_sync(&cpts->overflow_work);
412 	}
413 	if (cpts->refclk)
414 		cpts_clk_release(cpts);
415 #endif
416 }
417