xref: /openbmc/linux/drivers/net/ethernet/ti/cpts.c (revision abade675e02e1b73da0c20ffaf08fbe309038298)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * TI Common Platform Time Sync
4  *
5  * Copyright (C) 2012 Richard Cochran <richardcochran@gmail.com>
6  *
7  */
8 #include <linux/err.h>
9 #include <linux/if.h>
10 #include <linux/hrtimer.h>
11 #include <linux/module.h>
12 #include <linux/net_tstamp.h>
13 #include <linux/ptp_classify.h>
14 #include <linux/time.h>
15 #include <linux/uaccess.h>
16 #include <linux/workqueue.h>
17 #include <linux/if_ether.h>
18 #include <linux/if_vlan.h>
19 
20 #include "cpts.h"
21 
22 #define CPTS_SKB_TX_WORK_TIMEOUT 1 /* jiffies */
23 
24 struct cpts_skb_cb_data {
25 	unsigned long tmo;
26 };
27 
28 #define cpts_read32(c, r)	readl_relaxed(&c->reg->r)
29 #define cpts_write32(c, v, r)	writel_relaxed(v, &c->reg->r)
30 
31 static int cpts_match(struct sk_buff *skb, unsigned int ptp_class,
32 		      u16 ts_seqid, u8 ts_msgtype);
33 
34 static int event_expired(struct cpts_event *event)
35 {
36 	return time_after(jiffies, event->tmo);
37 }
38 
39 static int event_type(struct cpts_event *event)
40 {
41 	return (event->high >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
42 }
43 
44 static int cpts_fifo_pop(struct cpts *cpts, u32 *high, u32 *low)
45 {
46 	u32 r = cpts_read32(cpts, intstat_raw);
47 
48 	if (r & TS_PEND_RAW) {
49 		*high = cpts_read32(cpts, event_high);
50 		*low  = cpts_read32(cpts, event_low);
51 		cpts_write32(cpts, EVENT_POP, event_pop);
52 		return 0;
53 	}
54 	return -1;
55 }
56 
57 static int cpts_purge_events(struct cpts *cpts)
58 {
59 	struct list_head *this, *next;
60 	struct cpts_event *event;
61 	int removed = 0;
62 
63 	list_for_each_safe(this, next, &cpts->events) {
64 		event = list_entry(this, struct cpts_event, list);
65 		if (event_expired(event)) {
66 			list_del_init(&event->list);
67 			list_add(&event->list, &cpts->pool);
68 			++removed;
69 		}
70 	}
71 
72 	if (removed)
73 		pr_debug("cpts: event pool cleaned up %d\n", removed);
74 	return removed ? 0 : -1;
75 }
76 
77 static void cpts_purge_txq(struct cpts *cpts)
78 {
79 	struct cpts_skb_cb_data *skb_cb;
80 	struct sk_buff *skb, *tmp;
81 	int removed = 0;
82 
83 	skb_queue_walk_safe(&cpts->txq, skb, tmp) {
84 		skb_cb = (struct cpts_skb_cb_data *)skb->cb;
85 		if (time_after(jiffies, skb_cb->tmo)) {
86 			__skb_unlink(skb, &cpts->txq);
87 			dev_consume_skb_any(skb);
88 			++removed;
89 		}
90 	}
91 
92 	if (removed)
93 		dev_dbg(cpts->dev, "txq cleaned up %d\n", removed);
94 }
95 
96 static bool cpts_match_tx_ts(struct cpts *cpts, struct cpts_event *event)
97 {
98 	struct sk_buff *skb, *tmp;
99 	u16 seqid;
100 	u8 mtype;
101 	bool found = false;
102 
103 	mtype = (event->high >> MESSAGE_TYPE_SHIFT) & MESSAGE_TYPE_MASK;
104 	seqid = (event->high >> SEQUENCE_ID_SHIFT) & SEQUENCE_ID_MASK;
105 
106 	/* no need to grab txq.lock as access is always done under cpts->lock */
107 	skb_queue_walk_safe(&cpts->txq, skb, tmp) {
108 		struct skb_shared_hwtstamps ssh;
109 		unsigned int class = ptp_classify_raw(skb);
110 		struct cpts_skb_cb_data *skb_cb =
111 					(struct cpts_skb_cb_data *)skb->cb;
112 
113 		if (cpts_match(skb, class, seqid, mtype)) {
114 			u64 ns = timecounter_cyc2time(&cpts->tc, event->low);
115 
116 			memset(&ssh, 0, sizeof(ssh));
117 			ssh.hwtstamp = ns_to_ktime(ns);
118 			skb_tstamp_tx(skb, &ssh);
119 			found = true;
120 			__skb_unlink(skb, &cpts->txq);
121 			dev_consume_skb_any(skb);
122 			dev_dbg(cpts->dev, "match tx timestamp mtype %u seqid %04x\n",
123 				mtype, seqid);
124 			break;
125 		}
126 
127 		if (time_after(jiffies, skb_cb->tmo)) {
128 			/* timeout any expired skbs over 1s */
129 			dev_dbg(cpts->dev, "expiring tx timestamp from txq\n");
130 			__skb_unlink(skb, &cpts->txq);
131 			dev_consume_skb_any(skb);
132 		}
133 	}
134 
135 	return found;
136 }
137 
138 /*
139  * Returns zero if matching event type was found.
140  */
141 static int cpts_fifo_read(struct cpts *cpts, int match)
142 {
143 	int i, type = -1;
144 	u32 hi, lo;
145 	struct cpts_event *event;
146 
147 	for (i = 0; i < CPTS_FIFO_DEPTH; i++) {
148 		if (cpts_fifo_pop(cpts, &hi, &lo))
149 			break;
150 
151 		if (list_empty(&cpts->pool) && cpts_purge_events(cpts)) {
152 			pr_err("cpts: event pool empty\n");
153 			return -1;
154 		}
155 
156 		event = list_first_entry(&cpts->pool, struct cpts_event, list);
157 		event->tmo = jiffies + 2;
158 		event->high = hi;
159 		event->low = lo;
160 		type = event_type(event);
161 		switch (type) {
162 		case CPTS_EV_TX:
163 			if (cpts_match_tx_ts(cpts, event)) {
164 				/* if the new event matches an existing skb,
165 				 * then don't queue it
166 				 */
167 				break;
168 			}
169 			/* fall through */
170 		case CPTS_EV_PUSH:
171 		case CPTS_EV_RX:
172 			list_del_init(&event->list);
173 			list_add_tail(&event->list, &cpts->events);
174 			break;
175 		case CPTS_EV_ROLL:
176 		case CPTS_EV_HALF:
177 		case CPTS_EV_HW:
178 			break;
179 		default:
180 			pr_err("cpts: unknown event type\n");
181 			break;
182 		}
183 		if (type == match)
184 			break;
185 	}
186 	return type == match ? 0 : -1;
187 }
188 
189 static u64 cpts_systim_read(const struct cyclecounter *cc)
190 {
191 	u64 val = 0;
192 	struct cpts_event *event;
193 	struct list_head *this, *next;
194 	struct cpts *cpts = container_of(cc, struct cpts, cc);
195 
196 	cpts_write32(cpts, TS_PUSH, ts_push);
197 	if (cpts_fifo_read(cpts, CPTS_EV_PUSH))
198 		pr_err("cpts: unable to obtain a time stamp\n");
199 
200 	list_for_each_safe(this, next, &cpts->events) {
201 		event = list_entry(this, struct cpts_event, list);
202 		if (event_type(event) == CPTS_EV_PUSH) {
203 			list_del_init(&event->list);
204 			list_add(&event->list, &cpts->pool);
205 			val = event->low;
206 			break;
207 		}
208 	}
209 
210 	return val;
211 }
212 
213 /* PTP clock operations */
214 
215 static int cpts_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
216 {
217 	u64 adj;
218 	u32 diff, mult;
219 	int neg_adj = 0;
220 	unsigned long flags;
221 	struct cpts *cpts = container_of(ptp, struct cpts, info);
222 
223 	if (ppb < 0) {
224 		neg_adj = 1;
225 		ppb = -ppb;
226 	}
227 	mult = cpts->cc_mult;
228 	adj = mult;
229 	adj *= ppb;
230 	diff = div_u64(adj, 1000000000ULL);
231 
232 	spin_lock_irqsave(&cpts->lock, flags);
233 
234 	timecounter_read(&cpts->tc);
235 
236 	cpts->cc.mult = neg_adj ? mult - diff : mult + diff;
237 
238 	spin_unlock_irqrestore(&cpts->lock, flags);
239 
240 	return 0;
241 }
242 
243 static int cpts_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
244 {
245 	unsigned long flags;
246 	struct cpts *cpts = container_of(ptp, struct cpts, info);
247 
248 	spin_lock_irqsave(&cpts->lock, flags);
249 	timecounter_adjtime(&cpts->tc, delta);
250 	spin_unlock_irqrestore(&cpts->lock, flags);
251 
252 	return 0;
253 }
254 
255 static int cpts_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
256 {
257 	u64 ns;
258 	unsigned long flags;
259 	struct cpts *cpts = container_of(ptp, struct cpts, info);
260 
261 	spin_lock_irqsave(&cpts->lock, flags);
262 	ns = timecounter_read(&cpts->tc);
263 	spin_unlock_irqrestore(&cpts->lock, flags);
264 
265 	*ts = ns_to_timespec64(ns);
266 
267 	return 0;
268 }
269 
270 static int cpts_ptp_settime(struct ptp_clock_info *ptp,
271 			    const struct timespec64 *ts)
272 {
273 	u64 ns;
274 	unsigned long flags;
275 	struct cpts *cpts = container_of(ptp, struct cpts, info);
276 
277 	ns = timespec64_to_ns(ts);
278 
279 	spin_lock_irqsave(&cpts->lock, flags);
280 	timecounter_init(&cpts->tc, &cpts->cc, ns);
281 	spin_unlock_irqrestore(&cpts->lock, flags);
282 
283 	return 0;
284 }
285 
286 static int cpts_ptp_enable(struct ptp_clock_info *ptp,
287 			   struct ptp_clock_request *rq, int on)
288 {
289 	return -EOPNOTSUPP;
290 }
291 
292 static long cpts_overflow_check(struct ptp_clock_info *ptp)
293 {
294 	struct cpts *cpts = container_of(ptp, struct cpts, info);
295 	unsigned long delay = cpts->ov_check_period;
296 	struct timespec64 ts;
297 	unsigned long flags;
298 
299 	spin_lock_irqsave(&cpts->lock, flags);
300 	ts = ns_to_timespec64(timecounter_read(&cpts->tc));
301 
302 	if (!skb_queue_empty(&cpts->txq)) {
303 		cpts_purge_txq(cpts);
304 		if (!skb_queue_empty(&cpts->txq))
305 			delay = CPTS_SKB_TX_WORK_TIMEOUT;
306 	}
307 	spin_unlock_irqrestore(&cpts->lock, flags);
308 
309 	pr_debug("cpts overflow check at %lld.%09ld\n",
310 		 (long long)ts.tv_sec, ts.tv_nsec);
311 	return (long)delay;
312 }
313 
314 static const struct ptp_clock_info cpts_info = {
315 	.owner		= THIS_MODULE,
316 	.name		= "CTPS timer",
317 	.max_adj	= 1000000,
318 	.n_ext_ts	= 0,
319 	.n_pins		= 0,
320 	.pps		= 0,
321 	.adjfreq	= cpts_ptp_adjfreq,
322 	.adjtime	= cpts_ptp_adjtime,
323 	.gettime64	= cpts_ptp_gettime,
324 	.settime64	= cpts_ptp_settime,
325 	.enable		= cpts_ptp_enable,
326 	.do_aux_work	= cpts_overflow_check,
327 };
328 
329 static int cpts_match(struct sk_buff *skb, unsigned int ptp_class,
330 		      u16 ts_seqid, u8 ts_msgtype)
331 {
332 	u16 *seqid;
333 	unsigned int offset = 0;
334 	u8 *msgtype, *data = skb->data;
335 
336 	if (ptp_class & PTP_CLASS_VLAN)
337 		offset += VLAN_HLEN;
338 
339 	switch (ptp_class & PTP_CLASS_PMASK) {
340 	case PTP_CLASS_IPV4:
341 		offset += ETH_HLEN + IPV4_HLEN(data + offset) + UDP_HLEN;
342 		break;
343 	case PTP_CLASS_IPV6:
344 		offset += ETH_HLEN + IP6_HLEN + UDP_HLEN;
345 		break;
346 	case PTP_CLASS_L2:
347 		offset += ETH_HLEN;
348 		break;
349 	default:
350 		return 0;
351 	}
352 
353 	if (skb->len + ETH_HLEN < offset + OFF_PTP_SEQUENCE_ID + sizeof(*seqid))
354 		return 0;
355 
356 	if (unlikely(ptp_class & PTP_CLASS_V1))
357 		msgtype = data + offset + OFF_PTP_CONTROL;
358 	else
359 		msgtype = data + offset;
360 
361 	seqid = (u16 *)(data + offset + OFF_PTP_SEQUENCE_ID);
362 
363 	return (ts_msgtype == (*msgtype & 0xf) && ts_seqid == ntohs(*seqid));
364 }
365 
366 static u64 cpts_find_ts(struct cpts *cpts, struct sk_buff *skb, int ev_type)
367 {
368 	u64 ns = 0;
369 	struct cpts_event *event;
370 	struct list_head *this, *next;
371 	unsigned int class = ptp_classify_raw(skb);
372 	unsigned long flags;
373 	u16 seqid;
374 	u8 mtype;
375 
376 	if (class == PTP_CLASS_NONE)
377 		return 0;
378 
379 	spin_lock_irqsave(&cpts->lock, flags);
380 	cpts_fifo_read(cpts, -1);
381 	list_for_each_safe(this, next, &cpts->events) {
382 		event = list_entry(this, struct cpts_event, list);
383 		if (event_expired(event)) {
384 			list_del_init(&event->list);
385 			list_add(&event->list, &cpts->pool);
386 			continue;
387 		}
388 		mtype = (event->high >> MESSAGE_TYPE_SHIFT) & MESSAGE_TYPE_MASK;
389 		seqid = (event->high >> SEQUENCE_ID_SHIFT) & SEQUENCE_ID_MASK;
390 		if (ev_type == event_type(event) &&
391 		    cpts_match(skb, class, seqid, mtype)) {
392 			ns = timecounter_cyc2time(&cpts->tc, event->low);
393 			list_del_init(&event->list);
394 			list_add(&event->list, &cpts->pool);
395 			break;
396 		}
397 	}
398 
399 	if (ev_type == CPTS_EV_TX && !ns) {
400 		struct cpts_skb_cb_data *skb_cb =
401 				(struct cpts_skb_cb_data *)skb->cb;
402 		/* Not found, add frame to queue for processing later.
403 		 * The periodic FIFO check will handle this.
404 		 */
405 		skb_get(skb);
406 		/* get the timestamp for timeouts */
407 		skb_cb->tmo = jiffies + msecs_to_jiffies(100);
408 		__skb_queue_tail(&cpts->txq, skb);
409 		ptp_schedule_worker(cpts->clock, 0);
410 	}
411 	spin_unlock_irqrestore(&cpts->lock, flags);
412 
413 	return ns;
414 }
415 
416 void cpts_rx_timestamp(struct cpts *cpts, struct sk_buff *skb)
417 {
418 	u64 ns;
419 	struct skb_shared_hwtstamps *ssh;
420 
421 	ns = cpts_find_ts(cpts, skb, CPTS_EV_RX);
422 	if (!ns)
423 		return;
424 	ssh = skb_hwtstamps(skb);
425 	memset(ssh, 0, sizeof(*ssh));
426 	ssh->hwtstamp = ns_to_ktime(ns);
427 }
428 EXPORT_SYMBOL_GPL(cpts_rx_timestamp);
429 
430 void cpts_tx_timestamp(struct cpts *cpts, struct sk_buff *skb)
431 {
432 	u64 ns;
433 	struct skb_shared_hwtstamps ssh;
434 
435 	if (!(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
436 		return;
437 	ns = cpts_find_ts(cpts, skb, CPTS_EV_TX);
438 	if (!ns)
439 		return;
440 	memset(&ssh, 0, sizeof(ssh));
441 	ssh.hwtstamp = ns_to_ktime(ns);
442 	skb_tstamp_tx(skb, &ssh);
443 }
444 EXPORT_SYMBOL_GPL(cpts_tx_timestamp);
445 
446 int cpts_register(struct cpts *cpts)
447 {
448 	int err, i;
449 
450 	skb_queue_head_init(&cpts->txq);
451 	INIT_LIST_HEAD(&cpts->events);
452 	INIT_LIST_HEAD(&cpts->pool);
453 	for (i = 0; i < CPTS_MAX_EVENTS; i++)
454 		list_add(&cpts->pool_data[i].list, &cpts->pool);
455 
456 	clk_enable(cpts->refclk);
457 
458 	cpts_write32(cpts, CPTS_EN, control);
459 	cpts_write32(cpts, TS_PEND_EN, int_enable);
460 
461 	timecounter_init(&cpts->tc, &cpts->cc, ktime_to_ns(ktime_get_real()));
462 
463 	cpts->clock = ptp_clock_register(&cpts->info, cpts->dev);
464 	if (IS_ERR(cpts->clock)) {
465 		err = PTR_ERR(cpts->clock);
466 		cpts->clock = NULL;
467 		goto err_ptp;
468 	}
469 	cpts->phc_index = ptp_clock_index(cpts->clock);
470 
471 	ptp_schedule_worker(cpts->clock, cpts->ov_check_period);
472 	return 0;
473 
474 err_ptp:
475 	clk_disable(cpts->refclk);
476 	return err;
477 }
478 EXPORT_SYMBOL_GPL(cpts_register);
479 
480 void cpts_unregister(struct cpts *cpts)
481 {
482 	if (WARN_ON(!cpts->clock))
483 		return;
484 
485 	ptp_clock_unregister(cpts->clock);
486 	cpts->clock = NULL;
487 
488 	cpts_write32(cpts, 0, int_enable);
489 	cpts_write32(cpts, 0, control);
490 
491 	/* Drop all packet */
492 	skb_queue_purge(&cpts->txq);
493 
494 	clk_disable(cpts->refclk);
495 }
496 EXPORT_SYMBOL_GPL(cpts_unregister);
497 
498 static void cpts_calc_mult_shift(struct cpts *cpts)
499 {
500 	u64 frac, maxsec, ns;
501 	u32 freq;
502 
503 	freq = clk_get_rate(cpts->refclk);
504 
505 	/* Calc the maximum number of seconds which we can run before
506 	 * wrapping around.
507 	 */
508 	maxsec = cpts->cc.mask;
509 	do_div(maxsec, freq);
510 	/* limit conversation rate to 10 sec as higher values will produce
511 	 * too small mult factors and so reduce the conversion accuracy
512 	 */
513 	if (maxsec > 10)
514 		maxsec = 10;
515 
516 	/* Calc overflow check period (maxsec / 2) */
517 	cpts->ov_check_period = (HZ * maxsec) / 2;
518 	dev_info(cpts->dev, "cpts: overflow check period %lu (jiffies)\n",
519 		 cpts->ov_check_period);
520 
521 	if (cpts->cc.mult || cpts->cc.shift)
522 		return;
523 
524 	clocks_calc_mult_shift(&cpts->cc.mult, &cpts->cc.shift,
525 			       freq, NSEC_PER_SEC, maxsec);
526 
527 	frac = 0;
528 	ns = cyclecounter_cyc2ns(&cpts->cc, freq, cpts->cc.mask, &frac);
529 
530 	dev_info(cpts->dev,
531 		 "CPTS: ref_clk_freq:%u calc_mult:%u calc_shift:%u error:%lld nsec/sec\n",
532 		 freq, cpts->cc.mult, cpts->cc.shift, (ns - NSEC_PER_SEC));
533 }
534 
535 static int cpts_of_parse(struct cpts *cpts, struct device_node *node)
536 {
537 	int ret = -EINVAL;
538 	u32 prop;
539 
540 	if (!of_property_read_u32(node, "cpts_clock_mult", &prop))
541 		cpts->cc.mult = prop;
542 
543 	if (!of_property_read_u32(node, "cpts_clock_shift", &prop))
544 		cpts->cc.shift = prop;
545 
546 	if ((cpts->cc.mult && !cpts->cc.shift) ||
547 	    (!cpts->cc.mult && cpts->cc.shift))
548 		goto of_error;
549 
550 	return 0;
551 
552 of_error:
553 	dev_err(cpts->dev, "CPTS: Missing property in the DT.\n");
554 	return ret;
555 }
556 
557 struct cpts *cpts_create(struct device *dev, void __iomem *regs,
558 			 struct device_node *node)
559 {
560 	struct cpts *cpts;
561 	int ret;
562 
563 	cpts = devm_kzalloc(dev, sizeof(*cpts), GFP_KERNEL);
564 	if (!cpts)
565 		return ERR_PTR(-ENOMEM);
566 
567 	cpts->dev = dev;
568 	cpts->reg = (struct cpsw_cpts __iomem *)regs;
569 	spin_lock_init(&cpts->lock);
570 
571 	ret = cpts_of_parse(cpts, node);
572 	if (ret)
573 		return ERR_PTR(ret);
574 
575 	cpts->refclk = devm_clk_get(dev, "cpts");
576 	if (IS_ERR(cpts->refclk)) {
577 		dev_err(dev, "Failed to get cpts refclk\n");
578 		return ERR_CAST(cpts->refclk);
579 	}
580 
581 	ret = clk_prepare(cpts->refclk);
582 	if (ret)
583 		return ERR_PTR(ret);
584 
585 	cpts->cc.read = cpts_systim_read;
586 	cpts->cc.mask = CLOCKSOURCE_MASK(32);
587 	cpts->info = cpts_info;
588 
589 	cpts_calc_mult_shift(cpts);
590 	/* save cc.mult original value as it can be modified
591 	 * by cpts_ptp_adjfreq().
592 	 */
593 	cpts->cc_mult = cpts->cc.mult;
594 
595 	return cpts;
596 }
597 EXPORT_SYMBOL_GPL(cpts_create);
598 
599 void cpts_release(struct cpts *cpts)
600 {
601 	if (!cpts)
602 		return;
603 
604 	if (WARN_ON(!cpts->refclk))
605 		return;
606 
607 	clk_unprepare(cpts->refclk);
608 }
609 EXPORT_SYMBOL_GPL(cpts_release);
610 
611 MODULE_LICENSE("GPL v2");
612 MODULE_DESCRIPTION("TI CPTS driver");
613 MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>");
614