xref: /openbmc/linux/drivers/net/ethernet/ti/cpts.c (revision 8631f940b81bf0da3d375fce166d381fa8c47bb2)
1 /*
2  * TI Common Platform Time Sync
3  *
4  * Copyright (C) 2012 Richard Cochran <richardcochran@gmail.com>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
19  */
20 #include <linux/err.h>
21 #include <linux/if.h>
22 #include <linux/hrtimer.h>
23 #include <linux/module.h>
24 #include <linux/net_tstamp.h>
25 #include <linux/ptp_classify.h>
26 #include <linux/time.h>
27 #include <linux/uaccess.h>
28 #include <linux/workqueue.h>
29 #include <linux/if_ether.h>
30 #include <linux/if_vlan.h>
31 
32 #include "cpts.h"
33 
34 #define CPTS_SKB_TX_WORK_TIMEOUT 1 /* jiffies */
35 
36 struct cpts_skb_cb_data {
37 	unsigned long tmo;
38 };
39 
40 #define cpts_read32(c, r)	readl_relaxed(&c->reg->r)
41 #define cpts_write32(c, v, r)	writel_relaxed(v, &c->reg->r)
42 
43 static int cpts_match(struct sk_buff *skb, unsigned int ptp_class,
44 		      u16 ts_seqid, u8 ts_msgtype);
45 
46 static int event_expired(struct cpts_event *event)
47 {
48 	return time_after(jiffies, event->tmo);
49 }
50 
51 static int event_type(struct cpts_event *event)
52 {
53 	return (event->high >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
54 }
55 
56 static int cpts_fifo_pop(struct cpts *cpts, u32 *high, u32 *low)
57 {
58 	u32 r = cpts_read32(cpts, intstat_raw);
59 
60 	if (r & TS_PEND_RAW) {
61 		*high = cpts_read32(cpts, event_high);
62 		*low  = cpts_read32(cpts, event_low);
63 		cpts_write32(cpts, EVENT_POP, event_pop);
64 		return 0;
65 	}
66 	return -1;
67 }
68 
69 static int cpts_purge_events(struct cpts *cpts)
70 {
71 	struct list_head *this, *next;
72 	struct cpts_event *event;
73 	int removed = 0;
74 
75 	list_for_each_safe(this, next, &cpts->events) {
76 		event = list_entry(this, struct cpts_event, list);
77 		if (event_expired(event)) {
78 			list_del_init(&event->list);
79 			list_add(&event->list, &cpts->pool);
80 			++removed;
81 		}
82 	}
83 
84 	if (removed)
85 		pr_debug("cpts: event pool cleaned up %d\n", removed);
86 	return removed ? 0 : -1;
87 }
88 
89 static void cpts_purge_txq(struct cpts *cpts)
90 {
91 	struct cpts_skb_cb_data *skb_cb;
92 	struct sk_buff *skb, *tmp;
93 	int removed = 0;
94 
95 	skb_queue_walk_safe(&cpts->txq, skb, tmp) {
96 		skb_cb = (struct cpts_skb_cb_data *)skb->cb;
97 		if (time_after(jiffies, skb_cb->tmo)) {
98 			__skb_unlink(skb, &cpts->txq);
99 			dev_consume_skb_any(skb);
100 			++removed;
101 		}
102 	}
103 
104 	if (removed)
105 		dev_dbg(cpts->dev, "txq cleaned up %d\n", removed);
106 }
107 
108 static bool cpts_match_tx_ts(struct cpts *cpts, struct cpts_event *event)
109 {
110 	struct sk_buff *skb, *tmp;
111 	u16 seqid;
112 	u8 mtype;
113 	bool found = false;
114 
115 	mtype = (event->high >> MESSAGE_TYPE_SHIFT) & MESSAGE_TYPE_MASK;
116 	seqid = (event->high >> SEQUENCE_ID_SHIFT) & SEQUENCE_ID_MASK;
117 
118 	/* no need to grab txq.lock as access is always done under cpts->lock */
119 	skb_queue_walk_safe(&cpts->txq, skb, tmp) {
120 		struct skb_shared_hwtstamps ssh;
121 		unsigned int class = ptp_classify_raw(skb);
122 		struct cpts_skb_cb_data *skb_cb =
123 					(struct cpts_skb_cb_data *)skb->cb;
124 
125 		if (cpts_match(skb, class, seqid, mtype)) {
126 			u64 ns = timecounter_cyc2time(&cpts->tc, event->low);
127 
128 			memset(&ssh, 0, sizeof(ssh));
129 			ssh.hwtstamp = ns_to_ktime(ns);
130 			skb_tstamp_tx(skb, &ssh);
131 			found = true;
132 			__skb_unlink(skb, &cpts->txq);
133 			dev_consume_skb_any(skb);
134 			dev_dbg(cpts->dev, "match tx timestamp mtype %u seqid %04x\n",
135 				mtype, seqid);
136 			break;
137 		}
138 
139 		if (time_after(jiffies, skb_cb->tmo)) {
140 			/* timeout any expired skbs over 1s */
141 			dev_dbg(cpts->dev, "expiring tx timestamp from txq\n");
142 			__skb_unlink(skb, &cpts->txq);
143 			dev_consume_skb_any(skb);
144 		}
145 	}
146 
147 	return found;
148 }
149 
150 /*
151  * Returns zero if matching event type was found.
152  */
153 static int cpts_fifo_read(struct cpts *cpts, int match)
154 {
155 	int i, type = -1;
156 	u32 hi, lo;
157 	struct cpts_event *event;
158 
159 	for (i = 0; i < CPTS_FIFO_DEPTH; i++) {
160 		if (cpts_fifo_pop(cpts, &hi, &lo))
161 			break;
162 
163 		if (list_empty(&cpts->pool) && cpts_purge_events(cpts)) {
164 			pr_err("cpts: event pool empty\n");
165 			return -1;
166 		}
167 
168 		event = list_first_entry(&cpts->pool, struct cpts_event, list);
169 		event->tmo = jiffies + 2;
170 		event->high = hi;
171 		event->low = lo;
172 		type = event_type(event);
173 		switch (type) {
174 		case CPTS_EV_TX:
175 			if (cpts_match_tx_ts(cpts, event)) {
176 				/* if the new event matches an existing skb,
177 				 * then don't queue it
178 				 */
179 				break;
180 			}
181 			/* fall through */
182 		case CPTS_EV_PUSH:
183 		case CPTS_EV_RX:
184 			list_del_init(&event->list);
185 			list_add_tail(&event->list, &cpts->events);
186 			break;
187 		case CPTS_EV_ROLL:
188 		case CPTS_EV_HALF:
189 		case CPTS_EV_HW:
190 			break;
191 		default:
192 			pr_err("cpts: unknown event type\n");
193 			break;
194 		}
195 		if (type == match)
196 			break;
197 	}
198 	return type == match ? 0 : -1;
199 }
200 
201 static u64 cpts_systim_read(const struct cyclecounter *cc)
202 {
203 	u64 val = 0;
204 	struct cpts_event *event;
205 	struct list_head *this, *next;
206 	struct cpts *cpts = container_of(cc, struct cpts, cc);
207 
208 	cpts_write32(cpts, TS_PUSH, ts_push);
209 	if (cpts_fifo_read(cpts, CPTS_EV_PUSH))
210 		pr_err("cpts: unable to obtain a time stamp\n");
211 
212 	list_for_each_safe(this, next, &cpts->events) {
213 		event = list_entry(this, struct cpts_event, list);
214 		if (event_type(event) == CPTS_EV_PUSH) {
215 			list_del_init(&event->list);
216 			list_add(&event->list, &cpts->pool);
217 			val = event->low;
218 			break;
219 		}
220 	}
221 
222 	return val;
223 }
224 
225 /* PTP clock operations */
226 
227 static int cpts_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
228 {
229 	u64 adj;
230 	u32 diff, mult;
231 	int neg_adj = 0;
232 	unsigned long flags;
233 	struct cpts *cpts = container_of(ptp, struct cpts, info);
234 
235 	if (ppb < 0) {
236 		neg_adj = 1;
237 		ppb = -ppb;
238 	}
239 	mult = cpts->cc_mult;
240 	adj = mult;
241 	adj *= ppb;
242 	diff = div_u64(adj, 1000000000ULL);
243 
244 	spin_lock_irqsave(&cpts->lock, flags);
245 
246 	timecounter_read(&cpts->tc);
247 
248 	cpts->cc.mult = neg_adj ? mult - diff : mult + diff;
249 
250 	spin_unlock_irqrestore(&cpts->lock, flags);
251 
252 	return 0;
253 }
254 
255 static int cpts_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
256 {
257 	unsigned long flags;
258 	struct cpts *cpts = container_of(ptp, struct cpts, info);
259 
260 	spin_lock_irqsave(&cpts->lock, flags);
261 	timecounter_adjtime(&cpts->tc, delta);
262 	spin_unlock_irqrestore(&cpts->lock, flags);
263 
264 	return 0;
265 }
266 
267 static int cpts_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
268 {
269 	u64 ns;
270 	unsigned long flags;
271 	struct cpts *cpts = container_of(ptp, struct cpts, info);
272 
273 	spin_lock_irqsave(&cpts->lock, flags);
274 	ns = timecounter_read(&cpts->tc);
275 	spin_unlock_irqrestore(&cpts->lock, flags);
276 
277 	*ts = ns_to_timespec64(ns);
278 
279 	return 0;
280 }
281 
282 static int cpts_ptp_settime(struct ptp_clock_info *ptp,
283 			    const struct timespec64 *ts)
284 {
285 	u64 ns;
286 	unsigned long flags;
287 	struct cpts *cpts = container_of(ptp, struct cpts, info);
288 
289 	ns = timespec64_to_ns(ts);
290 
291 	spin_lock_irqsave(&cpts->lock, flags);
292 	timecounter_init(&cpts->tc, &cpts->cc, ns);
293 	spin_unlock_irqrestore(&cpts->lock, flags);
294 
295 	return 0;
296 }
297 
298 static int cpts_ptp_enable(struct ptp_clock_info *ptp,
299 			   struct ptp_clock_request *rq, int on)
300 {
301 	return -EOPNOTSUPP;
302 }
303 
304 static long cpts_overflow_check(struct ptp_clock_info *ptp)
305 {
306 	struct cpts *cpts = container_of(ptp, struct cpts, info);
307 	unsigned long delay = cpts->ov_check_period;
308 	struct timespec64 ts;
309 	unsigned long flags;
310 
311 	spin_lock_irqsave(&cpts->lock, flags);
312 	ts = ns_to_timespec64(timecounter_read(&cpts->tc));
313 
314 	if (!skb_queue_empty(&cpts->txq)) {
315 		cpts_purge_txq(cpts);
316 		if (!skb_queue_empty(&cpts->txq))
317 			delay = CPTS_SKB_TX_WORK_TIMEOUT;
318 	}
319 	spin_unlock_irqrestore(&cpts->lock, flags);
320 
321 	pr_debug("cpts overflow check at %lld.%09ld\n",
322 		 (long long)ts.tv_sec, ts.tv_nsec);
323 	return (long)delay;
324 }
325 
326 static const struct ptp_clock_info cpts_info = {
327 	.owner		= THIS_MODULE,
328 	.name		= "CTPS timer",
329 	.max_adj	= 1000000,
330 	.n_ext_ts	= 0,
331 	.n_pins		= 0,
332 	.pps		= 0,
333 	.adjfreq	= cpts_ptp_adjfreq,
334 	.adjtime	= cpts_ptp_adjtime,
335 	.gettime64	= cpts_ptp_gettime,
336 	.settime64	= cpts_ptp_settime,
337 	.enable		= cpts_ptp_enable,
338 	.do_aux_work	= cpts_overflow_check,
339 };
340 
341 static int cpts_match(struct sk_buff *skb, unsigned int ptp_class,
342 		      u16 ts_seqid, u8 ts_msgtype)
343 {
344 	u16 *seqid;
345 	unsigned int offset = 0;
346 	u8 *msgtype, *data = skb->data;
347 
348 	if (ptp_class & PTP_CLASS_VLAN)
349 		offset += VLAN_HLEN;
350 
351 	switch (ptp_class & PTP_CLASS_PMASK) {
352 	case PTP_CLASS_IPV4:
353 		offset += ETH_HLEN + IPV4_HLEN(data + offset) + UDP_HLEN;
354 		break;
355 	case PTP_CLASS_IPV6:
356 		offset += ETH_HLEN + IP6_HLEN + UDP_HLEN;
357 		break;
358 	case PTP_CLASS_L2:
359 		offset += ETH_HLEN;
360 		break;
361 	default:
362 		return 0;
363 	}
364 
365 	if (skb->len + ETH_HLEN < offset + OFF_PTP_SEQUENCE_ID + sizeof(*seqid))
366 		return 0;
367 
368 	if (unlikely(ptp_class & PTP_CLASS_V1))
369 		msgtype = data + offset + OFF_PTP_CONTROL;
370 	else
371 		msgtype = data + offset;
372 
373 	seqid = (u16 *)(data + offset + OFF_PTP_SEQUENCE_ID);
374 
375 	return (ts_msgtype == (*msgtype & 0xf) && ts_seqid == ntohs(*seqid));
376 }
377 
378 static u64 cpts_find_ts(struct cpts *cpts, struct sk_buff *skb, int ev_type)
379 {
380 	u64 ns = 0;
381 	struct cpts_event *event;
382 	struct list_head *this, *next;
383 	unsigned int class = ptp_classify_raw(skb);
384 	unsigned long flags;
385 	u16 seqid;
386 	u8 mtype;
387 
388 	if (class == PTP_CLASS_NONE)
389 		return 0;
390 
391 	spin_lock_irqsave(&cpts->lock, flags);
392 	cpts_fifo_read(cpts, -1);
393 	list_for_each_safe(this, next, &cpts->events) {
394 		event = list_entry(this, struct cpts_event, list);
395 		if (event_expired(event)) {
396 			list_del_init(&event->list);
397 			list_add(&event->list, &cpts->pool);
398 			continue;
399 		}
400 		mtype = (event->high >> MESSAGE_TYPE_SHIFT) & MESSAGE_TYPE_MASK;
401 		seqid = (event->high >> SEQUENCE_ID_SHIFT) & SEQUENCE_ID_MASK;
402 		if (ev_type == event_type(event) &&
403 		    cpts_match(skb, class, seqid, mtype)) {
404 			ns = timecounter_cyc2time(&cpts->tc, event->low);
405 			list_del_init(&event->list);
406 			list_add(&event->list, &cpts->pool);
407 			break;
408 		}
409 	}
410 
411 	if (ev_type == CPTS_EV_TX && !ns) {
412 		struct cpts_skb_cb_data *skb_cb =
413 				(struct cpts_skb_cb_data *)skb->cb;
414 		/* Not found, add frame to queue for processing later.
415 		 * The periodic FIFO check will handle this.
416 		 */
417 		skb_get(skb);
418 		/* get the timestamp for timeouts */
419 		skb_cb->tmo = jiffies + msecs_to_jiffies(100);
420 		__skb_queue_tail(&cpts->txq, skb);
421 		ptp_schedule_worker(cpts->clock, 0);
422 	}
423 	spin_unlock_irqrestore(&cpts->lock, flags);
424 
425 	return ns;
426 }
427 
428 void cpts_rx_timestamp(struct cpts *cpts, struct sk_buff *skb)
429 {
430 	u64 ns;
431 	struct skb_shared_hwtstamps *ssh;
432 
433 	ns = cpts_find_ts(cpts, skb, CPTS_EV_RX);
434 	if (!ns)
435 		return;
436 	ssh = skb_hwtstamps(skb);
437 	memset(ssh, 0, sizeof(*ssh));
438 	ssh->hwtstamp = ns_to_ktime(ns);
439 }
440 EXPORT_SYMBOL_GPL(cpts_rx_timestamp);
441 
442 void cpts_tx_timestamp(struct cpts *cpts, struct sk_buff *skb)
443 {
444 	u64 ns;
445 	struct skb_shared_hwtstamps ssh;
446 
447 	if (!(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
448 		return;
449 	ns = cpts_find_ts(cpts, skb, CPTS_EV_TX);
450 	if (!ns)
451 		return;
452 	memset(&ssh, 0, sizeof(ssh));
453 	ssh.hwtstamp = ns_to_ktime(ns);
454 	skb_tstamp_tx(skb, &ssh);
455 }
456 EXPORT_SYMBOL_GPL(cpts_tx_timestamp);
457 
458 int cpts_register(struct cpts *cpts)
459 {
460 	int err, i;
461 
462 	skb_queue_head_init(&cpts->txq);
463 	INIT_LIST_HEAD(&cpts->events);
464 	INIT_LIST_HEAD(&cpts->pool);
465 	for (i = 0; i < CPTS_MAX_EVENTS; i++)
466 		list_add(&cpts->pool_data[i].list, &cpts->pool);
467 
468 	clk_enable(cpts->refclk);
469 
470 	cpts_write32(cpts, CPTS_EN, control);
471 	cpts_write32(cpts, TS_PEND_EN, int_enable);
472 
473 	timecounter_init(&cpts->tc, &cpts->cc, ktime_to_ns(ktime_get_real()));
474 
475 	cpts->clock = ptp_clock_register(&cpts->info, cpts->dev);
476 	if (IS_ERR(cpts->clock)) {
477 		err = PTR_ERR(cpts->clock);
478 		cpts->clock = NULL;
479 		goto err_ptp;
480 	}
481 	cpts->phc_index = ptp_clock_index(cpts->clock);
482 
483 	ptp_schedule_worker(cpts->clock, cpts->ov_check_period);
484 	return 0;
485 
486 err_ptp:
487 	clk_disable(cpts->refclk);
488 	return err;
489 }
490 EXPORT_SYMBOL_GPL(cpts_register);
491 
492 void cpts_unregister(struct cpts *cpts)
493 {
494 	if (WARN_ON(!cpts->clock))
495 		return;
496 
497 	ptp_clock_unregister(cpts->clock);
498 	cpts->clock = NULL;
499 
500 	cpts_write32(cpts, 0, int_enable);
501 	cpts_write32(cpts, 0, control);
502 
503 	/* Drop all packet */
504 	skb_queue_purge(&cpts->txq);
505 
506 	clk_disable(cpts->refclk);
507 }
508 EXPORT_SYMBOL_GPL(cpts_unregister);
509 
510 static void cpts_calc_mult_shift(struct cpts *cpts)
511 {
512 	u64 frac, maxsec, ns;
513 	u32 freq;
514 
515 	freq = clk_get_rate(cpts->refclk);
516 
517 	/* Calc the maximum number of seconds which we can run before
518 	 * wrapping around.
519 	 */
520 	maxsec = cpts->cc.mask;
521 	do_div(maxsec, freq);
522 	/* limit conversation rate to 10 sec as higher values will produce
523 	 * too small mult factors and so reduce the conversion accuracy
524 	 */
525 	if (maxsec > 10)
526 		maxsec = 10;
527 
528 	/* Calc overflow check period (maxsec / 2) */
529 	cpts->ov_check_period = (HZ * maxsec) / 2;
530 	dev_info(cpts->dev, "cpts: overflow check period %lu (jiffies)\n",
531 		 cpts->ov_check_period);
532 
533 	if (cpts->cc.mult || cpts->cc.shift)
534 		return;
535 
536 	clocks_calc_mult_shift(&cpts->cc.mult, &cpts->cc.shift,
537 			       freq, NSEC_PER_SEC, maxsec);
538 
539 	frac = 0;
540 	ns = cyclecounter_cyc2ns(&cpts->cc, freq, cpts->cc.mask, &frac);
541 
542 	dev_info(cpts->dev,
543 		 "CPTS: ref_clk_freq:%u calc_mult:%u calc_shift:%u error:%lld nsec/sec\n",
544 		 freq, cpts->cc.mult, cpts->cc.shift, (ns - NSEC_PER_SEC));
545 }
546 
547 static int cpts_of_parse(struct cpts *cpts, struct device_node *node)
548 {
549 	int ret = -EINVAL;
550 	u32 prop;
551 
552 	if (!of_property_read_u32(node, "cpts_clock_mult", &prop))
553 		cpts->cc.mult = prop;
554 
555 	if (!of_property_read_u32(node, "cpts_clock_shift", &prop))
556 		cpts->cc.shift = prop;
557 
558 	if ((cpts->cc.mult && !cpts->cc.shift) ||
559 	    (!cpts->cc.mult && cpts->cc.shift))
560 		goto of_error;
561 
562 	return 0;
563 
564 of_error:
565 	dev_err(cpts->dev, "CPTS: Missing property in the DT.\n");
566 	return ret;
567 }
568 
569 struct cpts *cpts_create(struct device *dev, void __iomem *regs,
570 			 struct device_node *node)
571 {
572 	struct cpts *cpts;
573 	int ret;
574 
575 	cpts = devm_kzalloc(dev, sizeof(*cpts), GFP_KERNEL);
576 	if (!cpts)
577 		return ERR_PTR(-ENOMEM);
578 
579 	cpts->dev = dev;
580 	cpts->reg = (struct cpsw_cpts __iomem *)regs;
581 	spin_lock_init(&cpts->lock);
582 
583 	ret = cpts_of_parse(cpts, node);
584 	if (ret)
585 		return ERR_PTR(ret);
586 
587 	cpts->refclk = devm_clk_get(dev, "cpts");
588 	if (IS_ERR(cpts->refclk)) {
589 		dev_err(dev, "Failed to get cpts refclk\n");
590 		return ERR_CAST(cpts->refclk);
591 	}
592 
593 	ret = clk_prepare(cpts->refclk);
594 	if (ret)
595 		return ERR_PTR(ret);
596 
597 	cpts->cc.read = cpts_systim_read;
598 	cpts->cc.mask = CLOCKSOURCE_MASK(32);
599 	cpts->info = cpts_info;
600 
601 	cpts_calc_mult_shift(cpts);
602 	/* save cc.mult original value as it can be modified
603 	 * by cpts_ptp_adjfreq().
604 	 */
605 	cpts->cc_mult = cpts->cc.mult;
606 
607 	return cpts;
608 }
609 EXPORT_SYMBOL_GPL(cpts_create);
610 
611 void cpts_release(struct cpts *cpts)
612 {
613 	if (!cpts)
614 		return;
615 
616 	if (WARN_ON(!cpts->refclk))
617 		return;
618 
619 	clk_unprepare(cpts->refclk);
620 }
621 EXPORT_SYMBOL_GPL(cpts_release);
622 
623 MODULE_LICENSE("GPL v2");
624 MODULE_DESCRIPTION("TI CPTS driver");
625 MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>");
626