xref: /openbmc/linux/drivers/net/ethernet/ti/cpts.c (revision 6c33a6f4)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * TI Common Platform Time Sync
4  *
5  * Copyright (C) 2012 Richard Cochran <richardcochran@gmail.com>
6  *
7  */
8 #include <linux/clk-provider.h>
9 #include <linux/err.h>
10 #include <linux/if.h>
11 #include <linux/hrtimer.h>
12 #include <linux/module.h>
13 #include <linux/net_tstamp.h>
14 #include <linux/ptp_classify.h>
15 #include <linux/time.h>
16 #include <linux/uaccess.h>
17 #include <linux/workqueue.h>
18 #include <linux/if_ether.h>
19 #include <linux/if_vlan.h>
20 
21 #include "cpts.h"
22 
23 #define CPTS_SKB_TX_WORK_TIMEOUT 1 /* jiffies */
24 
25 struct cpts_skb_cb_data {
26 	unsigned long tmo;
27 };
28 
29 #define cpts_read32(c, r)	readl_relaxed(&c->reg->r)
30 #define cpts_write32(c, v, r)	writel_relaxed(v, &c->reg->r)
31 
32 static int cpts_match(struct sk_buff *skb, unsigned int ptp_class,
33 		      u16 ts_seqid, u8 ts_msgtype);
34 
35 static int event_expired(struct cpts_event *event)
36 {
37 	return time_after(jiffies, event->tmo);
38 }
39 
40 static int event_type(struct cpts_event *event)
41 {
42 	return (event->high >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
43 }
44 
45 static int cpts_fifo_pop(struct cpts *cpts, u32 *high, u32 *low)
46 {
47 	u32 r = cpts_read32(cpts, intstat_raw);
48 
49 	if (r & TS_PEND_RAW) {
50 		*high = cpts_read32(cpts, event_high);
51 		*low  = cpts_read32(cpts, event_low);
52 		cpts_write32(cpts, EVENT_POP, event_pop);
53 		return 0;
54 	}
55 	return -1;
56 }
57 
58 static int cpts_purge_events(struct cpts *cpts)
59 {
60 	struct list_head *this, *next;
61 	struct cpts_event *event;
62 	int removed = 0;
63 
64 	list_for_each_safe(this, next, &cpts->events) {
65 		event = list_entry(this, struct cpts_event, list);
66 		if (event_expired(event)) {
67 			list_del_init(&event->list);
68 			list_add(&event->list, &cpts->pool);
69 			++removed;
70 		}
71 	}
72 
73 	if (removed)
74 		pr_debug("cpts: event pool cleaned up %d\n", removed);
75 	return removed ? 0 : -1;
76 }
77 
78 static void cpts_purge_txq(struct cpts *cpts)
79 {
80 	struct cpts_skb_cb_data *skb_cb;
81 	struct sk_buff *skb, *tmp;
82 	int removed = 0;
83 
84 	skb_queue_walk_safe(&cpts->txq, skb, tmp) {
85 		skb_cb = (struct cpts_skb_cb_data *)skb->cb;
86 		if (time_after(jiffies, skb_cb->tmo)) {
87 			__skb_unlink(skb, &cpts->txq);
88 			dev_consume_skb_any(skb);
89 			++removed;
90 		}
91 	}
92 
93 	if (removed)
94 		dev_dbg(cpts->dev, "txq cleaned up %d\n", removed);
95 }
96 
97 static bool cpts_match_tx_ts(struct cpts *cpts, struct cpts_event *event)
98 {
99 	struct sk_buff *skb, *tmp;
100 	u16 seqid;
101 	u8 mtype;
102 	bool found = false;
103 
104 	mtype = (event->high >> MESSAGE_TYPE_SHIFT) & MESSAGE_TYPE_MASK;
105 	seqid = (event->high >> SEQUENCE_ID_SHIFT) & SEQUENCE_ID_MASK;
106 
107 	/* no need to grab txq.lock as access is always done under cpts->lock */
108 	skb_queue_walk_safe(&cpts->txq, skb, tmp) {
109 		struct skb_shared_hwtstamps ssh;
110 		unsigned int class = ptp_classify_raw(skb);
111 		struct cpts_skb_cb_data *skb_cb =
112 					(struct cpts_skb_cb_data *)skb->cb;
113 
114 		if (cpts_match(skb, class, seqid, mtype)) {
115 			u64 ns = timecounter_cyc2time(&cpts->tc, event->low);
116 
117 			memset(&ssh, 0, sizeof(ssh));
118 			ssh.hwtstamp = ns_to_ktime(ns);
119 			skb_tstamp_tx(skb, &ssh);
120 			found = true;
121 			__skb_unlink(skb, &cpts->txq);
122 			dev_consume_skb_any(skb);
123 			dev_dbg(cpts->dev, "match tx timestamp mtype %u seqid %04x\n",
124 				mtype, seqid);
125 			break;
126 		}
127 
128 		if (time_after(jiffies, skb_cb->tmo)) {
129 			/* timeout any expired skbs over 1s */
130 			dev_dbg(cpts->dev, "expiring tx timestamp from txq\n");
131 			__skb_unlink(skb, &cpts->txq);
132 			dev_consume_skb_any(skb);
133 		}
134 	}
135 
136 	return found;
137 }
138 
139 /*
140  * Returns zero if matching event type was found.
141  */
142 static int cpts_fifo_read(struct cpts *cpts, int match)
143 {
144 	int i, type = -1;
145 	u32 hi, lo;
146 	struct cpts_event *event;
147 
148 	for (i = 0; i < CPTS_FIFO_DEPTH; i++) {
149 		if (cpts_fifo_pop(cpts, &hi, &lo))
150 			break;
151 
152 		if (list_empty(&cpts->pool) && cpts_purge_events(cpts)) {
153 			pr_err("cpts: event pool empty\n");
154 			return -1;
155 		}
156 
157 		event = list_first_entry(&cpts->pool, struct cpts_event, list);
158 		event->tmo = jiffies + 2;
159 		event->high = hi;
160 		event->low = lo;
161 		type = event_type(event);
162 		switch (type) {
163 		case CPTS_EV_TX:
164 			if (cpts_match_tx_ts(cpts, event)) {
165 				/* if the new event matches an existing skb,
166 				 * then don't queue it
167 				 */
168 				break;
169 			}
170 			/* fall through */
171 		case CPTS_EV_PUSH:
172 		case CPTS_EV_RX:
173 			list_del_init(&event->list);
174 			list_add_tail(&event->list, &cpts->events);
175 			break;
176 		case CPTS_EV_ROLL:
177 		case CPTS_EV_HALF:
178 		case CPTS_EV_HW:
179 			break;
180 		default:
181 			pr_err("cpts: unknown event type\n");
182 			break;
183 		}
184 		if (type == match)
185 			break;
186 	}
187 	return type == match ? 0 : -1;
188 }
189 
190 static u64 cpts_systim_read(const struct cyclecounter *cc)
191 {
192 	u64 val = 0;
193 	struct cpts_event *event;
194 	struct list_head *this, *next;
195 	struct cpts *cpts = container_of(cc, struct cpts, cc);
196 
197 	cpts_write32(cpts, TS_PUSH, ts_push);
198 	if (cpts_fifo_read(cpts, CPTS_EV_PUSH))
199 		pr_err("cpts: unable to obtain a time stamp\n");
200 
201 	list_for_each_safe(this, next, &cpts->events) {
202 		event = list_entry(this, struct cpts_event, list);
203 		if (event_type(event) == CPTS_EV_PUSH) {
204 			list_del_init(&event->list);
205 			list_add(&event->list, &cpts->pool);
206 			val = event->low;
207 			break;
208 		}
209 	}
210 
211 	return val;
212 }
213 
214 /* PTP clock operations */
215 
216 static int cpts_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
217 {
218 	u64 adj;
219 	u32 diff, mult;
220 	int neg_adj = 0;
221 	unsigned long flags;
222 	struct cpts *cpts = container_of(ptp, struct cpts, info);
223 
224 	if (ppb < 0) {
225 		neg_adj = 1;
226 		ppb = -ppb;
227 	}
228 	mult = cpts->cc_mult;
229 	adj = mult;
230 	adj *= ppb;
231 	diff = div_u64(adj, 1000000000ULL);
232 
233 	spin_lock_irqsave(&cpts->lock, flags);
234 
235 	timecounter_read(&cpts->tc);
236 
237 	cpts->cc.mult = neg_adj ? mult - diff : mult + diff;
238 
239 	spin_unlock_irqrestore(&cpts->lock, flags);
240 
241 	return 0;
242 }
243 
244 static int cpts_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
245 {
246 	unsigned long flags;
247 	struct cpts *cpts = container_of(ptp, struct cpts, info);
248 
249 	spin_lock_irqsave(&cpts->lock, flags);
250 	timecounter_adjtime(&cpts->tc, delta);
251 	spin_unlock_irqrestore(&cpts->lock, flags);
252 
253 	return 0;
254 }
255 
256 static int cpts_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
257 {
258 	u64 ns;
259 	unsigned long flags;
260 	struct cpts *cpts = container_of(ptp, struct cpts, info);
261 
262 	spin_lock_irqsave(&cpts->lock, flags);
263 	ns = timecounter_read(&cpts->tc);
264 	spin_unlock_irqrestore(&cpts->lock, flags);
265 
266 	*ts = ns_to_timespec64(ns);
267 
268 	return 0;
269 }
270 
271 static int cpts_ptp_settime(struct ptp_clock_info *ptp,
272 			    const struct timespec64 *ts)
273 {
274 	u64 ns;
275 	unsigned long flags;
276 	struct cpts *cpts = container_of(ptp, struct cpts, info);
277 
278 	ns = timespec64_to_ns(ts);
279 
280 	spin_lock_irqsave(&cpts->lock, flags);
281 	timecounter_init(&cpts->tc, &cpts->cc, ns);
282 	spin_unlock_irqrestore(&cpts->lock, flags);
283 
284 	return 0;
285 }
286 
287 static int cpts_ptp_enable(struct ptp_clock_info *ptp,
288 			   struct ptp_clock_request *rq, int on)
289 {
290 	return -EOPNOTSUPP;
291 }
292 
293 static long cpts_overflow_check(struct ptp_clock_info *ptp)
294 {
295 	struct cpts *cpts = container_of(ptp, struct cpts, info);
296 	unsigned long delay = cpts->ov_check_period;
297 	struct timespec64 ts;
298 	unsigned long flags;
299 
300 	spin_lock_irqsave(&cpts->lock, flags);
301 	ts = ns_to_timespec64(timecounter_read(&cpts->tc));
302 
303 	if (!skb_queue_empty(&cpts->txq)) {
304 		cpts_purge_txq(cpts);
305 		if (!skb_queue_empty(&cpts->txq))
306 			delay = CPTS_SKB_TX_WORK_TIMEOUT;
307 	}
308 	spin_unlock_irqrestore(&cpts->lock, flags);
309 
310 	pr_debug("cpts overflow check at %lld.%09ld\n",
311 		 (long long)ts.tv_sec, ts.tv_nsec);
312 	return (long)delay;
313 }
314 
315 static const struct ptp_clock_info cpts_info = {
316 	.owner		= THIS_MODULE,
317 	.name		= "CTPS timer",
318 	.max_adj	= 1000000,
319 	.n_ext_ts	= 0,
320 	.n_pins		= 0,
321 	.pps		= 0,
322 	.adjfreq	= cpts_ptp_adjfreq,
323 	.adjtime	= cpts_ptp_adjtime,
324 	.gettime64	= cpts_ptp_gettime,
325 	.settime64	= cpts_ptp_settime,
326 	.enable		= cpts_ptp_enable,
327 	.do_aux_work	= cpts_overflow_check,
328 };
329 
330 static int cpts_match(struct sk_buff *skb, unsigned int ptp_class,
331 		      u16 ts_seqid, u8 ts_msgtype)
332 {
333 	u16 *seqid;
334 	unsigned int offset = 0;
335 	u8 *msgtype, *data = skb->data;
336 
337 	if (ptp_class & PTP_CLASS_VLAN)
338 		offset += VLAN_HLEN;
339 
340 	switch (ptp_class & PTP_CLASS_PMASK) {
341 	case PTP_CLASS_IPV4:
342 		offset += ETH_HLEN + IPV4_HLEN(data + offset) + UDP_HLEN;
343 		break;
344 	case PTP_CLASS_IPV6:
345 		offset += ETH_HLEN + IP6_HLEN + UDP_HLEN;
346 		break;
347 	case PTP_CLASS_L2:
348 		offset += ETH_HLEN;
349 		break;
350 	default:
351 		return 0;
352 	}
353 
354 	if (skb->len + ETH_HLEN < offset + OFF_PTP_SEQUENCE_ID + sizeof(*seqid))
355 		return 0;
356 
357 	if (unlikely(ptp_class & PTP_CLASS_V1))
358 		msgtype = data + offset + OFF_PTP_CONTROL;
359 	else
360 		msgtype = data + offset;
361 
362 	seqid = (u16 *)(data + offset + OFF_PTP_SEQUENCE_ID);
363 
364 	return (ts_msgtype == (*msgtype & 0xf) && ts_seqid == ntohs(*seqid));
365 }
366 
367 static u64 cpts_find_ts(struct cpts *cpts, struct sk_buff *skb, int ev_type)
368 {
369 	u64 ns = 0;
370 	struct cpts_event *event;
371 	struct list_head *this, *next;
372 	unsigned int class = ptp_classify_raw(skb);
373 	unsigned long flags;
374 	u16 seqid;
375 	u8 mtype;
376 
377 	if (class == PTP_CLASS_NONE)
378 		return 0;
379 
380 	spin_lock_irqsave(&cpts->lock, flags);
381 	cpts_fifo_read(cpts, -1);
382 	list_for_each_safe(this, next, &cpts->events) {
383 		event = list_entry(this, struct cpts_event, list);
384 		if (event_expired(event)) {
385 			list_del_init(&event->list);
386 			list_add(&event->list, &cpts->pool);
387 			continue;
388 		}
389 		mtype = (event->high >> MESSAGE_TYPE_SHIFT) & MESSAGE_TYPE_MASK;
390 		seqid = (event->high >> SEQUENCE_ID_SHIFT) & SEQUENCE_ID_MASK;
391 		if (ev_type == event_type(event) &&
392 		    cpts_match(skb, class, seqid, mtype)) {
393 			ns = timecounter_cyc2time(&cpts->tc, event->low);
394 			list_del_init(&event->list);
395 			list_add(&event->list, &cpts->pool);
396 			break;
397 		}
398 	}
399 
400 	if (ev_type == CPTS_EV_TX && !ns) {
401 		struct cpts_skb_cb_data *skb_cb =
402 				(struct cpts_skb_cb_data *)skb->cb;
403 		/* Not found, add frame to queue for processing later.
404 		 * The periodic FIFO check will handle this.
405 		 */
406 		skb_get(skb);
407 		/* get the timestamp for timeouts */
408 		skb_cb->tmo = jiffies + msecs_to_jiffies(100);
409 		__skb_queue_tail(&cpts->txq, skb);
410 		ptp_schedule_worker(cpts->clock, 0);
411 	}
412 	spin_unlock_irqrestore(&cpts->lock, flags);
413 
414 	return ns;
415 }
416 
417 void cpts_rx_timestamp(struct cpts *cpts, struct sk_buff *skb)
418 {
419 	u64 ns;
420 	struct skb_shared_hwtstamps *ssh;
421 
422 	ns = cpts_find_ts(cpts, skb, CPTS_EV_RX);
423 	if (!ns)
424 		return;
425 	ssh = skb_hwtstamps(skb);
426 	memset(ssh, 0, sizeof(*ssh));
427 	ssh->hwtstamp = ns_to_ktime(ns);
428 }
429 EXPORT_SYMBOL_GPL(cpts_rx_timestamp);
430 
431 void cpts_tx_timestamp(struct cpts *cpts, struct sk_buff *skb)
432 {
433 	u64 ns;
434 	struct skb_shared_hwtstamps ssh;
435 
436 	if (!(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
437 		return;
438 	ns = cpts_find_ts(cpts, skb, CPTS_EV_TX);
439 	if (!ns)
440 		return;
441 	memset(&ssh, 0, sizeof(ssh));
442 	ssh.hwtstamp = ns_to_ktime(ns);
443 	skb_tstamp_tx(skb, &ssh);
444 }
445 EXPORT_SYMBOL_GPL(cpts_tx_timestamp);
446 
447 int cpts_register(struct cpts *cpts)
448 {
449 	int err, i;
450 
451 	skb_queue_head_init(&cpts->txq);
452 	INIT_LIST_HEAD(&cpts->events);
453 	INIT_LIST_HEAD(&cpts->pool);
454 	for (i = 0; i < CPTS_MAX_EVENTS; i++)
455 		list_add(&cpts->pool_data[i].list, &cpts->pool);
456 
457 	clk_enable(cpts->refclk);
458 
459 	cpts_write32(cpts, CPTS_EN, control);
460 	cpts_write32(cpts, TS_PEND_EN, int_enable);
461 
462 	timecounter_init(&cpts->tc, &cpts->cc, ktime_get_real_ns());
463 
464 	cpts->clock = ptp_clock_register(&cpts->info, cpts->dev);
465 	if (IS_ERR(cpts->clock)) {
466 		err = PTR_ERR(cpts->clock);
467 		cpts->clock = NULL;
468 		goto err_ptp;
469 	}
470 	cpts->phc_index = ptp_clock_index(cpts->clock);
471 
472 	ptp_schedule_worker(cpts->clock, cpts->ov_check_period);
473 	return 0;
474 
475 err_ptp:
476 	clk_disable(cpts->refclk);
477 	return err;
478 }
479 EXPORT_SYMBOL_GPL(cpts_register);
480 
481 void cpts_unregister(struct cpts *cpts)
482 {
483 	if (WARN_ON(!cpts->clock))
484 		return;
485 
486 	ptp_clock_unregister(cpts->clock);
487 	cpts->clock = NULL;
488 
489 	cpts_write32(cpts, 0, int_enable);
490 	cpts_write32(cpts, 0, control);
491 
492 	/* Drop all packet */
493 	skb_queue_purge(&cpts->txq);
494 
495 	clk_disable(cpts->refclk);
496 }
497 EXPORT_SYMBOL_GPL(cpts_unregister);
498 
499 static void cpts_calc_mult_shift(struct cpts *cpts)
500 {
501 	u64 frac, maxsec, ns;
502 	u32 freq;
503 
504 	freq = clk_get_rate(cpts->refclk);
505 
506 	/* Calc the maximum number of seconds which we can run before
507 	 * wrapping around.
508 	 */
509 	maxsec = cpts->cc.mask;
510 	do_div(maxsec, freq);
511 	/* limit conversation rate to 10 sec as higher values will produce
512 	 * too small mult factors and so reduce the conversion accuracy
513 	 */
514 	if (maxsec > 10)
515 		maxsec = 10;
516 
517 	/* Calc overflow check period (maxsec / 2) */
518 	cpts->ov_check_period = (HZ * maxsec) / 2;
519 	dev_info(cpts->dev, "cpts: overflow check period %lu (jiffies)\n",
520 		 cpts->ov_check_period);
521 
522 	if (cpts->cc.mult || cpts->cc.shift)
523 		return;
524 
525 	clocks_calc_mult_shift(&cpts->cc.mult, &cpts->cc.shift,
526 			       freq, NSEC_PER_SEC, maxsec);
527 
528 	frac = 0;
529 	ns = cyclecounter_cyc2ns(&cpts->cc, freq, cpts->cc.mask, &frac);
530 
531 	dev_info(cpts->dev,
532 		 "CPTS: ref_clk_freq:%u calc_mult:%u calc_shift:%u error:%lld nsec/sec\n",
533 		 freq, cpts->cc.mult, cpts->cc.shift, (ns - NSEC_PER_SEC));
534 }
535 
536 static int cpts_of_mux_clk_setup(struct cpts *cpts, struct device_node *node)
537 {
538 	struct device_node *refclk_np;
539 	const char **parent_names;
540 	unsigned int num_parents;
541 	struct clk_hw *clk_hw;
542 	int ret = -EINVAL;
543 	u32 *mux_table;
544 
545 	refclk_np = of_get_child_by_name(node, "cpts-refclk-mux");
546 	if (!refclk_np)
547 		/* refclk selection supported not for all SoCs */
548 		return 0;
549 
550 	num_parents = of_clk_get_parent_count(refclk_np);
551 	if (num_parents < 1) {
552 		dev_err(cpts->dev, "mux-clock %s must have parents\n",
553 			refclk_np->name);
554 		goto mux_fail;
555 	}
556 
557 	parent_names = devm_kzalloc(cpts->dev, (sizeof(char *) * num_parents),
558 				    GFP_KERNEL);
559 
560 	mux_table = devm_kzalloc(cpts->dev, sizeof(*mux_table) * num_parents,
561 				 GFP_KERNEL);
562 	if (!mux_table || !parent_names) {
563 		ret = -ENOMEM;
564 		goto mux_fail;
565 	}
566 
567 	of_clk_parent_fill(refclk_np, parent_names, num_parents);
568 
569 	ret = of_property_read_variable_u32_array(refclk_np, "ti,mux-tbl",
570 						  mux_table,
571 						  num_parents, num_parents);
572 	if (ret < 0)
573 		goto mux_fail;
574 
575 	clk_hw = clk_hw_register_mux_table(cpts->dev, refclk_np->name,
576 					   parent_names, num_parents,
577 					   0,
578 					   &cpts->reg->rftclk_sel, 0, 0x1F,
579 					   0, mux_table, NULL);
580 	if (IS_ERR(clk_hw)) {
581 		ret = PTR_ERR(clk_hw);
582 		goto mux_fail;
583 	}
584 
585 	ret = devm_add_action_or_reset(cpts->dev,
586 				       (void(*)(void *))clk_hw_unregister_mux,
587 				       clk_hw);
588 	if (ret) {
589 		dev_err(cpts->dev, "add clkmux unreg action %d", ret);
590 		goto mux_fail;
591 	}
592 
593 	ret = of_clk_add_hw_provider(refclk_np, of_clk_hw_simple_get, clk_hw);
594 	if (ret)
595 		goto mux_fail;
596 
597 	ret = devm_add_action_or_reset(cpts->dev,
598 				       (void(*)(void *))of_clk_del_provider,
599 				       refclk_np);
600 	if (ret) {
601 		dev_err(cpts->dev, "add clkmux provider unreg action %d", ret);
602 		goto mux_fail;
603 	}
604 
605 	return ret;
606 
607 mux_fail:
608 	of_node_put(refclk_np);
609 	return ret;
610 }
611 
612 static int cpts_of_parse(struct cpts *cpts, struct device_node *node)
613 {
614 	int ret = -EINVAL;
615 	u32 prop;
616 
617 	if (!of_property_read_u32(node, "cpts_clock_mult", &prop))
618 		cpts->cc.mult = prop;
619 
620 	if (!of_property_read_u32(node, "cpts_clock_shift", &prop))
621 		cpts->cc.shift = prop;
622 
623 	if ((cpts->cc.mult && !cpts->cc.shift) ||
624 	    (!cpts->cc.mult && cpts->cc.shift))
625 		goto of_error;
626 
627 	return cpts_of_mux_clk_setup(cpts, node);
628 
629 of_error:
630 	dev_err(cpts->dev, "CPTS: Missing property in the DT.\n");
631 	return ret;
632 }
633 
634 struct cpts *cpts_create(struct device *dev, void __iomem *regs,
635 			 struct device_node *node)
636 {
637 	struct cpts *cpts;
638 	int ret;
639 
640 	cpts = devm_kzalloc(dev, sizeof(*cpts), GFP_KERNEL);
641 	if (!cpts)
642 		return ERR_PTR(-ENOMEM);
643 
644 	cpts->dev = dev;
645 	cpts->reg = (struct cpsw_cpts __iomem *)regs;
646 	spin_lock_init(&cpts->lock);
647 
648 	ret = cpts_of_parse(cpts, node);
649 	if (ret)
650 		return ERR_PTR(ret);
651 
652 	cpts->refclk = devm_get_clk_from_child(dev, node, "cpts");
653 	if (IS_ERR(cpts->refclk))
654 		/* try get clk from dev node for compatibility */
655 		cpts->refclk = devm_clk_get(dev, "cpts");
656 
657 	if (IS_ERR(cpts->refclk)) {
658 		dev_err(dev, "Failed to get cpts refclk %ld\n",
659 			PTR_ERR(cpts->refclk));
660 		return ERR_CAST(cpts->refclk);
661 	}
662 
663 	ret = clk_prepare(cpts->refclk);
664 	if (ret)
665 		return ERR_PTR(ret);
666 
667 	cpts->cc.read = cpts_systim_read;
668 	cpts->cc.mask = CLOCKSOURCE_MASK(32);
669 	cpts->info = cpts_info;
670 
671 	cpts_calc_mult_shift(cpts);
672 	/* save cc.mult original value as it can be modified
673 	 * by cpts_ptp_adjfreq().
674 	 */
675 	cpts->cc_mult = cpts->cc.mult;
676 
677 	return cpts;
678 }
679 EXPORT_SYMBOL_GPL(cpts_create);
680 
681 void cpts_release(struct cpts *cpts)
682 {
683 	if (!cpts)
684 		return;
685 
686 	if (WARN_ON(!cpts->refclk))
687 		return;
688 
689 	clk_unprepare(cpts->refclk);
690 }
691 EXPORT_SYMBOL_GPL(cpts_release);
692 
693 MODULE_LICENSE("GPL v2");
694 MODULE_DESCRIPTION("TI CPTS driver");
695 MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>");
696