xref: /openbmc/linux/drivers/net/ethernet/ti/cpts.c (revision 54cbac81)
1 /*
2  * TI Common Platform Time Sync
3  *
4  * Copyright (C) 2012 Richard Cochran <richardcochran@gmail.com>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
19  */
20 #include <linux/err.h>
21 #include <linux/if.h>
22 #include <linux/hrtimer.h>
23 #include <linux/module.h>
24 #include <linux/net_tstamp.h>
25 #include <linux/ptp_classify.h>
26 #include <linux/time.h>
27 #include <linux/uaccess.h>
28 #include <linux/workqueue.h>
29 
30 #include "cpts.h"
31 
32 #ifdef CONFIG_TI_CPTS
33 
34 static struct sock_filter ptp_filter[] = {
35 	PTP_FILTER
36 };
37 
38 #define cpts_read32(c, r)	__raw_readl(&c->reg->r)
39 #define cpts_write32(c, v, r)	__raw_writel(v, &c->reg->r)
40 
41 static int event_expired(struct cpts_event *event)
42 {
43 	return time_after(jiffies, event->tmo);
44 }
45 
46 static int event_type(struct cpts_event *event)
47 {
48 	return (event->high >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
49 }
50 
51 static int cpts_fifo_pop(struct cpts *cpts, u32 *high, u32 *low)
52 {
53 	u32 r = cpts_read32(cpts, intstat_raw);
54 
55 	if (r & TS_PEND_RAW) {
56 		*high = cpts_read32(cpts, event_high);
57 		*low  = cpts_read32(cpts, event_low);
58 		cpts_write32(cpts, EVENT_POP, event_pop);
59 		return 0;
60 	}
61 	return -1;
62 }
63 
64 /*
65  * Returns zero if matching event type was found.
66  */
67 static int cpts_fifo_read(struct cpts *cpts, int match)
68 {
69 	int i, type = -1;
70 	u32 hi, lo;
71 	struct cpts_event *event;
72 
73 	for (i = 0; i < CPTS_FIFO_DEPTH; i++) {
74 		if (cpts_fifo_pop(cpts, &hi, &lo))
75 			break;
76 		if (list_empty(&cpts->pool)) {
77 			pr_err("cpts: event pool is empty\n");
78 			return -1;
79 		}
80 		event = list_first_entry(&cpts->pool, struct cpts_event, list);
81 		event->tmo = jiffies + 2;
82 		event->high = hi;
83 		event->low = lo;
84 		type = event_type(event);
85 		switch (type) {
86 		case CPTS_EV_PUSH:
87 		case CPTS_EV_RX:
88 		case CPTS_EV_TX:
89 			list_del_init(&event->list);
90 			list_add_tail(&event->list, &cpts->events);
91 			break;
92 		case CPTS_EV_ROLL:
93 		case CPTS_EV_HALF:
94 		case CPTS_EV_HW:
95 			break;
96 		default:
97 			pr_err("cpts: unkown event type\n");
98 			break;
99 		}
100 		if (type == match)
101 			break;
102 	}
103 	return type == match ? 0 : -1;
104 }
105 
106 static cycle_t cpts_systim_read(const struct cyclecounter *cc)
107 {
108 	u64 val = 0;
109 	struct cpts_event *event;
110 	struct list_head *this, *next;
111 	struct cpts *cpts = container_of(cc, struct cpts, cc);
112 
113 	cpts_write32(cpts, TS_PUSH, ts_push);
114 	if (cpts_fifo_read(cpts, CPTS_EV_PUSH))
115 		pr_err("cpts: unable to obtain a time stamp\n");
116 
117 	list_for_each_safe(this, next, &cpts->events) {
118 		event = list_entry(this, struct cpts_event, list);
119 		if (event_type(event) == CPTS_EV_PUSH) {
120 			list_del_init(&event->list);
121 			list_add(&event->list, &cpts->pool);
122 			val = event->low;
123 			break;
124 		}
125 	}
126 
127 	return val;
128 }
129 
130 /* PTP clock operations */
131 
132 static int cpts_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
133 {
134 	u64 adj;
135 	u32 diff, mult;
136 	int neg_adj = 0;
137 	unsigned long flags;
138 	struct cpts *cpts = container_of(ptp, struct cpts, info);
139 
140 	if (ppb < 0) {
141 		neg_adj = 1;
142 		ppb = -ppb;
143 	}
144 	mult = cpts->cc_mult;
145 	adj = mult;
146 	adj *= ppb;
147 	diff = div_u64(adj, 1000000000ULL);
148 
149 	spin_lock_irqsave(&cpts->lock, flags);
150 
151 	timecounter_read(&cpts->tc);
152 
153 	cpts->cc.mult = neg_adj ? mult - diff : mult + diff;
154 
155 	spin_unlock_irqrestore(&cpts->lock, flags);
156 
157 	return 0;
158 }
159 
160 static int cpts_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
161 {
162 	s64 now;
163 	unsigned long flags;
164 	struct cpts *cpts = container_of(ptp, struct cpts, info);
165 
166 	spin_lock_irqsave(&cpts->lock, flags);
167 	now = timecounter_read(&cpts->tc);
168 	now += delta;
169 	timecounter_init(&cpts->tc, &cpts->cc, now);
170 	spin_unlock_irqrestore(&cpts->lock, flags);
171 
172 	return 0;
173 }
174 
175 static int cpts_ptp_gettime(struct ptp_clock_info *ptp, struct timespec *ts)
176 {
177 	u64 ns;
178 	u32 remainder;
179 	unsigned long flags;
180 	struct cpts *cpts = container_of(ptp, struct cpts, info);
181 
182 	spin_lock_irqsave(&cpts->lock, flags);
183 	ns = timecounter_read(&cpts->tc);
184 	spin_unlock_irqrestore(&cpts->lock, flags);
185 
186 	ts->tv_sec = div_u64_rem(ns, 1000000000, &remainder);
187 	ts->tv_nsec = remainder;
188 
189 	return 0;
190 }
191 
192 static int cpts_ptp_settime(struct ptp_clock_info *ptp,
193 			    const struct timespec *ts)
194 {
195 	u64 ns;
196 	unsigned long flags;
197 	struct cpts *cpts = container_of(ptp, struct cpts, info);
198 
199 	ns = ts->tv_sec * 1000000000ULL;
200 	ns += ts->tv_nsec;
201 
202 	spin_lock_irqsave(&cpts->lock, flags);
203 	timecounter_init(&cpts->tc, &cpts->cc, ns);
204 	spin_unlock_irqrestore(&cpts->lock, flags);
205 
206 	return 0;
207 }
208 
209 static int cpts_ptp_enable(struct ptp_clock_info *ptp,
210 			   struct ptp_clock_request *rq, int on)
211 {
212 	return -EOPNOTSUPP;
213 }
214 
215 static struct ptp_clock_info cpts_info = {
216 	.owner		= THIS_MODULE,
217 	.name		= "CTPS timer",
218 	.max_adj	= 1000000,
219 	.n_ext_ts	= 0,
220 	.pps		= 0,
221 	.adjfreq	= cpts_ptp_adjfreq,
222 	.adjtime	= cpts_ptp_adjtime,
223 	.gettime	= cpts_ptp_gettime,
224 	.settime	= cpts_ptp_settime,
225 	.enable		= cpts_ptp_enable,
226 };
227 
228 static void cpts_overflow_check(struct work_struct *work)
229 {
230 	struct timespec ts;
231 	struct cpts *cpts = container_of(work, struct cpts, overflow_work.work);
232 
233 	cpts_write32(cpts, CPTS_EN, control);
234 	cpts_write32(cpts, TS_PEND_EN, int_enable);
235 	cpts_ptp_gettime(&cpts->info, &ts);
236 	pr_debug("cpts overflow check at %ld.%09lu\n", ts.tv_sec, ts.tv_nsec);
237 	schedule_delayed_work(&cpts->overflow_work, CPTS_OVERFLOW_PERIOD);
238 }
239 
240 #define CPTS_REF_CLOCK_NAME "cpsw_cpts_rft_clk"
241 
242 static void cpts_clk_init(struct cpts *cpts)
243 {
244 	cpts->refclk = clk_get(NULL, CPTS_REF_CLOCK_NAME);
245 	if (IS_ERR(cpts->refclk)) {
246 		pr_err("Failed to clk_get %s\n", CPTS_REF_CLOCK_NAME);
247 		cpts->refclk = NULL;
248 		return;
249 	}
250 	clk_prepare_enable(cpts->refclk);
251 }
252 
253 static void cpts_clk_release(struct cpts *cpts)
254 {
255 	clk_disable(cpts->refclk);
256 	clk_put(cpts->refclk);
257 }
258 
259 static int cpts_match(struct sk_buff *skb, unsigned int ptp_class,
260 		      u16 ts_seqid, u8 ts_msgtype)
261 {
262 	u16 *seqid;
263 	unsigned int offset;
264 	u8 *msgtype, *data = skb->data;
265 
266 	switch (ptp_class) {
267 	case PTP_CLASS_V1_IPV4:
268 	case PTP_CLASS_V2_IPV4:
269 		offset = ETH_HLEN + IPV4_HLEN(data) + UDP_HLEN;
270 		break;
271 	case PTP_CLASS_V1_IPV6:
272 	case PTP_CLASS_V2_IPV6:
273 		offset = OFF_PTP6;
274 		break;
275 	case PTP_CLASS_V2_L2:
276 		offset = ETH_HLEN;
277 		break;
278 	case PTP_CLASS_V2_VLAN:
279 		offset = ETH_HLEN + VLAN_HLEN;
280 		break;
281 	default:
282 		return 0;
283 	}
284 
285 	if (skb->len + ETH_HLEN < offset + OFF_PTP_SEQUENCE_ID + sizeof(*seqid))
286 		return 0;
287 
288 	if (unlikely(ptp_class & PTP_CLASS_V1))
289 		msgtype = data + offset + OFF_PTP_CONTROL;
290 	else
291 		msgtype = data + offset;
292 
293 	seqid = (u16 *)(data + offset + OFF_PTP_SEQUENCE_ID);
294 
295 	return (ts_msgtype == (*msgtype & 0xf) && ts_seqid == ntohs(*seqid));
296 }
297 
298 static u64 cpts_find_ts(struct cpts *cpts, struct sk_buff *skb, int ev_type)
299 {
300 	u64 ns = 0;
301 	struct cpts_event *event;
302 	struct list_head *this, *next;
303 	unsigned int class = sk_run_filter(skb, ptp_filter);
304 	unsigned long flags;
305 	u16 seqid;
306 	u8 mtype;
307 
308 	if (class == PTP_CLASS_NONE)
309 		return 0;
310 
311 	spin_lock_irqsave(&cpts->lock, flags);
312 	cpts_fifo_read(cpts, CPTS_EV_PUSH);
313 	list_for_each_safe(this, next, &cpts->events) {
314 		event = list_entry(this, struct cpts_event, list);
315 		if (event_expired(event)) {
316 			list_del_init(&event->list);
317 			list_add(&event->list, &cpts->pool);
318 			continue;
319 		}
320 		mtype = (event->high >> MESSAGE_TYPE_SHIFT) & MESSAGE_TYPE_MASK;
321 		seqid = (event->high >> SEQUENCE_ID_SHIFT) & SEQUENCE_ID_MASK;
322 		if (ev_type == event_type(event) &&
323 		    cpts_match(skb, class, seqid, mtype)) {
324 			ns = timecounter_cyc2time(&cpts->tc, event->low);
325 			list_del_init(&event->list);
326 			list_add(&event->list, &cpts->pool);
327 			break;
328 		}
329 	}
330 	spin_unlock_irqrestore(&cpts->lock, flags);
331 
332 	return ns;
333 }
334 
335 void cpts_rx_timestamp(struct cpts *cpts, struct sk_buff *skb)
336 {
337 	u64 ns;
338 	struct skb_shared_hwtstamps *ssh;
339 
340 	if (!cpts->rx_enable)
341 		return;
342 	ns = cpts_find_ts(cpts, skb, CPTS_EV_RX);
343 	if (!ns)
344 		return;
345 	ssh = skb_hwtstamps(skb);
346 	memset(ssh, 0, sizeof(*ssh));
347 	ssh->hwtstamp = ns_to_ktime(ns);
348 }
349 
350 void cpts_tx_timestamp(struct cpts *cpts, struct sk_buff *skb)
351 {
352 	u64 ns;
353 	struct skb_shared_hwtstamps ssh;
354 
355 	if (!(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
356 		return;
357 	ns = cpts_find_ts(cpts, skb, CPTS_EV_TX);
358 	if (!ns)
359 		return;
360 	memset(&ssh, 0, sizeof(ssh));
361 	ssh.hwtstamp = ns_to_ktime(ns);
362 	skb_tstamp_tx(skb, &ssh);
363 }
364 
365 #endif /*CONFIG_TI_CPTS*/
366 
367 int cpts_register(struct device *dev, struct cpts *cpts,
368 		  u32 mult, u32 shift)
369 {
370 #ifdef CONFIG_TI_CPTS
371 	int err, i;
372 	unsigned long flags;
373 
374 	if (ptp_filter_init(ptp_filter, ARRAY_SIZE(ptp_filter))) {
375 		pr_err("cpts: bad ptp filter\n");
376 		return -EINVAL;
377 	}
378 	cpts->info = cpts_info;
379 	cpts->clock = ptp_clock_register(&cpts->info, dev);
380 	if (IS_ERR(cpts->clock)) {
381 		err = PTR_ERR(cpts->clock);
382 		cpts->clock = NULL;
383 		return err;
384 	}
385 	spin_lock_init(&cpts->lock);
386 
387 	cpts->cc.read = cpts_systim_read;
388 	cpts->cc.mask = CLOCKSOURCE_MASK(32);
389 	cpts->cc_mult = mult;
390 	cpts->cc.mult = mult;
391 	cpts->cc.shift = shift;
392 
393 	INIT_LIST_HEAD(&cpts->events);
394 	INIT_LIST_HEAD(&cpts->pool);
395 	for (i = 0; i < CPTS_MAX_EVENTS; i++)
396 		list_add(&cpts->pool_data[i].list, &cpts->pool);
397 
398 	cpts_clk_init(cpts);
399 	cpts_write32(cpts, CPTS_EN, control);
400 	cpts_write32(cpts, TS_PEND_EN, int_enable);
401 
402 	spin_lock_irqsave(&cpts->lock, flags);
403 	timecounter_init(&cpts->tc, &cpts->cc, ktime_to_ns(ktime_get_real()));
404 	spin_unlock_irqrestore(&cpts->lock, flags);
405 
406 	INIT_DELAYED_WORK(&cpts->overflow_work, cpts_overflow_check);
407 	schedule_delayed_work(&cpts->overflow_work, CPTS_OVERFLOW_PERIOD);
408 
409 	cpts->phc_index = ptp_clock_index(cpts->clock);
410 #endif
411 	return 0;
412 }
413 
414 void cpts_unregister(struct cpts *cpts)
415 {
416 #ifdef CONFIG_TI_CPTS
417 	if (cpts->clock) {
418 		ptp_clock_unregister(cpts->clock);
419 		cancel_delayed_work_sync(&cpts->overflow_work);
420 	}
421 	if (cpts->refclk)
422 		cpts_clk_release(cpts);
423 #endif
424 }
425