1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Texas Instruments Ethernet Switch Driver 4 * 5 * Copyright (C) 2019 Texas Instruments 6 */ 7 8 #include <linux/bpf.h> 9 #include <linux/bpf_trace.h> 10 #include <linux/if_ether.h> 11 #include <linux/if_vlan.h> 12 #include <linux/kmemleak.h> 13 #include <linux/module.h> 14 #include <linux/netdevice.h> 15 #include <linux/net_tstamp.h> 16 #include <linux/of.h> 17 #include <linux/phy.h> 18 #include <linux/platform_device.h> 19 #include <linux/pm_runtime.h> 20 #include <linux/skbuff.h> 21 #include <net/page_pool.h> 22 #include <net/pkt_cls.h> 23 #include <net/pkt_sched.h> 24 25 #include "cpsw.h" 26 #include "cpts.h" 27 #include "cpsw_ale.h" 28 #include "cpsw_priv.h" 29 #include "cpsw_sl.h" 30 #include "davinci_cpdma.h" 31 32 #define CPTS_N_ETX_TS 4 33 34 int (*cpsw_slave_index)(struct cpsw_common *cpsw, struct cpsw_priv *priv); 35 36 void cpsw_intr_enable(struct cpsw_common *cpsw) 37 { 38 writel_relaxed(0xFF, &cpsw->wr_regs->tx_en); 39 writel_relaxed(0xFF, &cpsw->wr_regs->rx_en); 40 41 cpdma_ctlr_int_ctrl(cpsw->dma, true); 42 } 43 44 void cpsw_intr_disable(struct cpsw_common *cpsw) 45 { 46 writel_relaxed(0, &cpsw->wr_regs->tx_en); 47 writel_relaxed(0, &cpsw->wr_regs->rx_en); 48 49 cpdma_ctlr_int_ctrl(cpsw->dma, false); 50 } 51 52 void cpsw_tx_handler(void *token, int len, int status) 53 { 54 struct cpsw_meta_xdp *xmeta; 55 struct xdp_frame *xdpf; 56 struct net_device *ndev; 57 struct netdev_queue *txq; 58 struct sk_buff *skb; 59 int ch; 60 61 if (cpsw_is_xdpf_handle(token)) { 62 xdpf = cpsw_handle_to_xdpf(token); 63 xmeta = (void *)xdpf + CPSW_XMETA_OFFSET; 64 ndev = xmeta->ndev; 65 ch = xmeta->ch; 66 xdp_return_frame(xdpf); 67 } else { 68 skb = token; 69 ndev = skb->dev; 70 ch = skb_get_queue_mapping(skb); 71 cpts_tx_timestamp(ndev_to_cpsw(ndev)->cpts, skb); 72 dev_kfree_skb_any(skb); 73 } 74 75 /* Check whether the queue is stopped due to stalled tx dma, if the 76 * queue is stopped then start the queue as we have free desc for tx 77 */ 78 txq = netdev_get_tx_queue(ndev, ch); 79 if (unlikely(netif_tx_queue_stopped(txq))) 80 netif_tx_wake_queue(txq); 81 82 ndev->stats.tx_packets++; 83 ndev->stats.tx_bytes += len; 84 } 85 86 irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id) 87 { 88 struct cpsw_common *cpsw = dev_id; 89 90 writel(0, &cpsw->wr_regs->tx_en); 91 cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_TX); 92 93 if (cpsw->quirk_irq) { 94 disable_irq_nosync(cpsw->irqs_table[1]); 95 cpsw->tx_irq_disabled = true; 96 } 97 98 napi_schedule(&cpsw->napi_tx); 99 return IRQ_HANDLED; 100 } 101 102 irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id) 103 { 104 struct cpsw_common *cpsw = dev_id; 105 106 writel(0, &cpsw->wr_regs->rx_en); 107 cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_RX); 108 109 if (cpsw->quirk_irq) { 110 disable_irq_nosync(cpsw->irqs_table[0]); 111 cpsw->rx_irq_disabled = true; 112 } 113 114 napi_schedule(&cpsw->napi_rx); 115 return IRQ_HANDLED; 116 } 117 118 irqreturn_t cpsw_misc_interrupt(int irq, void *dev_id) 119 { 120 struct cpsw_common *cpsw = dev_id; 121 122 writel(0, &cpsw->wr_regs->misc_en); 123 cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_MISC); 124 cpts_misc_interrupt(cpsw->cpts); 125 writel(0x10, &cpsw->wr_regs->misc_en); 126 127 return IRQ_HANDLED; 128 } 129 130 int cpsw_tx_mq_poll(struct napi_struct *napi_tx, int budget) 131 { 132 struct cpsw_common *cpsw = napi_to_cpsw(napi_tx); 133 int num_tx, cur_budget, ch; 134 u32 ch_map; 135 struct cpsw_vector *txv; 136 137 /* process every unprocessed channel */ 138 ch_map = cpdma_ctrl_txchs_state(cpsw->dma); 139 for (ch = 0, num_tx = 0; ch_map & 0xff; ch_map <<= 1, ch++) { 140 if (!(ch_map & 0x80)) 141 continue; 142 143 txv = &cpsw->txv[ch]; 144 if (unlikely(txv->budget > budget - num_tx)) 145 cur_budget = budget - num_tx; 146 else 147 cur_budget = txv->budget; 148 149 num_tx += cpdma_chan_process(txv->ch, cur_budget); 150 if (num_tx >= budget) 151 break; 152 } 153 154 if (num_tx < budget) { 155 napi_complete(napi_tx); 156 writel(0xff, &cpsw->wr_regs->tx_en); 157 } 158 159 return num_tx; 160 } 161 162 int cpsw_tx_poll(struct napi_struct *napi_tx, int budget) 163 { 164 struct cpsw_common *cpsw = napi_to_cpsw(napi_tx); 165 int num_tx; 166 167 num_tx = cpdma_chan_process(cpsw->txv[0].ch, budget); 168 if (num_tx < budget) { 169 napi_complete(napi_tx); 170 writel(0xff, &cpsw->wr_regs->tx_en); 171 if (cpsw->tx_irq_disabled) { 172 cpsw->tx_irq_disabled = false; 173 enable_irq(cpsw->irqs_table[1]); 174 } 175 } 176 177 return num_tx; 178 } 179 180 int cpsw_rx_mq_poll(struct napi_struct *napi_rx, int budget) 181 { 182 struct cpsw_common *cpsw = napi_to_cpsw(napi_rx); 183 int num_rx, cur_budget, ch; 184 u32 ch_map; 185 struct cpsw_vector *rxv; 186 187 /* process every unprocessed channel */ 188 ch_map = cpdma_ctrl_rxchs_state(cpsw->dma); 189 for (ch = 0, num_rx = 0; ch_map; ch_map >>= 1, ch++) { 190 if (!(ch_map & 0x01)) 191 continue; 192 193 rxv = &cpsw->rxv[ch]; 194 if (unlikely(rxv->budget > budget - num_rx)) 195 cur_budget = budget - num_rx; 196 else 197 cur_budget = rxv->budget; 198 199 num_rx += cpdma_chan_process(rxv->ch, cur_budget); 200 if (num_rx >= budget) 201 break; 202 } 203 204 if (num_rx < budget) { 205 napi_complete_done(napi_rx, num_rx); 206 writel(0xff, &cpsw->wr_regs->rx_en); 207 } 208 209 return num_rx; 210 } 211 212 int cpsw_rx_poll(struct napi_struct *napi_rx, int budget) 213 { 214 struct cpsw_common *cpsw = napi_to_cpsw(napi_rx); 215 int num_rx; 216 217 num_rx = cpdma_chan_process(cpsw->rxv[0].ch, budget); 218 if (num_rx < budget) { 219 napi_complete_done(napi_rx, num_rx); 220 writel(0xff, &cpsw->wr_regs->rx_en); 221 if (cpsw->rx_irq_disabled) { 222 cpsw->rx_irq_disabled = false; 223 enable_irq(cpsw->irqs_table[0]); 224 } 225 } 226 227 return num_rx; 228 } 229 230 void cpsw_rx_vlan_encap(struct sk_buff *skb) 231 { 232 struct cpsw_priv *priv = netdev_priv(skb->dev); 233 u32 rx_vlan_encap_hdr = *((u32 *)skb->data); 234 struct cpsw_common *cpsw = priv->cpsw; 235 u16 vtag, vid, prio, pkt_type; 236 237 /* Remove VLAN header encapsulation word */ 238 skb_pull(skb, CPSW_RX_VLAN_ENCAP_HDR_SIZE); 239 240 pkt_type = (rx_vlan_encap_hdr >> 241 CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_SHIFT) & 242 CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_MSK; 243 /* Ignore unknown & Priority-tagged packets*/ 244 if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_RESERV || 245 pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_PRIO_TAG) 246 return; 247 248 vid = (rx_vlan_encap_hdr >> 249 CPSW_RX_VLAN_ENCAP_HDR_VID_SHIFT) & 250 VLAN_VID_MASK; 251 /* Ignore vid 0 and pass packet as is */ 252 if (!vid) 253 return; 254 255 /* Untag P0 packets if set for vlan */ 256 if (!cpsw_ale_get_vlan_p0_untag(cpsw->ale, vid)) { 257 prio = (rx_vlan_encap_hdr >> 258 CPSW_RX_VLAN_ENCAP_HDR_PRIO_SHIFT) & 259 CPSW_RX_VLAN_ENCAP_HDR_PRIO_MSK; 260 261 vtag = (prio << VLAN_PRIO_SHIFT) | vid; 262 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vtag); 263 } 264 265 /* strip vlan tag for VLAN-tagged packet */ 266 if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_VLAN_TAG) { 267 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); 268 skb_pull(skb, VLAN_HLEN); 269 } 270 } 271 272 void cpsw_set_slave_mac(struct cpsw_slave *slave, struct cpsw_priv *priv) 273 { 274 slave_write(slave, mac_hi(priv->mac_addr), SA_HI); 275 slave_write(slave, mac_lo(priv->mac_addr), SA_LO); 276 } 277 278 void soft_reset(const char *module, void __iomem *reg) 279 { 280 unsigned long timeout = jiffies + HZ; 281 282 writel_relaxed(1, reg); 283 do { 284 cpu_relax(); 285 } while ((readl_relaxed(reg) & 1) && time_after(timeout, jiffies)); 286 287 WARN(readl_relaxed(reg) & 1, "failed to soft-reset %s\n", module); 288 } 289 290 void cpsw_ndo_tx_timeout(struct net_device *ndev, unsigned int txqueue) 291 { 292 struct cpsw_priv *priv = netdev_priv(ndev); 293 struct cpsw_common *cpsw = priv->cpsw; 294 int ch; 295 296 cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n"); 297 ndev->stats.tx_errors++; 298 cpsw_intr_disable(cpsw); 299 for (ch = 0; ch < cpsw->tx_ch_num; ch++) { 300 cpdma_chan_stop(cpsw->txv[ch].ch); 301 cpdma_chan_start(cpsw->txv[ch].ch); 302 } 303 304 cpsw_intr_enable(cpsw); 305 netif_trans_update(ndev); 306 netif_tx_wake_all_queues(ndev); 307 } 308 309 static int cpsw_get_common_speed(struct cpsw_common *cpsw) 310 { 311 int i, speed; 312 313 for (i = 0, speed = 0; i < cpsw->data.slaves; i++) 314 if (cpsw->slaves[i].phy && cpsw->slaves[i].phy->link) 315 speed += cpsw->slaves[i].phy->speed; 316 317 return speed; 318 } 319 320 int cpsw_need_resplit(struct cpsw_common *cpsw) 321 { 322 int i, rlim_ch_num; 323 int speed, ch_rate; 324 325 /* re-split resources only in case speed was changed */ 326 speed = cpsw_get_common_speed(cpsw); 327 if (speed == cpsw->speed || !speed) 328 return 0; 329 330 cpsw->speed = speed; 331 332 for (i = 0, rlim_ch_num = 0; i < cpsw->tx_ch_num; i++) { 333 ch_rate = cpdma_chan_get_rate(cpsw->txv[i].ch); 334 if (!ch_rate) 335 break; 336 337 rlim_ch_num++; 338 } 339 340 /* cases not dependent on speed */ 341 if (!rlim_ch_num || rlim_ch_num == cpsw->tx_ch_num) 342 return 0; 343 344 return 1; 345 } 346 347 void cpsw_split_res(struct cpsw_common *cpsw) 348 { 349 u32 consumed_rate = 0, bigest_rate = 0; 350 struct cpsw_vector *txv = cpsw->txv; 351 int i, ch_weight, rlim_ch_num = 0; 352 int budget, bigest_rate_ch = 0; 353 u32 ch_rate, max_rate; 354 int ch_budget = 0; 355 356 for (i = 0; i < cpsw->tx_ch_num; i++) { 357 ch_rate = cpdma_chan_get_rate(txv[i].ch); 358 if (!ch_rate) 359 continue; 360 361 rlim_ch_num++; 362 consumed_rate += ch_rate; 363 } 364 365 if (cpsw->tx_ch_num == rlim_ch_num) { 366 max_rate = consumed_rate; 367 } else if (!rlim_ch_num) { 368 ch_budget = NAPI_POLL_WEIGHT / cpsw->tx_ch_num; 369 bigest_rate = 0; 370 max_rate = consumed_rate; 371 } else { 372 max_rate = cpsw->speed * 1000; 373 374 /* if max_rate is less then expected due to reduced link speed, 375 * split proportionally according next potential max speed 376 */ 377 if (max_rate < consumed_rate) 378 max_rate *= 10; 379 380 if (max_rate < consumed_rate) 381 max_rate *= 10; 382 383 ch_budget = (consumed_rate * NAPI_POLL_WEIGHT) / max_rate; 384 ch_budget = (NAPI_POLL_WEIGHT - ch_budget) / 385 (cpsw->tx_ch_num - rlim_ch_num); 386 bigest_rate = (max_rate - consumed_rate) / 387 (cpsw->tx_ch_num - rlim_ch_num); 388 } 389 390 /* split tx weight/budget */ 391 budget = NAPI_POLL_WEIGHT; 392 for (i = 0; i < cpsw->tx_ch_num; i++) { 393 ch_rate = cpdma_chan_get_rate(txv[i].ch); 394 if (ch_rate) { 395 txv[i].budget = (ch_rate * NAPI_POLL_WEIGHT) / max_rate; 396 if (!txv[i].budget) 397 txv[i].budget++; 398 if (ch_rate > bigest_rate) { 399 bigest_rate_ch = i; 400 bigest_rate = ch_rate; 401 } 402 403 ch_weight = (ch_rate * 100) / max_rate; 404 if (!ch_weight) 405 ch_weight++; 406 cpdma_chan_set_weight(cpsw->txv[i].ch, ch_weight); 407 } else { 408 txv[i].budget = ch_budget; 409 if (!bigest_rate_ch) 410 bigest_rate_ch = i; 411 cpdma_chan_set_weight(cpsw->txv[i].ch, 0); 412 } 413 414 budget -= txv[i].budget; 415 } 416 417 if (budget) 418 txv[bigest_rate_ch].budget += budget; 419 420 /* split rx budget */ 421 budget = NAPI_POLL_WEIGHT; 422 ch_budget = budget / cpsw->rx_ch_num; 423 for (i = 0; i < cpsw->rx_ch_num; i++) { 424 cpsw->rxv[i].budget = ch_budget; 425 budget -= ch_budget; 426 } 427 428 if (budget) 429 cpsw->rxv[0].budget += budget; 430 } 431 432 int cpsw_init_common(struct cpsw_common *cpsw, void __iomem *ss_regs, 433 int ale_ageout, phys_addr_t desc_mem_phys, 434 int descs_pool_size) 435 { 436 u32 slave_offset, sliver_offset, slave_size; 437 struct cpsw_ale_params ale_params; 438 struct cpsw_platform_data *data; 439 struct cpdma_params dma_params; 440 struct device *dev = cpsw->dev; 441 struct device_node *cpts_node; 442 void __iomem *cpts_regs; 443 int ret = 0, i; 444 445 data = &cpsw->data; 446 cpsw->rx_ch_num = 1; 447 cpsw->tx_ch_num = 1; 448 449 cpsw->version = readl(&cpsw->regs->id_ver); 450 451 memset(&dma_params, 0, sizeof(dma_params)); 452 memset(&ale_params, 0, sizeof(ale_params)); 453 454 switch (cpsw->version) { 455 case CPSW_VERSION_1: 456 cpsw->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET; 457 cpts_regs = ss_regs + CPSW1_CPTS_OFFSET; 458 cpsw->hw_stats = ss_regs + CPSW1_HW_STATS; 459 dma_params.dmaregs = ss_regs + CPSW1_CPDMA_OFFSET; 460 dma_params.txhdp = ss_regs + CPSW1_STATERAM_OFFSET; 461 ale_params.ale_regs = ss_regs + CPSW1_ALE_OFFSET; 462 slave_offset = CPSW1_SLAVE_OFFSET; 463 slave_size = CPSW1_SLAVE_SIZE; 464 sliver_offset = CPSW1_SLIVER_OFFSET; 465 dma_params.desc_mem_phys = 0; 466 break; 467 case CPSW_VERSION_2: 468 case CPSW_VERSION_3: 469 case CPSW_VERSION_4: 470 cpsw->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET; 471 cpts_regs = ss_regs + CPSW2_CPTS_OFFSET; 472 cpsw->hw_stats = ss_regs + CPSW2_HW_STATS; 473 dma_params.dmaregs = ss_regs + CPSW2_CPDMA_OFFSET; 474 dma_params.txhdp = ss_regs + CPSW2_STATERAM_OFFSET; 475 ale_params.ale_regs = ss_regs + CPSW2_ALE_OFFSET; 476 slave_offset = CPSW2_SLAVE_OFFSET; 477 slave_size = CPSW2_SLAVE_SIZE; 478 sliver_offset = CPSW2_SLIVER_OFFSET; 479 dma_params.desc_mem_phys = desc_mem_phys; 480 break; 481 default: 482 dev_err(dev, "unknown version 0x%08x\n", cpsw->version); 483 return -ENODEV; 484 } 485 486 for (i = 0; i < cpsw->data.slaves; i++) { 487 struct cpsw_slave *slave = &cpsw->slaves[i]; 488 void __iomem *regs = cpsw->regs; 489 490 slave->slave_num = i; 491 slave->data = &cpsw->data.slave_data[i]; 492 slave->regs = regs + slave_offset; 493 slave->port_vlan = slave->data->dual_emac_res_vlan; 494 slave->mac_sl = cpsw_sl_get("cpsw", dev, regs + sliver_offset); 495 if (IS_ERR(slave->mac_sl)) 496 return PTR_ERR(slave->mac_sl); 497 498 slave_offset += slave_size; 499 sliver_offset += SLIVER_SIZE; 500 } 501 502 ale_params.dev = dev; 503 ale_params.ale_ageout = ale_ageout; 504 ale_params.ale_ports = CPSW_ALE_PORTS_NUM; 505 ale_params.dev_id = "cpsw"; 506 ale_params.bus_freq = cpsw->bus_freq_mhz * 1000000; 507 508 cpsw->ale = cpsw_ale_create(&ale_params); 509 if (IS_ERR(cpsw->ale)) { 510 dev_err(dev, "error initializing ale engine\n"); 511 return PTR_ERR(cpsw->ale); 512 } 513 514 dma_params.dev = dev; 515 dma_params.rxthresh = dma_params.dmaregs + CPDMA_RXTHRESH; 516 dma_params.rxfree = dma_params.dmaregs + CPDMA_RXFREE; 517 dma_params.rxhdp = dma_params.txhdp + CPDMA_RXHDP; 518 dma_params.txcp = dma_params.txhdp + CPDMA_TXCP; 519 dma_params.rxcp = dma_params.txhdp + CPDMA_RXCP; 520 521 dma_params.num_chan = data->channels; 522 dma_params.has_soft_reset = true; 523 dma_params.min_packet_size = CPSW_MIN_PACKET_SIZE; 524 dma_params.desc_mem_size = data->bd_ram_size; 525 dma_params.desc_align = 16; 526 dma_params.has_ext_regs = true; 527 dma_params.desc_hw_addr = dma_params.desc_mem_phys; 528 dma_params.bus_freq_mhz = cpsw->bus_freq_mhz; 529 dma_params.descs_pool_size = descs_pool_size; 530 531 cpsw->dma = cpdma_ctlr_create(&dma_params); 532 if (!cpsw->dma) { 533 dev_err(dev, "error initializing dma\n"); 534 return -ENOMEM; 535 } 536 537 cpts_node = of_get_child_by_name(cpsw->dev->of_node, "cpts"); 538 if (!cpts_node) 539 cpts_node = cpsw->dev->of_node; 540 541 cpsw->cpts = cpts_create(cpsw->dev, cpts_regs, cpts_node, 542 CPTS_N_ETX_TS); 543 if (IS_ERR(cpsw->cpts)) { 544 ret = PTR_ERR(cpsw->cpts); 545 cpdma_ctlr_destroy(cpsw->dma); 546 } 547 of_node_put(cpts_node); 548 549 return ret; 550 } 551 552 #if IS_ENABLED(CONFIG_TI_CPTS) 553 554 static void cpsw_hwtstamp_v1(struct cpsw_priv *priv) 555 { 556 struct cpsw_common *cpsw = priv->cpsw; 557 struct cpsw_slave *slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; 558 u32 ts_en, seq_id; 559 560 if (!priv->tx_ts_enabled && !priv->rx_ts_enabled) { 561 slave_write(slave, 0, CPSW1_TS_CTL); 562 return; 563 } 564 565 seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588; 566 ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS; 567 568 if (priv->tx_ts_enabled) 569 ts_en |= CPSW_V1_TS_TX_EN; 570 571 if (priv->rx_ts_enabled) 572 ts_en |= CPSW_V1_TS_RX_EN; 573 574 slave_write(slave, ts_en, CPSW1_TS_CTL); 575 slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE); 576 } 577 578 static void cpsw_hwtstamp_v2(struct cpsw_priv *priv) 579 { 580 struct cpsw_common *cpsw = priv->cpsw; 581 struct cpsw_slave *slave; 582 u32 ctrl, mtype; 583 584 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; 585 586 ctrl = slave_read(slave, CPSW2_CONTROL); 587 switch (cpsw->version) { 588 case CPSW_VERSION_2: 589 ctrl &= ~CTRL_V2_ALL_TS_MASK; 590 591 if (priv->tx_ts_enabled) 592 ctrl |= CTRL_V2_TX_TS_BITS; 593 594 if (priv->rx_ts_enabled) 595 ctrl |= CTRL_V2_RX_TS_BITS; 596 break; 597 case CPSW_VERSION_3: 598 default: 599 ctrl &= ~CTRL_V3_ALL_TS_MASK; 600 601 if (priv->tx_ts_enabled) 602 ctrl |= CTRL_V3_TX_TS_BITS; 603 604 if (priv->rx_ts_enabled) 605 ctrl |= CTRL_V3_RX_TS_BITS; 606 break; 607 } 608 609 mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS; 610 611 slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE); 612 slave_write(slave, ctrl, CPSW2_CONTROL); 613 writel_relaxed(ETH_P_1588, &cpsw->regs->ts_ltype); 614 writel_relaxed(ETH_P_8021Q, &cpsw->regs->vlan_ltype); 615 } 616 617 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr) 618 { 619 struct cpsw_priv *priv = netdev_priv(dev); 620 struct cpsw_common *cpsw = priv->cpsw; 621 struct hwtstamp_config cfg; 622 623 if (cpsw->version != CPSW_VERSION_1 && 624 cpsw->version != CPSW_VERSION_2 && 625 cpsw->version != CPSW_VERSION_3) 626 return -EOPNOTSUPP; 627 628 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg))) 629 return -EFAULT; 630 631 if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON) 632 return -ERANGE; 633 634 switch (cfg.rx_filter) { 635 case HWTSTAMP_FILTER_NONE: 636 priv->rx_ts_enabled = 0; 637 break; 638 case HWTSTAMP_FILTER_ALL: 639 case HWTSTAMP_FILTER_NTP_ALL: 640 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 641 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 642 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 643 return -ERANGE; 644 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 645 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 646 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 647 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 648 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 649 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 650 case HWTSTAMP_FILTER_PTP_V2_EVENT: 651 case HWTSTAMP_FILTER_PTP_V2_SYNC: 652 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 653 priv->rx_ts_enabled = HWTSTAMP_FILTER_PTP_V2_EVENT; 654 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 655 break; 656 default: 657 return -ERANGE; 658 } 659 660 priv->tx_ts_enabled = cfg.tx_type == HWTSTAMP_TX_ON; 661 662 switch (cpsw->version) { 663 case CPSW_VERSION_1: 664 cpsw_hwtstamp_v1(priv); 665 break; 666 case CPSW_VERSION_2: 667 case CPSW_VERSION_3: 668 cpsw_hwtstamp_v2(priv); 669 break; 670 default: 671 WARN_ON(1); 672 } 673 674 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; 675 } 676 677 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr) 678 { 679 struct cpsw_common *cpsw = ndev_to_cpsw(dev); 680 struct cpsw_priv *priv = netdev_priv(dev); 681 struct hwtstamp_config cfg; 682 683 if (cpsw->version != CPSW_VERSION_1 && 684 cpsw->version != CPSW_VERSION_2 && 685 cpsw->version != CPSW_VERSION_3) 686 return -EOPNOTSUPP; 687 688 cfg.flags = 0; 689 cfg.tx_type = priv->tx_ts_enabled ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF; 690 cfg.rx_filter = priv->rx_ts_enabled; 691 692 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; 693 } 694 #else 695 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr) 696 { 697 return -EOPNOTSUPP; 698 } 699 700 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr) 701 { 702 return -EOPNOTSUPP; 703 } 704 #endif /*CONFIG_TI_CPTS*/ 705 706 int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 707 { 708 struct cpsw_priv *priv = netdev_priv(dev); 709 struct cpsw_common *cpsw = priv->cpsw; 710 int slave_no = cpsw_slave_index(cpsw, priv); 711 struct phy_device *phy; 712 713 if (!netif_running(dev)) 714 return -EINVAL; 715 716 phy = cpsw->slaves[slave_no].phy; 717 718 if (!phy_has_hwtstamp(phy)) { 719 switch (cmd) { 720 case SIOCSHWTSTAMP: 721 return cpsw_hwtstamp_set(dev, req); 722 case SIOCGHWTSTAMP: 723 return cpsw_hwtstamp_get(dev, req); 724 } 725 } 726 727 if (phy) 728 return phy_mii_ioctl(phy, req, cmd); 729 730 return -EOPNOTSUPP; 731 } 732 733 int cpsw_ndo_set_tx_maxrate(struct net_device *ndev, int queue, u32 rate) 734 { 735 struct cpsw_priv *priv = netdev_priv(ndev); 736 struct cpsw_common *cpsw = priv->cpsw; 737 struct cpsw_slave *slave; 738 u32 min_rate; 739 u32 ch_rate; 740 int i, ret; 741 742 ch_rate = netdev_get_tx_queue(ndev, queue)->tx_maxrate; 743 if (ch_rate == rate) 744 return 0; 745 746 ch_rate = rate * 1000; 747 min_rate = cpdma_chan_get_min_rate(cpsw->dma); 748 if ((ch_rate < min_rate && ch_rate)) { 749 dev_err(priv->dev, "The channel rate cannot be less than %dMbps", 750 min_rate); 751 return -EINVAL; 752 } 753 754 if (rate > cpsw->speed) { 755 dev_err(priv->dev, "The channel rate cannot be more than 2Gbps"); 756 return -EINVAL; 757 } 758 759 ret = pm_runtime_resume_and_get(cpsw->dev); 760 if (ret < 0) 761 return ret; 762 763 ret = cpdma_chan_set_rate(cpsw->txv[queue].ch, ch_rate); 764 pm_runtime_put(cpsw->dev); 765 766 if (ret) 767 return ret; 768 769 /* update rates for slaves tx queues */ 770 for (i = 0; i < cpsw->data.slaves; i++) { 771 slave = &cpsw->slaves[i]; 772 if (!slave->ndev) 773 continue; 774 775 netdev_get_tx_queue(slave->ndev, queue)->tx_maxrate = rate; 776 } 777 778 cpsw_split_res(cpsw); 779 return ret; 780 } 781 782 static int cpsw_tc_to_fifo(int tc, int num_tc) 783 { 784 if (tc == num_tc - 1) 785 return 0; 786 787 return CPSW_FIFO_SHAPERS_NUM - tc; 788 } 789 790 bool cpsw_shp_is_off(struct cpsw_priv *priv) 791 { 792 struct cpsw_common *cpsw = priv->cpsw; 793 struct cpsw_slave *slave; 794 u32 shift, mask, val; 795 796 val = readl_relaxed(&cpsw->regs->ptype); 797 798 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; 799 shift = CPSW_FIFO_SHAPE_EN_SHIFT + 3 * slave->slave_num; 800 mask = 7 << shift; 801 val = val & mask; 802 803 return !val; 804 } 805 806 static void cpsw_fifo_shp_on(struct cpsw_priv *priv, int fifo, int on) 807 { 808 struct cpsw_common *cpsw = priv->cpsw; 809 struct cpsw_slave *slave; 810 u32 shift, mask, val; 811 812 val = readl_relaxed(&cpsw->regs->ptype); 813 814 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; 815 shift = CPSW_FIFO_SHAPE_EN_SHIFT + 3 * slave->slave_num; 816 mask = (1 << --fifo) << shift; 817 val = on ? val | mask : val & ~mask; 818 819 writel_relaxed(val, &cpsw->regs->ptype); 820 } 821 822 static int cpsw_set_fifo_bw(struct cpsw_priv *priv, int fifo, int bw) 823 { 824 struct cpsw_common *cpsw = priv->cpsw; 825 u32 val = 0, send_pct, shift; 826 struct cpsw_slave *slave; 827 int pct = 0, i; 828 829 if (bw > priv->shp_cfg_speed * 1000) 830 goto err; 831 832 /* shaping has to stay enabled for highest fifos linearly 833 * and fifo bw no more then interface can allow 834 */ 835 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; 836 send_pct = slave_read(slave, SEND_PERCENT); 837 for (i = CPSW_FIFO_SHAPERS_NUM; i > 0; i--) { 838 if (!bw) { 839 if (i >= fifo || !priv->fifo_bw[i]) 840 continue; 841 842 dev_warn(priv->dev, "Prev FIFO%d is shaped", i); 843 continue; 844 } 845 846 if (!priv->fifo_bw[i] && i > fifo) { 847 dev_err(priv->dev, "Upper FIFO%d is not shaped", i); 848 return -EINVAL; 849 } 850 851 shift = (i - 1) * 8; 852 if (i == fifo) { 853 send_pct &= ~(CPSW_PCT_MASK << shift); 854 val = DIV_ROUND_UP(bw, priv->shp_cfg_speed * 10); 855 if (!val) 856 val = 1; 857 858 send_pct |= val << shift; 859 pct += val; 860 continue; 861 } 862 863 if (priv->fifo_bw[i]) 864 pct += (send_pct >> shift) & CPSW_PCT_MASK; 865 } 866 867 if (pct >= 100) 868 goto err; 869 870 slave_write(slave, send_pct, SEND_PERCENT); 871 priv->fifo_bw[fifo] = bw; 872 873 dev_warn(priv->dev, "set FIFO%d bw = %d\n", fifo, 874 DIV_ROUND_CLOSEST(val * priv->shp_cfg_speed, 100)); 875 876 return 0; 877 err: 878 dev_err(priv->dev, "Bandwidth doesn't fit in tc configuration"); 879 return -EINVAL; 880 } 881 882 static int cpsw_set_fifo_rlimit(struct cpsw_priv *priv, int fifo, int bw) 883 { 884 struct cpsw_common *cpsw = priv->cpsw; 885 struct cpsw_slave *slave; 886 u32 tx_in_ctl_rg, val; 887 int ret; 888 889 ret = cpsw_set_fifo_bw(priv, fifo, bw); 890 if (ret) 891 return ret; 892 893 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; 894 tx_in_ctl_rg = cpsw->version == CPSW_VERSION_1 ? 895 CPSW1_TX_IN_CTL : CPSW2_TX_IN_CTL; 896 897 if (!bw) 898 cpsw_fifo_shp_on(priv, fifo, bw); 899 900 val = slave_read(slave, tx_in_ctl_rg); 901 if (cpsw_shp_is_off(priv)) { 902 /* disable FIFOs rate limited queues */ 903 val &= ~(0xf << CPSW_FIFO_RATE_EN_SHIFT); 904 905 /* set type of FIFO queues to normal priority mode */ 906 val &= ~(3 << CPSW_FIFO_QUEUE_TYPE_SHIFT); 907 908 /* set type of FIFO queues to be rate limited */ 909 if (bw) 910 val |= 2 << CPSW_FIFO_QUEUE_TYPE_SHIFT; 911 else 912 priv->shp_cfg_speed = 0; 913 } 914 915 /* toggle a FIFO rate limited queue */ 916 if (bw) 917 val |= BIT(fifo + CPSW_FIFO_RATE_EN_SHIFT); 918 else 919 val &= ~BIT(fifo + CPSW_FIFO_RATE_EN_SHIFT); 920 slave_write(slave, val, tx_in_ctl_rg); 921 922 /* FIFO transmit shape enable */ 923 cpsw_fifo_shp_on(priv, fifo, bw); 924 return 0; 925 } 926 927 /* Defaults: 928 * class A - prio 3 929 * class B - prio 2 930 * shaping for class A should be set first 931 */ 932 static int cpsw_set_cbs(struct net_device *ndev, 933 struct tc_cbs_qopt_offload *qopt) 934 { 935 struct cpsw_priv *priv = netdev_priv(ndev); 936 struct cpsw_common *cpsw = priv->cpsw; 937 struct cpsw_slave *slave; 938 int prev_speed = 0; 939 int tc, ret, fifo; 940 u32 bw = 0; 941 942 tc = netdev_txq_to_tc(priv->ndev, qopt->queue); 943 944 /* enable channels in backward order, as highest FIFOs must be rate 945 * limited first and for compliance with CPDMA rate limited channels 946 * that also used in bacward order. FIFO0 cannot be rate limited. 947 */ 948 fifo = cpsw_tc_to_fifo(tc, ndev->num_tc); 949 if (!fifo) { 950 dev_err(priv->dev, "Last tc%d can't be rate limited", tc); 951 return -EINVAL; 952 } 953 954 /* do nothing, it's disabled anyway */ 955 if (!qopt->enable && !priv->fifo_bw[fifo]) 956 return 0; 957 958 /* shapers can be set if link speed is known */ 959 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; 960 if (slave->phy && slave->phy->link) { 961 if (priv->shp_cfg_speed && 962 priv->shp_cfg_speed != slave->phy->speed) 963 prev_speed = priv->shp_cfg_speed; 964 965 priv->shp_cfg_speed = slave->phy->speed; 966 } 967 968 if (!priv->shp_cfg_speed) { 969 dev_err(priv->dev, "Link speed is not known"); 970 return -1; 971 } 972 973 ret = pm_runtime_resume_and_get(cpsw->dev); 974 if (ret < 0) 975 return ret; 976 977 bw = qopt->enable ? qopt->idleslope : 0; 978 ret = cpsw_set_fifo_rlimit(priv, fifo, bw); 979 if (ret) { 980 priv->shp_cfg_speed = prev_speed; 981 prev_speed = 0; 982 } 983 984 if (bw && prev_speed) 985 dev_warn(priv->dev, 986 "Speed was changed, CBS shaper speeds are changed!"); 987 988 pm_runtime_put_sync(cpsw->dev); 989 return ret; 990 } 991 992 static int cpsw_set_mqprio(struct net_device *ndev, void *type_data) 993 { 994 struct tc_mqprio_qopt_offload *mqprio = type_data; 995 struct cpsw_priv *priv = netdev_priv(ndev); 996 struct cpsw_common *cpsw = priv->cpsw; 997 int fifo, num_tc, count, offset; 998 struct cpsw_slave *slave; 999 u32 tx_prio_map = 0; 1000 int i, tc, ret; 1001 1002 num_tc = mqprio->qopt.num_tc; 1003 if (num_tc > CPSW_TC_NUM) 1004 return -EINVAL; 1005 1006 if (mqprio->mode != TC_MQPRIO_MODE_DCB) 1007 return -EINVAL; 1008 1009 ret = pm_runtime_resume_and_get(cpsw->dev); 1010 if (ret < 0) 1011 return ret; 1012 1013 if (num_tc) { 1014 for (i = 0; i < 8; i++) { 1015 tc = mqprio->qopt.prio_tc_map[i]; 1016 fifo = cpsw_tc_to_fifo(tc, num_tc); 1017 tx_prio_map |= fifo << (4 * i); 1018 } 1019 1020 netdev_set_num_tc(ndev, num_tc); 1021 for (i = 0; i < num_tc; i++) { 1022 count = mqprio->qopt.count[i]; 1023 offset = mqprio->qopt.offset[i]; 1024 netdev_set_tc_queue(ndev, i, count, offset); 1025 } 1026 } 1027 1028 if (!mqprio->qopt.hw) { 1029 /* restore default configuration */ 1030 netdev_reset_tc(ndev); 1031 tx_prio_map = TX_PRIORITY_MAPPING; 1032 } 1033 1034 priv->mqprio_hw = mqprio->qopt.hw; 1035 1036 offset = cpsw->version == CPSW_VERSION_1 ? 1037 CPSW1_TX_PRI_MAP : CPSW2_TX_PRI_MAP; 1038 1039 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; 1040 slave_write(slave, tx_prio_map, offset); 1041 1042 pm_runtime_put_sync(cpsw->dev); 1043 1044 return 0; 1045 } 1046 1047 static int cpsw_qos_setup_tc_block(struct net_device *ndev, struct flow_block_offload *f); 1048 1049 int cpsw_ndo_setup_tc(struct net_device *ndev, enum tc_setup_type type, 1050 void *type_data) 1051 { 1052 switch (type) { 1053 case TC_SETUP_QDISC_CBS: 1054 return cpsw_set_cbs(ndev, type_data); 1055 1056 case TC_SETUP_QDISC_MQPRIO: 1057 return cpsw_set_mqprio(ndev, type_data); 1058 1059 case TC_SETUP_BLOCK: 1060 return cpsw_qos_setup_tc_block(ndev, type_data); 1061 1062 default: 1063 return -EOPNOTSUPP; 1064 } 1065 } 1066 1067 void cpsw_cbs_resume(struct cpsw_slave *slave, struct cpsw_priv *priv) 1068 { 1069 int fifo, bw; 1070 1071 for (fifo = CPSW_FIFO_SHAPERS_NUM; fifo > 0; fifo--) { 1072 bw = priv->fifo_bw[fifo]; 1073 if (!bw) 1074 continue; 1075 1076 cpsw_set_fifo_rlimit(priv, fifo, bw); 1077 } 1078 } 1079 1080 void cpsw_mqprio_resume(struct cpsw_slave *slave, struct cpsw_priv *priv) 1081 { 1082 struct cpsw_common *cpsw = priv->cpsw; 1083 u32 tx_prio_map = 0; 1084 int i, tc, fifo; 1085 u32 tx_prio_rg; 1086 1087 if (!priv->mqprio_hw) 1088 return; 1089 1090 for (i = 0; i < 8; i++) { 1091 tc = netdev_get_prio_tc_map(priv->ndev, i); 1092 fifo = CPSW_FIFO_SHAPERS_NUM - tc; 1093 tx_prio_map |= fifo << (4 * i); 1094 } 1095 1096 tx_prio_rg = cpsw->version == CPSW_VERSION_1 ? 1097 CPSW1_TX_PRI_MAP : CPSW2_TX_PRI_MAP; 1098 1099 slave_write(slave, tx_prio_map, tx_prio_rg); 1100 } 1101 1102 int cpsw_fill_rx_channels(struct cpsw_priv *priv) 1103 { 1104 struct cpsw_common *cpsw = priv->cpsw; 1105 struct cpsw_meta_xdp *xmeta; 1106 struct page_pool *pool; 1107 struct page *page; 1108 int ch_buf_num; 1109 int ch, i, ret; 1110 dma_addr_t dma; 1111 1112 for (ch = 0; ch < cpsw->rx_ch_num; ch++) { 1113 pool = cpsw->page_pool[ch]; 1114 ch_buf_num = cpdma_chan_get_rx_buf_num(cpsw->rxv[ch].ch); 1115 for (i = 0; i < ch_buf_num; i++) { 1116 page = page_pool_dev_alloc_pages(pool); 1117 if (!page) { 1118 cpsw_err(priv, ifup, "allocate rx page err\n"); 1119 return -ENOMEM; 1120 } 1121 1122 xmeta = page_address(page) + CPSW_XMETA_OFFSET; 1123 xmeta->ndev = priv->ndev; 1124 xmeta->ch = ch; 1125 1126 dma = page_pool_get_dma_addr(page) + CPSW_HEADROOM_NA; 1127 ret = cpdma_chan_idle_submit_mapped(cpsw->rxv[ch].ch, 1128 page, dma, 1129 cpsw->rx_packet_max, 1130 0); 1131 if (ret < 0) { 1132 cpsw_err(priv, ifup, 1133 "cannot submit page to channel %d rx, error %d\n", 1134 ch, ret); 1135 page_pool_recycle_direct(pool, page); 1136 return ret; 1137 } 1138 } 1139 1140 cpsw_info(priv, ifup, "ch %d rx, submitted %d descriptors\n", 1141 ch, ch_buf_num); 1142 } 1143 1144 return 0; 1145 } 1146 1147 static struct page_pool *cpsw_create_page_pool(struct cpsw_common *cpsw, 1148 int size) 1149 { 1150 struct page_pool_params pp_params = {}; 1151 struct page_pool *pool; 1152 1153 pp_params.order = 0; 1154 pp_params.flags = PP_FLAG_DMA_MAP; 1155 pp_params.pool_size = size; 1156 pp_params.nid = NUMA_NO_NODE; 1157 pp_params.dma_dir = DMA_BIDIRECTIONAL; 1158 pp_params.dev = cpsw->dev; 1159 1160 pool = page_pool_create(&pp_params); 1161 if (IS_ERR(pool)) 1162 dev_err(cpsw->dev, "cannot create rx page pool\n"); 1163 1164 return pool; 1165 } 1166 1167 static int cpsw_create_rx_pool(struct cpsw_common *cpsw, int ch) 1168 { 1169 struct page_pool *pool; 1170 int ret = 0, pool_size; 1171 1172 pool_size = cpdma_chan_get_rx_buf_num(cpsw->rxv[ch].ch); 1173 pool = cpsw_create_page_pool(cpsw, pool_size); 1174 if (IS_ERR(pool)) 1175 ret = PTR_ERR(pool); 1176 else 1177 cpsw->page_pool[ch] = pool; 1178 1179 return ret; 1180 } 1181 1182 static int cpsw_ndev_create_xdp_rxq(struct cpsw_priv *priv, int ch) 1183 { 1184 struct cpsw_common *cpsw = priv->cpsw; 1185 struct xdp_rxq_info *rxq; 1186 struct page_pool *pool; 1187 int ret; 1188 1189 pool = cpsw->page_pool[ch]; 1190 rxq = &priv->xdp_rxq[ch]; 1191 1192 ret = xdp_rxq_info_reg(rxq, priv->ndev, ch, 0); 1193 if (ret) 1194 return ret; 1195 1196 ret = xdp_rxq_info_reg_mem_model(rxq, MEM_TYPE_PAGE_POOL, pool); 1197 if (ret) 1198 xdp_rxq_info_unreg(rxq); 1199 1200 return ret; 1201 } 1202 1203 static void cpsw_ndev_destroy_xdp_rxq(struct cpsw_priv *priv, int ch) 1204 { 1205 struct xdp_rxq_info *rxq = &priv->xdp_rxq[ch]; 1206 1207 if (!xdp_rxq_info_is_reg(rxq)) 1208 return; 1209 1210 xdp_rxq_info_unreg(rxq); 1211 } 1212 1213 void cpsw_destroy_xdp_rxqs(struct cpsw_common *cpsw) 1214 { 1215 struct net_device *ndev; 1216 int i, ch; 1217 1218 for (ch = 0; ch < cpsw->rx_ch_num; ch++) { 1219 for (i = 0; i < cpsw->data.slaves; i++) { 1220 ndev = cpsw->slaves[i].ndev; 1221 if (!ndev) 1222 continue; 1223 1224 cpsw_ndev_destroy_xdp_rxq(netdev_priv(ndev), ch); 1225 } 1226 1227 page_pool_destroy(cpsw->page_pool[ch]); 1228 cpsw->page_pool[ch] = NULL; 1229 } 1230 } 1231 1232 int cpsw_create_xdp_rxqs(struct cpsw_common *cpsw) 1233 { 1234 struct net_device *ndev; 1235 int i, ch, ret; 1236 1237 for (ch = 0; ch < cpsw->rx_ch_num; ch++) { 1238 ret = cpsw_create_rx_pool(cpsw, ch); 1239 if (ret) 1240 goto err_cleanup; 1241 1242 /* using same page pool is allowed as no running rx handlers 1243 * simultaneously for both ndevs 1244 */ 1245 for (i = 0; i < cpsw->data.slaves; i++) { 1246 ndev = cpsw->slaves[i].ndev; 1247 if (!ndev) 1248 continue; 1249 1250 ret = cpsw_ndev_create_xdp_rxq(netdev_priv(ndev), ch); 1251 if (ret) 1252 goto err_cleanup; 1253 } 1254 } 1255 1256 return 0; 1257 1258 err_cleanup: 1259 cpsw_destroy_xdp_rxqs(cpsw); 1260 1261 return ret; 1262 } 1263 1264 static int cpsw_xdp_prog_setup(struct cpsw_priv *priv, struct netdev_bpf *bpf) 1265 { 1266 struct bpf_prog *prog = bpf->prog; 1267 1268 if (!priv->xdpi.prog && !prog) 1269 return 0; 1270 1271 WRITE_ONCE(priv->xdp_prog, prog); 1272 1273 xdp_attachment_setup(&priv->xdpi, bpf); 1274 1275 return 0; 1276 } 1277 1278 int cpsw_ndo_bpf(struct net_device *ndev, struct netdev_bpf *bpf) 1279 { 1280 struct cpsw_priv *priv = netdev_priv(ndev); 1281 1282 switch (bpf->command) { 1283 case XDP_SETUP_PROG: 1284 return cpsw_xdp_prog_setup(priv, bpf); 1285 1286 default: 1287 return -EINVAL; 1288 } 1289 } 1290 1291 int cpsw_xdp_tx_frame(struct cpsw_priv *priv, struct xdp_frame *xdpf, 1292 struct page *page, int port) 1293 { 1294 struct cpsw_common *cpsw = priv->cpsw; 1295 struct cpsw_meta_xdp *xmeta; 1296 struct cpdma_chan *txch; 1297 dma_addr_t dma; 1298 int ret; 1299 1300 xmeta = (void *)xdpf + CPSW_XMETA_OFFSET; 1301 xmeta->ndev = priv->ndev; 1302 xmeta->ch = 0; 1303 txch = cpsw->txv[0].ch; 1304 1305 if (page) { 1306 dma = page_pool_get_dma_addr(page); 1307 dma += xdpf->headroom + sizeof(struct xdp_frame); 1308 ret = cpdma_chan_submit_mapped(txch, cpsw_xdpf_to_handle(xdpf), 1309 dma, xdpf->len, port); 1310 } else { 1311 if (sizeof(*xmeta) > xdpf->headroom) 1312 return -EINVAL; 1313 1314 ret = cpdma_chan_submit(txch, cpsw_xdpf_to_handle(xdpf), 1315 xdpf->data, xdpf->len, port); 1316 } 1317 1318 if (ret) 1319 priv->ndev->stats.tx_dropped++; 1320 1321 return ret; 1322 } 1323 1324 int cpsw_run_xdp(struct cpsw_priv *priv, int ch, struct xdp_buff *xdp, 1325 struct page *page, int port, int *len) 1326 { 1327 struct cpsw_common *cpsw = priv->cpsw; 1328 struct net_device *ndev = priv->ndev; 1329 int ret = CPSW_XDP_CONSUMED; 1330 struct xdp_frame *xdpf; 1331 struct bpf_prog *prog; 1332 u32 act; 1333 1334 prog = READ_ONCE(priv->xdp_prog); 1335 if (!prog) 1336 return CPSW_XDP_PASS; 1337 1338 act = bpf_prog_run_xdp(prog, xdp); 1339 /* XDP prog might have changed packet data and boundaries */ 1340 *len = xdp->data_end - xdp->data; 1341 1342 switch (act) { 1343 case XDP_PASS: 1344 ret = CPSW_XDP_PASS; 1345 goto out; 1346 case XDP_TX: 1347 xdpf = xdp_convert_buff_to_frame(xdp); 1348 if (unlikely(!xdpf)) 1349 goto drop; 1350 1351 if (cpsw_xdp_tx_frame(priv, xdpf, page, port)) 1352 xdp_return_frame_rx_napi(xdpf); 1353 break; 1354 case XDP_REDIRECT: 1355 if (xdp_do_redirect(ndev, xdp, prog)) 1356 goto drop; 1357 1358 /* Have to flush here, per packet, instead of doing it in bulk 1359 * at the end of the napi handler. The RX devices on this 1360 * particular hardware is sharing a common queue, so the 1361 * incoming device might change per packet. 1362 */ 1363 xdp_do_flush_map(); 1364 break; 1365 default: 1366 bpf_warn_invalid_xdp_action(ndev, prog, act); 1367 fallthrough; 1368 case XDP_ABORTED: 1369 trace_xdp_exception(ndev, prog, act); 1370 fallthrough; /* handle aborts by dropping packet */ 1371 case XDP_DROP: 1372 ndev->stats.rx_bytes += *len; 1373 ndev->stats.rx_packets++; 1374 goto drop; 1375 } 1376 1377 ndev->stats.rx_bytes += *len; 1378 ndev->stats.rx_packets++; 1379 out: 1380 return ret; 1381 drop: 1382 page_pool_recycle_direct(cpsw->page_pool[ch], page); 1383 return ret; 1384 } 1385 1386 static int cpsw_qos_clsflower_add_policer(struct cpsw_priv *priv, 1387 struct netlink_ext_ack *extack, 1388 struct flow_cls_offload *cls, 1389 u64 rate_pkt_ps) 1390 { 1391 struct flow_rule *rule = flow_cls_offload_flow_rule(cls); 1392 struct flow_dissector *dissector = rule->match.dissector; 1393 static const u8 mc_mac[] = {0x01, 0x00, 0x00, 0x00, 0x00, 0x00}; 1394 struct flow_match_eth_addrs match; 1395 u32 port_id; 1396 int ret; 1397 1398 if (dissector->used_keys & 1399 ~(BIT(FLOW_DISSECTOR_KEY_BASIC) | 1400 BIT(FLOW_DISSECTOR_KEY_CONTROL) | 1401 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS))) { 1402 NL_SET_ERR_MSG_MOD(extack, 1403 "Unsupported keys used"); 1404 return -EOPNOTSUPP; 1405 } 1406 1407 if (!flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 1408 NL_SET_ERR_MSG_MOD(extack, "Not matching on eth address"); 1409 return -EOPNOTSUPP; 1410 } 1411 1412 flow_rule_match_eth_addrs(rule, &match); 1413 1414 if (!is_zero_ether_addr(match.mask->src)) { 1415 NL_SET_ERR_MSG_MOD(extack, 1416 "Matching on source MAC not supported"); 1417 return -EOPNOTSUPP; 1418 } 1419 1420 port_id = cpsw_slave_index(priv->cpsw, priv) + 1; 1421 1422 if (is_broadcast_ether_addr(match.key->dst) && 1423 is_broadcast_ether_addr(match.mask->dst)) { 1424 ret = cpsw_ale_rx_ratelimit_bc(priv->cpsw->ale, port_id, rate_pkt_ps); 1425 if (ret) 1426 return ret; 1427 1428 priv->ale_bc_ratelimit.cookie = cls->cookie; 1429 priv->ale_bc_ratelimit.rate_packet_ps = rate_pkt_ps; 1430 } else if (ether_addr_equal_unaligned(match.key->dst, mc_mac) && 1431 ether_addr_equal_unaligned(match.mask->dst, mc_mac)) { 1432 ret = cpsw_ale_rx_ratelimit_mc(priv->cpsw->ale, port_id, rate_pkt_ps); 1433 if (ret) 1434 return ret; 1435 1436 priv->ale_mc_ratelimit.cookie = cls->cookie; 1437 priv->ale_mc_ratelimit.rate_packet_ps = rate_pkt_ps; 1438 } else { 1439 NL_SET_ERR_MSG_MOD(extack, "Not supported matching key"); 1440 return -EOPNOTSUPP; 1441 } 1442 1443 return 0; 1444 } 1445 1446 static int cpsw_qos_clsflower_policer_validate(const struct flow_action *action, 1447 const struct flow_action_entry *act, 1448 struct netlink_ext_ack *extack) 1449 { 1450 if (act->police.exceed.act_id != FLOW_ACTION_DROP) { 1451 NL_SET_ERR_MSG_MOD(extack, 1452 "Offload not supported when exceed action is not drop"); 1453 return -EOPNOTSUPP; 1454 } 1455 1456 if (act->police.notexceed.act_id != FLOW_ACTION_PIPE && 1457 act->police.notexceed.act_id != FLOW_ACTION_ACCEPT) { 1458 NL_SET_ERR_MSG_MOD(extack, 1459 "Offload not supported when conform action is not pipe or ok"); 1460 return -EOPNOTSUPP; 1461 } 1462 1463 if (act->police.notexceed.act_id == FLOW_ACTION_ACCEPT && 1464 !flow_action_is_last_entry(action, act)) { 1465 NL_SET_ERR_MSG_MOD(extack, 1466 "Offload not supported when conform action is ok, but action is not last"); 1467 return -EOPNOTSUPP; 1468 } 1469 1470 if (act->police.rate_bytes_ps || act->police.peakrate_bytes_ps || 1471 act->police.avrate || act->police.overhead) { 1472 NL_SET_ERR_MSG_MOD(extack, 1473 "Offload not supported when bytes per second/peakrate/avrate/overhead is configured"); 1474 return -EOPNOTSUPP; 1475 } 1476 1477 return 0; 1478 } 1479 1480 static int cpsw_qos_configure_clsflower(struct cpsw_priv *priv, struct flow_cls_offload *cls) 1481 { 1482 struct flow_rule *rule = flow_cls_offload_flow_rule(cls); 1483 struct netlink_ext_ack *extack = cls->common.extack; 1484 const struct flow_action_entry *act; 1485 int i, ret; 1486 1487 flow_action_for_each(i, act, &rule->action) { 1488 switch (act->id) { 1489 case FLOW_ACTION_POLICE: 1490 ret = cpsw_qos_clsflower_policer_validate(&rule->action, act, extack); 1491 if (ret) 1492 return ret; 1493 1494 return cpsw_qos_clsflower_add_policer(priv, extack, cls, 1495 act->police.rate_pkt_ps); 1496 default: 1497 NL_SET_ERR_MSG_MOD(extack, "Action not supported"); 1498 return -EOPNOTSUPP; 1499 } 1500 } 1501 return -EOPNOTSUPP; 1502 } 1503 1504 static int cpsw_qos_delete_clsflower(struct cpsw_priv *priv, struct flow_cls_offload *cls) 1505 { 1506 u32 port_id = cpsw_slave_index(priv->cpsw, priv) + 1; 1507 1508 if (cls->cookie == priv->ale_bc_ratelimit.cookie) { 1509 priv->ale_bc_ratelimit.cookie = 0; 1510 priv->ale_bc_ratelimit.rate_packet_ps = 0; 1511 cpsw_ale_rx_ratelimit_bc(priv->cpsw->ale, port_id, 0); 1512 } 1513 1514 if (cls->cookie == priv->ale_mc_ratelimit.cookie) { 1515 priv->ale_mc_ratelimit.cookie = 0; 1516 priv->ale_mc_ratelimit.rate_packet_ps = 0; 1517 cpsw_ale_rx_ratelimit_mc(priv->cpsw->ale, port_id, 0); 1518 } 1519 1520 return 0; 1521 } 1522 1523 static int cpsw_qos_setup_tc_clsflower(struct cpsw_priv *priv, struct flow_cls_offload *cls_flower) 1524 { 1525 switch (cls_flower->command) { 1526 case FLOW_CLS_REPLACE: 1527 return cpsw_qos_configure_clsflower(priv, cls_flower); 1528 case FLOW_CLS_DESTROY: 1529 return cpsw_qos_delete_clsflower(priv, cls_flower); 1530 default: 1531 return -EOPNOTSUPP; 1532 } 1533 } 1534 1535 static int cpsw_qos_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) 1536 { 1537 struct cpsw_priv *priv = cb_priv; 1538 int ret; 1539 1540 if (!tc_cls_can_offload_and_chain0(priv->ndev, type_data)) 1541 return -EOPNOTSUPP; 1542 1543 ret = pm_runtime_get_sync(priv->dev); 1544 if (ret < 0) { 1545 pm_runtime_put_noidle(priv->dev); 1546 return ret; 1547 } 1548 1549 switch (type) { 1550 case TC_SETUP_CLSFLOWER: 1551 ret = cpsw_qos_setup_tc_clsflower(priv, type_data); 1552 break; 1553 default: 1554 ret = -EOPNOTSUPP; 1555 } 1556 1557 pm_runtime_put(priv->dev); 1558 return ret; 1559 } 1560 1561 static LIST_HEAD(cpsw_qos_block_cb_list); 1562 1563 static int cpsw_qos_setup_tc_block(struct net_device *ndev, struct flow_block_offload *f) 1564 { 1565 struct cpsw_priv *priv = netdev_priv(ndev); 1566 1567 return flow_block_cb_setup_simple(f, &cpsw_qos_block_cb_list, 1568 cpsw_qos_setup_tc_block_cb, 1569 priv, priv, true); 1570 } 1571 1572 void cpsw_qos_clsflower_resume(struct cpsw_priv *priv) 1573 { 1574 u32 port_id = cpsw_slave_index(priv->cpsw, priv) + 1; 1575 1576 if (priv->ale_bc_ratelimit.cookie) 1577 cpsw_ale_rx_ratelimit_bc(priv->cpsw->ale, port_id, 1578 priv->ale_bc_ratelimit.rate_packet_ps); 1579 1580 if (priv->ale_mc_ratelimit.cookie) 1581 cpsw_ale_rx_ratelimit_mc(priv->cpsw->ale, port_id, 1582 priv->ale_mc_ratelimit.rate_packet_ps); 1583 } 1584