1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Texas Instruments Ethernet Switch Driver 4 * 5 * Copyright (C) 2019 Texas Instruments 6 */ 7 8 #include <linux/bpf.h> 9 #include <linux/bpf_trace.h> 10 #include <linux/if_ether.h> 11 #include <linux/if_vlan.h> 12 #include <linux/kmemleak.h> 13 #include <linux/module.h> 14 #include <linux/netdevice.h> 15 #include <linux/net_tstamp.h> 16 #include <linux/of.h> 17 #include <linux/phy.h> 18 #include <linux/platform_device.h> 19 #include <linux/pm_runtime.h> 20 #include <linux/skbuff.h> 21 #include <net/page_pool.h> 22 #include <net/pkt_cls.h> 23 24 #include "cpsw.h" 25 #include "cpts.h" 26 #include "cpsw_ale.h" 27 #include "cpsw_priv.h" 28 #include "cpsw_sl.h" 29 #include "davinci_cpdma.h" 30 31 #define CPTS_N_ETX_TS 4 32 33 int (*cpsw_slave_index)(struct cpsw_common *cpsw, struct cpsw_priv *priv); 34 35 void cpsw_intr_enable(struct cpsw_common *cpsw) 36 { 37 writel_relaxed(0xFF, &cpsw->wr_regs->tx_en); 38 writel_relaxed(0xFF, &cpsw->wr_regs->rx_en); 39 40 cpdma_ctlr_int_ctrl(cpsw->dma, true); 41 } 42 43 void cpsw_intr_disable(struct cpsw_common *cpsw) 44 { 45 writel_relaxed(0, &cpsw->wr_regs->tx_en); 46 writel_relaxed(0, &cpsw->wr_regs->rx_en); 47 48 cpdma_ctlr_int_ctrl(cpsw->dma, false); 49 } 50 51 void cpsw_tx_handler(void *token, int len, int status) 52 { 53 struct cpsw_meta_xdp *xmeta; 54 struct xdp_frame *xdpf; 55 struct net_device *ndev; 56 struct netdev_queue *txq; 57 struct sk_buff *skb; 58 int ch; 59 60 if (cpsw_is_xdpf_handle(token)) { 61 xdpf = cpsw_handle_to_xdpf(token); 62 xmeta = (void *)xdpf + CPSW_XMETA_OFFSET; 63 ndev = xmeta->ndev; 64 ch = xmeta->ch; 65 xdp_return_frame(xdpf); 66 } else { 67 skb = token; 68 ndev = skb->dev; 69 ch = skb_get_queue_mapping(skb); 70 cpts_tx_timestamp(ndev_to_cpsw(ndev)->cpts, skb); 71 dev_kfree_skb_any(skb); 72 } 73 74 /* Check whether the queue is stopped due to stalled tx dma, if the 75 * queue is stopped then start the queue as we have free desc for tx 76 */ 77 txq = netdev_get_tx_queue(ndev, ch); 78 if (unlikely(netif_tx_queue_stopped(txq))) 79 netif_tx_wake_queue(txq); 80 81 ndev->stats.tx_packets++; 82 ndev->stats.tx_bytes += len; 83 } 84 85 irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id) 86 { 87 struct cpsw_common *cpsw = dev_id; 88 89 writel(0, &cpsw->wr_regs->tx_en); 90 cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_TX); 91 92 if (cpsw->quirk_irq) { 93 disable_irq_nosync(cpsw->irqs_table[1]); 94 cpsw->tx_irq_disabled = true; 95 } 96 97 napi_schedule(&cpsw->napi_tx); 98 return IRQ_HANDLED; 99 } 100 101 irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id) 102 { 103 struct cpsw_common *cpsw = dev_id; 104 105 writel(0, &cpsw->wr_regs->rx_en); 106 cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_RX); 107 108 if (cpsw->quirk_irq) { 109 disable_irq_nosync(cpsw->irqs_table[0]); 110 cpsw->rx_irq_disabled = true; 111 } 112 113 napi_schedule(&cpsw->napi_rx); 114 return IRQ_HANDLED; 115 } 116 117 irqreturn_t cpsw_misc_interrupt(int irq, void *dev_id) 118 { 119 struct cpsw_common *cpsw = dev_id; 120 121 writel(0, &cpsw->wr_regs->misc_en); 122 cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_MISC); 123 cpts_misc_interrupt(cpsw->cpts); 124 writel(0x10, &cpsw->wr_regs->misc_en); 125 126 return IRQ_HANDLED; 127 } 128 129 int cpsw_tx_mq_poll(struct napi_struct *napi_tx, int budget) 130 { 131 struct cpsw_common *cpsw = napi_to_cpsw(napi_tx); 132 int num_tx, cur_budget, ch; 133 u32 ch_map; 134 struct cpsw_vector *txv; 135 136 /* process every unprocessed channel */ 137 ch_map = cpdma_ctrl_txchs_state(cpsw->dma); 138 for (ch = 0, num_tx = 0; ch_map & 0xff; ch_map <<= 1, ch++) { 139 if (!(ch_map & 0x80)) 140 continue; 141 142 txv = &cpsw->txv[ch]; 143 if (unlikely(txv->budget > budget - num_tx)) 144 cur_budget = budget - num_tx; 145 else 146 cur_budget = txv->budget; 147 148 num_tx += cpdma_chan_process(txv->ch, cur_budget); 149 if (num_tx >= budget) 150 break; 151 } 152 153 if (num_tx < budget) { 154 napi_complete(napi_tx); 155 writel(0xff, &cpsw->wr_regs->tx_en); 156 } 157 158 return num_tx; 159 } 160 161 int cpsw_tx_poll(struct napi_struct *napi_tx, int budget) 162 { 163 struct cpsw_common *cpsw = napi_to_cpsw(napi_tx); 164 int num_tx; 165 166 num_tx = cpdma_chan_process(cpsw->txv[0].ch, budget); 167 if (num_tx < budget) { 168 napi_complete(napi_tx); 169 writel(0xff, &cpsw->wr_regs->tx_en); 170 if (cpsw->tx_irq_disabled) { 171 cpsw->tx_irq_disabled = false; 172 enable_irq(cpsw->irqs_table[1]); 173 } 174 } 175 176 return num_tx; 177 } 178 179 int cpsw_rx_mq_poll(struct napi_struct *napi_rx, int budget) 180 { 181 struct cpsw_common *cpsw = napi_to_cpsw(napi_rx); 182 int num_rx, cur_budget, ch; 183 u32 ch_map; 184 struct cpsw_vector *rxv; 185 186 /* process every unprocessed channel */ 187 ch_map = cpdma_ctrl_rxchs_state(cpsw->dma); 188 for (ch = 0, num_rx = 0; ch_map; ch_map >>= 1, ch++) { 189 if (!(ch_map & 0x01)) 190 continue; 191 192 rxv = &cpsw->rxv[ch]; 193 if (unlikely(rxv->budget > budget - num_rx)) 194 cur_budget = budget - num_rx; 195 else 196 cur_budget = rxv->budget; 197 198 num_rx += cpdma_chan_process(rxv->ch, cur_budget); 199 if (num_rx >= budget) 200 break; 201 } 202 203 if (num_rx < budget) { 204 napi_complete_done(napi_rx, num_rx); 205 writel(0xff, &cpsw->wr_regs->rx_en); 206 } 207 208 return num_rx; 209 } 210 211 int cpsw_rx_poll(struct napi_struct *napi_rx, int budget) 212 { 213 struct cpsw_common *cpsw = napi_to_cpsw(napi_rx); 214 int num_rx; 215 216 num_rx = cpdma_chan_process(cpsw->rxv[0].ch, budget); 217 if (num_rx < budget) { 218 napi_complete_done(napi_rx, num_rx); 219 writel(0xff, &cpsw->wr_regs->rx_en); 220 if (cpsw->rx_irq_disabled) { 221 cpsw->rx_irq_disabled = false; 222 enable_irq(cpsw->irqs_table[0]); 223 } 224 } 225 226 return num_rx; 227 } 228 229 void cpsw_rx_vlan_encap(struct sk_buff *skb) 230 { 231 struct cpsw_priv *priv = netdev_priv(skb->dev); 232 u32 rx_vlan_encap_hdr = *((u32 *)skb->data); 233 struct cpsw_common *cpsw = priv->cpsw; 234 u16 vtag, vid, prio, pkt_type; 235 236 /* Remove VLAN header encapsulation word */ 237 skb_pull(skb, CPSW_RX_VLAN_ENCAP_HDR_SIZE); 238 239 pkt_type = (rx_vlan_encap_hdr >> 240 CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_SHIFT) & 241 CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_MSK; 242 /* Ignore unknown & Priority-tagged packets*/ 243 if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_RESERV || 244 pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_PRIO_TAG) 245 return; 246 247 vid = (rx_vlan_encap_hdr >> 248 CPSW_RX_VLAN_ENCAP_HDR_VID_SHIFT) & 249 VLAN_VID_MASK; 250 /* Ignore vid 0 and pass packet as is */ 251 if (!vid) 252 return; 253 254 /* Untag P0 packets if set for vlan */ 255 if (!cpsw_ale_get_vlan_p0_untag(cpsw->ale, vid)) { 256 prio = (rx_vlan_encap_hdr >> 257 CPSW_RX_VLAN_ENCAP_HDR_PRIO_SHIFT) & 258 CPSW_RX_VLAN_ENCAP_HDR_PRIO_MSK; 259 260 vtag = (prio << VLAN_PRIO_SHIFT) | vid; 261 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vtag); 262 } 263 264 /* strip vlan tag for VLAN-tagged packet */ 265 if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_VLAN_TAG) { 266 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); 267 skb_pull(skb, VLAN_HLEN); 268 } 269 } 270 271 void cpsw_set_slave_mac(struct cpsw_slave *slave, struct cpsw_priv *priv) 272 { 273 slave_write(slave, mac_hi(priv->mac_addr), SA_HI); 274 slave_write(slave, mac_lo(priv->mac_addr), SA_LO); 275 } 276 277 void soft_reset(const char *module, void __iomem *reg) 278 { 279 unsigned long timeout = jiffies + HZ; 280 281 writel_relaxed(1, reg); 282 do { 283 cpu_relax(); 284 } while ((readl_relaxed(reg) & 1) && time_after(timeout, jiffies)); 285 286 WARN(readl_relaxed(reg) & 1, "failed to soft-reset %s\n", module); 287 } 288 289 void cpsw_ndo_tx_timeout(struct net_device *ndev, unsigned int txqueue) 290 { 291 struct cpsw_priv *priv = netdev_priv(ndev); 292 struct cpsw_common *cpsw = priv->cpsw; 293 int ch; 294 295 cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n"); 296 ndev->stats.tx_errors++; 297 cpsw_intr_disable(cpsw); 298 for (ch = 0; ch < cpsw->tx_ch_num; ch++) { 299 cpdma_chan_stop(cpsw->txv[ch].ch); 300 cpdma_chan_start(cpsw->txv[ch].ch); 301 } 302 303 cpsw_intr_enable(cpsw); 304 netif_trans_update(ndev); 305 netif_tx_wake_all_queues(ndev); 306 } 307 308 static int cpsw_get_common_speed(struct cpsw_common *cpsw) 309 { 310 int i, speed; 311 312 for (i = 0, speed = 0; i < cpsw->data.slaves; i++) 313 if (cpsw->slaves[i].phy && cpsw->slaves[i].phy->link) 314 speed += cpsw->slaves[i].phy->speed; 315 316 return speed; 317 } 318 319 int cpsw_need_resplit(struct cpsw_common *cpsw) 320 { 321 int i, rlim_ch_num; 322 int speed, ch_rate; 323 324 /* re-split resources only in case speed was changed */ 325 speed = cpsw_get_common_speed(cpsw); 326 if (speed == cpsw->speed || !speed) 327 return 0; 328 329 cpsw->speed = speed; 330 331 for (i = 0, rlim_ch_num = 0; i < cpsw->tx_ch_num; i++) { 332 ch_rate = cpdma_chan_get_rate(cpsw->txv[i].ch); 333 if (!ch_rate) 334 break; 335 336 rlim_ch_num++; 337 } 338 339 /* cases not dependent on speed */ 340 if (!rlim_ch_num || rlim_ch_num == cpsw->tx_ch_num) 341 return 0; 342 343 return 1; 344 } 345 346 void cpsw_split_res(struct cpsw_common *cpsw) 347 { 348 u32 consumed_rate = 0, bigest_rate = 0; 349 struct cpsw_vector *txv = cpsw->txv; 350 int i, ch_weight, rlim_ch_num = 0; 351 int budget, bigest_rate_ch = 0; 352 u32 ch_rate, max_rate; 353 int ch_budget = 0; 354 355 for (i = 0; i < cpsw->tx_ch_num; i++) { 356 ch_rate = cpdma_chan_get_rate(txv[i].ch); 357 if (!ch_rate) 358 continue; 359 360 rlim_ch_num++; 361 consumed_rate += ch_rate; 362 } 363 364 if (cpsw->tx_ch_num == rlim_ch_num) { 365 max_rate = consumed_rate; 366 } else if (!rlim_ch_num) { 367 ch_budget = CPSW_POLL_WEIGHT / cpsw->tx_ch_num; 368 bigest_rate = 0; 369 max_rate = consumed_rate; 370 } else { 371 max_rate = cpsw->speed * 1000; 372 373 /* if max_rate is less then expected due to reduced link speed, 374 * split proportionally according next potential max speed 375 */ 376 if (max_rate < consumed_rate) 377 max_rate *= 10; 378 379 if (max_rate < consumed_rate) 380 max_rate *= 10; 381 382 ch_budget = (consumed_rate * CPSW_POLL_WEIGHT) / max_rate; 383 ch_budget = (CPSW_POLL_WEIGHT - ch_budget) / 384 (cpsw->tx_ch_num - rlim_ch_num); 385 bigest_rate = (max_rate - consumed_rate) / 386 (cpsw->tx_ch_num - rlim_ch_num); 387 } 388 389 /* split tx weight/budget */ 390 budget = CPSW_POLL_WEIGHT; 391 for (i = 0; i < cpsw->tx_ch_num; i++) { 392 ch_rate = cpdma_chan_get_rate(txv[i].ch); 393 if (ch_rate) { 394 txv[i].budget = (ch_rate * CPSW_POLL_WEIGHT) / max_rate; 395 if (!txv[i].budget) 396 txv[i].budget++; 397 if (ch_rate > bigest_rate) { 398 bigest_rate_ch = i; 399 bigest_rate = ch_rate; 400 } 401 402 ch_weight = (ch_rate * 100) / max_rate; 403 if (!ch_weight) 404 ch_weight++; 405 cpdma_chan_set_weight(cpsw->txv[i].ch, ch_weight); 406 } else { 407 txv[i].budget = ch_budget; 408 if (!bigest_rate_ch) 409 bigest_rate_ch = i; 410 cpdma_chan_set_weight(cpsw->txv[i].ch, 0); 411 } 412 413 budget -= txv[i].budget; 414 } 415 416 if (budget) 417 txv[bigest_rate_ch].budget += budget; 418 419 /* split rx budget */ 420 budget = CPSW_POLL_WEIGHT; 421 ch_budget = budget / cpsw->rx_ch_num; 422 for (i = 0; i < cpsw->rx_ch_num; i++) { 423 cpsw->rxv[i].budget = ch_budget; 424 budget -= ch_budget; 425 } 426 427 if (budget) 428 cpsw->rxv[0].budget += budget; 429 } 430 431 int cpsw_init_common(struct cpsw_common *cpsw, void __iomem *ss_regs, 432 int ale_ageout, phys_addr_t desc_mem_phys, 433 int descs_pool_size) 434 { 435 u32 slave_offset, sliver_offset, slave_size; 436 struct cpsw_ale_params ale_params; 437 struct cpsw_platform_data *data; 438 struct cpdma_params dma_params; 439 struct device *dev = cpsw->dev; 440 struct device_node *cpts_node; 441 void __iomem *cpts_regs; 442 int ret = 0, i; 443 444 data = &cpsw->data; 445 cpsw->rx_ch_num = 1; 446 cpsw->tx_ch_num = 1; 447 448 cpsw->version = readl(&cpsw->regs->id_ver); 449 450 memset(&dma_params, 0, sizeof(dma_params)); 451 memset(&ale_params, 0, sizeof(ale_params)); 452 453 switch (cpsw->version) { 454 case CPSW_VERSION_1: 455 cpsw->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET; 456 cpts_regs = ss_regs + CPSW1_CPTS_OFFSET; 457 cpsw->hw_stats = ss_regs + CPSW1_HW_STATS; 458 dma_params.dmaregs = ss_regs + CPSW1_CPDMA_OFFSET; 459 dma_params.txhdp = ss_regs + CPSW1_STATERAM_OFFSET; 460 ale_params.ale_regs = ss_regs + CPSW1_ALE_OFFSET; 461 slave_offset = CPSW1_SLAVE_OFFSET; 462 slave_size = CPSW1_SLAVE_SIZE; 463 sliver_offset = CPSW1_SLIVER_OFFSET; 464 dma_params.desc_mem_phys = 0; 465 break; 466 case CPSW_VERSION_2: 467 case CPSW_VERSION_3: 468 case CPSW_VERSION_4: 469 cpsw->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET; 470 cpts_regs = ss_regs + CPSW2_CPTS_OFFSET; 471 cpsw->hw_stats = ss_regs + CPSW2_HW_STATS; 472 dma_params.dmaregs = ss_regs + CPSW2_CPDMA_OFFSET; 473 dma_params.txhdp = ss_regs + CPSW2_STATERAM_OFFSET; 474 ale_params.ale_regs = ss_regs + CPSW2_ALE_OFFSET; 475 slave_offset = CPSW2_SLAVE_OFFSET; 476 slave_size = CPSW2_SLAVE_SIZE; 477 sliver_offset = CPSW2_SLIVER_OFFSET; 478 dma_params.desc_mem_phys = desc_mem_phys; 479 break; 480 default: 481 dev_err(dev, "unknown version 0x%08x\n", cpsw->version); 482 return -ENODEV; 483 } 484 485 for (i = 0; i < cpsw->data.slaves; i++) { 486 struct cpsw_slave *slave = &cpsw->slaves[i]; 487 void __iomem *regs = cpsw->regs; 488 489 slave->slave_num = i; 490 slave->data = &cpsw->data.slave_data[i]; 491 slave->regs = regs + slave_offset; 492 slave->port_vlan = slave->data->dual_emac_res_vlan; 493 slave->mac_sl = cpsw_sl_get("cpsw", dev, regs + sliver_offset); 494 if (IS_ERR(slave->mac_sl)) 495 return PTR_ERR(slave->mac_sl); 496 497 slave_offset += slave_size; 498 sliver_offset += SLIVER_SIZE; 499 } 500 501 ale_params.dev = dev; 502 ale_params.ale_ageout = ale_ageout; 503 ale_params.ale_ports = CPSW_ALE_PORTS_NUM; 504 ale_params.dev_id = "cpsw"; 505 506 cpsw->ale = cpsw_ale_create(&ale_params); 507 if (IS_ERR(cpsw->ale)) { 508 dev_err(dev, "error initializing ale engine\n"); 509 return PTR_ERR(cpsw->ale); 510 } 511 512 dma_params.dev = dev; 513 dma_params.rxthresh = dma_params.dmaregs + CPDMA_RXTHRESH; 514 dma_params.rxfree = dma_params.dmaregs + CPDMA_RXFREE; 515 dma_params.rxhdp = dma_params.txhdp + CPDMA_RXHDP; 516 dma_params.txcp = dma_params.txhdp + CPDMA_TXCP; 517 dma_params.rxcp = dma_params.txhdp + CPDMA_RXCP; 518 519 dma_params.num_chan = data->channels; 520 dma_params.has_soft_reset = true; 521 dma_params.min_packet_size = CPSW_MIN_PACKET_SIZE; 522 dma_params.desc_mem_size = data->bd_ram_size; 523 dma_params.desc_align = 16; 524 dma_params.has_ext_regs = true; 525 dma_params.desc_hw_addr = dma_params.desc_mem_phys; 526 dma_params.bus_freq_mhz = cpsw->bus_freq_mhz; 527 dma_params.descs_pool_size = descs_pool_size; 528 529 cpsw->dma = cpdma_ctlr_create(&dma_params); 530 if (!cpsw->dma) { 531 dev_err(dev, "error initializing dma\n"); 532 return -ENOMEM; 533 } 534 535 cpts_node = of_get_child_by_name(cpsw->dev->of_node, "cpts"); 536 if (!cpts_node) 537 cpts_node = cpsw->dev->of_node; 538 539 cpsw->cpts = cpts_create(cpsw->dev, cpts_regs, cpts_node, 540 CPTS_N_ETX_TS); 541 if (IS_ERR(cpsw->cpts)) { 542 ret = PTR_ERR(cpsw->cpts); 543 cpdma_ctlr_destroy(cpsw->dma); 544 } 545 of_node_put(cpts_node); 546 547 return ret; 548 } 549 550 #if IS_ENABLED(CONFIG_TI_CPTS) 551 552 static void cpsw_hwtstamp_v1(struct cpsw_priv *priv) 553 { 554 struct cpsw_common *cpsw = priv->cpsw; 555 struct cpsw_slave *slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; 556 u32 ts_en, seq_id; 557 558 if (!priv->tx_ts_enabled && !priv->rx_ts_enabled) { 559 slave_write(slave, 0, CPSW1_TS_CTL); 560 return; 561 } 562 563 seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588; 564 ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS; 565 566 if (priv->tx_ts_enabled) 567 ts_en |= CPSW_V1_TS_TX_EN; 568 569 if (priv->rx_ts_enabled) 570 ts_en |= CPSW_V1_TS_RX_EN; 571 572 slave_write(slave, ts_en, CPSW1_TS_CTL); 573 slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE); 574 } 575 576 static void cpsw_hwtstamp_v2(struct cpsw_priv *priv) 577 { 578 struct cpsw_common *cpsw = priv->cpsw; 579 struct cpsw_slave *slave; 580 u32 ctrl, mtype; 581 582 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; 583 584 ctrl = slave_read(slave, CPSW2_CONTROL); 585 switch (cpsw->version) { 586 case CPSW_VERSION_2: 587 ctrl &= ~CTRL_V2_ALL_TS_MASK; 588 589 if (priv->tx_ts_enabled) 590 ctrl |= CTRL_V2_TX_TS_BITS; 591 592 if (priv->rx_ts_enabled) 593 ctrl |= CTRL_V2_RX_TS_BITS; 594 break; 595 case CPSW_VERSION_3: 596 default: 597 ctrl &= ~CTRL_V3_ALL_TS_MASK; 598 599 if (priv->tx_ts_enabled) 600 ctrl |= CTRL_V3_TX_TS_BITS; 601 602 if (priv->rx_ts_enabled) 603 ctrl |= CTRL_V3_RX_TS_BITS; 604 break; 605 } 606 607 mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS; 608 609 slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE); 610 slave_write(slave, ctrl, CPSW2_CONTROL); 611 writel_relaxed(ETH_P_1588, &cpsw->regs->ts_ltype); 612 writel_relaxed(ETH_P_8021Q, &cpsw->regs->vlan_ltype); 613 } 614 615 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr) 616 { 617 struct cpsw_priv *priv = netdev_priv(dev); 618 struct cpsw_common *cpsw = priv->cpsw; 619 struct hwtstamp_config cfg; 620 621 if (cpsw->version != CPSW_VERSION_1 && 622 cpsw->version != CPSW_VERSION_2 && 623 cpsw->version != CPSW_VERSION_3) 624 return -EOPNOTSUPP; 625 626 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg))) 627 return -EFAULT; 628 629 if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON) 630 return -ERANGE; 631 632 switch (cfg.rx_filter) { 633 case HWTSTAMP_FILTER_NONE: 634 priv->rx_ts_enabled = 0; 635 break; 636 case HWTSTAMP_FILTER_ALL: 637 case HWTSTAMP_FILTER_NTP_ALL: 638 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 639 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 640 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 641 return -ERANGE; 642 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 643 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 644 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 645 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 646 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 647 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 648 case HWTSTAMP_FILTER_PTP_V2_EVENT: 649 case HWTSTAMP_FILTER_PTP_V2_SYNC: 650 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 651 priv->rx_ts_enabled = HWTSTAMP_FILTER_PTP_V2_EVENT; 652 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 653 break; 654 default: 655 return -ERANGE; 656 } 657 658 priv->tx_ts_enabled = cfg.tx_type == HWTSTAMP_TX_ON; 659 660 switch (cpsw->version) { 661 case CPSW_VERSION_1: 662 cpsw_hwtstamp_v1(priv); 663 break; 664 case CPSW_VERSION_2: 665 case CPSW_VERSION_3: 666 cpsw_hwtstamp_v2(priv); 667 break; 668 default: 669 WARN_ON(1); 670 } 671 672 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; 673 } 674 675 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr) 676 { 677 struct cpsw_common *cpsw = ndev_to_cpsw(dev); 678 struct cpsw_priv *priv = netdev_priv(dev); 679 struct hwtstamp_config cfg; 680 681 if (cpsw->version != CPSW_VERSION_1 && 682 cpsw->version != CPSW_VERSION_2 && 683 cpsw->version != CPSW_VERSION_3) 684 return -EOPNOTSUPP; 685 686 cfg.flags = 0; 687 cfg.tx_type = priv->tx_ts_enabled ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF; 688 cfg.rx_filter = priv->rx_ts_enabled; 689 690 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; 691 } 692 #else 693 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr) 694 { 695 return -EOPNOTSUPP; 696 } 697 698 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr) 699 { 700 return -EOPNOTSUPP; 701 } 702 #endif /*CONFIG_TI_CPTS*/ 703 704 int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 705 { 706 struct cpsw_priv *priv = netdev_priv(dev); 707 struct cpsw_common *cpsw = priv->cpsw; 708 int slave_no = cpsw_slave_index(cpsw, priv); 709 struct phy_device *phy; 710 711 if (!netif_running(dev)) 712 return -EINVAL; 713 714 phy = cpsw->slaves[slave_no].phy; 715 716 if (!phy_has_hwtstamp(phy)) { 717 switch (cmd) { 718 case SIOCSHWTSTAMP: 719 return cpsw_hwtstamp_set(dev, req); 720 case SIOCGHWTSTAMP: 721 return cpsw_hwtstamp_get(dev, req); 722 } 723 } 724 725 if (phy) 726 return phy_mii_ioctl(phy, req, cmd); 727 728 return -EOPNOTSUPP; 729 } 730 731 int cpsw_ndo_set_tx_maxrate(struct net_device *ndev, int queue, u32 rate) 732 { 733 struct cpsw_priv *priv = netdev_priv(ndev); 734 struct cpsw_common *cpsw = priv->cpsw; 735 struct cpsw_slave *slave; 736 u32 min_rate; 737 u32 ch_rate; 738 int i, ret; 739 740 ch_rate = netdev_get_tx_queue(ndev, queue)->tx_maxrate; 741 if (ch_rate == rate) 742 return 0; 743 744 ch_rate = rate * 1000; 745 min_rate = cpdma_chan_get_min_rate(cpsw->dma); 746 if ((ch_rate < min_rate && ch_rate)) { 747 dev_err(priv->dev, "The channel rate cannot be less than %dMbps", 748 min_rate); 749 return -EINVAL; 750 } 751 752 if (rate > cpsw->speed) { 753 dev_err(priv->dev, "The channel rate cannot be more than 2Gbps"); 754 return -EINVAL; 755 } 756 757 ret = pm_runtime_get_sync(cpsw->dev); 758 if (ret < 0) { 759 pm_runtime_put_noidle(cpsw->dev); 760 return ret; 761 } 762 763 ret = cpdma_chan_set_rate(cpsw->txv[queue].ch, ch_rate); 764 pm_runtime_put(cpsw->dev); 765 766 if (ret) 767 return ret; 768 769 /* update rates for slaves tx queues */ 770 for (i = 0; i < cpsw->data.slaves; i++) { 771 slave = &cpsw->slaves[i]; 772 if (!slave->ndev) 773 continue; 774 775 netdev_get_tx_queue(slave->ndev, queue)->tx_maxrate = rate; 776 } 777 778 cpsw_split_res(cpsw); 779 return ret; 780 } 781 782 static int cpsw_tc_to_fifo(int tc, int num_tc) 783 { 784 if (tc == num_tc - 1) 785 return 0; 786 787 return CPSW_FIFO_SHAPERS_NUM - tc; 788 } 789 790 bool cpsw_shp_is_off(struct cpsw_priv *priv) 791 { 792 struct cpsw_common *cpsw = priv->cpsw; 793 struct cpsw_slave *slave; 794 u32 shift, mask, val; 795 796 val = readl_relaxed(&cpsw->regs->ptype); 797 798 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; 799 shift = CPSW_FIFO_SHAPE_EN_SHIFT + 3 * slave->slave_num; 800 mask = 7 << shift; 801 val = val & mask; 802 803 return !val; 804 } 805 806 static void cpsw_fifo_shp_on(struct cpsw_priv *priv, int fifo, int on) 807 { 808 struct cpsw_common *cpsw = priv->cpsw; 809 struct cpsw_slave *slave; 810 u32 shift, mask, val; 811 812 val = readl_relaxed(&cpsw->regs->ptype); 813 814 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; 815 shift = CPSW_FIFO_SHAPE_EN_SHIFT + 3 * slave->slave_num; 816 mask = (1 << --fifo) << shift; 817 val = on ? val | mask : val & ~mask; 818 819 writel_relaxed(val, &cpsw->regs->ptype); 820 } 821 822 static int cpsw_set_fifo_bw(struct cpsw_priv *priv, int fifo, int bw) 823 { 824 struct cpsw_common *cpsw = priv->cpsw; 825 u32 val = 0, send_pct, shift; 826 struct cpsw_slave *slave; 827 int pct = 0, i; 828 829 if (bw > priv->shp_cfg_speed * 1000) 830 goto err; 831 832 /* shaping has to stay enabled for highest fifos linearly 833 * and fifo bw no more then interface can allow 834 */ 835 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; 836 send_pct = slave_read(slave, SEND_PERCENT); 837 for (i = CPSW_FIFO_SHAPERS_NUM; i > 0; i--) { 838 if (!bw) { 839 if (i >= fifo || !priv->fifo_bw[i]) 840 continue; 841 842 dev_warn(priv->dev, "Prev FIFO%d is shaped", i); 843 continue; 844 } 845 846 if (!priv->fifo_bw[i] && i > fifo) { 847 dev_err(priv->dev, "Upper FIFO%d is not shaped", i); 848 return -EINVAL; 849 } 850 851 shift = (i - 1) * 8; 852 if (i == fifo) { 853 send_pct &= ~(CPSW_PCT_MASK << shift); 854 val = DIV_ROUND_UP(bw, priv->shp_cfg_speed * 10); 855 if (!val) 856 val = 1; 857 858 send_pct |= val << shift; 859 pct += val; 860 continue; 861 } 862 863 if (priv->fifo_bw[i]) 864 pct += (send_pct >> shift) & CPSW_PCT_MASK; 865 } 866 867 if (pct >= 100) 868 goto err; 869 870 slave_write(slave, send_pct, SEND_PERCENT); 871 priv->fifo_bw[fifo] = bw; 872 873 dev_warn(priv->dev, "set FIFO%d bw = %d\n", fifo, 874 DIV_ROUND_CLOSEST(val * priv->shp_cfg_speed, 100)); 875 876 return 0; 877 err: 878 dev_err(priv->dev, "Bandwidth doesn't fit in tc configuration"); 879 return -EINVAL; 880 } 881 882 static int cpsw_set_fifo_rlimit(struct cpsw_priv *priv, int fifo, int bw) 883 { 884 struct cpsw_common *cpsw = priv->cpsw; 885 struct cpsw_slave *slave; 886 u32 tx_in_ctl_rg, val; 887 int ret; 888 889 ret = cpsw_set_fifo_bw(priv, fifo, bw); 890 if (ret) 891 return ret; 892 893 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; 894 tx_in_ctl_rg = cpsw->version == CPSW_VERSION_1 ? 895 CPSW1_TX_IN_CTL : CPSW2_TX_IN_CTL; 896 897 if (!bw) 898 cpsw_fifo_shp_on(priv, fifo, bw); 899 900 val = slave_read(slave, tx_in_ctl_rg); 901 if (cpsw_shp_is_off(priv)) { 902 /* disable FIFOs rate limited queues */ 903 val &= ~(0xf << CPSW_FIFO_RATE_EN_SHIFT); 904 905 /* set type of FIFO queues to normal priority mode */ 906 val &= ~(3 << CPSW_FIFO_QUEUE_TYPE_SHIFT); 907 908 /* set type of FIFO queues to be rate limited */ 909 if (bw) 910 val |= 2 << CPSW_FIFO_QUEUE_TYPE_SHIFT; 911 else 912 priv->shp_cfg_speed = 0; 913 } 914 915 /* toggle a FIFO rate limited queue */ 916 if (bw) 917 val |= BIT(fifo + CPSW_FIFO_RATE_EN_SHIFT); 918 else 919 val &= ~BIT(fifo + CPSW_FIFO_RATE_EN_SHIFT); 920 slave_write(slave, val, tx_in_ctl_rg); 921 922 /* FIFO transmit shape enable */ 923 cpsw_fifo_shp_on(priv, fifo, bw); 924 return 0; 925 } 926 927 /* Defaults: 928 * class A - prio 3 929 * class B - prio 2 930 * shaping for class A should be set first 931 */ 932 static int cpsw_set_cbs(struct net_device *ndev, 933 struct tc_cbs_qopt_offload *qopt) 934 { 935 struct cpsw_priv *priv = netdev_priv(ndev); 936 struct cpsw_common *cpsw = priv->cpsw; 937 struct cpsw_slave *slave; 938 int prev_speed = 0; 939 int tc, ret, fifo; 940 u32 bw = 0; 941 942 tc = netdev_txq_to_tc(priv->ndev, qopt->queue); 943 944 /* enable channels in backward order, as highest FIFOs must be rate 945 * limited first and for compliance with CPDMA rate limited channels 946 * that also used in bacward order. FIFO0 cannot be rate limited. 947 */ 948 fifo = cpsw_tc_to_fifo(tc, ndev->num_tc); 949 if (!fifo) { 950 dev_err(priv->dev, "Last tc%d can't be rate limited", tc); 951 return -EINVAL; 952 } 953 954 /* do nothing, it's disabled anyway */ 955 if (!qopt->enable && !priv->fifo_bw[fifo]) 956 return 0; 957 958 /* shapers can be set if link speed is known */ 959 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; 960 if (slave->phy && slave->phy->link) { 961 if (priv->shp_cfg_speed && 962 priv->shp_cfg_speed != slave->phy->speed) 963 prev_speed = priv->shp_cfg_speed; 964 965 priv->shp_cfg_speed = slave->phy->speed; 966 } 967 968 if (!priv->shp_cfg_speed) { 969 dev_err(priv->dev, "Link speed is not known"); 970 return -1; 971 } 972 973 ret = pm_runtime_get_sync(cpsw->dev); 974 if (ret < 0) { 975 pm_runtime_put_noidle(cpsw->dev); 976 return ret; 977 } 978 979 bw = qopt->enable ? qopt->idleslope : 0; 980 ret = cpsw_set_fifo_rlimit(priv, fifo, bw); 981 if (ret) { 982 priv->shp_cfg_speed = prev_speed; 983 prev_speed = 0; 984 } 985 986 if (bw && prev_speed) 987 dev_warn(priv->dev, 988 "Speed was changed, CBS shaper speeds are changed!"); 989 990 pm_runtime_put_sync(cpsw->dev); 991 return ret; 992 } 993 994 static int cpsw_set_mqprio(struct net_device *ndev, void *type_data) 995 { 996 struct tc_mqprio_qopt_offload *mqprio = type_data; 997 struct cpsw_priv *priv = netdev_priv(ndev); 998 struct cpsw_common *cpsw = priv->cpsw; 999 int fifo, num_tc, count, offset; 1000 struct cpsw_slave *slave; 1001 u32 tx_prio_map = 0; 1002 int i, tc, ret; 1003 1004 num_tc = mqprio->qopt.num_tc; 1005 if (num_tc > CPSW_TC_NUM) 1006 return -EINVAL; 1007 1008 if (mqprio->mode != TC_MQPRIO_MODE_DCB) 1009 return -EINVAL; 1010 1011 ret = pm_runtime_get_sync(cpsw->dev); 1012 if (ret < 0) { 1013 pm_runtime_put_noidle(cpsw->dev); 1014 return ret; 1015 } 1016 1017 if (num_tc) { 1018 for (i = 0; i < 8; i++) { 1019 tc = mqprio->qopt.prio_tc_map[i]; 1020 fifo = cpsw_tc_to_fifo(tc, num_tc); 1021 tx_prio_map |= fifo << (4 * i); 1022 } 1023 1024 netdev_set_num_tc(ndev, num_tc); 1025 for (i = 0; i < num_tc; i++) { 1026 count = mqprio->qopt.count[i]; 1027 offset = mqprio->qopt.offset[i]; 1028 netdev_set_tc_queue(ndev, i, count, offset); 1029 } 1030 } 1031 1032 if (!mqprio->qopt.hw) { 1033 /* restore default configuration */ 1034 netdev_reset_tc(ndev); 1035 tx_prio_map = TX_PRIORITY_MAPPING; 1036 } 1037 1038 priv->mqprio_hw = mqprio->qopt.hw; 1039 1040 offset = cpsw->version == CPSW_VERSION_1 ? 1041 CPSW1_TX_PRI_MAP : CPSW2_TX_PRI_MAP; 1042 1043 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; 1044 slave_write(slave, tx_prio_map, offset); 1045 1046 pm_runtime_put_sync(cpsw->dev); 1047 1048 return 0; 1049 } 1050 1051 int cpsw_ndo_setup_tc(struct net_device *ndev, enum tc_setup_type type, 1052 void *type_data) 1053 { 1054 switch (type) { 1055 case TC_SETUP_QDISC_CBS: 1056 return cpsw_set_cbs(ndev, type_data); 1057 1058 case TC_SETUP_QDISC_MQPRIO: 1059 return cpsw_set_mqprio(ndev, type_data); 1060 1061 default: 1062 return -EOPNOTSUPP; 1063 } 1064 } 1065 1066 void cpsw_cbs_resume(struct cpsw_slave *slave, struct cpsw_priv *priv) 1067 { 1068 int fifo, bw; 1069 1070 for (fifo = CPSW_FIFO_SHAPERS_NUM; fifo > 0; fifo--) { 1071 bw = priv->fifo_bw[fifo]; 1072 if (!bw) 1073 continue; 1074 1075 cpsw_set_fifo_rlimit(priv, fifo, bw); 1076 } 1077 } 1078 1079 void cpsw_mqprio_resume(struct cpsw_slave *slave, struct cpsw_priv *priv) 1080 { 1081 struct cpsw_common *cpsw = priv->cpsw; 1082 u32 tx_prio_map = 0; 1083 int i, tc, fifo; 1084 u32 tx_prio_rg; 1085 1086 if (!priv->mqprio_hw) 1087 return; 1088 1089 for (i = 0; i < 8; i++) { 1090 tc = netdev_get_prio_tc_map(priv->ndev, i); 1091 fifo = CPSW_FIFO_SHAPERS_NUM - tc; 1092 tx_prio_map |= fifo << (4 * i); 1093 } 1094 1095 tx_prio_rg = cpsw->version == CPSW_VERSION_1 ? 1096 CPSW1_TX_PRI_MAP : CPSW2_TX_PRI_MAP; 1097 1098 slave_write(slave, tx_prio_map, tx_prio_rg); 1099 } 1100 1101 int cpsw_fill_rx_channels(struct cpsw_priv *priv) 1102 { 1103 struct cpsw_common *cpsw = priv->cpsw; 1104 struct cpsw_meta_xdp *xmeta; 1105 struct page_pool *pool; 1106 struct page *page; 1107 int ch_buf_num; 1108 int ch, i, ret; 1109 dma_addr_t dma; 1110 1111 for (ch = 0; ch < cpsw->rx_ch_num; ch++) { 1112 pool = cpsw->page_pool[ch]; 1113 ch_buf_num = cpdma_chan_get_rx_buf_num(cpsw->rxv[ch].ch); 1114 for (i = 0; i < ch_buf_num; i++) { 1115 page = page_pool_dev_alloc_pages(pool); 1116 if (!page) { 1117 cpsw_err(priv, ifup, "allocate rx page err\n"); 1118 return -ENOMEM; 1119 } 1120 1121 xmeta = page_address(page) + CPSW_XMETA_OFFSET; 1122 xmeta->ndev = priv->ndev; 1123 xmeta->ch = ch; 1124 1125 dma = page_pool_get_dma_addr(page) + CPSW_HEADROOM_NA; 1126 ret = cpdma_chan_idle_submit_mapped(cpsw->rxv[ch].ch, 1127 page, dma, 1128 cpsw->rx_packet_max, 1129 0); 1130 if (ret < 0) { 1131 cpsw_err(priv, ifup, 1132 "cannot submit page to channel %d rx, error %d\n", 1133 ch, ret); 1134 page_pool_recycle_direct(pool, page); 1135 return ret; 1136 } 1137 } 1138 1139 cpsw_info(priv, ifup, "ch %d rx, submitted %d descriptors\n", 1140 ch, ch_buf_num); 1141 } 1142 1143 return 0; 1144 } 1145 1146 static struct page_pool *cpsw_create_page_pool(struct cpsw_common *cpsw, 1147 int size) 1148 { 1149 struct page_pool_params pp_params = {}; 1150 struct page_pool *pool; 1151 1152 pp_params.order = 0; 1153 pp_params.flags = PP_FLAG_DMA_MAP; 1154 pp_params.pool_size = size; 1155 pp_params.nid = NUMA_NO_NODE; 1156 pp_params.dma_dir = DMA_BIDIRECTIONAL; 1157 pp_params.dev = cpsw->dev; 1158 1159 pool = page_pool_create(&pp_params); 1160 if (IS_ERR(pool)) 1161 dev_err(cpsw->dev, "cannot create rx page pool\n"); 1162 1163 return pool; 1164 } 1165 1166 static int cpsw_create_rx_pool(struct cpsw_common *cpsw, int ch) 1167 { 1168 struct page_pool *pool; 1169 int ret = 0, pool_size; 1170 1171 pool_size = cpdma_chan_get_rx_buf_num(cpsw->rxv[ch].ch); 1172 pool = cpsw_create_page_pool(cpsw, pool_size); 1173 if (IS_ERR(pool)) 1174 ret = PTR_ERR(pool); 1175 else 1176 cpsw->page_pool[ch] = pool; 1177 1178 return ret; 1179 } 1180 1181 static int cpsw_ndev_create_xdp_rxq(struct cpsw_priv *priv, int ch) 1182 { 1183 struct cpsw_common *cpsw = priv->cpsw; 1184 struct xdp_rxq_info *rxq; 1185 struct page_pool *pool; 1186 int ret; 1187 1188 pool = cpsw->page_pool[ch]; 1189 rxq = &priv->xdp_rxq[ch]; 1190 1191 ret = xdp_rxq_info_reg(rxq, priv->ndev, ch, 0); 1192 if (ret) 1193 return ret; 1194 1195 ret = xdp_rxq_info_reg_mem_model(rxq, MEM_TYPE_PAGE_POOL, pool); 1196 if (ret) 1197 xdp_rxq_info_unreg(rxq); 1198 1199 return ret; 1200 } 1201 1202 static void cpsw_ndev_destroy_xdp_rxq(struct cpsw_priv *priv, int ch) 1203 { 1204 struct xdp_rxq_info *rxq = &priv->xdp_rxq[ch]; 1205 1206 if (!xdp_rxq_info_is_reg(rxq)) 1207 return; 1208 1209 xdp_rxq_info_unreg(rxq); 1210 } 1211 1212 void cpsw_destroy_xdp_rxqs(struct cpsw_common *cpsw) 1213 { 1214 struct net_device *ndev; 1215 int i, ch; 1216 1217 for (ch = 0; ch < cpsw->rx_ch_num; ch++) { 1218 for (i = 0; i < cpsw->data.slaves; i++) { 1219 ndev = cpsw->slaves[i].ndev; 1220 if (!ndev) 1221 continue; 1222 1223 cpsw_ndev_destroy_xdp_rxq(netdev_priv(ndev), ch); 1224 } 1225 1226 page_pool_destroy(cpsw->page_pool[ch]); 1227 cpsw->page_pool[ch] = NULL; 1228 } 1229 } 1230 1231 int cpsw_create_xdp_rxqs(struct cpsw_common *cpsw) 1232 { 1233 struct net_device *ndev; 1234 int i, ch, ret; 1235 1236 for (ch = 0; ch < cpsw->rx_ch_num; ch++) { 1237 ret = cpsw_create_rx_pool(cpsw, ch); 1238 if (ret) 1239 goto err_cleanup; 1240 1241 /* using same page pool is allowed as no running rx handlers 1242 * simultaneously for both ndevs 1243 */ 1244 for (i = 0; i < cpsw->data.slaves; i++) { 1245 ndev = cpsw->slaves[i].ndev; 1246 if (!ndev) 1247 continue; 1248 1249 ret = cpsw_ndev_create_xdp_rxq(netdev_priv(ndev), ch); 1250 if (ret) 1251 goto err_cleanup; 1252 } 1253 } 1254 1255 return 0; 1256 1257 err_cleanup: 1258 cpsw_destroy_xdp_rxqs(cpsw); 1259 1260 return ret; 1261 } 1262 1263 static int cpsw_xdp_prog_setup(struct cpsw_priv *priv, struct netdev_bpf *bpf) 1264 { 1265 struct bpf_prog *prog = bpf->prog; 1266 1267 if (!priv->xdpi.prog && !prog) 1268 return 0; 1269 1270 WRITE_ONCE(priv->xdp_prog, prog); 1271 1272 xdp_attachment_setup(&priv->xdpi, bpf); 1273 1274 return 0; 1275 } 1276 1277 int cpsw_ndo_bpf(struct net_device *ndev, struct netdev_bpf *bpf) 1278 { 1279 struct cpsw_priv *priv = netdev_priv(ndev); 1280 1281 switch (bpf->command) { 1282 case XDP_SETUP_PROG: 1283 return cpsw_xdp_prog_setup(priv, bpf); 1284 1285 default: 1286 return -EINVAL; 1287 } 1288 } 1289 1290 int cpsw_xdp_tx_frame(struct cpsw_priv *priv, struct xdp_frame *xdpf, 1291 struct page *page, int port) 1292 { 1293 struct cpsw_common *cpsw = priv->cpsw; 1294 struct cpsw_meta_xdp *xmeta; 1295 struct cpdma_chan *txch; 1296 dma_addr_t dma; 1297 int ret; 1298 1299 xmeta = (void *)xdpf + CPSW_XMETA_OFFSET; 1300 xmeta->ndev = priv->ndev; 1301 xmeta->ch = 0; 1302 txch = cpsw->txv[0].ch; 1303 1304 if (page) { 1305 dma = page_pool_get_dma_addr(page); 1306 dma += xdpf->headroom + sizeof(struct xdp_frame); 1307 ret = cpdma_chan_submit_mapped(txch, cpsw_xdpf_to_handle(xdpf), 1308 dma, xdpf->len, port); 1309 } else { 1310 if (sizeof(*xmeta) > xdpf->headroom) 1311 return -EINVAL; 1312 1313 ret = cpdma_chan_submit(txch, cpsw_xdpf_to_handle(xdpf), 1314 xdpf->data, xdpf->len, port); 1315 } 1316 1317 if (ret) 1318 priv->ndev->stats.tx_dropped++; 1319 1320 return ret; 1321 } 1322 1323 int cpsw_run_xdp(struct cpsw_priv *priv, int ch, struct xdp_buff *xdp, 1324 struct page *page, int port, int *len) 1325 { 1326 struct cpsw_common *cpsw = priv->cpsw; 1327 struct net_device *ndev = priv->ndev; 1328 int ret = CPSW_XDP_CONSUMED; 1329 struct xdp_frame *xdpf; 1330 struct bpf_prog *prog; 1331 u32 act; 1332 1333 prog = READ_ONCE(priv->xdp_prog); 1334 if (!prog) 1335 return CPSW_XDP_PASS; 1336 1337 act = bpf_prog_run_xdp(prog, xdp); 1338 /* XDP prog might have changed packet data and boundaries */ 1339 *len = xdp->data_end - xdp->data; 1340 1341 switch (act) { 1342 case XDP_PASS: 1343 ret = CPSW_XDP_PASS; 1344 goto out; 1345 case XDP_TX: 1346 xdpf = xdp_convert_buff_to_frame(xdp); 1347 if (unlikely(!xdpf)) 1348 goto drop; 1349 1350 if (cpsw_xdp_tx_frame(priv, xdpf, page, port)) 1351 xdp_return_frame_rx_napi(xdpf); 1352 break; 1353 case XDP_REDIRECT: 1354 if (xdp_do_redirect(ndev, xdp, prog)) 1355 goto drop; 1356 1357 /* Have to flush here, per packet, instead of doing it in bulk 1358 * at the end of the napi handler. The RX devices on this 1359 * particular hardware is sharing a common queue, so the 1360 * incoming device might change per packet. 1361 */ 1362 xdp_do_flush_map(); 1363 break; 1364 default: 1365 bpf_warn_invalid_xdp_action(ndev, prog, act); 1366 fallthrough; 1367 case XDP_ABORTED: 1368 trace_xdp_exception(ndev, prog, act); 1369 fallthrough; /* handle aborts by dropping packet */ 1370 case XDP_DROP: 1371 ndev->stats.rx_bytes += *len; 1372 ndev->stats.rx_packets++; 1373 goto drop; 1374 } 1375 1376 ndev->stats.rx_bytes += *len; 1377 ndev->stats.rx_packets++; 1378 out: 1379 return ret; 1380 drop: 1381 page_pool_recycle_direct(cpsw->page_pool[ch], page); 1382 return ret; 1383 } 1384