1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Texas Instruments Ethernet Switch Driver 4 * 5 * Copyright (C) 2019 Texas Instruments 6 */ 7 8 #include <linux/bpf.h> 9 #include <linux/bpf_trace.h> 10 #include <linux/if_ether.h> 11 #include <linux/if_vlan.h> 12 #include <linux/kmemleak.h> 13 #include <linux/module.h> 14 #include <linux/netdevice.h> 15 #include <linux/net_tstamp.h> 16 #include <linux/of.h> 17 #include <linux/phy.h> 18 #include <linux/platform_device.h> 19 #include <linux/pm_runtime.h> 20 #include <linux/skbuff.h> 21 #include <net/page_pool.h> 22 #include <net/pkt_cls.h> 23 24 #include "cpsw.h" 25 #include "cpts.h" 26 #include "cpsw_ale.h" 27 #include "cpsw_priv.h" 28 #include "cpsw_sl.h" 29 #include "davinci_cpdma.h" 30 31 #define CPTS_N_ETX_TS 4 32 33 int (*cpsw_slave_index)(struct cpsw_common *cpsw, struct cpsw_priv *priv); 34 35 void cpsw_intr_enable(struct cpsw_common *cpsw) 36 { 37 writel_relaxed(0xFF, &cpsw->wr_regs->tx_en); 38 writel_relaxed(0xFF, &cpsw->wr_regs->rx_en); 39 40 cpdma_ctlr_int_ctrl(cpsw->dma, true); 41 } 42 43 void cpsw_intr_disable(struct cpsw_common *cpsw) 44 { 45 writel_relaxed(0, &cpsw->wr_regs->tx_en); 46 writel_relaxed(0, &cpsw->wr_regs->rx_en); 47 48 cpdma_ctlr_int_ctrl(cpsw->dma, false); 49 } 50 51 void cpsw_tx_handler(void *token, int len, int status) 52 { 53 struct cpsw_meta_xdp *xmeta; 54 struct xdp_frame *xdpf; 55 struct net_device *ndev; 56 struct netdev_queue *txq; 57 struct sk_buff *skb; 58 int ch; 59 60 if (cpsw_is_xdpf_handle(token)) { 61 xdpf = cpsw_handle_to_xdpf(token); 62 xmeta = (void *)xdpf + CPSW_XMETA_OFFSET; 63 ndev = xmeta->ndev; 64 ch = xmeta->ch; 65 xdp_return_frame(xdpf); 66 } else { 67 skb = token; 68 ndev = skb->dev; 69 ch = skb_get_queue_mapping(skb); 70 cpts_tx_timestamp(ndev_to_cpsw(ndev)->cpts, skb); 71 dev_kfree_skb_any(skb); 72 } 73 74 /* Check whether the queue is stopped due to stalled tx dma, if the 75 * queue is stopped then start the queue as we have free desc for tx 76 */ 77 txq = netdev_get_tx_queue(ndev, ch); 78 if (unlikely(netif_tx_queue_stopped(txq))) 79 netif_tx_wake_queue(txq); 80 81 ndev->stats.tx_packets++; 82 ndev->stats.tx_bytes += len; 83 } 84 85 irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id) 86 { 87 struct cpsw_common *cpsw = dev_id; 88 89 writel(0, &cpsw->wr_regs->tx_en); 90 cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_TX); 91 92 if (cpsw->quirk_irq) { 93 disable_irq_nosync(cpsw->irqs_table[1]); 94 cpsw->tx_irq_disabled = true; 95 } 96 97 napi_schedule(&cpsw->napi_tx); 98 return IRQ_HANDLED; 99 } 100 101 irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id) 102 { 103 struct cpsw_common *cpsw = dev_id; 104 105 writel(0, &cpsw->wr_regs->rx_en); 106 cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_RX); 107 108 if (cpsw->quirk_irq) { 109 disable_irq_nosync(cpsw->irqs_table[0]); 110 cpsw->rx_irq_disabled = true; 111 } 112 113 napi_schedule(&cpsw->napi_rx); 114 return IRQ_HANDLED; 115 } 116 117 irqreturn_t cpsw_misc_interrupt(int irq, void *dev_id) 118 { 119 struct cpsw_common *cpsw = dev_id; 120 121 writel(0, &cpsw->wr_regs->misc_en); 122 cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_MISC); 123 cpts_misc_interrupt(cpsw->cpts); 124 writel(0x10, &cpsw->wr_regs->misc_en); 125 126 return IRQ_HANDLED; 127 } 128 129 int cpsw_tx_mq_poll(struct napi_struct *napi_tx, int budget) 130 { 131 struct cpsw_common *cpsw = napi_to_cpsw(napi_tx); 132 int num_tx, cur_budget, ch; 133 u32 ch_map; 134 struct cpsw_vector *txv; 135 136 /* process every unprocessed channel */ 137 ch_map = cpdma_ctrl_txchs_state(cpsw->dma); 138 for (ch = 0, num_tx = 0; ch_map & 0xff; ch_map <<= 1, ch++) { 139 if (!(ch_map & 0x80)) 140 continue; 141 142 txv = &cpsw->txv[ch]; 143 if (unlikely(txv->budget > budget - num_tx)) 144 cur_budget = budget - num_tx; 145 else 146 cur_budget = txv->budget; 147 148 num_tx += cpdma_chan_process(txv->ch, cur_budget); 149 if (num_tx >= budget) 150 break; 151 } 152 153 if (num_tx < budget) { 154 napi_complete(napi_tx); 155 writel(0xff, &cpsw->wr_regs->tx_en); 156 } 157 158 return num_tx; 159 } 160 161 int cpsw_tx_poll(struct napi_struct *napi_tx, int budget) 162 { 163 struct cpsw_common *cpsw = napi_to_cpsw(napi_tx); 164 int num_tx; 165 166 num_tx = cpdma_chan_process(cpsw->txv[0].ch, budget); 167 if (num_tx < budget) { 168 napi_complete(napi_tx); 169 writel(0xff, &cpsw->wr_regs->tx_en); 170 if (cpsw->tx_irq_disabled) { 171 cpsw->tx_irq_disabled = false; 172 enable_irq(cpsw->irqs_table[1]); 173 } 174 } 175 176 return num_tx; 177 } 178 179 int cpsw_rx_mq_poll(struct napi_struct *napi_rx, int budget) 180 { 181 struct cpsw_common *cpsw = napi_to_cpsw(napi_rx); 182 int num_rx, cur_budget, ch; 183 u32 ch_map; 184 struct cpsw_vector *rxv; 185 186 /* process every unprocessed channel */ 187 ch_map = cpdma_ctrl_rxchs_state(cpsw->dma); 188 for (ch = 0, num_rx = 0; ch_map; ch_map >>= 1, ch++) { 189 if (!(ch_map & 0x01)) 190 continue; 191 192 rxv = &cpsw->rxv[ch]; 193 if (unlikely(rxv->budget > budget - num_rx)) 194 cur_budget = budget - num_rx; 195 else 196 cur_budget = rxv->budget; 197 198 num_rx += cpdma_chan_process(rxv->ch, cur_budget); 199 if (num_rx >= budget) 200 break; 201 } 202 203 if (num_rx < budget) { 204 napi_complete_done(napi_rx, num_rx); 205 writel(0xff, &cpsw->wr_regs->rx_en); 206 } 207 208 return num_rx; 209 } 210 211 int cpsw_rx_poll(struct napi_struct *napi_rx, int budget) 212 { 213 struct cpsw_common *cpsw = napi_to_cpsw(napi_rx); 214 int num_rx; 215 216 num_rx = cpdma_chan_process(cpsw->rxv[0].ch, budget); 217 if (num_rx < budget) { 218 napi_complete_done(napi_rx, num_rx); 219 writel(0xff, &cpsw->wr_regs->rx_en); 220 if (cpsw->rx_irq_disabled) { 221 cpsw->rx_irq_disabled = false; 222 enable_irq(cpsw->irqs_table[0]); 223 } 224 } 225 226 return num_rx; 227 } 228 229 void cpsw_rx_vlan_encap(struct sk_buff *skb) 230 { 231 struct cpsw_priv *priv = netdev_priv(skb->dev); 232 u32 rx_vlan_encap_hdr = *((u32 *)skb->data); 233 struct cpsw_common *cpsw = priv->cpsw; 234 u16 vtag, vid, prio, pkt_type; 235 236 /* Remove VLAN header encapsulation word */ 237 skb_pull(skb, CPSW_RX_VLAN_ENCAP_HDR_SIZE); 238 239 pkt_type = (rx_vlan_encap_hdr >> 240 CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_SHIFT) & 241 CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_MSK; 242 /* Ignore unknown & Priority-tagged packets*/ 243 if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_RESERV || 244 pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_PRIO_TAG) 245 return; 246 247 vid = (rx_vlan_encap_hdr >> 248 CPSW_RX_VLAN_ENCAP_HDR_VID_SHIFT) & 249 VLAN_VID_MASK; 250 /* Ignore vid 0 and pass packet as is */ 251 if (!vid) 252 return; 253 254 /* Untag P0 packets if set for vlan */ 255 if (!cpsw_ale_get_vlan_p0_untag(cpsw->ale, vid)) { 256 prio = (rx_vlan_encap_hdr >> 257 CPSW_RX_VLAN_ENCAP_HDR_PRIO_SHIFT) & 258 CPSW_RX_VLAN_ENCAP_HDR_PRIO_MSK; 259 260 vtag = (prio << VLAN_PRIO_SHIFT) | vid; 261 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vtag); 262 } 263 264 /* strip vlan tag for VLAN-tagged packet */ 265 if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_VLAN_TAG) { 266 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); 267 skb_pull(skb, VLAN_HLEN); 268 } 269 } 270 271 void cpsw_set_slave_mac(struct cpsw_slave *slave, struct cpsw_priv *priv) 272 { 273 slave_write(slave, mac_hi(priv->mac_addr), SA_HI); 274 slave_write(slave, mac_lo(priv->mac_addr), SA_LO); 275 } 276 277 void soft_reset(const char *module, void __iomem *reg) 278 { 279 unsigned long timeout = jiffies + HZ; 280 281 writel_relaxed(1, reg); 282 do { 283 cpu_relax(); 284 } while ((readl_relaxed(reg) & 1) && time_after(timeout, jiffies)); 285 286 WARN(readl_relaxed(reg) & 1, "failed to soft-reset %s\n", module); 287 } 288 289 void cpsw_ndo_tx_timeout(struct net_device *ndev, unsigned int txqueue) 290 { 291 struct cpsw_priv *priv = netdev_priv(ndev); 292 struct cpsw_common *cpsw = priv->cpsw; 293 int ch; 294 295 cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n"); 296 ndev->stats.tx_errors++; 297 cpsw_intr_disable(cpsw); 298 for (ch = 0; ch < cpsw->tx_ch_num; ch++) { 299 cpdma_chan_stop(cpsw->txv[ch].ch); 300 cpdma_chan_start(cpsw->txv[ch].ch); 301 } 302 303 cpsw_intr_enable(cpsw); 304 netif_trans_update(ndev); 305 netif_tx_wake_all_queues(ndev); 306 } 307 308 static int cpsw_get_common_speed(struct cpsw_common *cpsw) 309 { 310 int i, speed; 311 312 for (i = 0, speed = 0; i < cpsw->data.slaves; i++) 313 if (cpsw->slaves[i].phy && cpsw->slaves[i].phy->link) 314 speed += cpsw->slaves[i].phy->speed; 315 316 return speed; 317 } 318 319 int cpsw_need_resplit(struct cpsw_common *cpsw) 320 { 321 int i, rlim_ch_num; 322 int speed, ch_rate; 323 324 /* re-split resources only in case speed was changed */ 325 speed = cpsw_get_common_speed(cpsw); 326 if (speed == cpsw->speed || !speed) 327 return 0; 328 329 cpsw->speed = speed; 330 331 for (i = 0, rlim_ch_num = 0; i < cpsw->tx_ch_num; i++) { 332 ch_rate = cpdma_chan_get_rate(cpsw->txv[i].ch); 333 if (!ch_rate) 334 break; 335 336 rlim_ch_num++; 337 } 338 339 /* cases not dependent on speed */ 340 if (!rlim_ch_num || rlim_ch_num == cpsw->tx_ch_num) 341 return 0; 342 343 return 1; 344 } 345 346 void cpsw_split_res(struct cpsw_common *cpsw) 347 { 348 u32 consumed_rate = 0, bigest_rate = 0; 349 struct cpsw_vector *txv = cpsw->txv; 350 int i, ch_weight, rlim_ch_num = 0; 351 int budget, bigest_rate_ch = 0; 352 u32 ch_rate, max_rate; 353 int ch_budget = 0; 354 355 for (i = 0; i < cpsw->tx_ch_num; i++) { 356 ch_rate = cpdma_chan_get_rate(txv[i].ch); 357 if (!ch_rate) 358 continue; 359 360 rlim_ch_num++; 361 consumed_rate += ch_rate; 362 } 363 364 if (cpsw->tx_ch_num == rlim_ch_num) { 365 max_rate = consumed_rate; 366 } else if (!rlim_ch_num) { 367 ch_budget = CPSW_POLL_WEIGHT / cpsw->tx_ch_num; 368 bigest_rate = 0; 369 max_rate = consumed_rate; 370 } else { 371 max_rate = cpsw->speed * 1000; 372 373 /* if max_rate is less then expected due to reduced link speed, 374 * split proportionally according next potential max speed 375 */ 376 if (max_rate < consumed_rate) 377 max_rate *= 10; 378 379 if (max_rate < consumed_rate) 380 max_rate *= 10; 381 382 ch_budget = (consumed_rate * CPSW_POLL_WEIGHT) / max_rate; 383 ch_budget = (CPSW_POLL_WEIGHT - ch_budget) / 384 (cpsw->tx_ch_num - rlim_ch_num); 385 bigest_rate = (max_rate - consumed_rate) / 386 (cpsw->tx_ch_num - rlim_ch_num); 387 } 388 389 /* split tx weight/budget */ 390 budget = CPSW_POLL_WEIGHT; 391 for (i = 0; i < cpsw->tx_ch_num; i++) { 392 ch_rate = cpdma_chan_get_rate(txv[i].ch); 393 if (ch_rate) { 394 txv[i].budget = (ch_rate * CPSW_POLL_WEIGHT) / max_rate; 395 if (!txv[i].budget) 396 txv[i].budget++; 397 if (ch_rate > bigest_rate) { 398 bigest_rate_ch = i; 399 bigest_rate = ch_rate; 400 } 401 402 ch_weight = (ch_rate * 100) / max_rate; 403 if (!ch_weight) 404 ch_weight++; 405 cpdma_chan_set_weight(cpsw->txv[i].ch, ch_weight); 406 } else { 407 txv[i].budget = ch_budget; 408 if (!bigest_rate_ch) 409 bigest_rate_ch = i; 410 cpdma_chan_set_weight(cpsw->txv[i].ch, 0); 411 } 412 413 budget -= txv[i].budget; 414 } 415 416 if (budget) 417 txv[bigest_rate_ch].budget += budget; 418 419 /* split rx budget */ 420 budget = CPSW_POLL_WEIGHT; 421 ch_budget = budget / cpsw->rx_ch_num; 422 for (i = 0; i < cpsw->rx_ch_num; i++) { 423 cpsw->rxv[i].budget = ch_budget; 424 budget -= ch_budget; 425 } 426 427 if (budget) 428 cpsw->rxv[0].budget += budget; 429 } 430 431 int cpsw_init_common(struct cpsw_common *cpsw, void __iomem *ss_regs, 432 int ale_ageout, phys_addr_t desc_mem_phys, 433 int descs_pool_size) 434 { 435 u32 slave_offset, sliver_offset, slave_size; 436 struct cpsw_ale_params ale_params; 437 struct cpsw_platform_data *data; 438 struct cpdma_params dma_params; 439 struct device *dev = cpsw->dev; 440 struct device_node *cpts_node; 441 void __iomem *cpts_regs; 442 int ret = 0, i; 443 444 data = &cpsw->data; 445 cpsw->rx_ch_num = 1; 446 cpsw->tx_ch_num = 1; 447 448 cpsw->version = readl(&cpsw->regs->id_ver); 449 450 memset(&dma_params, 0, sizeof(dma_params)); 451 memset(&ale_params, 0, sizeof(ale_params)); 452 453 switch (cpsw->version) { 454 case CPSW_VERSION_1: 455 cpsw->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET; 456 cpts_regs = ss_regs + CPSW1_CPTS_OFFSET; 457 cpsw->hw_stats = ss_regs + CPSW1_HW_STATS; 458 dma_params.dmaregs = ss_regs + CPSW1_CPDMA_OFFSET; 459 dma_params.txhdp = ss_regs + CPSW1_STATERAM_OFFSET; 460 ale_params.ale_regs = ss_regs + CPSW1_ALE_OFFSET; 461 slave_offset = CPSW1_SLAVE_OFFSET; 462 slave_size = CPSW1_SLAVE_SIZE; 463 sliver_offset = CPSW1_SLIVER_OFFSET; 464 dma_params.desc_mem_phys = 0; 465 break; 466 case CPSW_VERSION_2: 467 case CPSW_VERSION_3: 468 case CPSW_VERSION_4: 469 cpsw->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET; 470 cpts_regs = ss_regs + CPSW2_CPTS_OFFSET; 471 cpsw->hw_stats = ss_regs + CPSW2_HW_STATS; 472 dma_params.dmaregs = ss_regs + CPSW2_CPDMA_OFFSET; 473 dma_params.txhdp = ss_regs + CPSW2_STATERAM_OFFSET; 474 ale_params.ale_regs = ss_regs + CPSW2_ALE_OFFSET; 475 slave_offset = CPSW2_SLAVE_OFFSET; 476 slave_size = CPSW2_SLAVE_SIZE; 477 sliver_offset = CPSW2_SLIVER_OFFSET; 478 dma_params.desc_mem_phys = desc_mem_phys; 479 break; 480 default: 481 dev_err(dev, "unknown version 0x%08x\n", cpsw->version); 482 return -ENODEV; 483 } 484 485 for (i = 0; i < cpsw->data.slaves; i++) { 486 struct cpsw_slave *slave = &cpsw->slaves[i]; 487 void __iomem *regs = cpsw->regs; 488 489 slave->slave_num = i; 490 slave->data = &cpsw->data.slave_data[i]; 491 slave->regs = regs + slave_offset; 492 slave->port_vlan = slave->data->dual_emac_res_vlan; 493 slave->mac_sl = cpsw_sl_get("cpsw", dev, regs + sliver_offset); 494 if (IS_ERR(slave->mac_sl)) 495 return PTR_ERR(slave->mac_sl); 496 497 slave_offset += slave_size; 498 sliver_offset += SLIVER_SIZE; 499 } 500 501 ale_params.dev = dev; 502 ale_params.ale_ageout = ale_ageout; 503 ale_params.ale_ports = CPSW_ALE_PORTS_NUM; 504 ale_params.dev_id = "cpsw"; 505 506 cpsw->ale = cpsw_ale_create(&ale_params); 507 if (IS_ERR(cpsw->ale)) { 508 dev_err(dev, "error initializing ale engine\n"); 509 return PTR_ERR(cpsw->ale); 510 } 511 512 dma_params.dev = dev; 513 dma_params.rxthresh = dma_params.dmaregs + CPDMA_RXTHRESH; 514 dma_params.rxfree = dma_params.dmaregs + CPDMA_RXFREE; 515 dma_params.rxhdp = dma_params.txhdp + CPDMA_RXHDP; 516 dma_params.txcp = dma_params.txhdp + CPDMA_TXCP; 517 dma_params.rxcp = dma_params.txhdp + CPDMA_RXCP; 518 519 dma_params.num_chan = data->channels; 520 dma_params.has_soft_reset = true; 521 dma_params.min_packet_size = CPSW_MIN_PACKET_SIZE; 522 dma_params.desc_mem_size = data->bd_ram_size; 523 dma_params.desc_align = 16; 524 dma_params.has_ext_regs = true; 525 dma_params.desc_hw_addr = dma_params.desc_mem_phys; 526 dma_params.bus_freq_mhz = cpsw->bus_freq_mhz; 527 dma_params.descs_pool_size = descs_pool_size; 528 529 cpsw->dma = cpdma_ctlr_create(&dma_params); 530 if (!cpsw->dma) { 531 dev_err(dev, "error initializing dma\n"); 532 return -ENOMEM; 533 } 534 535 cpts_node = of_get_child_by_name(cpsw->dev->of_node, "cpts"); 536 if (!cpts_node) 537 cpts_node = cpsw->dev->of_node; 538 539 cpsw->cpts = cpts_create(cpsw->dev, cpts_regs, cpts_node, 540 CPTS_N_ETX_TS); 541 if (IS_ERR(cpsw->cpts)) { 542 ret = PTR_ERR(cpsw->cpts); 543 cpdma_ctlr_destroy(cpsw->dma); 544 } 545 of_node_put(cpts_node); 546 547 return ret; 548 } 549 550 #if IS_ENABLED(CONFIG_TI_CPTS) 551 552 static void cpsw_hwtstamp_v1(struct cpsw_priv *priv) 553 { 554 struct cpsw_common *cpsw = priv->cpsw; 555 struct cpsw_slave *slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; 556 u32 ts_en, seq_id; 557 558 if (!priv->tx_ts_enabled && !priv->rx_ts_enabled) { 559 slave_write(slave, 0, CPSW1_TS_CTL); 560 return; 561 } 562 563 seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588; 564 ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS; 565 566 if (priv->tx_ts_enabled) 567 ts_en |= CPSW_V1_TS_TX_EN; 568 569 if (priv->rx_ts_enabled) 570 ts_en |= CPSW_V1_TS_RX_EN; 571 572 slave_write(slave, ts_en, CPSW1_TS_CTL); 573 slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE); 574 } 575 576 static void cpsw_hwtstamp_v2(struct cpsw_priv *priv) 577 { 578 struct cpsw_common *cpsw = priv->cpsw; 579 struct cpsw_slave *slave; 580 u32 ctrl, mtype; 581 582 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; 583 584 ctrl = slave_read(slave, CPSW2_CONTROL); 585 switch (cpsw->version) { 586 case CPSW_VERSION_2: 587 ctrl &= ~CTRL_V2_ALL_TS_MASK; 588 589 if (priv->tx_ts_enabled) 590 ctrl |= CTRL_V2_TX_TS_BITS; 591 592 if (priv->rx_ts_enabled) 593 ctrl |= CTRL_V2_RX_TS_BITS; 594 break; 595 case CPSW_VERSION_3: 596 default: 597 ctrl &= ~CTRL_V3_ALL_TS_MASK; 598 599 if (priv->tx_ts_enabled) 600 ctrl |= CTRL_V3_TX_TS_BITS; 601 602 if (priv->rx_ts_enabled) 603 ctrl |= CTRL_V3_RX_TS_BITS; 604 break; 605 } 606 607 mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS; 608 609 slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE); 610 slave_write(slave, ctrl, CPSW2_CONTROL); 611 writel_relaxed(ETH_P_1588, &cpsw->regs->ts_ltype); 612 writel_relaxed(ETH_P_8021Q, &cpsw->regs->vlan_ltype); 613 } 614 615 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr) 616 { 617 struct cpsw_priv *priv = netdev_priv(dev); 618 struct cpsw_common *cpsw = priv->cpsw; 619 struct hwtstamp_config cfg; 620 621 if (cpsw->version != CPSW_VERSION_1 && 622 cpsw->version != CPSW_VERSION_2 && 623 cpsw->version != CPSW_VERSION_3) 624 return -EOPNOTSUPP; 625 626 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg))) 627 return -EFAULT; 628 629 /* reserved for future extensions */ 630 if (cfg.flags) 631 return -EINVAL; 632 633 if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON) 634 return -ERANGE; 635 636 switch (cfg.rx_filter) { 637 case HWTSTAMP_FILTER_NONE: 638 priv->rx_ts_enabled = 0; 639 break; 640 case HWTSTAMP_FILTER_ALL: 641 case HWTSTAMP_FILTER_NTP_ALL: 642 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 643 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 644 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 645 return -ERANGE; 646 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 647 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 648 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 649 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 650 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 651 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 652 case HWTSTAMP_FILTER_PTP_V2_EVENT: 653 case HWTSTAMP_FILTER_PTP_V2_SYNC: 654 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 655 priv->rx_ts_enabled = HWTSTAMP_FILTER_PTP_V2_EVENT; 656 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 657 break; 658 default: 659 return -ERANGE; 660 } 661 662 priv->tx_ts_enabled = cfg.tx_type == HWTSTAMP_TX_ON; 663 664 switch (cpsw->version) { 665 case CPSW_VERSION_1: 666 cpsw_hwtstamp_v1(priv); 667 break; 668 case CPSW_VERSION_2: 669 case CPSW_VERSION_3: 670 cpsw_hwtstamp_v2(priv); 671 break; 672 default: 673 WARN_ON(1); 674 } 675 676 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; 677 } 678 679 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr) 680 { 681 struct cpsw_common *cpsw = ndev_to_cpsw(dev); 682 struct cpsw_priv *priv = netdev_priv(dev); 683 struct hwtstamp_config cfg; 684 685 if (cpsw->version != CPSW_VERSION_1 && 686 cpsw->version != CPSW_VERSION_2 && 687 cpsw->version != CPSW_VERSION_3) 688 return -EOPNOTSUPP; 689 690 cfg.flags = 0; 691 cfg.tx_type = priv->tx_ts_enabled ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF; 692 cfg.rx_filter = priv->rx_ts_enabled; 693 694 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; 695 } 696 #else 697 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr) 698 { 699 return -EOPNOTSUPP; 700 } 701 702 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr) 703 { 704 return -EOPNOTSUPP; 705 } 706 #endif /*CONFIG_TI_CPTS*/ 707 708 int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 709 { 710 struct cpsw_priv *priv = netdev_priv(dev); 711 struct cpsw_common *cpsw = priv->cpsw; 712 int slave_no = cpsw_slave_index(cpsw, priv); 713 714 if (!netif_running(dev)) 715 return -EINVAL; 716 717 switch (cmd) { 718 case SIOCSHWTSTAMP: 719 return cpsw_hwtstamp_set(dev, req); 720 case SIOCGHWTSTAMP: 721 return cpsw_hwtstamp_get(dev, req); 722 } 723 724 if (!cpsw->slaves[slave_no].phy) 725 return -EOPNOTSUPP; 726 return phy_mii_ioctl(cpsw->slaves[slave_no].phy, req, cmd); 727 } 728 729 int cpsw_ndo_set_tx_maxrate(struct net_device *ndev, int queue, u32 rate) 730 { 731 struct cpsw_priv *priv = netdev_priv(ndev); 732 struct cpsw_common *cpsw = priv->cpsw; 733 struct cpsw_slave *slave; 734 u32 min_rate; 735 u32 ch_rate; 736 int i, ret; 737 738 ch_rate = netdev_get_tx_queue(ndev, queue)->tx_maxrate; 739 if (ch_rate == rate) 740 return 0; 741 742 ch_rate = rate * 1000; 743 min_rate = cpdma_chan_get_min_rate(cpsw->dma); 744 if ((ch_rate < min_rate && ch_rate)) { 745 dev_err(priv->dev, "The channel rate cannot be less than %dMbps", 746 min_rate); 747 return -EINVAL; 748 } 749 750 if (rate > cpsw->speed) { 751 dev_err(priv->dev, "The channel rate cannot be more than 2Gbps"); 752 return -EINVAL; 753 } 754 755 ret = pm_runtime_get_sync(cpsw->dev); 756 if (ret < 0) { 757 pm_runtime_put_noidle(cpsw->dev); 758 return ret; 759 } 760 761 ret = cpdma_chan_set_rate(cpsw->txv[queue].ch, ch_rate); 762 pm_runtime_put(cpsw->dev); 763 764 if (ret) 765 return ret; 766 767 /* update rates for slaves tx queues */ 768 for (i = 0; i < cpsw->data.slaves; i++) { 769 slave = &cpsw->slaves[i]; 770 if (!slave->ndev) 771 continue; 772 773 netdev_get_tx_queue(slave->ndev, queue)->tx_maxrate = rate; 774 } 775 776 cpsw_split_res(cpsw); 777 return ret; 778 } 779 780 static int cpsw_tc_to_fifo(int tc, int num_tc) 781 { 782 if (tc == num_tc - 1) 783 return 0; 784 785 return CPSW_FIFO_SHAPERS_NUM - tc; 786 } 787 788 bool cpsw_shp_is_off(struct cpsw_priv *priv) 789 { 790 struct cpsw_common *cpsw = priv->cpsw; 791 struct cpsw_slave *slave; 792 u32 shift, mask, val; 793 794 val = readl_relaxed(&cpsw->regs->ptype); 795 796 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; 797 shift = CPSW_FIFO_SHAPE_EN_SHIFT + 3 * slave->slave_num; 798 mask = 7 << shift; 799 val = val & mask; 800 801 return !val; 802 } 803 804 static void cpsw_fifo_shp_on(struct cpsw_priv *priv, int fifo, int on) 805 { 806 struct cpsw_common *cpsw = priv->cpsw; 807 struct cpsw_slave *slave; 808 u32 shift, mask, val; 809 810 val = readl_relaxed(&cpsw->regs->ptype); 811 812 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; 813 shift = CPSW_FIFO_SHAPE_EN_SHIFT + 3 * slave->slave_num; 814 mask = (1 << --fifo) << shift; 815 val = on ? val | mask : val & ~mask; 816 817 writel_relaxed(val, &cpsw->regs->ptype); 818 } 819 820 static int cpsw_set_fifo_bw(struct cpsw_priv *priv, int fifo, int bw) 821 { 822 struct cpsw_common *cpsw = priv->cpsw; 823 u32 val = 0, send_pct, shift; 824 struct cpsw_slave *slave; 825 int pct = 0, i; 826 827 if (bw > priv->shp_cfg_speed * 1000) 828 goto err; 829 830 /* shaping has to stay enabled for highest fifos linearly 831 * and fifo bw no more then interface can allow 832 */ 833 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; 834 send_pct = slave_read(slave, SEND_PERCENT); 835 for (i = CPSW_FIFO_SHAPERS_NUM; i > 0; i--) { 836 if (!bw) { 837 if (i >= fifo || !priv->fifo_bw[i]) 838 continue; 839 840 dev_warn(priv->dev, "Prev FIFO%d is shaped", i); 841 continue; 842 } 843 844 if (!priv->fifo_bw[i] && i > fifo) { 845 dev_err(priv->dev, "Upper FIFO%d is not shaped", i); 846 return -EINVAL; 847 } 848 849 shift = (i - 1) * 8; 850 if (i == fifo) { 851 send_pct &= ~(CPSW_PCT_MASK << shift); 852 val = DIV_ROUND_UP(bw, priv->shp_cfg_speed * 10); 853 if (!val) 854 val = 1; 855 856 send_pct |= val << shift; 857 pct += val; 858 continue; 859 } 860 861 if (priv->fifo_bw[i]) 862 pct += (send_pct >> shift) & CPSW_PCT_MASK; 863 } 864 865 if (pct >= 100) 866 goto err; 867 868 slave_write(slave, send_pct, SEND_PERCENT); 869 priv->fifo_bw[fifo] = bw; 870 871 dev_warn(priv->dev, "set FIFO%d bw = %d\n", fifo, 872 DIV_ROUND_CLOSEST(val * priv->shp_cfg_speed, 100)); 873 874 return 0; 875 err: 876 dev_err(priv->dev, "Bandwidth doesn't fit in tc configuration"); 877 return -EINVAL; 878 } 879 880 static int cpsw_set_fifo_rlimit(struct cpsw_priv *priv, int fifo, int bw) 881 { 882 struct cpsw_common *cpsw = priv->cpsw; 883 struct cpsw_slave *slave; 884 u32 tx_in_ctl_rg, val; 885 int ret; 886 887 ret = cpsw_set_fifo_bw(priv, fifo, bw); 888 if (ret) 889 return ret; 890 891 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; 892 tx_in_ctl_rg = cpsw->version == CPSW_VERSION_1 ? 893 CPSW1_TX_IN_CTL : CPSW2_TX_IN_CTL; 894 895 if (!bw) 896 cpsw_fifo_shp_on(priv, fifo, bw); 897 898 val = slave_read(slave, tx_in_ctl_rg); 899 if (cpsw_shp_is_off(priv)) { 900 /* disable FIFOs rate limited queues */ 901 val &= ~(0xf << CPSW_FIFO_RATE_EN_SHIFT); 902 903 /* set type of FIFO queues to normal priority mode */ 904 val &= ~(3 << CPSW_FIFO_QUEUE_TYPE_SHIFT); 905 906 /* set type of FIFO queues to be rate limited */ 907 if (bw) 908 val |= 2 << CPSW_FIFO_QUEUE_TYPE_SHIFT; 909 else 910 priv->shp_cfg_speed = 0; 911 } 912 913 /* toggle a FIFO rate limited queue */ 914 if (bw) 915 val |= BIT(fifo + CPSW_FIFO_RATE_EN_SHIFT); 916 else 917 val &= ~BIT(fifo + CPSW_FIFO_RATE_EN_SHIFT); 918 slave_write(slave, val, tx_in_ctl_rg); 919 920 /* FIFO transmit shape enable */ 921 cpsw_fifo_shp_on(priv, fifo, bw); 922 return 0; 923 } 924 925 /* Defaults: 926 * class A - prio 3 927 * class B - prio 2 928 * shaping for class A should be set first 929 */ 930 static int cpsw_set_cbs(struct net_device *ndev, 931 struct tc_cbs_qopt_offload *qopt) 932 { 933 struct cpsw_priv *priv = netdev_priv(ndev); 934 struct cpsw_common *cpsw = priv->cpsw; 935 struct cpsw_slave *slave; 936 int prev_speed = 0; 937 int tc, ret, fifo; 938 u32 bw = 0; 939 940 tc = netdev_txq_to_tc(priv->ndev, qopt->queue); 941 942 /* enable channels in backward order, as highest FIFOs must be rate 943 * limited first and for compliance with CPDMA rate limited channels 944 * that also used in bacward order. FIFO0 cannot be rate limited. 945 */ 946 fifo = cpsw_tc_to_fifo(tc, ndev->num_tc); 947 if (!fifo) { 948 dev_err(priv->dev, "Last tc%d can't be rate limited", tc); 949 return -EINVAL; 950 } 951 952 /* do nothing, it's disabled anyway */ 953 if (!qopt->enable && !priv->fifo_bw[fifo]) 954 return 0; 955 956 /* shapers can be set if link speed is known */ 957 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; 958 if (slave->phy && slave->phy->link) { 959 if (priv->shp_cfg_speed && 960 priv->shp_cfg_speed != slave->phy->speed) 961 prev_speed = priv->shp_cfg_speed; 962 963 priv->shp_cfg_speed = slave->phy->speed; 964 } 965 966 if (!priv->shp_cfg_speed) { 967 dev_err(priv->dev, "Link speed is not known"); 968 return -1; 969 } 970 971 ret = pm_runtime_get_sync(cpsw->dev); 972 if (ret < 0) { 973 pm_runtime_put_noidle(cpsw->dev); 974 return ret; 975 } 976 977 bw = qopt->enable ? qopt->idleslope : 0; 978 ret = cpsw_set_fifo_rlimit(priv, fifo, bw); 979 if (ret) { 980 priv->shp_cfg_speed = prev_speed; 981 prev_speed = 0; 982 } 983 984 if (bw && prev_speed) 985 dev_warn(priv->dev, 986 "Speed was changed, CBS shaper speeds are changed!"); 987 988 pm_runtime_put_sync(cpsw->dev); 989 return ret; 990 } 991 992 static int cpsw_set_mqprio(struct net_device *ndev, void *type_data) 993 { 994 struct tc_mqprio_qopt_offload *mqprio = type_data; 995 struct cpsw_priv *priv = netdev_priv(ndev); 996 struct cpsw_common *cpsw = priv->cpsw; 997 int fifo, num_tc, count, offset; 998 struct cpsw_slave *slave; 999 u32 tx_prio_map = 0; 1000 int i, tc, ret; 1001 1002 num_tc = mqprio->qopt.num_tc; 1003 if (num_tc > CPSW_TC_NUM) 1004 return -EINVAL; 1005 1006 if (mqprio->mode != TC_MQPRIO_MODE_DCB) 1007 return -EINVAL; 1008 1009 ret = pm_runtime_get_sync(cpsw->dev); 1010 if (ret < 0) { 1011 pm_runtime_put_noidle(cpsw->dev); 1012 return ret; 1013 } 1014 1015 if (num_tc) { 1016 for (i = 0; i < 8; i++) { 1017 tc = mqprio->qopt.prio_tc_map[i]; 1018 fifo = cpsw_tc_to_fifo(tc, num_tc); 1019 tx_prio_map |= fifo << (4 * i); 1020 } 1021 1022 netdev_set_num_tc(ndev, num_tc); 1023 for (i = 0; i < num_tc; i++) { 1024 count = mqprio->qopt.count[i]; 1025 offset = mqprio->qopt.offset[i]; 1026 netdev_set_tc_queue(ndev, i, count, offset); 1027 } 1028 } 1029 1030 if (!mqprio->qopt.hw) { 1031 /* restore default configuration */ 1032 netdev_reset_tc(ndev); 1033 tx_prio_map = TX_PRIORITY_MAPPING; 1034 } 1035 1036 priv->mqprio_hw = mqprio->qopt.hw; 1037 1038 offset = cpsw->version == CPSW_VERSION_1 ? 1039 CPSW1_TX_PRI_MAP : CPSW2_TX_PRI_MAP; 1040 1041 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; 1042 slave_write(slave, tx_prio_map, offset); 1043 1044 pm_runtime_put_sync(cpsw->dev); 1045 1046 return 0; 1047 } 1048 1049 int cpsw_ndo_setup_tc(struct net_device *ndev, enum tc_setup_type type, 1050 void *type_data) 1051 { 1052 switch (type) { 1053 case TC_SETUP_QDISC_CBS: 1054 return cpsw_set_cbs(ndev, type_data); 1055 1056 case TC_SETUP_QDISC_MQPRIO: 1057 return cpsw_set_mqprio(ndev, type_data); 1058 1059 default: 1060 return -EOPNOTSUPP; 1061 } 1062 } 1063 1064 void cpsw_cbs_resume(struct cpsw_slave *slave, struct cpsw_priv *priv) 1065 { 1066 int fifo, bw; 1067 1068 for (fifo = CPSW_FIFO_SHAPERS_NUM; fifo > 0; fifo--) { 1069 bw = priv->fifo_bw[fifo]; 1070 if (!bw) 1071 continue; 1072 1073 cpsw_set_fifo_rlimit(priv, fifo, bw); 1074 } 1075 } 1076 1077 void cpsw_mqprio_resume(struct cpsw_slave *slave, struct cpsw_priv *priv) 1078 { 1079 struct cpsw_common *cpsw = priv->cpsw; 1080 u32 tx_prio_map = 0; 1081 int i, tc, fifo; 1082 u32 tx_prio_rg; 1083 1084 if (!priv->mqprio_hw) 1085 return; 1086 1087 for (i = 0; i < 8; i++) { 1088 tc = netdev_get_prio_tc_map(priv->ndev, i); 1089 fifo = CPSW_FIFO_SHAPERS_NUM - tc; 1090 tx_prio_map |= fifo << (4 * i); 1091 } 1092 1093 tx_prio_rg = cpsw->version == CPSW_VERSION_1 ? 1094 CPSW1_TX_PRI_MAP : CPSW2_TX_PRI_MAP; 1095 1096 slave_write(slave, tx_prio_map, tx_prio_rg); 1097 } 1098 1099 int cpsw_fill_rx_channels(struct cpsw_priv *priv) 1100 { 1101 struct cpsw_common *cpsw = priv->cpsw; 1102 struct cpsw_meta_xdp *xmeta; 1103 struct page_pool *pool; 1104 struct page *page; 1105 int ch_buf_num; 1106 int ch, i, ret; 1107 dma_addr_t dma; 1108 1109 for (ch = 0; ch < cpsw->rx_ch_num; ch++) { 1110 pool = cpsw->page_pool[ch]; 1111 ch_buf_num = cpdma_chan_get_rx_buf_num(cpsw->rxv[ch].ch); 1112 for (i = 0; i < ch_buf_num; i++) { 1113 page = page_pool_dev_alloc_pages(pool); 1114 if (!page) { 1115 cpsw_err(priv, ifup, "allocate rx page err\n"); 1116 return -ENOMEM; 1117 } 1118 1119 xmeta = page_address(page) + CPSW_XMETA_OFFSET; 1120 xmeta->ndev = priv->ndev; 1121 xmeta->ch = ch; 1122 1123 dma = page_pool_get_dma_addr(page) + CPSW_HEADROOM; 1124 ret = cpdma_chan_idle_submit_mapped(cpsw->rxv[ch].ch, 1125 page, dma, 1126 cpsw->rx_packet_max, 1127 0); 1128 if (ret < 0) { 1129 cpsw_err(priv, ifup, 1130 "cannot submit page to channel %d rx, error %d\n", 1131 ch, ret); 1132 page_pool_recycle_direct(pool, page); 1133 return ret; 1134 } 1135 } 1136 1137 cpsw_info(priv, ifup, "ch %d rx, submitted %d descriptors\n", 1138 ch, ch_buf_num); 1139 } 1140 1141 return 0; 1142 } 1143 1144 static struct page_pool *cpsw_create_page_pool(struct cpsw_common *cpsw, 1145 int size) 1146 { 1147 struct page_pool_params pp_params; 1148 struct page_pool *pool; 1149 1150 pp_params.order = 0; 1151 pp_params.flags = PP_FLAG_DMA_MAP; 1152 pp_params.pool_size = size; 1153 pp_params.nid = NUMA_NO_NODE; 1154 pp_params.dma_dir = DMA_BIDIRECTIONAL; 1155 pp_params.dev = cpsw->dev; 1156 1157 pool = page_pool_create(&pp_params); 1158 if (IS_ERR(pool)) 1159 dev_err(cpsw->dev, "cannot create rx page pool\n"); 1160 1161 return pool; 1162 } 1163 1164 static int cpsw_create_rx_pool(struct cpsw_common *cpsw, int ch) 1165 { 1166 struct page_pool *pool; 1167 int ret = 0, pool_size; 1168 1169 pool_size = cpdma_chan_get_rx_buf_num(cpsw->rxv[ch].ch); 1170 pool = cpsw_create_page_pool(cpsw, pool_size); 1171 if (IS_ERR(pool)) 1172 ret = PTR_ERR(pool); 1173 else 1174 cpsw->page_pool[ch] = pool; 1175 1176 return ret; 1177 } 1178 1179 static int cpsw_ndev_create_xdp_rxq(struct cpsw_priv *priv, int ch) 1180 { 1181 struct cpsw_common *cpsw = priv->cpsw; 1182 struct xdp_rxq_info *rxq; 1183 struct page_pool *pool; 1184 int ret; 1185 1186 pool = cpsw->page_pool[ch]; 1187 rxq = &priv->xdp_rxq[ch]; 1188 1189 ret = xdp_rxq_info_reg(rxq, priv->ndev, ch, 0); 1190 if (ret) 1191 return ret; 1192 1193 ret = xdp_rxq_info_reg_mem_model(rxq, MEM_TYPE_PAGE_POOL, pool); 1194 if (ret) 1195 xdp_rxq_info_unreg(rxq); 1196 1197 return ret; 1198 } 1199 1200 static void cpsw_ndev_destroy_xdp_rxq(struct cpsw_priv *priv, int ch) 1201 { 1202 struct xdp_rxq_info *rxq = &priv->xdp_rxq[ch]; 1203 1204 if (!xdp_rxq_info_is_reg(rxq)) 1205 return; 1206 1207 xdp_rxq_info_unreg(rxq); 1208 } 1209 1210 void cpsw_destroy_xdp_rxqs(struct cpsw_common *cpsw) 1211 { 1212 struct net_device *ndev; 1213 int i, ch; 1214 1215 for (ch = 0; ch < cpsw->rx_ch_num; ch++) { 1216 for (i = 0; i < cpsw->data.slaves; i++) { 1217 ndev = cpsw->slaves[i].ndev; 1218 if (!ndev) 1219 continue; 1220 1221 cpsw_ndev_destroy_xdp_rxq(netdev_priv(ndev), ch); 1222 } 1223 1224 page_pool_destroy(cpsw->page_pool[ch]); 1225 cpsw->page_pool[ch] = NULL; 1226 } 1227 } 1228 1229 int cpsw_create_xdp_rxqs(struct cpsw_common *cpsw) 1230 { 1231 struct net_device *ndev; 1232 int i, ch, ret; 1233 1234 for (ch = 0; ch < cpsw->rx_ch_num; ch++) { 1235 ret = cpsw_create_rx_pool(cpsw, ch); 1236 if (ret) 1237 goto err_cleanup; 1238 1239 /* using same page pool is allowed as no running rx handlers 1240 * simultaneously for both ndevs 1241 */ 1242 for (i = 0; i < cpsw->data.slaves; i++) { 1243 ndev = cpsw->slaves[i].ndev; 1244 if (!ndev) 1245 continue; 1246 1247 ret = cpsw_ndev_create_xdp_rxq(netdev_priv(ndev), ch); 1248 if (ret) 1249 goto err_cleanup; 1250 } 1251 } 1252 1253 return 0; 1254 1255 err_cleanup: 1256 cpsw_destroy_xdp_rxqs(cpsw); 1257 1258 return ret; 1259 } 1260 1261 static int cpsw_xdp_prog_setup(struct cpsw_priv *priv, struct netdev_bpf *bpf) 1262 { 1263 struct bpf_prog *prog = bpf->prog; 1264 1265 if (!priv->xdpi.prog && !prog) 1266 return 0; 1267 1268 WRITE_ONCE(priv->xdp_prog, prog); 1269 1270 xdp_attachment_setup(&priv->xdpi, bpf); 1271 1272 return 0; 1273 } 1274 1275 int cpsw_ndo_bpf(struct net_device *ndev, struct netdev_bpf *bpf) 1276 { 1277 struct cpsw_priv *priv = netdev_priv(ndev); 1278 1279 switch (bpf->command) { 1280 case XDP_SETUP_PROG: 1281 return cpsw_xdp_prog_setup(priv, bpf); 1282 1283 default: 1284 return -EINVAL; 1285 } 1286 } 1287 1288 int cpsw_xdp_tx_frame(struct cpsw_priv *priv, struct xdp_frame *xdpf, 1289 struct page *page, int port) 1290 { 1291 struct cpsw_common *cpsw = priv->cpsw; 1292 struct cpsw_meta_xdp *xmeta; 1293 struct cpdma_chan *txch; 1294 dma_addr_t dma; 1295 int ret; 1296 1297 xmeta = (void *)xdpf + CPSW_XMETA_OFFSET; 1298 xmeta->ndev = priv->ndev; 1299 xmeta->ch = 0; 1300 txch = cpsw->txv[0].ch; 1301 1302 if (page) { 1303 dma = page_pool_get_dma_addr(page); 1304 dma += xdpf->headroom + sizeof(struct xdp_frame); 1305 ret = cpdma_chan_submit_mapped(txch, cpsw_xdpf_to_handle(xdpf), 1306 dma, xdpf->len, port); 1307 } else { 1308 if (sizeof(*xmeta) > xdpf->headroom) { 1309 xdp_return_frame_rx_napi(xdpf); 1310 return -EINVAL; 1311 } 1312 1313 ret = cpdma_chan_submit(txch, cpsw_xdpf_to_handle(xdpf), 1314 xdpf->data, xdpf->len, port); 1315 } 1316 1317 if (ret) { 1318 priv->ndev->stats.tx_dropped++; 1319 xdp_return_frame_rx_napi(xdpf); 1320 } 1321 1322 return ret; 1323 } 1324 1325 int cpsw_run_xdp(struct cpsw_priv *priv, int ch, struct xdp_buff *xdp, 1326 struct page *page, int port) 1327 { 1328 struct cpsw_common *cpsw = priv->cpsw; 1329 struct net_device *ndev = priv->ndev; 1330 int ret = CPSW_XDP_CONSUMED; 1331 struct xdp_frame *xdpf; 1332 struct bpf_prog *prog; 1333 u32 act; 1334 1335 rcu_read_lock(); 1336 1337 prog = READ_ONCE(priv->xdp_prog); 1338 if (!prog) { 1339 ret = CPSW_XDP_PASS; 1340 goto out; 1341 } 1342 1343 act = bpf_prog_run_xdp(prog, xdp); 1344 switch (act) { 1345 case XDP_PASS: 1346 ret = CPSW_XDP_PASS; 1347 break; 1348 case XDP_TX: 1349 xdpf = xdp_convert_buff_to_frame(xdp); 1350 if (unlikely(!xdpf)) 1351 goto drop; 1352 1353 cpsw_xdp_tx_frame(priv, xdpf, page, port); 1354 break; 1355 case XDP_REDIRECT: 1356 if (xdp_do_redirect(ndev, xdp, prog)) 1357 goto drop; 1358 1359 /* Have to flush here, per packet, instead of doing it in bulk 1360 * at the end of the napi handler. The RX devices on this 1361 * particular hardware is sharing a common queue, so the 1362 * incoming device might change per packet. 1363 */ 1364 xdp_do_flush_map(); 1365 break; 1366 default: 1367 bpf_warn_invalid_xdp_action(act); 1368 fallthrough; 1369 case XDP_ABORTED: 1370 trace_xdp_exception(ndev, prog, act); 1371 fallthrough; /* handle aborts by dropping packet */ 1372 case XDP_DROP: 1373 goto drop; 1374 } 1375 out: 1376 rcu_read_unlock(); 1377 return ret; 1378 drop: 1379 rcu_read_unlock(); 1380 page_pool_recycle_direct(cpsw->page_pool[ch], page); 1381 return ret; 1382 } 1383