1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Texas Instruments Ethernet Switch Driver 4 * 5 * Copyright (C) 2019 Texas Instruments 6 */ 7 8 #include <linux/io.h> 9 #include <linux/clk.h> 10 #include <linux/timer.h> 11 #include <linux/module.h> 12 #include <linux/irqreturn.h> 13 #include <linux/interrupt.h> 14 #include <linux/if_ether.h> 15 #include <linux/etherdevice.h> 16 #include <linux/net_tstamp.h> 17 #include <linux/phy.h> 18 #include <linux/phy/phy.h> 19 #include <linux/delay.h> 20 #include <linux/pinctrl/consumer.h> 21 #include <linux/pm_runtime.h> 22 #include <linux/gpio/consumer.h> 23 #include <linux/of.h> 24 #include <linux/of_mdio.h> 25 #include <linux/of_net.h> 26 #include <linux/of_device.h> 27 #include <linux/if_vlan.h> 28 #include <linux/kmemleak.h> 29 #include <linux/sys_soc.h> 30 31 #include <net/page_pool.h> 32 #include <net/pkt_cls.h> 33 #include <net/devlink.h> 34 35 #include "cpsw.h" 36 #include "cpsw_ale.h" 37 #include "cpsw_priv.h" 38 #include "cpsw_sl.h" 39 #include "cpsw_switchdev.h" 40 #include "cpts.h" 41 #include "davinci_cpdma.h" 42 43 #include <net/pkt_sched.h> 44 45 static int debug_level; 46 static int ale_ageout = CPSW_ALE_AGEOUT_DEFAULT; 47 static int rx_packet_max = CPSW_MAX_PACKET_SIZE; 48 static int descs_pool_size = CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT; 49 50 struct cpsw_devlink { 51 struct cpsw_common *cpsw; 52 }; 53 54 enum cpsw_devlink_param_id { 55 CPSW_DEVLINK_PARAM_ID_BASE = DEVLINK_PARAM_GENERIC_ID_MAX, 56 CPSW_DL_PARAM_SWITCH_MODE, 57 CPSW_DL_PARAM_ALE_BYPASS, 58 }; 59 60 /* struct cpsw_common is not needed, kept here for compatibility 61 * reasons witrh the old driver 62 */ 63 static int cpsw_slave_index_priv(struct cpsw_common *cpsw, 64 struct cpsw_priv *priv) 65 { 66 if (priv->emac_port == HOST_PORT_NUM) 67 return -1; 68 69 return priv->emac_port - 1; 70 } 71 72 static bool cpsw_is_switch_en(struct cpsw_common *cpsw) 73 { 74 return !cpsw->data.dual_emac; 75 } 76 77 static void cpsw_set_promiscious(struct net_device *ndev, bool enable) 78 { 79 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 80 bool enable_uni = false; 81 int i; 82 83 if (cpsw_is_switch_en(cpsw)) 84 return; 85 86 /* Enabling promiscuous mode for one interface will be 87 * common for both the interface as the interface shares 88 * the same hardware resource. 89 */ 90 for (i = 0; i < cpsw->data.slaves; i++) 91 if (cpsw->slaves[i].ndev && 92 (cpsw->slaves[i].ndev->flags & IFF_PROMISC)) 93 enable_uni = true; 94 95 if (!enable && enable_uni) { 96 enable = enable_uni; 97 dev_dbg(cpsw->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n"); 98 } 99 100 if (enable) { 101 /* Enable unknown unicast, reg/unreg mcast */ 102 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, 103 ALE_P0_UNI_FLOOD, 1); 104 105 dev_dbg(cpsw->dev, "promiscuity enabled\n"); 106 } else { 107 /* Disable unknown unicast */ 108 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, 109 ALE_P0_UNI_FLOOD, 0); 110 dev_dbg(cpsw->dev, "promiscuity disabled\n"); 111 } 112 } 113 114 /** 115 * cpsw_set_mc - adds multicast entry to the table if it's not added or deletes 116 * if it's not deleted 117 * @ndev: device to sync 118 * @addr: address to be added or deleted 119 * @vid: vlan id, if vid < 0 set/unset address for real device 120 * @add: add address if the flag is set or remove otherwise 121 */ 122 static int cpsw_set_mc(struct net_device *ndev, const u8 *addr, 123 int vid, int add) 124 { 125 struct cpsw_priv *priv = netdev_priv(ndev); 126 struct cpsw_common *cpsw = priv->cpsw; 127 int mask, flags, ret, slave_no; 128 129 slave_no = cpsw_slave_index(cpsw, priv); 130 if (vid < 0) 131 vid = cpsw->slaves[slave_no].port_vlan; 132 133 mask = ALE_PORT_HOST; 134 flags = vid ? ALE_VLAN : 0; 135 136 if (add) 137 ret = cpsw_ale_add_mcast(cpsw->ale, addr, mask, flags, vid, 0); 138 else 139 ret = cpsw_ale_del_mcast(cpsw->ale, addr, 0, flags, vid); 140 141 return ret; 142 } 143 144 static int cpsw_update_vlan_mc(struct net_device *vdev, int vid, void *ctx) 145 { 146 struct addr_sync_ctx *sync_ctx = ctx; 147 struct netdev_hw_addr *ha; 148 int found = 0, ret = 0; 149 150 if (!vdev || !(vdev->flags & IFF_UP)) 151 return 0; 152 153 /* vlan address is relevant if its sync_cnt != 0 */ 154 netdev_for_each_mc_addr(ha, vdev) { 155 if (ether_addr_equal(ha->addr, sync_ctx->addr)) { 156 found = ha->sync_cnt; 157 break; 158 } 159 } 160 161 if (found) 162 sync_ctx->consumed++; 163 164 if (sync_ctx->flush) { 165 if (!found) 166 cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 0); 167 return 0; 168 } 169 170 if (found) 171 ret = cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 1); 172 173 return ret; 174 } 175 176 static int cpsw_add_mc_addr(struct net_device *ndev, const u8 *addr, int num) 177 { 178 struct addr_sync_ctx sync_ctx; 179 int ret; 180 181 sync_ctx.consumed = 0; 182 sync_ctx.addr = addr; 183 sync_ctx.ndev = ndev; 184 sync_ctx.flush = 0; 185 186 ret = vlan_for_each(ndev, cpsw_update_vlan_mc, &sync_ctx); 187 if (sync_ctx.consumed < num && !ret) 188 ret = cpsw_set_mc(ndev, addr, -1, 1); 189 190 return ret; 191 } 192 193 static int cpsw_del_mc_addr(struct net_device *ndev, const u8 *addr, int num) 194 { 195 struct addr_sync_ctx sync_ctx; 196 197 sync_ctx.consumed = 0; 198 sync_ctx.addr = addr; 199 sync_ctx.ndev = ndev; 200 sync_ctx.flush = 1; 201 202 vlan_for_each(ndev, cpsw_update_vlan_mc, &sync_ctx); 203 if (sync_ctx.consumed == num) 204 cpsw_set_mc(ndev, addr, -1, 0); 205 206 return 0; 207 } 208 209 static int cpsw_purge_vlan_mc(struct net_device *vdev, int vid, void *ctx) 210 { 211 struct addr_sync_ctx *sync_ctx = ctx; 212 struct netdev_hw_addr *ha; 213 int found = 0; 214 215 if (!vdev || !(vdev->flags & IFF_UP)) 216 return 0; 217 218 /* vlan address is relevant if its sync_cnt != 0 */ 219 netdev_for_each_mc_addr(ha, vdev) { 220 if (ether_addr_equal(ha->addr, sync_ctx->addr)) { 221 found = ha->sync_cnt; 222 break; 223 } 224 } 225 226 if (!found) 227 return 0; 228 229 sync_ctx->consumed++; 230 cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 0); 231 return 0; 232 } 233 234 static int cpsw_purge_all_mc(struct net_device *ndev, const u8 *addr, int num) 235 { 236 struct addr_sync_ctx sync_ctx; 237 238 sync_ctx.addr = addr; 239 sync_ctx.ndev = ndev; 240 sync_ctx.consumed = 0; 241 242 vlan_for_each(ndev, cpsw_purge_vlan_mc, &sync_ctx); 243 if (sync_ctx.consumed < num) 244 cpsw_set_mc(ndev, addr, -1, 0); 245 246 return 0; 247 } 248 249 static void cpsw_ndo_set_rx_mode(struct net_device *ndev) 250 { 251 struct cpsw_priv *priv = netdev_priv(ndev); 252 struct cpsw_common *cpsw = priv->cpsw; 253 254 if (ndev->flags & IFF_PROMISC) { 255 /* Enable promiscuous mode */ 256 cpsw_set_promiscious(ndev, true); 257 cpsw_ale_set_allmulti(cpsw->ale, IFF_ALLMULTI, priv->emac_port); 258 return; 259 } 260 261 /* Disable promiscuous mode */ 262 cpsw_set_promiscious(ndev, false); 263 264 /* Restore allmulti on vlans if necessary */ 265 cpsw_ale_set_allmulti(cpsw->ale, 266 ndev->flags & IFF_ALLMULTI, priv->emac_port); 267 268 /* add/remove mcast address either for real netdev or for vlan */ 269 __hw_addr_ref_sync_dev(&ndev->mc, ndev, cpsw_add_mc_addr, 270 cpsw_del_mc_addr); 271 } 272 273 static unsigned int cpsw_rxbuf_total_len(unsigned int len) 274 { 275 len += CPSW_HEADROOM; 276 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 277 278 return SKB_DATA_ALIGN(len); 279 } 280 281 static void cpsw_rx_handler(void *token, int len, int status) 282 { 283 struct page *new_page, *page = token; 284 void *pa = page_address(page); 285 int headroom = CPSW_HEADROOM; 286 struct cpsw_meta_xdp *xmeta; 287 struct cpsw_common *cpsw; 288 struct net_device *ndev; 289 int port, ch, pkt_size; 290 struct cpsw_priv *priv; 291 struct page_pool *pool; 292 struct sk_buff *skb; 293 struct xdp_buff xdp; 294 int ret = 0; 295 dma_addr_t dma; 296 297 xmeta = pa + CPSW_XMETA_OFFSET; 298 cpsw = ndev_to_cpsw(xmeta->ndev); 299 ndev = xmeta->ndev; 300 pkt_size = cpsw->rx_packet_max; 301 ch = xmeta->ch; 302 303 if (status >= 0) { 304 port = CPDMA_RX_SOURCE_PORT(status); 305 if (port) 306 ndev = cpsw->slaves[--port].ndev; 307 } 308 309 priv = netdev_priv(ndev); 310 pool = cpsw->page_pool[ch]; 311 312 if (unlikely(status < 0) || unlikely(!netif_running(ndev))) { 313 /* In dual emac mode check for all interfaces */ 314 if (cpsw->usage_count && status >= 0) { 315 /* The packet received is for the interface which 316 * is already down and the other interface is up 317 * and running, instead of freeing which results 318 * in reducing of the number of rx descriptor in 319 * DMA engine, requeue page back to cpdma. 320 */ 321 new_page = page; 322 goto requeue; 323 } 324 325 /* the interface is going down, pages are purged */ 326 page_pool_recycle_direct(pool, page); 327 return; 328 } 329 330 new_page = page_pool_dev_alloc_pages(pool); 331 if (unlikely(!new_page)) { 332 new_page = page; 333 ndev->stats.rx_dropped++; 334 goto requeue; 335 } 336 337 if (priv->xdp_prog) { 338 int headroom = CPSW_HEADROOM, size = len; 339 340 xdp_init_buff(&xdp, PAGE_SIZE, &priv->xdp_rxq[ch]); 341 if (status & CPDMA_RX_VLAN_ENCAP) { 342 headroom += CPSW_RX_VLAN_ENCAP_HDR_SIZE; 343 size -= CPSW_RX_VLAN_ENCAP_HDR_SIZE; 344 } 345 346 xdp_prepare_buff(&xdp, pa, headroom, size, false); 347 348 ret = cpsw_run_xdp(priv, ch, &xdp, page, priv->emac_port, &len); 349 if (ret != CPSW_XDP_PASS) 350 goto requeue; 351 352 headroom = xdp.data - xdp.data_hard_start; 353 354 /* XDP prog can modify vlan tag, so can't use encap header */ 355 status &= ~CPDMA_RX_VLAN_ENCAP; 356 } 357 358 /* pass skb to netstack if no XDP prog or returned XDP_PASS */ 359 skb = build_skb(pa, cpsw_rxbuf_total_len(pkt_size)); 360 if (!skb) { 361 ndev->stats.rx_dropped++; 362 page_pool_recycle_direct(pool, page); 363 goto requeue; 364 } 365 366 skb->offload_fwd_mark = priv->offload_fwd_mark; 367 skb_reserve(skb, headroom); 368 skb_put(skb, len); 369 skb->dev = ndev; 370 if (status & CPDMA_RX_VLAN_ENCAP) 371 cpsw_rx_vlan_encap(skb); 372 if (priv->rx_ts_enabled) 373 cpts_rx_timestamp(cpsw->cpts, skb); 374 skb->protocol = eth_type_trans(skb, ndev); 375 376 /* mark skb for recycling */ 377 skb_mark_for_recycle(skb, page, pool); 378 netif_receive_skb(skb); 379 380 ndev->stats.rx_bytes += len; 381 ndev->stats.rx_packets++; 382 383 requeue: 384 xmeta = page_address(new_page) + CPSW_XMETA_OFFSET; 385 xmeta->ndev = ndev; 386 xmeta->ch = ch; 387 388 dma = page_pool_get_dma_addr(new_page) + CPSW_HEADROOM; 389 ret = cpdma_chan_submit_mapped(cpsw->rxv[ch].ch, new_page, dma, 390 pkt_size, 0); 391 if (ret < 0) { 392 WARN_ON(ret == -ENOMEM); 393 page_pool_recycle_direct(pool, new_page); 394 } 395 } 396 397 static int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv, 398 unsigned short vid) 399 { 400 struct cpsw_common *cpsw = priv->cpsw; 401 int unreg_mcast_mask = 0; 402 int mcast_mask; 403 u32 port_mask; 404 int ret; 405 406 port_mask = (1 << priv->emac_port) | ALE_PORT_HOST; 407 408 mcast_mask = ALE_PORT_HOST; 409 if (priv->ndev->flags & IFF_ALLMULTI) 410 unreg_mcast_mask = mcast_mask; 411 412 ret = cpsw_ale_add_vlan(cpsw->ale, vid, port_mask, 0, port_mask, 413 unreg_mcast_mask); 414 if (ret != 0) 415 return ret; 416 417 ret = cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, 418 HOST_PORT_NUM, ALE_VLAN, vid); 419 if (ret != 0) 420 goto clean_vid; 421 422 ret = cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, 423 mcast_mask, ALE_VLAN, vid, 0); 424 if (ret != 0) 425 goto clean_vlan_ucast; 426 return 0; 427 428 clean_vlan_ucast: 429 cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, 430 HOST_PORT_NUM, ALE_VLAN, vid); 431 clean_vid: 432 cpsw_ale_del_vlan(cpsw->ale, vid, 0); 433 return ret; 434 } 435 436 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev, 437 __be16 proto, u16 vid) 438 { 439 struct cpsw_priv *priv = netdev_priv(ndev); 440 struct cpsw_common *cpsw = priv->cpsw; 441 int ret, i; 442 443 if (cpsw_is_switch_en(cpsw)) { 444 dev_dbg(cpsw->dev, ".ndo_vlan_rx_add_vid called in switch mode\n"); 445 return 0; 446 } 447 448 if (vid == cpsw->data.default_vlan) 449 return 0; 450 451 ret = pm_runtime_get_sync(cpsw->dev); 452 if (ret < 0) { 453 pm_runtime_put_noidle(cpsw->dev); 454 return ret; 455 } 456 457 /* In dual EMAC, reserved VLAN id should not be used for 458 * creating VLAN interfaces as this can break the dual 459 * EMAC port separation 460 */ 461 for (i = 0; i < cpsw->data.slaves; i++) { 462 if (cpsw->slaves[i].ndev && 463 vid == cpsw->slaves[i].port_vlan) { 464 ret = -EINVAL; 465 goto err; 466 } 467 } 468 469 dev_dbg(priv->dev, "Adding vlanid %d to vlan filter\n", vid); 470 ret = cpsw_add_vlan_ale_entry(priv, vid); 471 err: 472 pm_runtime_put(cpsw->dev); 473 return ret; 474 } 475 476 static int cpsw_restore_vlans(struct net_device *vdev, int vid, void *arg) 477 { 478 struct cpsw_priv *priv = arg; 479 480 if (!vdev || !vid) 481 return 0; 482 483 cpsw_ndo_vlan_rx_add_vid(priv->ndev, 0, vid); 484 return 0; 485 } 486 487 /* restore resources after port reset */ 488 static void cpsw_restore(struct cpsw_priv *priv) 489 { 490 struct cpsw_common *cpsw = priv->cpsw; 491 492 /* restore vlan configurations */ 493 vlan_for_each(priv->ndev, cpsw_restore_vlans, priv); 494 495 /* restore MQPRIO offload */ 496 cpsw_mqprio_resume(&cpsw->slaves[priv->emac_port - 1], priv); 497 498 /* restore CBS offload */ 499 cpsw_cbs_resume(&cpsw->slaves[priv->emac_port - 1], priv); 500 } 501 502 static void cpsw_init_stp_ale_entry(struct cpsw_common *cpsw) 503 { 504 char stpa[] = {0x01, 0x80, 0xc2, 0x0, 0x0, 0x0}; 505 506 cpsw_ale_add_mcast(cpsw->ale, stpa, 507 ALE_PORT_HOST, ALE_SUPER, 0, 508 ALE_MCAST_BLOCK_LEARN_FWD); 509 } 510 511 static void cpsw_init_host_port_switch(struct cpsw_common *cpsw) 512 { 513 int vlan = cpsw->data.default_vlan; 514 515 writel(CPSW_FIFO_NORMAL_MODE, &cpsw->host_port_regs->tx_in_ctl); 516 517 writel(vlan, &cpsw->host_port_regs->port_vlan); 518 519 cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS, 520 ALE_ALL_PORTS, ALE_ALL_PORTS, 521 ALE_PORT_1 | ALE_PORT_2); 522 523 cpsw_init_stp_ale_entry(cpsw); 524 525 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_P0_UNI_FLOOD, 1); 526 dev_dbg(cpsw->dev, "Set P0_UNI_FLOOD\n"); 527 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_PORT_NOLEARN, 0); 528 } 529 530 static void cpsw_init_host_port_dual_mac(struct cpsw_common *cpsw) 531 { 532 int vlan = cpsw->data.default_vlan; 533 534 writel(CPSW_FIFO_DUAL_MAC_MODE, &cpsw->host_port_regs->tx_in_ctl); 535 536 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_P0_UNI_FLOOD, 0); 537 dev_dbg(cpsw->dev, "unset P0_UNI_FLOOD\n"); 538 539 writel(vlan, &cpsw->host_port_regs->port_vlan); 540 541 cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0); 542 /* learning make no sense in dual_mac mode */ 543 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_PORT_NOLEARN, 1); 544 } 545 546 static void cpsw_init_host_port(struct cpsw_priv *priv) 547 { 548 struct cpsw_common *cpsw = priv->cpsw; 549 u32 control_reg; 550 551 /* soft reset the controller and initialize ale */ 552 soft_reset("cpsw", &cpsw->regs->soft_reset); 553 cpsw_ale_start(cpsw->ale); 554 555 /* switch to vlan unaware mode */ 556 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_VLAN_AWARE, 557 CPSW_ALE_VLAN_AWARE); 558 control_reg = readl(&cpsw->regs->control); 559 control_reg |= CPSW_VLAN_AWARE | CPSW_RX_VLAN_ENCAP; 560 writel(control_reg, &cpsw->regs->control); 561 562 /* setup host port priority mapping */ 563 writel_relaxed(CPDMA_TX_PRIORITY_MAP, 564 &cpsw->host_port_regs->cpdma_tx_pri_map); 565 writel_relaxed(0, &cpsw->host_port_regs->cpdma_rx_chan_map); 566 567 /* disable priority elevation */ 568 writel_relaxed(0, &cpsw->regs->ptype); 569 570 /* enable statistics collection only on all ports */ 571 writel_relaxed(0x7, &cpsw->regs->stat_port_en); 572 573 /* Enable internal fifo flow control */ 574 writel(0x7, &cpsw->regs->flow_control); 575 576 if (cpsw_is_switch_en(cpsw)) 577 cpsw_init_host_port_switch(cpsw); 578 else 579 cpsw_init_host_port_dual_mac(cpsw); 580 581 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, 582 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD); 583 } 584 585 static void cpsw_port_add_dual_emac_def_ale_entries(struct cpsw_priv *priv, 586 struct cpsw_slave *slave) 587 { 588 u32 port_mask = 1 << priv->emac_port | ALE_PORT_HOST; 589 struct cpsw_common *cpsw = priv->cpsw; 590 u32 reg; 591 592 reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN : 593 CPSW2_PORT_VLAN; 594 slave_write(slave, slave->port_vlan, reg); 595 596 cpsw_ale_add_vlan(cpsw->ale, slave->port_vlan, port_mask, 597 port_mask, port_mask, 0); 598 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, 599 ALE_PORT_HOST, ALE_VLAN, slave->port_vlan, 600 ALE_MCAST_FWD); 601 cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, 602 HOST_PORT_NUM, ALE_VLAN | 603 ALE_SECURE, slave->port_vlan); 604 cpsw_ale_control_set(cpsw->ale, priv->emac_port, 605 ALE_PORT_DROP_UNKNOWN_VLAN, 1); 606 /* learning make no sense in dual_mac mode */ 607 cpsw_ale_control_set(cpsw->ale, priv->emac_port, 608 ALE_PORT_NOLEARN, 1); 609 } 610 611 static void cpsw_port_add_switch_def_ale_entries(struct cpsw_priv *priv, 612 struct cpsw_slave *slave) 613 { 614 u32 port_mask = 1 << priv->emac_port | ALE_PORT_HOST; 615 struct cpsw_common *cpsw = priv->cpsw; 616 u32 reg; 617 618 cpsw_ale_control_set(cpsw->ale, priv->emac_port, 619 ALE_PORT_DROP_UNKNOWN_VLAN, 0); 620 cpsw_ale_control_set(cpsw->ale, priv->emac_port, 621 ALE_PORT_NOLEARN, 0); 622 /* disabling SA_UPDATE required to make stp work, without this setting 623 * Host MAC addresses will jump between ports. 624 * As per TRM MAC address can be defined as unicast supervisory (super) 625 * by setting both (ALE_BLOCKED | ALE_SECURE) which should prevent 626 * SA_UPDATE, but HW seems works incorrectly and setting ALE_SECURE 627 * causes STP packets to be dropped due to ingress filter 628 * if (source address found) and (secure) and 629 * (receive port number != port_number)) 630 * then discard the packet 631 */ 632 cpsw_ale_control_set(cpsw->ale, priv->emac_port, 633 ALE_PORT_NO_SA_UPDATE, 1); 634 635 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, 636 port_mask, ALE_VLAN, slave->port_vlan, 637 ALE_MCAST_FWD_2); 638 cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, 639 HOST_PORT_NUM, ALE_VLAN, slave->port_vlan); 640 641 reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN : 642 CPSW2_PORT_VLAN; 643 slave_write(slave, slave->port_vlan, reg); 644 } 645 646 static void cpsw_adjust_link(struct net_device *ndev) 647 { 648 struct cpsw_priv *priv = netdev_priv(ndev); 649 struct cpsw_common *cpsw = priv->cpsw; 650 struct cpsw_slave *slave; 651 struct phy_device *phy; 652 u32 mac_control = 0; 653 654 slave = &cpsw->slaves[priv->emac_port - 1]; 655 phy = slave->phy; 656 657 if (!phy) 658 return; 659 660 if (phy->link) { 661 mac_control = CPSW_SL_CTL_GMII_EN; 662 663 if (phy->speed == 1000) 664 mac_control |= CPSW_SL_CTL_GIG; 665 if (phy->duplex) 666 mac_control |= CPSW_SL_CTL_FULLDUPLEX; 667 668 /* set speed_in input in case RMII mode is used in 100Mbps */ 669 if (phy->speed == 100) 670 mac_control |= CPSW_SL_CTL_IFCTL_A; 671 /* in band mode only works in 10Mbps RGMII mode */ 672 else if ((phy->speed == 10) && phy_interface_is_rgmii(phy)) 673 mac_control |= CPSW_SL_CTL_EXT_EN; /* In Band mode */ 674 675 if (priv->rx_pause) 676 mac_control |= CPSW_SL_CTL_RX_FLOW_EN; 677 678 if (priv->tx_pause) 679 mac_control |= CPSW_SL_CTL_TX_FLOW_EN; 680 681 if (mac_control != slave->mac_control) 682 cpsw_sl_ctl_set(slave->mac_sl, mac_control); 683 684 /* enable forwarding */ 685 cpsw_ale_control_set(cpsw->ale, priv->emac_port, 686 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD); 687 688 netif_tx_wake_all_queues(ndev); 689 690 if (priv->shp_cfg_speed && 691 priv->shp_cfg_speed != slave->phy->speed && 692 !cpsw_shp_is_off(priv)) 693 dev_warn(priv->dev, "Speed was changed, CBS shaper speeds are changed!"); 694 } else { 695 netif_tx_stop_all_queues(ndev); 696 697 mac_control = 0; 698 /* disable forwarding */ 699 cpsw_ale_control_set(cpsw->ale, priv->emac_port, 700 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE); 701 702 cpsw_sl_wait_for_idle(slave->mac_sl, 100); 703 704 cpsw_sl_ctl_reset(slave->mac_sl); 705 } 706 707 if (mac_control != slave->mac_control) 708 phy_print_status(phy); 709 710 slave->mac_control = mac_control; 711 712 if (phy->link && cpsw_need_resplit(cpsw)) 713 cpsw_split_res(cpsw); 714 } 715 716 static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv) 717 { 718 struct cpsw_common *cpsw = priv->cpsw; 719 struct phy_device *phy; 720 721 cpsw_sl_reset(slave->mac_sl, 100); 722 cpsw_sl_ctl_reset(slave->mac_sl); 723 724 /* setup priority mapping */ 725 cpsw_sl_reg_write(slave->mac_sl, CPSW_SL_RX_PRI_MAP, 726 RX_PRIORITY_MAPPING); 727 728 switch (cpsw->version) { 729 case CPSW_VERSION_1: 730 slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP); 731 /* Increase RX FIFO size to 5 for supporting fullduplex 732 * flow control mode 733 */ 734 slave_write(slave, 735 (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) | 736 CPSW_MAX_BLKS_RX, CPSW1_MAX_BLKS); 737 break; 738 case CPSW_VERSION_2: 739 case CPSW_VERSION_3: 740 case CPSW_VERSION_4: 741 slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP); 742 /* Increase RX FIFO size to 5 for supporting fullduplex 743 * flow control mode 744 */ 745 slave_write(slave, 746 (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) | 747 CPSW_MAX_BLKS_RX, CPSW2_MAX_BLKS); 748 break; 749 } 750 751 /* setup max packet size, and mac address */ 752 cpsw_sl_reg_write(slave->mac_sl, CPSW_SL_RX_MAXLEN, 753 cpsw->rx_packet_max); 754 cpsw_set_slave_mac(slave, priv); 755 756 slave->mac_control = 0; /* no link yet */ 757 758 if (cpsw_is_switch_en(cpsw)) 759 cpsw_port_add_switch_def_ale_entries(priv, slave); 760 else 761 cpsw_port_add_dual_emac_def_ale_entries(priv, slave); 762 763 if (!slave->data->phy_node) 764 dev_err(priv->dev, "no phy found on slave %d\n", 765 slave->slave_num); 766 phy = of_phy_connect(priv->ndev, slave->data->phy_node, 767 &cpsw_adjust_link, 0, slave->data->phy_if); 768 if (!phy) { 769 dev_err(priv->dev, "phy \"%pOF\" not found on slave %d\n", 770 slave->data->phy_node, 771 slave->slave_num); 772 return; 773 } 774 slave->phy = phy; 775 776 phy_attached_info(slave->phy); 777 778 phy_start(slave->phy); 779 780 /* Configure GMII_SEL register */ 781 phy_set_mode_ext(slave->data->ifphy, PHY_MODE_ETHERNET, 782 slave->data->phy_if); 783 } 784 785 static int cpsw_ndo_stop(struct net_device *ndev) 786 { 787 struct cpsw_priv *priv = netdev_priv(ndev); 788 struct cpsw_common *cpsw = priv->cpsw; 789 struct cpsw_slave *slave; 790 791 cpsw_info(priv, ifdown, "shutting down ndev\n"); 792 slave = &cpsw->slaves[priv->emac_port - 1]; 793 if (slave->phy) 794 phy_stop(slave->phy); 795 796 netif_tx_stop_all_queues(priv->ndev); 797 798 if (slave->phy) { 799 phy_disconnect(slave->phy); 800 slave->phy = NULL; 801 } 802 803 __hw_addr_ref_unsync_dev(&ndev->mc, ndev, cpsw_purge_all_mc); 804 805 if (cpsw->usage_count <= 1) { 806 napi_disable(&cpsw->napi_rx); 807 napi_disable(&cpsw->napi_tx); 808 cpts_unregister(cpsw->cpts); 809 cpsw_intr_disable(cpsw); 810 cpdma_ctlr_stop(cpsw->dma); 811 cpsw_ale_stop(cpsw->ale); 812 cpsw_destroy_xdp_rxqs(cpsw); 813 } 814 815 if (cpsw_need_resplit(cpsw)) 816 cpsw_split_res(cpsw); 817 818 cpsw->usage_count--; 819 pm_runtime_put_sync(cpsw->dev); 820 return 0; 821 } 822 823 static int cpsw_ndo_open(struct net_device *ndev) 824 { 825 struct cpsw_priv *priv = netdev_priv(ndev); 826 struct cpsw_common *cpsw = priv->cpsw; 827 int ret; 828 829 dev_info(priv->dev, "starting ndev. mode: %s\n", 830 cpsw_is_switch_en(cpsw) ? "switch" : "dual_mac"); 831 ret = pm_runtime_get_sync(cpsw->dev); 832 if (ret < 0) { 833 pm_runtime_put_noidle(cpsw->dev); 834 return ret; 835 } 836 837 /* Notify the stack of the actual queue counts. */ 838 ret = netif_set_real_num_tx_queues(ndev, cpsw->tx_ch_num); 839 if (ret) { 840 dev_err(priv->dev, "cannot set real number of tx queues\n"); 841 goto pm_cleanup; 842 } 843 844 ret = netif_set_real_num_rx_queues(ndev, cpsw->rx_ch_num); 845 if (ret) { 846 dev_err(priv->dev, "cannot set real number of rx queues\n"); 847 goto pm_cleanup; 848 } 849 850 /* Initialize host and slave ports */ 851 if (!cpsw->usage_count) 852 cpsw_init_host_port(priv); 853 cpsw_slave_open(&cpsw->slaves[priv->emac_port - 1], priv); 854 855 /* initialize shared resources for every ndev */ 856 if (!cpsw->usage_count) { 857 /* create rxqs for both infs in dual mac as they use same pool 858 * and must be destroyed together when no users. 859 */ 860 ret = cpsw_create_xdp_rxqs(cpsw); 861 if (ret < 0) 862 goto err_cleanup; 863 864 ret = cpsw_fill_rx_channels(priv); 865 if (ret < 0) 866 goto err_cleanup; 867 868 if (cpsw->cpts) { 869 if (cpts_register(cpsw->cpts)) 870 dev_err(priv->dev, "error registering cpts device\n"); 871 else 872 writel(0x10, &cpsw->wr_regs->misc_en); 873 } 874 875 napi_enable(&cpsw->napi_rx); 876 napi_enable(&cpsw->napi_tx); 877 878 if (cpsw->tx_irq_disabled) { 879 cpsw->tx_irq_disabled = false; 880 enable_irq(cpsw->irqs_table[1]); 881 } 882 883 if (cpsw->rx_irq_disabled) { 884 cpsw->rx_irq_disabled = false; 885 enable_irq(cpsw->irqs_table[0]); 886 } 887 } 888 889 cpsw_restore(priv); 890 891 /* Enable Interrupt pacing if configured */ 892 if (cpsw->coal_intvl != 0) { 893 struct ethtool_coalesce coal; 894 895 coal.rx_coalesce_usecs = cpsw->coal_intvl; 896 cpsw_set_coalesce(ndev, &coal); 897 } 898 899 cpdma_ctlr_start(cpsw->dma); 900 cpsw_intr_enable(cpsw); 901 cpsw->usage_count++; 902 903 return 0; 904 905 err_cleanup: 906 cpsw_ndo_stop(ndev); 907 908 pm_cleanup: 909 pm_runtime_put_sync(cpsw->dev); 910 return ret; 911 } 912 913 static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb, 914 struct net_device *ndev) 915 { 916 struct cpsw_priv *priv = netdev_priv(ndev); 917 struct cpsw_common *cpsw = priv->cpsw; 918 struct cpts *cpts = cpsw->cpts; 919 struct netdev_queue *txq; 920 struct cpdma_chan *txch; 921 int ret, q_idx; 922 923 if (skb_put_padto(skb, READ_ONCE(priv->tx_packet_min))) { 924 cpsw_err(priv, tx_err, "packet pad failed\n"); 925 ndev->stats.tx_dropped++; 926 return NET_XMIT_DROP; 927 } 928 929 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && 930 priv->tx_ts_enabled && cpts_can_timestamp(cpts, skb)) 931 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 932 933 q_idx = skb_get_queue_mapping(skb); 934 if (q_idx >= cpsw->tx_ch_num) 935 q_idx = q_idx % cpsw->tx_ch_num; 936 937 txch = cpsw->txv[q_idx].ch; 938 txq = netdev_get_tx_queue(ndev, q_idx); 939 skb_tx_timestamp(skb); 940 ret = cpdma_chan_submit(txch, skb, skb->data, skb->len, 941 priv->emac_port); 942 if (unlikely(ret != 0)) { 943 cpsw_err(priv, tx_err, "desc submit failed\n"); 944 goto fail; 945 } 946 947 /* If there is no more tx desc left free then we need to 948 * tell the kernel to stop sending us tx frames. 949 */ 950 if (unlikely(!cpdma_check_free_tx_desc(txch))) { 951 netif_tx_stop_queue(txq); 952 953 /* Barrier, so that stop_queue visible to other cpus */ 954 smp_mb__after_atomic(); 955 956 if (cpdma_check_free_tx_desc(txch)) 957 netif_tx_wake_queue(txq); 958 } 959 960 return NETDEV_TX_OK; 961 fail: 962 ndev->stats.tx_dropped++; 963 netif_tx_stop_queue(txq); 964 965 /* Barrier, so that stop_queue visible to other cpus */ 966 smp_mb__after_atomic(); 967 968 if (cpdma_check_free_tx_desc(txch)) 969 netif_tx_wake_queue(txq); 970 971 return NETDEV_TX_BUSY; 972 } 973 974 static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p) 975 { 976 struct sockaddr *addr = (struct sockaddr *)p; 977 struct cpsw_priv *priv = netdev_priv(ndev); 978 struct cpsw_common *cpsw = priv->cpsw; 979 int ret, slave_no; 980 int flags = 0; 981 u16 vid = 0; 982 983 slave_no = cpsw_slave_index(cpsw, priv); 984 if (!is_valid_ether_addr(addr->sa_data)) 985 return -EADDRNOTAVAIL; 986 987 ret = pm_runtime_get_sync(cpsw->dev); 988 if (ret < 0) { 989 pm_runtime_put_noidle(cpsw->dev); 990 return ret; 991 } 992 993 vid = cpsw->slaves[slave_no].port_vlan; 994 flags = ALE_VLAN | ALE_SECURE; 995 996 cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM, 997 flags, vid); 998 cpsw_ale_add_ucast(cpsw->ale, addr->sa_data, HOST_PORT_NUM, 999 flags, vid); 1000 1001 ether_addr_copy(priv->mac_addr, addr->sa_data); 1002 ether_addr_copy(ndev->dev_addr, priv->mac_addr); 1003 cpsw_set_slave_mac(&cpsw->slaves[slave_no], priv); 1004 1005 pm_runtime_put(cpsw->dev); 1006 1007 return 0; 1008 } 1009 1010 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev, 1011 __be16 proto, u16 vid) 1012 { 1013 struct cpsw_priv *priv = netdev_priv(ndev); 1014 struct cpsw_common *cpsw = priv->cpsw; 1015 int ret; 1016 int i; 1017 1018 if (cpsw_is_switch_en(cpsw)) { 1019 dev_dbg(cpsw->dev, "ndo del vlan is called in switch mode\n"); 1020 return 0; 1021 } 1022 1023 if (vid == cpsw->data.default_vlan) 1024 return 0; 1025 1026 ret = pm_runtime_get_sync(cpsw->dev); 1027 if (ret < 0) { 1028 pm_runtime_put_noidle(cpsw->dev); 1029 return ret; 1030 } 1031 1032 /* reset the return code as pm_runtime_get_sync() can return 1033 * non zero values as well. 1034 */ 1035 ret = 0; 1036 for (i = 0; i < cpsw->data.slaves; i++) { 1037 if (cpsw->slaves[i].ndev && 1038 vid == cpsw->slaves[i].port_vlan) { 1039 ret = -EINVAL; 1040 goto err; 1041 } 1042 } 1043 1044 dev_dbg(priv->dev, "removing vlanid %d from vlan filter\n", vid); 1045 ret = cpsw_ale_del_vlan(cpsw->ale, vid, 0); 1046 if (ret) 1047 dev_err(priv->dev, "cpsw_ale_del_vlan() failed: ret %d\n", ret); 1048 ret = cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, 1049 HOST_PORT_NUM, ALE_VLAN, vid); 1050 if (ret) 1051 dev_err(priv->dev, "cpsw_ale_del_ucast() failed: ret %d\n", 1052 ret); 1053 ret = cpsw_ale_del_mcast(cpsw->ale, priv->ndev->broadcast, 1054 0, ALE_VLAN, vid); 1055 if (ret) 1056 dev_err(priv->dev, "cpsw_ale_del_mcast failed. ret %d\n", 1057 ret); 1058 cpsw_ale_flush_multicast(cpsw->ale, ALE_PORT_HOST, vid); 1059 ret = 0; 1060 err: 1061 pm_runtime_put(cpsw->dev); 1062 return ret; 1063 } 1064 1065 static int cpsw_ndo_get_phys_port_name(struct net_device *ndev, char *name, 1066 size_t len) 1067 { 1068 struct cpsw_priv *priv = netdev_priv(ndev); 1069 int err; 1070 1071 err = snprintf(name, len, "p%d", priv->emac_port); 1072 1073 if (err >= len) 1074 return -EINVAL; 1075 1076 return 0; 1077 } 1078 1079 #ifdef CONFIG_NET_POLL_CONTROLLER 1080 static void cpsw_ndo_poll_controller(struct net_device *ndev) 1081 { 1082 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1083 1084 cpsw_intr_disable(cpsw); 1085 cpsw_rx_interrupt(cpsw->irqs_table[0], cpsw); 1086 cpsw_tx_interrupt(cpsw->irqs_table[1], cpsw); 1087 cpsw_intr_enable(cpsw); 1088 } 1089 #endif 1090 1091 static int cpsw_ndo_xdp_xmit(struct net_device *ndev, int n, 1092 struct xdp_frame **frames, u32 flags) 1093 { 1094 struct cpsw_priv *priv = netdev_priv(ndev); 1095 struct xdp_frame *xdpf; 1096 int i, nxmit = 0; 1097 1098 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 1099 return -EINVAL; 1100 1101 for (i = 0; i < n; i++) { 1102 xdpf = frames[i]; 1103 if (xdpf->len < READ_ONCE(priv->tx_packet_min)) 1104 break; 1105 1106 if (cpsw_xdp_tx_frame(priv, xdpf, NULL, priv->emac_port)) 1107 break; 1108 nxmit++; 1109 } 1110 1111 return nxmit; 1112 } 1113 1114 static int cpsw_get_port_parent_id(struct net_device *ndev, 1115 struct netdev_phys_item_id *ppid) 1116 { 1117 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1118 1119 ppid->id_len = sizeof(cpsw->base_mac); 1120 memcpy(&ppid->id, &cpsw->base_mac, ppid->id_len); 1121 1122 return 0; 1123 } 1124 1125 static const struct net_device_ops cpsw_netdev_ops = { 1126 .ndo_open = cpsw_ndo_open, 1127 .ndo_stop = cpsw_ndo_stop, 1128 .ndo_start_xmit = cpsw_ndo_start_xmit, 1129 .ndo_set_mac_address = cpsw_ndo_set_mac_address, 1130 .ndo_do_ioctl = cpsw_ndo_ioctl, 1131 .ndo_validate_addr = eth_validate_addr, 1132 .ndo_tx_timeout = cpsw_ndo_tx_timeout, 1133 .ndo_set_rx_mode = cpsw_ndo_set_rx_mode, 1134 .ndo_set_tx_maxrate = cpsw_ndo_set_tx_maxrate, 1135 #ifdef CONFIG_NET_POLL_CONTROLLER 1136 .ndo_poll_controller = cpsw_ndo_poll_controller, 1137 #endif 1138 .ndo_vlan_rx_add_vid = cpsw_ndo_vlan_rx_add_vid, 1139 .ndo_vlan_rx_kill_vid = cpsw_ndo_vlan_rx_kill_vid, 1140 .ndo_setup_tc = cpsw_ndo_setup_tc, 1141 .ndo_get_phys_port_name = cpsw_ndo_get_phys_port_name, 1142 .ndo_bpf = cpsw_ndo_bpf, 1143 .ndo_xdp_xmit = cpsw_ndo_xdp_xmit, 1144 .ndo_get_port_parent_id = cpsw_get_port_parent_id, 1145 }; 1146 1147 static void cpsw_get_drvinfo(struct net_device *ndev, 1148 struct ethtool_drvinfo *info) 1149 { 1150 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1151 struct platform_device *pdev; 1152 1153 pdev = to_platform_device(cpsw->dev); 1154 strlcpy(info->driver, "cpsw-switch", sizeof(info->driver)); 1155 strlcpy(info->version, "2.0", sizeof(info->version)); 1156 strlcpy(info->bus_info, pdev->name, sizeof(info->bus_info)); 1157 } 1158 1159 static int cpsw_set_pauseparam(struct net_device *ndev, 1160 struct ethtool_pauseparam *pause) 1161 { 1162 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1163 struct cpsw_priv *priv = netdev_priv(ndev); 1164 int slave_no; 1165 1166 slave_no = cpsw_slave_index(cpsw, priv); 1167 if (!cpsw->slaves[slave_no].phy) 1168 return -EINVAL; 1169 1170 if (!phy_validate_pause(cpsw->slaves[slave_no].phy, pause)) 1171 return -EINVAL; 1172 1173 priv->rx_pause = pause->rx_pause ? true : false; 1174 priv->tx_pause = pause->tx_pause ? true : false; 1175 1176 phy_set_asym_pause(cpsw->slaves[slave_no].phy, 1177 priv->rx_pause, priv->tx_pause); 1178 1179 return 0; 1180 } 1181 1182 static int cpsw_set_channels(struct net_device *ndev, 1183 struct ethtool_channels *chs) 1184 { 1185 return cpsw_set_channels_common(ndev, chs, cpsw_rx_handler); 1186 } 1187 1188 static const struct ethtool_ops cpsw_ethtool_ops = { 1189 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS, 1190 .get_drvinfo = cpsw_get_drvinfo, 1191 .get_msglevel = cpsw_get_msglevel, 1192 .set_msglevel = cpsw_set_msglevel, 1193 .get_link = ethtool_op_get_link, 1194 .get_ts_info = cpsw_get_ts_info, 1195 .get_coalesce = cpsw_get_coalesce, 1196 .set_coalesce = cpsw_set_coalesce, 1197 .get_sset_count = cpsw_get_sset_count, 1198 .get_strings = cpsw_get_strings, 1199 .get_ethtool_stats = cpsw_get_ethtool_stats, 1200 .get_pauseparam = cpsw_get_pauseparam, 1201 .set_pauseparam = cpsw_set_pauseparam, 1202 .get_wol = cpsw_get_wol, 1203 .set_wol = cpsw_set_wol, 1204 .get_regs_len = cpsw_get_regs_len, 1205 .get_regs = cpsw_get_regs, 1206 .begin = cpsw_ethtool_op_begin, 1207 .complete = cpsw_ethtool_op_complete, 1208 .get_channels = cpsw_get_channels, 1209 .set_channels = cpsw_set_channels, 1210 .get_link_ksettings = cpsw_get_link_ksettings, 1211 .set_link_ksettings = cpsw_set_link_ksettings, 1212 .get_eee = cpsw_get_eee, 1213 .set_eee = cpsw_set_eee, 1214 .nway_reset = cpsw_nway_reset, 1215 .get_ringparam = cpsw_get_ringparam, 1216 .set_ringparam = cpsw_set_ringparam, 1217 }; 1218 1219 static int cpsw_probe_dt(struct cpsw_common *cpsw) 1220 { 1221 struct device_node *node = cpsw->dev->of_node, *tmp_node, *port_np; 1222 struct cpsw_platform_data *data = &cpsw->data; 1223 struct device *dev = cpsw->dev; 1224 int ret; 1225 u32 prop; 1226 1227 if (!node) 1228 return -EINVAL; 1229 1230 tmp_node = of_get_child_by_name(node, "ethernet-ports"); 1231 if (!tmp_node) 1232 return -ENOENT; 1233 data->slaves = of_get_child_count(tmp_node); 1234 if (data->slaves != CPSW_SLAVE_PORTS_NUM) { 1235 of_node_put(tmp_node); 1236 return -ENOENT; 1237 } 1238 1239 data->active_slave = 0; 1240 data->channels = CPSW_MAX_QUEUES; 1241 data->dual_emac = true; 1242 data->bd_ram_size = CPSW_BD_RAM_SIZE; 1243 data->mac_control = 0; 1244 1245 data->slave_data = devm_kcalloc(dev, CPSW_SLAVE_PORTS_NUM, 1246 sizeof(struct cpsw_slave_data), 1247 GFP_KERNEL); 1248 if (!data->slave_data) 1249 return -ENOMEM; 1250 1251 /* Populate all the child nodes here... 1252 */ 1253 ret = devm_of_platform_populate(dev); 1254 /* We do not want to force this, as in some cases may not have child */ 1255 if (ret) 1256 dev_warn(dev, "Doesn't have any child node\n"); 1257 1258 for_each_child_of_node(tmp_node, port_np) { 1259 struct cpsw_slave_data *slave_data; 1260 u32 port_id; 1261 1262 ret = of_property_read_u32(port_np, "reg", &port_id); 1263 if (ret < 0) { 1264 dev_err(dev, "%pOF error reading port_id %d\n", 1265 port_np, ret); 1266 goto err_node_put; 1267 } 1268 1269 if (!port_id || port_id > CPSW_SLAVE_PORTS_NUM) { 1270 dev_err(dev, "%pOF has invalid port_id %u\n", 1271 port_np, port_id); 1272 ret = -EINVAL; 1273 goto err_node_put; 1274 } 1275 1276 slave_data = &data->slave_data[port_id - 1]; 1277 1278 slave_data->disabled = !of_device_is_available(port_np); 1279 if (slave_data->disabled) 1280 continue; 1281 1282 slave_data->slave_node = port_np; 1283 slave_data->ifphy = devm_of_phy_get(dev, port_np, NULL); 1284 if (IS_ERR(slave_data->ifphy)) { 1285 ret = PTR_ERR(slave_data->ifphy); 1286 dev_err(dev, "%pOF: Error retrieving port phy: %d\n", 1287 port_np, ret); 1288 goto err_node_put; 1289 } 1290 1291 if (of_phy_is_fixed_link(port_np)) { 1292 ret = of_phy_register_fixed_link(port_np); 1293 if (ret) { 1294 if (ret != -EPROBE_DEFER) 1295 dev_err(dev, "%pOF failed to register fixed-link phy: %d\n", 1296 port_np, ret); 1297 goto err_node_put; 1298 } 1299 slave_data->phy_node = of_node_get(port_np); 1300 } else { 1301 slave_data->phy_node = 1302 of_parse_phandle(port_np, "phy-handle", 0); 1303 } 1304 1305 if (!slave_data->phy_node) { 1306 dev_err(dev, "%pOF no phy found\n", port_np); 1307 ret = -ENODEV; 1308 goto err_node_put; 1309 } 1310 1311 ret = of_get_phy_mode(port_np, &slave_data->phy_if); 1312 if (ret) { 1313 dev_err(dev, "%pOF read phy-mode err %d\n", 1314 port_np, ret); 1315 goto err_node_put; 1316 } 1317 1318 ret = of_get_mac_address(port_np, slave_data->mac_addr); 1319 if (ret) { 1320 ret = ti_cm_get_macid(dev, port_id - 1, 1321 slave_data->mac_addr); 1322 if (ret) 1323 goto err_node_put; 1324 } 1325 1326 if (of_property_read_u32(port_np, "ti,dual-emac-pvid", 1327 &prop)) { 1328 dev_err(dev, "%pOF Missing dual_emac_res_vlan in DT.\n", 1329 port_np); 1330 slave_data->dual_emac_res_vlan = port_id; 1331 dev_err(dev, "%pOF Using %d as Reserved VLAN\n", 1332 port_np, slave_data->dual_emac_res_vlan); 1333 } else { 1334 slave_data->dual_emac_res_vlan = prop; 1335 } 1336 } 1337 1338 of_node_put(tmp_node); 1339 return 0; 1340 1341 err_node_put: 1342 of_node_put(port_np); 1343 return ret; 1344 } 1345 1346 static void cpsw_remove_dt(struct cpsw_common *cpsw) 1347 { 1348 struct cpsw_platform_data *data = &cpsw->data; 1349 int i = 0; 1350 1351 for (i = 0; i < cpsw->data.slaves; i++) { 1352 struct cpsw_slave_data *slave_data = &data->slave_data[i]; 1353 struct device_node *port_np = slave_data->phy_node; 1354 1355 if (port_np) { 1356 if (of_phy_is_fixed_link(port_np)) 1357 of_phy_deregister_fixed_link(port_np); 1358 1359 of_node_put(port_np); 1360 } 1361 } 1362 } 1363 1364 static int cpsw_create_ports(struct cpsw_common *cpsw) 1365 { 1366 struct cpsw_platform_data *data = &cpsw->data; 1367 struct net_device *ndev, *napi_ndev = NULL; 1368 struct device *dev = cpsw->dev; 1369 struct cpsw_priv *priv; 1370 int ret = 0, i = 0; 1371 1372 for (i = 0; i < cpsw->data.slaves; i++) { 1373 struct cpsw_slave_data *slave_data = &data->slave_data[i]; 1374 1375 if (slave_data->disabled) 1376 continue; 1377 1378 ndev = devm_alloc_etherdev_mqs(dev, sizeof(struct cpsw_priv), 1379 CPSW_MAX_QUEUES, 1380 CPSW_MAX_QUEUES); 1381 if (!ndev) { 1382 dev_err(dev, "error allocating net_device\n"); 1383 return -ENOMEM; 1384 } 1385 1386 priv = netdev_priv(ndev); 1387 priv->cpsw = cpsw; 1388 priv->ndev = ndev; 1389 priv->dev = dev; 1390 priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG); 1391 priv->emac_port = i + 1; 1392 priv->tx_packet_min = CPSW_MIN_PACKET_SIZE; 1393 1394 if (is_valid_ether_addr(slave_data->mac_addr)) { 1395 ether_addr_copy(priv->mac_addr, slave_data->mac_addr); 1396 dev_info(cpsw->dev, "Detected MACID = %pM\n", 1397 priv->mac_addr); 1398 } else { 1399 eth_random_addr(slave_data->mac_addr); 1400 dev_info(cpsw->dev, "Random MACID = %pM\n", 1401 priv->mac_addr); 1402 } 1403 ether_addr_copy(ndev->dev_addr, slave_data->mac_addr); 1404 ether_addr_copy(priv->mac_addr, slave_data->mac_addr); 1405 1406 cpsw->slaves[i].ndev = ndev; 1407 1408 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | 1409 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_NETNS_LOCAL; 1410 1411 ndev->netdev_ops = &cpsw_netdev_ops; 1412 ndev->ethtool_ops = &cpsw_ethtool_ops; 1413 SET_NETDEV_DEV(ndev, dev); 1414 1415 if (!napi_ndev) { 1416 /* CPSW Host port CPDMA interface is shared between 1417 * ports and there is only one TX and one RX IRQs 1418 * available for all possible TX and RX channels 1419 * accordingly. 1420 */ 1421 netif_napi_add(ndev, &cpsw->napi_rx, 1422 cpsw->quirk_irq ? 1423 cpsw_rx_poll : cpsw_rx_mq_poll, 1424 CPSW_POLL_WEIGHT); 1425 netif_tx_napi_add(ndev, &cpsw->napi_tx, 1426 cpsw->quirk_irq ? 1427 cpsw_tx_poll : cpsw_tx_mq_poll, 1428 CPSW_POLL_WEIGHT); 1429 } 1430 1431 napi_ndev = ndev; 1432 } 1433 1434 return ret; 1435 } 1436 1437 static void cpsw_unregister_ports(struct cpsw_common *cpsw) 1438 { 1439 int i = 0; 1440 1441 for (i = 0; i < cpsw->data.slaves; i++) { 1442 if (!cpsw->slaves[i].ndev) 1443 continue; 1444 1445 unregister_netdev(cpsw->slaves[i].ndev); 1446 } 1447 } 1448 1449 static int cpsw_register_ports(struct cpsw_common *cpsw) 1450 { 1451 int ret = 0, i = 0; 1452 1453 for (i = 0; i < cpsw->data.slaves; i++) { 1454 if (!cpsw->slaves[i].ndev) 1455 continue; 1456 1457 /* register the network device */ 1458 ret = register_netdev(cpsw->slaves[i].ndev); 1459 if (ret) { 1460 dev_err(cpsw->dev, 1461 "cpsw: err registering net device%d\n", i); 1462 cpsw->slaves[i].ndev = NULL; 1463 break; 1464 } 1465 } 1466 1467 if (ret) 1468 cpsw_unregister_ports(cpsw); 1469 return ret; 1470 } 1471 1472 bool cpsw_port_dev_check(const struct net_device *ndev) 1473 { 1474 if (ndev->netdev_ops == &cpsw_netdev_ops) { 1475 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1476 1477 return !cpsw->data.dual_emac; 1478 } 1479 1480 return false; 1481 } 1482 1483 static void cpsw_port_offload_fwd_mark_update(struct cpsw_common *cpsw) 1484 { 1485 int set_val = 0; 1486 int i; 1487 1488 if (!cpsw->ale_bypass && 1489 (cpsw->br_members == (ALE_PORT_1 | ALE_PORT_2))) 1490 set_val = 1; 1491 1492 dev_dbg(cpsw->dev, "set offload_fwd_mark %d\n", set_val); 1493 1494 for (i = 0; i < cpsw->data.slaves; i++) { 1495 struct net_device *sl_ndev = cpsw->slaves[i].ndev; 1496 struct cpsw_priv *priv = netdev_priv(sl_ndev); 1497 1498 priv->offload_fwd_mark = set_val; 1499 } 1500 } 1501 1502 static int cpsw_netdevice_port_link(struct net_device *ndev, 1503 struct net_device *br_ndev) 1504 { 1505 struct cpsw_priv *priv = netdev_priv(ndev); 1506 struct cpsw_common *cpsw = priv->cpsw; 1507 1508 if (!cpsw->br_members) { 1509 cpsw->hw_bridge_dev = br_ndev; 1510 } else { 1511 /* This is adding the port to a second bridge, this is 1512 * unsupported 1513 */ 1514 if (cpsw->hw_bridge_dev != br_ndev) 1515 return -EOPNOTSUPP; 1516 } 1517 1518 cpsw->br_members |= BIT(priv->emac_port); 1519 1520 cpsw_port_offload_fwd_mark_update(cpsw); 1521 1522 return NOTIFY_DONE; 1523 } 1524 1525 static void cpsw_netdevice_port_unlink(struct net_device *ndev) 1526 { 1527 struct cpsw_priv *priv = netdev_priv(ndev); 1528 struct cpsw_common *cpsw = priv->cpsw; 1529 1530 cpsw->br_members &= ~BIT(priv->emac_port); 1531 1532 cpsw_port_offload_fwd_mark_update(cpsw); 1533 1534 if (!cpsw->br_members) 1535 cpsw->hw_bridge_dev = NULL; 1536 } 1537 1538 /* netdev notifier */ 1539 static int cpsw_netdevice_event(struct notifier_block *unused, 1540 unsigned long event, void *ptr) 1541 { 1542 struct net_device *ndev = netdev_notifier_info_to_dev(ptr); 1543 struct netdev_notifier_changeupper_info *info; 1544 int ret = NOTIFY_DONE; 1545 1546 if (!cpsw_port_dev_check(ndev)) 1547 return NOTIFY_DONE; 1548 1549 switch (event) { 1550 case NETDEV_CHANGEUPPER: 1551 info = ptr; 1552 1553 if (netif_is_bridge_master(info->upper_dev)) { 1554 if (info->linking) 1555 ret = cpsw_netdevice_port_link(ndev, 1556 info->upper_dev); 1557 else 1558 cpsw_netdevice_port_unlink(ndev); 1559 } 1560 break; 1561 default: 1562 return NOTIFY_DONE; 1563 } 1564 1565 return notifier_from_errno(ret); 1566 } 1567 1568 static struct notifier_block cpsw_netdevice_nb __read_mostly = { 1569 .notifier_call = cpsw_netdevice_event, 1570 }; 1571 1572 static int cpsw_register_notifiers(struct cpsw_common *cpsw) 1573 { 1574 int ret = 0; 1575 1576 ret = register_netdevice_notifier(&cpsw_netdevice_nb); 1577 if (ret) { 1578 dev_err(cpsw->dev, "can't register netdevice notifier\n"); 1579 return ret; 1580 } 1581 1582 ret = cpsw_switchdev_register_notifiers(cpsw); 1583 if (ret) 1584 unregister_netdevice_notifier(&cpsw_netdevice_nb); 1585 1586 return ret; 1587 } 1588 1589 static void cpsw_unregister_notifiers(struct cpsw_common *cpsw) 1590 { 1591 cpsw_switchdev_unregister_notifiers(cpsw); 1592 unregister_netdevice_notifier(&cpsw_netdevice_nb); 1593 } 1594 1595 static const struct devlink_ops cpsw_devlink_ops = { 1596 }; 1597 1598 static int cpsw_dl_switch_mode_get(struct devlink *dl, u32 id, 1599 struct devlink_param_gset_ctx *ctx) 1600 { 1601 struct cpsw_devlink *dl_priv = devlink_priv(dl); 1602 struct cpsw_common *cpsw = dl_priv->cpsw; 1603 1604 dev_dbg(cpsw->dev, "%s id:%u\n", __func__, id); 1605 1606 if (id != CPSW_DL_PARAM_SWITCH_MODE) 1607 return -EOPNOTSUPP; 1608 1609 ctx->val.vbool = !cpsw->data.dual_emac; 1610 1611 return 0; 1612 } 1613 1614 static int cpsw_dl_switch_mode_set(struct devlink *dl, u32 id, 1615 struct devlink_param_gset_ctx *ctx) 1616 { 1617 struct cpsw_devlink *dl_priv = devlink_priv(dl); 1618 struct cpsw_common *cpsw = dl_priv->cpsw; 1619 int vlan = cpsw->data.default_vlan; 1620 bool switch_en = ctx->val.vbool; 1621 bool if_running = false; 1622 int i; 1623 1624 dev_dbg(cpsw->dev, "%s id:%u\n", __func__, id); 1625 1626 if (id != CPSW_DL_PARAM_SWITCH_MODE) 1627 return -EOPNOTSUPP; 1628 1629 if (switch_en == !cpsw->data.dual_emac) 1630 return 0; 1631 1632 if (!switch_en && cpsw->br_members) { 1633 dev_err(cpsw->dev, "Remove ports from BR before disabling switch mode\n"); 1634 return -EINVAL; 1635 } 1636 1637 rtnl_lock(); 1638 1639 for (i = 0; i < cpsw->data.slaves; i++) { 1640 struct cpsw_slave *slave = &cpsw->slaves[i]; 1641 struct net_device *sl_ndev = slave->ndev; 1642 1643 if (!sl_ndev || !netif_running(sl_ndev)) 1644 continue; 1645 1646 if_running = true; 1647 } 1648 1649 if (!if_running) { 1650 /* all ndevs are down */ 1651 cpsw->data.dual_emac = !switch_en; 1652 for (i = 0; i < cpsw->data.slaves; i++) { 1653 struct cpsw_slave *slave = &cpsw->slaves[i]; 1654 struct net_device *sl_ndev = slave->ndev; 1655 1656 if (!sl_ndev) 1657 continue; 1658 1659 if (switch_en) 1660 vlan = cpsw->data.default_vlan; 1661 else 1662 vlan = slave->data->dual_emac_res_vlan; 1663 slave->port_vlan = vlan; 1664 } 1665 goto exit; 1666 } 1667 1668 if (switch_en) { 1669 dev_info(cpsw->dev, "Enable switch mode\n"); 1670 1671 /* enable bypass - no forwarding; all traffic goes to Host */ 1672 cpsw_ale_control_set(cpsw->ale, 0, ALE_BYPASS, 1); 1673 1674 /* clean up ALE table */ 1675 cpsw_ale_control_set(cpsw->ale, 0, ALE_CLEAR, 1); 1676 cpsw_ale_control_get(cpsw->ale, 0, ALE_AGEOUT); 1677 1678 cpsw_init_host_port_switch(cpsw); 1679 1680 for (i = 0; i < cpsw->data.slaves; i++) { 1681 struct cpsw_slave *slave = &cpsw->slaves[i]; 1682 struct net_device *sl_ndev = slave->ndev; 1683 struct cpsw_priv *priv; 1684 1685 if (!sl_ndev) 1686 continue; 1687 1688 priv = netdev_priv(sl_ndev); 1689 slave->port_vlan = vlan; 1690 WRITE_ONCE(priv->tx_packet_min, CPSW_MIN_PACKET_SIZE_VLAN); 1691 if (netif_running(sl_ndev)) 1692 cpsw_port_add_switch_def_ale_entries(priv, 1693 slave); 1694 } 1695 1696 cpsw_ale_control_set(cpsw->ale, 0, ALE_BYPASS, 0); 1697 cpsw->data.dual_emac = false; 1698 } else { 1699 dev_info(cpsw->dev, "Disable switch mode\n"); 1700 1701 /* enable bypass - no forwarding; all traffic goes to Host */ 1702 cpsw_ale_control_set(cpsw->ale, 0, ALE_BYPASS, 1); 1703 1704 cpsw_ale_control_set(cpsw->ale, 0, ALE_CLEAR, 1); 1705 cpsw_ale_control_get(cpsw->ale, 0, ALE_AGEOUT); 1706 1707 cpsw_init_host_port_dual_mac(cpsw); 1708 1709 for (i = 0; i < cpsw->data.slaves; i++) { 1710 struct cpsw_slave *slave = &cpsw->slaves[i]; 1711 struct net_device *sl_ndev = slave->ndev; 1712 struct cpsw_priv *priv; 1713 1714 if (!sl_ndev) 1715 continue; 1716 1717 priv = netdev_priv(slave->ndev); 1718 slave->port_vlan = slave->data->dual_emac_res_vlan; 1719 WRITE_ONCE(priv->tx_packet_min, CPSW_MIN_PACKET_SIZE); 1720 cpsw_port_add_dual_emac_def_ale_entries(priv, slave); 1721 } 1722 1723 cpsw_ale_control_set(cpsw->ale, 0, ALE_BYPASS, 0); 1724 cpsw->data.dual_emac = true; 1725 } 1726 exit: 1727 rtnl_unlock(); 1728 1729 return 0; 1730 } 1731 1732 static int cpsw_dl_ale_ctrl_get(struct devlink *dl, u32 id, 1733 struct devlink_param_gset_ctx *ctx) 1734 { 1735 struct cpsw_devlink *dl_priv = devlink_priv(dl); 1736 struct cpsw_common *cpsw = dl_priv->cpsw; 1737 1738 dev_dbg(cpsw->dev, "%s id:%u\n", __func__, id); 1739 1740 switch (id) { 1741 case CPSW_DL_PARAM_ALE_BYPASS: 1742 ctx->val.vbool = cpsw_ale_control_get(cpsw->ale, 0, ALE_BYPASS); 1743 break; 1744 default: 1745 return -EOPNOTSUPP; 1746 } 1747 1748 return 0; 1749 } 1750 1751 static int cpsw_dl_ale_ctrl_set(struct devlink *dl, u32 id, 1752 struct devlink_param_gset_ctx *ctx) 1753 { 1754 struct cpsw_devlink *dl_priv = devlink_priv(dl); 1755 struct cpsw_common *cpsw = dl_priv->cpsw; 1756 int ret = -EOPNOTSUPP; 1757 1758 dev_dbg(cpsw->dev, "%s id:%u\n", __func__, id); 1759 1760 switch (id) { 1761 case CPSW_DL_PARAM_ALE_BYPASS: 1762 ret = cpsw_ale_control_set(cpsw->ale, 0, ALE_BYPASS, 1763 ctx->val.vbool); 1764 if (!ret) { 1765 cpsw->ale_bypass = ctx->val.vbool; 1766 cpsw_port_offload_fwd_mark_update(cpsw); 1767 } 1768 break; 1769 default: 1770 return -EOPNOTSUPP; 1771 } 1772 1773 return 0; 1774 } 1775 1776 static const struct devlink_param cpsw_devlink_params[] = { 1777 DEVLINK_PARAM_DRIVER(CPSW_DL_PARAM_SWITCH_MODE, 1778 "switch_mode", DEVLINK_PARAM_TYPE_BOOL, 1779 BIT(DEVLINK_PARAM_CMODE_RUNTIME), 1780 cpsw_dl_switch_mode_get, cpsw_dl_switch_mode_set, 1781 NULL), 1782 DEVLINK_PARAM_DRIVER(CPSW_DL_PARAM_ALE_BYPASS, 1783 "ale_bypass", DEVLINK_PARAM_TYPE_BOOL, 1784 BIT(DEVLINK_PARAM_CMODE_RUNTIME), 1785 cpsw_dl_ale_ctrl_get, cpsw_dl_ale_ctrl_set, NULL), 1786 }; 1787 1788 static int cpsw_register_devlink(struct cpsw_common *cpsw) 1789 { 1790 struct device *dev = cpsw->dev; 1791 struct cpsw_devlink *dl_priv; 1792 int ret = 0; 1793 1794 cpsw->devlink = devlink_alloc(&cpsw_devlink_ops, sizeof(*dl_priv)); 1795 if (!cpsw->devlink) 1796 return -ENOMEM; 1797 1798 dl_priv = devlink_priv(cpsw->devlink); 1799 dl_priv->cpsw = cpsw; 1800 1801 ret = devlink_register(cpsw->devlink, dev); 1802 if (ret) { 1803 dev_err(dev, "DL reg fail ret:%d\n", ret); 1804 goto dl_free; 1805 } 1806 1807 ret = devlink_params_register(cpsw->devlink, cpsw_devlink_params, 1808 ARRAY_SIZE(cpsw_devlink_params)); 1809 if (ret) { 1810 dev_err(dev, "DL params reg fail ret:%d\n", ret); 1811 goto dl_unreg; 1812 } 1813 1814 devlink_params_publish(cpsw->devlink); 1815 return ret; 1816 1817 dl_unreg: 1818 devlink_unregister(cpsw->devlink); 1819 dl_free: 1820 devlink_free(cpsw->devlink); 1821 return ret; 1822 } 1823 1824 static void cpsw_unregister_devlink(struct cpsw_common *cpsw) 1825 { 1826 devlink_params_unpublish(cpsw->devlink); 1827 devlink_params_unregister(cpsw->devlink, cpsw_devlink_params, 1828 ARRAY_SIZE(cpsw_devlink_params)); 1829 devlink_unregister(cpsw->devlink); 1830 devlink_free(cpsw->devlink); 1831 } 1832 1833 static const struct of_device_id cpsw_of_mtable[] = { 1834 { .compatible = "ti,cpsw-switch"}, 1835 { .compatible = "ti,am335x-cpsw-switch"}, 1836 { .compatible = "ti,am4372-cpsw-switch"}, 1837 { .compatible = "ti,dra7-cpsw-switch"}, 1838 { /* sentinel */ }, 1839 }; 1840 MODULE_DEVICE_TABLE(of, cpsw_of_mtable); 1841 1842 static const struct soc_device_attribute cpsw_soc_devices[] = { 1843 { .family = "AM33xx", .revision = "ES1.0"}, 1844 { /* sentinel */ } 1845 }; 1846 1847 static int cpsw_probe(struct platform_device *pdev) 1848 { 1849 const struct soc_device_attribute *soc; 1850 struct device *dev = &pdev->dev; 1851 struct cpsw_common *cpsw; 1852 struct resource *ss_res; 1853 struct gpio_descs *mode; 1854 void __iomem *ss_regs; 1855 int ret = 0, ch; 1856 struct clk *clk; 1857 int irq; 1858 1859 cpsw = devm_kzalloc(dev, sizeof(struct cpsw_common), GFP_KERNEL); 1860 if (!cpsw) 1861 return -ENOMEM; 1862 1863 cpsw_slave_index = cpsw_slave_index_priv; 1864 1865 cpsw->dev = dev; 1866 1867 cpsw->slaves = devm_kcalloc(dev, 1868 CPSW_SLAVE_PORTS_NUM, 1869 sizeof(struct cpsw_slave), 1870 GFP_KERNEL); 1871 if (!cpsw->slaves) 1872 return -ENOMEM; 1873 1874 mode = devm_gpiod_get_array_optional(dev, "mode", GPIOD_OUT_LOW); 1875 if (IS_ERR(mode)) { 1876 ret = PTR_ERR(mode); 1877 dev_err(dev, "gpio request failed, ret %d\n", ret); 1878 return ret; 1879 } 1880 1881 clk = devm_clk_get(dev, "fck"); 1882 if (IS_ERR(clk)) { 1883 ret = PTR_ERR(clk); 1884 dev_err(dev, "fck is not found %d\n", ret); 1885 return ret; 1886 } 1887 cpsw->bus_freq_mhz = clk_get_rate(clk) / 1000000; 1888 1889 ss_regs = devm_platform_get_and_ioremap_resource(pdev, 0, &ss_res); 1890 if (IS_ERR(ss_regs)) { 1891 ret = PTR_ERR(ss_regs); 1892 return ret; 1893 } 1894 cpsw->regs = ss_regs; 1895 1896 irq = platform_get_irq_byname(pdev, "rx"); 1897 if (irq < 0) 1898 return irq; 1899 cpsw->irqs_table[0] = irq; 1900 1901 irq = platform_get_irq_byname(pdev, "tx"); 1902 if (irq < 0) 1903 return irq; 1904 cpsw->irqs_table[1] = irq; 1905 1906 irq = platform_get_irq_byname(pdev, "misc"); 1907 if (irq <= 0) 1908 return irq; 1909 cpsw->misc_irq = irq; 1910 1911 platform_set_drvdata(pdev, cpsw); 1912 /* This may be required here for child devices. */ 1913 pm_runtime_enable(dev); 1914 1915 /* Need to enable clocks with runtime PM api to access module 1916 * registers 1917 */ 1918 ret = pm_runtime_get_sync(dev); 1919 if (ret < 0) { 1920 pm_runtime_put_noidle(dev); 1921 pm_runtime_disable(dev); 1922 return ret; 1923 } 1924 1925 ret = cpsw_probe_dt(cpsw); 1926 if (ret) 1927 goto clean_dt_ret; 1928 1929 soc = soc_device_match(cpsw_soc_devices); 1930 if (soc) 1931 cpsw->quirk_irq = true; 1932 1933 cpsw->rx_packet_max = rx_packet_max; 1934 cpsw->descs_pool_size = descs_pool_size; 1935 eth_random_addr(cpsw->base_mac); 1936 1937 ret = cpsw_init_common(cpsw, ss_regs, ale_ageout, 1938 (u32 __force)ss_res->start + CPSW2_BD_OFFSET, 1939 descs_pool_size); 1940 if (ret) 1941 goto clean_dt_ret; 1942 1943 cpsw->wr_regs = cpsw->version == CPSW_VERSION_1 ? 1944 ss_regs + CPSW1_WR_OFFSET : 1945 ss_regs + CPSW2_WR_OFFSET; 1946 1947 ch = cpsw->quirk_irq ? 0 : 7; 1948 cpsw->txv[0].ch = cpdma_chan_create(cpsw->dma, ch, cpsw_tx_handler, 0); 1949 if (IS_ERR(cpsw->txv[0].ch)) { 1950 dev_err(dev, "error initializing tx dma channel\n"); 1951 ret = PTR_ERR(cpsw->txv[0].ch); 1952 goto clean_cpts; 1953 } 1954 1955 cpsw->rxv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_rx_handler, 1); 1956 if (IS_ERR(cpsw->rxv[0].ch)) { 1957 dev_err(dev, "error initializing rx dma channel\n"); 1958 ret = PTR_ERR(cpsw->rxv[0].ch); 1959 goto clean_cpts; 1960 } 1961 cpsw_split_res(cpsw); 1962 1963 /* setup netdevs */ 1964 ret = cpsw_create_ports(cpsw); 1965 if (ret) 1966 goto clean_unregister_netdev; 1967 1968 /* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and 1969 * MISC IRQs which are always kept disabled with this driver so 1970 * we will not request them. 1971 * 1972 * If anyone wants to implement support for those, make sure to 1973 * first request and append them to irqs_table array. 1974 */ 1975 1976 ret = devm_request_irq(dev, cpsw->irqs_table[0], cpsw_rx_interrupt, 1977 0, dev_name(dev), cpsw); 1978 if (ret < 0) { 1979 dev_err(dev, "error attaching irq (%d)\n", ret); 1980 goto clean_unregister_netdev; 1981 } 1982 1983 ret = devm_request_irq(dev, cpsw->irqs_table[1], cpsw_tx_interrupt, 1984 0, dev_name(dev), cpsw); 1985 if (ret < 0) { 1986 dev_err(dev, "error attaching irq (%d)\n", ret); 1987 goto clean_unregister_netdev; 1988 } 1989 1990 if (!cpsw->cpts) 1991 goto skip_cpts; 1992 1993 ret = devm_request_irq(dev, cpsw->misc_irq, cpsw_misc_interrupt, 1994 0, dev_name(&pdev->dev), cpsw); 1995 if (ret < 0) { 1996 dev_err(dev, "error attaching misc irq (%d)\n", ret); 1997 goto clean_unregister_netdev; 1998 } 1999 2000 /* Enable misc CPTS evnt_pend IRQ */ 2001 cpts_set_irqpoll(cpsw->cpts, false); 2002 2003 skip_cpts: 2004 ret = cpsw_register_notifiers(cpsw); 2005 if (ret) 2006 goto clean_unregister_netdev; 2007 2008 ret = cpsw_register_devlink(cpsw); 2009 if (ret) 2010 goto clean_unregister_notifiers; 2011 2012 ret = cpsw_register_ports(cpsw); 2013 if (ret) 2014 goto clean_unregister_notifiers; 2015 2016 dev_notice(dev, "initialized (regs %pa, pool size %d) hw_ver:%08X %d.%d (%d)\n", 2017 &ss_res->start, descs_pool_size, 2018 cpsw->version, CPSW_MAJOR_VERSION(cpsw->version), 2019 CPSW_MINOR_VERSION(cpsw->version), 2020 CPSW_RTL_VERSION(cpsw->version)); 2021 2022 pm_runtime_put(dev); 2023 2024 return 0; 2025 2026 clean_unregister_notifiers: 2027 cpsw_unregister_notifiers(cpsw); 2028 clean_unregister_netdev: 2029 cpsw_unregister_ports(cpsw); 2030 clean_cpts: 2031 cpts_release(cpsw->cpts); 2032 cpdma_ctlr_destroy(cpsw->dma); 2033 clean_dt_ret: 2034 cpsw_remove_dt(cpsw); 2035 pm_runtime_put_sync(dev); 2036 pm_runtime_disable(dev); 2037 return ret; 2038 } 2039 2040 static int cpsw_remove(struct platform_device *pdev) 2041 { 2042 struct cpsw_common *cpsw = platform_get_drvdata(pdev); 2043 int ret; 2044 2045 ret = pm_runtime_get_sync(&pdev->dev); 2046 if (ret < 0) { 2047 pm_runtime_put_noidle(&pdev->dev); 2048 return ret; 2049 } 2050 2051 cpsw_unregister_notifiers(cpsw); 2052 cpsw_unregister_devlink(cpsw); 2053 cpsw_unregister_ports(cpsw); 2054 2055 cpts_release(cpsw->cpts); 2056 cpdma_ctlr_destroy(cpsw->dma); 2057 cpsw_remove_dt(cpsw); 2058 pm_runtime_put_sync(&pdev->dev); 2059 pm_runtime_disable(&pdev->dev); 2060 return 0; 2061 } 2062 2063 static int __maybe_unused cpsw_suspend(struct device *dev) 2064 { 2065 struct cpsw_common *cpsw = dev_get_drvdata(dev); 2066 int i; 2067 2068 rtnl_lock(); 2069 2070 for (i = 0; i < cpsw->data.slaves; i++) { 2071 struct net_device *ndev = cpsw->slaves[i].ndev; 2072 2073 if (!(ndev && netif_running(ndev))) 2074 continue; 2075 2076 cpsw_ndo_stop(ndev); 2077 } 2078 2079 rtnl_unlock(); 2080 2081 /* Select sleep pin state */ 2082 pinctrl_pm_select_sleep_state(dev); 2083 2084 return 0; 2085 } 2086 2087 static int __maybe_unused cpsw_resume(struct device *dev) 2088 { 2089 struct cpsw_common *cpsw = dev_get_drvdata(dev); 2090 int i; 2091 2092 /* Select default pin state */ 2093 pinctrl_pm_select_default_state(dev); 2094 2095 /* shut up ASSERT_RTNL() warning in netif_set_real_num_tx/rx_queues */ 2096 rtnl_lock(); 2097 2098 for (i = 0; i < cpsw->data.slaves; i++) { 2099 struct net_device *ndev = cpsw->slaves[i].ndev; 2100 2101 if (!(ndev && netif_running(ndev))) 2102 continue; 2103 2104 cpsw_ndo_open(ndev); 2105 } 2106 2107 rtnl_unlock(); 2108 2109 return 0; 2110 } 2111 2112 static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume); 2113 2114 static struct platform_driver cpsw_driver = { 2115 .driver = { 2116 .name = "cpsw-switch", 2117 .pm = &cpsw_pm_ops, 2118 .of_match_table = cpsw_of_mtable, 2119 }, 2120 .probe = cpsw_probe, 2121 .remove = cpsw_remove, 2122 }; 2123 2124 module_platform_driver(cpsw_driver); 2125 2126 MODULE_LICENSE("GPL"); 2127 MODULE_DESCRIPTION("TI CPSW switchdev Ethernet driver"); 2128