xref: /openbmc/linux/drivers/net/ethernet/ti/cpsw_new.c (revision 0e73f1ba602d953ee8ceda5cea3a381bf212b80b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Texas Instruments Ethernet Switch Driver
4  *
5  * Copyright (C) 2019 Texas Instruments
6  */
7 
8 #include <linux/io.h>
9 #include <linux/clk.h>
10 #include <linux/platform_device.h>
11 #include <linux/timer.h>
12 #include <linux/module.h>
13 #include <linux/irqreturn.h>
14 #include <linux/interrupt.h>
15 #include <linux/if_ether.h>
16 #include <linux/etherdevice.h>
17 #include <linux/net_tstamp.h>
18 #include <linux/phy.h>
19 #include <linux/phy/phy.h>
20 #include <linux/delay.h>
21 #include <linux/pinctrl/consumer.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/gpio/consumer.h>
24 #include <linux/of.h>
25 #include <linux/of_mdio.h>
26 #include <linux/of_net.h>
27 #include <linux/of_platform.h>
28 #include <linux/if_vlan.h>
29 #include <linux/kmemleak.h>
30 #include <linux/sys_soc.h>
31 
32 #include <net/switchdev.h>
33 #include <net/page_pool/helpers.h>
34 #include <net/pkt_cls.h>
35 #include <net/devlink.h>
36 
37 #include "cpsw.h"
38 #include "cpsw_ale.h"
39 #include "cpsw_priv.h"
40 #include "cpsw_sl.h"
41 #include "cpsw_switchdev.h"
42 #include "cpts.h"
43 #include "davinci_cpdma.h"
44 
45 #include <net/pkt_sched.h>
46 
47 static int debug_level;
48 static int ale_ageout = CPSW_ALE_AGEOUT_DEFAULT;
49 static int rx_packet_max = CPSW_MAX_PACKET_SIZE;
50 static int descs_pool_size = CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT;
51 
52 struct cpsw_devlink {
53 	struct cpsw_common *cpsw;
54 };
55 
56 enum cpsw_devlink_param_id {
57 	CPSW_DEVLINK_PARAM_ID_BASE = DEVLINK_PARAM_GENERIC_ID_MAX,
58 	CPSW_DL_PARAM_SWITCH_MODE,
59 	CPSW_DL_PARAM_ALE_BYPASS,
60 };
61 
62 /* struct cpsw_common is not needed, kept here for compatibility
63  * reasons witrh the old driver
64  */
65 static int cpsw_slave_index_priv(struct cpsw_common *cpsw,
66 				 struct cpsw_priv *priv)
67 {
68 	if (priv->emac_port == HOST_PORT_NUM)
69 		return -1;
70 
71 	return priv->emac_port - 1;
72 }
73 
74 static bool cpsw_is_switch_en(struct cpsw_common *cpsw)
75 {
76 	return !cpsw->data.dual_emac;
77 }
78 
79 static void cpsw_set_promiscious(struct net_device *ndev, bool enable)
80 {
81 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
82 	bool enable_uni = false;
83 	int i;
84 
85 	if (cpsw_is_switch_en(cpsw))
86 		return;
87 
88 	/* Enabling promiscuous mode for one interface will be
89 	 * common for both the interface as the interface shares
90 	 * the same hardware resource.
91 	 */
92 	for (i = 0; i < cpsw->data.slaves; i++)
93 		if (cpsw->slaves[i].ndev &&
94 		    (cpsw->slaves[i].ndev->flags & IFF_PROMISC))
95 			enable_uni = true;
96 
97 	if (!enable && enable_uni) {
98 		enable = enable_uni;
99 		dev_dbg(cpsw->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n");
100 	}
101 
102 	if (enable) {
103 		/* Enable unknown unicast, reg/unreg mcast */
104 		cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM,
105 				     ALE_P0_UNI_FLOOD, 1);
106 
107 		dev_dbg(cpsw->dev, "promiscuity enabled\n");
108 	} else {
109 		/* Disable unknown unicast */
110 		cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM,
111 				     ALE_P0_UNI_FLOOD, 0);
112 		dev_dbg(cpsw->dev, "promiscuity disabled\n");
113 	}
114 }
115 
116 /**
117  * cpsw_set_mc - adds multicast entry to the table if it's not added or deletes
118  * if it's not deleted
119  * @ndev: device to sync
120  * @addr: address to be added or deleted
121  * @vid: vlan id, if vid < 0 set/unset address for real device
122  * @add: add address if the flag is set or remove otherwise
123  */
124 static int cpsw_set_mc(struct net_device *ndev, const u8 *addr,
125 		       int vid, int add)
126 {
127 	struct cpsw_priv *priv = netdev_priv(ndev);
128 	struct cpsw_common *cpsw = priv->cpsw;
129 	int mask, flags, ret, slave_no;
130 
131 	slave_no = cpsw_slave_index(cpsw, priv);
132 	if (vid < 0)
133 		vid = cpsw->slaves[slave_no].port_vlan;
134 
135 	mask =  ALE_PORT_HOST;
136 	flags = vid ? ALE_VLAN : 0;
137 
138 	if (add)
139 		ret = cpsw_ale_add_mcast(cpsw->ale, addr, mask, flags, vid, 0);
140 	else
141 		ret = cpsw_ale_del_mcast(cpsw->ale, addr, 0, flags, vid);
142 
143 	return ret;
144 }
145 
146 static int cpsw_update_vlan_mc(struct net_device *vdev, int vid, void *ctx)
147 {
148 	struct addr_sync_ctx *sync_ctx = ctx;
149 	struct netdev_hw_addr *ha;
150 	int found = 0, ret = 0;
151 
152 	if (!vdev || !(vdev->flags & IFF_UP))
153 		return 0;
154 
155 	/* vlan address is relevant if its sync_cnt != 0 */
156 	netdev_for_each_mc_addr(ha, vdev) {
157 		if (ether_addr_equal(ha->addr, sync_ctx->addr)) {
158 			found = ha->sync_cnt;
159 			break;
160 		}
161 	}
162 
163 	if (found)
164 		sync_ctx->consumed++;
165 
166 	if (sync_ctx->flush) {
167 		if (!found)
168 			cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 0);
169 		return 0;
170 	}
171 
172 	if (found)
173 		ret = cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 1);
174 
175 	return ret;
176 }
177 
178 static int cpsw_add_mc_addr(struct net_device *ndev, const u8 *addr, int num)
179 {
180 	struct addr_sync_ctx sync_ctx;
181 	int ret;
182 
183 	sync_ctx.consumed = 0;
184 	sync_ctx.addr = addr;
185 	sync_ctx.ndev = ndev;
186 	sync_ctx.flush = 0;
187 
188 	ret = vlan_for_each(ndev, cpsw_update_vlan_mc, &sync_ctx);
189 	if (sync_ctx.consumed < num && !ret)
190 		ret = cpsw_set_mc(ndev, addr, -1, 1);
191 
192 	return ret;
193 }
194 
195 static int cpsw_del_mc_addr(struct net_device *ndev, const u8 *addr, int num)
196 {
197 	struct addr_sync_ctx sync_ctx;
198 
199 	sync_ctx.consumed = 0;
200 	sync_ctx.addr = addr;
201 	sync_ctx.ndev = ndev;
202 	sync_ctx.flush = 1;
203 
204 	vlan_for_each(ndev, cpsw_update_vlan_mc, &sync_ctx);
205 	if (sync_ctx.consumed == num)
206 		cpsw_set_mc(ndev, addr, -1, 0);
207 
208 	return 0;
209 }
210 
211 static int cpsw_purge_vlan_mc(struct net_device *vdev, int vid, void *ctx)
212 {
213 	struct addr_sync_ctx *sync_ctx = ctx;
214 	struct netdev_hw_addr *ha;
215 	int found = 0;
216 
217 	if (!vdev || !(vdev->flags & IFF_UP))
218 		return 0;
219 
220 	/* vlan address is relevant if its sync_cnt != 0 */
221 	netdev_for_each_mc_addr(ha, vdev) {
222 		if (ether_addr_equal(ha->addr, sync_ctx->addr)) {
223 			found = ha->sync_cnt;
224 			break;
225 		}
226 	}
227 
228 	if (!found)
229 		return 0;
230 
231 	sync_ctx->consumed++;
232 	cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 0);
233 	return 0;
234 }
235 
236 static int cpsw_purge_all_mc(struct net_device *ndev, const u8 *addr, int num)
237 {
238 	struct addr_sync_ctx sync_ctx;
239 
240 	sync_ctx.addr = addr;
241 	sync_ctx.ndev = ndev;
242 	sync_ctx.consumed = 0;
243 
244 	vlan_for_each(ndev, cpsw_purge_vlan_mc, &sync_ctx);
245 	if (sync_ctx.consumed < num)
246 		cpsw_set_mc(ndev, addr, -1, 0);
247 
248 	return 0;
249 }
250 
251 static void cpsw_ndo_set_rx_mode(struct net_device *ndev)
252 {
253 	struct cpsw_priv *priv = netdev_priv(ndev);
254 	struct cpsw_common *cpsw = priv->cpsw;
255 
256 	if (ndev->flags & IFF_PROMISC) {
257 		/* Enable promiscuous mode */
258 		cpsw_set_promiscious(ndev, true);
259 		cpsw_ale_set_allmulti(cpsw->ale, IFF_ALLMULTI, priv->emac_port);
260 		return;
261 	}
262 
263 	/* Disable promiscuous mode */
264 	cpsw_set_promiscious(ndev, false);
265 
266 	/* Restore allmulti on vlans if necessary */
267 	cpsw_ale_set_allmulti(cpsw->ale,
268 			      ndev->flags & IFF_ALLMULTI, priv->emac_port);
269 
270 	/* add/remove mcast address either for real netdev or for vlan */
271 	__hw_addr_ref_sync_dev(&ndev->mc, ndev, cpsw_add_mc_addr,
272 			       cpsw_del_mc_addr);
273 }
274 
275 static unsigned int cpsw_rxbuf_total_len(unsigned int len)
276 {
277 	len += CPSW_HEADROOM_NA;
278 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
279 
280 	return SKB_DATA_ALIGN(len);
281 }
282 
283 static void cpsw_rx_handler(void *token, int len, int status)
284 {
285 	struct page *new_page, *page = token;
286 	void *pa = page_address(page);
287 	int headroom = CPSW_HEADROOM_NA;
288 	struct cpsw_meta_xdp *xmeta;
289 	struct cpsw_common *cpsw;
290 	struct net_device *ndev;
291 	int port, ch, pkt_size;
292 	struct cpsw_priv *priv;
293 	struct page_pool *pool;
294 	struct sk_buff *skb;
295 	struct xdp_buff xdp;
296 	int ret = 0;
297 	dma_addr_t dma;
298 
299 	xmeta = pa + CPSW_XMETA_OFFSET;
300 	cpsw = ndev_to_cpsw(xmeta->ndev);
301 	ndev = xmeta->ndev;
302 	pkt_size = cpsw->rx_packet_max;
303 	ch = xmeta->ch;
304 
305 	if (status >= 0) {
306 		port = CPDMA_RX_SOURCE_PORT(status);
307 		if (port)
308 			ndev = cpsw->slaves[--port].ndev;
309 	}
310 
311 	priv = netdev_priv(ndev);
312 	pool = cpsw->page_pool[ch];
313 
314 	if (unlikely(status < 0) || unlikely(!netif_running(ndev))) {
315 		/* In dual emac mode check for all interfaces */
316 		if (cpsw->usage_count && status >= 0) {
317 			/* The packet received is for the interface which
318 			 * is already down and the other interface is up
319 			 * and running, instead of freeing which results
320 			 * in reducing of the number of rx descriptor in
321 			 * DMA engine, requeue page back to cpdma.
322 			 */
323 			new_page = page;
324 			goto requeue;
325 		}
326 
327 		/* the interface is going down, pages are purged */
328 		page_pool_recycle_direct(pool, page);
329 		return;
330 	}
331 
332 	new_page = page_pool_dev_alloc_pages(pool);
333 	if (unlikely(!new_page)) {
334 		new_page = page;
335 		ndev->stats.rx_dropped++;
336 		goto requeue;
337 	}
338 
339 	if (priv->xdp_prog) {
340 		int size = len;
341 
342 		xdp_init_buff(&xdp, PAGE_SIZE, &priv->xdp_rxq[ch]);
343 		if (status & CPDMA_RX_VLAN_ENCAP) {
344 			headroom += CPSW_RX_VLAN_ENCAP_HDR_SIZE;
345 			size -= CPSW_RX_VLAN_ENCAP_HDR_SIZE;
346 		}
347 
348 		xdp_prepare_buff(&xdp, pa, headroom, size, false);
349 
350 		ret = cpsw_run_xdp(priv, ch, &xdp, page, priv->emac_port, &len);
351 		if (ret != CPSW_XDP_PASS)
352 			goto requeue;
353 
354 		headroom = xdp.data - xdp.data_hard_start;
355 
356 		/* XDP prog can modify vlan tag, so can't use encap header */
357 		status &= ~CPDMA_RX_VLAN_ENCAP;
358 	}
359 
360 	/* pass skb to netstack if no XDP prog or returned XDP_PASS */
361 	skb = build_skb(pa, cpsw_rxbuf_total_len(pkt_size));
362 	if (!skb) {
363 		ndev->stats.rx_dropped++;
364 		page_pool_recycle_direct(pool, page);
365 		goto requeue;
366 	}
367 
368 	skb->offload_fwd_mark = priv->offload_fwd_mark;
369 	skb_reserve(skb, headroom);
370 	skb_put(skb, len);
371 	skb->dev = ndev;
372 	if (status & CPDMA_RX_VLAN_ENCAP)
373 		cpsw_rx_vlan_encap(skb);
374 	if (priv->rx_ts_enabled)
375 		cpts_rx_timestamp(cpsw->cpts, skb);
376 	skb->protocol = eth_type_trans(skb, ndev);
377 
378 	/* mark skb for recycling */
379 	skb_mark_for_recycle(skb);
380 	netif_receive_skb(skb);
381 
382 	ndev->stats.rx_bytes += len;
383 	ndev->stats.rx_packets++;
384 
385 requeue:
386 	xmeta = page_address(new_page) + CPSW_XMETA_OFFSET;
387 	xmeta->ndev = ndev;
388 	xmeta->ch = ch;
389 
390 	dma = page_pool_get_dma_addr(new_page) + CPSW_HEADROOM_NA;
391 	ret = cpdma_chan_submit_mapped(cpsw->rxv[ch].ch, new_page, dma,
392 				       pkt_size, 0);
393 	if (ret < 0) {
394 		WARN_ON(ret == -ENOMEM);
395 		page_pool_recycle_direct(pool, new_page);
396 	}
397 }
398 
399 static int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv,
400 				   unsigned short vid)
401 {
402 	struct cpsw_common *cpsw = priv->cpsw;
403 	int unreg_mcast_mask = 0;
404 	int mcast_mask;
405 	u32 port_mask;
406 	int ret;
407 
408 	port_mask = (1 << priv->emac_port) | ALE_PORT_HOST;
409 
410 	mcast_mask = ALE_PORT_HOST;
411 	if (priv->ndev->flags & IFF_ALLMULTI)
412 		unreg_mcast_mask = mcast_mask;
413 
414 	ret = cpsw_ale_add_vlan(cpsw->ale, vid, port_mask, 0, port_mask,
415 				unreg_mcast_mask);
416 	if (ret != 0)
417 		return ret;
418 
419 	ret = cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
420 				 HOST_PORT_NUM, ALE_VLAN, vid);
421 	if (ret != 0)
422 		goto clean_vid;
423 
424 	ret = cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
425 				 mcast_mask, ALE_VLAN, vid, 0);
426 	if (ret != 0)
427 		goto clean_vlan_ucast;
428 	return 0;
429 
430 clean_vlan_ucast:
431 	cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
432 			   HOST_PORT_NUM, ALE_VLAN, vid);
433 clean_vid:
434 	cpsw_ale_del_vlan(cpsw->ale, vid, 0);
435 	return ret;
436 }
437 
438 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
439 				    __be16 proto, u16 vid)
440 {
441 	struct cpsw_priv *priv = netdev_priv(ndev);
442 	struct cpsw_common *cpsw = priv->cpsw;
443 	int ret, i;
444 
445 	if (cpsw_is_switch_en(cpsw)) {
446 		dev_dbg(cpsw->dev, ".ndo_vlan_rx_add_vid called in switch mode\n");
447 		return 0;
448 	}
449 
450 	if (vid == cpsw->data.default_vlan)
451 		return 0;
452 
453 	ret = pm_runtime_resume_and_get(cpsw->dev);
454 	if (ret < 0)
455 		return ret;
456 
457 	/* In dual EMAC, reserved VLAN id should not be used for
458 	 * creating VLAN interfaces as this can break the dual
459 	 * EMAC port separation
460 	 */
461 	for (i = 0; i < cpsw->data.slaves; i++) {
462 		if (cpsw->slaves[i].ndev &&
463 		    vid == cpsw->slaves[i].port_vlan) {
464 			ret = -EINVAL;
465 			goto err;
466 		}
467 	}
468 
469 	dev_dbg(priv->dev, "Adding vlanid %d to vlan filter\n", vid);
470 	ret = cpsw_add_vlan_ale_entry(priv, vid);
471 err:
472 	pm_runtime_put(cpsw->dev);
473 	return ret;
474 }
475 
476 static int cpsw_restore_vlans(struct net_device *vdev, int vid, void *arg)
477 {
478 	struct cpsw_priv *priv = arg;
479 
480 	if (!vdev || !vid)
481 		return 0;
482 
483 	cpsw_ndo_vlan_rx_add_vid(priv->ndev, 0, vid);
484 	return 0;
485 }
486 
487 /* restore resources after port reset */
488 static void cpsw_restore(struct cpsw_priv *priv)
489 {
490 	struct cpsw_common *cpsw = priv->cpsw;
491 
492 	/* restore vlan configurations */
493 	vlan_for_each(priv->ndev, cpsw_restore_vlans, priv);
494 
495 	/* restore MQPRIO offload */
496 	cpsw_mqprio_resume(&cpsw->slaves[priv->emac_port - 1], priv);
497 
498 	/* restore CBS offload */
499 	cpsw_cbs_resume(&cpsw->slaves[priv->emac_port - 1], priv);
500 
501 	cpsw_qos_clsflower_resume(priv);
502 }
503 
504 static void cpsw_init_stp_ale_entry(struct cpsw_common *cpsw)
505 {
506 	static const char stpa[] = {0x01, 0x80, 0xc2, 0x0, 0x0, 0x0};
507 
508 	cpsw_ale_add_mcast(cpsw->ale, stpa,
509 			   ALE_PORT_HOST, ALE_SUPER, 0,
510 			   ALE_MCAST_BLOCK_LEARN_FWD);
511 }
512 
513 static void cpsw_init_host_port_switch(struct cpsw_common *cpsw)
514 {
515 	int vlan = cpsw->data.default_vlan;
516 
517 	writel(CPSW_FIFO_NORMAL_MODE, &cpsw->host_port_regs->tx_in_ctl);
518 
519 	writel(vlan, &cpsw->host_port_regs->port_vlan);
520 
521 	cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS,
522 			  ALE_ALL_PORTS, ALE_ALL_PORTS,
523 			  ALE_PORT_1 | ALE_PORT_2);
524 
525 	cpsw_init_stp_ale_entry(cpsw);
526 
527 	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_P0_UNI_FLOOD, 1);
528 	dev_dbg(cpsw->dev, "Set P0_UNI_FLOOD\n");
529 	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_PORT_NOLEARN, 0);
530 }
531 
532 static void cpsw_init_host_port_dual_mac(struct cpsw_common *cpsw)
533 {
534 	int vlan = cpsw->data.default_vlan;
535 
536 	writel(CPSW_FIFO_DUAL_MAC_MODE, &cpsw->host_port_regs->tx_in_ctl);
537 
538 	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_P0_UNI_FLOOD, 0);
539 	dev_dbg(cpsw->dev, "unset P0_UNI_FLOOD\n");
540 
541 	writel(vlan, &cpsw->host_port_regs->port_vlan);
542 
543 	cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0);
544 	/* learning make no sense in dual_mac mode */
545 	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_PORT_NOLEARN, 1);
546 }
547 
548 static void cpsw_init_host_port(struct cpsw_priv *priv)
549 {
550 	struct cpsw_common *cpsw = priv->cpsw;
551 	u32 control_reg;
552 
553 	/* soft reset the controller and initialize ale */
554 	soft_reset("cpsw", &cpsw->regs->soft_reset);
555 	cpsw_ale_start(cpsw->ale);
556 
557 	/* switch to vlan unaware mode */
558 	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_VLAN_AWARE,
559 			     CPSW_ALE_VLAN_AWARE);
560 	control_reg = readl(&cpsw->regs->control);
561 	control_reg |= CPSW_VLAN_AWARE | CPSW_RX_VLAN_ENCAP;
562 	writel(control_reg, &cpsw->regs->control);
563 
564 	/* setup host port priority mapping */
565 	writel_relaxed(CPDMA_TX_PRIORITY_MAP,
566 		       &cpsw->host_port_regs->cpdma_tx_pri_map);
567 	writel_relaxed(0, &cpsw->host_port_regs->cpdma_rx_chan_map);
568 
569 	/* disable priority elevation */
570 	writel_relaxed(0, &cpsw->regs->ptype);
571 
572 	/* enable statistics collection only on all ports */
573 	writel_relaxed(0x7, &cpsw->regs->stat_port_en);
574 
575 	/* Enable internal fifo flow control */
576 	writel(0x7, &cpsw->regs->flow_control);
577 
578 	if (cpsw_is_switch_en(cpsw))
579 		cpsw_init_host_port_switch(cpsw);
580 	else
581 		cpsw_init_host_port_dual_mac(cpsw);
582 
583 	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM,
584 			     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
585 }
586 
587 static void cpsw_port_add_dual_emac_def_ale_entries(struct cpsw_priv *priv,
588 						    struct cpsw_slave *slave)
589 {
590 	u32 port_mask = 1 << priv->emac_port | ALE_PORT_HOST;
591 	struct cpsw_common *cpsw = priv->cpsw;
592 	u32 reg;
593 
594 	reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN :
595 	       CPSW2_PORT_VLAN;
596 	slave_write(slave, slave->port_vlan, reg);
597 
598 	cpsw_ale_add_vlan(cpsw->ale, slave->port_vlan, port_mask,
599 			  port_mask, port_mask, 0);
600 	cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
601 			   ALE_PORT_HOST, ALE_VLAN, slave->port_vlan,
602 			   ALE_MCAST_FWD);
603 	cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
604 			   HOST_PORT_NUM, ALE_VLAN |
605 			   ALE_SECURE, slave->port_vlan);
606 	cpsw_ale_control_set(cpsw->ale, priv->emac_port,
607 			     ALE_PORT_DROP_UNKNOWN_VLAN, 1);
608 	/* learning make no sense in dual_mac mode */
609 	cpsw_ale_control_set(cpsw->ale, priv->emac_port,
610 			     ALE_PORT_NOLEARN, 1);
611 }
612 
613 static void cpsw_port_add_switch_def_ale_entries(struct cpsw_priv *priv,
614 						 struct cpsw_slave *slave)
615 {
616 	u32 port_mask = 1 << priv->emac_port | ALE_PORT_HOST;
617 	struct cpsw_common *cpsw = priv->cpsw;
618 	u32 reg;
619 
620 	cpsw_ale_control_set(cpsw->ale, priv->emac_port,
621 			     ALE_PORT_DROP_UNKNOWN_VLAN, 0);
622 	cpsw_ale_control_set(cpsw->ale, priv->emac_port,
623 			     ALE_PORT_NOLEARN, 0);
624 	/* disabling SA_UPDATE required to make stp work, without this setting
625 	 * Host MAC addresses will jump between ports.
626 	 * As per TRM MAC address can be defined as unicast supervisory (super)
627 	 * by setting both (ALE_BLOCKED | ALE_SECURE) which should prevent
628 	 * SA_UPDATE, but HW seems works incorrectly and setting ALE_SECURE
629 	 * causes STP packets to be dropped due to ingress filter
630 	 *	if (source address found) and (secure) and
631 	 *	   (receive port number != port_number))
632 	 *	   then discard the packet
633 	 */
634 	cpsw_ale_control_set(cpsw->ale, priv->emac_port,
635 			     ALE_PORT_NO_SA_UPDATE, 1);
636 
637 	cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
638 			   port_mask, ALE_VLAN, slave->port_vlan,
639 			   ALE_MCAST_FWD_2);
640 	cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
641 			   HOST_PORT_NUM, ALE_VLAN, slave->port_vlan);
642 
643 	reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN :
644 	       CPSW2_PORT_VLAN;
645 	slave_write(slave, slave->port_vlan, reg);
646 }
647 
648 static void cpsw_adjust_link(struct net_device *ndev)
649 {
650 	struct cpsw_priv *priv = netdev_priv(ndev);
651 	struct cpsw_common *cpsw = priv->cpsw;
652 	struct cpsw_slave *slave;
653 	struct phy_device *phy;
654 	u32 mac_control = 0;
655 
656 	slave = &cpsw->slaves[priv->emac_port - 1];
657 	phy = slave->phy;
658 
659 	if (!phy)
660 		return;
661 
662 	if (phy->link) {
663 		mac_control = CPSW_SL_CTL_GMII_EN;
664 
665 		if (phy->speed == 1000)
666 			mac_control |= CPSW_SL_CTL_GIG;
667 		if (phy->duplex)
668 			mac_control |= CPSW_SL_CTL_FULLDUPLEX;
669 
670 		/* set speed_in input in case RMII mode is used in 100Mbps */
671 		if (phy->speed == 100)
672 			mac_control |= CPSW_SL_CTL_IFCTL_A;
673 		/* in band mode only works in 10Mbps RGMII mode */
674 		else if ((phy->speed == 10) && phy_interface_is_rgmii(phy))
675 			mac_control |= CPSW_SL_CTL_EXT_EN; /* In Band mode */
676 
677 		if (priv->rx_pause)
678 			mac_control |= CPSW_SL_CTL_RX_FLOW_EN;
679 
680 		if (priv->tx_pause)
681 			mac_control |= CPSW_SL_CTL_TX_FLOW_EN;
682 
683 		if (mac_control != slave->mac_control)
684 			cpsw_sl_ctl_set(slave->mac_sl, mac_control);
685 
686 		/* enable forwarding */
687 		cpsw_ale_control_set(cpsw->ale, priv->emac_port,
688 				     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
689 
690 		netif_tx_wake_all_queues(ndev);
691 
692 		if (priv->shp_cfg_speed &&
693 		    priv->shp_cfg_speed != slave->phy->speed &&
694 		    !cpsw_shp_is_off(priv))
695 			dev_warn(priv->dev, "Speed was changed, CBS shaper speeds are changed!");
696 	} else {
697 		netif_tx_stop_all_queues(ndev);
698 
699 		mac_control = 0;
700 		/* disable forwarding */
701 		cpsw_ale_control_set(cpsw->ale, priv->emac_port,
702 				     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
703 
704 		cpsw_sl_wait_for_idle(slave->mac_sl, 100);
705 
706 		cpsw_sl_ctl_reset(slave->mac_sl);
707 	}
708 
709 	if (mac_control != slave->mac_control)
710 		phy_print_status(phy);
711 
712 	slave->mac_control = mac_control;
713 
714 	if (phy->link && cpsw_need_resplit(cpsw))
715 		cpsw_split_res(cpsw);
716 }
717 
718 static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv)
719 {
720 	struct cpsw_common *cpsw = priv->cpsw;
721 	struct phy_device *phy;
722 
723 	cpsw_sl_reset(slave->mac_sl, 100);
724 	cpsw_sl_ctl_reset(slave->mac_sl);
725 
726 	/* setup priority mapping */
727 	cpsw_sl_reg_write(slave->mac_sl, CPSW_SL_RX_PRI_MAP,
728 			  RX_PRIORITY_MAPPING);
729 
730 	switch (cpsw->version) {
731 	case CPSW_VERSION_1:
732 		slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP);
733 		/* Increase RX FIFO size to 5 for supporting fullduplex
734 		 * flow control mode
735 		 */
736 		slave_write(slave,
737 			    (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
738 			    CPSW_MAX_BLKS_RX, CPSW1_MAX_BLKS);
739 		break;
740 	case CPSW_VERSION_2:
741 	case CPSW_VERSION_3:
742 	case CPSW_VERSION_4:
743 		slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP);
744 		/* Increase RX FIFO size to 5 for supporting fullduplex
745 		 * flow control mode
746 		 */
747 		slave_write(slave,
748 			    (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
749 			    CPSW_MAX_BLKS_RX, CPSW2_MAX_BLKS);
750 		break;
751 	}
752 
753 	/* setup max packet size, and mac address */
754 	cpsw_sl_reg_write(slave->mac_sl, CPSW_SL_RX_MAXLEN,
755 			  cpsw->rx_packet_max);
756 	cpsw_set_slave_mac(slave, priv);
757 
758 	slave->mac_control = 0;	/* no link yet */
759 
760 	if (cpsw_is_switch_en(cpsw))
761 		cpsw_port_add_switch_def_ale_entries(priv, slave);
762 	else
763 		cpsw_port_add_dual_emac_def_ale_entries(priv, slave);
764 
765 	if (!slave->data->phy_node)
766 		dev_err(priv->dev, "no phy found on slave %d\n",
767 			slave->slave_num);
768 	phy = of_phy_connect(priv->ndev, slave->data->phy_node,
769 			     &cpsw_adjust_link, 0, slave->data->phy_if);
770 	if (!phy) {
771 		dev_err(priv->dev, "phy \"%pOF\" not found on slave %d\n",
772 			slave->data->phy_node,
773 			slave->slave_num);
774 		return;
775 	}
776 	slave->phy = phy;
777 
778 	phy_attached_info(slave->phy);
779 
780 	phy_start(slave->phy);
781 
782 	/* Configure GMII_SEL register */
783 	phy_set_mode_ext(slave->data->ifphy, PHY_MODE_ETHERNET,
784 			 slave->data->phy_if);
785 }
786 
787 static int cpsw_ndo_stop(struct net_device *ndev)
788 {
789 	struct cpsw_priv *priv = netdev_priv(ndev);
790 	struct cpsw_common *cpsw = priv->cpsw;
791 	struct cpsw_slave *slave;
792 
793 	cpsw_info(priv, ifdown, "shutting down ndev\n");
794 	slave = &cpsw->slaves[priv->emac_port - 1];
795 	if (slave->phy)
796 		phy_stop(slave->phy);
797 
798 	netif_tx_stop_all_queues(priv->ndev);
799 
800 	if (slave->phy) {
801 		phy_disconnect(slave->phy);
802 		slave->phy = NULL;
803 	}
804 
805 	__hw_addr_ref_unsync_dev(&ndev->mc, ndev, cpsw_purge_all_mc);
806 
807 	if (cpsw->usage_count <= 1) {
808 		napi_disable(&cpsw->napi_rx);
809 		napi_disable(&cpsw->napi_tx);
810 		cpts_unregister(cpsw->cpts);
811 		cpsw_intr_disable(cpsw);
812 		cpdma_ctlr_stop(cpsw->dma);
813 		cpsw_ale_stop(cpsw->ale);
814 		cpsw_destroy_xdp_rxqs(cpsw);
815 	}
816 
817 	if (cpsw_need_resplit(cpsw))
818 		cpsw_split_res(cpsw);
819 
820 	cpsw->usage_count--;
821 	pm_runtime_put_sync(cpsw->dev);
822 	return 0;
823 }
824 
825 static int cpsw_ndo_open(struct net_device *ndev)
826 {
827 	struct cpsw_priv *priv = netdev_priv(ndev);
828 	struct cpsw_common *cpsw = priv->cpsw;
829 	int ret;
830 
831 	dev_info(priv->dev, "starting ndev. mode: %s\n",
832 		 cpsw_is_switch_en(cpsw) ? "switch" : "dual_mac");
833 	ret = pm_runtime_resume_and_get(cpsw->dev);
834 	if (ret < 0)
835 		return ret;
836 
837 	/* Notify the stack of the actual queue counts. */
838 	ret = netif_set_real_num_tx_queues(ndev, cpsw->tx_ch_num);
839 	if (ret) {
840 		dev_err(priv->dev, "cannot set real number of tx queues\n");
841 		goto pm_cleanup;
842 	}
843 
844 	ret = netif_set_real_num_rx_queues(ndev, cpsw->rx_ch_num);
845 	if (ret) {
846 		dev_err(priv->dev, "cannot set real number of rx queues\n");
847 		goto pm_cleanup;
848 	}
849 
850 	/* Initialize host and slave ports */
851 	if (!cpsw->usage_count)
852 		cpsw_init_host_port(priv);
853 	cpsw_slave_open(&cpsw->slaves[priv->emac_port - 1], priv);
854 
855 	/* initialize shared resources for every ndev */
856 	if (!cpsw->usage_count) {
857 		/* create rxqs for both infs in dual mac as they use same pool
858 		 * and must be destroyed together when no users.
859 		 */
860 		ret = cpsw_create_xdp_rxqs(cpsw);
861 		if (ret < 0)
862 			goto err_cleanup;
863 
864 		ret = cpsw_fill_rx_channels(priv);
865 		if (ret < 0)
866 			goto err_cleanup;
867 
868 		if (cpsw->cpts) {
869 			if (cpts_register(cpsw->cpts))
870 				dev_err(priv->dev, "error registering cpts device\n");
871 			else
872 				writel(0x10, &cpsw->wr_regs->misc_en);
873 		}
874 
875 		napi_enable(&cpsw->napi_rx);
876 		napi_enable(&cpsw->napi_tx);
877 
878 		if (cpsw->tx_irq_disabled) {
879 			cpsw->tx_irq_disabled = false;
880 			enable_irq(cpsw->irqs_table[1]);
881 		}
882 
883 		if (cpsw->rx_irq_disabled) {
884 			cpsw->rx_irq_disabled = false;
885 			enable_irq(cpsw->irqs_table[0]);
886 		}
887 	}
888 
889 	cpsw_restore(priv);
890 
891 	/* Enable Interrupt pacing if configured */
892 	if (cpsw->coal_intvl != 0) {
893 		struct ethtool_coalesce coal;
894 
895 		coal.rx_coalesce_usecs = cpsw->coal_intvl;
896 		cpsw_set_coalesce(ndev, &coal, NULL, NULL);
897 	}
898 
899 	cpdma_ctlr_start(cpsw->dma);
900 	cpsw_intr_enable(cpsw);
901 	cpsw->usage_count++;
902 
903 	return 0;
904 
905 err_cleanup:
906 	cpsw_ndo_stop(ndev);
907 
908 pm_cleanup:
909 	pm_runtime_put_sync(cpsw->dev);
910 	return ret;
911 }
912 
913 static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb,
914 				       struct net_device *ndev)
915 {
916 	struct cpsw_priv *priv = netdev_priv(ndev);
917 	struct cpsw_common *cpsw = priv->cpsw;
918 	struct cpts *cpts = cpsw->cpts;
919 	struct netdev_queue *txq;
920 	struct cpdma_chan *txch;
921 	int ret, q_idx;
922 
923 	if (skb_put_padto(skb, READ_ONCE(priv->tx_packet_min))) {
924 		cpsw_err(priv, tx_err, "packet pad failed\n");
925 		ndev->stats.tx_dropped++;
926 		return NET_XMIT_DROP;
927 	}
928 
929 	if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
930 	    priv->tx_ts_enabled && cpts_can_timestamp(cpts, skb))
931 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
932 
933 	q_idx = skb_get_queue_mapping(skb);
934 	if (q_idx >= cpsw->tx_ch_num)
935 		q_idx = q_idx % cpsw->tx_ch_num;
936 
937 	txch = cpsw->txv[q_idx].ch;
938 	txq = netdev_get_tx_queue(ndev, q_idx);
939 	skb_tx_timestamp(skb);
940 	ret = cpdma_chan_submit(txch, skb, skb->data, skb->len,
941 				priv->emac_port);
942 	if (unlikely(ret != 0)) {
943 		cpsw_err(priv, tx_err, "desc submit failed\n");
944 		goto fail;
945 	}
946 
947 	/* If there is no more tx desc left free then we need to
948 	 * tell the kernel to stop sending us tx frames.
949 	 */
950 	if (unlikely(!cpdma_check_free_tx_desc(txch))) {
951 		netif_tx_stop_queue(txq);
952 
953 		/* Barrier, so that stop_queue visible to other cpus */
954 		smp_mb__after_atomic();
955 
956 		if (cpdma_check_free_tx_desc(txch))
957 			netif_tx_wake_queue(txq);
958 	}
959 
960 	return NETDEV_TX_OK;
961 fail:
962 	ndev->stats.tx_dropped++;
963 	netif_tx_stop_queue(txq);
964 
965 	/* Barrier, so that stop_queue visible to other cpus */
966 	smp_mb__after_atomic();
967 
968 	if (cpdma_check_free_tx_desc(txch))
969 		netif_tx_wake_queue(txq);
970 
971 	return NETDEV_TX_BUSY;
972 }
973 
974 static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p)
975 {
976 	struct sockaddr *addr = (struct sockaddr *)p;
977 	struct cpsw_priv *priv = netdev_priv(ndev);
978 	struct cpsw_common *cpsw = priv->cpsw;
979 	int ret, slave_no;
980 	int flags = 0;
981 	u16 vid = 0;
982 
983 	slave_no = cpsw_slave_index(cpsw, priv);
984 	if (!is_valid_ether_addr(addr->sa_data))
985 		return -EADDRNOTAVAIL;
986 
987 	ret = pm_runtime_resume_and_get(cpsw->dev);
988 	if (ret < 0)
989 		return ret;
990 
991 	vid = cpsw->slaves[slave_no].port_vlan;
992 	flags = ALE_VLAN | ALE_SECURE;
993 
994 	cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
995 			   flags, vid);
996 	cpsw_ale_add_ucast(cpsw->ale, addr->sa_data, HOST_PORT_NUM,
997 			   flags, vid);
998 
999 	ether_addr_copy(priv->mac_addr, addr->sa_data);
1000 	eth_hw_addr_set(ndev, priv->mac_addr);
1001 	cpsw_set_slave_mac(&cpsw->slaves[slave_no], priv);
1002 
1003 	pm_runtime_put(cpsw->dev);
1004 
1005 	return 0;
1006 }
1007 
1008 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev,
1009 				     __be16 proto, u16 vid)
1010 {
1011 	struct cpsw_priv *priv = netdev_priv(ndev);
1012 	struct cpsw_common *cpsw = priv->cpsw;
1013 	int ret;
1014 	int i;
1015 
1016 	if (cpsw_is_switch_en(cpsw)) {
1017 		dev_dbg(cpsw->dev, "ndo del vlan is called in switch mode\n");
1018 		return 0;
1019 	}
1020 
1021 	if (vid == cpsw->data.default_vlan)
1022 		return 0;
1023 
1024 	ret = pm_runtime_resume_and_get(cpsw->dev);
1025 	if (ret < 0)
1026 		return ret;
1027 
1028 	/* reset the return code as pm_runtime_get_sync() can return
1029 	 * non zero values as well.
1030 	 */
1031 	ret = 0;
1032 	for (i = 0; i < cpsw->data.slaves; i++) {
1033 		if (cpsw->slaves[i].ndev &&
1034 		    vid == cpsw->slaves[i].port_vlan) {
1035 			ret = -EINVAL;
1036 			goto err;
1037 		}
1038 	}
1039 
1040 	dev_dbg(priv->dev, "removing vlanid %d from vlan filter\n", vid);
1041 	ret = cpsw_ale_del_vlan(cpsw->ale, vid, 0);
1042 	if (ret)
1043 		dev_err(priv->dev, "cpsw_ale_del_vlan() failed: ret %d\n", ret);
1044 	ret = cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
1045 				 HOST_PORT_NUM, ALE_VLAN, vid);
1046 	if (ret)
1047 		dev_err(priv->dev, "cpsw_ale_del_ucast() failed: ret %d\n",
1048 			ret);
1049 	ret = cpsw_ale_del_mcast(cpsw->ale, priv->ndev->broadcast,
1050 				 0, ALE_VLAN, vid);
1051 	if (ret)
1052 		dev_err(priv->dev, "cpsw_ale_del_mcast failed. ret %d\n",
1053 			ret);
1054 	cpsw_ale_flush_multicast(cpsw->ale, ALE_PORT_HOST, vid);
1055 	ret = 0;
1056 err:
1057 	pm_runtime_put(cpsw->dev);
1058 	return ret;
1059 }
1060 
1061 static int cpsw_ndo_get_phys_port_name(struct net_device *ndev, char *name,
1062 				       size_t len)
1063 {
1064 	struct cpsw_priv *priv = netdev_priv(ndev);
1065 	int err;
1066 
1067 	err = snprintf(name, len, "p%d", priv->emac_port);
1068 
1069 	if (err >= len)
1070 		return -EINVAL;
1071 
1072 	return 0;
1073 }
1074 
1075 #ifdef CONFIG_NET_POLL_CONTROLLER
1076 static void cpsw_ndo_poll_controller(struct net_device *ndev)
1077 {
1078 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1079 
1080 	cpsw_intr_disable(cpsw);
1081 	cpsw_rx_interrupt(cpsw->irqs_table[0], cpsw);
1082 	cpsw_tx_interrupt(cpsw->irqs_table[1], cpsw);
1083 	cpsw_intr_enable(cpsw);
1084 }
1085 #endif
1086 
1087 static int cpsw_ndo_xdp_xmit(struct net_device *ndev, int n,
1088 			     struct xdp_frame **frames, u32 flags)
1089 {
1090 	struct cpsw_priv *priv = netdev_priv(ndev);
1091 	struct xdp_frame *xdpf;
1092 	int i, nxmit = 0;
1093 
1094 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
1095 		return -EINVAL;
1096 
1097 	for (i = 0; i < n; i++) {
1098 		xdpf = frames[i];
1099 		if (xdpf->len < READ_ONCE(priv->tx_packet_min))
1100 			break;
1101 
1102 		if (cpsw_xdp_tx_frame(priv, xdpf, NULL, priv->emac_port))
1103 			break;
1104 		nxmit++;
1105 	}
1106 
1107 	return nxmit;
1108 }
1109 
1110 static int cpsw_get_port_parent_id(struct net_device *ndev,
1111 				   struct netdev_phys_item_id *ppid)
1112 {
1113 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1114 
1115 	ppid->id_len = sizeof(cpsw->base_mac);
1116 	memcpy(&ppid->id, &cpsw->base_mac, ppid->id_len);
1117 
1118 	return 0;
1119 }
1120 
1121 static const struct net_device_ops cpsw_netdev_ops = {
1122 	.ndo_open		= cpsw_ndo_open,
1123 	.ndo_stop		= cpsw_ndo_stop,
1124 	.ndo_start_xmit		= cpsw_ndo_start_xmit,
1125 	.ndo_set_mac_address	= cpsw_ndo_set_mac_address,
1126 	.ndo_eth_ioctl		= cpsw_ndo_ioctl,
1127 	.ndo_validate_addr	= eth_validate_addr,
1128 	.ndo_tx_timeout		= cpsw_ndo_tx_timeout,
1129 	.ndo_set_rx_mode	= cpsw_ndo_set_rx_mode,
1130 	.ndo_set_tx_maxrate	= cpsw_ndo_set_tx_maxrate,
1131 #ifdef CONFIG_NET_POLL_CONTROLLER
1132 	.ndo_poll_controller	= cpsw_ndo_poll_controller,
1133 #endif
1134 	.ndo_vlan_rx_add_vid	= cpsw_ndo_vlan_rx_add_vid,
1135 	.ndo_vlan_rx_kill_vid	= cpsw_ndo_vlan_rx_kill_vid,
1136 	.ndo_setup_tc           = cpsw_ndo_setup_tc,
1137 	.ndo_get_phys_port_name = cpsw_ndo_get_phys_port_name,
1138 	.ndo_bpf		= cpsw_ndo_bpf,
1139 	.ndo_xdp_xmit		= cpsw_ndo_xdp_xmit,
1140 	.ndo_get_port_parent_id	= cpsw_get_port_parent_id,
1141 };
1142 
1143 static void cpsw_get_drvinfo(struct net_device *ndev,
1144 			     struct ethtool_drvinfo *info)
1145 {
1146 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1147 	struct platform_device *pdev;
1148 
1149 	pdev = to_platform_device(cpsw->dev);
1150 	strscpy(info->driver, "cpsw-switch", sizeof(info->driver));
1151 	strscpy(info->version, "2.0", sizeof(info->version));
1152 	strscpy(info->bus_info, pdev->name, sizeof(info->bus_info));
1153 }
1154 
1155 static int cpsw_set_pauseparam(struct net_device *ndev,
1156 			       struct ethtool_pauseparam *pause)
1157 {
1158 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1159 	struct cpsw_priv *priv = netdev_priv(ndev);
1160 	int slave_no;
1161 
1162 	slave_no = cpsw_slave_index(cpsw, priv);
1163 	if (!cpsw->slaves[slave_no].phy)
1164 		return -EINVAL;
1165 
1166 	if (!phy_validate_pause(cpsw->slaves[slave_no].phy, pause))
1167 		return -EINVAL;
1168 
1169 	priv->rx_pause = pause->rx_pause ? true : false;
1170 	priv->tx_pause = pause->tx_pause ? true : false;
1171 
1172 	phy_set_asym_pause(cpsw->slaves[slave_no].phy,
1173 			   priv->rx_pause, priv->tx_pause);
1174 
1175 	return 0;
1176 }
1177 
1178 static int cpsw_set_channels(struct net_device *ndev,
1179 			     struct ethtool_channels *chs)
1180 {
1181 	return cpsw_set_channels_common(ndev, chs, cpsw_rx_handler);
1182 }
1183 
1184 static const struct ethtool_ops cpsw_ethtool_ops = {
1185 	.supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS,
1186 	.get_drvinfo		= cpsw_get_drvinfo,
1187 	.get_msglevel		= cpsw_get_msglevel,
1188 	.set_msglevel		= cpsw_set_msglevel,
1189 	.get_link		= ethtool_op_get_link,
1190 	.get_ts_info		= cpsw_get_ts_info,
1191 	.get_coalesce		= cpsw_get_coalesce,
1192 	.set_coalesce		= cpsw_set_coalesce,
1193 	.get_sset_count		= cpsw_get_sset_count,
1194 	.get_strings		= cpsw_get_strings,
1195 	.get_ethtool_stats	= cpsw_get_ethtool_stats,
1196 	.get_pauseparam		= cpsw_get_pauseparam,
1197 	.set_pauseparam		= cpsw_set_pauseparam,
1198 	.get_wol		= cpsw_get_wol,
1199 	.set_wol		= cpsw_set_wol,
1200 	.get_regs_len		= cpsw_get_regs_len,
1201 	.get_regs		= cpsw_get_regs,
1202 	.begin			= cpsw_ethtool_op_begin,
1203 	.complete		= cpsw_ethtool_op_complete,
1204 	.get_channels		= cpsw_get_channels,
1205 	.set_channels		= cpsw_set_channels,
1206 	.get_link_ksettings	= cpsw_get_link_ksettings,
1207 	.set_link_ksettings	= cpsw_set_link_ksettings,
1208 	.get_eee		= cpsw_get_eee,
1209 	.set_eee		= cpsw_set_eee,
1210 	.nway_reset		= cpsw_nway_reset,
1211 	.get_ringparam		= cpsw_get_ringparam,
1212 	.set_ringparam		= cpsw_set_ringparam,
1213 };
1214 
1215 static int cpsw_probe_dt(struct cpsw_common *cpsw)
1216 {
1217 	struct device_node *node = cpsw->dev->of_node, *tmp_node, *port_np;
1218 	struct cpsw_platform_data *data = &cpsw->data;
1219 	struct device *dev = cpsw->dev;
1220 	int ret;
1221 	u32 prop;
1222 
1223 	if (!node)
1224 		return -EINVAL;
1225 
1226 	tmp_node = of_get_child_by_name(node, "ethernet-ports");
1227 	if (!tmp_node)
1228 		return -ENOENT;
1229 	data->slaves = of_get_child_count(tmp_node);
1230 	if (data->slaves != CPSW_SLAVE_PORTS_NUM) {
1231 		of_node_put(tmp_node);
1232 		return -ENOENT;
1233 	}
1234 
1235 	data->active_slave = 0;
1236 	data->channels = CPSW_MAX_QUEUES;
1237 	data->dual_emac = true;
1238 	data->bd_ram_size = CPSW_BD_RAM_SIZE;
1239 	data->mac_control = 0;
1240 
1241 	data->slave_data = devm_kcalloc(dev, CPSW_SLAVE_PORTS_NUM,
1242 					sizeof(struct cpsw_slave_data),
1243 					GFP_KERNEL);
1244 	if (!data->slave_data) {
1245 		of_node_put(tmp_node);
1246 		return -ENOMEM;
1247 	}
1248 
1249 	/* Populate all the child nodes here...
1250 	 */
1251 	ret = devm_of_platform_populate(dev);
1252 	/* We do not want to force this, as in some cases may not have child */
1253 	if (ret)
1254 		dev_warn(dev, "Doesn't have any child node\n");
1255 
1256 	for_each_child_of_node(tmp_node, port_np) {
1257 		struct cpsw_slave_data *slave_data;
1258 		u32 port_id;
1259 
1260 		ret = of_property_read_u32(port_np, "reg", &port_id);
1261 		if (ret < 0) {
1262 			dev_err(dev, "%pOF error reading port_id %d\n",
1263 				port_np, ret);
1264 			goto err_node_put;
1265 		}
1266 
1267 		if (!port_id || port_id > CPSW_SLAVE_PORTS_NUM) {
1268 			dev_err(dev, "%pOF has invalid port_id %u\n",
1269 				port_np, port_id);
1270 			ret = -EINVAL;
1271 			goto err_node_put;
1272 		}
1273 
1274 		slave_data = &data->slave_data[port_id - 1];
1275 
1276 		slave_data->disabled = !of_device_is_available(port_np);
1277 		if (slave_data->disabled)
1278 			continue;
1279 
1280 		slave_data->slave_node = port_np;
1281 		slave_data->ifphy = devm_of_phy_get(dev, port_np, NULL);
1282 		if (IS_ERR(slave_data->ifphy)) {
1283 			ret = PTR_ERR(slave_data->ifphy);
1284 			dev_err(dev, "%pOF: Error retrieving port phy: %d\n",
1285 				port_np, ret);
1286 			goto err_node_put;
1287 		}
1288 
1289 		if (of_phy_is_fixed_link(port_np)) {
1290 			ret = of_phy_register_fixed_link(port_np);
1291 			if (ret) {
1292 				dev_err_probe(dev, ret, "%pOF failed to register fixed-link phy\n",
1293 					      port_np);
1294 				goto err_node_put;
1295 			}
1296 			slave_data->phy_node = of_node_get(port_np);
1297 		} else {
1298 			slave_data->phy_node =
1299 				of_parse_phandle(port_np, "phy-handle", 0);
1300 		}
1301 
1302 		if (!slave_data->phy_node) {
1303 			dev_err(dev, "%pOF no phy found\n", port_np);
1304 			ret = -ENODEV;
1305 			goto err_node_put;
1306 		}
1307 
1308 		ret = of_get_phy_mode(port_np, &slave_data->phy_if);
1309 		if (ret) {
1310 			dev_err(dev, "%pOF read phy-mode err %d\n",
1311 				port_np, ret);
1312 			goto err_node_put;
1313 		}
1314 
1315 		ret = of_get_mac_address(port_np, slave_data->mac_addr);
1316 		if (ret) {
1317 			ret = ti_cm_get_macid(dev, port_id - 1,
1318 					      slave_data->mac_addr);
1319 			if (ret)
1320 				goto err_node_put;
1321 		}
1322 
1323 		if (of_property_read_u32(port_np, "ti,dual-emac-pvid",
1324 					 &prop)) {
1325 			dev_err(dev, "%pOF Missing dual_emac_res_vlan in DT.\n",
1326 				port_np);
1327 			slave_data->dual_emac_res_vlan = port_id;
1328 			dev_err(dev, "%pOF Using %d as Reserved VLAN\n",
1329 				port_np, slave_data->dual_emac_res_vlan);
1330 		} else {
1331 			slave_data->dual_emac_res_vlan = prop;
1332 		}
1333 	}
1334 
1335 	of_node_put(tmp_node);
1336 	return 0;
1337 
1338 err_node_put:
1339 	of_node_put(port_np);
1340 	of_node_put(tmp_node);
1341 	return ret;
1342 }
1343 
1344 static void cpsw_remove_dt(struct cpsw_common *cpsw)
1345 {
1346 	struct cpsw_platform_data *data = &cpsw->data;
1347 	int i = 0;
1348 
1349 	for (i = 0; i < cpsw->data.slaves; i++) {
1350 		struct cpsw_slave_data *slave_data = &data->slave_data[i];
1351 		struct device_node *port_np = slave_data->phy_node;
1352 
1353 		if (port_np) {
1354 			if (of_phy_is_fixed_link(port_np))
1355 				of_phy_deregister_fixed_link(port_np);
1356 
1357 			of_node_put(port_np);
1358 		}
1359 	}
1360 }
1361 
1362 static int cpsw_create_ports(struct cpsw_common *cpsw)
1363 {
1364 	struct cpsw_platform_data *data = &cpsw->data;
1365 	struct net_device *ndev, *napi_ndev = NULL;
1366 	struct device *dev = cpsw->dev;
1367 	struct cpsw_priv *priv;
1368 	int ret = 0, i = 0;
1369 
1370 	for (i = 0; i < cpsw->data.slaves; i++) {
1371 		struct cpsw_slave_data *slave_data = &data->slave_data[i];
1372 
1373 		if (slave_data->disabled)
1374 			continue;
1375 
1376 		ndev = devm_alloc_etherdev_mqs(dev, sizeof(struct cpsw_priv),
1377 					       CPSW_MAX_QUEUES,
1378 					       CPSW_MAX_QUEUES);
1379 		if (!ndev) {
1380 			dev_err(dev, "error allocating net_device\n");
1381 			return -ENOMEM;
1382 		}
1383 
1384 		priv = netdev_priv(ndev);
1385 		priv->cpsw = cpsw;
1386 		priv->ndev = ndev;
1387 		priv->dev  = dev;
1388 		priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
1389 		priv->emac_port = i + 1;
1390 		priv->tx_packet_min = CPSW_MIN_PACKET_SIZE;
1391 
1392 		if (is_valid_ether_addr(slave_data->mac_addr)) {
1393 			ether_addr_copy(priv->mac_addr, slave_data->mac_addr);
1394 			dev_info(cpsw->dev, "Detected MACID = %pM\n",
1395 				 priv->mac_addr);
1396 		} else {
1397 			eth_random_addr(slave_data->mac_addr);
1398 			dev_info(cpsw->dev, "Random MACID = %pM\n",
1399 				 priv->mac_addr);
1400 		}
1401 		eth_hw_addr_set(ndev, slave_data->mac_addr);
1402 		ether_addr_copy(priv->mac_addr, slave_data->mac_addr);
1403 
1404 		cpsw->slaves[i].ndev = ndev;
1405 
1406 		ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
1407 				  NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_NETNS_LOCAL | NETIF_F_HW_TC;
1408 
1409 		ndev->xdp_features = NETDEV_XDP_ACT_BASIC |
1410 				     NETDEV_XDP_ACT_REDIRECT |
1411 				     NETDEV_XDP_ACT_NDO_XMIT;
1412 
1413 		ndev->netdev_ops = &cpsw_netdev_ops;
1414 		ndev->ethtool_ops = &cpsw_ethtool_ops;
1415 		SET_NETDEV_DEV(ndev, dev);
1416 
1417 		if (!napi_ndev) {
1418 			/* CPSW Host port CPDMA interface is shared between
1419 			 * ports and there is only one TX and one RX IRQs
1420 			 * available for all possible TX and RX channels
1421 			 * accordingly.
1422 			 */
1423 			netif_napi_add(ndev, &cpsw->napi_rx,
1424 				       cpsw->quirk_irq ? cpsw_rx_poll : cpsw_rx_mq_poll);
1425 			netif_napi_add_tx(ndev, &cpsw->napi_tx,
1426 					  cpsw->quirk_irq ?
1427 					  cpsw_tx_poll : cpsw_tx_mq_poll);
1428 		}
1429 
1430 		napi_ndev = ndev;
1431 	}
1432 
1433 	return ret;
1434 }
1435 
1436 static void cpsw_unregister_ports(struct cpsw_common *cpsw)
1437 {
1438 	int i = 0;
1439 
1440 	for (i = 0; i < cpsw->data.slaves; i++) {
1441 		if (!cpsw->slaves[i].ndev)
1442 			continue;
1443 
1444 		unregister_netdev(cpsw->slaves[i].ndev);
1445 	}
1446 }
1447 
1448 static int cpsw_register_ports(struct cpsw_common *cpsw)
1449 {
1450 	int ret = 0, i = 0;
1451 
1452 	for (i = 0; i < cpsw->data.slaves; i++) {
1453 		if (!cpsw->slaves[i].ndev)
1454 			continue;
1455 
1456 		/* register the network device */
1457 		ret = register_netdev(cpsw->slaves[i].ndev);
1458 		if (ret) {
1459 			dev_err(cpsw->dev,
1460 				"cpsw: err registering net device%d\n", i);
1461 			cpsw->slaves[i].ndev = NULL;
1462 			break;
1463 		}
1464 	}
1465 
1466 	if (ret)
1467 		cpsw_unregister_ports(cpsw);
1468 	return ret;
1469 }
1470 
1471 bool cpsw_port_dev_check(const struct net_device *ndev)
1472 {
1473 	if (ndev->netdev_ops == &cpsw_netdev_ops) {
1474 		struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1475 
1476 		return !cpsw->data.dual_emac;
1477 	}
1478 
1479 	return false;
1480 }
1481 
1482 static void cpsw_port_offload_fwd_mark_update(struct cpsw_common *cpsw)
1483 {
1484 	int set_val = 0;
1485 	int i;
1486 
1487 	if (!cpsw->ale_bypass &&
1488 	    (cpsw->br_members == (ALE_PORT_1 | ALE_PORT_2)))
1489 		set_val = 1;
1490 
1491 	dev_dbg(cpsw->dev, "set offload_fwd_mark %d\n", set_val);
1492 
1493 	for (i = 0; i < cpsw->data.slaves; i++) {
1494 		struct net_device *sl_ndev = cpsw->slaves[i].ndev;
1495 		struct cpsw_priv *priv = netdev_priv(sl_ndev);
1496 
1497 		priv->offload_fwd_mark = set_val;
1498 	}
1499 }
1500 
1501 static int cpsw_netdevice_port_link(struct net_device *ndev,
1502 				    struct net_device *br_ndev,
1503 				    struct netlink_ext_ack *extack)
1504 {
1505 	struct cpsw_priv *priv = netdev_priv(ndev);
1506 	struct cpsw_common *cpsw = priv->cpsw;
1507 	int err;
1508 
1509 	if (!cpsw->br_members) {
1510 		cpsw->hw_bridge_dev = br_ndev;
1511 	} else {
1512 		/* This is adding the port to a second bridge, this is
1513 		 * unsupported
1514 		 */
1515 		if (cpsw->hw_bridge_dev != br_ndev)
1516 			return -EOPNOTSUPP;
1517 	}
1518 
1519 	err = switchdev_bridge_port_offload(ndev, ndev, NULL, NULL, NULL,
1520 					    false, extack);
1521 	if (err)
1522 		return err;
1523 
1524 	cpsw->br_members |= BIT(priv->emac_port);
1525 
1526 	cpsw_port_offload_fwd_mark_update(cpsw);
1527 
1528 	return NOTIFY_DONE;
1529 }
1530 
1531 static void cpsw_netdevice_port_unlink(struct net_device *ndev)
1532 {
1533 	struct cpsw_priv *priv = netdev_priv(ndev);
1534 	struct cpsw_common *cpsw = priv->cpsw;
1535 
1536 	switchdev_bridge_port_unoffload(ndev, NULL, NULL, NULL);
1537 
1538 	cpsw->br_members &= ~BIT(priv->emac_port);
1539 
1540 	cpsw_port_offload_fwd_mark_update(cpsw);
1541 
1542 	if (!cpsw->br_members)
1543 		cpsw->hw_bridge_dev = NULL;
1544 }
1545 
1546 /* netdev notifier */
1547 static int cpsw_netdevice_event(struct notifier_block *unused,
1548 				unsigned long event, void *ptr)
1549 {
1550 	struct netlink_ext_ack *extack = netdev_notifier_info_to_extack(ptr);
1551 	struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
1552 	struct netdev_notifier_changeupper_info *info;
1553 	int ret = NOTIFY_DONE;
1554 
1555 	if (!cpsw_port_dev_check(ndev))
1556 		return NOTIFY_DONE;
1557 
1558 	switch (event) {
1559 	case NETDEV_CHANGEUPPER:
1560 		info = ptr;
1561 
1562 		if (netif_is_bridge_master(info->upper_dev)) {
1563 			if (info->linking)
1564 				ret = cpsw_netdevice_port_link(ndev,
1565 							       info->upper_dev,
1566 							       extack);
1567 			else
1568 				cpsw_netdevice_port_unlink(ndev);
1569 		}
1570 		break;
1571 	default:
1572 		return NOTIFY_DONE;
1573 	}
1574 
1575 	return notifier_from_errno(ret);
1576 }
1577 
1578 static struct notifier_block cpsw_netdevice_nb __read_mostly = {
1579 	.notifier_call = cpsw_netdevice_event,
1580 };
1581 
1582 static int cpsw_register_notifiers(struct cpsw_common *cpsw)
1583 {
1584 	int ret = 0;
1585 
1586 	ret = register_netdevice_notifier(&cpsw_netdevice_nb);
1587 	if (ret) {
1588 		dev_err(cpsw->dev, "can't register netdevice notifier\n");
1589 		return ret;
1590 	}
1591 
1592 	ret = cpsw_switchdev_register_notifiers(cpsw);
1593 	if (ret)
1594 		unregister_netdevice_notifier(&cpsw_netdevice_nb);
1595 
1596 	return ret;
1597 }
1598 
1599 static void cpsw_unregister_notifiers(struct cpsw_common *cpsw)
1600 {
1601 	cpsw_switchdev_unregister_notifiers(cpsw);
1602 	unregister_netdevice_notifier(&cpsw_netdevice_nb);
1603 }
1604 
1605 static const struct devlink_ops cpsw_devlink_ops = {
1606 };
1607 
1608 static int cpsw_dl_switch_mode_get(struct devlink *dl, u32 id,
1609 				   struct devlink_param_gset_ctx *ctx)
1610 {
1611 	struct cpsw_devlink *dl_priv = devlink_priv(dl);
1612 	struct cpsw_common *cpsw = dl_priv->cpsw;
1613 
1614 	dev_dbg(cpsw->dev, "%s id:%u\n", __func__, id);
1615 
1616 	if (id != CPSW_DL_PARAM_SWITCH_MODE)
1617 		return  -EOPNOTSUPP;
1618 
1619 	ctx->val.vbool = !cpsw->data.dual_emac;
1620 
1621 	return 0;
1622 }
1623 
1624 static int cpsw_dl_switch_mode_set(struct devlink *dl, u32 id,
1625 				   struct devlink_param_gset_ctx *ctx)
1626 {
1627 	struct cpsw_devlink *dl_priv = devlink_priv(dl);
1628 	struct cpsw_common *cpsw = dl_priv->cpsw;
1629 	int vlan = cpsw->data.default_vlan;
1630 	bool switch_en = ctx->val.vbool;
1631 	bool if_running = false;
1632 	int i;
1633 
1634 	dev_dbg(cpsw->dev, "%s id:%u\n", __func__, id);
1635 
1636 	if (id != CPSW_DL_PARAM_SWITCH_MODE)
1637 		return  -EOPNOTSUPP;
1638 
1639 	if (switch_en == !cpsw->data.dual_emac)
1640 		return 0;
1641 
1642 	if (!switch_en && cpsw->br_members) {
1643 		dev_err(cpsw->dev, "Remove ports from BR before disabling switch mode\n");
1644 		return -EINVAL;
1645 	}
1646 
1647 	rtnl_lock();
1648 
1649 	for (i = 0; i < cpsw->data.slaves; i++) {
1650 		struct cpsw_slave *slave = &cpsw->slaves[i];
1651 		struct net_device *sl_ndev = slave->ndev;
1652 
1653 		if (!sl_ndev || !netif_running(sl_ndev))
1654 			continue;
1655 
1656 		if_running = true;
1657 	}
1658 
1659 	if (!if_running) {
1660 		/* all ndevs are down */
1661 		cpsw->data.dual_emac = !switch_en;
1662 		for (i = 0; i < cpsw->data.slaves; i++) {
1663 			struct cpsw_slave *slave = &cpsw->slaves[i];
1664 			struct net_device *sl_ndev = slave->ndev;
1665 
1666 			if (!sl_ndev)
1667 				continue;
1668 
1669 			if (switch_en)
1670 				vlan = cpsw->data.default_vlan;
1671 			else
1672 				vlan = slave->data->dual_emac_res_vlan;
1673 			slave->port_vlan = vlan;
1674 		}
1675 		goto exit;
1676 	}
1677 
1678 	if (switch_en) {
1679 		dev_info(cpsw->dev, "Enable switch mode\n");
1680 
1681 		/* enable bypass - no forwarding; all traffic goes to Host */
1682 		cpsw_ale_control_set(cpsw->ale, 0, ALE_BYPASS, 1);
1683 
1684 		/* clean up ALE table */
1685 		cpsw_ale_control_set(cpsw->ale, 0, ALE_CLEAR, 1);
1686 		cpsw_ale_control_get(cpsw->ale, 0, ALE_AGEOUT);
1687 
1688 		cpsw_init_host_port_switch(cpsw);
1689 
1690 		for (i = 0; i < cpsw->data.slaves; i++) {
1691 			struct cpsw_slave *slave = &cpsw->slaves[i];
1692 			struct net_device *sl_ndev = slave->ndev;
1693 			struct cpsw_priv *priv;
1694 
1695 			if (!sl_ndev)
1696 				continue;
1697 
1698 			priv = netdev_priv(sl_ndev);
1699 			slave->port_vlan = vlan;
1700 			WRITE_ONCE(priv->tx_packet_min, CPSW_MIN_PACKET_SIZE_VLAN);
1701 			if (netif_running(sl_ndev))
1702 				cpsw_port_add_switch_def_ale_entries(priv,
1703 								     slave);
1704 		}
1705 
1706 		cpsw_ale_control_set(cpsw->ale, 0, ALE_BYPASS, 0);
1707 		cpsw->data.dual_emac = false;
1708 	} else {
1709 		dev_info(cpsw->dev, "Disable switch mode\n");
1710 
1711 		/* enable bypass - no forwarding; all traffic goes to Host */
1712 		cpsw_ale_control_set(cpsw->ale, 0, ALE_BYPASS, 1);
1713 
1714 		cpsw_ale_control_set(cpsw->ale, 0, ALE_CLEAR, 1);
1715 		cpsw_ale_control_get(cpsw->ale, 0, ALE_AGEOUT);
1716 
1717 		cpsw_init_host_port_dual_mac(cpsw);
1718 
1719 		for (i = 0; i < cpsw->data.slaves; i++) {
1720 			struct cpsw_slave *slave = &cpsw->slaves[i];
1721 			struct net_device *sl_ndev = slave->ndev;
1722 			struct cpsw_priv *priv;
1723 
1724 			if (!sl_ndev)
1725 				continue;
1726 
1727 			priv = netdev_priv(slave->ndev);
1728 			slave->port_vlan = slave->data->dual_emac_res_vlan;
1729 			WRITE_ONCE(priv->tx_packet_min, CPSW_MIN_PACKET_SIZE);
1730 			cpsw_port_add_dual_emac_def_ale_entries(priv, slave);
1731 		}
1732 
1733 		cpsw_ale_control_set(cpsw->ale, 0, ALE_BYPASS, 0);
1734 		cpsw->data.dual_emac = true;
1735 	}
1736 exit:
1737 	rtnl_unlock();
1738 
1739 	return 0;
1740 }
1741 
1742 static int cpsw_dl_ale_ctrl_get(struct devlink *dl, u32 id,
1743 				struct devlink_param_gset_ctx *ctx)
1744 {
1745 	struct cpsw_devlink *dl_priv = devlink_priv(dl);
1746 	struct cpsw_common *cpsw = dl_priv->cpsw;
1747 
1748 	dev_dbg(cpsw->dev, "%s id:%u\n", __func__, id);
1749 
1750 	switch (id) {
1751 	case CPSW_DL_PARAM_ALE_BYPASS:
1752 		ctx->val.vbool = cpsw_ale_control_get(cpsw->ale, 0, ALE_BYPASS);
1753 		break;
1754 	default:
1755 		return -EOPNOTSUPP;
1756 	}
1757 
1758 	return 0;
1759 }
1760 
1761 static int cpsw_dl_ale_ctrl_set(struct devlink *dl, u32 id,
1762 				struct devlink_param_gset_ctx *ctx)
1763 {
1764 	struct cpsw_devlink *dl_priv = devlink_priv(dl);
1765 	struct cpsw_common *cpsw = dl_priv->cpsw;
1766 	int ret = -EOPNOTSUPP;
1767 
1768 	dev_dbg(cpsw->dev, "%s id:%u\n", __func__, id);
1769 
1770 	switch (id) {
1771 	case CPSW_DL_PARAM_ALE_BYPASS:
1772 		ret = cpsw_ale_control_set(cpsw->ale, 0, ALE_BYPASS,
1773 					   ctx->val.vbool);
1774 		if (!ret) {
1775 			cpsw->ale_bypass = ctx->val.vbool;
1776 			cpsw_port_offload_fwd_mark_update(cpsw);
1777 		}
1778 		break;
1779 	default:
1780 		return -EOPNOTSUPP;
1781 	}
1782 
1783 	return 0;
1784 }
1785 
1786 static const struct devlink_param cpsw_devlink_params[] = {
1787 	DEVLINK_PARAM_DRIVER(CPSW_DL_PARAM_SWITCH_MODE,
1788 			     "switch_mode", DEVLINK_PARAM_TYPE_BOOL,
1789 			     BIT(DEVLINK_PARAM_CMODE_RUNTIME),
1790 			     cpsw_dl_switch_mode_get, cpsw_dl_switch_mode_set,
1791 			     NULL),
1792 	DEVLINK_PARAM_DRIVER(CPSW_DL_PARAM_ALE_BYPASS,
1793 			     "ale_bypass", DEVLINK_PARAM_TYPE_BOOL,
1794 			     BIT(DEVLINK_PARAM_CMODE_RUNTIME),
1795 			     cpsw_dl_ale_ctrl_get, cpsw_dl_ale_ctrl_set, NULL),
1796 };
1797 
1798 static int cpsw_register_devlink(struct cpsw_common *cpsw)
1799 {
1800 	struct device *dev = cpsw->dev;
1801 	struct cpsw_devlink *dl_priv;
1802 	int ret = 0;
1803 
1804 	cpsw->devlink = devlink_alloc(&cpsw_devlink_ops, sizeof(*dl_priv), dev);
1805 	if (!cpsw->devlink)
1806 		return -ENOMEM;
1807 
1808 	dl_priv = devlink_priv(cpsw->devlink);
1809 	dl_priv->cpsw = cpsw;
1810 
1811 	ret = devlink_params_register(cpsw->devlink, cpsw_devlink_params,
1812 				      ARRAY_SIZE(cpsw_devlink_params));
1813 	if (ret) {
1814 		dev_err(dev, "DL params reg fail ret:%d\n", ret);
1815 		goto dl_unreg;
1816 	}
1817 
1818 	devlink_register(cpsw->devlink);
1819 	return ret;
1820 
1821 dl_unreg:
1822 	devlink_free(cpsw->devlink);
1823 	return ret;
1824 }
1825 
1826 static void cpsw_unregister_devlink(struct cpsw_common *cpsw)
1827 {
1828 	devlink_unregister(cpsw->devlink);
1829 	devlink_params_unregister(cpsw->devlink, cpsw_devlink_params,
1830 				  ARRAY_SIZE(cpsw_devlink_params));
1831 	devlink_free(cpsw->devlink);
1832 }
1833 
1834 static const struct of_device_id cpsw_of_mtable[] = {
1835 	{ .compatible = "ti,cpsw-switch"},
1836 	{ .compatible = "ti,am335x-cpsw-switch"},
1837 	{ .compatible = "ti,am4372-cpsw-switch"},
1838 	{ .compatible = "ti,dra7-cpsw-switch"},
1839 	{ /* sentinel */ },
1840 };
1841 MODULE_DEVICE_TABLE(of, cpsw_of_mtable);
1842 
1843 static const struct soc_device_attribute cpsw_soc_devices[] = {
1844 	{ .family = "AM33xx", .revision = "ES1.0"},
1845 	{ /* sentinel */ }
1846 };
1847 
1848 static int cpsw_probe(struct platform_device *pdev)
1849 {
1850 	const struct soc_device_attribute *soc;
1851 	struct device *dev = &pdev->dev;
1852 	struct cpsw_common *cpsw;
1853 	struct resource *ss_res;
1854 	struct gpio_descs *mode;
1855 	void __iomem *ss_regs;
1856 	int ret = 0, ch;
1857 	struct clk *clk;
1858 	int irq;
1859 
1860 	cpsw = devm_kzalloc(dev, sizeof(struct cpsw_common), GFP_KERNEL);
1861 	if (!cpsw)
1862 		return -ENOMEM;
1863 
1864 	cpsw_slave_index = cpsw_slave_index_priv;
1865 
1866 	cpsw->dev = dev;
1867 
1868 	cpsw->slaves = devm_kcalloc(dev,
1869 				    CPSW_SLAVE_PORTS_NUM,
1870 				    sizeof(struct cpsw_slave),
1871 				    GFP_KERNEL);
1872 	if (!cpsw->slaves)
1873 		return -ENOMEM;
1874 
1875 	mode = devm_gpiod_get_array_optional(dev, "mode", GPIOD_OUT_LOW);
1876 	if (IS_ERR(mode)) {
1877 		ret = PTR_ERR(mode);
1878 		dev_err(dev, "gpio request failed, ret %d\n", ret);
1879 		return ret;
1880 	}
1881 
1882 	clk = devm_clk_get(dev, "fck");
1883 	if (IS_ERR(clk)) {
1884 		ret = PTR_ERR(clk);
1885 		dev_err(dev, "fck is not found %d\n", ret);
1886 		return ret;
1887 	}
1888 	cpsw->bus_freq_mhz = clk_get_rate(clk) / 1000000;
1889 
1890 	ss_regs = devm_platform_get_and_ioremap_resource(pdev, 0, &ss_res);
1891 	if (IS_ERR(ss_regs)) {
1892 		ret = PTR_ERR(ss_regs);
1893 		return ret;
1894 	}
1895 	cpsw->regs = ss_regs;
1896 
1897 	irq = platform_get_irq_byname(pdev, "rx");
1898 	if (irq < 0)
1899 		return irq;
1900 	cpsw->irqs_table[0] = irq;
1901 
1902 	irq = platform_get_irq_byname(pdev, "tx");
1903 	if (irq < 0)
1904 		return irq;
1905 	cpsw->irqs_table[1] = irq;
1906 
1907 	irq = platform_get_irq_byname(pdev, "misc");
1908 	if (irq <= 0)
1909 		return irq;
1910 	cpsw->misc_irq = irq;
1911 
1912 	platform_set_drvdata(pdev, cpsw);
1913 	/* This may be required here for child devices. */
1914 	pm_runtime_enable(dev);
1915 
1916 	/* Need to enable clocks with runtime PM api to access module
1917 	 * registers
1918 	 */
1919 	ret = pm_runtime_resume_and_get(dev);
1920 	if (ret < 0) {
1921 		pm_runtime_disable(dev);
1922 		return ret;
1923 	}
1924 
1925 	ret = cpsw_probe_dt(cpsw);
1926 	if (ret)
1927 		goto clean_dt_ret;
1928 
1929 	soc = soc_device_match(cpsw_soc_devices);
1930 	if (soc)
1931 		cpsw->quirk_irq = true;
1932 
1933 	cpsw->rx_packet_max = rx_packet_max;
1934 	cpsw->descs_pool_size = descs_pool_size;
1935 	eth_random_addr(cpsw->base_mac);
1936 
1937 	ret = cpsw_init_common(cpsw, ss_regs, ale_ageout,
1938 			       (u32 __force)ss_res->start + CPSW2_BD_OFFSET,
1939 			       descs_pool_size);
1940 	if (ret)
1941 		goto clean_dt_ret;
1942 
1943 	cpsw->wr_regs = cpsw->version == CPSW_VERSION_1 ?
1944 			ss_regs + CPSW1_WR_OFFSET :
1945 			ss_regs + CPSW2_WR_OFFSET;
1946 
1947 	ch = cpsw->quirk_irq ? 0 : 7;
1948 	cpsw->txv[0].ch = cpdma_chan_create(cpsw->dma, ch, cpsw_tx_handler, 0);
1949 	if (IS_ERR(cpsw->txv[0].ch)) {
1950 		dev_err(dev, "error initializing tx dma channel\n");
1951 		ret = PTR_ERR(cpsw->txv[0].ch);
1952 		goto clean_cpts;
1953 	}
1954 
1955 	cpsw->rxv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_rx_handler, 1);
1956 	if (IS_ERR(cpsw->rxv[0].ch)) {
1957 		dev_err(dev, "error initializing rx dma channel\n");
1958 		ret = PTR_ERR(cpsw->rxv[0].ch);
1959 		goto clean_cpts;
1960 	}
1961 	cpsw_split_res(cpsw);
1962 
1963 	/* setup netdevs */
1964 	ret = cpsw_create_ports(cpsw);
1965 	if (ret)
1966 		goto clean_unregister_netdev;
1967 
1968 	/* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and
1969 	 * MISC IRQs which are always kept disabled with this driver so
1970 	 * we will not request them.
1971 	 *
1972 	 * If anyone wants to implement support for those, make sure to
1973 	 * first request and append them to irqs_table array.
1974 	 */
1975 
1976 	ret = devm_request_irq(dev, cpsw->irqs_table[0], cpsw_rx_interrupt,
1977 			       0, dev_name(dev), cpsw);
1978 	if (ret < 0) {
1979 		dev_err(dev, "error attaching irq (%d)\n", ret);
1980 		goto clean_unregister_netdev;
1981 	}
1982 
1983 	ret = devm_request_irq(dev, cpsw->irqs_table[1], cpsw_tx_interrupt,
1984 			       0, dev_name(dev), cpsw);
1985 	if (ret < 0) {
1986 		dev_err(dev, "error attaching irq (%d)\n", ret);
1987 		goto clean_unregister_netdev;
1988 	}
1989 
1990 	if (!cpsw->cpts)
1991 		goto skip_cpts;
1992 
1993 	ret = devm_request_irq(dev, cpsw->misc_irq, cpsw_misc_interrupt,
1994 			       0, dev_name(&pdev->dev), cpsw);
1995 	if (ret < 0) {
1996 		dev_err(dev, "error attaching misc irq (%d)\n", ret);
1997 		goto clean_unregister_netdev;
1998 	}
1999 
2000 	/* Enable misc CPTS evnt_pend IRQ */
2001 	cpts_set_irqpoll(cpsw->cpts, false);
2002 
2003 skip_cpts:
2004 	ret = cpsw_register_notifiers(cpsw);
2005 	if (ret)
2006 		goto clean_unregister_netdev;
2007 
2008 	ret = cpsw_register_devlink(cpsw);
2009 	if (ret)
2010 		goto clean_unregister_notifiers;
2011 
2012 	ret = cpsw_register_ports(cpsw);
2013 	if (ret)
2014 		goto clean_unregister_notifiers;
2015 
2016 	dev_notice(dev, "initialized (regs %pa, pool size %d) hw_ver:%08X %d.%d (%d)\n",
2017 		   &ss_res->start, descs_pool_size,
2018 		   cpsw->version, CPSW_MAJOR_VERSION(cpsw->version),
2019 		   CPSW_MINOR_VERSION(cpsw->version),
2020 		   CPSW_RTL_VERSION(cpsw->version));
2021 
2022 	pm_runtime_put(dev);
2023 
2024 	return 0;
2025 
2026 clean_unregister_notifiers:
2027 	cpsw_unregister_notifiers(cpsw);
2028 clean_unregister_netdev:
2029 	cpsw_unregister_ports(cpsw);
2030 clean_cpts:
2031 	cpts_release(cpsw->cpts);
2032 	cpdma_ctlr_destroy(cpsw->dma);
2033 clean_dt_ret:
2034 	cpsw_remove_dt(cpsw);
2035 	pm_runtime_put_sync(dev);
2036 	pm_runtime_disable(dev);
2037 	return ret;
2038 }
2039 
2040 static int cpsw_remove(struct platform_device *pdev)
2041 {
2042 	struct cpsw_common *cpsw = platform_get_drvdata(pdev);
2043 	int ret;
2044 
2045 	ret = pm_runtime_resume_and_get(&pdev->dev);
2046 	if (ret < 0)
2047 		return ret;
2048 
2049 	cpsw_unregister_notifiers(cpsw);
2050 	cpsw_unregister_devlink(cpsw);
2051 	cpsw_unregister_ports(cpsw);
2052 
2053 	cpts_release(cpsw->cpts);
2054 	cpdma_ctlr_destroy(cpsw->dma);
2055 	cpsw_remove_dt(cpsw);
2056 	pm_runtime_put_sync(&pdev->dev);
2057 	pm_runtime_disable(&pdev->dev);
2058 	return 0;
2059 }
2060 
2061 static int __maybe_unused cpsw_suspend(struct device *dev)
2062 {
2063 	struct cpsw_common *cpsw = dev_get_drvdata(dev);
2064 	int i;
2065 
2066 	rtnl_lock();
2067 
2068 	for (i = 0; i < cpsw->data.slaves; i++) {
2069 		struct net_device *ndev = cpsw->slaves[i].ndev;
2070 
2071 		if (!(ndev && netif_running(ndev)))
2072 			continue;
2073 
2074 		cpsw_ndo_stop(ndev);
2075 	}
2076 
2077 	rtnl_unlock();
2078 
2079 	/* Select sleep pin state */
2080 	pinctrl_pm_select_sleep_state(dev);
2081 
2082 	return 0;
2083 }
2084 
2085 static int __maybe_unused cpsw_resume(struct device *dev)
2086 {
2087 	struct cpsw_common *cpsw = dev_get_drvdata(dev);
2088 	int i;
2089 
2090 	/* Select default pin state */
2091 	pinctrl_pm_select_default_state(dev);
2092 
2093 	/* shut up ASSERT_RTNL() warning in netif_set_real_num_tx/rx_queues */
2094 	rtnl_lock();
2095 
2096 	for (i = 0; i < cpsw->data.slaves; i++) {
2097 		struct net_device *ndev = cpsw->slaves[i].ndev;
2098 
2099 		if (!(ndev && netif_running(ndev)))
2100 			continue;
2101 
2102 		cpsw_ndo_open(ndev);
2103 	}
2104 
2105 	rtnl_unlock();
2106 
2107 	return 0;
2108 }
2109 
2110 static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume);
2111 
2112 static struct platform_driver cpsw_driver = {
2113 	.driver = {
2114 		.name	 = "cpsw-switch",
2115 		.pm	 = &cpsw_pm_ops,
2116 		.of_match_table = cpsw_of_mtable,
2117 	},
2118 	.probe = cpsw_probe,
2119 	.remove = cpsw_remove,
2120 };
2121 
2122 module_platform_driver(cpsw_driver);
2123 
2124 MODULE_LICENSE("GPL");
2125 MODULE_DESCRIPTION("TI CPSW switchdev Ethernet driver");
2126