xref: /openbmc/linux/drivers/net/ethernet/ti/cpsw.c (revision f5b06569)
1 /*
2  * Texas Instruments Ethernet Switch Driver
3  *
4  * Copyright (C) 2012 Texas Instruments
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation version 2.
9  *
10  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11  * kind, whether express or implied; without even the implied warranty
12  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/io.h>
18 #include <linux/clk.h>
19 #include <linux/timer.h>
20 #include <linux/module.h>
21 #include <linux/platform_device.h>
22 #include <linux/irqreturn.h>
23 #include <linux/interrupt.h>
24 #include <linux/if_ether.h>
25 #include <linux/etherdevice.h>
26 #include <linux/netdevice.h>
27 #include <linux/net_tstamp.h>
28 #include <linux/phy.h>
29 #include <linux/workqueue.h>
30 #include <linux/delay.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/gpio.h>
33 #include <linux/of.h>
34 #include <linux/of_mdio.h>
35 #include <linux/of_net.h>
36 #include <linux/of_device.h>
37 #include <linux/if_vlan.h>
38 
39 #include <linux/pinctrl/consumer.h>
40 
41 #include "cpsw.h"
42 #include "cpsw_ale.h"
43 #include "cpts.h"
44 #include "davinci_cpdma.h"
45 
46 #define CPSW_DEBUG	(NETIF_MSG_HW		| NETIF_MSG_WOL		| \
47 			 NETIF_MSG_DRV		| NETIF_MSG_LINK	| \
48 			 NETIF_MSG_IFUP		| NETIF_MSG_INTR	| \
49 			 NETIF_MSG_PROBE	| NETIF_MSG_TIMER	| \
50 			 NETIF_MSG_IFDOWN	| NETIF_MSG_RX_ERR	| \
51 			 NETIF_MSG_TX_ERR	| NETIF_MSG_TX_DONE	| \
52 			 NETIF_MSG_PKTDATA	| NETIF_MSG_TX_QUEUED	| \
53 			 NETIF_MSG_RX_STATUS)
54 
55 #define cpsw_info(priv, type, format, ...)		\
56 do {								\
57 	if (netif_msg_##type(priv) && net_ratelimit())		\
58 		dev_info(priv->dev, format, ## __VA_ARGS__);	\
59 } while (0)
60 
61 #define cpsw_err(priv, type, format, ...)		\
62 do {								\
63 	if (netif_msg_##type(priv) && net_ratelimit())		\
64 		dev_err(priv->dev, format, ## __VA_ARGS__);	\
65 } while (0)
66 
67 #define cpsw_dbg(priv, type, format, ...)		\
68 do {								\
69 	if (netif_msg_##type(priv) && net_ratelimit())		\
70 		dev_dbg(priv->dev, format, ## __VA_ARGS__);	\
71 } while (0)
72 
73 #define cpsw_notice(priv, type, format, ...)		\
74 do {								\
75 	if (netif_msg_##type(priv) && net_ratelimit())		\
76 		dev_notice(priv->dev, format, ## __VA_ARGS__);	\
77 } while (0)
78 
79 #define ALE_ALL_PORTS		0x7
80 
81 #define CPSW_MAJOR_VERSION(reg)		(reg >> 8 & 0x7)
82 #define CPSW_MINOR_VERSION(reg)		(reg & 0xff)
83 #define CPSW_RTL_VERSION(reg)		((reg >> 11) & 0x1f)
84 
85 #define CPSW_VERSION_1		0x19010a
86 #define CPSW_VERSION_2		0x19010c
87 #define CPSW_VERSION_3		0x19010f
88 #define CPSW_VERSION_4		0x190112
89 
90 #define HOST_PORT_NUM		0
91 #define SLIVER_SIZE		0x40
92 
93 #define CPSW1_HOST_PORT_OFFSET	0x028
94 #define CPSW1_SLAVE_OFFSET	0x050
95 #define CPSW1_SLAVE_SIZE	0x040
96 #define CPSW1_CPDMA_OFFSET	0x100
97 #define CPSW1_STATERAM_OFFSET	0x200
98 #define CPSW1_HW_STATS		0x400
99 #define CPSW1_CPTS_OFFSET	0x500
100 #define CPSW1_ALE_OFFSET	0x600
101 #define CPSW1_SLIVER_OFFSET	0x700
102 
103 #define CPSW2_HOST_PORT_OFFSET	0x108
104 #define CPSW2_SLAVE_OFFSET	0x200
105 #define CPSW2_SLAVE_SIZE	0x100
106 #define CPSW2_CPDMA_OFFSET	0x800
107 #define CPSW2_HW_STATS		0x900
108 #define CPSW2_STATERAM_OFFSET	0xa00
109 #define CPSW2_CPTS_OFFSET	0xc00
110 #define CPSW2_ALE_OFFSET	0xd00
111 #define CPSW2_SLIVER_OFFSET	0xd80
112 #define CPSW2_BD_OFFSET		0x2000
113 
114 #define CPDMA_RXTHRESH		0x0c0
115 #define CPDMA_RXFREE		0x0e0
116 #define CPDMA_TXHDP		0x00
117 #define CPDMA_RXHDP		0x20
118 #define CPDMA_TXCP		0x40
119 #define CPDMA_RXCP		0x60
120 
121 #define CPSW_POLL_WEIGHT	64
122 #define CPSW_MIN_PACKET_SIZE	60
123 #define CPSW_MAX_PACKET_SIZE	(1500 + 14 + 4 + 4)
124 
125 #define RX_PRIORITY_MAPPING	0x76543210
126 #define TX_PRIORITY_MAPPING	0x33221100
127 #define CPDMA_TX_PRIORITY_MAP	0x76543210
128 
129 #define CPSW_VLAN_AWARE		BIT(1)
130 #define CPSW_ALE_VLAN_AWARE	1
131 
132 #define CPSW_FIFO_NORMAL_MODE		(0 << 16)
133 #define CPSW_FIFO_DUAL_MAC_MODE		(1 << 16)
134 #define CPSW_FIFO_RATE_LIMIT_MODE	(2 << 16)
135 
136 #define CPSW_INTPACEEN		(0x3f << 16)
137 #define CPSW_INTPRESCALE_MASK	(0x7FF << 0)
138 #define CPSW_CMINTMAX_CNT	63
139 #define CPSW_CMINTMIN_CNT	2
140 #define CPSW_CMINTMAX_INTVL	(1000 / CPSW_CMINTMIN_CNT)
141 #define CPSW_CMINTMIN_INTVL	((1000 / CPSW_CMINTMAX_CNT) + 1)
142 
143 #define cpsw_slave_index(priv)				\
144 		((priv->data.dual_emac) ? priv->emac_port :	\
145 		priv->data.active_slave)
146 
147 static int debug_level;
148 module_param(debug_level, int, 0);
149 MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)");
150 
151 static int ale_ageout = 10;
152 module_param(ale_ageout, int, 0);
153 MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)");
154 
155 static int rx_packet_max = CPSW_MAX_PACKET_SIZE;
156 module_param(rx_packet_max, int, 0);
157 MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)");
158 
159 struct cpsw_wr_regs {
160 	u32	id_ver;
161 	u32	soft_reset;
162 	u32	control;
163 	u32	int_control;
164 	u32	rx_thresh_en;
165 	u32	rx_en;
166 	u32	tx_en;
167 	u32	misc_en;
168 	u32	mem_allign1[8];
169 	u32	rx_thresh_stat;
170 	u32	rx_stat;
171 	u32	tx_stat;
172 	u32	misc_stat;
173 	u32	mem_allign2[8];
174 	u32	rx_imax;
175 	u32	tx_imax;
176 
177 };
178 
179 struct cpsw_ss_regs {
180 	u32	id_ver;
181 	u32	control;
182 	u32	soft_reset;
183 	u32	stat_port_en;
184 	u32	ptype;
185 	u32	soft_idle;
186 	u32	thru_rate;
187 	u32	gap_thresh;
188 	u32	tx_start_wds;
189 	u32	flow_control;
190 	u32	vlan_ltype;
191 	u32	ts_ltype;
192 	u32	dlr_ltype;
193 };
194 
195 /* CPSW_PORT_V1 */
196 #define CPSW1_MAX_BLKS      0x00 /* Maximum FIFO Blocks */
197 #define CPSW1_BLK_CNT       0x04 /* FIFO Block Usage Count (Read Only) */
198 #define CPSW1_TX_IN_CTL     0x08 /* Transmit FIFO Control */
199 #define CPSW1_PORT_VLAN     0x0c /* VLAN Register */
200 #define CPSW1_TX_PRI_MAP    0x10 /* Tx Header Priority to Switch Pri Mapping */
201 #define CPSW1_TS_CTL        0x14 /* Time Sync Control */
202 #define CPSW1_TS_SEQ_LTYPE  0x18 /* Time Sync Sequence ID Offset and Msg Type */
203 #define CPSW1_TS_VLAN       0x1c /* Time Sync VLAN1 and VLAN2 */
204 
205 /* CPSW_PORT_V2 */
206 #define CPSW2_CONTROL       0x00 /* Control Register */
207 #define CPSW2_MAX_BLKS      0x08 /* Maximum FIFO Blocks */
208 #define CPSW2_BLK_CNT       0x0c /* FIFO Block Usage Count (Read Only) */
209 #define CPSW2_TX_IN_CTL     0x10 /* Transmit FIFO Control */
210 #define CPSW2_PORT_VLAN     0x14 /* VLAN Register */
211 #define CPSW2_TX_PRI_MAP    0x18 /* Tx Header Priority to Switch Pri Mapping */
212 #define CPSW2_TS_SEQ_MTYPE  0x1c /* Time Sync Sequence ID Offset and Msg Type */
213 
214 /* CPSW_PORT_V1 and V2 */
215 #define SA_LO               0x20 /* CPGMAC_SL Source Address Low */
216 #define SA_HI               0x24 /* CPGMAC_SL Source Address High */
217 #define SEND_PERCENT        0x28 /* Transmit Queue Send Percentages */
218 
219 /* CPSW_PORT_V2 only */
220 #define RX_DSCP_PRI_MAP0    0x30 /* Rx DSCP Priority to Rx Packet Mapping */
221 #define RX_DSCP_PRI_MAP1    0x34 /* Rx DSCP Priority to Rx Packet Mapping */
222 #define RX_DSCP_PRI_MAP2    0x38 /* Rx DSCP Priority to Rx Packet Mapping */
223 #define RX_DSCP_PRI_MAP3    0x3c /* Rx DSCP Priority to Rx Packet Mapping */
224 #define RX_DSCP_PRI_MAP4    0x40 /* Rx DSCP Priority to Rx Packet Mapping */
225 #define RX_DSCP_PRI_MAP5    0x44 /* Rx DSCP Priority to Rx Packet Mapping */
226 #define RX_DSCP_PRI_MAP6    0x48 /* Rx DSCP Priority to Rx Packet Mapping */
227 #define RX_DSCP_PRI_MAP7    0x4c /* Rx DSCP Priority to Rx Packet Mapping */
228 
229 /* Bit definitions for the CPSW2_CONTROL register */
230 #define PASS_PRI_TAGGED     (1<<24) /* Pass Priority Tagged */
231 #define VLAN_LTYPE2_EN      (1<<21) /* VLAN LTYPE 2 enable */
232 #define VLAN_LTYPE1_EN      (1<<20) /* VLAN LTYPE 1 enable */
233 #define DSCP_PRI_EN         (1<<16) /* DSCP Priority Enable */
234 #define TS_320              (1<<14) /* Time Sync Dest Port 320 enable */
235 #define TS_319              (1<<13) /* Time Sync Dest Port 319 enable */
236 #define TS_132              (1<<12) /* Time Sync Dest IP Addr 132 enable */
237 #define TS_131              (1<<11) /* Time Sync Dest IP Addr 131 enable */
238 #define TS_130              (1<<10) /* Time Sync Dest IP Addr 130 enable */
239 #define TS_129              (1<<9)  /* Time Sync Dest IP Addr 129 enable */
240 #define TS_TTL_NONZERO      (1<<8)  /* Time Sync Time To Live Non-zero enable */
241 #define TS_ANNEX_F_EN       (1<<6)  /* Time Sync Annex F enable */
242 #define TS_ANNEX_D_EN       (1<<4)  /* Time Sync Annex D enable */
243 #define TS_LTYPE2_EN        (1<<3)  /* Time Sync LTYPE 2 enable */
244 #define TS_LTYPE1_EN        (1<<2)  /* Time Sync LTYPE 1 enable */
245 #define TS_TX_EN            (1<<1)  /* Time Sync Transmit Enable */
246 #define TS_RX_EN            (1<<0)  /* Time Sync Receive Enable */
247 
248 #define CTRL_V2_TS_BITS \
249 	(TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
250 	 TS_TTL_NONZERO  | TS_ANNEX_D_EN | TS_LTYPE1_EN)
251 
252 #define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN)
253 #define CTRL_V2_TX_TS_BITS  (CTRL_V2_TS_BITS | TS_TX_EN)
254 #define CTRL_V2_RX_TS_BITS  (CTRL_V2_TS_BITS | TS_RX_EN)
255 
256 
257 #define CTRL_V3_TS_BITS \
258 	(TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
259 	 TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\
260 	 TS_LTYPE1_EN)
261 
262 #define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN)
263 #define CTRL_V3_TX_TS_BITS  (CTRL_V3_TS_BITS | TS_TX_EN)
264 #define CTRL_V3_RX_TS_BITS  (CTRL_V3_TS_BITS | TS_RX_EN)
265 
266 /* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */
267 #define TS_SEQ_ID_OFFSET_SHIFT   (16)    /* Time Sync Sequence ID Offset */
268 #define TS_SEQ_ID_OFFSET_MASK    (0x3f)
269 #define TS_MSG_TYPE_EN_SHIFT     (0)     /* Time Sync Message Type Enable */
270 #define TS_MSG_TYPE_EN_MASK      (0xffff)
271 
272 /* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */
273 #define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3))
274 
275 /* Bit definitions for the CPSW1_TS_CTL register */
276 #define CPSW_V1_TS_RX_EN		BIT(0)
277 #define CPSW_V1_TS_TX_EN		BIT(4)
278 #define CPSW_V1_MSG_TYPE_OFS		16
279 
280 /* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */
281 #define CPSW_V1_SEQ_ID_OFS_SHIFT	16
282 
283 struct cpsw_host_regs {
284 	u32	max_blks;
285 	u32	blk_cnt;
286 	u32	tx_in_ctl;
287 	u32	port_vlan;
288 	u32	tx_pri_map;
289 	u32	cpdma_tx_pri_map;
290 	u32	cpdma_rx_chan_map;
291 };
292 
293 struct cpsw_sliver_regs {
294 	u32	id_ver;
295 	u32	mac_control;
296 	u32	mac_status;
297 	u32	soft_reset;
298 	u32	rx_maxlen;
299 	u32	__reserved_0;
300 	u32	rx_pause;
301 	u32	tx_pause;
302 	u32	__reserved_1;
303 	u32	rx_pri_map;
304 };
305 
306 struct cpsw_hw_stats {
307 	u32	rxgoodframes;
308 	u32	rxbroadcastframes;
309 	u32	rxmulticastframes;
310 	u32	rxpauseframes;
311 	u32	rxcrcerrors;
312 	u32	rxaligncodeerrors;
313 	u32	rxoversizedframes;
314 	u32	rxjabberframes;
315 	u32	rxundersizedframes;
316 	u32	rxfragments;
317 	u32	__pad_0[2];
318 	u32	rxoctets;
319 	u32	txgoodframes;
320 	u32	txbroadcastframes;
321 	u32	txmulticastframes;
322 	u32	txpauseframes;
323 	u32	txdeferredframes;
324 	u32	txcollisionframes;
325 	u32	txsinglecollframes;
326 	u32	txmultcollframes;
327 	u32	txexcessivecollisions;
328 	u32	txlatecollisions;
329 	u32	txunderrun;
330 	u32	txcarriersenseerrors;
331 	u32	txoctets;
332 	u32	octetframes64;
333 	u32	octetframes65t127;
334 	u32	octetframes128t255;
335 	u32	octetframes256t511;
336 	u32	octetframes512t1023;
337 	u32	octetframes1024tup;
338 	u32	netoctets;
339 	u32	rxsofoverruns;
340 	u32	rxmofoverruns;
341 	u32	rxdmaoverruns;
342 };
343 
344 struct cpsw_slave {
345 	void __iomem			*regs;
346 	struct cpsw_sliver_regs __iomem	*sliver;
347 	int				slave_num;
348 	u32				mac_control;
349 	struct cpsw_slave_data		*data;
350 	struct phy_device		*phy;
351 	struct net_device		*ndev;
352 	u32				port_vlan;
353 	u32				open_stat;
354 };
355 
356 static inline u32 slave_read(struct cpsw_slave *slave, u32 offset)
357 {
358 	return __raw_readl(slave->regs + offset);
359 }
360 
361 static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset)
362 {
363 	__raw_writel(val, slave->regs + offset);
364 }
365 
366 struct cpsw_priv {
367 	struct platform_device		*pdev;
368 	struct net_device		*ndev;
369 	struct napi_struct		napi_rx;
370 	struct napi_struct		napi_tx;
371 	struct device			*dev;
372 	struct cpsw_platform_data	data;
373 	struct cpsw_ss_regs __iomem	*regs;
374 	struct cpsw_wr_regs __iomem	*wr_regs;
375 	u8 __iomem			*hw_stats;
376 	struct cpsw_host_regs __iomem	*host_port_regs;
377 	u32				msg_enable;
378 	u32				version;
379 	u32				coal_intvl;
380 	u32				bus_freq_mhz;
381 	int				rx_packet_max;
382 	struct clk			*clk;
383 	u8				mac_addr[ETH_ALEN];
384 	struct cpsw_slave		*slaves;
385 	struct cpdma_ctlr		*dma;
386 	struct cpdma_chan		*txch, *rxch;
387 	struct cpsw_ale			*ale;
388 	bool				rx_pause;
389 	bool				tx_pause;
390 	bool				quirk_irq;
391 	bool				rx_irq_disabled;
392 	bool				tx_irq_disabled;
393 	/* snapshot of IRQ numbers */
394 	u32 irqs_table[4];
395 	u32 num_irqs;
396 	struct cpts *cpts;
397 	u32 emac_port;
398 };
399 
400 struct cpsw_stats {
401 	char stat_string[ETH_GSTRING_LEN];
402 	int type;
403 	int sizeof_stat;
404 	int stat_offset;
405 };
406 
407 enum {
408 	CPSW_STATS,
409 	CPDMA_RX_STATS,
410 	CPDMA_TX_STATS,
411 };
412 
413 #define CPSW_STAT(m)		CPSW_STATS,				\
414 				sizeof(((struct cpsw_hw_stats *)0)->m), \
415 				offsetof(struct cpsw_hw_stats, m)
416 #define CPDMA_RX_STAT(m)	CPDMA_RX_STATS,				   \
417 				sizeof(((struct cpdma_chan_stats *)0)->m), \
418 				offsetof(struct cpdma_chan_stats, m)
419 #define CPDMA_TX_STAT(m)	CPDMA_TX_STATS,				   \
420 				sizeof(((struct cpdma_chan_stats *)0)->m), \
421 				offsetof(struct cpdma_chan_stats, m)
422 
423 static const struct cpsw_stats cpsw_gstrings_stats[] = {
424 	{ "Good Rx Frames", CPSW_STAT(rxgoodframes) },
425 	{ "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) },
426 	{ "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) },
427 	{ "Pause Rx Frames", CPSW_STAT(rxpauseframes) },
428 	{ "Rx CRC Errors", CPSW_STAT(rxcrcerrors) },
429 	{ "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) },
430 	{ "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) },
431 	{ "Rx Jabbers", CPSW_STAT(rxjabberframes) },
432 	{ "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) },
433 	{ "Rx Fragments", CPSW_STAT(rxfragments) },
434 	{ "Rx Octets", CPSW_STAT(rxoctets) },
435 	{ "Good Tx Frames", CPSW_STAT(txgoodframes) },
436 	{ "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) },
437 	{ "Multicast Tx Frames", CPSW_STAT(txmulticastframes) },
438 	{ "Pause Tx Frames", CPSW_STAT(txpauseframes) },
439 	{ "Deferred Tx Frames", CPSW_STAT(txdeferredframes) },
440 	{ "Collisions", CPSW_STAT(txcollisionframes) },
441 	{ "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) },
442 	{ "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) },
443 	{ "Excessive Collisions", CPSW_STAT(txexcessivecollisions) },
444 	{ "Late Collisions", CPSW_STAT(txlatecollisions) },
445 	{ "Tx Underrun", CPSW_STAT(txunderrun) },
446 	{ "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) },
447 	{ "Tx Octets", CPSW_STAT(txoctets) },
448 	{ "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) },
449 	{ "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) },
450 	{ "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) },
451 	{ "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) },
452 	{ "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) },
453 	{ "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) },
454 	{ "Net Octets", CPSW_STAT(netoctets) },
455 	{ "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) },
456 	{ "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) },
457 	{ "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) },
458 	{ "Rx DMA chan: head_enqueue", CPDMA_RX_STAT(head_enqueue) },
459 	{ "Rx DMA chan: tail_enqueue", CPDMA_RX_STAT(tail_enqueue) },
460 	{ "Rx DMA chan: pad_enqueue", CPDMA_RX_STAT(pad_enqueue) },
461 	{ "Rx DMA chan: misqueued", CPDMA_RX_STAT(misqueued) },
462 	{ "Rx DMA chan: desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) },
463 	{ "Rx DMA chan: pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) },
464 	{ "Rx DMA chan: runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) },
465 	{ "Rx DMA chan: runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) },
466 	{ "Rx DMA chan: empty_dequeue", CPDMA_RX_STAT(empty_dequeue) },
467 	{ "Rx DMA chan: busy_dequeue", CPDMA_RX_STAT(busy_dequeue) },
468 	{ "Rx DMA chan: good_dequeue", CPDMA_RX_STAT(good_dequeue) },
469 	{ "Rx DMA chan: requeue", CPDMA_RX_STAT(requeue) },
470 	{ "Rx DMA chan: teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) },
471 	{ "Tx DMA chan: head_enqueue", CPDMA_TX_STAT(head_enqueue) },
472 	{ "Tx DMA chan: tail_enqueue", CPDMA_TX_STAT(tail_enqueue) },
473 	{ "Tx DMA chan: pad_enqueue", CPDMA_TX_STAT(pad_enqueue) },
474 	{ "Tx DMA chan: misqueued", CPDMA_TX_STAT(misqueued) },
475 	{ "Tx DMA chan: desc_alloc_fail", CPDMA_TX_STAT(desc_alloc_fail) },
476 	{ "Tx DMA chan: pad_alloc_fail", CPDMA_TX_STAT(pad_alloc_fail) },
477 	{ "Tx DMA chan: runt_receive_buf", CPDMA_TX_STAT(runt_receive_buff) },
478 	{ "Tx DMA chan: runt_transmit_buf", CPDMA_TX_STAT(runt_transmit_buff) },
479 	{ "Tx DMA chan: empty_dequeue", CPDMA_TX_STAT(empty_dequeue) },
480 	{ "Tx DMA chan: busy_dequeue", CPDMA_TX_STAT(busy_dequeue) },
481 	{ "Tx DMA chan: good_dequeue", CPDMA_TX_STAT(good_dequeue) },
482 	{ "Tx DMA chan: requeue", CPDMA_TX_STAT(requeue) },
483 	{ "Tx DMA chan: teardown_dequeue", CPDMA_TX_STAT(teardown_dequeue) },
484 };
485 
486 #define CPSW_STATS_LEN	ARRAY_SIZE(cpsw_gstrings_stats)
487 
488 #define napi_to_priv(napi)	container_of(napi, struct cpsw_priv, napi)
489 #define for_each_slave(priv, func, arg...)				\
490 	do {								\
491 		struct cpsw_slave *slave;				\
492 		int n;							\
493 		if (priv->data.dual_emac)				\
494 			(func)((priv)->slaves + priv->emac_port, ##arg);\
495 		else							\
496 			for (n = (priv)->data.slaves,			\
497 					slave = (priv)->slaves;		\
498 					n; n--)				\
499 				(func)(slave++, ##arg);			\
500 	} while (0)
501 #define cpsw_get_slave_ndev(priv, __slave_no__)				\
502 	((__slave_no__ < priv->data.slaves) ?				\
503 		priv->slaves[__slave_no__].ndev : NULL)
504 #define cpsw_get_slave_priv(priv, __slave_no__)				\
505 	(((__slave_no__ < priv->data.slaves) &&				\
506 		(priv->slaves[__slave_no__].ndev)) ?			\
507 		netdev_priv(priv->slaves[__slave_no__].ndev) : NULL)	\
508 
509 #define cpsw_dual_emac_src_port_detect(status, priv, ndev, skb)		\
510 	do {								\
511 		if (!priv->data.dual_emac)				\
512 			break;						\
513 		if (CPDMA_RX_SOURCE_PORT(status) == 1) {		\
514 			ndev = cpsw_get_slave_ndev(priv, 0);		\
515 			priv = netdev_priv(ndev);			\
516 			skb->dev = ndev;				\
517 		} else if (CPDMA_RX_SOURCE_PORT(status) == 2) {		\
518 			ndev = cpsw_get_slave_ndev(priv, 1);		\
519 			priv = netdev_priv(ndev);			\
520 			skb->dev = ndev;				\
521 		}							\
522 	} while (0)
523 #define cpsw_add_mcast(priv, addr)					\
524 	do {								\
525 		if (priv->data.dual_emac) {				\
526 			struct cpsw_slave *slave = priv->slaves +	\
527 						priv->emac_port;	\
528 			int slave_port = cpsw_get_slave_port(priv,	\
529 						slave->slave_num);	\
530 			cpsw_ale_add_mcast(priv->ale, addr,		\
531 				1 << slave_port | ALE_PORT_HOST,	\
532 				ALE_VLAN, slave->port_vlan, 0);		\
533 		} else {						\
534 			cpsw_ale_add_mcast(priv->ale, addr,		\
535 				ALE_ALL_PORTS,				\
536 				0, 0, 0);				\
537 		}							\
538 	} while (0)
539 
540 static inline int cpsw_get_slave_port(struct cpsw_priv *priv, u32 slave_num)
541 {
542 	return slave_num + 1;
543 }
544 
545 static void cpsw_set_promiscious(struct net_device *ndev, bool enable)
546 {
547 	struct cpsw_priv *priv = netdev_priv(ndev);
548 	struct cpsw_ale *ale = priv->ale;
549 	int i;
550 
551 	if (priv->data.dual_emac) {
552 		bool flag = false;
553 
554 		/* Enabling promiscuous mode for one interface will be
555 		 * common for both the interface as the interface shares
556 		 * the same hardware resource.
557 		 */
558 		for (i = 0; i < priv->data.slaves; i++)
559 			if (priv->slaves[i].ndev->flags & IFF_PROMISC)
560 				flag = true;
561 
562 		if (!enable && flag) {
563 			enable = true;
564 			dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n");
565 		}
566 
567 		if (enable) {
568 			/* Enable Bypass */
569 			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1);
570 
571 			dev_dbg(&ndev->dev, "promiscuity enabled\n");
572 		} else {
573 			/* Disable Bypass */
574 			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0);
575 			dev_dbg(&ndev->dev, "promiscuity disabled\n");
576 		}
577 	} else {
578 		if (enable) {
579 			unsigned long timeout = jiffies + HZ;
580 
581 			/* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */
582 			for (i = 0; i <= priv->data.slaves; i++) {
583 				cpsw_ale_control_set(ale, i,
584 						     ALE_PORT_NOLEARN, 1);
585 				cpsw_ale_control_set(ale, i,
586 						     ALE_PORT_NO_SA_UPDATE, 1);
587 			}
588 
589 			/* Clear All Untouched entries */
590 			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
591 			do {
592 				cpu_relax();
593 				if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT))
594 					break;
595 			} while (time_after(timeout, jiffies));
596 			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
597 
598 			/* Clear all mcast from ALE */
599 			cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS, -1);
600 
601 			/* Flood All Unicast Packets to Host port */
602 			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1);
603 			dev_dbg(&ndev->dev, "promiscuity enabled\n");
604 		} else {
605 			/* Don't Flood All Unicast Packets to Host port */
606 			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0);
607 
608 			/* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */
609 			for (i = 0; i <= priv->data.slaves; i++) {
610 				cpsw_ale_control_set(ale, i,
611 						     ALE_PORT_NOLEARN, 0);
612 				cpsw_ale_control_set(ale, i,
613 						     ALE_PORT_NO_SA_UPDATE, 0);
614 			}
615 			dev_dbg(&ndev->dev, "promiscuity disabled\n");
616 		}
617 	}
618 }
619 
620 static void cpsw_ndo_set_rx_mode(struct net_device *ndev)
621 {
622 	struct cpsw_priv *priv = netdev_priv(ndev);
623 	int vid;
624 
625 	if (priv->data.dual_emac)
626 		vid = priv->slaves[priv->emac_port].port_vlan;
627 	else
628 		vid = priv->data.default_vlan;
629 
630 	if (ndev->flags & IFF_PROMISC) {
631 		/* Enable promiscuous mode */
632 		cpsw_set_promiscious(ndev, true);
633 		cpsw_ale_set_allmulti(priv->ale, IFF_ALLMULTI);
634 		return;
635 	} else {
636 		/* Disable promiscuous mode */
637 		cpsw_set_promiscious(ndev, false);
638 	}
639 
640 	/* Restore allmulti on vlans if necessary */
641 	cpsw_ale_set_allmulti(priv->ale, priv->ndev->flags & IFF_ALLMULTI);
642 
643 	/* Clear all mcast from ALE */
644 	cpsw_ale_flush_multicast(priv->ale, ALE_ALL_PORTS, vid);
645 
646 	if (!netdev_mc_empty(ndev)) {
647 		struct netdev_hw_addr *ha;
648 
649 		/* program multicast address list into ALE register */
650 		netdev_for_each_mc_addr(ha, ndev) {
651 			cpsw_add_mcast(priv, (u8 *)ha->addr);
652 		}
653 	}
654 }
655 
656 static void cpsw_intr_enable(struct cpsw_priv *priv)
657 {
658 	__raw_writel(0xFF, &priv->wr_regs->tx_en);
659 	__raw_writel(0xFF, &priv->wr_regs->rx_en);
660 
661 	cpdma_ctlr_int_ctrl(priv->dma, true);
662 	return;
663 }
664 
665 static void cpsw_intr_disable(struct cpsw_priv *priv)
666 {
667 	__raw_writel(0, &priv->wr_regs->tx_en);
668 	__raw_writel(0, &priv->wr_regs->rx_en);
669 
670 	cpdma_ctlr_int_ctrl(priv->dma, false);
671 	return;
672 }
673 
674 static void cpsw_tx_handler(void *token, int len, int status)
675 {
676 	struct sk_buff		*skb = token;
677 	struct net_device	*ndev = skb->dev;
678 	struct cpsw_priv	*priv = netdev_priv(ndev);
679 
680 	/* Check whether the queue is stopped due to stalled tx dma, if the
681 	 * queue is stopped then start the queue as we have free desc for tx
682 	 */
683 	if (unlikely(netif_queue_stopped(ndev)))
684 		netif_wake_queue(ndev);
685 	cpts_tx_timestamp(priv->cpts, skb);
686 	ndev->stats.tx_packets++;
687 	ndev->stats.tx_bytes += len;
688 	dev_kfree_skb_any(skb);
689 }
690 
691 static void cpsw_rx_handler(void *token, int len, int status)
692 {
693 	struct sk_buff		*skb = token;
694 	struct sk_buff		*new_skb;
695 	struct net_device	*ndev = skb->dev;
696 	struct cpsw_priv	*priv = netdev_priv(ndev);
697 	int			ret = 0;
698 
699 	cpsw_dual_emac_src_port_detect(status, priv, ndev, skb);
700 
701 	if (unlikely(status < 0) || unlikely(!netif_running(ndev))) {
702 		bool ndev_status = false;
703 		struct cpsw_slave *slave = priv->slaves;
704 		int n;
705 
706 		if (priv->data.dual_emac) {
707 			/* In dual emac mode check for all interfaces */
708 			for (n = priv->data.slaves; n; n--, slave++)
709 				if (netif_running(slave->ndev))
710 					ndev_status = true;
711 		}
712 
713 		if (ndev_status && (status >= 0)) {
714 			/* The packet received is for the interface which
715 			 * is already down and the other interface is up
716 			 * and running, instead of freeing which results
717 			 * in reducing of the number of rx descriptor in
718 			 * DMA engine, requeue skb back to cpdma.
719 			 */
720 			new_skb = skb;
721 			goto requeue;
722 		}
723 
724 		/* the interface is going down, skbs are purged */
725 		dev_kfree_skb_any(skb);
726 		return;
727 	}
728 
729 	new_skb = netdev_alloc_skb_ip_align(ndev, priv->rx_packet_max);
730 	if (new_skb) {
731 		skb_put(skb, len);
732 		cpts_rx_timestamp(priv->cpts, skb);
733 		skb->protocol = eth_type_trans(skb, ndev);
734 		netif_receive_skb(skb);
735 		ndev->stats.rx_bytes += len;
736 		ndev->stats.rx_packets++;
737 		kmemleak_not_leak(new_skb);
738 	} else {
739 		ndev->stats.rx_dropped++;
740 		new_skb = skb;
741 	}
742 
743 requeue:
744 	ret = cpdma_chan_submit(priv->rxch, new_skb, new_skb->data,
745 			skb_tailroom(new_skb), 0);
746 	if (WARN_ON(ret < 0))
747 		dev_kfree_skb_any(new_skb);
748 }
749 
750 static irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id)
751 {
752 	struct cpsw_priv *priv = dev_id;
753 
754 	writel(0, &priv->wr_regs->tx_en);
755 	cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_TX);
756 
757 	if (priv->quirk_irq) {
758 		disable_irq_nosync(priv->irqs_table[1]);
759 		priv->tx_irq_disabled = true;
760 	}
761 
762 	napi_schedule(&priv->napi_tx);
763 	return IRQ_HANDLED;
764 }
765 
766 static irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id)
767 {
768 	struct cpsw_priv *priv = dev_id;
769 
770 	cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_RX);
771 	writel(0, &priv->wr_regs->rx_en);
772 
773 	if (priv->quirk_irq) {
774 		disable_irq_nosync(priv->irqs_table[0]);
775 		priv->rx_irq_disabled = true;
776 	}
777 
778 	napi_schedule(&priv->napi_rx);
779 	return IRQ_HANDLED;
780 }
781 
782 static int cpsw_tx_poll(struct napi_struct *napi_tx, int budget)
783 {
784 	struct cpsw_priv	*priv = napi_to_priv(napi_tx);
785 	int			num_tx;
786 
787 	num_tx = cpdma_chan_process(priv->txch, budget);
788 	if (num_tx < budget) {
789 		napi_complete(napi_tx);
790 		writel(0xff, &priv->wr_regs->tx_en);
791 		if (priv->quirk_irq && priv->tx_irq_disabled) {
792 			priv->tx_irq_disabled = false;
793 			enable_irq(priv->irqs_table[1]);
794 		}
795 	}
796 
797 	if (num_tx)
798 		cpsw_dbg(priv, intr, "poll %d tx pkts\n", num_tx);
799 
800 	return num_tx;
801 }
802 
803 static int cpsw_rx_poll(struct napi_struct *napi_rx, int budget)
804 {
805 	struct cpsw_priv	*priv = napi_to_priv(napi_rx);
806 	int			num_rx;
807 
808 	num_rx = cpdma_chan_process(priv->rxch, budget);
809 	if (num_rx < budget) {
810 		napi_complete(napi_rx);
811 		writel(0xff, &priv->wr_regs->rx_en);
812 		if (priv->quirk_irq && priv->rx_irq_disabled) {
813 			priv->rx_irq_disabled = false;
814 			enable_irq(priv->irqs_table[0]);
815 		}
816 	}
817 
818 	if (num_rx)
819 		cpsw_dbg(priv, intr, "poll %d rx pkts\n", num_rx);
820 
821 	return num_rx;
822 }
823 
824 static inline void soft_reset(const char *module, void __iomem *reg)
825 {
826 	unsigned long timeout = jiffies + HZ;
827 
828 	__raw_writel(1, reg);
829 	do {
830 		cpu_relax();
831 	} while ((__raw_readl(reg) & 1) && time_after(timeout, jiffies));
832 
833 	WARN(__raw_readl(reg) & 1, "failed to soft-reset %s\n", module);
834 }
835 
836 #define mac_hi(mac)	(((mac)[0] << 0) | ((mac)[1] << 8) |	\
837 			 ((mac)[2] << 16) | ((mac)[3] << 24))
838 #define mac_lo(mac)	(((mac)[4] << 0) | ((mac)[5] << 8))
839 
840 static void cpsw_set_slave_mac(struct cpsw_slave *slave,
841 			       struct cpsw_priv *priv)
842 {
843 	slave_write(slave, mac_hi(priv->mac_addr), SA_HI);
844 	slave_write(slave, mac_lo(priv->mac_addr), SA_LO);
845 }
846 
847 static void _cpsw_adjust_link(struct cpsw_slave *slave,
848 			      struct cpsw_priv *priv, bool *link)
849 {
850 	struct phy_device	*phy = slave->phy;
851 	u32			mac_control = 0;
852 	u32			slave_port;
853 
854 	if (!phy)
855 		return;
856 
857 	slave_port = cpsw_get_slave_port(priv, slave->slave_num);
858 
859 	if (phy->link) {
860 		mac_control = priv->data.mac_control;
861 
862 		/* enable forwarding */
863 		cpsw_ale_control_set(priv->ale, slave_port,
864 				     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
865 
866 		if (phy->speed == 1000)
867 			mac_control |= BIT(7);	/* GIGABITEN	*/
868 		if (phy->duplex)
869 			mac_control |= BIT(0);	/* FULLDUPLEXEN	*/
870 
871 		/* set speed_in input in case RMII mode is used in 100Mbps */
872 		if (phy->speed == 100)
873 			mac_control |= BIT(15);
874 		else if (phy->speed == 10)
875 			mac_control |= BIT(18); /* In Band mode */
876 
877 		if (priv->rx_pause)
878 			mac_control |= BIT(3);
879 
880 		if (priv->tx_pause)
881 			mac_control |= BIT(4);
882 
883 		*link = true;
884 	} else {
885 		mac_control = 0;
886 		/* disable forwarding */
887 		cpsw_ale_control_set(priv->ale, slave_port,
888 				     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
889 	}
890 
891 	if (mac_control != slave->mac_control) {
892 		phy_print_status(phy);
893 		__raw_writel(mac_control, &slave->sliver->mac_control);
894 	}
895 
896 	slave->mac_control = mac_control;
897 }
898 
899 static void cpsw_adjust_link(struct net_device *ndev)
900 {
901 	struct cpsw_priv	*priv = netdev_priv(ndev);
902 	bool			link = false;
903 
904 	for_each_slave(priv, _cpsw_adjust_link, priv, &link);
905 
906 	if (link) {
907 		netif_carrier_on(ndev);
908 		if (netif_running(ndev))
909 			netif_wake_queue(ndev);
910 	} else {
911 		netif_carrier_off(ndev);
912 		netif_stop_queue(ndev);
913 	}
914 }
915 
916 static int cpsw_get_coalesce(struct net_device *ndev,
917 				struct ethtool_coalesce *coal)
918 {
919 	struct cpsw_priv *priv = netdev_priv(ndev);
920 
921 	coal->rx_coalesce_usecs = priv->coal_intvl;
922 	return 0;
923 }
924 
925 static int cpsw_set_coalesce(struct net_device *ndev,
926 				struct ethtool_coalesce *coal)
927 {
928 	struct cpsw_priv *priv = netdev_priv(ndev);
929 	u32 int_ctrl;
930 	u32 num_interrupts = 0;
931 	u32 prescale = 0;
932 	u32 addnl_dvdr = 1;
933 	u32 coal_intvl = 0;
934 
935 	coal_intvl = coal->rx_coalesce_usecs;
936 
937 	int_ctrl =  readl(&priv->wr_regs->int_control);
938 	prescale = priv->bus_freq_mhz * 4;
939 
940 	if (!coal->rx_coalesce_usecs) {
941 		int_ctrl &= ~(CPSW_INTPRESCALE_MASK | CPSW_INTPACEEN);
942 		goto update_return;
943 	}
944 
945 	if (coal_intvl < CPSW_CMINTMIN_INTVL)
946 		coal_intvl = CPSW_CMINTMIN_INTVL;
947 
948 	if (coal_intvl > CPSW_CMINTMAX_INTVL) {
949 		/* Interrupt pacer works with 4us Pulse, we can
950 		 * throttle further by dilating the 4us pulse.
951 		 */
952 		addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale;
953 
954 		if (addnl_dvdr > 1) {
955 			prescale *= addnl_dvdr;
956 			if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr))
957 				coal_intvl = (CPSW_CMINTMAX_INTVL
958 						* addnl_dvdr);
959 		} else {
960 			addnl_dvdr = 1;
961 			coal_intvl = CPSW_CMINTMAX_INTVL;
962 		}
963 	}
964 
965 	num_interrupts = (1000 * addnl_dvdr) / coal_intvl;
966 	writel(num_interrupts, &priv->wr_regs->rx_imax);
967 	writel(num_interrupts, &priv->wr_regs->tx_imax);
968 
969 	int_ctrl |= CPSW_INTPACEEN;
970 	int_ctrl &= (~CPSW_INTPRESCALE_MASK);
971 	int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK);
972 
973 update_return:
974 	writel(int_ctrl, &priv->wr_regs->int_control);
975 
976 	cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl);
977 	if (priv->data.dual_emac) {
978 		int i;
979 
980 		for (i = 0; i < priv->data.slaves; i++) {
981 			priv = netdev_priv(priv->slaves[i].ndev);
982 			priv->coal_intvl = coal_intvl;
983 		}
984 	} else {
985 		priv->coal_intvl = coal_intvl;
986 	}
987 
988 	return 0;
989 }
990 
991 static int cpsw_get_sset_count(struct net_device *ndev, int sset)
992 {
993 	switch (sset) {
994 	case ETH_SS_STATS:
995 		return CPSW_STATS_LEN;
996 	default:
997 		return -EOPNOTSUPP;
998 	}
999 }
1000 
1001 static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1002 {
1003 	u8 *p = data;
1004 	int i;
1005 
1006 	switch (stringset) {
1007 	case ETH_SS_STATS:
1008 		for (i = 0; i < CPSW_STATS_LEN; i++) {
1009 			memcpy(p, cpsw_gstrings_stats[i].stat_string,
1010 			       ETH_GSTRING_LEN);
1011 			p += ETH_GSTRING_LEN;
1012 		}
1013 		break;
1014 	}
1015 }
1016 
1017 static void cpsw_get_ethtool_stats(struct net_device *ndev,
1018 				    struct ethtool_stats *stats, u64 *data)
1019 {
1020 	struct cpsw_priv *priv = netdev_priv(ndev);
1021 	struct cpdma_chan_stats rx_stats;
1022 	struct cpdma_chan_stats tx_stats;
1023 	u32 val;
1024 	u8 *p;
1025 	int i;
1026 
1027 	/* Collect Davinci CPDMA stats for Rx and Tx Channel */
1028 	cpdma_chan_get_stats(priv->rxch, &rx_stats);
1029 	cpdma_chan_get_stats(priv->txch, &tx_stats);
1030 
1031 	for (i = 0; i < CPSW_STATS_LEN; i++) {
1032 		switch (cpsw_gstrings_stats[i].type) {
1033 		case CPSW_STATS:
1034 			val = readl(priv->hw_stats +
1035 				    cpsw_gstrings_stats[i].stat_offset);
1036 			data[i] = val;
1037 			break;
1038 
1039 		case CPDMA_RX_STATS:
1040 			p = (u8 *)&rx_stats +
1041 				cpsw_gstrings_stats[i].stat_offset;
1042 			data[i] = *(u32 *)p;
1043 			break;
1044 
1045 		case CPDMA_TX_STATS:
1046 			p = (u8 *)&tx_stats +
1047 				cpsw_gstrings_stats[i].stat_offset;
1048 			data[i] = *(u32 *)p;
1049 			break;
1050 		}
1051 	}
1052 }
1053 
1054 static int cpsw_common_res_usage_state(struct cpsw_priv *priv)
1055 {
1056 	u32 i;
1057 	u32 usage_count = 0;
1058 
1059 	if (!priv->data.dual_emac)
1060 		return 0;
1061 
1062 	for (i = 0; i < priv->data.slaves; i++)
1063 		if (priv->slaves[i].open_stat)
1064 			usage_count++;
1065 
1066 	return usage_count;
1067 }
1068 
1069 static inline int cpsw_tx_packet_submit(struct net_device *ndev,
1070 			struct cpsw_priv *priv, struct sk_buff *skb)
1071 {
1072 	if (!priv->data.dual_emac)
1073 		return cpdma_chan_submit(priv->txch, skb, skb->data,
1074 				  skb->len, 0);
1075 
1076 	if (ndev == cpsw_get_slave_ndev(priv, 0))
1077 		return cpdma_chan_submit(priv->txch, skb, skb->data,
1078 				  skb->len, 1);
1079 	else
1080 		return cpdma_chan_submit(priv->txch, skb, skb->data,
1081 				  skb->len, 2);
1082 }
1083 
1084 static inline void cpsw_add_dual_emac_def_ale_entries(
1085 		struct cpsw_priv *priv, struct cpsw_slave *slave,
1086 		u32 slave_port)
1087 {
1088 	u32 port_mask = 1 << slave_port | ALE_PORT_HOST;
1089 
1090 	if (priv->version == CPSW_VERSION_1)
1091 		slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN);
1092 	else
1093 		slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN);
1094 	cpsw_ale_add_vlan(priv->ale, slave->port_vlan, port_mask,
1095 			  port_mask, port_mask, 0);
1096 	cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast,
1097 			   port_mask, ALE_VLAN, slave->port_vlan, 0);
1098 	cpsw_ale_add_ucast(priv->ale, priv->mac_addr,
1099 		HOST_PORT_NUM, ALE_VLAN | ALE_SECURE, slave->port_vlan);
1100 }
1101 
1102 static void soft_reset_slave(struct cpsw_slave *slave)
1103 {
1104 	char name[32];
1105 
1106 	snprintf(name, sizeof(name), "slave-%d", slave->slave_num);
1107 	soft_reset(name, &slave->sliver->soft_reset);
1108 }
1109 
1110 static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv)
1111 {
1112 	u32 slave_port;
1113 
1114 	soft_reset_slave(slave);
1115 
1116 	/* setup priority mapping */
1117 	__raw_writel(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map);
1118 
1119 	switch (priv->version) {
1120 	case CPSW_VERSION_1:
1121 		slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP);
1122 		break;
1123 	case CPSW_VERSION_2:
1124 	case CPSW_VERSION_3:
1125 	case CPSW_VERSION_4:
1126 		slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP);
1127 		break;
1128 	}
1129 
1130 	/* setup max packet size, and mac address */
1131 	__raw_writel(priv->rx_packet_max, &slave->sliver->rx_maxlen);
1132 	cpsw_set_slave_mac(slave, priv);
1133 
1134 	slave->mac_control = 0;	/* no link yet */
1135 
1136 	slave_port = cpsw_get_slave_port(priv, slave->slave_num);
1137 
1138 	if (priv->data.dual_emac)
1139 		cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port);
1140 	else
1141 		cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast,
1142 				   1 << slave_port, 0, 0, ALE_MCAST_FWD_2);
1143 
1144 	if (slave->data->phy_node) {
1145 		slave->phy = of_phy_connect(priv->ndev, slave->data->phy_node,
1146 				 &cpsw_adjust_link, 0, slave->data->phy_if);
1147 		if (!slave->phy) {
1148 			dev_err(priv->dev, "phy \"%s\" not found on slave %d\n",
1149 				slave->data->phy_node->full_name,
1150 				slave->slave_num);
1151 			return;
1152 		}
1153 	} else {
1154 		slave->phy = phy_connect(priv->ndev, slave->data->phy_id,
1155 				 &cpsw_adjust_link, slave->data->phy_if);
1156 		if (IS_ERR(slave->phy)) {
1157 			dev_err(priv->dev,
1158 				"phy \"%s\" not found on slave %d, err %ld\n",
1159 				slave->data->phy_id, slave->slave_num,
1160 				PTR_ERR(slave->phy));
1161 			slave->phy = NULL;
1162 			return;
1163 		}
1164 	}
1165 
1166 	phy_attached_info(slave->phy);
1167 
1168 	phy_start(slave->phy);
1169 
1170 	/* Configure GMII_SEL register */
1171 	cpsw_phy_sel(&priv->pdev->dev, slave->phy->interface, slave->slave_num);
1172 }
1173 
1174 static inline void cpsw_add_default_vlan(struct cpsw_priv *priv)
1175 {
1176 	const int vlan = priv->data.default_vlan;
1177 	u32 reg;
1178 	int i;
1179 	int unreg_mcast_mask;
1180 
1181 	reg = (priv->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN :
1182 	       CPSW2_PORT_VLAN;
1183 
1184 	writel(vlan, &priv->host_port_regs->port_vlan);
1185 
1186 	for (i = 0; i < priv->data.slaves; i++)
1187 		slave_write(priv->slaves + i, vlan, reg);
1188 
1189 	if (priv->ndev->flags & IFF_ALLMULTI)
1190 		unreg_mcast_mask = ALE_ALL_PORTS;
1191 	else
1192 		unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
1193 
1194 	cpsw_ale_add_vlan(priv->ale, vlan, ALE_ALL_PORTS,
1195 			  ALE_ALL_PORTS, ALE_ALL_PORTS,
1196 			  unreg_mcast_mask);
1197 }
1198 
1199 static void cpsw_init_host_port(struct cpsw_priv *priv)
1200 {
1201 	u32 control_reg;
1202 	u32 fifo_mode;
1203 
1204 	/* soft reset the controller and initialize ale */
1205 	soft_reset("cpsw", &priv->regs->soft_reset);
1206 	cpsw_ale_start(priv->ale);
1207 
1208 	/* switch to vlan unaware mode */
1209 	cpsw_ale_control_set(priv->ale, HOST_PORT_NUM, ALE_VLAN_AWARE,
1210 			     CPSW_ALE_VLAN_AWARE);
1211 	control_reg = readl(&priv->regs->control);
1212 	control_reg |= CPSW_VLAN_AWARE;
1213 	writel(control_reg, &priv->regs->control);
1214 	fifo_mode = (priv->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE :
1215 		     CPSW_FIFO_NORMAL_MODE;
1216 	writel(fifo_mode, &priv->host_port_regs->tx_in_ctl);
1217 
1218 	/* setup host port priority mapping */
1219 	__raw_writel(CPDMA_TX_PRIORITY_MAP,
1220 		     &priv->host_port_regs->cpdma_tx_pri_map);
1221 	__raw_writel(0, &priv->host_port_regs->cpdma_rx_chan_map);
1222 
1223 	cpsw_ale_control_set(priv->ale, HOST_PORT_NUM,
1224 			     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
1225 
1226 	if (!priv->data.dual_emac) {
1227 		cpsw_ale_add_ucast(priv->ale, priv->mac_addr, HOST_PORT_NUM,
1228 				   0, 0);
1229 		cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast,
1230 				   ALE_PORT_HOST, 0, 0, ALE_MCAST_FWD_2);
1231 	}
1232 }
1233 
1234 static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_priv *priv)
1235 {
1236 	u32 slave_port;
1237 
1238 	slave_port = cpsw_get_slave_port(priv, slave->slave_num);
1239 
1240 	if (!slave->phy)
1241 		return;
1242 	phy_stop(slave->phy);
1243 	phy_disconnect(slave->phy);
1244 	slave->phy = NULL;
1245 	cpsw_ale_control_set(priv->ale, slave_port,
1246 			     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1247 	soft_reset_slave(slave);
1248 }
1249 
1250 static int cpsw_ndo_open(struct net_device *ndev)
1251 {
1252 	struct cpsw_priv *priv = netdev_priv(ndev);
1253 	int i, ret;
1254 	u32 reg;
1255 
1256 	ret = pm_runtime_get_sync(&priv->pdev->dev);
1257 	if (ret < 0) {
1258 		pm_runtime_put_noidle(&priv->pdev->dev);
1259 		return ret;
1260 	}
1261 
1262 	if (!cpsw_common_res_usage_state(priv))
1263 		cpsw_intr_disable(priv);
1264 	netif_carrier_off(ndev);
1265 
1266 	reg = priv->version;
1267 
1268 	dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n",
1269 		 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg),
1270 		 CPSW_RTL_VERSION(reg));
1271 
1272 	/* initialize host and slave ports */
1273 	if (!cpsw_common_res_usage_state(priv))
1274 		cpsw_init_host_port(priv);
1275 	for_each_slave(priv, cpsw_slave_open, priv);
1276 
1277 	/* Add default VLAN */
1278 	if (!priv->data.dual_emac)
1279 		cpsw_add_default_vlan(priv);
1280 	else
1281 		cpsw_ale_add_vlan(priv->ale, priv->data.default_vlan,
1282 				  ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0);
1283 
1284 	if (!cpsw_common_res_usage_state(priv)) {
1285 		struct cpsw_priv *priv_sl0 = cpsw_get_slave_priv(priv, 0);
1286 		int buf_num;
1287 
1288 		/* setup tx dma to fixed prio and zero offset */
1289 		cpdma_control_set(priv->dma, CPDMA_TX_PRIO_FIXED, 1);
1290 		cpdma_control_set(priv->dma, CPDMA_RX_BUFFER_OFFSET, 0);
1291 
1292 		/* disable priority elevation */
1293 		__raw_writel(0, &priv->regs->ptype);
1294 
1295 		/* enable statistics collection only on all ports */
1296 		__raw_writel(0x7, &priv->regs->stat_port_en);
1297 
1298 		/* Enable internal fifo flow control */
1299 		writel(0x7, &priv->regs->flow_control);
1300 
1301 		napi_enable(&priv_sl0->napi_rx);
1302 		napi_enable(&priv_sl0->napi_tx);
1303 
1304 		if (priv_sl0->tx_irq_disabled) {
1305 			priv_sl0->tx_irq_disabled = false;
1306 			enable_irq(priv->irqs_table[1]);
1307 		}
1308 
1309 		if (priv_sl0->rx_irq_disabled) {
1310 			priv_sl0->rx_irq_disabled = false;
1311 			enable_irq(priv->irqs_table[0]);
1312 		}
1313 
1314 		buf_num = cpdma_chan_get_rx_buf_num(priv->dma);
1315 		for (i = 0; i < buf_num; i++) {
1316 			struct sk_buff *skb;
1317 
1318 			ret = -ENOMEM;
1319 			skb = __netdev_alloc_skb_ip_align(priv->ndev,
1320 					priv->rx_packet_max, GFP_KERNEL);
1321 			if (!skb)
1322 				goto err_cleanup;
1323 			ret = cpdma_chan_submit(priv->rxch, skb, skb->data,
1324 					skb_tailroom(skb), 0);
1325 			if (ret < 0) {
1326 				kfree_skb(skb);
1327 				goto err_cleanup;
1328 			}
1329 			kmemleak_not_leak(skb);
1330 		}
1331 		/* continue even if we didn't manage to submit all
1332 		 * receive descs
1333 		 */
1334 		cpsw_info(priv, ifup, "submitted %d rx descriptors\n", i);
1335 
1336 		if (cpts_register(&priv->pdev->dev, priv->cpts,
1337 				  priv->data.cpts_clock_mult,
1338 				  priv->data.cpts_clock_shift))
1339 			dev_err(priv->dev, "error registering cpts device\n");
1340 
1341 	}
1342 
1343 	/* Enable Interrupt pacing if configured */
1344 	if (priv->coal_intvl != 0) {
1345 		struct ethtool_coalesce coal;
1346 
1347 		coal.rx_coalesce_usecs = priv->coal_intvl;
1348 		cpsw_set_coalesce(ndev, &coal);
1349 	}
1350 
1351 	cpdma_ctlr_start(priv->dma);
1352 	cpsw_intr_enable(priv);
1353 
1354 	if (priv->data.dual_emac)
1355 		priv->slaves[priv->emac_port].open_stat = true;
1356 	return 0;
1357 
1358 err_cleanup:
1359 	cpdma_ctlr_stop(priv->dma);
1360 	for_each_slave(priv, cpsw_slave_stop, priv);
1361 	pm_runtime_put_sync(&priv->pdev->dev);
1362 	netif_carrier_off(priv->ndev);
1363 	return ret;
1364 }
1365 
1366 static int cpsw_ndo_stop(struct net_device *ndev)
1367 {
1368 	struct cpsw_priv *priv = netdev_priv(ndev);
1369 
1370 	cpsw_info(priv, ifdown, "shutting down cpsw device\n");
1371 	netif_stop_queue(priv->ndev);
1372 	netif_carrier_off(priv->ndev);
1373 
1374 	if (cpsw_common_res_usage_state(priv) <= 1) {
1375 		struct cpsw_priv *priv_sl0 = cpsw_get_slave_priv(priv, 0);
1376 
1377 		napi_disable(&priv_sl0->napi_rx);
1378 		napi_disable(&priv_sl0->napi_tx);
1379 		cpts_unregister(priv->cpts);
1380 		cpsw_intr_disable(priv);
1381 		cpdma_ctlr_stop(priv->dma);
1382 		cpsw_ale_stop(priv->ale);
1383 	}
1384 	for_each_slave(priv, cpsw_slave_stop, priv);
1385 	pm_runtime_put_sync(&priv->pdev->dev);
1386 	if (priv->data.dual_emac)
1387 		priv->slaves[priv->emac_port].open_stat = false;
1388 	return 0;
1389 }
1390 
1391 static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb,
1392 				       struct net_device *ndev)
1393 {
1394 	struct cpsw_priv *priv = netdev_priv(ndev);
1395 	int ret;
1396 
1397 	netif_trans_update(ndev);
1398 
1399 	if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) {
1400 		cpsw_err(priv, tx_err, "packet pad failed\n");
1401 		ndev->stats.tx_dropped++;
1402 		return NETDEV_TX_OK;
1403 	}
1404 
1405 	if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
1406 				priv->cpts->tx_enable)
1407 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1408 
1409 	skb_tx_timestamp(skb);
1410 
1411 	ret = cpsw_tx_packet_submit(ndev, priv, skb);
1412 	if (unlikely(ret != 0)) {
1413 		cpsw_err(priv, tx_err, "desc submit failed\n");
1414 		goto fail;
1415 	}
1416 
1417 	/* If there is no more tx desc left free then we need to
1418 	 * tell the kernel to stop sending us tx frames.
1419 	 */
1420 	if (unlikely(!cpdma_check_free_tx_desc(priv->txch)))
1421 		netif_stop_queue(ndev);
1422 
1423 	return NETDEV_TX_OK;
1424 fail:
1425 	ndev->stats.tx_dropped++;
1426 	netif_stop_queue(ndev);
1427 	return NETDEV_TX_BUSY;
1428 }
1429 
1430 #ifdef CONFIG_TI_CPTS
1431 
1432 static void cpsw_hwtstamp_v1(struct cpsw_priv *priv)
1433 {
1434 	struct cpsw_slave *slave = &priv->slaves[priv->data.active_slave];
1435 	u32 ts_en, seq_id;
1436 
1437 	if (!priv->cpts->tx_enable && !priv->cpts->rx_enable) {
1438 		slave_write(slave, 0, CPSW1_TS_CTL);
1439 		return;
1440 	}
1441 
1442 	seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588;
1443 	ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS;
1444 
1445 	if (priv->cpts->tx_enable)
1446 		ts_en |= CPSW_V1_TS_TX_EN;
1447 
1448 	if (priv->cpts->rx_enable)
1449 		ts_en |= CPSW_V1_TS_RX_EN;
1450 
1451 	slave_write(slave, ts_en, CPSW1_TS_CTL);
1452 	slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE);
1453 }
1454 
1455 static void cpsw_hwtstamp_v2(struct cpsw_priv *priv)
1456 {
1457 	struct cpsw_slave *slave;
1458 	u32 ctrl, mtype;
1459 
1460 	if (priv->data.dual_emac)
1461 		slave = &priv->slaves[priv->emac_port];
1462 	else
1463 		slave = &priv->slaves[priv->data.active_slave];
1464 
1465 	ctrl = slave_read(slave, CPSW2_CONTROL);
1466 	switch (priv->version) {
1467 	case CPSW_VERSION_2:
1468 		ctrl &= ~CTRL_V2_ALL_TS_MASK;
1469 
1470 		if (priv->cpts->tx_enable)
1471 			ctrl |= CTRL_V2_TX_TS_BITS;
1472 
1473 		if (priv->cpts->rx_enable)
1474 			ctrl |= CTRL_V2_RX_TS_BITS;
1475 		break;
1476 	case CPSW_VERSION_3:
1477 	default:
1478 		ctrl &= ~CTRL_V3_ALL_TS_MASK;
1479 
1480 		if (priv->cpts->tx_enable)
1481 			ctrl |= CTRL_V3_TX_TS_BITS;
1482 
1483 		if (priv->cpts->rx_enable)
1484 			ctrl |= CTRL_V3_RX_TS_BITS;
1485 		break;
1486 	}
1487 
1488 	mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS;
1489 
1490 	slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE);
1491 	slave_write(slave, ctrl, CPSW2_CONTROL);
1492 	__raw_writel(ETH_P_1588, &priv->regs->ts_ltype);
1493 }
1494 
1495 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
1496 {
1497 	struct cpsw_priv *priv = netdev_priv(dev);
1498 	struct cpts *cpts = priv->cpts;
1499 	struct hwtstamp_config cfg;
1500 
1501 	if (priv->version != CPSW_VERSION_1 &&
1502 	    priv->version != CPSW_VERSION_2 &&
1503 	    priv->version != CPSW_VERSION_3)
1504 		return -EOPNOTSUPP;
1505 
1506 	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1507 		return -EFAULT;
1508 
1509 	/* reserved for future extensions */
1510 	if (cfg.flags)
1511 		return -EINVAL;
1512 
1513 	if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON)
1514 		return -ERANGE;
1515 
1516 	switch (cfg.rx_filter) {
1517 	case HWTSTAMP_FILTER_NONE:
1518 		cpts->rx_enable = 0;
1519 		break;
1520 	case HWTSTAMP_FILTER_ALL:
1521 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1522 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1523 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1524 		return -ERANGE;
1525 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1526 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1527 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1528 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1529 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1530 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1531 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1532 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1533 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1534 		cpts->rx_enable = 1;
1535 		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1536 		break;
1537 	default:
1538 		return -ERANGE;
1539 	}
1540 
1541 	cpts->tx_enable = cfg.tx_type == HWTSTAMP_TX_ON;
1542 
1543 	switch (priv->version) {
1544 	case CPSW_VERSION_1:
1545 		cpsw_hwtstamp_v1(priv);
1546 		break;
1547 	case CPSW_VERSION_2:
1548 	case CPSW_VERSION_3:
1549 		cpsw_hwtstamp_v2(priv);
1550 		break;
1551 	default:
1552 		WARN_ON(1);
1553 	}
1554 
1555 	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1556 }
1557 
1558 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
1559 {
1560 	struct cpsw_priv *priv = netdev_priv(dev);
1561 	struct cpts *cpts = priv->cpts;
1562 	struct hwtstamp_config cfg;
1563 
1564 	if (priv->version != CPSW_VERSION_1 &&
1565 	    priv->version != CPSW_VERSION_2 &&
1566 	    priv->version != CPSW_VERSION_3)
1567 		return -EOPNOTSUPP;
1568 
1569 	cfg.flags = 0;
1570 	cfg.tx_type = cpts->tx_enable ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
1571 	cfg.rx_filter = (cpts->rx_enable ?
1572 			 HWTSTAMP_FILTER_PTP_V2_EVENT : HWTSTAMP_FILTER_NONE);
1573 
1574 	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1575 }
1576 
1577 #endif /*CONFIG_TI_CPTS*/
1578 
1579 static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
1580 {
1581 	struct cpsw_priv *priv = netdev_priv(dev);
1582 	int slave_no = cpsw_slave_index(priv);
1583 
1584 	if (!netif_running(dev))
1585 		return -EINVAL;
1586 
1587 	switch (cmd) {
1588 #ifdef CONFIG_TI_CPTS
1589 	case SIOCSHWTSTAMP:
1590 		return cpsw_hwtstamp_set(dev, req);
1591 	case SIOCGHWTSTAMP:
1592 		return cpsw_hwtstamp_get(dev, req);
1593 #endif
1594 	}
1595 
1596 	if (!priv->slaves[slave_no].phy)
1597 		return -EOPNOTSUPP;
1598 	return phy_mii_ioctl(priv->slaves[slave_no].phy, req, cmd);
1599 }
1600 
1601 static void cpsw_ndo_tx_timeout(struct net_device *ndev)
1602 {
1603 	struct cpsw_priv *priv = netdev_priv(ndev);
1604 
1605 	cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n");
1606 	ndev->stats.tx_errors++;
1607 	cpsw_intr_disable(priv);
1608 	cpdma_chan_stop(priv->txch);
1609 	cpdma_chan_start(priv->txch);
1610 	cpsw_intr_enable(priv);
1611 }
1612 
1613 static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p)
1614 {
1615 	struct cpsw_priv *priv = netdev_priv(ndev);
1616 	struct sockaddr *addr = (struct sockaddr *)p;
1617 	int flags = 0;
1618 	u16 vid = 0;
1619 	int ret;
1620 
1621 	if (!is_valid_ether_addr(addr->sa_data))
1622 		return -EADDRNOTAVAIL;
1623 
1624 	ret = pm_runtime_get_sync(&priv->pdev->dev);
1625 	if (ret < 0) {
1626 		pm_runtime_put_noidle(&priv->pdev->dev);
1627 		return ret;
1628 	}
1629 
1630 	if (priv->data.dual_emac) {
1631 		vid = priv->slaves[priv->emac_port].port_vlan;
1632 		flags = ALE_VLAN;
1633 	}
1634 
1635 	cpsw_ale_del_ucast(priv->ale, priv->mac_addr, HOST_PORT_NUM,
1636 			   flags, vid);
1637 	cpsw_ale_add_ucast(priv->ale, addr->sa_data, HOST_PORT_NUM,
1638 			   flags, vid);
1639 
1640 	memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
1641 	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
1642 	for_each_slave(priv, cpsw_set_slave_mac, priv);
1643 
1644 	pm_runtime_put(&priv->pdev->dev);
1645 
1646 	return 0;
1647 }
1648 
1649 #ifdef CONFIG_NET_POLL_CONTROLLER
1650 static void cpsw_ndo_poll_controller(struct net_device *ndev)
1651 {
1652 	struct cpsw_priv *priv = netdev_priv(ndev);
1653 
1654 	cpsw_intr_disable(priv);
1655 	cpsw_rx_interrupt(priv->irqs_table[0], priv);
1656 	cpsw_tx_interrupt(priv->irqs_table[1], priv);
1657 	cpsw_intr_enable(priv);
1658 }
1659 #endif
1660 
1661 static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv,
1662 				unsigned short vid)
1663 {
1664 	int ret;
1665 	int unreg_mcast_mask = 0;
1666 	u32 port_mask;
1667 
1668 	if (priv->data.dual_emac) {
1669 		port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST;
1670 
1671 		if (priv->ndev->flags & IFF_ALLMULTI)
1672 			unreg_mcast_mask = port_mask;
1673 	} else {
1674 		port_mask = ALE_ALL_PORTS;
1675 
1676 		if (priv->ndev->flags & IFF_ALLMULTI)
1677 			unreg_mcast_mask = ALE_ALL_PORTS;
1678 		else
1679 			unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
1680 	}
1681 
1682 	ret = cpsw_ale_add_vlan(priv->ale, vid, port_mask, 0, port_mask,
1683 				unreg_mcast_mask);
1684 	if (ret != 0)
1685 		return ret;
1686 
1687 	ret = cpsw_ale_add_ucast(priv->ale, priv->mac_addr,
1688 				 HOST_PORT_NUM, ALE_VLAN, vid);
1689 	if (ret != 0)
1690 		goto clean_vid;
1691 
1692 	ret = cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast,
1693 				 port_mask, ALE_VLAN, vid, 0);
1694 	if (ret != 0)
1695 		goto clean_vlan_ucast;
1696 	return 0;
1697 
1698 clean_vlan_ucast:
1699 	cpsw_ale_del_ucast(priv->ale, priv->mac_addr,
1700 			   HOST_PORT_NUM, ALE_VLAN, vid);
1701 clean_vid:
1702 	cpsw_ale_del_vlan(priv->ale, vid, 0);
1703 	return ret;
1704 }
1705 
1706 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
1707 				    __be16 proto, u16 vid)
1708 {
1709 	struct cpsw_priv *priv = netdev_priv(ndev);
1710 	int ret;
1711 
1712 	if (vid == priv->data.default_vlan)
1713 		return 0;
1714 
1715 	ret = pm_runtime_get_sync(&priv->pdev->dev);
1716 	if (ret < 0) {
1717 		pm_runtime_put_noidle(&priv->pdev->dev);
1718 		return ret;
1719 	}
1720 
1721 	if (priv->data.dual_emac) {
1722 		/* In dual EMAC, reserved VLAN id should not be used for
1723 		 * creating VLAN interfaces as this can break the dual
1724 		 * EMAC port separation
1725 		 */
1726 		int i;
1727 
1728 		for (i = 0; i < priv->data.slaves; i++) {
1729 			if (vid == priv->slaves[i].port_vlan)
1730 				return -EINVAL;
1731 		}
1732 	}
1733 
1734 	dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid);
1735 	ret = cpsw_add_vlan_ale_entry(priv, vid);
1736 
1737 	pm_runtime_put(&priv->pdev->dev);
1738 	return ret;
1739 }
1740 
1741 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev,
1742 				     __be16 proto, u16 vid)
1743 {
1744 	struct cpsw_priv *priv = netdev_priv(ndev);
1745 	int ret;
1746 
1747 	if (vid == priv->data.default_vlan)
1748 		return 0;
1749 
1750 	ret = pm_runtime_get_sync(&priv->pdev->dev);
1751 	if (ret < 0) {
1752 		pm_runtime_put_noidle(&priv->pdev->dev);
1753 		return ret;
1754 	}
1755 
1756 	if (priv->data.dual_emac) {
1757 		int i;
1758 
1759 		for (i = 0; i < priv->data.slaves; i++) {
1760 			if (vid == priv->slaves[i].port_vlan)
1761 				return -EINVAL;
1762 		}
1763 	}
1764 
1765 	dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid);
1766 	ret = cpsw_ale_del_vlan(priv->ale, vid, 0);
1767 	if (ret != 0)
1768 		return ret;
1769 
1770 	ret = cpsw_ale_del_ucast(priv->ale, priv->mac_addr,
1771 				 HOST_PORT_NUM, ALE_VLAN, vid);
1772 	if (ret != 0)
1773 		return ret;
1774 
1775 	ret = cpsw_ale_del_mcast(priv->ale, priv->ndev->broadcast,
1776 				 0, ALE_VLAN, vid);
1777 	pm_runtime_put(&priv->pdev->dev);
1778 	return ret;
1779 }
1780 
1781 static const struct net_device_ops cpsw_netdev_ops = {
1782 	.ndo_open		= cpsw_ndo_open,
1783 	.ndo_stop		= cpsw_ndo_stop,
1784 	.ndo_start_xmit		= cpsw_ndo_start_xmit,
1785 	.ndo_set_mac_address	= cpsw_ndo_set_mac_address,
1786 	.ndo_do_ioctl		= cpsw_ndo_ioctl,
1787 	.ndo_validate_addr	= eth_validate_addr,
1788 	.ndo_change_mtu		= eth_change_mtu,
1789 	.ndo_tx_timeout		= cpsw_ndo_tx_timeout,
1790 	.ndo_set_rx_mode	= cpsw_ndo_set_rx_mode,
1791 #ifdef CONFIG_NET_POLL_CONTROLLER
1792 	.ndo_poll_controller	= cpsw_ndo_poll_controller,
1793 #endif
1794 	.ndo_vlan_rx_add_vid	= cpsw_ndo_vlan_rx_add_vid,
1795 	.ndo_vlan_rx_kill_vid	= cpsw_ndo_vlan_rx_kill_vid,
1796 };
1797 
1798 static int cpsw_get_regs_len(struct net_device *ndev)
1799 {
1800 	struct cpsw_priv *priv = netdev_priv(ndev);
1801 
1802 	return priv->data.ale_entries * ALE_ENTRY_WORDS * sizeof(u32);
1803 }
1804 
1805 static void cpsw_get_regs(struct net_device *ndev,
1806 			  struct ethtool_regs *regs, void *p)
1807 {
1808 	struct cpsw_priv *priv = netdev_priv(ndev);
1809 	u32 *reg = p;
1810 
1811 	/* update CPSW IP version */
1812 	regs->version = priv->version;
1813 
1814 	cpsw_ale_dump(priv->ale, reg);
1815 }
1816 
1817 static void cpsw_get_drvinfo(struct net_device *ndev,
1818 			     struct ethtool_drvinfo *info)
1819 {
1820 	struct cpsw_priv *priv = netdev_priv(ndev);
1821 
1822 	strlcpy(info->driver, "cpsw", sizeof(info->driver));
1823 	strlcpy(info->version, "1.0", sizeof(info->version));
1824 	strlcpy(info->bus_info, priv->pdev->name, sizeof(info->bus_info));
1825 }
1826 
1827 static u32 cpsw_get_msglevel(struct net_device *ndev)
1828 {
1829 	struct cpsw_priv *priv = netdev_priv(ndev);
1830 	return priv->msg_enable;
1831 }
1832 
1833 static void cpsw_set_msglevel(struct net_device *ndev, u32 value)
1834 {
1835 	struct cpsw_priv *priv = netdev_priv(ndev);
1836 	priv->msg_enable = value;
1837 }
1838 
1839 static int cpsw_get_ts_info(struct net_device *ndev,
1840 			    struct ethtool_ts_info *info)
1841 {
1842 #ifdef CONFIG_TI_CPTS
1843 	struct cpsw_priv *priv = netdev_priv(ndev);
1844 
1845 	info->so_timestamping =
1846 		SOF_TIMESTAMPING_TX_HARDWARE |
1847 		SOF_TIMESTAMPING_TX_SOFTWARE |
1848 		SOF_TIMESTAMPING_RX_HARDWARE |
1849 		SOF_TIMESTAMPING_RX_SOFTWARE |
1850 		SOF_TIMESTAMPING_SOFTWARE |
1851 		SOF_TIMESTAMPING_RAW_HARDWARE;
1852 	info->phc_index = priv->cpts->phc_index;
1853 	info->tx_types =
1854 		(1 << HWTSTAMP_TX_OFF) |
1855 		(1 << HWTSTAMP_TX_ON);
1856 	info->rx_filters =
1857 		(1 << HWTSTAMP_FILTER_NONE) |
1858 		(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
1859 #else
1860 	info->so_timestamping =
1861 		SOF_TIMESTAMPING_TX_SOFTWARE |
1862 		SOF_TIMESTAMPING_RX_SOFTWARE |
1863 		SOF_TIMESTAMPING_SOFTWARE;
1864 	info->phc_index = -1;
1865 	info->tx_types = 0;
1866 	info->rx_filters = 0;
1867 #endif
1868 	return 0;
1869 }
1870 
1871 static int cpsw_get_settings(struct net_device *ndev,
1872 			     struct ethtool_cmd *ecmd)
1873 {
1874 	struct cpsw_priv *priv = netdev_priv(ndev);
1875 	int slave_no = cpsw_slave_index(priv);
1876 
1877 	if (priv->slaves[slave_no].phy)
1878 		return phy_ethtool_gset(priv->slaves[slave_no].phy, ecmd);
1879 	else
1880 		return -EOPNOTSUPP;
1881 }
1882 
1883 static int cpsw_set_settings(struct net_device *ndev, struct ethtool_cmd *ecmd)
1884 {
1885 	struct cpsw_priv *priv = netdev_priv(ndev);
1886 	int slave_no = cpsw_slave_index(priv);
1887 
1888 	if (priv->slaves[slave_no].phy)
1889 		return phy_ethtool_sset(priv->slaves[slave_no].phy, ecmd);
1890 	else
1891 		return -EOPNOTSUPP;
1892 }
1893 
1894 static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1895 {
1896 	struct cpsw_priv *priv = netdev_priv(ndev);
1897 	int slave_no = cpsw_slave_index(priv);
1898 
1899 	wol->supported = 0;
1900 	wol->wolopts = 0;
1901 
1902 	if (priv->slaves[slave_no].phy)
1903 		phy_ethtool_get_wol(priv->slaves[slave_no].phy, wol);
1904 }
1905 
1906 static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1907 {
1908 	struct cpsw_priv *priv = netdev_priv(ndev);
1909 	int slave_no = cpsw_slave_index(priv);
1910 
1911 	if (priv->slaves[slave_no].phy)
1912 		return phy_ethtool_set_wol(priv->slaves[slave_no].phy, wol);
1913 	else
1914 		return -EOPNOTSUPP;
1915 }
1916 
1917 static void cpsw_get_pauseparam(struct net_device *ndev,
1918 				struct ethtool_pauseparam *pause)
1919 {
1920 	struct cpsw_priv *priv = netdev_priv(ndev);
1921 
1922 	pause->autoneg = AUTONEG_DISABLE;
1923 	pause->rx_pause = priv->rx_pause ? true : false;
1924 	pause->tx_pause = priv->tx_pause ? true : false;
1925 }
1926 
1927 static int cpsw_set_pauseparam(struct net_device *ndev,
1928 			       struct ethtool_pauseparam *pause)
1929 {
1930 	struct cpsw_priv *priv = netdev_priv(ndev);
1931 	bool link;
1932 
1933 	priv->rx_pause = pause->rx_pause ? true : false;
1934 	priv->tx_pause = pause->tx_pause ? true : false;
1935 
1936 	for_each_slave(priv, _cpsw_adjust_link, priv, &link);
1937 	return 0;
1938 }
1939 
1940 static int cpsw_ethtool_op_begin(struct net_device *ndev)
1941 {
1942 	struct cpsw_priv *priv = netdev_priv(ndev);
1943 	int ret;
1944 
1945 	ret = pm_runtime_get_sync(&priv->pdev->dev);
1946 	if (ret < 0) {
1947 		cpsw_err(priv, drv, "ethtool begin failed %d\n", ret);
1948 		pm_runtime_put_noidle(&priv->pdev->dev);
1949 	}
1950 
1951 	return ret;
1952 }
1953 
1954 static void cpsw_ethtool_op_complete(struct net_device *ndev)
1955 {
1956 	struct cpsw_priv *priv = netdev_priv(ndev);
1957 	int ret;
1958 
1959 	ret = pm_runtime_put(&priv->pdev->dev);
1960 	if (ret < 0)
1961 		cpsw_err(priv, drv, "ethtool complete failed %d\n", ret);
1962 }
1963 
1964 static const struct ethtool_ops cpsw_ethtool_ops = {
1965 	.get_drvinfo	= cpsw_get_drvinfo,
1966 	.get_msglevel	= cpsw_get_msglevel,
1967 	.set_msglevel	= cpsw_set_msglevel,
1968 	.get_link	= ethtool_op_get_link,
1969 	.get_ts_info	= cpsw_get_ts_info,
1970 	.get_settings	= cpsw_get_settings,
1971 	.set_settings	= cpsw_set_settings,
1972 	.get_coalesce	= cpsw_get_coalesce,
1973 	.set_coalesce	= cpsw_set_coalesce,
1974 	.get_sset_count		= cpsw_get_sset_count,
1975 	.get_strings		= cpsw_get_strings,
1976 	.get_ethtool_stats	= cpsw_get_ethtool_stats,
1977 	.get_pauseparam		= cpsw_get_pauseparam,
1978 	.set_pauseparam		= cpsw_set_pauseparam,
1979 	.get_wol	= cpsw_get_wol,
1980 	.set_wol	= cpsw_set_wol,
1981 	.get_regs_len	= cpsw_get_regs_len,
1982 	.get_regs	= cpsw_get_regs,
1983 	.begin		= cpsw_ethtool_op_begin,
1984 	.complete	= cpsw_ethtool_op_complete,
1985 };
1986 
1987 static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_priv *priv,
1988 			    u32 slave_reg_ofs, u32 sliver_reg_ofs)
1989 {
1990 	void __iomem		*regs = priv->regs;
1991 	int			slave_num = slave->slave_num;
1992 	struct cpsw_slave_data	*data = priv->data.slave_data + slave_num;
1993 
1994 	slave->data	= data;
1995 	slave->regs	= regs + slave_reg_ofs;
1996 	slave->sliver	= regs + sliver_reg_ofs;
1997 	slave->port_vlan = data->dual_emac_res_vlan;
1998 }
1999 
2000 static int cpsw_probe_dt(struct cpsw_platform_data *data,
2001 			 struct platform_device *pdev)
2002 {
2003 	struct device_node *node = pdev->dev.of_node;
2004 	struct device_node *slave_node;
2005 	int i = 0, ret;
2006 	u32 prop;
2007 
2008 	if (!node)
2009 		return -EINVAL;
2010 
2011 	if (of_property_read_u32(node, "slaves", &prop)) {
2012 		dev_err(&pdev->dev, "Missing slaves property in the DT.\n");
2013 		return -EINVAL;
2014 	}
2015 	data->slaves = prop;
2016 
2017 	if (of_property_read_u32(node, "active_slave", &prop)) {
2018 		dev_err(&pdev->dev, "Missing active_slave property in the DT.\n");
2019 		return -EINVAL;
2020 	}
2021 	data->active_slave = prop;
2022 
2023 	if (of_property_read_u32(node, "cpts_clock_mult", &prop)) {
2024 		dev_err(&pdev->dev, "Missing cpts_clock_mult property in the DT.\n");
2025 		return -EINVAL;
2026 	}
2027 	data->cpts_clock_mult = prop;
2028 
2029 	if (of_property_read_u32(node, "cpts_clock_shift", &prop)) {
2030 		dev_err(&pdev->dev, "Missing cpts_clock_shift property in the DT.\n");
2031 		return -EINVAL;
2032 	}
2033 	data->cpts_clock_shift = prop;
2034 
2035 	data->slave_data = devm_kzalloc(&pdev->dev, data->slaves
2036 					* sizeof(struct cpsw_slave_data),
2037 					GFP_KERNEL);
2038 	if (!data->slave_data)
2039 		return -ENOMEM;
2040 
2041 	if (of_property_read_u32(node, "cpdma_channels", &prop)) {
2042 		dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n");
2043 		return -EINVAL;
2044 	}
2045 	data->channels = prop;
2046 
2047 	if (of_property_read_u32(node, "ale_entries", &prop)) {
2048 		dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n");
2049 		return -EINVAL;
2050 	}
2051 	data->ale_entries = prop;
2052 
2053 	if (of_property_read_u32(node, "bd_ram_size", &prop)) {
2054 		dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n");
2055 		return -EINVAL;
2056 	}
2057 	data->bd_ram_size = prop;
2058 
2059 	if (of_property_read_u32(node, "mac_control", &prop)) {
2060 		dev_err(&pdev->dev, "Missing mac_control property in the DT.\n");
2061 		return -EINVAL;
2062 	}
2063 	data->mac_control = prop;
2064 
2065 	if (of_property_read_bool(node, "dual_emac"))
2066 		data->dual_emac = 1;
2067 
2068 	/*
2069 	 * Populate all the child nodes here...
2070 	 */
2071 	ret = of_platform_populate(node, NULL, NULL, &pdev->dev);
2072 	/* We do not want to force this, as in some cases may not have child */
2073 	if (ret)
2074 		dev_warn(&pdev->dev, "Doesn't have any child node\n");
2075 
2076 	for_each_available_child_of_node(node, slave_node) {
2077 		struct cpsw_slave_data *slave_data = data->slave_data + i;
2078 		const void *mac_addr = NULL;
2079 		int lenp;
2080 		const __be32 *parp;
2081 
2082 		/* This is no slave child node, continue */
2083 		if (strcmp(slave_node->name, "slave"))
2084 			continue;
2085 
2086 		slave_data->phy_node = of_parse_phandle(slave_node,
2087 							"phy-handle", 0);
2088 		parp = of_get_property(slave_node, "phy_id", &lenp);
2089 		if (slave_data->phy_node) {
2090 			dev_dbg(&pdev->dev,
2091 				"slave[%d] using phy-handle=\"%s\"\n",
2092 				i, slave_data->phy_node->full_name);
2093 		} else if (of_phy_is_fixed_link(slave_node)) {
2094 			/* In the case of a fixed PHY, the DT node associated
2095 			 * to the PHY is the Ethernet MAC DT node.
2096 			 */
2097 			ret = of_phy_register_fixed_link(slave_node);
2098 			if (ret)
2099 				return ret;
2100 			slave_data->phy_node = of_node_get(slave_node);
2101 		} else if (parp) {
2102 			u32 phyid;
2103 			struct device_node *mdio_node;
2104 			struct platform_device *mdio;
2105 
2106 			if (lenp != (sizeof(__be32) * 2)) {
2107 				dev_err(&pdev->dev, "Invalid slave[%d] phy_id property\n", i);
2108 				goto no_phy_slave;
2109 			}
2110 			mdio_node = of_find_node_by_phandle(be32_to_cpup(parp));
2111 			phyid = be32_to_cpup(parp+1);
2112 			mdio = of_find_device_by_node(mdio_node);
2113 			of_node_put(mdio_node);
2114 			if (!mdio) {
2115 				dev_err(&pdev->dev, "Missing mdio platform device\n");
2116 				return -EINVAL;
2117 			}
2118 			snprintf(slave_data->phy_id, sizeof(slave_data->phy_id),
2119 				 PHY_ID_FMT, mdio->name, phyid);
2120 		} else {
2121 			dev_err(&pdev->dev,
2122 				"No slave[%d] phy_id, phy-handle, or fixed-link property\n",
2123 				i);
2124 			goto no_phy_slave;
2125 		}
2126 		slave_data->phy_if = of_get_phy_mode(slave_node);
2127 		if (slave_data->phy_if < 0) {
2128 			dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n",
2129 				i);
2130 			return slave_data->phy_if;
2131 		}
2132 
2133 no_phy_slave:
2134 		mac_addr = of_get_mac_address(slave_node);
2135 		if (mac_addr) {
2136 			memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN);
2137 		} else {
2138 			ret = ti_cm_get_macid(&pdev->dev, i,
2139 					      slave_data->mac_addr);
2140 			if (ret)
2141 				return ret;
2142 		}
2143 		if (data->dual_emac) {
2144 			if (of_property_read_u32(slave_node, "dual_emac_res_vlan",
2145 						 &prop)) {
2146 				dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n");
2147 				slave_data->dual_emac_res_vlan = i+1;
2148 				dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n",
2149 					slave_data->dual_emac_res_vlan, i);
2150 			} else {
2151 				slave_data->dual_emac_res_vlan = prop;
2152 			}
2153 		}
2154 
2155 		i++;
2156 		if (i == data->slaves)
2157 			break;
2158 	}
2159 
2160 	return 0;
2161 }
2162 
2163 static int cpsw_probe_dual_emac(struct platform_device *pdev,
2164 				struct cpsw_priv *priv)
2165 {
2166 	struct cpsw_platform_data	*data = &priv->data;
2167 	struct net_device		*ndev;
2168 	struct cpsw_priv		*priv_sl2;
2169 	int ret = 0, i;
2170 
2171 	ndev = alloc_etherdev(sizeof(struct cpsw_priv));
2172 	if (!ndev) {
2173 		dev_err(&pdev->dev, "cpsw: error allocating net_device\n");
2174 		return -ENOMEM;
2175 	}
2176 
2177 	priv_sl2 = netdev_priv(ndev);
2178 	priv_sl2->data = *data;
2179 	priv_sl2->pdev = pdev;
2180 	priv_sl2->ndev = ndev;
2181 	priv_sl2->dev  = &ndev->dev;
2182 	priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
2183 	priv_sl2->rx_packet_max = max(rx_packet_max, 128);
2184 
2185 	if (is_valid_ether_addr(data->slave_data[1].mac_addr)) {
2186 		memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr,
2187 			ETH_ALEN);
2188 		dev_info(&pdev->dev, "cpsw: Detected MACID = %pM\n", priv_sl2->mac_addr);
2189 	} else {
2190 		random_ether_addr(priv_sl2->mac_addr);
2191 		dev_info(&pdev->dev, "cpsw: Random MACID = %pM\n", priv_sl2->mac_addr);
2192 	}
2193 	memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN);
2194 
2195 	priv_sl2->slaves = priv->slaves;
2196 	priv_sl2->clk = priv->clk;
2197 
2198 	priv_sl2->coal_intvl = 0;
2199 	priv_sl2->bus_freq_mhz = priv->bus_freq_mhz;
2200 
2201 	priv_sl2->regs = priv->regs;
2202 	priv_sl2->host_port_regs = priv->host_port_regs;
2203 	priv_sl2->wr_regs = priv->wr_regs;
2204 	priv_sl2->hw_stats = priv->hw_stats;
2205 	priv_sl2->dma = priv->dma;
2206 	priv_sl2->txch = priv->txch;
2207 	priv_sl2->rxch = priv->rxch;
2208 	priv_sl2->ale = priv->ale;
2209 	priv_sl2->emac_port = 1;
2210 	priv->slaves[1].ndev = ndev;
2211 	priv_sl2->cpts = priv->cpts;
2212 	priv_sl2->version = priv->version;
2213 
2214 	for (i = 0; i < priv->num_irqs; i++) {
2215 		priv_sl2->irqs_table[i] = priv->irqs_table[i];
2216 		priv_sl2->num_irqs = priv->num_irqs;
2217 	}
2218 	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2219 
2220 	ndev->netdev_ops = &cpsw_netdev_ops;
2221 	ndev->ethtool_ops = &cpsw_ethtool_ops;
2222 
2223 	/* register the network device */
2224 	SET_NETDEV_DEV(ndev, &pdev->dev);
2225 	ret = register_netdev(ndev);
2226 	if (ret) {
2227 		dev_err(&pdev->dev, "cpsw: error registering net device\n");
2228 		free_netdev(ndev);
2229 		ret = -ENODEV;
2230 	}
2231 
2232 	return ret;
2233 }
2234 
2235 #define CPSW_QUIRK_IRQ		BIT(0)
2236 
2237 static struct platform_device_id cpsw_devtype[] = {
2238 	{
2239 		/* keep it for existing comaptibles */
2240 		.name = "cpsw",
2241 		.driver_data = CPSW_QUIRK_IRQ,
2242 	}, {
2243 		.name = "am335x-cpsw",
2244 		.driver_data = CPSW_QUIRK_IRQ,
2245 	}, {
2246 		.name = "am4372-cpsw",
2247 		.driver_data = 0,
2248 	}, {
2249 		.name = "dra7-cpsw",
2250 		.driver_data = 0,
2251 	}, {
2252 		/* sentinel */
2253 	}
2254 };
2255 MODULE_DEVICE_TABLE(platform, cpsw_devtype);
2256 
2257 enum ti_cpsw_type {
2258 	CPSW = 0,
2259 	AM335X_CPSW,
2260 	AM4372_CPSW,
2261 	DRA7_CPSW,
2262 };
2263 
2264 static const struct of_device_id cpsw_of_mtable[] = {
2265 	{ .compatible = "ti,cpsw", .data = &cpsw_devtype[CPSW], },
2266 	{ .compatible = "ti,am335x-cpsw", .data = &cpsw_devtype[AM335X_CPSW], },
2267 	{ .compatible = "ti,am4372-cpsw", .data = &cpsw_devtype[AM4372_CPSW], },
2268 	{ .compatible = "ti,dra7-cpsw", .data = &cpsw_devtype[DRA7_CPSW], },
2269 	{ /* sentinel */ },
2270 };
2271 MODULE_DEVICE_TABLE(of, cpsw_of_mtable);
2272 
2273 static int cpsw_probe(struct platform_device *pdev)
2274 {
2275 	struct cpsw_platform_data	*data;
2276 	struct net_device		*ndev;
2277 	struct cpsw_priv		*priv;
2278 	struct cpdma_params		dma_params;
2279 	struct cpsw_ale_params		ale_params;
2280 	void __iomem			*ss_regs;
2281 	struct resource			*res, *ss_res;
2282 	const struct of_device_id	*of_id;
2283 	struct gpio_descs		*mode;
2284 	u32 slave_offset, sliver_offset, slave_size;
2285 	int ret = 0, i;
2286 	int irq;
2287 
2288 	ndev = alloc_etherdev(sizeof(struct cpsw_priv));
2289 	if (!ndev) {
2290 		dev_err(&pdev->dev, "error allocating net_device\n");
2291 		return -ENOMEM;
2292 	}
2293 
2294 	platform_set_drvdata(pdev, ndev);
2295 	priv = netdev_priv(ndev);
2296 	priv->pdev = pdev;
2297 	priv->ndev = ndev;
2298 	priv->dev  = &ndev->dev;
2299 	priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
2300 	priv->rx_packet_max = max(rx_packet_max, 128);
2301 	priv->cpts = devm_kzalloc(&pdev->dev, sizeof(struct cpts), GFP_KERNEL);
2302 	if (!priv->cpts) {
2303 		dev_err(&pdev->dev, "error allocating cpts\n");
2304 		ret = -ENOMEM;
2305 		goto clean_ndev_ret;
2306 	}
2307 
2308 	mode = devm_gpiod_get_array_optional(&pdev->dev, "mode", GPIOD_OUT_LOW);
2309 	if (IS_ERR(mode)) {
2310 		ret = PTR_ERR(mode);
2311 		dev_err(&pdev->dev, "gpio request failed, ret %d\n", ret);
2312 		goto clean_ndev_ret;
2313 	}
2314 
2315 	/*
2316 	 * This may be required here for child devices.
2317 	 */
2318 	pm_runtime_enable(&pdev->dev);
2319 
2320 	/* Select default pin state */
2321 	pinctrl_pm_select_default_state(&pdev->dev);
2322 
2323 	if (cpsw_probe_dt(&priv->data, pdev)) {
2324 		dev_err(&pdev->dev, "cpsw: platform data missing\n");
2325 		ret = -ENODEV;
2326 		goto clean_runtime_disable_ret;
2327 	}
2328 	data = &priv->data;
2329 
2330 	if (is_valid_ether_addr(data->slave_data[0].mac_addr)) {
2331 		memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN);
2332 		dev_info(&pdev->dev, "Detected MACID = %pM\n", priv->mac_addr);
2333 	} else {
2334 		eth_random_addr(priv->mac_addr);
2335 		dev_info(&pdev->dev, "Random MACID = %pM\n", priv->mac_addr);
2336 	}
2337 
2338 	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
2339 
2340 	priv->slaves = devm_kzalloc(&pdev->dev,
2341 				    sizeof(struct cpsw_slave) * data->slaves,
2342 				    GFP_KERNEL);
2343 	if (!priv->slaves) {
2344 		ret = -ENOMEM;
2345 		goto clean_runtime_disable_ret;
2346 	}
2347 	for (i = 0; i < data->slaves; i++)
2348 		priv->slaves[i].slave_num = i;
2349 
2350 	priv->slaves[0].ndev = ndev;
2351 	priv->emac_port = 0;
2352 
2353 	priv->clk = devm_clk_get(&pdev->dev, "fck");
2354 	if (IS_ERR(priv->clk)) {
2355 		dev_err(priv->dev, "fck is not found\n");
2356 		ret = -ENODEV;
2357 		goto clean_runtime_disable_ret;
2358 	}
2359 	priv->coal_intvl = 0;
2360 	priv->bus_freq_mhz = clk_get_rate(priv->clk) / 1000000;
2361 
2362 	ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2363 	ss_regs = devm_ioremap_resource(&pdev->dev, ss_res);
2364 	if (IS_ERR(ss_regs)) {
2365 		ret = PTR_ERR(ss_regs);
2366 		goto clean_runtime_disable_ret;
2367 	}
2368 	priv->regs = ss_regs;
2369 
2370 	/* Need to enable clocks with runtime PM api to access module
2371 	 * registers
2372 	 */
2373 	ret = pm_runtime_get_sync(&pdev->dev);
2374 	if (ret < 0) {
2375 		pm_runtime_put_noidle(&pdev->dev);
2376 		goto clean_runtime_disable_ret;
2377 	}
2378 	priv->version = readl(&priv->regs->id_ver);
2379 	pm_runtime_put_sync(&pdev->dev);
2380 
2381 	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2382 	priv->wr_regs = devm_ioremap_resource(&pdev->dev, res);
2383 	if (IS_ERR(priv->wr_regs)) {
2384 		ret = PTR_ERR(priv->wr_regs);
2385 		goto clean_runtime_disable_ret;
2386 	}
2387 
2388 	memset(&dma_params, 0, sizeof(dma_params));
2389 	memset(&ale_params, 0, sizeof(ale_params));
2390 
2391 	switch (priv->version) {
2392 	case CPSW_VERSION_1:
2393 		priv->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET;
2394 		priv->cpts->reg      = ss_regs + CPSW1_CPTS_OFFSET;
2395 		priv->hw_stats	     = ss_regs + CPSW1_HW_STATS;
2396 		dma_params.dmaregs   = ss_regs + CPSW1_CPDMA_OFFSET;
2397 		dma_params.txhdp     = ss_regs + CPSW1_STATERAM_OFFSET;
2398 		ale_params.ale_regs  = ss_regs + CPSW1_ALE_OFFSET;
2399 		slave_offset         = CPSW1_SLAVE_OFFSET;
2400 		slave_size           = CPSW1_SLAVE_SIZE;
2401 		sliver_offset        = CPSW1_SLIVER_OFFSET;
2402 		dma_params.desc_mem_phys = 0;
2403 		break;
2404 	case CPSW_VERSION_2:
2405 	case CPSW_VERSION_3:
2406 	case CPSW_VERSION_4:
2407 		priv->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET;
2408 		priv->cpts->reg      = ss_regs + CPSW2_CPTS_OFFSET;
2409 		priv->hw_stats	     = ss_regs + CPSW2_HW_STATS;
2410 		dma_params.dmaregs   = ss_regs + CPSW2_CPDMA_OFFSET;
2411 		dma_params.txhdp     = ss_regs + CPSW2_STATERAM_OFFSET;
2412 		ale_params.ale_regs  = ss_regs + CPSW2_ALE_OFFSET;
2413 		slave_offset         = CPSW2_SLAVE_OFFSET;
2414 		slave_size           = CPSW2_SLAVE_SIZE;
2415 		sliver_offset        = CPSW2_SLIVER_OFFSET;
2416 		dma_params.desc_mem_phys =
2417 			(u32 __force) ss_res->start + CPSW2_BD_OFFSET;
2418 		break;
2419 	default:
2420 		dev_err(priv->dev, "unknown version 0x%08x\n", priv->version);
2421 		ret = -ENODEV;
2422 		goto clean_runtime_disable_ret;
2423 	}
2424 	for (i = 0; i < priv->data.slaves; i++) {
2425 		struct cpsw_slave *slave = &priv->slaves[i];
2426 		cpsw_slave_init(slave, priv, slave_offset, sliver_offset);
2427 		slave_offset  += slave_size;
2428 		sliver_offset += SLIVER_SIZE;
2429 	}
2430 
2431 	dma_params.dev		= &pdev->dev;
2432 	dma_params.rxthresh	= dma_params.dmaregs + CPDMA_RXTHRESH;
2433 	dma_params.rxfree	= dma_params.dmaregs + CPDMA_RXFREE;
2434 	dma_params.rxhdp	= dma_params.txhdp + CPDMA_RXHDP;
2435 	dma_params.txcp		= dma_params.txhdp + CPDMA_TXCP;
2436 	dma_params.rxcp		= dma_params.txhdp + CPDMA_RXCP;
2437 
2438 	dma_params.num_chan		= data->channels;
2439 	dma_params.has_soft_reset	= true;
2440 	dma_params.min_packet_size	= CPSW_MIN_PACKET_SIZE;
2441 	dma_params.desc_mem_size	= data->bd_ram_size;
2442 	dma_params.desc_align		= 16;
2443 	dma_params.has_ext_regs		= true;
2444 	dma_params.desc_hw_addr         = dma_params.desc_mem_phys;
2445 
2446 	priv->dma = cpdma_ctlr_create(&dma_params);
2447 	if (!priv->dma) {
2448 		dev_err(priv->dev, "error initializing dma\n");
2449 		ret = -ENOMEM;
2450 		goto clean_runtime_disable_ret;
2451 	}
2452 
2453 	priv->txch = cpdma_chan_create(priv->dma, tx_chan_num(0),
2454 				       cpsw_tx_handler);
2455 	priv->rxch = cpdma_chan_create(priv->dma, rx_chan_num(0),
2456 				       cpsw_rx_handler);
2457 
2458 	if (WARN_ON(!priv->txch || !priv->rxch)) {
2459 		dev_err(priv->dev, "error initializing dma channels\n");
2460 		ret = -ENOMEM;
2461 		goto clean_dma_ret;
2462 	}
2463 
2464 	ale_params.dev			= &ndev->dev;
2465 	ale_params.ale_ageout		= ale_ageout;
2466 	ale_params.ale_entries		= data->ale_entries;
2467 	ale_params.ale_ports		= data->slaves;
2468 
2469 	priv->ale = cpsw_ale_create(&ale_params);
2470 	if (!priv->ale) {
2471 		dev_err(priv->dev, "error initializing ale engine\n");
2472 		ret = -ENODEV;
2473 		goto clean_dma_ret;
2474 	}
2475 
2476 	ndev->irq = platform_get_irq(pdev, 1);
2477 	if (ndev->irq < 0) {
2478 		dev_err(priv->dev, "error getting irq resource\n");
2479 		ret = ndev->irq;
2480 		goto clean_ale_ret;
2481 	}
2482 
2483 	of_id = of_match_device(cpsw_of_mtable, &pdev->dev);
2484 	if (of_id) {
2485 		pdev->id_entry = of_id->data;
2486 		if (pdev->id_entry->driver_data)
2487 			priv->quirk_irq = true;
2488 	}
2489 
2490 	/* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and
2491 	 * MISC IRQs which are always kept disabled with this driver so
2492 	 * we will not request them.
2493 	 *
2494 	 * If anyone wants to implement support for those, make sure to
2495 	 * first request and append them to irqs_table array.
2496 	 */
2497 
2498 	/* RX IRQ */
2499 	irq = platform_get_irq(pdev, 1);
2500 	if (irq < 0) {
2501 		ret = irq;
2502 		goto clean_ale_ret;
2503 	}
2504 
2505 	priv->irqs_table[0] = irq;
2506 	ret = devm_request_irq(&pdev->dev, irq, cpsw_rx_interrupt,
2507 			       0, dev_name(&pdev->dev), priv);
2508 	if (ret < 0) {
2509 		dev_err(priv->dev, "error attaching irq (%d)\n", ret);
2510 		goto clean_ale_ret;
2511 	}
2512 
2513 	/* TX IRQ */
2514 	irq = platform_get_irq(pdev, 2);
2515 	if (irq < 0) {
2516 		ret = irq;
2517 		goto clean_ale_ret;
2518 	}
2519 
2520 	priv->irqs_table[1] = irq;
2521 	ret = devm_request_irq(&pdev->dev, irq, cpsw_tx_interrupt,
2522 			       0, dev_name(&pdev->dev), priv);
2523 	if (ret < 0) {
2524 		dev_err(priv->dev, "error attaching irq (%d)\n", ret);
2525 		goto clean_ale_ret;
2526 	}
2527 	priv->num_irqs = 2;
2528 
2529 	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2530 
2531 	ndev->netdev_ops = &cpsw_netdev_ops;
2532 	ndev->ethtool_ops = &cpsw_ethtool_ops;
2533 	netif_napi_add(ndev, &priv->napi_rx, cpsw_rx_poll, CPSW_POLL_WEIGHT);
2534 	netif_tx_napi_add(ndev, &priv->napi_tx, cpsw_tx_poll, CPSW_POLL_WEIGHT);
2535 
2536 	/* register the network device */
2537 	SET_NETDEV_DEV(ndev, &pdev->dev);
2538 	ret = register_netdev(ndev);
2539 	if (ret) {
2540 		dev_err(priv->dev, "error registering net device\n");
2541 		ret = -ENODEV;
2542 		goto clean_ale_ret;
2543 	}
2544 
2545 	cpsw_notice(priv, probe, "initialized device (regs %pa, irq %d)\n",
2546 		    &ss_res->start, ndev->irq);
2547 
2548 	if (priv->data.dual_emac) {
2549 		ret = cpsw_probe_dual_emac(pdev, priv);
2550 		if (ret) {
2551 			cpsw_err(priv, probe, "error probe slave 2 emac interface\n");
2552 			goto clean_ale_ret;
2553 		}
2554 	}
2555 
2556 	return 0;
2557 
2558 clean_ale_ret:
2559 	cpsw_ale_destroy(priv->ale);
2560 clean_dma_ret:
2561 	cpdma_ctlr_destroy(priv->dma);
2562 clean_runtime_disable_ret:
2563 	pm_runtime_disable(&pdev->dev);
2564 clean_ndev_ret:
2565 	free_netdev(priv->ndev);
2566 	return ret;
2567 }
2568 
2569 static int cpsw_remove(struct platform_device *pdev)
2570 {
2571 	struct net_device *ndev = platform_get_drvdata(pdev);
2572 	struct cpsw_priv *priv = netdev_priv(ndev);
2573 	int ret;
2574 
2575 	ret = pm_runtime_get_sync(&pdev->dev);
2576 	if (ret < 0) {
2577 		pm_runtime_put_noidle(&pdev->dev);
2578 		return ret;
2579 	}
2580 
2581 	if (priv->data.dual_emac)
2582 		unregister_netdev(cpsw_get_slave_ndev(priv, 1));
2583 	unregister_netdev(ndev);
2584 
2585 	cpsw_ale_destroy(priv->ale);
2586 	cpdma_ctlr_destroy(priv->dma);
2587 	of_platform_depopulate(&pdev->dev);
2588 	pm_runtime_put_sync(&pdev->dev);
2589 	pm_runtime_disable(&pdev->dev);
2590 	if (priv->data.dual_emac)
2591 		free_netdev(cpsw_get_slave_ndev(priv, 1));
2592 	free_netdev(ndev);
2593 	return 0;
2594 }
2595 
2596 #ifdef CONFIG_PM_SLEEP
2597 static int cpsw_suspend(struct device *dev)
2598 {
2599 	struct platform_device	*pdev = to_platform_device(dev);
2600 	struct net_device	*ndev = platform_get_drvdata(pdev);
2601 	struct cpsw_priv	*priv = netdev_priv(ndev);
2602 
2603 	if (priv->data.dual_emac) {
2604 		int i;
2605 
2606 		for (i = 0; i < priv->data.slaves; i++) {
2607 			if (netif_running(priv->slaves[i].ndev))
2608 				cpsw_ndo_stop(priv->slaves[i].ndev);
2609 		}
2610 	} else {
2611 		if (netif_running(ndev))
2612 			cpsw_ndo_stop(ndev);
2613 	}
2614 
2615 	/* Select sleep pin state */
2616 	pinctrl_pm_select_sleep_state(&pdev->dev);
2617 
2618 	return 0;
2619 }
2620 
2621 static int cpsw_resume(struct device *dev)
2622 {
2623 	struct platform_device	*pdev = to_platform_device(dev);
2624 	struct net_device	*ndev = platform_get_drvdata(pdev);
2625 	struct cpsw_priv	*priv = netdev_priv(ndev);
2626 
2627 	/* Select default pin state */
2628 	pinctrl_pm_select_default_state(&pdev->dev);
2629 
2630 	if (priv->data.dual_emac) {
2631 		int i;
2632 
2633 		for (i = 0; i < priv->data.slaves; i++) {
2634 			if (netif_running(priv->slaves[i].ndev))
2635 				cpsw_ndo_open(priv->slaves[i].ndev);
2636 		}
2637 	} else {
2638 		if (netif_running(ndev))
2639 			cpsw_ndo_open(ndev);
2640 	}
2641 	return 0;
2642 }
2643 #endif
2644 
2645 static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume);
2646 
2647 static struct platform_driver cpsw_driver = {
2648 	.driver = {
2649 		.name	 = "cpsw",
2650 		.pm	 = &cpsw_pm_ops,
2651 		.of_match_table = cpsw_of_mtable,
2652 	},
2653 	.probe = cpsw_probe,
2654 	.remove = cpsw_remove,
2655 };
2656 
2657 module_platform_driver(cpsw_driver);
2658 
2659 MODULE_LICENSE("GPL");
2660 MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>");
2661 MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>");
2662 MODULE_DESCRIPTION("TI CPSW Ethernet driver");
2663