1 /* 2 * Texas Instruments Ethernet Switch Driver 3 * 4 * Copyright (C) 2012 Texas Instruments 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License as 8 * published by the Free Software Foundation version 2. 9 * 10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any 11 * kind, whether express or implied; without even the implied warranty 12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/io.h> 18 #include <linux/clk.h> 19 #include <linux/timer.h> 20 #include <linux/module.h> 21 #include <linux/platform_device.h> 22 #include <linux/irqreturn.h> 23 #include <linux/interrupt.h> 24 #include <linux/if_ether.h> 25 #include <linux/etherdevice.h> 26 #include <linux/netdevice.h> 27 #include <linux/net_tstamp.h> 28 #include <linux/phy.h> 29 #include <linux/workqueue.h> 30 #include <linux/delay.h> 31 #include <linux/pm_runtime.h> 32 #include <linux/gpio.h> 33 #include <linux/of.h> 34 #include <linux/of_mdio.h> 35 #include <linux/of_net.h> 36 #include <linux/of_device.h> 37 #include <linux/if_vlan.h> 38 39 #include <linux/pinctrl/consumer.h> 40 41 #include "cpsw.h" 42 #include "cpsw_ale.h" 43 #include "cpts.h" 44 #include "davinci_cpdma.h" 45 46 #define CPSW_DEBUG (NETIF_MSG_HW | NETIF_MSG_WOL | \ 47 NETIF_MSG_DRV | NETIF_MSG_LINK | \ 48 NETIF_MSG_IFUP | NETIF_MSG_INTR | \ 49 NETIF_MSG_PROBE | NETIF_MSG_TIMER | \ 50 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | \ 51 NETIF_MSG_TX_ERR | NETIF_MSG_TX_DONE | \ 52 NETIF_MSG_PKTDATA | NETIF_MSG_TX_QUEUED | \ 53 NETIF_MSG_RX_STATUS) 54 55 #define cpsw_info(priv, type, format, ...) \ 56 do { \ 57 if (netif_msg_##type(priv) && net_ratelimit()) \ 58 dev_info(priv->dev, format, ## __VA_ARGS__); \ 59 } while (0) 60 61 #define cpsw_err(priv, type, format, ...) \ 62 do { \ 63 if (netif_msg_##type(priv) && net_ratelimit()) \ 64 dev_err(priv->dev, format, ## __VA_ARGS__); \ 65 } while (0) 66 67 #define cpsw_dbg(priv, type, format, ...) \ 68 do { \ 69 if (netif_msg_##type(priv) && net_ratelimit()) \ 70 dev_dbg(priv->dev, format, ## __VA_ARGS__); \ 71 } while (0) 72 73 #define cpsw_notice(priv, type, format, ...) \ 74 do { \ 75 if (netif_msg_##type(priv) && net_ratelimit()) \ 76 dev_notice(priv->dev, format, ## __VA_ARGS__); \ 77 } while (0) 78 79 #define ALE_ALL_PORTS 0x7 80 81 #define CPSW_MAJOR_VERSION(reg) (reg >> 8 & 0x7) 82 #define CPSW_MINOR_VERSION(reg) (reg & 0xff) 83 #define CPSW_RTL_VERSION(reg) ((reg >> 11) & 0x1f) 84 85 #define CPSW_VERSION_1 0x19010a 86 #define CPSW_VERSION_2 0x19010c 87 #define CPSW_VERSION_3 0x19010f 88 #define CPSW_VERSION_4 0x190112 89 90 #define HOST_PORT_NUM 0 91 #define SLIVER_SIZE 0x40 92 93 #define CPSW1_HOST_PORT_OFFSET 0x028 94 #define CPSW1_SLAVE_OFFSET 0x050 95 #define CPSW1_SLAVE_SIZE 0x040 96 #define CPSW1_CPDMA_OFFSET 0x100 97 #define CPSW1_STATERAM_OFFSET 0x200 98 #define CPSW1_HW_STATS 0x400 99 #define CPSW1_CPTS_OFFSET 0x500 100 #define CPSW1_ALE_OFFSET 0x600 101 #define CPSW1_SLIVER_OFFSET 0x700 102 103 #define CPSW2_HOST_PORT_OFFSET 0x108 104 #define CPSW2_SLAVE_OFFSET 0x200 105 #define CPSW2_SLAVE_SIZE 0x100 106 #define CPSW2_CPDMA_OFFSET 0x800 107 #define CPSW2_HW_STATS 0x900 108 #define CPSW2_STATERAM_OFFSET 0xa00 109 #define CPSW2_CPTS_OFFSET 0xc00 110 #define CPSW2_ALE_OFFSET 0xd00 111 #define CPSW2_SLIVER_OFFSET 0xd80 112 #define CPSW2_BD_OFFSET 0x2000 113 114 #define CPDMA_RXTHRESH 0x0c0 115 #define CPDMA_RXFREE 0x0e0 116 #define CPDMA_TXHDP 0x00 117 #define CPDMA_RXHDP 0x20 118 #define CPDMA_TXCP 0x40 119 #define CPDMA_RXCP 0x60 120 121 #define CPSW_POLL_WEIGHT 64 122 #define CPSW_MIN_PACKET_SIZE 60 123 #define CPSW_MAX_PACKET_SIZE (1500 + 14 + 4 + 4) 124 125 #define RX_PRIORITY_MAPPING 0x76543210 126 #define TX_PRIORITY_MAPPING 0x33221100 127 #define CPDMA_TX_PRIORITY_MAP 0x76543210 128 129 #define CPSW_VLAN_AWARE BIT(1) 130 #define CPSW_ALE_VLAN_AWARE 1 131 132 #define CPSW_FIFO_NORMAL_MODE (0 << 16) 133 #define CPSW_FIFO_DUAL_MAC_MODE (1 << 16) 134 #define CPSW_FIFO_RATE_LIMIT_MODE (2 << 16) 135 136 #define CPSW_INTPACEEN (0x3f << 16) 137 #define CPSW_INTPRESCALE_MASK (0x7FF << 0) 138 #define CPSW_CMINTMAX_CNT 63 139 #define CPSW_CMINTMIN_CNT 2 140 #define CPSW_CMINTMAX_INTVL (1000 / CPSW_CMINTMIN_CNT) 141 #define CPSW_CMINTMIN_INTVL ((1000 / CPSW_CMINTMAX_CNT) + 1) 142 143 #define cpsw_slave_index(priv) \ 144 ((priv->data.dual_emac) ? priv->emac_port : \ 145 priv->data.active_slave) 146 147 static int debug_level; 148 module_param(debug_level, int, 0); 149 MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)"); 150 151 static int ale_ageout = 10; 152 module_param(ale_ageout, int, 0); 153 MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)"); 154 155 static int rx_packet_max = CPSW_MAX_PACKET_SIZE; 156 module_param(rx_packet_max, int, 0); 157 MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)"); 158 159 struct cpsw_wr_regs { 160 u32 id_ver; 161 u32 soft_reset; 162 u32 control; 163 u32 int_control; 164 u32 rx_thresh_en; 165 u32 rx_en; 166 u32 tx_en; 167 u32 misc_en; 168 u32 mem_allign1[8]; 169 u32 rx_thresh_stat; 170 u32 rx_stat; 171 u32 tx_stat; 172 u32 misc_stat; 173 u32 mem_allign2[8]; 174 u32 rx_imax; 175 u32 tx_imax; 176 177 }; 178 179 struct cpsw_ss_regs { 180 u32 id_ver; 181 u32 control; 182 u32 soft_reset; 183 u32 stat_port_en; 184 u32 ptype; 185 u32 soft_idle; 186 u32 thru_rate; 187 u32 gap_thresh; 188 u32 tx_start_wds; 189 u32 flow_control; 190 u32 vlan_ltype; 191 u32 ts_ltype; 192 u32 dlr_ltype; 193 }; 194 195 /* CPSW_PORT_V1 */ 196 #define CPSW1_MAX_BLKS 0x00 /* Maximum FIFO Blocks */ 197 #define CPSW1_BLK_CNT 0x04 /* FIFO Block Usage Count (Read Only) */ 198 #define CPSW1_TX_IN_CTL 0x08 /* Transmit FIFO Control */ 199 #define CPSW1_PORT_VLAN 0x0c /* VLAN Register */ 200 #define CPSW1_TX_PRI_MAP 0x10 /* Tx Header Priority to Switch Pri Mapping */ 201 #define CPSW1_TS_CTL 0x14 /* Time Sync Control */ 202 #define CPSW1_TS_SEQ_LTYPE 0x18 /* Time Sync Sequence ID Offset and Msg Type */ 203 #define CPSW1_TS_VLAN 0x1c /* Time Sync VLAN1 and VLAN2 */ 204 205 /* CPSW_PORT_V2 */ 206 #define CPSW2_CONTROL 0x00 /* Control Register */ 207 #define CPSW2_MAX_BLKS 0x08 /* Maximum FIFO Blocks */ 208 #define CPSW2_BLK_CNT 0x0c /* FIFO Block Usage Count (Read Only) */ 209 #define CPSW2_TX_IN_CTL 0x10 /* Transmit FIFO Control */ 210 #define CPSW2_PORT_VLAN 0x14 /* VLAN Register */ 211 #define CPSW2_TX_PRI_MAP 0x18 /* Tx Header Priority to Switch Pri Mapping */ 212 #define CPSW2_TS_SEQ_MTYPE 0x1c /* Time Sync Sequence ID Offset and Msg Type */ 213 214 /* CPSW_PORT_V1 and V2 */ 215 #define SA_LO 0x20 /* CPGMAC_SL Source Address Low */ 216 #define SA_HI 0x24 /* CPGMAC_SL Source Address High */ 217 #define SEND_PERCENT 0x28 /* Transmit Queue Send Percentages */ 218 219 /* CPSW_PORT_V2 only */ 220 #define RX_DSCP_PRI_MAP0 0x30 /* Rx DSCP Priority to Rx Packet Mapping */ 221 #define RX_DSCP_PRI_MAP1 0x34 /* Rx DSCP Priority to Rx Packet Mapping */ 222 #define RX_DSCP_PRI_MAP2 0x38 /* Rx DSCP Priority to Rx Packet Mapping */ 223 #define RX_DSCP_PRI_MAP3 0x3c /* Rx DSCP Priority to Rx Packet Mapping */ 224 #define RX_DSCP_PRI_MAP4 0x40 /* Rx DSCP Priority to Rx Packet Mapping */ 225 #define RX_DSCP_PRI_MAP5 0x44 /* Rx DSCP Priority to Rx Packet Mapping */ 226 #define RX_DSCP_PRI_MAP6 0x48 /* Rx DSCP Priority to Rx Packet Mapping */ 227 #define RX_DSCP_PRI_MAP7 0x4c /* Rx DSCP Priority to Rx Packet Mapping */ 228 229 /* Bit definitions for the CPSW2_CONTROL register */ 230 #define PASS_PRI_TAGGED (1<<24) /* Pass Priority Tagged */ 231 #define VLAN_LTYPE2_EN (1<<21) /* VLAN LTYPE 2 enable */ 232 #define VLAN_LTYPE1_EN (1<<20) /* VLAN LTYPE 1 enable */ 233 #define DSCP_PRI_EN (1<<16) /* DSCP Priority Enable */ 234 #define TS_320 (1<<14) /* Time Sync Dest Port 320 enable */ 235 #define TS_319 (1<<13) /* Time Sync Dest Port 319 enable */ 236 #define TS_132 (1<<12) /* Time Sync Dest IP Addr 132 enable */ 237 #define TS_131 (1<<11) /* Time Sync Dest IP Addr 131 enable */ 238 #define TS_130 (1<<10) /* Time Sync Dest IP Addr 130 enable */ 239 #define TS_129 (1<<9) /* Time Sync Dest IP Addr 129 enable */ 240 #define TS_TTL_NONZERO (1<<8) /* Time Sync Time To Live Non-zero enable */ 241 #define TS_ANNEX_F_EN (1<<6) /* Time Sync Annex F enable */ 242 #define TS_ANNEX_D_EN (1<<4) /* Time Sync Annex D enable */ 243 #define TS_LTYPE2_EN (1<<3) /* Time Sync LTYPE 2 enable */ 244 #define TS_LTYPE1_EN (1<<2) /* Time Sync LTYPE 1 enable */ 245 #define TS_TX_EN (1<<1) /* Time Sync Transmit Enable */ 246 #define TS_RX_EN (1<<0) /* Time Sync Receive Enable */ 247 248 #define CTRL_V2_TS_BITS \ 249 (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\ 250 TS_TTL_NONZERO | TS_ANNEX_D_EN | TS_LTYPE1_EN) 251 252 #define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN) 253 #define CTRL_V2_TX_TS_BITS (CTRL_V2_TS_BITS | TS_TX_EN) 254 #define CTRL_V2_RX_TS_BITS (CTRL_V2_TS_BITS | TS_RX_EN) 255 256 257 #define CTRL_V3_TS_BITS \ 258 (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\ 259 TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\ 260 TS_LTYPE1_EN) 261 262 #define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN) 263 #define CTRL_V3_TX_TS_BITS (CTRL_V3_TS_BITS | TS_TX_EN) 264 #define CTRL_V3_RX_TS_BITS (CTRL_V3_TS_BITS | TS_RX_EN) 265 266 /* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */ 267 #define TS_SEQ_ID_OFFSET_SHIFT (16) /* Time Sync Sequence ID Offset */ 268 #define TS_SEQ_ID_OFFSET_MASK (0x3f) 269 #define TS_MSG_TYPE_EN_SHIFT (0) /* Time Sync Message Type Enable */ 270 #define TS_MSG_TYPE_EN_MASK (0xffff) 271 272 /* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */ 273 #define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3)) 274 275 /* Bit definitions for the CPSW1_TS_CTL register */ 276 #define CPSW_V1_TS_RX_EN BIT(0) 277 #define CPSW_V1_TS_TX_EN BIT(4) 278 #define CPSW_V1_MSG_TYPE_OFS 16 279 280 /* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */ 281 #define CPSW_V1_SEQ_ID_OFS_SHIFT 16 282 283 struct cpsw_host_regs { 284 u32 max_blks; 285 u32 blk_cnt; 286 u32 tx_in_ctl; 287 u32 port_vlan; 288 u32 tx_pri_map; 289 u32 cpdma_tx_pri_map; 290 u32 cpdma_rx_chan_map; 291 }; 292 293 struct cpsw_sliver_regs { 294 u32 id_ver; 295 u32 mac_control; 296 u32 mac_status; 297 u32 soft_reset; 298 u32 rx_maxlen; 299 u32 __reserved_0; 300 u32 rx_pause; 301 u32 tx_pause; 302 u32 __reserved_1; 303 u32 rx_pri_map; 304 }; 305 306 struct cpsw_hw_stats { 307 u32 rxgoodframes; 308 u32 rxbroadcastframes; 309 u32 rxmulticastframes; 310 u32 rxpauseframes; 311 u32 rxcrcerrors; 312 u32 rxaligncodeerrors; 313 u32 rxoversizedframes; 314 u32 rxjabberframes; 315 u32 rxundersizedframes; 316 u32 rxfragments; 317 u32 __pad_0[2]; 318 u32 rxoctets; 319 u32 txgoodframes; 320 u32 txbroadcastframes; 321 u32 txmulticastframes; 322 u32 txpauseframes; 323 u32 txdeferredframes; 324 u32 txcollisionframes; 325 u32 txsinglecollframes; 326 u32 txmultcollframes; 327 u32 txexcessivecollisions; 328 u32 txlatecollisions; 329 u32 txunderrun; 330 u32 txcarriersenseerrors; 331 u32 txoctets; 332 u32 octetframes64; 333 u32 octetframes65t127; 334 u32 octetframes128t255; 335 u32 octetframes256t511; 336 u32 octetframes512t1023; 337 u32 octetframes1024tup; 338 u32 netoctets; 339 u32 rxsofoverruns; 340 u32 rxmofoverruns; 341 u32 rxdmaoverruns; 342 }; 343 344 struct cpsw_slave { 345 void __iomem *regs; 346 struct cpsw_sliver_regs __iomem *sliver; 347 int slave_num; 348 u32 mac_control; 349 struct cpsw_slave_data *data; 350 struct phy_device *phy; 351 struct net_device *ndev; 352 u32 port_vlan; 353 u32 open_stat; 354 }; 355 356 static inline u32 slave_read(struct cpsw_slave *slave, u32 offset) 357 { 358 return __raw_readl(slave->regs + offset); 359 } 360 361 static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset) 362 { 363 __raw_writel(val, slave->regs + offset); 364 } 365 366 struct cpsw_priv { 367 struct platform_device *pdev; 368 struct net_device *ndev; 369 struct napi_struct napi_rx; 370 struct napi_struct napi_tx; 371 struct device *dev; 372 struct cpsw_platform_data data; 373 struct cpsw_ss_regs __iomem *regs; 374 struct cpsw_wr_regs __iomem *wr_regs; 375 u8 __iomem *hw_stats; 376 struct cpsw_host_regs __iomem *host_port_regs; 377 u32 msg_enable; 378 u32 version; 379 u32 coal_intvl; 380 u32 bus_freq_mhz; 381 int rx_packet_max; 382 struct clk *clk; 383 u8 mac_addr[ETH_ALEN]; 384 struct cpsw_slave *slaves; 385 struct cpdma_ctlr *dma; 386 struct cpdma_chan *txch, *rxch; 387 struct cpsw_ale *ale; 388 bool rx_pause; 389 bool tx_pause; 390 bool quirk_irq; 391 bool rx_irq_disabled; 392 bool tx_irq_disabled; 393 /* snapshot of IRQ numbers */ 394 u32 irqs_table[4]; 395 u32 num_irqs; 396 struct cpts *cpts; 397 u32 emac_port; 398 }; 399 400 struct cpsw_stats { 401 char stat_string[ETH_GSTRING_LEN]; 402 int type; 403 int sizeof_stat; 404 int stat_offset; 405 }; 406 407 enum { 408 CPSW_STATS, 409 CPDMA_RX_STATS, 410 CPDMA_TX_STATS, 411 }; 412 413 #define CPSW_STAT(m) CPSW_STATS, \ 414 sizeof(((struct cpsw_hw_stats *)0)->m), \ 415 offsetof(struct cpsw_hw_stats, m) 416 #define CPDMA_RX_STAT(m) CPDMA_RX_STATS, \ 417 sizeof(((struct cpdma_chan_stats *)0)->m), \ 418 offsetof(struct cpdma_chan_stats, m) 419 #define CPDMA_TX_STAT(m) CPDMA_TX_STATS, \ 420 sizeof(((struct cpdma_chan_stats *)0)->m), \ 421 offsetof(struct cpdma_chan_stats, m) 422 423 static const struct cpsw_stats cpsw_gstrings_stats[] = { 424 { "Good Rx Frames", CPSW_STAT(rxgoodframes) }, 425 { "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) }, 426 { "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) }, 427 { "Pause Rx Frames", CPSW_STAT(rxpauseframes) }, 428 { "Rx CRC Errors", CPSW_STAT(rxcrcerrors) }, 429 { "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) }, 430 { "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) }, 431 { "Rx Jabbers", CPSW_STAT(rxjabberframes) }, 432 { "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) }, 433 { "Rx Fragments", CPSW_STAT(rxfragments) }, 434 { "Rx Octets", CPSW_STAT(rxoctets) }, 435 { "Good Tx Frames", CPSW_STAT(txgoodframes) }, 436 { "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) }, 437 { "Multicast Tx Frames", CPSW_STAT(txmulticastframes) }, 438 { "Pause Tx Frames", CPSW_STAT(txpauseframes) }, 439 { "Deferred Tx Frames", CPSW_STAT(txdeferredframes) }, 440 { "Collisions", CPSW_STAT(txcollisionframes) }, 441 { "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) }, 442 { "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) }, 443 { "Excessive Collisions", CPSW_STAT(txexcessivecollisions) }, 444 { "Late Collisions", CPSW_STAT(txlatecollisions) }, 445 { "Tx Underrun", CPSW_STAT(txunderrun) }, 446 { "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) }, 447 { "Tx Octets", CPSW_STAT(txoctets) }, 448 { "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) }, 449 { "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) }, 450 { "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) }, 451 { "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) }, 452 { "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) }, 453 { "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) }, 454 { "Net Octets", CPSW_STAT(netoctets) }, 455 { "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) }, 456 { "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) }, 457 { "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) }, 458 { "Rx DMA chan: head_enqueue", CPDMA_RX_STAT(head_enqueue) }, 459 { "Rx DMA chan: tail_enqueue", CPDMA_RX_STAT(tail_enqueue) }, 460 { "Rx DMA chan: pad_enqueue", CPDMA_RX_STAT(pad_enqueue) }, 461 { "Rx DMA chan: misqueued", CPDMA_RX_STAT(misqueued) }, 462 { "Rx DMA chan: desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) }, 463 { "Rx DMA chan: pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) }, 464 { "Rx DMA chan: runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) }, 465 { "Rx DMA chan: runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) }, 466 { "Rx DMA chan: empty_dequeue", CPDMA_RX_STAT(empty_dequeue) }, 467 { "Rx DMA chan: busy_dequeue", CPDMA_RX_STAT(busy_dequeue) }, 468 { "Rx DMA chan: good_dequeue", CPDMA_RX_STAT(good_dequeue) }, 469 { "Rx DMA chan: requeue", CPDMA_RX_STAT(requeue) }, 470 { "Rx DMA chan: teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) }, 471 { "Tx DMA chan: head_enqueue", CPDMA_TX_STAT(head_enqueue) }, 472 { "Tx DMA chan: tail_enqueue", CPDMA_TX_STAT(tail_enqueue) }, 473 { "Tx DMA chan: pad_enqueue", CPDMA_TX_STAT(pad_enqueue) }, 474 { "Tx DMA chan: misqueued", CPDMA_TX_STAT(misqueued) }, 475 { "Tx DMA chan: desc_alloc_fail", CPDMA_TX_STAT(desc_alloc_fail) }, 476 { "Tx DMA chan: pad_alloc_fail", CPDMA_TX_STAT(pad_alloc_fail) }, 477 { "Tx DMA chan: runt_receive_buf", CPDMA_TX_STAT(runt_receive_buff) }, 478 { "Tx DMA chan: runt_transmit_buf", CPDMA_TX_STAT(runt_transmit_buff) }, 479 { "Tx DMA chan: empty_dequeue", CPDMA_TX_STAT(empty_dequeue) }, 480 { "Tx DMA chan: busy_dequeue", CPDMA_TX_STAT(busy_dequeue) }, 481 { "Tx DMA chan: good_dequeue", CPDMA_TX_STAT(good_dequeue) }, 482 { "Tx DMA chan: requeue", CPDMA_TX_STAT(requeue) }, 483 { "Tx DMA chan: teardown_dequeue", CPDMA_TX_STAT(teardown_dequeue) }, 484 }; 485 486 #define CPSW_STATS_LEN ARRAY_SIZE(cpsw_gstrings_stats) 487 488 #define napi_to_priv(napi) container_of(napi, struct cpsw_priv, napi) 489 #define for_each_slave(priv, func, arg...) \ 490 do { \ 491 struct cpsw_slave *slave; \ 492 int n; \ 493 if (priv->data.dual_emac) \ 494 (func)((priv)->slaves + priv->emac_port, ##arg);\ 495 else \ 496 for (n = (priv)->data.slaves, \ 497 slave = (priv)->slaves; \ 498 n; n--) \ 499 (func)(slave++, ##arg); \ 500 } while (0) 501 #define cpsw_get_slave_ndev(priv, __slave_no__) \ 502 ((__slave_no__ < priv->data.slaves) ? \ 503 priv->slaves[__slave_no__].ndev : NULL) 504 #define cpsw_get_slave_priv(priv, __slave_no__) \ 505 (((__slave_no__ < priv->data.slaves) && \ 506 (priv->slaves[__slave_no__].ndev)) ? \ 507 netdev_priv(priv->slaves[__slave_no__].ndev) : NULL) \ 508 509 #define cpsw_dual_emac_src_port_detect(status, priv, ndev, skb) \ 510 do { \ 511 if (!priv->data.dual_emac) \ 512 break; \ 513 if (CPDMA_RX_SOURCE_PORT(status) == 1) { \ 514 ndev = cpsw_get_slave_ndev(priv, 0); \ 515 priv = netdev_priv(ndev); \ 516 skb->dev = ndev; \ 517 } else if (CPDMA_RX_SOURCE_PORT(status) == 2) { \ 518 ndev = cpsw_get_slave_ndev(priv, 1); \ 519 priv = netdev_priv(ndev); \ 520 skb->dev = ndev; \ 521 } \ 522 } while (0) 523 #define cpsw_add_mcast(priv, addr) \ 524 do { \ 525 if (priv->data.dual_emac) { \ 526 struct cpsw_slave *slave = priv->slaves + \ 527 priv->emac_port; \ 528 int slave_port = cpsw_get_slave_port(priv, \ 529 slave->slave_num); \ 530 cpsw_ale_add_mcast(priv->ale, addr, \ 531 1 << slave_port | ALE_PORT_HOST, \ 532 ALE_VLAN, slave->port_vlan, 0); \ 533 } else { \ 534 cpsw_ale_add_mcast(priv->ale, addr, \ 535 ALE_ALL_PORTS, \ 536 0, 0, 0); \ 537 } \ 538 } while (0) 539 540 static inline int cpsw_get_slave_port(struct cpsw_priv *priv, u32 slave_num) 541 { 542 return slave_num + 1; 543 } 544 545 static void cpsw_set_promiscious(struct net_device *ndev, bool enable) 546 { 547 struct cpsw_priv *priv = netdev_priv(ndev); 548 struct cpsw_ale *ale = priv->ale; 549 int i; 550 551 if (priv->data.dual_emac) { 552 bool flag = false; 553 554 /* Enabling promiscuous mode for one interface will be 555 * common for both the interface as the interface shares 556 * the same hardware resource. 557 */ 558 for (i = 0; i < priv->data.slaves; i++) 559 if (priv->slaves[i].ndev->flags & IFF_PROMISC) 560 flag = true; 561 562 if (!enable && flag) { 563 enable = true; 564 dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n"); 565 } 566 567 if (enable) { 568 /* Enable Bypass */ 569 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1); 570 571 dev_dbg(&ndev->dev, "promiscuity enabled\n"); 572 } else { 573 /* Disable Bypass */ 574 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0); 575 dev_dbg(&ndev->dev, "promiscuity disabled\n"); 576 } 577 } else { 578 if (enable) { 579 unsigned long timeout = jiffies + HZ; 580 581 /* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */ 582 for (i = 0; i <= priv->data.slaves; i++) { 583 cpsw_ale_control_set(ale, i, 584 ALE_PORT_NOLEARN, 1); 585 cpsw_ale_control_set(ale, i, 586 ALE_PORT_NO_SA_UPDATE, 1); 587 } 588 589 /* Clear All Untouched entries */ 590 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1); 591 do { 592 cpu_relax(); 593 if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT)) 594 break; 595 } while (time_after(timeout, jiffies)); 596 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1); 597 598 /* Clear all mcast from ALE */ 599 cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS, -1); 600 601 /* Flood All Unicast Packets to Host port */ 602 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1); 603 dev_dbg(&ndev->dev, "promiscuity enabled\n"); 604 } else { 605 /* Don't Flood All Unicast Packets to Host port */ 606 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0); 607 608 /* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */ 609 for (i = 0; i <= priv->data.slaves; i++) { 610 cpsw_ale_control_set(ale, i, 611 ALE_PORT_NOLEARN, 0); 612 cpsw_ale_control_set(ale, i, 613 ALE_PORT_NO_SA_UPDATE, 0); 614 } 615 dev_dbg(&ndev->dev, "promiscuity disabled\n"); 616 } 617 } 618 } 619 620 static void cpsw_ndo_set_rx_mode(struct net_device *ndev) 621 { 622 struct cpsw_priv *priv = netdev_priv(ndev); 623 int vid; 624 625 if (priv->data.dual_emac) 626 vid = priv->slaves[priv->emac_port].port_vlan; 627 else 628 vid = priv->data.default_vlan; 629 630 if (ndev->flags & IFF_PROMISC) { 631 /* Enable promiscuous mode */ 632 cpsw_set_promiscious(ndev, true); 633 cpsw_ale_set_allmulti(priv->ale, IFF_ALLMULTI); 634 return; 635 } else { 636 /* Disable promiscuous mode */ 637 cpsw_set_promiscious(ndev, false); 638 } 639 640 /* Restore allmulti on vlans if necessary */ 641 cpsw_ale_set_allmulti(priv->ale, priv->ndev->flags & IFF_ALLMULTI); 642 643 /* Clear all mcast from ALE */ 644 cpsw_ale_flush_multicast(priv->ale, ALE_ALL_PORTS, vid); 645 646 if (!netdev_mc_empty(ndev)) { 647 struct netdev_hw_addr *ha; 648 649 /* program multicast address list into ALE register */ 650 netdev_for_each_mc_addr(ha, ndev) { 651 cpsw_add_mcast(priv, (u8 *)ha->addr); 652 } 653 } 654 } 655 656 static void cpsw_intr_enable(struct cpsw_priv *priv) 657 { 658 __raw_writel(0xFF, &priv->wr_regs->tx_en); 659 __raw_writel(0xFF, &priv->wr_regs->rx_en); 660 661 cpdma_ctlr_int_ctrl(priv->dma, true); 662 return; 663 } 664 665 static void cpsw_intr_disable(struct cpsw_priv *priv) 666 { 667 __raw_writel(0, &priv->wr_regs->tx_en); 668 __raw_writel(0, &priv->wr_regs->rx_en); 669 670 cpdma_ctlr_int_ctrl(priv->dma, false); 671 return; 672 } 673 674 static void cpsw_tx_handler(void *token, int len, int status) 675 { 676 struct sk_buff *skb = token; 677 struct net_device *ndev = skb->dev; 678 struct cpsw_priv *priv = netdev_priv(ndev); 679 680 /* Check whether the queue is stopped due to stalled tx dma, if the 681 * queue is stopped then start the queue as we have free desc for tx 682 */ 683 if (unlikely(netif_queue_stopped(ndev))) 684 netif_wake_queue(ndev); 685 cpts_tx_timestamp(priv->cpts, skb); 686 ndev->stats.tx_packets++; 687 ndev->stats.tx_bytes += len; 688 dev_kfree_skb_any(skb); 689 } 690 691 static void cpsw_rx_handler(void *token, int len, int status) 692 { 693 struct sk_buff *skb = token; 694 struct sk_buff *new_skb; 695 struct net_device *ndev = skb->dev; 696 struct cpsw_priv *priv = netdev_priv(ndev); 697 int ret = 0; 698 699 cpsw_dual_emac_src_port_detect(status, priv, ndev, skb); 700 701 if (unlikely(status < 0) || unlikely(!netif_running(ndev))) { 702 bool ndev_status = false; 703 struct cpsw_slave *slave = priv->slaves; 704 int n; 705 706 if (priv->data.dual_emac) { 707 /* In dual emac mode check for all interfaces */ 708 for (n = priv->data.slaves; n; n--, slave++) 709 if (netif_running(slave->ndev)) 710 ndev_status = true; 711 } 712 713 if (ndev_status && (status >= 0)) { 714 /* The packet received is for the interface which 715 * is already down and the other interface is up 716 * and running, instead of freeing which results 717 * in reducing of the number of rx descriptor in 718 * DMA engine, requeue skb back to cpdma. 719 */ 720 new_skb = skb; 721 goto requeue; 722 } 723 724 /* the interface is going down, skbs are purged */ 725 dev_kfree_skb_any(skb); 726 return; 727 } 728 729 new_skb = netdev_alloc_skb_ip_align(ndev, priv->rx_packet_max); 730 if (new_skb) { 731 skb_put(skb, len); 732 cpts_rx_timestamp(priv->cpts, skb); 733 skb->protocol = eth_type_trans(skb, ndev); 734 netif_receive_skb(skb); 735 ndev->stats.rx_bytes += len; 736 ndev->stats.rx_packets++; 737 kmemleak_not_leak(new_skb); 738 } else { 739 ndev->stats.rx_dropped++; 740 new_skb = skb; 741 } 742 743 requeue: 744 ret = cpdma_chan_submit(priv->rxch, new_skb, new_skb->data, 745 skb_tailroom(new_skb), 0); 746 if (WARN_ON(ret < 0)) 747 dev_kfree_skb_any(new_skb); 748 } 749 750 static irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id) 751 { 752 struct cpsw_priv *priv = dev_id; 753 754 writel(0, &priv->wr_regs->tx_en); 755 cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_TX); 756 757 if (priv->quirk_irq) { 758 disable_irq_nosync(priv->irqs_table[1]); 759 priv->tx_irq_disabled = true; 760 } 761 762 napi_schedule(&priv->napi_tx); 763 return IRQ_HANDLED; 764 } 765 766 static irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id) 767 { 768 struct cpsw_priv *priv = dev_id; 769 770 cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_RX); 771 writel(0, &priv->wr_regs->rx_en); 772 773 if (priv->quirk_irq) { 774 disable_irq_nosync(priv->irqs_table[0]); 775 priv->rx_irq_disabled = true; 776 } 777 778 napi_schedule(&priv->napi_rx); 779 return IRQ_HANDLED; 780 } 781 782 static int cpsw_tx_poll(struct napi_struct *napi_tx, int budget) 783 { 784 struct cpsw_priv *priv = napi_to_priv(napi_tx); 785 int num_tx; 786 787 num_tx = cpdma_chan_process(priv->txch, budget); 788 if (num_tx < budget) { 789 napi_complete(napi_tx); 790 writel(0xff, &priv->wr_regs->tx_en); 791 if (priv->quirk_irq && priv->tx_irq_disabled) { 792 priv->tx_irq_disabled = false; 793 enable_irq(priv->irqs_table[1]); 794 } 795 } 796 797 if (num_tx) 798 cpsw_dbg(priv, intr, "poll %d tx pkts\n", num_tx); 799 800 return num_tx; 801 } 802 803 static int cpsw_rx_poll(struct napi_struct *napi_rx, int budget) 804 { 805 struct cpsw_priv *priv = napi_to_priv(napi_rx); 806 int num_rx; 807 808 num_rx = cpdma_chan_process(priv->rxch, budget); 809 if (num_rx < budget) { 810 napi_complete(napi_rx); 811 writel(0xff, &priv->wr_regs->rx_en); 812 if (priv->quirk_irq && priv->rx_irq_disabled) { 813 priv->rx_irq_disabled = false; 814 enable_irq(priv->irqs_table[0]); 815 } 816 } 817 818 if (num_rx) 819 cpsw_dbg(priv, intr, "poll %d rx pkts\n", num_rx); 820 821 return num_rx; 822 } 823 824 static inline void soft_reset(const char *module, void __iomem *reg) 825 { 826 unsigned long timeout = jiffies + HZ; 827 828 __raw_writel(1, reg); 829 do { 830 cpu_relax(); 831 } while ((__raw_readl(reg) & 1) && time_after(timeout, jiffies)); 832 833 WARN(__raw_readl(reg) & 1, "failed to soft-reset %s\n", module); 834 } 835 836 #define mac_hi(mac) (((mac)[0] << 0) | ((mac)[1] << 8) | \ 837 ((mac)[2] << 16) | ((mac)[3] << 24)) 838 #define mac_lo(mac) (((mac)[4] << 0) | ((mac)[5] << 8)) 839 840 static void cpsw_set_slave_mac(struct cpsw_slave *slave, 841 struct cpsw_priv *priv) 842 { 843 slave_write(slave, mac_hi(priv->mac_addr), SA_HI); 844 slave_write(slave, mac_lo(priv->mac_addr), SA_LO); 845 } 846 847 static void _cpsw_adjust_link(struct cpsw_slave *slave, 848 struct cpsw_priv *priv, bool *link) 849 { 850 struct phy_device *phy = slave->phy; 851 u32 mac_control = 0; 852 u32 slave_port; 853 854 if (!phy) 855 return; 856 857 slave_port = cpsw_get_slave_port(priv, slave->slave_num); 858 859 if (phy->link) { 860 mac_control = priv->data.mac_control; 861 862 /* enable forwarding */ 863 cpsw_ale_control_set(priv->ale, slave_port, 864 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD); 865 866 if (phy->speed == 1000) 867 mac_control |= BIT(7); /* GIGABITEN */ 868 if (phy->duplex) 869 mac_control |= BIT(0); /* FULLDUPLEXEN */ 870 871 /* set speed_in input in case RMII mode is used in 100Mbps */ 872 if (phy->speed == 100) 873 mac_control |= BIT(15); 874 else if (phy->speed == 10) 875 mac_control |= BIT(18); /* In Band mode */ 876 877 if (priv->rx_pause) 878 mac_control |= BIT(3); 879 880 if (priv->tx_pause) 881 mac_control |= BIT(4); 882 883 *link = true; 884 } else { 885 mac_control = 0; 886 /* disable forwarding */ 887 cpsw_ale_control_set(priv->ale, slave_port, 888 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE); 889 } 890 891 if (mac_control != slave->mac_control) { 892 phy_print_status(phy); 893 __raw_writel(mac_control, &slave->sliver->mac_control); 894 } 895 896 slave->mac_control = mac_control; 897 } 898 899 static void cpsw_adjust_link(struct net_device *ndev) 900 { 901 struct cpsw_priv *priv = netdev_priv(ndev); 902 bool link = false; 903 904 for_each_slave(priv, _cpsw_adjust_link, priv, &link); 905 906 if (link) { 907 netif_carrier_on(ndev); 908 if (netif_running(ndev)) 909 netif_wake_queue(ndev); 910 } else { 911 netif_carrier_off(ndev); 912 netif_stop_queue(ndev); 913 } 914 } 915 916 static int cpsw_get_coalesce(struct net_device *ndev, 917 struct ethtool_coalesce *coal) 918 { 919 struct cpsw_priv *priv = netdev_priv(ndev); 920 921 coal->rx_coalesce_usecs = priv->coal_intvl; 922 return 0; 923 } 924 925 static int cpsw_set_coalesce(struct net_device *ndev, 926 struct ethtool_coalesce *coal) 927 { 928 struct cpsw_priv *priv = netdev_priv(ndev); 929 u32 int_ctrl; 930 u32 num_interrupts = 0; 931 u32 prescale = 0; 932 u32 addnl_dvdr = 1; 933 u32 coal_intvl = 0; 934 935 coal_intvl = coal->rx_coalesce_usecs; 936 937 int_ctrl = readl(&priv->wr_regs->int_control); 938 prescale = priv->bus_freq_mhz * 4; 939 940 if (!coal->rx_coalesce_usecs) { 941 int_ctrl &= ~(CPSW_INTPRESCALE_MASK | CPSW_INTPACEEN); 942 goto update_return; 943 } 944 945 if (coal_intvl < CPSW_CMINTMIN_INTVL) 946 coal_intvl = CPSW_CMINTMIN_INTVL; 947 948 if (coal_intvl > CPSW_CMINTMAX_INTVL) { 949 /* Interrupt pacer works with 4us Pulse, we can 950 * throttle further by dilating the 4us pulse. 951 */ 952 addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale; 953 954 if (addnl_dvdr > 1) { 955 prescale *= addnl_dvdr; 956 if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr)) 957 coal_intvl = (CPSW_CMINTMAX_INTVL 958 * addnl_dvdr); 959 } else { 960 addnl_dvdr = 1; 961 coal_intvl = CPSW_CMINTMAX_INTVL; 962 } 963 } 964 965 num_interrupts = (1000 * addnl_dvdr) / coal_intvl; 966 writel(num_interrupts, &priv->wr_regs->rx_imax); 967 writel(num_interrupts, &priv->wr_regs->tx_imax); 968 969 int_ctrl |= CPSW_INTPACEEN; 970 int_ctrl &= (~CPSW_INTPRESCALE_MASK); 971 int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK); 972 973 update_return: 974 writel(int_ctrl, &priv->wr_regs->int_control); 975 976 cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl); 977 if (priv->data.dual_emac) { 978 int i; 979 980 for (i = 0; i < priv->data.slaves; i++) { 981 priv = netdev_priv(priv->slaves[i].ndev); 982 priv->coal_intvl = coal_intvl; 983 } 984 } else { 985 priv->coal_intvl = coal_intvl; 986 } 987 988 return 0; 989 } 990 991 static int cpsw_get_sset_count(struct net_device *ndev, int sset) 992 { 993 switch (sset) { 994 case ETH_SS_STATS: 995 return CPSW_STATS_LEN; 996 default: 997 return -EOPNOTSUPP; 998 } 999 } 1000 1001 static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data) 1002 { 1003 u8 *p = data; 1004 int i; 1005 1006 switch (stringset) { 1007 case ETH_SS_STATS: 1008 for (i = 0; i < CPSW_STATS_LEN; i++) { 1009 memcpy(p, cpsw_gstrings_stats[i].stat_string, 1010 ETH_GSTRING_LEN); 1011 p += ETH_GSTRING_LEN; 1012 } 1013 break; 1014 } 1015 } 1016 1017 static void cpsw_get_ethtool_stats(struct net_device *ndev, 1018 struct ethtool_stats *stats, u64 *data) 1019 { 1020 struct cpsw_priv *priv = netdev_priv(ndev); 1021 struct cpdma_chan_stats rx_stats; 1022 struct cpdma_chan_stats tx_stats; 1023 u32 val; 1024 u8 *p; 1025 int i; 1026 1027 /* Collect Davinci CPDMA stats for Rx and Tx Channel */ 1028 cpdma_chan_get_stats(priv->rxch, &rx_stats); 1029 cpdma_chan_get_stats(priv->txch, &tx_stats); 1030 1031 for (i = 0; i < CPSW_STATS_LEN; i++) { 1032 switch (cpsw_gstrings_stats[i].type) { 1033 case CPSW_STATS: 1034 val = readl(priv->hw_stats + 1035 cpsw_gstrings_stats[i].stat_offset); 1036 data[i] = val; 1037 break; 1038 1039 case CPDMA_RX_STATS: 1040 p = (u8 *)&rx_stats + 1041 cpsw_gstrings_stats[i].stat_offset; 1042 data[i] = *(u32 *)p; 1043 break; 1044 1045 case CPDMA_TX_STATS: 1046 p = (u8 *)&tx_stats + 1047 cpsw_gstrings_stats[i].stat_offset; 1048 data[i] = *(u32 *)p; 1049 break; 1050 } 1051 } 1052 } 1053 1054 static int cpsw_common_res_usage_state(struct cpsw_priv *priv) 1055 { 1056 u32 i; 1057 u32 usage_count = 0; 1058 1059 if (!priv->data.dual_emac) 1060 return 0; 1061 1062 for (i = 0; i < priv->data.slaves; i++) 1063 if (priv->slaves[i].open_stat) 1064 usage_count++; 1065 1066 return usage_count; 1067 } 1068 1069 static inline int cpsw_tx_packet_submit(struct net_device *ndev, 1070 struct cpsw_priv *priv, struct sk_buff *skb) 1071 { 1072 if (!priv->data.dual_emac) 1073 return cpdma_chan_submit(priv->txch, skb, skb->data, 1074 skb->len, 0); 1075 1076 if (ndev == cpsw_get_slave_ndev(priv, 0)) 1077 return cpdma_chan_submit(priv->txch, skb, skb->data, 1078 skb->len, 1); 1079 else 1080 return cpdma_chan_submit(priv->txch, skb, skb->data, 1081 skb->len, 2); 1082 } 1083 1084 static inline void cpsw_add_dual_emac_def_ale_entries( 1085 struct cpsw_priv *priv, struct cpsw_slave *slave, 1086 u32 slave_port) 1087 { 1088 u32 port_mask = 1 << slave_port | ALE_PORT_HOST; 1089 1090 if (priv->version == CPSW_VERSION_1) 1091 slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN); 1092 else 1093 slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN); 1094 cpsw_ale_add_vlan(priv->ale, slave->port_vlan, port_mask, 1095 port_mask, port_mask, 0); 1096 cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast, 1097 port_mask, ALE_VLAN, slave->port_vlan, 0); 1098 cpsw_ale_add_ucast(priv->ale, priv->mac_addr, 1099 HOST_PORT_NUM, ALE_VLAN | ALE_SECURE, slave->port_vlan); 1100 } 1101 1102 static void soft_reset_slave(struct cpsw_slave *slave) 1103 { 1104 char name[32]; 1105 1106 snprintf(name, sizeof(name), "slave-%d", slave->slave_num); 1107 soft_reset(name, &slave->sliver->soft_reset); 1108 } 1109 1110 static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv) 1111 { 1112 u32 slave_port; 1113 1114 soft_reset_slave(slave); 1115 1116 /* setup priority mapping */ 1117 __raw_writel(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map); 1118 1119 switch (priv->version) { 1120 case CPSW_VERSION_1: 1121 slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP); 1122 break; 1123 case CPSW_VERSION_2: 1124 case CPSW_VERSION_3: 1125 case CPSW_VERSION_4: 1126 slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP); 1127 break; 1128 } 1129 1130 /* setup max packet size, and mac address */ 1131 __raw_writel(priv->rx_packet_max, &slave->sliver->rx_maxlen); 1132 cpsw_set_slave_mac(slave, priv); 1133 1134 slave->mac_control = 0; /* no link yet */ 1135 1136 slave_port = cpsw_get_slave_port(priv, slave->slave_num); 1137 1138 if (priv->data.dual_emac) 1139 cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port); 1140 else 1141 cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast, 1142 1 << slave_port, 0, 0, ALE_MCAST_FWD_2); 1143 1144 if (slave->data->phy_node) { 1145 slave->phy = of_phy_connect(priv->ndev, slave->data->phy_node, 1146 &cpsw_adjust_link, 0, slave->data->phy_if); 1147 if (!slave->phy) { 1148 dev_err(priv->dev, "phy \"%s\" not found on slave %d\n", 1149 slave->data->phy_node->full_name, 1150 slave->slave_num); 1151 return; 1152 } 1153 } else { 1154 slave->phy = phy_connect(priv->ndev, slave->data->phy_id, 1155 &cpsw_adjust_link, slave->data->phy_if); 1156 if (IS_ERR(slave->phy)) { 1157 dev_err(priv->dev, 1158 "phy \"%s\" not found on slave %d, err %ld\n", 1159 slave->data->phy_id, slave->slave_num, 1160 PTR_ERR(slave->phy)); 1161 slave->phy = NULL; 1162 return; 1163 } 1164 } 1165 1166 phy_attached_info(slave->phy); 1167 1168 phy_start(slave->phy); 1169 1170 /* Configure GMII_SEL register */ 1171 cpsw_phy_sel(&priv->pdev->dev, slave->phy->interface, slave->slave_num); 1172 } 1173 1174 static inline void cpsw_add_default_vlan(struct cpsw_priv *priv) 1175 { 1176 const int vlan = priv->data.default_vlan; 1177 u32 reg; 1178 int i; 1179 int unreg_mcast_mask; 1180 1181 reg = (priv->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN : 1182 CPSW2_PORT_VLAN; 1183 1184 writel(vlan, &priv->host_port_regs->port_vlan); 1185 1186 for (i = 0; i < priv->data.slaves; i++) 1187 slave_write(priv->slaves + i, vlan, reg); 1188 1189 if (priv->ndev->flags & IFF_ALLMULTI) 1190 unreg_mcast_mask = ALE_ALL_PORTS; 1191 else 1192 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2; 1193 1194 cpsw_ale_add_vlan(priv->ale, vlan, ALE_ALL_PORTS, 1195 ALE_ALL_PORTS, ALE_ALL_PORTS, 1196 unreg_mcast_mask); 1197 } 1198 1199 static void cpsw_init_host_port(struct cpsw_priv *priv) 1200 { 1201 u32 control_reg; 1202 u32 fifo_mode; 1203 1204 /* soft reset the controller and initialize ale */ 1205 soft_reset("cpsw", &priv->regs->soft_reset); 1206 cpsw_ale_start(priv->ale); 1207 1208 /* switch to vlan unaware mode */ 1209 cpsw_ale_control_set(priv->ale, HOST_PORT_NUM, ALE_VLAN_AWARE, 1210 CPSW_ALE_VLAN_AWARE); 1211 control_reg = readl(&priv->regs->control); 1212 control_reg |= CPSW_VLAN_AWARE; 1213 writel(control_reg, &priv->regs->control); 1214 fifo_mode = (priv->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE : 1215 CPSW_FIFO_NORMAL_MODE; 1216 writel(fifo_mode, &priv->host_port_regs->tx_in_ctl); 1217 1218 /* setup host port priority mapping */ 1219 __raw_writel(CPDMA_TX_PRIORITY_MAP, 1220 &priv->host_port_regs->cpdma_tx_pri_map); 1221 __raw_writel(0, &priv->host_port_regs->cpdma_rx_chan_map); 1222 1223 cpsw_ale_control_set(priv->ale, HOST_PORT_NUM, 1224 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD); 1225 1226 if (!priv->data.dual_emac) { 1227 cpsw_ale_add_ucast(priv->ale, priv->mac_addr, HOST_PORT_NUM, 1228 0, 0); 1229 cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast, 1230 ALE_PORT_HOST, 0, 0, ALE_MCAST_FWD_2); 1231 } 1232 } 1233 1234 static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_priv *priv) 1235 { 1236 u32 slave_port; 1237 1238 slave_port = cpsw_get_slave_port(priv, slave->slave_num); 1239 1240 if (!slave->phy) 1241 return; 1242 phy_stop(slave->phy); 1243 phy_disconnect(slave->phy); 1244 slave->phy = NULL; 1245 cpsw_ale_control_set(priv->ale, slave_port, 1246 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE); 1247 soft_reset_slave(slave); 1248 } 1249 1250 static int cpsw_ndo_open(struct net_device *ndev) 1251 { 1252 struct cpsw_priv *priv = netdev_priv(ndev); 1253 int i, ret; 1254 u32 reg; 1255 1256 ret = pm_runtime_get_sync(&priv->pdev->dev); 1257 if (ret < 0) { 1258 pm_runtime_put_noidle(&priv->pdev->dev); 1259 return ret; 1260 } 1261 1262 if (!cpsw_common_res_usage_state(priv)) 1263 cpsw_intr_disable(priv); 1264 netif_carrier_off(ndev); 1265 1266 reg = priv->version; 1267 1268 dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n", 1269 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg), 1270 CPSW_RTL_VERSION(reg)); 1271 1272 /* initialize host and slave ports */ 1273 if (!cpsw_common_res_usage_state(priv)) 1274 cpsw_init_host_port(priv); 1275 for_each_slave(priv, cpsw_slave_open, priv); 1276 1277 /* Add default VLAN */ 1278 if (!priv->data.dual_emac) 1279 cpsw_add_default_vlan(priv); 1280 else 1281 cpsw_ale_add_vlan(priv->ale, priv->data.default_vlan, 1282 ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0); 1283 1284 if (!cpsw_common_res_usage_state(priv)) { 1285 struct cpsw_priv *priv_sl0 = cpsw_get_slave_priv(priv, 0); 1286 int buf_num; 1287 1288 /* setup tx dma to fixed prio and zero offset */ 1289 cpdma_control_set(priv->dma, CPDMA_TX_PRIO_FIXED, 1); 1290 cpdma_control_set(priv->dma, CPDMA_RX_BUFFER_OFFSET, 0); 1291 1292 /* disable priority elevation */ 1293 __raw_writel(0, &priv->regs->ptype); 1294 1295 /* enable statistics collection only on all ports */ 1296 __raw_writel(0x7, &priv->regs->stat_port_en); 1297 1298 /* Enable internal fifo flow control */ 1299 writel(0x7, &priv->regs->flow_control); 1300 1301 napi_enable(&priv_sl0->napi_rx); 1302 napi_enable(&priv_sl0->napi_tx); 1303 1304 if (priv_sl0->tx_irq_disabled) { 1305 priv_sl0->tx_irq_disabled = false; 1306 enable_irq(priv->irqs_table[1]); 1307 } 1308 1309 if (priv_sl0->rx_irq_disabled) { 1310 priv_sl0->rx_irq_disabled = false; 1311 enable_irq(priv->irqs_table[0]); 1312 } 1313 1314 buf_num = cpdma_chan_get_rx_buf_num(priv->dma); 1315 for (i = 0; i < buf_num; i++) { 1316 struct sk_buff *skb; 1317 1318 ret = -ENOMEM; 1319 skb = __netdev_alloc_skb_ip_align(priv->ndev, 1320 priv->rx_packet_max, GFP_KERNEL); 1321 if (!skb) 1322 goto err_cleanup; 1323 ret = cpdma_chan_submit(priv->rxch, skb, skb->data, 1324 skb_tailroom(skb), 0); 1325 if (ret < 0) { 1326 kfree_skb(skb); 1327 goto err_cleanup; 1328 } 1329 kmemleak_not_leak(skb); 1330 } 1331 /* continue even if we didn't manage to submit all 1332 * receive descs 1333 */ 1334 cpsw_info(priv, ifup, "submitted %d rx descriptors\n", i); 1335 1336 if (cpts_register(&priv->pdev->dev, priv->cpts, 1337 priv->data.cpts_clock_mult, 1338 priv->data.cpts_clock_shift)) 1339 dev_err(priv->dev, "error registering cpts device\n"); 1340 1341 } 1342 1343 /* Enable Interrupt pacing if configured */ 1344 if (priv->coal_intvl != 0) { 1345 struct ethtool_coalesce coal; 1346 1347 coal.rx_coalesce_usecs = priv->coal_intvl; 1348 cpsw_set_coalesce(ndev, &coal); 1349 } 1350 1351 cpdma_ctlr_start(priv->dma); 1352 cpsw_intr_enable(priv); 1353 1354 if (priv->data.dual_emac) 1355 priv->slaves[priv->emac_port].open_stat = true; 1356 return 0; 1357 1358 err_cleanup: 1359 cpdma_ctlr_stop(priv->dma); 1360 for_each_slave(priv, cpsw_slave_stop, priv); 1361 pm_runtime_put_sync(&priv->pdev->dev); 1362 netif_carrier_off(priv->ndev); 1363 return ret; 1364 } 1365 1366 static int cpsw_ndo_stop(struct net_device *ndev) 1367 { 1368 struct cpsw_priv *priv = netdev_priv(ndev); 1369 1370 cpsw_info(priv, ifdown, "shutting down cpsw device\n"); 1371 netif_stop_queue(priv->ndev); 1372 netif_carrier_off(priv->ndev); 1373 1374 if (cpsw_common_res_usage_state(priv) <= 1) { 1375 struct cpsw_priv *priv_sl0 = cpsw_get_slave_priv(priv, 0); 1376 1377 napi_disable(&priv_sl0->napi_rx); 1378 napi_disable(&priv_sl0->napi_tx); 1379 cpts_unregister(priv->cpts); 1380 cpsw_intr_disable(priv); 1381 cpdma_ctlr_stop(priv->dma); 1382 cpsw_ale_stop(priv->ale); 1383 } 1384 for_each_slave(priv, cpsw_slave_stop, priv); 1385 pm_runtime_put_sync(&priv->pdev->dev); 1386 if (priv->data.dual_emac) 1387 priv->slaves[priv->emac_port].open_stat = false; 1388 return 0; 1389 } 1390 1391 static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb, 1392 struct net_device *ndev) 1393 { 1394 struct cpsw_priv *priv = netdev_priv(ndev); 1395 int ret; 1396 1397 netif_trans_update(ndev); 1398 1399 if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) { 1400 cpsw_err(priv, tx_err, "packet pad failed\n"); 1401 ndev->stats.tx_dropped++; 1402 return NETDEV_TX_OK; 1403 } 1404 1405 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && 1406 priv->cpts->tx_enable) 1407 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1408 1409 skb_tx_timestamp(skb); 1410 1411 ret = cpsw_tx_packet_submit(ndev, priv, skb); 1412 if (unlikely(ret != 0)) { 1413 cpsw_err(priv, tx_err, "desc submit failed\n"); 1414 goto fail; 1415 } 1416 1417 /* If there is no more tx desc left free then we need to 1418 * tell the kernel to stop sending us tx frames. 1419 */ 1420 if (unlikely(!cpdma_check_free_tx_desc(priv->txch))) 1421 netif_stop_queue(ndev); 1422 1423 return NETDEV_TX_OK; 1424 fail: 1425 ndev->stats.tx_dropped++; 1426 netif_stop_queue(ndev); 1427 return NETDEV_TX_BUSY; 1428 } 1429 1430 #ifdef CONFIG_TI_CPTS 1431 1432 static void cpsw_hwtstamp_v1(struct cpsw_priv *priv) 1433 { 1434 struct cpsw_slave *slave = &priv->slaves[priv->data.active_slave]; 1435 u32 ts_en, seq_id; 1436 1437 if (!priv->cpts->tx_enable && !priv->cpts->rx_enable) { 1438 slave_write(slave, 0, CPSW1_TS_CTL); 1439 return; 1440 } 1441 1442 seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588; 1443 ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS; 1444 1445 if (priv->cpts->tx_enable) 1446 ts_en |= CPSW_V1_TS_TX_EN; 1447 1448 if (priv->cpts->rx_enable) 1449 ts_en |= CPSW_V1_TS_RX_EN; 1450 1451 slave_write(slave, ts_en, CPSW1_TS_CTL); 1452 slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE); 1453 } 1454 1455 static void cpsw_hwtstamp_v2(struct cpsw_priv *priv) 1456 { 1457 struct cpsw_slave *slave; 1458 u32 ctrl, mtype; 1459 1460 if (priv->data.dual_emac) 1461 slave = &priv->slaves[priv->emac_port]; 1462 else 1463 slave = &priv->slaves[priv->data.active_slave]; 1464 1465 ctrl = slave_read(slave, CPSW2_CONTROL); 1466 switch (priv->version) { 1467 case CPSW_VERSION_2: 1468 ctrl &= ~CTRL_V2_ALL_TS_MASK; 1469 1470 if (priv->cpts->tx_enable) 1471 ctrl |= CTRL_V2_TX_TS_BITS; 1472 1473 if (priv->cpts->rx_enable) 1474 ctrl |= CTRL_V2_RX_TS_BITS; 1475 break; 1476 case CPSW_VERSION_3: 1477 default: 1478 ctrl &= ~CTRL_V3_ALL_TS_MASK; 1479 1480 if (priv->cpts->tx_enable) 1481 ctrl |= CTRL_V3_TX_TS_BITS; 1482 1483 if (priv->cpts->rx_enable) 1484 ctrl |= CTRL_V3_RX_TS_BITS; 1485 break; 1486 } 1487 1488 mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS; 1489 1490 slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE); 1491 slave_write(slave, ctrl, CPSW2_CONTROL); 1492 __raw_writel(ETH_P_1588, &priv->regs->ts_ltype); 1493 } 1494 1495 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr) 1496 { 1497 struct cpsw_priv *priv = netdev_priv(dev); 1498 struct cpts *cpts = priv->cpts; 1499 struct hwtstamp_config cfg; 1500 1501 if (priv->version != CPSW_VERSION_1 && 1502 priv->version != CPSW_VERSION_2 && 1503 priv->version != CPSW_VERSION_3) 1504 return -EOPNOTSUPP; 1505 1506 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg))) 1507 return -EFAULT; 1508 1509 /* reserved for future extensions */ 1510 if (cfg.flags) 1511 return -EINVAL; 1512 1513 if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON) 1514 return -ERANGE; 1515 1516 switch (cfg.rx_filter) { 1517 case HWTSTAMP_FILTER_NONE: 1518 cpts->rx_enable = 0; 1519 break; 1520 case HWTSTAMP_FILTER_ALL: 1521 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 1522 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 1523 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 1524 return -ERANGE; 1525 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 1526 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 1527 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 1528 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 1529 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 1530 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 1531 case HWTSTAMP_FILTER_PTP_V2_EVENT: 1532 case HWTSTAMP_FILTER_PTP_V2_SYNC: 1533 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 1534 cpts->rx_enable = 1; 1535 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 1536 break; 1537 default: 1538 return -ERANGE; 1539 } 1540 1541 cpts->tx_enable = cfg.tx_type == HWTSTAMP_TX_ON; 1542 1543 switch (priv->version) { 1544 case CPSW_VERSION_1: 1545 cpsw_hwtstamp_v1(priv); 1546 break; 1547 case CPSW_VERSION_2: 1548 case CPSW_VERSION_3: 1549 cpsw_hwtstamp_v2(priv); 1550 break; 1551 default: 1552 WARN_ON(1); 1553 } 1554 1555 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; 1556 } 1557 1558 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr) 1559 { 1560 struct cpsw_priv *priv = netdev_priv(dev); 1561 struct cpts *cpts = priv->cpts; 1562 struct hwtstamp_config cfg; 1563 1564 if (priv->version != CPSW_VERSION_1 && 1565 priv->version != CPSW_VERSION_2 && 1566 priv->version != CPSW_VERSION_3) 1567 return -EOPNOTSUPP; 1568 1569 cfg.flags = 0; 1570 cfg.tx_type = cpts->tx_enable ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF; 1571 cfg.rx_filter = (cpts->rx_enable ? 1572 HWTSTAMP_FILTER_PTP_V2_EVENT : HWTSTAMP_FILTER_NONE); 1573 1574 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; 1575 } 1576 1577 #endif /*CONFIG_TI_CPTS*/ 1578 1579 static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 1580 { 1581 struct cpsw_priv *priv = netdev_priv(dev); 1582 int slave_no = cpsw_slave_index(priv); 1583 1584 if (!netif_running(dev)) 1585 return -EINVAL; 1586 1587 switch (cmd) { 1588 #ifdef CONFIG_TI_CPTS 1589 case SIOCSHWTSTAMP: 1590 return cpsw_hwtstamp_set(dev, req); 1591 case SIOCGHWTSTAMP: 1592 return cpsw_hwtstamp_get(dev, req); 1593 #endif 1594 } 1595 1596 if (!priv->slaves[slave_no].phy) 1597 return -EOPNOTSUPP; 1598 return phy_mii_ioctl(priv->slaves[slave_no].phy, req, cmd); 1599 } 1600 1601 static void cpsw_ndo_tx_timeout(struct net_device *ndev) 1602 { 1603 struct cpsw_priv *priv = netdev_priv(ndev); 1604 1605 cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n"); 1606 ndev->stats.tx_errors++; 1607 cpsw_intr_disable(priv); 1608 cpdma_chan_stop(priv->txch); 1609 cpdma_chan_start(priv->txch); 1610 cpsw_intr_enable(priv); 1611 } 1612 1613 static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p) 1614 { 1615 struct cpsw_priv *priv = netdev_priv(ndev); 1616 struct sockaddr *addr = (struct sockaddr *)p; 1617 int flags = 0; 1618 u16 vid = 0; 1619 int ret; 1620 1621 if (!is_valid_ether_addr(addr->sa_data)) 1622 return -EADDRNOTAVAIL; 1623 1624 ret = pm_runtime_get_sync(&priv->pdev->dev); 1625 if (ret < 0) { 1626 pm_runtime_put_noidle(&priv->pdev->dev); 1627 return ret; 1628 } 1629 1630 if (priv->data.dual_emac) { 1631 vid = priv->slaves[priv->emac_port].port_vlan; 1632 flags = ALE_VLAN; 1633 } 1634 1635 cpsw_ale_del_ucast(priv->ale, priv->mac_addr, HOST_PORT_NUM, 1636 flags, vid); 1637 cpsw_ale_add_ucast(priv->ale, addr->sa_data, HOST_PORT_NUM, 1638 flags, vid); 1639 1640 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN); 1641 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN); 1642 for_each_slave(priv, cpsw_set_slave_mac, priv); 1643 1644 pm_runtime_put(&priv->pdev->dev); 1645 1646 return 0; 1647 } 1648 1649 #ifdef CONFIG_NET_POLL_CONTROLLER 1650 static void cpsw_ndo_poll_controller(struct net_device *ndev) 1651 { 1652 struct cpsw_priv *priv = netdev_priv(ndev); 1653 1654 cpsw_intr_disable(priv); 1655 cpsw_rx_interrupt(priv->irqs_table[0], priv); 1656 cpsw_tx_interrupt(priv->irqs_table[1], priv); 1657 cpsw_intr_enable(priv); 1658 } 1659 #endif 1660 1661 static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv, 1662 unsigned short vid) 1663 { 1664 int ret; 1665 int unreg_mcast_mask = 0; 1666 u32 port_mask; 1667 1668 if (priv->data.dual_emac) { 1669 port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST; 1670 1671 if (priv->ndev->flags & IFF_ALLMULTI) 1672 unreg_mcast_mask = port_mask; 1673 } else { 1674 port_mask = ALE_ALL_PORTS; 1675 1676 if (priv->ndev->flags & IFF_ALLMULTI) 1677 unreg_mcast_mask = ALE_ALL_PORTS; 1678 else 1679 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2; 1680 } 1681 1682 ret = cpsw_ale_add_vlan(priv->ale, vid, port_mask, 0, port_mask, 1683 unreg_mcast_mask); 1684 if (ret != 0) 1685 return ret; 1686 1687 ret = cpsw_ale_add_ucast(priv->ale, priv->mac_addr, 1688 HOST_PORT_NUM, ALE_VLAN, vid); 1689 if (ret != 0) 1690 goto clean_vid; 1691 1692 ret = cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast, 1693 port_mask, ALE_VLAN, vid, 0); 1694 if (ret != 0) 1695 goto clean_vlan_ucast; 1696 return 0; 1697 1698 clean_vlan_ucast: 1699 cpsw_ale_del_ucast(priv->ale, priv->mac_addr, 1700 HOST_PORT_NUM, ALE_VLAN, vid); 1701 clean_vid: 1702 cpsw_ale_del_vlan(priv->ale, vid, 0); 1703 return ret; 1704 } 1705 1706 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev, 1707 __be16 proto, u16 vid) 1708 { 1709 struct cpsw_priv *priv = netdev_priv(ndev); 1710 int ret; 1711 1712 if (vid == priv->data.default_vlan) 1713 return 0; 1714 1715 ret = pm_runtime_get_sync(&priv->pdev->dev); 1716 if (ret < 0) { 1717 pm_runtime_put_noidle(&priv->pdev->dev); 1718 return ret; 1719 } 1720 1721 if (priv->data.dual_emac) { 1722 /* In dual EMAC, reserved VLAN id should not be used for 1723 * creating VLAN interfaces as this can break the dual 1724 * EMAC port separation 1725 */ 1726 int i; 1727 1728 for (i = 0; i < priv->data.slaves; i++) { 1729 if (vid == priv->slaves[i].port_vlan) 1730 return -EINVAL; 1731 } 1732 } 1733 1734 dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid); 1735 ret = cpsw_add_vlan_ale_entry(priv, vid); 1736 1737 pm_runtime_put(&priv->pdev->dev); 1738 return ret; 1739 } 1740 1741 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev, 1742 __be16 proto, u16 vid) 1743 { 1744 struct cpsw_priv *priv = netdev_priv(ndev); 1745 int ret; 1746 1747 if (vid == priv->data.default_vlan) 1748 return 0; 1749 1750 ret = pm_runtime_get_sync(&priv->pdev->dev); 1751 if (ret < 0) { 1752 pm_runtime_put_noidle(&priv->pdev->dev); 1753 return ret; 1754 } 1755 1756 if (priv->data.dual_emac) { 1757 int i; 1758 1759 for (i = 0; i < priv->data.slaves; i++) { 1760 if (vid == priv->slaves[i].port_vlan) 1761 return -EINVAL; 1762 } 1763 } 1764 1765 dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid); 1766 ret = cpsw_ale_del_vlan(priv->ale, vid, 0); 1767 if (ret != 0) 1768 return ret; 1769 1770 ret = cpsw_ale_del_ucast(priv->ale, priv->mac_addr, 1771 HOST_PORT_NUM, ALE_VLAN, vid); 1772 if (ret != 0) 1773 return ret; 1774 1775 ret = cpsw_ale_del_mcast(priv->ale, priv->ndev->broadcast, 1776 0, ALE_VLAN, vid); 1777 pm_runtime_put(&priv->pdev->dev); 1778 return ret; 1779 } 1780 1781 static const struct net_device_ops cpsw_netdev_ops = { 1782 .ndo_open = cpsw_ndo_open, 1783 .ndo_stop = cpsw_ndo_stop, 1784 .ndo_start_xmit = cpsw_ndo_start_xmit, 1785 .ndo_set_mac_address = cpsw_ndo_set_mac_address, 1786 .ndo_do_ioctl = cpsw_ndo_ioctl, 1787 .ndo_validate_addr = eth_validate_addr, 1788 .ndo_change_mtu = eth_change_mtu, 1789 .ndo_tx_timeout = cpsw_ndo_tx_timeout, 1790 .ndo_set_rx_mode = cpsw_ndo_set_rx_mode, 1791 #ifdef CONFIG_NET_POLL_CONTROLLER 1792 .ndo_poll_controller = cpsw_ndo_poll_controller, 1793 #endif 1794 .ndo_vlan_rx_add_vid = cpsw_ndo_vlan_rx_add_vid, 1795 .ndo_vlan_rx_kill_vid = cpsw_ndo_vlan_rx_kill_vid, 1796 }; 1797 1798 static int cpsw_get_regs_len(struct net_device *ndev) 1799 { 1800 struct cpsw_priv *priv = netdev_priv(ndev); 1801 1802 return priv->data.ale_entries * ALE_ENTRY_WORDS * sizeof(u32); 1803 } 1804 1805 static void cpsw_get_regs(struct net_device *ndev, 1806 struct ethtool_regs *regs, void *p) 1807 { 1808 struct cpsw_priv *priv = netdev_priv(ndev); 1809 u32 *reg = p; 1810 1811 /* update CPSW IP version */ 1812 regs->version = priv->version; 1813 1814 cpsw_ale_dump(priv->ale, reg); 1815 } 1816 1817 static void cpsw_get_drvinfo(struct net_device *ndev, 1818 struct ethtool_drvinfo *info) 1819 { 1820 struct cpsw_priv *priv = netdev_priv(ndev); 1821 1822 strlcpy(info->driver, "cpsw", sizeof(info->driver)); 1823 strlcpy(info->version, "1.0", sizeof(info->version)); 1824 strlcpy(info->bus_info, priv->pdev->name, sizeof(info->bus_info)); 1825 } 1826 1827 static u32 cpsw_get_msglevel(struct net_device *ndev) 1828 { 1829 struct cpsw_priv *priv = netdev_priv(ndev); 1830 return priv->msg_enable; 1831 } 1832 1833 static void cpsw_set_msglevel(struct net_device *ndev, u32 value) 1834 { 1835 struct cpsw_priv *priv = netdev_priv(ndev); 1836 priv->msg_enable = value; 1837 } 1838 1839 static int cpsw_get_ts_info(struct net_device *ndev, 1840 struct ethtool_ts_info *info) 1841 { 1842 #ifdef CONFIG_TI_CPTS 1843 struct cpsw_priv *priv = netdev_priv(ndev); 1844 1845 info->so_timestamping = 1846 SOF_TIMESTAMPING_TX_HARDWARE | 1847 SOF_TIMESTAMPING_TX_SOFTWARE | 1848 SOF_TIMESTAMPING_RX_HARDWARE | 1849 SOF_TIMESTAMPING_RX_SOFTWARE | 1850 SOF_TIMESTAMPING_SOFTWARE | 1851 SOF_TIMESTAMPING_RAW_HARDWARE; 1852 info->phc_index = priv->cpts->phc_index; 1853 info->tx_types = 1854 (1 << HWTSTAMP_TX_OFF) | 1855 (1 << HWTSTAMP_TX_ON); 1856 info->rx_filters = 1857 (1 << HWTSTAMP_FILTER_NONE) | 1858 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 1859 #else 1860 info->so_timestamping = 1861 SOF_TIMESTAMPING_TX_SOFTWARE | 1862 SOF_TIMESTAMPING_RX_SOFTWARE | 1863 SOF_TIMESTAMPING_SOFTWARE; 1864 info->phc_index = -1; 1865 info->tx_types = 0; 1866 info->rx_filters = 0; 1867 #endif 1868 return 0; 1869 } 1870 1871 static int cpsw_get_settings(struct net_device *ndev, 1872 struct ethtool_cmd *ecmd) 1873 { 1874 struct cpsw_priv *priv = netdev_priv(ndev); 1875 int slave_no = cpsw_slave_index(priv); 1876 1877 if (priv->slaves[slave_no].phy) 1878 return phy_ethtool_gset(priv->slaves[slave_no].phy, ecmd); 1879 else 1880 return -EOPNOTSUPP; 1881 } 1882 1883 static int cpsw_set_settings(struct net_device *ndev, struct ethtool_cmd *ecmd) 1884 { 1885 struct cpsw_priv *priv = netdev_priv(ndev); 1886 int slave_no = cpsw_slave_index(priv); 1887 1888 if (priv->slaves[slave_no].phy) 1889 return phy_ethtool_sset(priv->slaves[slave_no].phy, ecmd); 1890 else 1891 return -EOPNOTSUPP; 1892 } 1893 1894 static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 1895 { 1896 struct cpsw_priv *priv = netdev_priv(ndev); 1897 int slave_no = cpsw_slave_index(priv); 1898 1899 wol->supported = 0; 1900 wol->wolopts = 0; 1901 1902 if (priv->slaves[slave_no].phy) 1903 phy_ethtool_get_wol(priv->slaves[slave_no].phy, wol); 1904 } 1905 1906 static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 1907 { 1908 struct cpsw_priv *priv = netdev_priv(ndev); 1909 int slave_no = cpsw_slave_index(priv); 1910 1911 if (priv->slaves[slave_no].phy) 1912 return phy_ethtool_set_wol(priv->slaves[slave_no].phy, wol); 1913 else 1914 return -EOPNOTSUPP; 1915 } 1916 1917 static void cpsw_get_pauseparam(struct net_device *ndev, 1918 struct ethtool_pauseparam *pause) 1919 { 1920 struct cpsw_priv *priv = netdev_priv(ndev); 1921 1922 pause->autoneg = AUTONEG_DISABLE; 1923 pause->rx_pause = priv->rx_pause ? true : false; 1924 pause->tx_pause = priv->tx_pause ? true : false; 1925 } 1926 1927 static int cpsw_set_pauseparam(struct net_device *ndev, 1928 struct ethtool_pauseparam *pause) 1929 { 1930 struct cpsw_priv *priv = netdev_priv(ndev); 1931 bool link; 1932 1933 priv->rx_pause = pause->rx_pause ? true : false; 1934 priv->tx_pause = pause->tx_pause ? true : false; 1935 1936 for_each_slave(priv, _cpsw_adjust_link, priv, &link); 1937 return 0; 1938 } 1939 1940 static int cpsw_ethtool_op_begin(struct net_device *ndev) 1941 { 1942 struct cpsw_priv *priv = netdev_priv(ndev); 1943 int ret; 1944 1945 ret = pm_runtime_get_sync(&priv->pdev->dev); 1946 if (ret < 0) { 1947 cpsw_err(priv, drv, "ethtool begin failed %d\n", ret); 1948 pm_runtime_put_noidle(&priv->pdev->dev); 1949 } 1950 1951 return ret; 1952 } 1953 1954 static void cpsw_ethtool_op_complete(struct net_device *ndev) 1955 { 1956 struct cpsw_priv *priv = netdev_priv(ndev); 1957 int ret; 1958 1959 ret = pm_runtime_put(&priv->pdev->dev); 1960 if (ret < 0) 1961 cpsw_err(priv, drv, "ethtool complete failed %d\n", ret); 1962 } 1963 1964 static const struct ethtool_ops cpsw_ethtool_ops = { 1965 .get_drvinfo = cpsw_get_drvinfo, 1966 .get_msglevel = cpsw_get_msglevel, 1967 .set_msglevel = cpsw_set_msglevel, 1968 .get_link = ethtool_op_get_link, 1969 .get_ts_info = cpsw_get_ts_info, 1970 .get_settings = cpsw_get_settings, 1971 .set_settings = cpsw_set_settings, 1972 .get_coalesce = cpsw_get_coalesce, 1973 .set_coalesce = cpsw_set_coalesce, 1974 .get_sset_count = cpsw_get_sset_count, 1975 .get_strings = cpsw_get_strings, 1976 .get_ethtool_stats = cpsw_get_ethtool_stats, 1977 .get_pauseparam = cpsw_get_pauseparam, 1978 .set_pauseparam = cpsw_set_pauseparam, 1979 .get_wol = cpsw_get_wol, 1980 .set_wol = cpsw_set_wol, 1981 .get_regs_len = cpsw_get_regs_len, 1982 .get_regs = cpsw_get_regs, 1983 .begin = cpsw_ethtool_op_begin, 1984 .complete = cpsw_ethtool_op_complete, 1985 }; 1986 1987 static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_priv *priv, 1988 u32 slave_reg_ofs, u32 sliver_reg_ofs) 1989 { 1990 void __iomem *regs = priv->regs; 1991 int slave_num = slave->slave_num; 1992 struct cpsw_slave_data *data = priv->data.slave_data + slave_num; 1993 1994 slave->data = data; 1995 slave->regs = regs + slave_reg_ofs; 1996 slave->sliver = regs + sliver_reg_ofs; 1997 slave->port_vlan = data->dual_emac_res_vlan; 1998 } 1999 2000 static int cpsw_probe_dt(struct cpsw_platform_data *data, 2001 struct platform_device *pdev) 2002 { 2003 struct device_node *node = pdev->dev.of_node; 2004 struct device_node *slave_node; 2005 int i = 0, ret; 2006 u32 prop; 2007 2008 if (!node) 2009 return -EINVAL; 2010 2011 if (of_property_read_u32(node, "slaves", &prop)) { 2012 dev_err(&pdev->dev, "Missing slaves property in the DT.\n"); 2013 return -EINVAL; 2014 } 2015 data->slaves = prop; 2016 2017 if (of_property_read_u32(node, "active_slave", &prop)) { 2018 dev_err(&pdev->dev, "Missing active_slave property in the DT.\n"); 2019 return -EINVAL; 2020 } 2021 data->active_slave = prop; 2022 2023 if (of_property_read_u32(node, "cpts_clock_mult", &prop)) { 2024 dev_err(&pdev->dev, "Missing cpts_clock_mult property in the DT.\n"); 2025 return -EINVAL; 2026 } 2027 data->cpts_clock_mult = prop; 2028 2029 if (of_property_read_u32(node, "cpts_clock_shift", &prop)) { 2030 dev_err(&pdev->dev, "Missing cpts_clock_shift property in the DT.\n"); 2031 return -EINVAL; 2032 } 2033 data->cpts_clock_shift = prop; 2034 2035 data->slave_data = devm_kzalloc(&pdev->dev, data->slaves 2036 * sizeof(struct cpsw_slave_data), 2037 GFP_KERNEL); 2038 if (!data->slave_data) 2039 return -ENOMEM; 2040 2041 if (of_property_read_u32(node, "cpdma_channels", &prop)) { 2042 dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n"); 2043 return -EINVAL; 2044 } 2045 data->channels = prop; 2046 2047 if (of_property_read_u32(node, "ale_entries", &prop)) { 2048 dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n"); 2049 return -EINVAL; 2050 } 2051 data->ale_entries = prop; 2052 2053 if (of_property_read_u32(node, "bd_ram_size", &prop)) { 2054 dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n"); 2055 return -EINVAL; 2056 } 2057 data->bd_ram_size = prop; 2058 2059 if (of_property_read_u32(node, "mac_control", &prop)) { 2060 dev_err(&pdev->dev, "Missing mac_control property in the DT.\n"); 2061 return -EINVAL; 2062 } 2063 data->mac_control = prop; 2064 2065 if (of_property_read_bool(node, "dual_emac")) 2066 data->dual_emac = 1; 2067 2068 /* 2069 * Populate all the child nodes here... 2070 */ 2071 ret = of_platform_populate(node, NULL, NULL, &pdev->dev); 2072 /* We do not want to force this, as in some cases may not have child */ 2073 if (ret) 2074 dev_warn(&pdev->dev, "Doesn't have any child node\n"); 2075 2076 for_each_available_child_of_node(node, slave_node) { 2077 struct cpsw_slave_data *slave_data = data->slave_data + i; 2078 const void *mac_addr = NULL; 2079 int lenp; 2080 const __be32 *parp; 2081 2082 /* This is no slave child node, continue */ 2083 if (strcmp(slave_node->name, "slave")) 2084 continue; 2085 2086 slave_data->phy_node = of_parse_phandle(slave_node, 2087 "phy-handle", 0); 2088 parp = of_get_property(slave_node, "phy_id", &lenp); 2089 if (slave_data->phy_node) { 2090 dev_dbg(&pdev->dev, 2091 "slave[%d] using phy-handle=\"%s\"\n", 2092 i, slave_data->phy_node->full_name); 2093 } else if (of_phy_is_fixed_link(slave_node)) { 2094 /* In the case of a fixed PHY, the DT node associated 2095 * to the PHY is the Ethernet MAC DT node. 2096 */ 2097 ret = of_phy_register_fixed_link(slave_node); 2098 if (ret) 2099 return ret; 2100 slave_data->phy_node = of_node_get(slave_node); 2101 } else if (parp) { 2102 u32 phyid; 2103 struct device_node *mdio_node; 2104 struct platform_device *mdio; 2105 2106 if (lenp != (sizeof(__be32) * 2)) { 2107 dev_err(&pdev->dev, "Invalid slave[%d] phy_id property\n", i); 2108 goto no_phy_slave; 2109 } 2110 mdio_node = of_find_node_by_phandle(be32_to_cpup(parp)); 2111 phyid = be32_to_cpup(parp+1); 2112 mdio = of_find_device_by_node(mdio_node); 2113 of_node_put(mdio_node); 2114 if (!mdio) { 2115 dev_err(&pdev->dev, "Missing mdio platform device\n"); 2116 return -EINVAL; 2117 } 2118 snprintf(slave_data->phy_id, sizeof(slave_data->phy_id), 2119 PHY_ID_FMT, mdio->name, phyid); 2120 } else { 2121 dev_err(&pdev->dev, 2122 "No slave[%d] phy_id, phy-handle, or fixed-link property\n", 2123 i); 2124 goto no_phy_slave; 2125 } 2126 slave_data->phy_if = of_get_phy_mode(slave_node); 2127 if (slave_data->phy_if < 0) { 2128 dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n", 2129 i); 2130 return slave_data->phy_if; 2131 } 2132 2133 no_phy_slave: 2134 mac_addr = of_get_mac_address(slave_node); 2135 if (mac_addr) { 2136 memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN); 2137 } else { 2138 ret = ti_cm_get_macid(&pdev->dev, i, 2139 slave_data->mac_addr); 2140 if (ret) 2141 return ret; 2142 } 2143 if (data->dual_emac) { 2144 if (of_property_read_u32(slave_node, "dual_emac_res_vlan", 2145 &prop)) { 2146 dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n"); 2147 slave_data->dual_emac_res_vlan = i+1; 2148 dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n", 2149 slave_data->dual_emac_res_vlan, i); 2150 } else { 2151 slave_data->dual_emac_res_vlan = prop; 2152 } 2153 } 2154 2155 i++; 2156 if (i == data->slaves) 2157 break; 2158 } 2159 2160 return 0; 2161 } 2162 2163 static int cpsw_probe_dual_emac(struct platform_device *pdev, 2164 struct cpsw_priv *priv) 2165 { 2166 struct cpsw_platform_data *data = &priv->data; 2167 struct net_device *ndev; 2168 struct cpsw_priv *priv_sl2; 2169 int ret = 0, i; 2170 2171 ndev = alloc_etherdev(sizeof(struct cpsw_priv)); 2172 if (!ndev) { 2173 dev_err(&pdev->dev, "cpsw: error allocating net_device\n"); 2174 return -ENOMEM; 2175 } 2176 2177 priv_sl2 = netdev_priv(ndev); 2178 priv_sl2->data = *data; 2179 priv_sl2->pdev = pdev; 2180 priv_sl2->ndev = ndev; 2181 priv_sl2->dev = &ndev->dev; 2182 priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG); 2183 priv_sl2->rx_packet_max = max(rx_packet_max, 128); 2184 2185 if (is_valid_ether_addr(data->slave_data[1].mac_addr)) { 2186 memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr, 2187 ETH_ALEN); 2188 dev_info(&pdev->dev, "cpsw: Detected MACID = %pM\n", priv_sl2->mac_addr); 2189 } else { 2190 random_ether_addr(priv_sl2->mac_addr); 2191 dev_info(&pdev->dev, "cpsw: Random MACID = %pM\n", priv_sl2->mac_addr); 2192 } 2193 memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN); 2194 2195 priv_sl2->slaves = priv->slaves; 2196 priv_sl2->clk = priv->clk; 2197 2198 priv_sl2->coal_intvl = 0; 2199 priv_sl2->bus_freq_mhz = priv->bus_freq_mhz; 2200 2201 priv_sl2->regs = priv->regs; 2202 priv_sl2->host_port_regs = priv->host_port_regs; 2203 priv_sl2->wr_regs = priv->wr_regs; 2204 priv_sl2->hw_stats = priv->hw_stats; 2205 priv_sl2->dma = priv->dma; 2206 priv_sl2->txch = priv->txch; 2207 priv_sl2->rxch = priv->rxch; 2208 priv_sl2->ale = priv->ale; 2209 priv_sl2->emac_port = 1; 2210 priv->slaves[1].ndev = ndev; 2211 priv_sl2->cpts = priv->cpts; 2212 priv_sl2->version = priv->version; 2213 2214 for (i = 0; i < priv->num_irqs; i++) { 2215 priv_sl2->irqs_table[i] = priv->irqs_table[i]; 2216 priv_sl2->num_irqs = priv->num_irqs; 2217 } 2218 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 2219 2220 ndev->netdev_ops = &cpsw_netdev_ops; 2221 ndev->ethtool_ops = &cpsw_ethtool_ops; 2222 2223 /* register the network device */ 2224 SET_NETDEV_DEV(ndev, &pdev->dev); 2225 ret = register_netdev(ndev); 2226 if (ret) { 2227 dev_err(&pdev->dev, "cpsw: error registering net device\n"); 2228 free_netdev(ndev); 2229 ret = -ENODEV; 2230 } 2231 2232 return ret; 2233 } 2234 2235 #define CPSW_QUIRK_IRQ BIT(0) 2236 2237 static struct platform_device_id cpsw_devtype[] = { 2238 { 2239 /* keep it for existing comaptibles */ 2240 .name = "cpsw", 2241 .driver_data = CPSW_QUIRK_IRQ, 2242 }, { 2243 .name = "am335x-cpsw", 2244 .driver_data = CPSW_QUIRK_IRQ, 2245 }, { 2246 .name = "am4372-cpsw", 2247 .driver_data = 0, 2248 }, { 2249 .name = "dra7-cpsw", 2250 .driver_data = 0, 2251 }, { 2252 /* sentinel */ 2253 } 2254 }; 2255 MODULE_DEVICE_TABLE(platform, cpsw_devtype); 2256 2257 enum ti_cpsw_type { 2258 CPSW = 0, 2259 AM335X_CPSW, 2260 AM4372_CPSW, 2261 DRA7_CPSW, 2262 }; 2263 2264 static const struct of_device_id cpsw_of_mtable[] = { 2265 { .compatible = "ti,cpsw", .data = &cpsw_devtype[CPSW], }, 2266 { .compatible = "ti,am335x-cpsw", .data = &cpsw_devtype[AM335X_CPSW], }, 2267 { .compatible = "ti,am4372-cpsw", .data = &cpsw_devtype[AM4372_CPSW], }, 2268 { .compatible = "ti,dra7-cpsw", .data = &cpsw_devtype[DRA7_CPSW], }, 2269 { /* sentinel */ }, 2270 }; 2271 MODULE_DEVICE_TABLE(of, cpsw_of_mtable); 2272 2273 static int cpsw_probe(struct platform_device *pdev) 2274 { 2275 struct cpsw_platform_data *data; 2276 struct net_device *ndev; 2277 struct cpsw_priv *priv; 2278 struct cpdma_params dma_params; 2279 struct cpsw_ale_params ale_params; 2280 void __iomem *ss_regs; 2281 struct resource *res, *ss_res; 2282 const struct of_device_id *of_id; 2283 struct gpio_descs *mode; 2284 u32 slave_offset, sliver_offset, slave_size; 2285 int ret = 0, i; 2286 int irq; 2287 2288 ndev = alloc_etherdev(sizeof(struct cpsw_priv)); 2289 if (!ndev) { 2290 dev_err(&pdev->dev, "error allocating net_device\n"); 2291 return -ENOMEM; 2292 } 2293 2294 platform_set_drvdata(pdev, ndev); 2295 priv = netdev_priv(ndev); 2296 priv->pdev = pdev; 2297 priv->ndev = ndev; 2298 priv->dev = &ndev->dev; 2299 priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG); 2300 priv->rx_packet_max = max(rx_packet_max, 128); 2301 priv->cpts = devm_kzalloc(&pdev->dev, sizeof(struct cpts), GFP_KERNEL); 2302 if (!priv->cpts) { 2303 dev_err(&pdev->dev, "error allocating cpts\n"); 2304 ret = -ENOMEM; 2305 goto clean_ndev_ret; 2306 } 2307 2308 mode = devm_gpiod_get_array_optional(&pdev->dev, "mode", GPIOD_OUT_LOW); 2309 if (IS_ERR(mode)) { 2310 ret = PTR_ERR(mode); 2311 dev_err(&pdev->dev, "gpio request failed, ret %d\n", ret); 2312 goto clean_ndev_ret; 2313 } 2314 2315 /* 2316 * This may be required here for child devices. 2317 */ 2318 pm_runtime_enable(&pdev->dev); 2319 2320 /* Select default pin state */ 2321 pinctrl_pm_select_default_state(&pdev->dev); 2322 2323 if (cpsw_probe_dt(&priv->data, pdev)) { 2324 dev_err(&pdev->dev, "cpsw: platform data missing\n"); 2325 ret = -ENODEV; 2326 goto clean_runtime_disable_ret; 2327 } 2328 data = &priv->data; 2329 2330 if (is_valid_ether_addr(data->slave_data[0].mac_addr)) { 2331 memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN); 2332 dev_info(&pdev->dev, "Detected MACID = %pM\n", priv->mac_addr); 2333 } else { 2334 eth_random_addr(priv->mac_addr); 2335 dev_info(&pdev->dev, "Random MACID = %pM\n", priv->mac_addr); 2336 } 2337 2338 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN); 2339 2340 priv->slaves = devm_kzalloc(&pdev->dev, 2341 sizeof(struct cpsw_slave) * data->slaves, 2342 GFP_KERNEL); 2343 if (!priv->slaves) { 2344 ret = -ENOMEM; 2345 goto clean_runtime_disable_ret; 2346 } 2347 for (i = 0; i < data->slaves; i++) 2348 priv->slaves[i].slave_num = i; 2349 2350 priv->slaves[0].ndev = ndev; 2351 priv->emac_port = 0; 2352 2353 priv->clk = devm_clk_get(&pdev->dev, "fck"); 2354 if (IS_ERR(priv->clk)) { 2355 dev_err(priv->dev, "fck is not found\n"); 2356 ret = -ENODEV; 2357 goto clean_runtime_disable_ret; 2358 } 2359 priv->coal_intvl = 0; 2360 priv->bus_freq_mhz = clk_get_rate(priv->clk) / 1000000; 2361 2362 ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2363 ss_regs = devm_ioremap_resource(&pdev->dev, ss_res); 2364 if (IS_ERR(ss_regs)) { 2365 ret = PTR_ERR(ss_regs); 2366 goto clean_runtime_disable_ret; 2367 } 2368 priv->regs = ss_regs; 2369 2370 /* Need to enable clocks with runtime PM api to access module 2371 * registers 2372 */ 2373 ret = pm_runtime_get_sync(&pdev->dev); 2374 if (ret < 0) { 2375 pm_runtime_put_noidle(&pdev->dev); 2376 goto clean_runtime_disable_ret; 2377 } 2378 priv->version = readl(&priv->regs->id_ver); 2379 pm_runtime_put_sync(&pdev->dev); 2380 2381 res = platform_get_resource(pdev, IORESOURCE_MEM, 1); 2382 priv->wr_regs = devm_ioremap_resource(&pdev->dev, res); 2383 if (IS_ERR(priv->wr_regs)) { 2384 ret = PTR_ERR(priv->wr_regs); 2385 goto clean_runtime_disable_ret; 2386 } 2387 2388 memset(&dma_params, 0, sizeof(dma_params)); 2389 memset(&ale_params, 0, sizeof(ale_params)); 2390 2391 switch (priv->version) { 2392 case CPSW_VERSION_1: 2393 priv->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET; 2394 priv->cpts->reg = ss_regs + CPSW1_CPTS_OFFSET; 2395 priv->hw_stats = ss_regs + CPSW1_HW_STATS; 2396 dma_params.dmaregs = ss_regs + CPSW1_CPDMA_OFFSET; 2397 dma_params.txhdp = ss_regs + CPSW1_STATERAM_OFFSET; 2398 ale_params.ale_regs = ss_regs + CPSW1_ALE_OFFSET; 2399 slave_offset = CPSW1_SLAVE_OFFSET; 2400 slave_size = CPSW1_SLAVE_SIZE; 2401 sliver_offset = CPSW1_SLIVER_OFFSET; 2402 dma_params.desc_mem_phys = 0; 2403 break; 2404 case CPSW_VERSION_2: 2405 case CPSW_VERSION_3: 2406 case CPSW_VERSION_4: 2407 priv->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET; 2408 priv->cpts->reg = ss_regs + CPSW2_CPTS_OFFSET; 2409 priv->hw_stats = ss_regs + CPSW2_HW_STATS; 2410 dma_params.dmaregs = ss_regs + CPSW2_CPDMA_OFFSET; 2411 dma_params.txhdp = ss_regs + CPSW2_STATERAM_OFFSET; 2412 ale_params.ale_regs = ss_regs + CPSW2_ALE_OFFSET; 2413 slave_offset = CPSW2_SLAVE_OFFSET; 2414 slave_size = CPSW2_SLAVE_SIZE; 2415 sliver_offset = CPSW2_SLIVER_OFFSET; 2416 dma_params.desc_mem_phys = 2417 (u32 __force) ss_res->start + CPSW2_BD_OFFSET; 2418 break; 2419 default: 2420 dev_err(priv->dev, "unknown version 0x%08x\n", priv->version); 2421 ret = -ENODEV; 2422 goto clean_runtime_disable_ret; 2423 } 2424 for (i = 0; i < priv->data.slaves; i++) { 2425 struct cpsw_slave *slave = &priv->slaves[i]; 2426 cpsw_slave_init(slave, priv, slave_offset, sliver_offset); 2427 slave_offset += slave_size; 2428 sliver_offset += SLIVER_SIZE; 2429 } 2430 2431 dma_params.dev = &pdev->dev; 2432 dma_params.rxthresh = dma_params.dmaregs + CPDMA_RXTHRESH; 2433 dma_params.rxfree = dma_params.dmaregs + CPDMA_RXFREE; 2434 dma_params.rxhdp = dma_params.txhdp + CPDMA_RXHDP; 2435 dma_params.txcp = dma_params.txhdp + CPDMA_TXCP; 2436 dma_params.rxcp = dma_params.txhdp + CPDMA_RXCP; 2437 2438 dma_params.num_chan = data->channels; 2439 dma_params.has_soft_reset = true; 2440 dma_params.min_packet_size = CPSW_MIN_PACKET_SIZE; 2441 dma_params.desc_mem_size = data->bd_ram_size; 2442 dma_params.desc_align = 16; 2443 dma_params.has_ext_regs = true; 2444 dma_params.desc_hw_addr = dma_params.desc_mem_phys; 2445 2446 priv->dma = cpdma_ctlr_create(&dma_params); 2447 if (!priv->dma) { 2448 dev_err(priv->dev, "error initializing dma\n"); 2449 ret = -ENOMEM; 2450 goto clean_runtime_disable_ret; 2451 } 2452 2453 priv->txch = cpdma_chan_create(priv->dma, tx_chan_num(0), 2454 cpsw_tx_handler); 2455 priv->rxch = cpdma_chan_create(priv->dma, rx_chan_num(0), 2456 cpsw_rx_handler); 2457 2458 if (WARN_ON(!priv->txch || !priv->rxch)) { 2459 dev_err(priv->dev, "error initializing dma channels\n"); 2460 ret = -ENOMEM; 2461 goto clean_dma_ret; 2462 } 2463 2464 ale_params.dev = &ndev->dev; 2465 ale_params.ale_ageout = ale_ageout; 2466 ale_params.ale_entries = data->ale_entries; 2467 ale_params.ale_ports = data->slaves; 2468 2469 priv->ale = cpsw_ale_create(&ale_params); 2470 if (!priv->ale) { 2471 dev_err(priv->dev, "error initializing ale engine\n"); 2472 ret = -ENODEV; 2473 goto clean_dma_ret; 2474 } 2475 2476 ndev->irq = platform_get_irq(pdev, 1); 2477 if (ndev->irq < 0) { 2478 dev_err(priv->dev, "error getting irq resource\n"); 2479 ret = ndev->irq; 2480 goto clean_ale_ret; 2481 } 2482 2483 of_id = of_match_device(cpsw_of_mtable, &pdev->dev); 2484 if (of_id) { 2485 pdev->id_entry = of_id->data; 2486 if (pdev->id_entry->driver_data) 2487 priv->quirk_irq = true; 2488 } 2489 2490 /* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and 2491 * MISC IRQs which are always kept disabled with this driver so 2492 * we will not request them. 2493 * 2494 * If anyone wants to implement support for those, make sure to 2495 * first request and append them to irqs_table array. 2496 */ 2497 2498 /* RX IRQ */ 2499 irq = platform_get_irq(pdev, 1); 2500 if (irq < 0) { 2501 ret = irq; 2502 goto clean_ale_ret; 2503 } 2504 2505 priv->irqs_table[0] = irq; 2506 ret = devm_request_irq(&pdev->dev, irq, cpsw_rx_interrupt, 2507 0, dev_name(&pdev->dev), priv); 2508 if (ret < 0) { 2509 dev_err(priv->dev, "error attaching irq (%d)\n", ret); 2510 goto clean_ale_ret; 2511 } 2512 2513 /* TX IRQ */ 2514 irq = platform_get_irq(pdev, 2); 2515 if (irq < 0) { 2516 ret = irq; 2517 goto clean_ale_ret; 2518 } 2519 2520 priv->irqs_table[1] = irq; 2521 ret = devm_request_irq(&pdev->dev, irq, cpsw_tx_interrupt, 2522 0, dev_name(&pdev->dev), priv); 2523 if (ret < 0) { 2524 dev_err(priv->dev, "error attaching irq (%d)\n", ret); 2525 goto clean_ale_ret; 2526 } 2527 priv->num_irqs = 2; 2528 2529 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 2530 2531 ndev->netdev_ops = &cpsw_netdev_ops; 2532 ndev->ethtool_ops = &cpsw_ethtool_ops; 2533 netif_napi_add(ndev, &priv->napi_rx, cpsw_rx_poll, CPSW_POLL_WEIGHT); 2534 netif_tx_napi_add(ndev, &priv->napi_tx, cpsw_tx_poll, CPSW_POLL_WEIGHT); 2535 2536 /* register the network device */ 2537 SET_NETDEV_DEV(ndev, &pdev->dev); 2538 ret = register_netdev(ndev); 2539 if (ret) { 2540 dev_err(priv->dev, "error registering net device\n"); 2541 ret = -ENODEV; 2542 goto clean_ale_ret; 2543 } 2544 2545 cpsw_notice(priv, probe, "initialized device (regs %pa, irq %d)\n", 2546 &ss_res->start, ndev->irq); 2547 2548 if (priv->data.dual_emac) { 2549 ret = cpsw_probe_dual_emac(pdev, priv); 2550 if (ret) { 2551 cpsw_err(priv, probe, "error probe slave 2 emac interface\n"); 2552 goto clean_ale_ret; 2553 } 2554 } 2555 2556 return 0; 2557 2558 clean_ale_ret: 2559 cpsw_ale_destroy(priv->ale); 2560 clean_dma_ret: 2561 cpdma_ctlr_destroy(priv->dma); 2562 clean_runtime_disable_ret: 2563 pm_runtime_disable(&pdev->dev); 2564 clean_ndev_ret: 2565 free_netdev(priv->ndev); 2566 return ret; 2567 } 2568 2569 static int cpsw_remove(struct platform_device *pdev) 2570 { 2571 struct net_device *ndev = platform_get_drvdata(pdev); 2572 struct cpsw_priv *priv = netdev_priv(ndev); 2573 int ret; 2574 2575 ret = pm_runtime_get_sync(&pdev->dev); 2576 if (ret < 0) { 2577 pm_runtime_put_noidle(&pdev->dev); 2578 return ret; 2579 } 2580 2581 if (priv->data.dual_emac) 2582 unregister_netdev(cpsw_get_slave_ndev(priv, 1)); 2583 unregister_netdev(ndev); 2584 2585 cpsw_ale_destroy(priv->ale); 2586 cpdma_ctlr_destroy(priv->dma); 2587 of_platform_depopulate(&pdev->dev); 2588 pm_runtime_put_sync(&pdev->dev); 2589 pm_runtime_disable(&pdev->dev); 2590 if (priv->data.dual_emac) 2591 free_netdev(cpsw_get_slave_ndev(priv, 1)); 2592 free_netdev(ndev); 2593 return 0; 2594 } 2595 2596 #ifdef CONFIG_PM_SLEEP 2597 static int cpsw_suspend(struct device *dev) 2598 { 2599 struct platform_device *pdev = to_platform_device(dev); 2600 struct net_device *ndev = platform_get_drvdata(pdev); 2601 struct cpsw_priv *priv = netdev_priv(ndev); 2602 2603 if (priv->data.dual_emac) { 2604 int i; 2605 2606 for (i = 0; i < priv->data.slaves; i++) { 2607 if (netif_running(priv->slaves[i].ndev)) 2608 cpsw_ndo_stop(priv->slaves[i].ndev); 2609 } 2610 } else { 2611 if (netif_running(ndev)) 2612 cpsw_ndo_stop(ndev); 2613 } 2614 2615 /* Select sleep pin state */ 2616 pinctrl_pm_select_sleep_state(&pdev->dev); 2617 2618 return 0; 2619 } 2620 2621 static int cpsw_resume(struct device *dev) 2622 { 2623 struct platform_device *pdev = to_platform_device(dev); 2624 struct net_device *ndev = platform_get_drvdata(pdev); 2625 struct cpsw_priv *priv = netdev_priv(ndev); 2626 2627 /* Select default pin state */ 2628 pinctrl_pm_select_default_state(&pdev->dev); 2629 2630 if (priv->data.dual_emac) { 2631 int i; 2632 2633 for (i = 0; i < priv->data.slaves; i++) { 2634 if (netif_running(priv->slaves[i].ndev)) 2635 cpsw_ndo_open(priv->slaves[i].ndev); 2636 } 2637 } else { 2638 if (netif_running(ndev)) 2639 cpsw_ndo_open(ndev); 2640 } 2641 return 0; 2642 } 2643 #endif 2644 2645 static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume); 2646 2647 static struct platform_driver cpsw_driver = { 2648 .driver = { 2649 .name = "cpsw", 2650 .pm = &cpsw_pm_ops, 2651 .of_match_table = cpsw_of_mtable, 2652 }, 2653 .probe = cpsw_probe, 2654 .remove = cpsw_remove, 2655 }; 2656 2657 module_platform_driver(cpsw_driver); 2658 2659 MODULE_LICENSE("GPL"); 2660 MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>"); 2661 MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>"); 2662 MODULE_DESCRIPTION("TI CPSW Ethernet driver"); 2663