1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Texas Instruments Ethernet Switch Driver 4 * 5 * Copyright (C) 2012 Texas Instruments 6 * 7 */ 8 9 #include <linux/kernel.h> 10 #include <linux/io.h> 11 #include <linux/clk.h> 12 #include <linux/timer.h> 13 #include <linux/module.h> 14 #include <linux/platform_device.h> 15 #include <linux/irqreturn.h> 16 #include <linux/interrupt.h> 17 #include <linux/if_ether.h> 18 #include <linux/etherdevice.h> 19 #include <linux/netdevice.h> 20 #include <linux/net_tstamp.h> 21 #include <linux/phy.h> 22 #include <linux/phy/phy.h> 23 #include <linux/workqueue.h> 24 #include <linux/delay.h> 25 #include <linux/pm_runtime.h> 26 #include <linux/gpio/consumer.h> 27 #include <linux/of.h> 28 #include <linux/of_mdio.h> 29 #include <linux/of_net.h> 30 #include <linux/of_device.h> 31 #include <linux/if_vlan.h> 32 #include <linux/kmemleak.h> 33 #include <linux/sys_soc.h> 34 #include <net/page_pool.h> 35 #include <linux/bpf.h> 36 #include <linux/bpf_trace.h> 37 38 #include <linux/pinctrl/consumer.h> 39 #include <net/pkt_cls.h> 40 41 #include "cpsw.h" 42 #include "cpsw_ale.h" 43 #include "cpsw_priv.h" 44 #include "cpsw_sl.h" 45 #include "cpts.h" 46 #include "davinci_cpdma.h" 47 48 #include <net/pkt_sched.h> 49 50 static int debug_level; 51 module_param(debug_level, int, 0); 52 MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)"); 53 54 static int ale_ageout = 10; 55 module_param(ale_ageout, int, 0); 56 MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)"); 57 58 static int rx_packet_max = CPSW_MAX_PACKET_SIZE; 59 module_param(rx_packet_max, int, 0); 60 MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)"); 61 62 static int descs_pool_size = CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT; 63 module_param(descs_pool_size, int, 0444); 64 MODULE_PARM_DESC(descs_pool_size, "Number of CPDMA CPPI descriptors in pool"); 65 66 #define for_each_slave(priv, func, arg...) \ 67 do { \ 68 struct cpsw_slave *slave; \ 69 struct cpsw_common *cpsw = (priv)->cpsw; \ 70 int n; \ 71 if (cpsw->data.dual_emac) \ 72 (func)((cpsw)->slaves + priv->emac_port, ##arg);\ 73 else \ 74 for (n = cpsw->data.slaves, \ 75 slave = cpsw->slaves; \ 76 n; n--) \ 77 (func)(slave++, ##arg); \ 78 } while (0) 79 80 static int cpsw_slave_index_priv(struct cpsw_common *cpsw, 81 struct cpsw_priv *priv) 82 { 83 return cpsw->data.dual_emac ? priv->emac_port : cpsw->data.active_slave; 84 } 85 86 static int cpsw_get_slave_port(u32 slave_num) 87 { 88 return slave_num + 1; 89 } 90 91 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev, 92 __be16 proto, u16 vid); 93 94 static void cpsw_set_promiscious(struct net_device *ndev, bool enable) 95 { 96 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 97 struct cpsw_ale *ale = cpsw->ale; 98 int i; 99 100 if (cpsw->data.dual_emac) { 101 bool flag = false; 102 103 /* Enabling promiscuous mode for one interface will be 104 * common for both the interface as the interface shares 105 * the same hardware resource. 106 */ 107 for (i = 0; i < cpsw->data.slaves; i++) 108 if (cpsw->slaves[i].ndev->flags & IFF_PROMISC) 109 flag = true; 110 111 if (!enable && flag) { 112 enable = true; 113 dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n"); 114 } 115 116 if (enable) { 117 /* Enable Bypass */ 118 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1); 119 120 dev_dbg(&ndev->dev, "promiscuity enabled\n"); 121 } else { 122 /* Disable Bypass */ 123 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0); 124 dev_dbg(&ndev->dev, "promiscuity disabled\n"); 125 } 126 } else { 127 if (enable) { 128 unsigned long timeout = jiffies + HZ; 129 130 /* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */ 131 for (i = 0; i <= cpsw->data.slaves; i++) { 132 cpsw_ale_control_set(ale, i, 133 ALE_PORT_NOLEARN, 1); 134 cpsw_ale_control_set(ale, i, 135 ALE_PORT_NO_SA_UPDATE, 1); 136 } 137 138 /* Clear All Untouched entries */ 139 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1); 140 do { 141 cpu_relax(); 142 if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT)) 143 break; 144 } while (time_after(timeout, jiffies)); 145 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1); 146 147 /* Clear all mcast from ALE */ 148 cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS, -1); 149 __hw_addr_ref_unsync_dev(&ndev->mc, ndev, NULL); 150 151 /* Flood All Unicast Packets to Host port */ 152 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1); 153 dev_dbg(&ndev->dev, "promiscuity enabled\n"); 154 } else { 155 /* Don't Flood All Unicast Packets to Host port */ 156 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0); 157 158 /* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */ 159 for (i = 0; i <= cpsw->data.slaves; i++) { 160 cpsw_ale_control_set(ale, i, 161 ALE_PORT_NOLEARN, 0); 162 cpsw_ale_control_set(ale, i, 163 ALE_PORT_NO_SA_UPDATE, 0); 164 } 165 dev_dbg(&ndev->dev, "promiscuity disabled\n"); 166 } 167 } 168 } 169 170 /** 171 * cpsw_set_mc - adds multicast entry to the table if it's not added or deletes 172 * if it's not deleted 173 * @ndev: device to sync 174 * @addr: address to be added or deleted 175 * @vid: vlan id, if vid < 0 set/unset address for real device 176 * @add: add address if the flag is set or remove otherwise 177 */ 178 static int cpsw_set_mc(struct net_device *ndev, const u8 *addr, 179 int vid, int add) 180 { 181 struct cpsw_priv *priv = netdev_priv(ndev); 182 struct cpsw_common *cpsw = priv->cpsw; 183 int mask, flags, ret; 184 185 if (vid < 0) { 186 if (cpsw->data.dual_emac) 187 vid = cpsw->slaves[priv->emac_port].port_vlan; 188 else 189 vid = 0; 190 } 191 192 mask = cpsw->data.dual_emac ? ALE_PORT_HOST : ALE_ALL_PORTS; 193 flags = vid ? ALE_VLAN : 0; 194 195 if (add) 196 ret = cpsw_ale_add_mcast(cpsw->ale, addr, mask, flags, vid, 0); 197 else 198 ret = cpsw_ale_del_mcast(cpsw->ale, addr, 0, flags, vid); 199 200 return ret; 201 } 202 203 static int cpsw_update_vlan_mc(struct net_device *vdev, int vid, void *ctx) 204 { 205 struct addr_sync_ctx *sync_ctx = ctx; 206 struct netdev_hw_addr *ha; 207 int found = 0, ret = 0; 208 209 if (!vdev || !(vdev->flags & IFF_UP)) 210 return 0; 211 212 /* vlan address is relevant if its sync_cnt != 0 */ 213 netdev_for_each_mc_addr(ha, vdev) { 214 if (ether_addr_equal(ha->addr, sync_ctx->addr)) { 215 found = ha->sync_cnt; 216 break; 217 } 218 } 219 220 if (found) 221 sync_ctx->consumed++; 222 223 if (sync_ctx->flush) { 224 if (!found) 225 cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 0); 226 return 0; 227 } 228 229 if (found) 230 ret = cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 1); 231 232 return ret; 233 } 234 235 static int cpsw_add_mc_addr(struct net_device *ndev, const u8 *addr, int num) 236 { 237 struct addr_sync_ctx sync_ctx; 238 int ret; 239 240 sync_ctx.consumed = 0; 241 sync_ctx.addr = addr; 242 sync_ctx.ndev = ndev; 243 sync_ctx.flush = 0; 244 245 ret = vlan_for_each(ndev, cpsw_update_vlan_mc, &sync_ctx); 246 if (sync_ctx.consumed < num && !ret) 247 ret = cpsw_set_mc(ndev, addr, -1, 1); 248 249 return ret; 250 } 251 252 static int cpsw_del_mc_addr(struct net_device *ndev, const u8 *addr, int num) 253 { 254 struct addr_sync_ctx sync_ctx; 255 256 sync_ctx.consumed = 0; 257 sync_ctx.addr = addr; 258 sync_ctx.ndev = ndev; 259 sync_ctx.flush = 1; 260 261 vlan_for_each(ndev, cpsw_update_vlan_mc, &sync_ctx); 262 if (sync_ctx.consumed == num) 263 cpsw_set_mc(ndev, addr, -1, 0); 264 265 return 0; 266 } 267 268 static int cpsw_purge_vlan_mc(struct net_device *vdev, int vid, void *ctx) 269 { 270 struct addr_sync_ctx *sync_ctx = ctx; 271 struct netdev_hw_addr *ha; 272 int found = 0; 273 274 if (!vdev || !(vdev->flags & IFF_UP)) 275 return 0; 276 277 /* vlan address is relevant if its sync_cnt != 0 */ 278 netdev_for_each_mc_addr(ha, vdev) { 279 if (ether_addr_equal(ha->addr, sync_ctx->addr)) { 280 found = ha->sync_cnt; 281 break; 282 } 283 } 284 285 if (!found) 286 return 0; 287 288 sync_ctx->consumed++; 289 cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 0); 290 return 0; 291 } 292 293 static int cpsw_purge_all_mc(struct net_device *ndev, const u8 *addr, int num) 294 { 295 struct addr_sync_ctx sync_ctx; 296 297 sync_ctx.addr = addr; 298 sync_ctx.ndev = ndev; 299 sync_ctx.consumed = 0; 300 301 vlan_for_each(ndev, cpsw_purge_vlan_mc, &sync_ctx); 302 if (sync_ctx.consumed < num) 303 cpsw_set_mc(ndev, addr, -1, 0); 304 305 return 0; 306 } 307 308 static void cpsw_ndo_set_rx_mode(struct net_device *ndev) 309 { 310 struct cpsw_priv *priv = netdev_priv(ndev); 311 struct cpsw_common *cpsw = priv->cpsw; 312 int slave_port = -1; 313 314 if (cpsw->data.dual_emac) 315 slave_port = priv->emac_port + 1; 316 317 if (ndev->flags & IFF_PROMISC) { 318 /* Enable promiscuous mode */ 319 cpsw_set_promiscious(ndev, true); 320 cpsw_ale_set_allmulti(cpsw->ale, IFF_ALLMULTI, slave_port); 321 return; 322 } else { 323 /* Disable promiscuous mode */ 324 cpsw_set_promiscious(ndev, false); 325 } 326 327 /* Restore allmulti on vlans if necessary */ 328 cpsw_ale_set_allmulti(cpsw->ale, 329 ndev->flags & IFF_ALLMULTI, slave_port); 330 331 /* add/remove mcast address either for real netdev or for vlan */ 332 __hw_addr_ref_sync_dev(&ndev->mc, ndev, cpsw_add_mc_addr, 333 cpsw_del_mc_addr); 334 } 335 336 static unsigned int cpsw_rxbuf_total_len(unsigned int len) 337 { 338 len += CPSW_HEADROOM; 339 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 340 341 return SKB_DATA_ALIGN(len); 342 } 343 344 static void cpsw_rx_handler(void *token, int len, int status) 345 { 346 struct page *new_page, *page = token; 347 void *pa = page_address(page); 348 struct cpsw_meta_xdp *xmeta = pa + CPSW_XMETA_OFFSET; 349 struct cpsw_common *cpsw = ndev_to_cpsw(xmeta->ndev); 350 int pkt_size = cpsw->rx_packet_max; 351 int ret = 0, port, ch = xmeta->ch; 352 int headroom = CPSW_HEADROOM; 353 struct net_device *ndev = xmeta->ndev; 354 struct cpsw_priv *priv; 355 struct page_pool *pool; 356 struct sk_buff *skb; 357 struct xdp_buff xdp; 358 dma_addr_t dma; 359 360 if (cpsw->data.dual_emac && status >= 0) { 361 port = CPDMA_RX_SOURCE_PORT(status); 362 if (port) 363 ndev = cpsw->slaves[--port].ndev; 364 } 365 366 priv = netdev_priv(ndev); 367 pool = cpsw->page_pool[ch]; 368 if (unlikely(status < 0) || unlikely(!netif_running(ndev))) { 369 /* In dual emac mode check for all interfaces */ 370 if (cpsw->data.dual_emac && cpsw->usage_count && 371 (status >= 0)) { 372 /* The packet received is for the interface which 373 * is already down and the other interface is up 374 * and running, instead of freeing which results 375 * in reducing of the number of rx descriptor in 376 * DMA engine, requeue page back to cpdma. 377 */ 378 new_page = page; 379 goto requeue; 380 } 381 382 /* the interface is going down, pages are purged */ 383 page_pool_recycle_direct(pool, page); 384 return; 385 } 386 387 new_page = page_pool_dev_alloc_pages(pool); 388 if (unlikely(!new_page)) { 389 new_page = page; 390 ndev->stats.rx_dropped++; 391 goto requeue; 392 } 393 394 if (priv->xdp_prog) { 395 int headroom = CPSW_HEADROOM, size = len; 396 397 xdp_init_buff(&xdp, PAGE_SIZE, &priv->xdp_rxq[ch]); 398 if (status & CPDMA_RX_VLAN_ENCAP) { 399 headroom += CPSW_RX_VLAN_ENCAP_HDR_SIZE; 400 size -= CPSW_RX_VLAN_ENCAP_HDR_SIZE; 401 } 402 403 xdp_prepare_buff(&xdp, pa, headroom, size, false); 404 405 port = priv->emac_port + cpsw->data.dual_emac; 406 ret = cpsw_run_xdp(priv, ch, &xdp, page, port, &len); 407 if (ret != CPSW_XDP_PASS) 408 goto requeue; 409 410 headroom = xdp.data - xdp.data_hard_start; 411 412 /* XDP prog can modify vlan tag, so can't use encap header */ 413 status &= ~CPDMA_RX_VLAN_ENCAP; 414 } 415 416 /* pass skb to netstack if no XDP prog or returned XDP_PASS */ 417 skb = build_skb(pa, cpsw_rxbuf_total_len(pkt_size)); 418 if (!skb) { 419 ndev->stats.rx_dropped++; 420 page_pool_recycle_direct(pool, page); 421 goto requeue; 422 } 423 424 skb_reserve(skb, headroom); 425 skb_put(skb, len); 426 skb->dev = ndev; 427 if (status & CPDMA_RX_VLAN_ENCAP) 428 cpsw_rx_vlan_encap(skb); 429 if (priv->rx_ts_enabled) 430 cpts_rx_timestamp(cpsw->cpts, skb); 431 skb->protocol = eth_type_trans(skb, ndev); 432 433 /* mark skb for recycling */ 434 skb_mark_for_recycle(skb); 435 netif_receive_skb(skb); 436 437 ndev->stats.rx_bytes += len; 438 ndev->stats.rx_packets++; 439 440 requeue: 441 xmeta = page_address(new_page) + CPSW_XMETA_OFFSET; 442 xmeta->ndev = ndev; 443 xmeta->ch = ch; 444 445 dma = page_pool_get_dma_addr(new_page) + CPSW_HEADROOM; 446 ret = cpdma_chan_submit_mapped(cpsw->rxv[ch].ch, new_page, dma, 447 pkt_size, 0); 448 if (ret < 0) { 449 WARN_ON(ret == -ENOMEM); 450 page_pool_recycle_direct(pool, new_page); 451 } 452 } 453 454 static void _cpsw_adjust_link(struct cpsw_slave *slave, 455 struct cpsw_priv *priv, bool *link) 456 { 457 struct phy_device *phy = slave->phy; 458 u32 mac_control = 0; 459 u32 slave_port; 460 struct cpsw_common *cpsw = priv->cpsw; 461 462 if (!phy) 463 return; 464 465 slave_port = cpsw_get_slave_port(slave->slave_num); 466 467 if (phy->link) { 468 mac_control = CPSW_SL_CTL_GMII_EN; 469 470 if (phy->speed == 1000) 471 mac_control |= CPSW_SL_CTL_GIG; 472 if (phy->duplex) 473 mac_control |= CPSW_SL_CTL_FULLDUPLEX; 474 475 /* set speed_in input in case RMII mode is used in 100Mbps */ 476 if (phy->speed == 100) 477 mac_control |= CPSW_SL_CTL_IFCTL_A; 478 /* in band mode only works in 10Mbps RGMII mode */ 479 else if ((phy->speed == 10) && phy_interface_is_rgmii(phy)) 480 mac_control |= CPSW_SL_CTL_EXT_EN; /* In Band mode */ 481 482 if (priv->rx_pause) 483 mac_control |= CPSW_SL_CTL_RX_FLOW_EN; 484 485 if (priv->tx_pause) 486 mac_control |= CPSW_SL_CTL_TX_FLOW_EN; 487 488 if (mac_control != slave->mac_control) 489 cpsw_sl_ctl_set(slave->mac_sl, mac_control); 490 491 /* enable forwarding */ 492 cpsw_ale_control_set(cpsw->ale, slave_port, 493 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD); 494 495 *link = true; 496 497 if (priv->shp_cfg_speed && 498 priv->shp_cfg_speed != slave->phy->speed && 499 !cpsw_shp_is_off(priv)) 500 dev_warn(priv->dev, 501 "Speed was changed, CBS shaper speeds are changed!"); 502 } else { 503 mac_control = 0; 504 /* disable forwarding */ 505 cpsw_ale_control_set(cpsw->ale, slave_port, 506 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE); 507 508 cpsw_sl_wait_for_idle(slave->mac_sl, 100); 509 510 cpsw_sl_ctl_reset(slave->mac_sl); 511 } 512 513 if (mac_control != slave->mac_control) 514 phy_print_status(phy); 515 516 slave->mac_control = mac_control; 517 } 518 519 static void cpsw_adjust_link(struct net_device *ndev) 520 { 521 struct cpsw_priv *priv = netdev_priv(ndev); 522 struct cpsw_common *cpsw = priv->cpsw; 523 bool link = false; 524 525 for_each_slave(priv, _cpsw_adjust_link, priv, &link); 526 527 if (link) { 528 if (cpsw_need_resplit(cpsw)) 529 cpsw_split_res(cpsw); 530 531 netif_carrier_on(ndev); 532 if (netif_running(ndev)) 533 netif_tx_wake_all_queues(ndev); 534 } else { 535 netif_carrier_off(ndev); 536 netif_tx_stop_all_queues(ndev); 537 } 538 } 539 540 static inline void cpsw_add_dual_emac_def_ale_entries( 541 struct cpsw_priv *priv, struct cpsw_slave *slave, 542 u32 slave_port) 543 { 544 struct cpsw_common *cpsw = priv->cpsw; 545 u32 port_mask = 1 << slave_port | ALE_PORT_HOST; 546 547 if (cpsw->version == CPSW_VERSION_1) 548 slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN); 549 else 550 slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN); 551 cpsw_ale_add_vlan(cpsw->ale, slave->port_vlan, port_mask, 552 port_mask, port_mask, 0); 553 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, 554 ALE_PORT_HOST, ALE_VLAN, slave->port_vlan, 0); 555 cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, 556 HOST_PORT_NUM, ALE_VLAN | 557 ALE_SECURE, slave->port_vlan); 558 cpsw_ale_control_set(cpsw->ale, slave_port, 559 ALE_PORT_DROP_UNKNOWN_VLAN, 1); 560 } 561 562 static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv) 563 { 564 u32 slave_port; 565 struct phy_device *phy; 566 struct cpsw_common *cpsw = priv->cpsw; 567 568 cpsw_sl_reset(slave->mac_sl, 100); 569 cpsw_sl_ctl_reset(slave->mac_sl); 570 571 /* setup priority mapping */ 572 cpsw_sl_reg_write(slave->mac_sl, CPSW_SL_RX_PRI_MAP, 573 RX_PRIORITY_MAPPING); 574 575 switch (cpsw->version) { 576 case CPSW_VERSION_1: 577 slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP); 578 /* Increase RX FIFO size to 5 for supporting fullduplex 579 * flow control mode 580 */ 581 slave_write(slave, 582 (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) | 583 CPSW_MAX_BLKS_RX, CPSW1_MAX_BLKS); 584 break; 585 case CPSW_VERSION_2: 586 case CPSW_VERSION_3: 587 case CPSW_VERSION_4: 588 slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP); 589 /* Increase RX FIFO size to 5 for supporting fullduplex 590 * flow control mode 591 */ 592 slave_write(slave, 593 (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) | 594 CPSW_MAX_BLKS_RX, CPSW2_MAX_BLKS); 595 break; 596 } 597 598 /* setup max packet size, and mac address */ 599 cpsw_sl_reg_write(slave->mac_sl, CPSW_SL_RX_MAXLEN, 600 cpsw->rx_packet_max); 601 cpsw_set_slave_mac(slave, priv); 602 603 slave->mac_control = 0; /* no link yet */ 604 605 slave_port = cpsw_get_slave_port(slave->slave_num); 606 607 if (cpsw->data.dual_emac) 608 cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port); 609 else 610 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, 611 1 << slave_port, 0, 0, ALE_MCAST_FWD_2); 612 613 if (slave->data->phy_node) { 614 phy = of_phy_connect(priv->ndev, slave->data->phy_node, 615 &cpsw_adjust_link, 0, slave->data->phy_if); 616 if (!phy) { 617 dev_err(priv->dev, "phy \"%pOF\" not found on slave %d\n", 618 slave->data->phy_node, 619 slave->slave_num); 620 return; 621 } 622 } else { 623 phy = phy_connect(priv->ndev, slave->data->phy_id, 624 &cpsw_adjust_link, slave->data->phy_if); 625 if (IS_ERR(phy)) { 626 dev_err(priv->dev, 627 "phy \"%s\" not found on slave %d, err %ld\n", 628 slave->data->phy_id, slave->slave_num, 629 PTR_ERR(phy)); 630 return; 631 } 632 } 633 634 slave->phy = phy; 635 636 phy_attached_info(slave->phy); 637 638 phy_start(slave->phy); 639 640 /* Configure GMII_SEL register */ 641 if (!IS_ERR(slave->data->ifphy)) 642 phy_set_mode_ext(slave->data->ifphy, PHY_MODE_ETHERNET, 643 slave->data->phy_if); 644 else 645 cpsw_phy_sel(cpsw->dev, slave->phy->interface, 646 slave->slave_num); 647 } 648 649 static inline void cpsw_add_default_vlan(struct cpsw_priv *priv) 650 { 651 struct cpsw_common *cpsw = priv->cpsw; 652 const int vlan = cpsw->data.default_vlan; 653 u32 reg; 654 int i; 655 int unreg_mcast_mask; 656 657 reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN : 658 CPSW2_PORT_VLAN; 659 660 writel(vlan, &cpsw->host_port_regs->port_vlan); 661 662 for (i = 0; i < cpsw->data.slaves; i++) 663 slave_write(cpsw->slaves + i, vlan, reg); 664 665 if (priv->ndev->flags & IFF_ALLMULTI) 666 unreg_mcast_mask = ALE_ALL_PORTS; 667 else 668 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2; 669 670 cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS, 671 ALE_ALL_PORTS, ALE_ALL_PORTS, 672 unreg_mcast_mask); 673 } 674 675 static void cpsw_init_host_port(struct cpsw_priv *priv) 676 { 677 u32 fifo_mode; 678 u32 control_reg; 679 struct cpsw_common *cpsw = priv->cpsw; 680 681 /* soft reset the controller and initialize ale */ 682 soft_reset("cpsw", &cpsw->regs->soft_reset); 683 cpsw_ale_start(cpsw->ale); 684 685 /* switch to vlan unaware mode */ 686 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_VLAN_AWARE, 687 CPSW_ALE_VLAN_AWARE); 688 control_reg = readl(&cpsw->regs->control); 689 control_reg |= CPSW_VLAN_AWARE | CPSW_RX_VLAN_ENCAP; 690 writel(control_reg, &cpsw->regs->control); 691 fifo_mode = (cpsw->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE : 692 CPSW_FIFO_NORMAL_MODE; 693 writel(fifo_mode, &cpsw->host_port_regs->tx_in_ctl); 694 695 /* setup host port priority mapping */ 696 writel_relaxed(CPDMA_TX_PRIORITY_MAP, 697 &cpsw->host_port_regs->cpdma_tx_pri_map); 698 writel_relaxed(0, &cpsw->host_port_regs->cpdma_rx_chan_map); 699 700 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, 701 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD); 702 703 if (!cpsw->data.dual_emac) { 704 cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM, 705 0, 0); 706 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, 707 ALE_PORT_HOST, 0, 0, ALE_MCAST_FWD_2); 708 } 709 } 710 711 static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_common *cpsw) 712 { 713 u32 slave_port; 714 715 slave_port = cpsw_get_slave_port(slave->slave_num); 716 717 if (!slave->phy) 718 return; 719 phy_stop(slave->phy); 720 phy_disconnect(slave->phy); 721 slave->phy = NULL; 722 cpsw_ale_control_set(cpsw->ale, slave_port, 723 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE); 724 cpsw_sl_reset(slave->mac_sl, 100); 725 cpsw_sl_ctl_reset(slave->mac_sl); 726 } 727 728 static int cpsw_restore_vlans(struct net_device *vdev, int vid, void *arg) 729 { 730 struct cpsw_priv *priv = arg; 731 732 if (!vdev) 733 return 0; 734 735 cpsw_ndo_vlan_rx_add_vid(priv->ndev, 0, vid); 736 return 0; 737 } 738 739 /* restore resources after port reset */ 740 static void cpsw_restore(struct cpsw_priv *priv) 741 { 742 /* restore vlan configurations */ 743 vlan_for_each(priv->ndev, cpsw_restore_vlans, priv); 744 745 /* restore MQPRIO offload */ 746 for_each_slave(priv, cpsw_mqprio_resume, priv); 747 748 /* restore CBS offload */ 749 for_each_slave(priv, cpsw_cbs_resume, priv); 750 } 751 752 static int cpsw_ndo_open(struct net_device *ndev) 753 { 754 struct cpsw_priv *priv = netdev_priv(ndev); 755 struct cpsw_common *cpsw = priv->cpsw; 756 int ret; 757 u32 reg; 758 759 ret = pm_runtime_get_sync(cpsw->dev); 760 if (ret < 0) { 761 pm_runtime_put_noidle(cpsw->dev); 762 return ret; 763 } 764 765 netif_carrier_off(ndev); 766 767 /* Notify the stack of the actual queue counts. */ 768 ret = netif_set_real_num_tx_queues(ndev, cpsw->tx_ch_num); 769 if (ret) { 770 dev_err(priv->dev, "cannot set real number of tx queues\n"); 771 goto err_cleanup; 772 } 773 774 ret = netif_set_real_num_rx_queues(ndev, cpsw->rx_ch_num); 775 if (ret) { 776 dev_err(priv->dev, "cannot set real number of rx queues\n"); 777 goto err_cleanup; 778 } 779 780 reg = cpsw->version; 781 782 dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n", 783 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg), 784 CPSW_RTL_VERSION(reg)); 785 786 /* Initialize host and slave ports */ 787 if (!cpsw->usage_count) 788 cpsw_init_host_port(priv); 789 for_each_slave(priv, cpsw_slave_open, priv); 790 791 /* Add default VLAN */ 792 if (!cpsw->data.dual_emac) 793 cpsw_add_default_vlan(priv); 794 else 795 cpsw_ale_add_vlan(cpsw->ale, cpsw->data.default_vlan, 796 ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0); 797 798 /* initialize shared resources for every ndev */ 799 if (!cpsw->usage_count) { 800 /* disable priority elevation */ 801 writel_relaxed(0, &cpsw->regs->ptype); 802 803 /* enable statistics collection only on all ports */ 804 writel_relaxed(0x7, &cpsw->regs->stat_port_en); 805 806 /* Enable internal fifo flow control */ 807 writel(0x7, &cpsw->regs->flow_control); 808 809 napi_enable(&cpsw->napi_rx); 810 napi_enable(&cpsw->napi_tx); 811 812 if (cpsw->tx_irq_disabled) { 813 cpsw->tx_irq_disabled = false; 814 enable_irq(cpsw->irqs_table[1]); 815 } 816 817 if (cpsw->rx_irq_disabled) { 818 cpsw->rx_irq_disabled = false; 819 enable_irq(cpsw->irqs_table[0]); 820 } 821 822 /* create rxqs for both infs in dual mac as they use same pool 823 * and must be destroyed together when no users. 824 */ 825 ret = cpsw_create_xdp_rxqs(cpsw); 826 if (ret < 0) 827 goto err_cleanup; 828 829 ret = cpsw_fill_rx_channels(priv); 830 if (ret < 0) 831 goto err_cleanup; 832 833 if (cpsw->cpts) { 834 if (cpts_register(cpsw->cpts)) 835 dev_err(priv->dev, "error registering cpts device\n"); 836 else 837 writel(0x10, &cpsw->wr_regs->misc_en); 838 } 839 } 840 841 cpsw_restore(priv); 842 843 /* Enable Interrupt pacing if configured */ 844 if (cpsw->coal_intvl != 0) { 845 struct ethtool_coalesce coal; 846 847 coal.rx_coalesce_usecs = cpsw->coal_intvl; 848 cpsw_set_coalesce(ndev, &coal, NULL, NULL); 849 } 850 851 cpdma_ctlr_start(cpsw->dma); 852 cpsw_intr_enable(cpsw); 853 cpsw->usage_count++; 854 855 return 0; 856 857 err_cleanup: 858 if (!cpsw->usage_count) { 859 cpdma_ctlr_stop(cpsw->dma); 860 cpsw_destroy_xdp_rxqs(cpsw); 861 } 862 863 for_each_slave(priv, cpsw_slave_stop, cpsw); 864 pm_runtime_put_sync(cpsw->dev); 865 netif_carrier_off(priv->ndev); 866 return ret; 867 } 868 869 static int cpsw_ndo_stop(struct net_device *ndev) 870 { 871 struct cpsw_priv *priv = netdev_priv(ndev); 872 struct cpsw_common *cpsw = priv->cpsw; 873 874 cpsw_info(priv, ifdown, "shutting down cpsw device\n"); 875 __hw_addr_ref_unsync_dev(&ndev->mc, ndev, cpsw_purge_all_mc); 876 netif_tx_stop_all_queues(priv->ndev); 877 netif_carrier_off(priv->ndev); 878 879 if (cpsw->usage_count <= 1) { 880 napi_disable(&cpsw->napi_rx); 881 napi_disable(&cpsw->napi_tx); 882 cpts_unregister(cpsw->cpts); 883 cpsw_intr_disable(cpsw); 884 cpdma_ctlr_stop(cpsw->dma); 885 cpsw_ale_stop(cpsw->ale); 886 cpsw_destroy_xdp_rxqs(cpsw); 887 } 888 for_each_slave(priv, cpsw_slave_stop, cpsw); 889 890 if (cpsw_need_resplit(cpsw)) 891 cpsw_split_res(cpsw); 892 893 cpsw->usage_count--; 894 pm_runtime_put_sync(cpsw->dev); 895 return 0; 896 } 897 898 static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb, 899 struct net_device *ndev) 900 { 901 struct cpsw_priv *priv = netdev_priv(ndev); 902 struct cpsw_common *cpsw = priv->cpsw; 903 struct cpts *cpts = cpsw->cpts; 904 struct netdev_queue *txq; 905 struct cpdma_chan *txch; 906 int ret, q_idx; 907 908 if (skb_put_padto(skb, CPSW_MIN_PACKET_SIZE)) { 909 cpsw_err(priv, tx_err, "packet pad failed\n"); 910 ndev->stats.tx_dropped++; 911 return NET_XMIT_DROP; 912 } 913 914 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && 915 priv->tx_ts_enabled && cpts_can_timestamp(cpts, skb)) 916 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 917 918 q_idx = skb_get_queue_mapping(skb); 919 if (q_idx >= cpsw->tx_ch_num) 920 q_idx = q_idx % cpsw->tx_ch_num; 921 922 txch = cpsw->txv[q_idx].ch; 923 txq = netdev_get_tx_queue(ndev, q_idx); 924 skb_tx_timestamp(skb); 925 ret = cpdma_chan_submit(txch, skb, skb->data, skb->len, 926 priv->emac_port + cpsw->data.dual_emac); 927 if (unlikely(ret != 0)) { 928 cpsw_err(priv, tx_err, "desc submit failed\n"); 929 goto fail; 930 } 931 932 /* If there is no more tx desc left free then we need to 933 * tell the kernel to stop sending us tx frames. 934 */ 935 if (unlikely(!cpdma_check_free_tx_desc(txch))) { 936 netif_tx_stop_queue(txq); 937 938 /* Barrier, so that stop_queue visible to other cpus */ 939 smp_mb__after_atomic(); 940 941 if (cpdma_check_free_tx_desc(txch)) 942 netif_tx_wake_queue(txq); 943 } 944 945 return NETDEV_TX_OK; 946 fail: 947 ndev->stats.tx_dropped++; 948 netif_tx_stop_queue(txq); 949 950 /* Barrier, so that stop_queue visible to other cpus */ 951 smp_mb__after_atomic(); 952 953 if (cpdma_check_free_tx_desc(txch)) 954 netif_tx_wake_queue(txq); 955 956 return NETDEV_TX_BUSY; 957 } 958 959 static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p) 960 { 961 struct cpsw_priv *priv = netdev_priv(ndev); 962 struct sockaddr *addr = (struct sockaddr *)p; 963 struct cpsw_common *cpsw = priv->cpsw; 964 int flags = 0; 965 u16 vid = 0; 966 int ret; 967 968 if (!is_valid_ether_addr(addr->sa_data)) 969 return -EADDRNOTAVAIL; 970 971 ret = pm_runtime_get_sync(cpsw->dev); 972 if (ret < 0) { 973 pm_runtime_put_noidle(cpsw->dev); 974 return ret; 975 } 976 977 if (cpsw->data.dual_emac) { 978 vid = cpsw->slaves[priv->emac_port].port_vlan; 979 flags = ALE_VLAN; 980 } 981 982 cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM, 983 flags, vid); 984 cpsw_ale_add_ucast(cpsw->ale, addr->sa_data, HOST_PORT_NUM, 985 flags, vid); 986 987 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN); 988 eth_hw_addr_set(ndev, priv->mac_addr); 989 for_each_slave(priv, cpsw_set_slave_mac, priv); 990 991 pm_runtime_put(cpsw->dev); 992 993 return 0; 994 } 995 996 static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv, 997 unsigned short vid) 998 { 999 int ret; 1000 int unreg_mcast_mask = 0; 1001 int mcast_mask; 1002 u32 port_mask; 1003 struct cpsw_common *cpsw = priv->cpsw; 1004 1005 if (cpsw->data.dual_emac) { 1006 port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST; 1007 1008 mcast_mask = ALE_PORT_HOST; 1009 if (priv->ndev->flags & IFF_ALLMULTI) 1010 unreg_mcast_mask = mcast_mask; 1011 } else { 1012 port_mask = ALE_ALL_PORTS; 1013 mcast_mask = port_mask; 1014 1015 if (priv->ndev->flags & IFF_ALLMULTI) 1016 unreg_mcast_mask = ALE_ALL_PORTS; 1017 else 1018 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2; 1019 } 1020 1021 ret = cpsw_ale_add_vlan(cpsw->ale, vid, port_mask, 0, port_mask, 1022 unreg_mcast_mask); 1023 if (ret != 0) 1024 return ret; 1025 1026 ret = cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, 1027 HOST_PORT_NUM, ALE_VLAN, vid); 1028 if (ret != 0) 1029 goto clean_vid; 1030 1031 ret = cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, 1032 mcast_mask, ALE_VLAN, vid, 0); 1033 if (ret != 0) 1034 goto clean_vlan_ucast; 1035 return 0; 1036 1037 clean_vlan_ucast: 1038 cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, 1039 HOST_PORT_NUM, ALE_VLAN, vid); 1040 clean_vid: 1041 cpsw_ale_del_vlan(cpsw->ale, vid, 0); 1042 return ret; 1043 } 1044 1045 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev, 1046 __be16 proto, u16 vid) 1047 { 1048 struct cpsw_priv *priv = netdev_priv(ndev); 1049 struct cpsw_common *cpsw = priv->cpsw; 1050 int ret; 1051 1052 if (vid == cpsw->data.default_vlan) 1053 return 0; 1054 1055 ret = pm_runtime_get_sync(cpsw->dev); 1056 if (ret < 0) { 1057 pm_runtime_put_noidle(cpsw->dev); 1058 return ret; 1059 } 1060 1061 if (cpsw->data.dual_emac) { 1062 /* In dual EMAC, reserved VLAN id should not be used for 1063 * creating VLAN interfaces as this can break the dual 1064 * EMAC port separation 1065 */ 1066 int i; 1067 1068 for (i = 0; i < cpsw->data.slaves; i++) { 1069 if (vid == cpsw->slaves[i].port_vlan) { 1070 ret = -EINVAL; 1071 goto err; 1072 } 1073 } 1074 } 1075 1076 dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid); 1077 ret = cpsw_add_vlan_ale_entry(priv, vid); 1078 err: 1079 pm_runtime_put(cpsw->dev); 1080 return ret; 1081 } 1082 1083 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev, 1084 __be16 proto, u16 vid) 1085 { 1086 struct cpsw_priv *priv = netdev_priv(ndev); 1087 struct cpsw_common *cpsw = priv->cpsw; 1088 int ret; 1089 1090 if (vid == cpsw->data.default_vlan) 1091 return 0; 1092 1093 ret = pm_runtime_get_sync(cpsw->dev); 1094 if (ret < 0) { 1095 pm_runtime_put_noidle(cpsw->dev); 1096 return ret; 1097 } 1098 1099 if (cpsw->data.dual_emac) { 1100 int i; 1101 1102 for (i = 0; i < cpsw->data.slaves; i++) { 1103 if (vid == cpsw->slaves[i].port_vlan) 1104 goto err; 1105 } 1106 } 1107 1108 dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid); 1109 ret = cpsw_ale_del_vlan(cpsw->ale, vid, 0); 1110 ret |= cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, 1111 HOST_PORT_NUM, ALE_VLAN, vid); 1112 ret |= cpsw_ale_del_mcast(cpsw->ale, priv->ndev->broadcast, 1113 0, ALE_VLAN, vid); 1114 ret |= cpsw_ale_flush_multicast(cpsw->ale, ALE_PORT_HOST, vid); 1115 err: 1116 pm_runtime_put(cpsw->dev); 1117 return ret; 1118 } 1119 1120 static int cpsw_ndo_xdp_xmit(struct net_device *ndev, int n, 1121 struct xdp_frame **frames, u32 flags) 1122 { 1123 struct cpsw_priv *priv = netdev_priv(ndev); 1124 struct cpsw_common *cpsw = priv->cpsw; 1125 struct xdp_frame *xdpf; 1126 int i, nxmit = 0, port; 1127 1128 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 1129 return -EINVAL; 1130 1131 for (i = 0; i < n; i++) { 1132 xdpf = frames[i]; 1133 if (xdpf->len < CPSW_MIN_PACKET_SIZE) 1134 break; 1135 1136 port = priv->emac_port + cpsw->data.dual_emac; 1137 if (cpsw_xdp_tx_frame(priv, xdpf, NULL, port)) 1138 break; 1139 nxmit++; 1140 } 1141 1142 return nxmit; 1143 } 1144 1145 #ifdef CONFIG_NET_POLL_CONTROLLER 1146 static void cpsw_ndo_poll_controller(struct net_device *ndev) 1147 { 1148 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1149 1150 cpsw_intr_disable(cpsw); 1151 cpsw_rx_interrupt(cpsw->irqs_table[0], cpsw); 1152 cpsw_tx_interrupt(cpsw->irqs_table[1], cpsw); 1153 cpsw_intr_enable(cpsw); 1154 } 1155 #endif 1156 1157 static const struct net_device_ops cpsw_netdev_ops = { 1158 .ndo_open = cpsw_ndo_open, 1159 .ndo_stop = cpsw_ndo_stop, 1160 .ndo_start_xmit = cpsw_ndo_start_xmit, 1161 .ndo_set_mac_address = cpsw_ndo_set_mac_address, 1162 .ndo_eth_ioctl = cpsw_ndo_ioctl, 1163 .ndo_validate_addr = eth_validate_addr, 1164 .ndo_tx_timeout = cpsw_ndo_tx_timeout, 1165 .ndo_set_rx_mode = cpsw_ndo_set_rx_mode, 1166 .ndo_set_tx_maxrate = cpsw_ndo_set_tx_maxrate, 1167 #ifdef CONFIG_NET_POLL_CONTROLLER 1168 .ndo_poll_controller = cpsw_ndo_poll_controller, 1169 #endif 1170 .ndo_vlan_rx_add_vid = cpsw_ndo_vlan_rx_add_vid, 1171 .ndo_vlan_rx_kill_vid = cpsw_ndo_vlan_rx_kill_vid, 1172 .ndo_setup_tc = cpsw_ndo_setup_tc, 1173 .ndo_bpf = cpsw_ndo_bpf, 1174 .ndo_xdp_xmit = cpsw_ndo_xdp_xmit, 1175 }; 1176 1177 static void cpsw_get_drvinfo(struct net_device *ndev, 1178 struct ethtool_drvinfo *info) 1179 { 1180 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1181 struct platform_device *pdev = to_platform_device(cpsw->dev); 1182 1183 strlcpy(info->driver, "cpsw", sizeof(info->driver)); 1184 strlcpy(info->version, "1.0", sizeof(info->version)); 1185 strlcpy(info->bus_info, pdev->name, sizeof(info->bus_info)); 1186 } 1187 1188 static int cpsw_set_pauseparam(struct net_device *ndev, 1189 struct ethtool_pauseparam *pause) 1190 { 1191 struct cpsw_priv *priv = netdev_priv(ndev); 1192 bool link; 1193 1194 priv->rx_pause = pause->rx_pause ? true : false; 1195 priv->tx_pause = pause->tx_pause ? true : false; 1196 1197 for_each_slave(priv, _cpsw_adjust_link, priv, &link); 1198 return 0; 1199 } 1200 1201 static int cpsw_set_channels(struct net_device *ndev, 1202 struct ethtool_channels *chs) 1203 { 1204 return cpsw_set_channels_common(ndev, chs, cpsw_rx_handler); 1205 } 1206 1207 static const struct ethtool_ops cpsw_ethtool_ops = { 1208 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS, 1209 .get_drvinfo = cpsw_get_drvinfo, 1210 .get_msglevel = cpsw_get_msglevel, 1211 .set_msglevel = cpsw_set_msglevel, 1212 .get_link = ethtool_op_get_link, 1213 .get_ts_info = cpsw_get_ts_info, 1214 .get_coalesce = cpsw_get_coalesce, 1215 .set_coalesce = cpsw_set_coalesce, 1216 .get_sset_count = cpsw_get_sset_count, 1217 .get_strings = cpsw_get_strings, 1218 .get_ethtool_stats = cpsw_get_ethtool_stats, 1219 .get_pauseparam = cpsw_get_pauseparam, 1220 .set_pauseparam = cpsw_set_pauseparam, 1221 .get_wol = cpsw_get_wol, 1222 .set_wol = cpsw_set_wol, 1223 .get_regs_len = cpsw_get_regs_len, 1224 .get_regs = cpsw_get_regs, 1225 .begin = cpsw_ethtool_op_begin, 1226 .complete = cpsw_ethtool_op_complete, 1227 .get_channels = cpsw_get_channels, 1228 .set_channels = cpsw_set_channels, 1229 .get_link_ksettings = cpsw_get_link_ksettings, 1230 .set_link_ksettings = cpsw_set_link_ksettings, 1231 .get_eee = cpsw_get_eee, 1232 .set_eee = cpsw_set_eee, 1233 .nway_reset = cpsw_nway_reset, 1234 .get_ringparam = cpsw_get_ringparam, 1235 .set_ringparam = cpsw_set_ringparam, 1236 }; 1237 1238 static int cpsw_probe_dt(struct cpsw_platform_data *data, 1239 struct platform_device *pdev) 1240 { 1241 struct device_node *node = pdev->dev.of_node; 1242 struct device_node *slave_node; 1243 int i = 0, ret; 1244 u32 prop; 1245 1246 if (!node) 1247 return -EINVAL; 1248 1249 if (of_property_read_u32(node, "slaves", &prop)) { 1250 dev_err(&pdev->dev, "Missing slaves property in the DT.\n"); 1251 return -EINVAL; 1252 } 1253 data->slaves = prop; 1254 1255 if (of_property_read_u32(node, "active_slave", &prop)) { 1256 dev_err(&pdev->dev, "Missing active_slave property in the DT.\n"); 1257 return -EINVAL; 1258 } 1259 data->active_slave = prop; 1260 1261 data->slave_data = devm_kcalloc(&pdev->dev, 1262 data->slaves, 1263 sizeof(struct cpsw_slave_data), 1264 GFP_KERNEL); 1265 if (!data->slave_data) 1266 return -ENOMEM; 1267 1268 if (of_property_read_u32(node, "cpdma_channels", &prop)) { 1269 dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n"); 1270 return -EINVAL; 1271 } 1272 data->channels = prop; 1273 1274 if (of_property_read_u32(node, "bd_ram_size", &prop)) { 1275 dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n"); 1276 return -EINVAL; 1277 } 1278 data->bd_ram_size = prop; 1279 1280 if (of_property_read_u32(node, "mac_control", &prop)) { 1281 dev_err(&pdev->dev, "Missing mac_control property in the DT.\n"); 1282 return -EINVAL; 1283 } 1284 data->mac_control = prop; 1285 1286 if (of_property_read_bool(node, "dual_emac")) 1287 data->dual_emac = true; 1288 1289 /* 1290 * Populate all the child nodes here... 1291 */ 1292 ret = of_platform_populate(node, NULL, NULL, &pdev->dev); 1293 /* We do not want to force this, as in some cases may not have child */ 1294 if (ret) 1295 dev_warn(&pdev->dev, "Doesn't have any child node\n"); 1296 1297 for_each_available_child_of_node(node, slave_node) { 1298 struct cpsw_slave_data *slave_data = data->slave_data + i; 1299 int lenp; 1300 const __be32 *parp; 1301 1302 /* This is no slave child node, continue */ 1303 if (!of_node_name_eq(slave_node, "slave")) 1304 continue; 1305 1306 slave_data->ifphy = devm_of_phy_get(&pdev->dev, slave_node, 1307 NULL); 1308 if (!IS_ENABLED(CONFIG_TI_CPSW_PHY_SEL) && 1309 IS_ERR(slave_data->ifphy)) { 1310 ret = PTR_ERR(slave_data->ifphy); 1311 dev_err(&pdev->dev, 1312 "%d: Error retrieving port phy: %d\n", i, ret); 1313 goto err_node_put; 1314 } 1315 1316 slave_data->slave_node = slave_node; 1317 slave_data->phy_node = of_parse_phandle(slave_node, 1318 "phy-handle", 0); 1319 parp = of_get_property(slave_node, "phy_id", &lenp); 1320 if (slave_data->phy_node) { 1321 dev_dbg(&pdev->dev, 1322 "slave[%d] using phy-handle=\"%pOF\"\n", 1323 i, slave_data->phy_node); 1324 } else if (of_phy_is_fixed_link(slave_node)) { 1325 /* In the case of a fixed PHY, the DT node associated 1326 * to the PHY is the Ethernet MAC DT node. 1327 */ 1328 ret = of_phy_register_fixed_link(slave_node); 1329 if (ret) { 1330 if (ret != -EPROBE_DEFER) 1331 dev_err(&pdev->dev, "failed to register fixed-link phy: %d\n", ret); 1332 goto err_node_put; 1333 } 1334 slave_data->phy_node = of_node_get(slave_node); 1335 } else if (parp) { 1336 u32 phyid; 1337 struct device_node *mdio_node; 1338 struct platform_device *mdio; 1339 1340 if (lenp != (sizeof(__be32) * 2)) { 1341 dev_err(&pdev->dev, "Invalid slave[%d] phy_id property\n", i); 1342 goto no_phy_slave; 1343 } 1344 mdio_node = of_find_node_by_phandle(be32_to_cpup(parp)); 1345 phyid = be32_to_cpup(parp+1); 1346 mdio = of_find_device_by_node(mdio_node); 1347 of_node_put(mdio_node); 1348 if (!mdio) { 1349 dev_err(&pdev->dev, "Missing mdio platform device\n"); 1350 ret = -EINVAL; 1351 goto err_node_put; 1352 } 1353 snprintf(slave_data->phy_id, sizeof(slave_data->phy_id), 1354 PHY_ID_FMT, mdio->name, phyid); 1355 put_device(&mdio->dev); 1356 } else { 1357 dev_err(&pdev->dev, 1358 "No slave[%d] phy_id, phy-handle, or fixed-link property\n", 1359 i); 1360 goto no_phy_slave; 1361 } 1362 ret = of_get_phy_mode(slave_node, &slave_data->phy_if); 1363 if (ret) { 1364 dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n", 1365 i); 1366 goto err_node_put; 1367 } 1368 1369 no_phy_slave: 1370 ret = of_get_mac_address(slave_node, slave_data->mac_addr); 1371 if (ret) { 1372 ret = ti_cm_get_macid(&pdev->dev, i, 1373 slave_data->mac_addr); 1374 if (ret) 1375 goto err_node_put; 1376 } 1377 if (data->dual_emac) { 1378 if (of_property_read_u32(slave_node, "dual_emac_res_vlan", 1379 &prop)) { 1380 dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n"); 1381 slave_data->dual_emac_res_vlan = i+1; 1382 dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n", 1383 slave_data->dual_emac_res_vlan, i); 1384 } else { 1385 slave_data->dual_emac_res_vlan = prop; 1386 } 1387 } 1388 1389 i++; 1390 if (i == data->slaves) { 1391 ret = 0; 1392 goto err_node_put; 1393 } 1394 } 1395 1396 return 0; 1397 1398 err_node_put: 1399 of_node_put(slave_node); 1400 return ret; 1401 } 1402 1403 static void cpsw_remove_dt(struct platform_device *pdev) 1404 { 1405 struct cpsw_common *cpsw = platform_get_drvdata(pdev); 1406 struct cpsw_platform_data *data = &cpsw->data; 1407 struct device_node *node = pdev->dev.of_node; 1408 struct device_node *slave_node; 1409 int i = 0; 1410 1411 for_each_available_child_of_node(node, slave_node) { 1412 struct cpsw_slave_data *slave_data = &data->slave_data[i]; 1413 1414 if (!of_node_name_eq(slave_node, "slave")) 1415 continue; 1416 1417 if (of_phy_is_fixed_link(slave_node)) 1418 of_phy_deregister_fixed_link(slave_node); 1419 1420 of_node_put(slave_data->phy_node); 1421 1422 i++; 1423 if (i == data->slaves) { 1424 of_node_put(slave_node); 1425 break; 1426 } 1427 } 1428 1429 of_platform_depopulate(&pdev->dev); 1430 } 1431 1432 static int cpsw_probe_dual_emac(struct cpsw_priv *priv) 1433 { 1434 struct cpsw_common *cpsw = priv->cpsw; 1435 struct cpsw_platform_data *data = &cpsw->data; 1436 struct net_device *ndev; 1437 struct cpsw_priv *priv_sl2; 1438 int ret = 0; 1439 1440 ndev = devm_alloc_etherdev_mqs(cpsw->dev, sizeof(struct cpsw_priv), 1441 CPSW_MAX_QUEUES, CPSW_MAX_QUEUES); 1442 if (!ndev) { 1443 dev_err(cpsw->dev, "cpsw: error allocating net_device\n"); 1444 return -ENOMEM; 1445 } 1446 1447 priv_sl2 = netdev_priv(ndev); 1448 priv_sl2->cpsw = cpsw; 1449 priv_sl2->ndev = ndev; 1450 priv_sl2->dev = &ndev->dev; 1451 priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG); 1452 1453 if (is_valid_ether_addr(data->slave_data[1].mac_addr)) { 1454 memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr, 1455 ETH_ALEN); 1456 dev_info(cpsw->dev, "cpsw: Detected MACID = %pM\n", 1457 priv_sl2->mac_addr); 1458 } else { 1459 eth_random_addr(priv_sl2->mac_addr); 1460 dev_info(cpsw->dev, "cpsw: Random MACID = %pM\n", 1461 priv_sl2->mac_addr); 1462 } 1463 eth_hw_addr_set(ndev, priv_sl2->mac_addr); 1464 1465 priv_sl2->emac_port = 1; 1466 cpsw->slaves[1].ndev = ndev; 1467 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX; 1468 1469 ndev->netdev_ops = &cpsw_netdev_ops; 1470 ndev->ethtool_ops = &cpsw_ethtool_ops; 1471 1472 /* register the network device */ 1473 SET_NETDEV_DEV(ndev, cpsw->dev); 1474 ndev->dev.of_node = cpsw->slaves[1].data->slave_node; 1475 ret = register_netdev(ndev); 1476 if (ret) 1477 dev_err(cpsw->dev, "cpsw: error registering net device\n"); 1478 1479 return ret; 1480 } 1481 1482 static const struct of_device_id cpsw_of_mtable[] = { 1483 { .compatible = "ti,cpsw"}, 1484 { .compatible = "ti,am335x-cpsw"}, 1485 { .compatible = "ti,am4372-cpsw"}, 1486 { .compatible = "ti,dra7-cpsw"}, 1487 { /* sentinel */ }, 1488 }; 1489 MODULE_DEVICE_TABLE(of, cpsw_of_mtable); 1490 1491 static const struct soc_device_attribute cpsw_soc_devices[] = { 1492 { .family = "AM33xx", .revision = "ES1.0"}, 1493 { /* sentinel */ } 1494 }; 1495 1496 static int cpsw_probe(struct platform_device *pdev) 1497 { 1498 struct device *dev = &pdev->dev; 1499 struct clk *clk; 1500 struct cpsw_platform_data *data; 1501 struct net_device *ndev; 1502 struct cpsw_priv *priv; 1503 void __iomem *ss_regs; 1504 struct resource *ss_res; 1505 struct gpio_descs *mode; 1506 const struct soc_device_attribute *soc; 1507 struct cpsw_common *cpsw; 1508 int ret = 0, ch; 1509 int irq; 1510 1511 cpsw = devm_kzalloc(dev, sizeof(struct cpsw_common), GFP_KERNEL); 1512 if (!cpsw) 1513 return -ENOMEM; 1514 1515 platform_set_drvdata(pdev, cpsw); 1516 cpsw_slave_index = cpsw_slave_index_priv; 1517 1518 cpsw->dev = dev; 1519 1520 mode = devm_gpiod_get_array_optional(dev, "mode", GPIOD_OUT_LOW); 1521 if (IS_ERR(mode)) { 1522 ret = PTR_ERR(mode); 1523 dev_err(dev, "gpio request failed, ret %d\n", ret); 1524 return ret; 1525 } 1526 1527 clk = devm_clk_get(dev, "fck"); 1528 if (IS_ERR(clk)) { 1529 ret = PTR_ERR(clk); 1530 dev_err(dev, "fck is not found %d\n", ret); 1531 return ret; 1532 } 1533 cpsw->bus_freq_mhz = clk_get_rate(clk) / 1000000; 1534 1535 ss_regs = devm_platform_get_and_ioremap_resource(pdev, 0, &ss_res); 1536 if (IS_ERR(ss_regs)) 1537 return PTR_ERR(ss_regs); 1538 cpsw->regs = ss_regs; 1539 1540 cpsw->wr_regs = devm_platform_ioremap_resource(pdev, 1); 1541 if (IS_ERR(cpsw->wr_regs)) 1542 return PTR_ERR(cpsw->wr_regs); 1543 1544 /* RX IRQ */ 1545 irq = platform_get_irq(pdev, 1); 1546 if (irq < 0) 1547 return irq; 1548 cpsw->irqs_table[0] = irq; 1549 1550 /* TX IRQ */ 1551 irq = platform_get_irq(pdev, 2); 1552 if (irq < 0) 1553 return irq; 1554 cpsw->irqs_table[1] = irq; 1555 1556 /* get misc irq*/ 1557 irq = platform_get_irq(pdev, 3); 1558 if (irq <= 0) 1559 return irq; 1560 cpsw->misc_irq = irq; 1561 1562 /* 1563 * This may be required here for child devices. 1564 */ 1565 pm_runtime_enable(dev); 1566 1567 /* Need to enable clocks with runtime PM api to access module 1568 * registers 1569 */ 1570 ret = pm_runtime_get_sync(dev); 1571 if (ret < 0) { 1572 pm_runtime_put_noidle(dev); 1573 goto clean_runtime_disable_ret; 1574 } 1575 1576 ret = cpsw_probe_dt(&cpsw->data, pdev); 1577 if (ret) 1578 goto clean_dt_ret; 1579 1580 soc = soc_device_match(cpsw_soc_devices); 1581 if (soc) 1582 cpsw->quirk_irq = true; 1583 1584 data = &cpsw->data; 1585 cpsw->slaves = devm_kcalloc(dev, 1586 data->slaves, sizeof(struct cpsw_slave), 1587 GFP_KERNEL); 1588 if (!cpsw->slaves) { 1589 ret = -ENOMEM; 1590 goto clean_dt_ret; 1591 } 1592 1593 cpsw->rx_packet_max = max(rx_packet_max, CPSW_MAX_PACKET_SIZE); 1594 cpsw->descs_pool_size = descs_pool_size; 1595 1596 ret = cpsw_init_common(cpsw, ss_regs, ale_ageout, 1597 ss_res->start + CPSW2_BD_OFFSET, 1598 descs_pool_size); 1599 if (ret) 1600 goto clean_dt_ret; 1601 1602 ch = cpsw->quirk_irq ? 0 : 7; 1603 cpsw->txv[0].ch = cpdma_chan_create(cpsw->dma, ch, cpsw_tx_handler, 0); 1604 if (IS_ERR(cpsw->txv[0].ch)) { 1605 dev_err(dev, "error initializing tx dma channel\n"); 1606 ret = PTR_ERR(cpsw->txv[0].ch); 1607 goto clean_cpts; 1608 } 1609 1610 cpsw->rxv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_rx_handler, 1); 1611 if (IS_ERR(cpsw->rxv[0].ch)) { 1612 dev_err(dev, "error initializing rx dma channel\n"); 1613 ret = PTR_ERR(cpsw->rxv[0].ch); 1614 goto clean_cpts; 1615 } 1616 cpsw_split_res(cpsw); 1617 1618 /* setup netdev */ 1619 ndev = devm_alloc_etherdev_mqs(dev, sizeof(struct cpsw_priv), 1620 CPSW_MAX_QUEUES, CPSW_MAX_QUEUES); 1621 if (!ndev) { 1622 dev_err(dev, "error allocating net_device\n"); 1623 ret = -ENOMEM; 1624 goto clean_cpts; 1625 } 1626 1627 priv = netdev_priv(ndev); 1628 priv->cpsw = cpsw; 1629 priv->ndev = ndev; 1630 priv->dev = dev; 1631 priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG); 1632 priv->emac_port = 0; 1633 1634 if (is_valid_ether_addr(data->slave_data[0].mac_addr)) { 1635 memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN); 1636 dev_info(dev, "Detected MACID = %pM\n", priv->mac_addr); 1637 } else { 1638 eth_random_addr(priv->mac_addr); 1639 dev_info(dev, "Random MACID = %pM\n", priv->mac_addr); 1640 } 1641 1642 eth_hw_addr_set(ndev, priv->mac_addr); 1643 1644 cpsw->slaves[0].ndev = ndev; 1645 1646 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX; 1647 1648 ndev->netdev_ops = &cpsw_netdev_ops; 1649 ndev->ethtool_ops = &cpsw_ethtool_ops; 1650 netif_napi_add(ndev, &cpsw->napi_rx, 1651 cpsw->quirk_irq ? cpsw_rx_poll : cpsw_rx_mq_poll, 1652 CPSW_POLL_WEIGHT); 1653 netif_tx_napi_add(ndev, &cpsw->napi_tx, 1654 cpsw->quirk_irq ? cpsw_tx_poll : cpsw_tx_mq_poll, 1655 CPSW_POLL_WEIGHT); 1656 1657 /* register the network device */ 1658 SET_NETDEV_DEV(ndev, dev); 1659 ndev->dev.of_node = cpsw->slaves[0].data->slave_node; 1660 ret = register_netdev(ndev); 1661 if (ret) { 1662 dev_err(dev, "error registering net device\n"); 1663 ret = -ENODEV; 1664 goto clean_cpts; 1665 } 1666 1667 if (cpsw->data.dual_emac) { 1668 ret = cpsw_probe_dual_emac(priv); 1669 if (ret) { 1670 cpsw_err(priv, probe, "error probe slave 2 emac interface\n"); 1671 goto clean_unregister_netdev_ret; 1672 } 1673 } 1674 1675 /* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and 1676 * MISC IRQs which are always kept disabled with this driver so 1677 * we will not request them. 1678 * 1679 * If anyone wants to implement support for those, make sure to 1680 * first request and append them to irqs_table array. 1681 */ 1682 ret = devm_request_irq(dev, cpsw->irqs_table[0], cpsw_rx_interrupt, 1683 0, dev_name(dev), cpsw); 1684 if (ret < 0) { 1685 dev_err(dev, "error attaching irq (%d)\n", ret); 1686 goto clean_unregister_netdev_ret; 1687 } 1688 1689 1690 ret = devm_request_irq(dev, cpsw->irqs_table[1], cpsw_tx_interrupt, 1691 0, dev_name(&pdev->dev), cpsw); 1692 if (ret < 0) { 1693 dev_err(dev, "error attaching irq (%d)\n", ret); 1694 goto clean_unregister_netdev_ret; 1695 } 1696 1697 if (!cpsw->cpts) 1698 goto skip_cpts; 1699 1700 ret = devm_request_irq(&pdev->dev, cpsw->misc_irq, cpsw_misc_interrupt, 1701 0, dev_name(&pdev->dev), cpsw); 1702 if (ret < 0) { 1703 dev_err(dev, "error attaching misc irq (%d)\n", ret); 1704 goto clean_unregister_netdev_ret; 1705 } 1706 1707 /* Enable misc CPTS evnt_pend IRQ */ 1708 cpts_set_irqpoll(cpsw->cpts, false); 1709 1710 skip_cpts: 1711 cpsw_notice(priv, probe, 1712 "initialized device (regs %pa, irq %d, pool size %d)\n", 1713 &ss_res->start, cpsw->irqs_table[0], descs_pool_size); 1714 1715 pm_runtime_put(&pdev->dev); 1716 1717 return 0; 1718 1719 clean_unregister_netdev_ret: 1720 unregister_netdev(ndev); 1721 clean_cpts: 1722 cpts_release(cpsw->cpts); 1723 cpdma_ctlr_destroy(cpsw->dma); 1724 clean_dt_ret: 1725 cpsw_remove_dt(pdev); 1726 pm_runtime_put_sync(&pdev->dev); 1727 clean_runtime_disable_ret: 1728 pm_runtime_disable(&pdev->dev); 1729 return ret; 1730 } 1731 1732 static int cpsw_remove(struct platform_device *pdev) 1733 { 1734 struct cpsw_common *cpsw = platform_get_drvdata(pdev); 1735 int i, ret; 1736 1737 ret = pm_runtime_get_sync(&pdev->dev); 1738 if (ret < 0) { 1739 pm_runtime_put_noidle(&pdev->dev); 1740 return ret; 1741 } 1742 1743 for (i = 0; i < cpsw->data.slaves; i++) 1744 if (cpsw->slaves[i].ndev) 1745 unregister_netdev(cpsw->slaves[i].ndev); 1746 1747 cpts_release(cpsw->cpts); 1748 cpdma_ctlr_destroy(cpsw->dma); 1749 cpsw_remove_dt(pdev); 1750 pm_runtime_put_sync(&pdev->dev); 1751 pm_runtime_disable(&pdev->dev); 1752 return 0; 1753 } 1754 1755 #ifdef CONFIG_PM_SLEEP 1756 static int cpsw_suspend(struct device *dev) 1757 { 1758 struct cpsw_common *cpsw = dev_get_drvdata(dev); 1759 int i; 1760 1761 rtnl_lock(); 1762 1763 for (i = 0; i < cpsw->data.slaves; i++) 1764 if (cpsw->slaves[i].ndev) 1765 if (netif_running(cpsw->slaves[i].ndev)) 1766 cpsw_ndo_stop(cpsw->slaves[i].ndev); 1767 1768 rtnl_unlock(); 1769 1770 /* Select sleep pin state */ 1771 pinctrl_pm_select_sleep_state(dev); 1772 1773 return 0; 1774 } 1775 1776 static int cpsw_resume(struct device *dev) 1777 { 1778 struct cpsw_common *cpsw = dev_get_drvdata(dev); 1779 int i; 1780 1781 /* Select default pin state */ 1782 pinctrl_pm_select_default_state(dev); 1783 1784 /* shut up ASSERT_RTNL() warning in netif_set_real_num_tx/rx_queues */ 1785 rtnl_lock(); 1786 1787 for (i = 0; i < cpsw->data.slaves; i++) 1788 if (cpsw->slaves[i].ndev) 1789 if (netif_running(cpsw->slaves[i].ndev)) 1790 cpsw_ndo_open(cpsw->slaves[i].ndev); 1791 1792 rtnl_unlock(); 1793 1794 return 0; 1795 } 1796 #endif 1797 1798 static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume); 1799 1800 static struct platform_driver cpsw_driver = { 1801 .driver = { 1802 .name = "cpsw", 1803 .pm = &cpsw_pm_ops, 1804 .of_match_table = cpsw_of_mtable, 1805 }, 1806 .probe = cpsw_probe, 1807 .remove = cpsw_remove, 1808 }; 1809 1810 module_platform_driver(cpsw_driver); 1811 1812 MODULE_LICENSE("GPL"); 1813 MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>"); 1814 MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>"); 1815 MODULE_DESCRIPTION("TI CPSW Ethernet driver"); 1816