xref: /openbmc/linux/drivers/net/ethernet/ti/cpsw.c (revision ea47eed33a3fe3d919e6e3cf4e4eb5507b817188)
1 /*
2  * Texas Instruments Ethernet Switch Driver
3  *
4  * Copyright (C) 2012 Texas Instruments
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation version 2.
9  *
10  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11  * kind, whether express or implied; without even the implied warranty
12  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/io.h>
18 #include <linux/clk.h>
19 #include <linux/timer.h>
20 #include <linux/module.h>
21 #include <linux/platform_device.h>
22 #include <linux/irqreturn.h>
23 #include <linux/interrupt.h>
24 #include <linux/if_ether.h>
25 #include <linux/etherdevice.h>
26 #include <linux/netdevice.h>
27 #include <linux/net_tstamp.h>
28 #include <linux/phy.h>
29 #include <linux/workqueue.h>
30 #include <linux/delay.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/gpio/consumer.h>
33 #include <linux/of.h>
34 #include <linux/of_mdio.h>
35 #include <linux/of_net.h>
36 #include <linux/of_device.h>
37 #include <linux/if_vlan.h>
38 #include <linux/kmemleak.h>
39 #include <linux/sys_soc.h>
40 
41 #include <linux/pinctrl/consumer.h>
42 
43 #include "cpsw.h"
44 #include "cpsw_ale.h"
45 #include "cpts.h"
46 #include "davinci_cpdma.h"
47 
48 #define CPSW_DEBUG	(NETIF_MSG_HW		| NETIF_MSG_WOL		| \
49 			 NETIF_MSG_DRV		| NETIF_MSG_LINK	| \
50 			 NETIF_MSG_IFUP		| NETIF_MSG_INTR	| \
51 			 NETIF_MSG_PROBE	| NETIF_MSG_TIMER	| \
52 			 NETIF_MSG_IFDOWN	| NETIF_MSG_RX_ERR	| \
53 			 NETIF_MSG_TX_ERR	| NETIF_MSG_TX_DONE	| \
54 			 NETIF_MSG_PKTDATA	| NETIF_MSG_TX_QUEUED	| \
55 			 NETIF_MSG_RX_STATUS)
56 
57 #define cpsw_info(priv, type, format, ...)		\
58 do {								\
59 	if (netif_msg_##type(priv) && net_ratelimit())		\
60 		dev_info(priv->dev, format, ## __VA_ARGS__);	\
61 } while (0)
62 
63 #define cpsw_err(priv, type, format, ...)		\
64 do {								\
65 	if (netif_msg_##type(priv) && net_ratelimit())		\
66 		dev_err(priv->dev, format, ## __VA_ARGS__);	\
67 } while (0)
68 
69 #define cpsw_dbg(priv, type, format, ...)		\
70 do {								\
71 	if (netif_msg_##type(priv) && net_ratelimit())		\
72 		dev_dbg(priv->dev, format, ## __VA_ARGS__);	\
73 } while (0)
74 
75 #define cpsw_notice(priv, type, format, ...)		\
76 do {								\
77 	if (netif_msg_##type(priv) && net_ratelimit())		\
78 		dev_notice(priv->dev, format, ## __VA_ARGS__);	\
79 } while (0)
80 
81 #define ALE_ALL_PORTS		0x7
82 
83 #define CPSW_MAJOR_VERSION(reg)		(reg >> 8 & 0x7)
84 #define CPSW_MINOR_VERSION(reg)		(reg & 0xff)
85 #define CPSW_RTL_VERSION(reg)		((reg >> 11) & 0x1f)
86 
87 #define CPSW_VERSION_1		0x19010a
88 #define CPSW_VERSION_2		0x19010c
89 #define CPSW_VERSION_3		0x19010f
90 #define CPSW_VERSION_4		0x190112
91 
92 #define HOST_PORT_NUM		0
93 #define CPSW_ALE_PORTS_NUM	3
94 #define SLIVER_SIZE		0x40
95 
96 #define CPSW1_HOST_PORT_OFFSET	0x028
97 #define CPSW1_SLAVE_OFFSET	0x050
98 #define CPSW1_SLAVE_SIZE	0x040
99 #define CPSW1_CPDMA_OFFSET	0x100
100 #define CPSW1_STATERAM_OFFSET	0x200
101 #define CPSW1_HW_STATS		0x400
102 #define CPSW1_CPTS_OFFSET	0x500
103 #define CPSW1_ALE_OFFSET	0x600
104 #define CPSW1_SLIVER_OFFSET	0x700
105 
106 #define CPSW2_HOST_PORT_OFFSET	0x108
107 #define CPSW2_SLAVE_OFFSET	0x200
108 #define CPSW2_SLAVE_SIZE	0x100
109 #define CPSW2_CPDMA_OFFSET	0x800
110 #define CPSW2_HW_STATS		0x900
111 #define CPSW2_STATERAM_OFFSET	0xa00
112 #define CPSW2_CPTS_OFFSET	0xc00
113 #define CPSW2_ALE_OFFSET	0xd00
114 #define CPSW2_SLIVER_OFFSET	0xd80
115 #define CPSW2_BD_OFFSET		0x2000
116 
117 #define CPDMA_RXTHRESH		0x0c0
118 #define CPDMA_RXFREE		0x0e0
119 #define CPDMA_TXHDP		0x00
120 #define CPDMA_RXHDP		0x20
121 #define CPDMA_TXCP		0x40
122 #define CPDMA_RXCP		0x60
123 
124 #define CPSW_POLL_WEIGHT	64
125 #define CPSW_RX_VLAN_ENCAP_HDR_SIZE		4
126 #define CPSW_MIN_PACKET_SIZE	(VLAN_ETH_ZLEN)
127 #define CPSW_MAX_PACKET_SIZE	(VLAN_ETH_FRAME_LEN +\
128 				 ETH_FCS_LEN +\
129 				 CPSW_RX_VLAN_ENCAP_HDR_SIZE)
130 
131 #define RX_PRIORITY_MAPPING	0x76543210
132 #define TX_PRIORITY_MAPPING	0x33221100
133 #define CPDMA_TX_PRIORITY_MAP	0x76543210
134 
135 #define CPSW_VLAN_AWARE		BIT(1)
136 #define CPSW_RX_VLAN_ENCAP	BIT(2)
137 #define CPSW_ALE_VLAN_AWARE	1
138 
139 #define CPSW_FIFO_NORMAL_MODE		(0 << 16)
140 #define CPSW_FIFO_DUAL_MAC_MODE		(1 << 16)
141 #define CPSW_FIFO_RATE_LIMIT_MODE	(2 << 16)
142 
143 #define CPSW_INTPACEEN		(0x3f << 16)
144 #define CPSW_INTPRESCALE_MASK	(0x7FF << 0)
145 #define CPSW_CMINTMAX_CNT	63
146 #define CPSW_CMINTMIN_CNT	2
147 #define CPSW_CMINTMAX_INTVL	(1000 / CPSW_CMINTMIN_CNT)
148 #define CPSW_CMINTMIN_INTVL	((1000 / CPSW_CMINTMAX_CNT) + 1)
149 
150 #define cpsw_slave_index(cpsw, priv)				\
151 		((cpsw->data.dual_emac) ? priv->emac_port :	\
152 		cpsw->data.active_slave)
153 #define IRQ_NUM			2
154 #define CPSW_MAX_QUEUES		8
155 #define CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT 256
156 
157 #define CPSW_RX_VLAN_ENCAP_HDR_PRIO_SHIFT	29
158 #define CPSW_RX_VLAN_ENCAP_HDR_PRIO_MSK		GENMASK(2, 0)
159 #define CPSW_RX_VLAN_ENCAP_HDR_VID_SHIFT	16
160 #define CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_SHIFT	8
161 #define CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_MSK	GENMASK(1, 0)
162 enum {
163 	CPSW_RX_VLAN_ENCAP_HDR_PKT_VLAN_TAG = 0,
164 	CPSW_RX_VLAN_ENCAP_HDR_PKT_RESERV,
165 	CPSW_RX_VLAN_ENCAP_HDR_PKT_PRIO_TAG,
166 	CPSW_RX_VLAN_ENCAP_HDR_PKT_UNTAG,
167 };
168 
169 static int debug_level;
170 module_param(debug_level, int, 0);
171 MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)");
172 
173 static int ale_ageout = 10;
174 module_param(ale_ageout, int, 0);
175 MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)");
176 
177 static int rx_packet_max = CPSW_MAX_PACKET_SIZE;
178 module_param(rx_packet_max, int, 0);
179 MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)");
180 
181 static int descs_pool_size = CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT;
182 module_param(descs_pool_size, int, 0444);
183 MODULE_PARM_DESC(descs_pool_size, "Number of CPDMA CPPI descriptors in pool");
184 
185 struct cpsw_wr_regs {
186 	u32	id_ver;
187 	u32	soft_reset;
188 	u32	control;
189 	u32	int_control;
190 	u32	rx_thresh_en;
191 	u32	rx_en;
192 	u32	tx_en;
193 	u32	misc_en;
194 	u32	mem_allign1[8];
195 	u32	rx_thresh_stat;
196 	u32	rx_stat;
197 	u32	tx_stat;
198 	u32	misc_stat;
199 	u32	mem_allign2[8];
200 	u32	rx_imax;
201 	u32	tx_imax;
202 
203 };
204 
205 struct cpsw_ss_regs {
206 	u32	id_ver;
207 	u32	control;
208 	u32	soft_reset;
209 	u32	stat_port_en;
210 	u32	ptype;
211 	u32	soft_idle;
212 	u32	thru_rate;
213 	u32	gap_thresh;
214 	u32	tx_start_wds;
215 	u32	flow_control;
216 	u32	vlan_ltype;
217 	u32	ts_ltype;
218 	u32	dlr_ltype;
219 };
220 
221 /* CPSW_PORT_V1 */
222 #define CPSW1_MAX_BLKS      0x00 /* Maximum FIFO Blocks */
223 #define CPSW1_BLK_CNT       0x04 /* FIFO Block Usage Count (Read Only) */
224 #define CPSW1_TX_IN_CTL     0x08 /* Transmit FIFO Control */
225 #define CPSW1_PORT_VLAN     0x0c /* VLAN Register */
226 #define CPSW1_TX_PRI_MAP    0x10 /* Tx Header Priority to Switch Pri Mapping */
227 #define CPSW1_TS_CTL        0x14 /* Time Sync Control */
228 #define CPSW1_TS_SEQ_LTYPE  0x18 /* Time Sync Sequence ID Offset and Msg Type */
229 #define CPSW1_TS_VLAN       0x1c /* Time Sync VLAN1 and VLAN2 */
230 
231 /* CPSW_PORT_V2 */
232 #define CPSW2_CONTROL       0x00 /* Control Register */
233 #define CPSW2_MAX_BLKS      0x08 /* Maximum FIFO Blocks */
234 #define CPSW2_BLK_CNT       0x0c /* FIFO Block Usage Count (Read Only) */
235 #define CPSW2_TX_IN_CTL     0x10 /* Transmit FIFO Control */
236 #define CPSW2_PORT_VLAN     0x14 /* VLAN Register */
237 #define CPSW2_TX_PRI_MAP    0x18 /* Tx Header Priority to Switch Pri Mapping */
238 #define CPSW2_TS_SEQ_MTYPE  0x1c /* Time Sync Sequence ID Offset and Msg Type */
239 
240 /* CPSW_PORT_V1 and V2 */
241 #define SA_LO               0x20 /* CPGMAC_SL Source Address Low */
242 #define SA_HI               0x24 /* CPGMAC_SL Source Address High */
243 #define SEND_PERCENT        0x28 /* Transmit Queue Send Percentages */
244 
245 /* CPSW_PORT_V2 only */
246 #define RX_DSCP_PRI_MAP0    0x30 /* Rx DSCP Priority to Rx Packet Mapping */
247 #define RX_DSCP_PRI_MAP1    0x34 /* Rx DSCP Priority to Rx Packet Mapping */
248 #define RX_DSCP_PRI_MAP2    0x38 /* Rx DSCP Priority to Rx Packet Mapping */
249 #define RX_DSCP_PRI_MAP3    0x3c /* Rx DSCP Priority to Rx Packet Mapping */
250 #define RX_DSCP_PRI_MAP4    0x40 /* Rx DSCP Priority to Rx Packet Mapping */
251 #define RX_DSCP_PRI_MAP5    0x44 /* Rx DSCP Priority to Rx Packet Mapping */
252 #define RX_DSCP_PRI_MAP6    0x48 /* Rx DSCP Priority to Rx Packet Mapping */
253 #define RX_DSCP_PRI_MAP7    0x4c /* Rx DSCP Priority to Rx Packet Mapping */
254 
255 /* Bit definitions for the CPSW2_CONTROL register */
256 #define PASS_PRI_TAGGED     (1<<24) /* Pass Priority Tagged */
257 #define VLAN_LTYPE2_EN      (1<<21) /* VLAN LTYPE 2 enable */
258 #define VLAN_LTYPE1_EN      (1<<20) /* VLAN LTYPE 1 enable */
259 #define DSCP_PRI_EN         (1<<16) /* DSCP Priority Enable */
260 #define TS_320              (1<<14) /* Time Sync Dest Port 320 enable */
261 #define TS_319              (1<<13) /* Time Sync Dest Port 319 enable */
262 #define TS_132              (1<<12) /* Time Sync Dest IP Addr 132 enable */
263 #define TS_131              (1<<11) /* Time Sync Dest IP Addr 131 enable */
264 #define TS_130              (1<<10) /* Time Sync Dest IP Addr 130 enable */
265 #define TS_129              (1<<9)  /* Time Sync Dest IP Addr 129 enable */
266 #define TS_TTL_NONZERO      (1<<8)  /* Time Sync Time To Live Non-zero enable */
267 #define TS_ANNEX_F_EN       (1<<6)  /* Time Sync Annex F enable */
268 #define TS_ANNEX_D_EN       (1<<4)  /* Time Sync Annex D enable */
269 #define TS_LTYPE2_EN        (1<<3)  /* Time Sync LTYPE 2 enable */
270 #define TS_LTYPE1_EN        (1<<2)  /* Time Sync LTYPE 1 enable */
271 #define TS_TX_EN            (1<<1)  /* Time Sync Transmit Enable */
272 #define TS_RX_EN            (1<<0)  /* Time Sync Receive Enable */
273 
274 #define CTRL_V2_TS_BITS \
275 	(TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
276 	 TS_TTL_NONZERO  | TS_ANNEX_D_EN | TS_LTYPE1_EN)
277 
278 #define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN)
279 #define CTRL_V2_TX_TS_BITS  (CTRL_V2_TS_BITS | TS_TX_EN)
280 #define CTRL_V2_RX_TS_BITS  (CTRL_V2_TS_BITS | TS_RX_EN)
281 
282 
283 #define CTRL_V3_TS_BITS \
284 	(TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
285 	 TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\
286 	 TS_LTYPE1_EN)
287 
288 #define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN)
289 #define CTRL_V3_TX_TS_BITS  (CTRL_V3_TS_BITS | TS_TX_EN)
290 #define CTRL_V3_RX_TS_BITS  (CTRL_V3_TS_BITS | TS_RX_EN)
291 
292 /* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */
293 #define TS_SEQ_ID_OFFSET_SHIFT   (16)    /* Time Sync Sequence ID Offset */
294 #define TS_SEQ_ID_OFFSET_MASK    (0x3f)
295 #define TS_MSG_TYPE_EN_SHIFT     (0)     /* Time Sync Message Type Enable */
296 #define TS_MSG_TYPE_EN_MASK      (0xffff)
297 
298 /* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */
299 #define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3))
300 
301 /* Bit definitions for the CPSW1_TS_CTL register */
302 #define CPSW_V1_TS_RX_EN		BIT(0)
303 #define CPSW_V1_TS_TX_EN		BIT(4)
304 #define CPSW_V1_MSG_TYPE_OFS		16
305 
306 /* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */
307 #define CPSW_V1_SEQ_ID_OFS_SHIFT	16
308 
309 #define CPSW_MAX_BLKS_TX		15
310 #define CPSW_MAX_BLKS_TX_SHIFT		4
311 #define CPSW_MAX_BLKS_RX		5
312 
313 struct cpsw_host_regs {
314 	u32	max_blks;
315 	u32	blk_cnt;
316 	u32	tx_in_ctl;
317 	u32	port_vlan;
318 	u32	tx_pri_map;
319 	u32	cpdma_tx_pri_map;
320 	u32	cpdma_rx_chan_map;
321 };
322 
323 struct cpsw_sliver_regs {
324 	u32	id_ver;
325 	u32	mac_control;
326 	u32	mac_status;
327 	u32	soft_reset;
328 	u32	rx_maxlen;
329 	u32	__reserved_0;
330 	u32	rx_pause;
331 	u32	tx_pause;
332 	u32	__reserved_1;
333 	u32	rx_pri_map;
334 };
335 
336 struct cpsw_hw_stats {
337 	u32	rxgoodframes;
338 	u32	rxbroadcastframes;
339 	u32	rxmulticastframes;
340 	u32	rxpauseframes;
341 	u32	rxcrcerrors;
342 	u32	rxaligncodeerrors;
343 	u32	rxoversizedframes;
344 	u32	rxjabberframes;
345 	u32	rxundersizedframes;
346 	u32	rxfragments;
347 	u32	__pad_0[2];
348 	u32	rxoctets;
349 	u32	txgoodframes;
350 	u32	txbroadcastframes;
351 	u32	txmulticastframes;
352 	u32	txpauseframes;
353 	u32	txdeferredframes;
354 	u32	txcollisionframes;
355 	u32	txsinglecollframes;
356 	u32	txmultcollframes;
357 	u32	txexcessivecollisions;
358 	u32	txlatecollisions;
359 	u32	txunderrun;
360 	u32	txcarriersenseerrors;
361 	u32	txoctets;
362 	u32	octetframes64;
363 	u32	octetframes65t127;
364 	u32	octetframes128t255;
365 	u32	octetframes256t511;
366 	u32	octetframes512t1023;
367 	u32	octetframes1024tup;
368 	u32	netoctets;
369 	u32	rxsofoverruns;
370 	u32	rxmofoverruns;
371 	u32	rxdmaoverruns;
372 };
373 
374 struct cpsw_slave_data {
375 	struct device_node *phy_node;
376 	char		phy_id[MII_BUS_ID_SIZE];
377 	int		phy_if;
378 	u8		mac_addr[ETH_ALEN];
379 	u16		dual_emac_res_vlan;	/* Reserved VLAN for DualEMAC */
380 };
381 
382 struct cpsw_platform_data {
383 	struct cpsw_slave_data	*slave_data;
384 	u32	ss_reg_ofs;	/* Subsystem control register offset */
385 	u32	channels;	/* number of cpdma channels (symmetric) */
386 	u32	slaves;		/* number of slave cpgmac ports */
387 	u32	active_slave; /* time stamping, ethtool and SIOCGMIIPHY slave */
388 	u32	ale_entries;	/* ale table size */
389 	u32	bd_ram_size;  /*buffer descriptor ram size */
390 	u32	mac_control;	/* Mac control register */
391 	u16	default_vlan;	/* Def VLAN for ALE lookup in VLAN aware mode*/
392 	bool	dual_emac;	/* Enable Dual EMAC mode */
393 };
394 
395 struct cpsw_slave {
396 	void __iomem			*regs;
397 	struct cpsw_sliver_regs __iomem	*sliver;
398 	int				slave_num;
399 	u32				mac_control;
400 	struct cpsw_slave_data		*data;
401 	struct phy_device		*phy;
402 	struct net_device		*ndev;
403 	u32				port_vlan;
404 };
405 
406 static inline u32 slave_read(struct cpsw_slave *slave, u32 offset)
407 {
408 	return readl_relaxed(slave->regs + offset);
409 }
410 
411 static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset)
412 {
413 	writel_relaxed(val, slave->regs + offset);
414 }
415 
416 struct cpsw_vector {
417 	struct cpdma_chan *ch;
418 	int budget;
419 };
420 
421 struct cpsw_common {
422 	struct device			*dev;
423 	struct cpsw_platform_data	data;
424 	struct napi_struct		napi_rx;
425 	struct napi_struct		napi_tx;
426 	struct cpsw_ss_regs __iomem	*regs;
427 	struct cpsw_wr_regs __iomem	*wr_regs;
428 	u8 __iomem			*hw_stats;
429 	struct cpsw_host_regs __iomem	*host_port_regs;
430 	u32				version;
431 	u32				coal_intvl;
432 	u32				bus_freq_mhz;
433 	int				rx_packet_max;
434 	struct cpsw_slave		*slaves;
435 	struct cpdma_ctlr		*dma;
436 	struct cpsw_vector		txv[CPSW_MAX_QUEUES];
437 	struct cpsw_vector		rxv[CPSW_MAX_QUEUES];
438 	struct cpsw_ale			*ale;
439 	bool				quirk_irq;
440 	bool				rx_irq_disabled;
441 	bool				tx_irq_disabled;
442 	u32 irqs_table[IRQ_NUM];
443 	struct cpts			*cpts;
444 	int				rx_ch_num, tx_ch_num;
445 	int				speed;
446 	int				usage_count;
447 };
448 
449 struct cpsw_priv {
450 	struct net_device		*ndev;
451 	struct device			*dev;
452 	u32				msg_enable;
453 	u8				mac_addr[ETH_ALEN];
454 	bool				rx_pause;
455 	bool				tx_pause;
456 	u32 emac_port;
457 	struct cpsw_common *cpsw;
458 };
459 
460 struct cpsw_stats {
461 	char stat_string[ETH_GSTRING_LEN];
462 	int type;
463 	int sizeof_stat;
464 	int stat_offset;
465 };
466 
467 enum {
468 	CPSW_STATS,
469 	CPDMA_RX_STATS,
470 	CPDMA_TX_STATS,
471 };
472 
473 #define CPSW_STAT(m)		CPSW_STATS,				\
474 				sizeof(((struct cpsw_hw_stats *)0)->m), \
475 				offsetof(struct cpsw_hw_stats, m)
476 #define CPDMA_RX_STAT(m)	CPDMA_RX_STATS,				   \
477 				sizeof(((struct cpdma_chan_stats *)0)->m), \
478 				offsetof(struct cpdma_chan_stats, m)
479 #define CPDMA_TX_STAT(m)	CPDMA_TX_STATS,				   \
480 				sizeof(((struct cpdma_chan_stats *)0)->m), \
481 				offsetof(struct cpdma_chan_stats, m)
482 
483 static const struct cpsw_stats cpsw_gstrings_stats[] = {
484 	{ "Good Rx Frames", CPSW_STAT(rxgoodframes) },
485 	{ "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) },
486 	{ "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) },
487 	{ "Pause Rx Frames", CPSW_STAT(rxpauseframes) },
488 	{ "Rx CRC Errors", CPSW_STAT(rxcrcerrors) },
489 	{ "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) },
490 	{ "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) },
491 	{ "Rx Jabbers", CPSW_STAT(rxjabberframes) },
492 	{ "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) },
493 	{ "Rx Fragments", CPSW_STAT(rxfragments) },
494 	{ "Rx Octets", CPSW_STAT(rxoctets) },
495 	{ "Good Tx Frames", CPSW_STAT(txgoodframes) },
496 	{ "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) },
497 	{ "Multicast Tx Frames", CPSW_STAT(txmulticastframes) },
498 	{ "Pause Tx Frames", CPSW_STAT(txpauseframes) },
499 	{ "Deferred Tx Frames", CPSW_STAT(txdeferredframes) },
500 	{ "Collisions", CPSW_STAT(txcollisionframes) },
501 	{ "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) },
502 	{ "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) },
503 	{ "Excessive Collisions", CPSW_STAT(txexcessivecollisions) },
504 	{ "Late Collisions", CPSW_STAT(txlatecollisions) },
505 	{ "Tx Underrun", CPSW_STAT(txunderrun) },
506 	{ "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) },
507 	{ "Tx Octets", CPSW_STAT(txoctets) },
508 	{ "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) },
509 	{ "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) },
510 	{ "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) },
511 	{ "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) },
512 	{ "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) },
513 	{ "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) },
514 	{ "Net Octets", CPSW_STAT(netoctets) },
515 	{ "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) },
516 	{ "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) },
517 	{ "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) },
518 };
519 
520 static const struct cpsw_stats cpsw_gstrings_ch_stats[] = {
521 	{ "head_enqueue", CPDMA_RX_STAT(head_enqueue) },
522 	{ "tail_enqueue", CPDMA_RX_STAT(tail_enqueue) },
523 	{ "pad_enqueue", CPDMA_RX_STAT(pad_enqueue) },
524 	{ "misqueued", CPDMA_RX_STAT(misqueued) },
525 	{ "desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) },
526 	{ "pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) },
527 	{ "runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) },
528 	{ "runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) },
529 	{ "empty_dequeue", CPDMA_RX_STAT(empty_dequeue) },
530 	{ "busy_dequeue", CPDMA_RX_STAT(busy_dequeue) },
531 	{ "good_dequeue", CPDMA_RX_STAT(good_dequeue) },
532 	{ "requeue", CPDMA_RX_STAT(requeue) },
533 	{ "teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) },
534 };
535 
536 #define CPSW_STATS_COMMON_LEN	ARRAY_SIZE(cpsw_gstrings_stats)
537 #define CPSW_STATS_CH_LEN	ARRAY_SIZE(cpsw_gstrings_ch_stats)
538 
539 #define ndev_to_cpsw(ndev) (((struct cpsw_priv *)netdev_priv(ndev))->cpsw)
540 #define napi_to_cpsw(napi)	container_of(napi, struct cpsw_common, napi)
541 #define for_each_slave(priv, func, arg...)				\
542 	do {								\
543 		struct cpsw_slave *slave;				\
544 		struct cpsw_common *cpsw = (priv)->cpsw;		\
545 		int n;							\
546 		if (cpsw->data.dual_emac)				\
547 			(func)((cpsw)->slaves + priv->emac_port, ##arg);\
548 		else							\
549 			for (n = cpsw->data.slaves,			\
550 					slave = cpsw->slaves;		\
551 					n; n--)				\
552 				(func)(slave++, ##arg);			\
553 	} while (0)
554 
555 #define cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb)		\
556 	do {								\
557 		if (!cpsw->data.dual_emac)				\
558 			break;						\
559 		if (CPDMA_RX_SOURCE_PORT(status) == 1) {		\
560 			ndev = cpsw->slaves[0].ndev;			\
561 			skb->dev = ndev;				\
562 		} else if (CPDMA_RX_SOURCE_PORT(status) == 2) {		\
563 			ndev = cpsw->slaves[1].ndev;			\
564 			skb->dev = ndev;				\
565 		}							\
566 	} while (0)
567 #define cpsw_add_mcast(cpsw, priv, addr)				\
568 	do {								\
569 		if (cpsw->data.dual_emac) {				\
570 			struct cpsw_slave *slave = cpsw->slaves +	\
571 						priv->emac_port;	\
572 			int slave_port = cpsw_get_slave_port(		\
573 						slave->slave_num);	\
574 			cpsw_ale_add_mcast(cpsw->ale, addr,		\
575 				1 << slave_port | ALE_PORT_HOST,	\
576 				ALE_VLAN, slave->port_vlan, 0);		\
577 		} else {						\
578 			cpsw_ale_add_mcast(cpsw->ale, addr,		\
579 				ALE_ALL_PORTS,				\
580 				0, 0, 0);				\
581 		}							\
582 	} while (0)
583 
584 static inline int cpsw_get_slave_port(u32 slave_num)
585 {
586 	return slave_num + 1;
587 }
588 
589 static void cpsw_set_promiscious(struct net_device *ndev, bool enable)
590 {
591 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
592 	struct cpsw_ale *ale = cpsw->ale;
593 	int i;
594 
595 	if (cpsw->data.dual_emac) {
596 		bool flag = false;
597 
598 		/* Enabling promiscuous mode for one interface will be
599 		 * common for both the interface as the interface shares
600 		 * the same hardware resource.
601 		 */
602 		for (i = 0; i < cpsw->data.slaves; i++)
603 			if (cpsw->slaves[i].ndev->flags & IFF_PROMISC)
604 				flag = true;
605 
606 		if (!enable && flag) {
607 			enable = true;
608 			dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n");
609 		}
610 
611 		if (enable) {
612 			/* Enable Bypass */
613 			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1);
614 
615 			dev_dbg(&ndev->dev, "promiscuity enabled\n");
616 		} else {
617 			/* Disable Bypass */
618 			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0);
619 			dev_dbg(&ndev->dev, "promiscuity disabled\n");
620 		}
621 	} else {
622 		if (enable) {
623 			unsigned long timeout = jiffies + HZ;
624 
625 			/* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */
626 			for (i = 0; i <= cpsw->data.slaves; i++) {
627 				cpsw_ale_control_set(ale, i,
628 						     ALE_PORT_NOLEARN, 1);
629 				cpsw_ale_control_set(ale, i,
630 						     ALE_PORT_NO_SA_UPDATE, 1);
631 			}
632 
633 			/* Clear All Untouched entries */
634 			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
635 			do {
636 				cpu_relax();
637 				if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT))
638 					break;
639 			} while (time_after(timeout, jiffies));
640 			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
641 
642 			/* Clear all mcast from ALE */
643 			cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS, -1);
644 
645 			/* Flood All Unicast Packets to Host port */
646 			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1);
647 			dev_dbg(&ndev->dev, "promiscuity enabled\n");
648 		} else {
649 			/* Don't Flood All Unicast Packets to Host port */
650 			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0);
651 
652 			/* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */
653 			for (i = 0; i <= cpsw->data.slaves; i++) {
654 				cpsw_ale_control_set(ale, i,
655 						     ALE_PORT_NOLEARN, 0);
656 				cpsw_ale_control_set(ale, i,
657 						     ALE_PORT_NO_SA_UPDATE, 0);
658 			}
659 			dev_dbg(&ndev->dev, "promiscuity disabled\n");
660 		}
661 	}
662 }
663 
664 static void cpsw_ndo_set_rx_mode(struct net_device *ndev)
665 {
666 	struct cpsw_priv *priv = netdev_priv(ndev);
667 	struct cpsw_common *cpsw = priv->cpsw;
668 	int vid;
669 
670 	if (cpsw->data.dual_emac)
671 		vid = cpsw->slaves[priv->emac_port].port_vlan;
672 	else
673 		vid = cpsw->data.default_vlan;
674 
675 	if (ndev->flags & IFF_PROMISC) {
676 		/* Enable promiscuous mode */
677 		cpsw_set_promiscious(ndev, true);
678 		cpsw_ale_set_allmulti(cpsw->ale, IFF_ALLMULTI);
679 		return;
680 	} else {
681 		/* Disable promiscuous mode */
682 		cpsw_set_promiscious(ndev, false);
683 	}
684 
685 	/* Restore allmulti on vlans if necessary */
686 	cpsw_ale_set_allmulti(cpsw->ale, priv->ndev->flags & IFF_ALLMULTI);
687 
688 	/* Clear all mcast from ALE */
689 	cpsw_ale_flush_multicast(cpsw->ale, ALE_ALL_PORTS, vid);
690 
691 	if (!netdev_mc_empty(ndev)) {
692 		struct netdev_hw_addr *ha;
693 
694 		/* program multicast address list into ALE register */
695 		netdev_for_each_mc_addr(ha, ndev) {
696 			cpsw_add_mcast(cpsw, priv, (u8 *)ha->addr);
697 		}
698 	}
699 }
700 
701 static void cpsw_intr_enable(struct cpsw_common *cpsw)
702 {
703 	writel_relaxed(0xFF, &cpsw->wr_regs->tx_en);
704 	writel_relaxed(0xFF, &cpsw->wr_regs->rx_en);
705 
706 	cpdma_ctlr_int_ctrl(cpsw->dma, true);
707 	return;
708 }
709 
710 static void cpsw_intr_disable(struct cpsw_common *cpsw)
711 {
712 	writel_relaxed(0, &cpsw->wr_regs->tx_en);
713 	writel_relaxed(0, &cpsw->wr_regs->rx_en);
714 
715 	cpdma_ctlr_int_ctrl(cpsw->dma, false);
716 	return;
717 }
718 
719 static void cpsw_tx_handler(void *token, int len, int status)
720 {
721 	struct netdev_queue	*txq;
722 	struct sk_buff		*skb = token;
723 	struct net_device	*ndev = skb->dev;
724 	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
725 
726 	/* Check whether the queue is stopped due to stalled tx dma, if the
727 	 * queue is stopped then start the queue as we have free desc for tx
728 	 */
729 	txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb));
730 	if (unlikely(netif_tx_queue_stopped(txq)))
731 		netif_tx_wake_queue(txq);
732 
733 	cpts_tx_timestamp(cpsw->cpts, skb);
734 	ndev->stats.tx_packets++;
735 	ndev->stats.tx_bytes += len;
736 	dev_kfree_skb_any(skb);
737 }
738 
739 static void cpsw_rx_vlan_encap(struct sk_buff *skb)
740 {
741 	struct cpsw_priv *priv = netdev_priv(skb->dev);
742 	struct cpsw_common *cpsw = priv->cpsw;
743 	u32 rx_vlan_encap_hdr = *((u32 *)skb->data);
744 	u16 vtag, vid, prio, pkt_type;
745 
746 	/* Remove VLAN header encapsulation word */
747 	skb_pull(skb, CPSW_RX_VLAN_ENCAP_HDR_SIZE);
748 
749 	pkt_type = (rx_vlan_encap_hdr >>
750 		    CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_SHIFT) &
751 		    CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_MSK;
752 	/* Ignore unknown & Priority-tagged packets*/
753 	if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_RESERV ||
754 	    pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_PRIO_TAG)
755 		return;
756 
757 	vid = (rx_vlan_encap_hdr >>
758 	       CPSW_RX_VLAN_ENCAP_HDR_VID_SHIFT) &
759 	       VLAN_VID_MASK;
760 	/* Ignore vid 0 and pass packet as is */
761 	if (!vid)
762 		return;
763 	/* Ignore default vlans in dual mac mode */
764 	if (cpsw->data.dual_emac &&
765 	    vid == cpsw->slaves[priv->emac_port].port_vlan)
766 		return;
767 
768 	prio = (rx_vlan_encap_hdr >>
769 		CPSW_RX_VLAN_ENCAP_HDR_PRIO_SHIFT) &
770 		CPSW_RX_VLAN_ENCAP_HDR_PRIO_MSK;
771 
772 	vtag = (prio << VLAN_PRIO_SHIFT) | vid;
773 	__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vtag);
774 
775 	/* strip vlan tag for VLAN-tagged packet */
776 	if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_VLAN_TAG) {
777 		memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
778 		skb_pull(skb, VLAN_HLEN);
779 	}
780 }
781 
782 static void cpsw_rx_handler(void *token, int len, int status)
783 {
784 	struct cpdma_chan	*ch;
785 	struct sk_buff		*skb = token;
786 	struct sk_buff		*new_skb;
787 	struct net_device	*ndev = skb->dev;
788 	int			ret = 0;
789 	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
790 
791 	cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb);
792 
793 	if (unlikely(status < 0) || unlikely(!netif_running(ndev))) {
794 		/* In dual emac mode check for all interfaces */
795 		if (cpsw->data.dual_emac && cpsw->usage_count &&
796 		    (status >= 0)) {
797 			/* The packet received is for the interface which
798 			 * is already down and the other interface is up
799 			 * and running, instead of freeing which results
800 			 * in reducing of the number of rx descriptor in
801 			 * DMA engine, requeue skb back to cpdma.
802 			 */
803 			new_skb = skb;
804 			goto requeue;
805 		}
806 
807 		/* the interface is going down, skbs are purged */
808 		dev_kfree_skb_any(skb);
809 		return;
810 	}
811 
812 	new_skb = netdev_alloc_skb_ip_align(ndev, cpsw->rx_packet_max);
813 	if (new_skb) {
814 		skb_copy_queue_mapping(new_skb, skb);
815 		skb_put(skb, len);
816 		if (status & CPDMA_RX_VLAN_ENCAP)
817 			cpsw_rx_vlan_encap(skb);
818 		cpts_rx_timestamp(cpsw->cpts, skb);
819 		skb->protocol = eth_type_trans(skb, ndev);
820 		netif_receive_skb(skb);
821 		ndev->stats.rx_bytes += len;
822 		ndev->stats.rx_packets++;
823 		kmemleak_not_leak(new_skb);
824 	} else {
825 		ndev->stats.rx_dropped++;
826 		new_skb = skb;
827 	}
828 
829 requeue:
830 	if (netif_dormant(ndev)) {
831 		dev_kfree_skb_any(new_skb);
832 		return;
833 	}
834 
835 	ch = cpsw->rxv[skb_get_queue_mapping(new_skb)].ch;
836 	ret = cpdma_chan_submit(ch, new_skb, new_skb->data,
837 				skb_tailroom(new_skb), 0);
838 	if (WARN_ON(ret < 0))
839 		dev_kfree_skb_any(new_skb);
840 }
841 
842 static void cpsw_split_res(struct net_device *ndev)
843 {
844 	struct cpsw_priv *priv = netdev_priv(ndev);
845 	u32 consumed_rate = 0, bigest_rate = 0;
846 	struct cpsw_common *cpsw = priv->cpsw;
847 	struct cpsw_vector *txv = cpsw->txv;
848 	int i, ch_weight, rlim_ch_num = 0;
849 	int budget, bigest_rate_ch = 0;
850 	u32 ch_rate, max_rate;
851 	int ch_budget = 0;
852 
853 	for (i = 0; i < cpsw->tx_ch_num; i++) {
854 		ch_rate = cpdma_chan_get_rate(txv[i].ch);
855 		if (!ch_rate)
856 			continue;
857 
858 		rlim_ch_num++;
859 		consumed_rate += ch_rate;
860 	}
861 
862 	if (cpsw->tx_ch_num == rlim_ch_num) {
863 		max_rate = consumed_rate;
864 	} else if (!rlim_ch_num) {
865 		ch_budget = CPSW_POLL_WEIGHT / cpsw->tx_ch_num;
866 		bigest_rate = 0;
867 		max_rate = consumed_rate;
868 	} else {
869 		max_rate = cpsw->speed * 1000;
870 
871 		/* if max_rate is less then expected due to reduced link speed,
872 		 * split proportionally according next potential max speed
873 		 */
874 		if (max_rate < consumed_rate)
875 			max_rate *= 10;
876 
877 		if (max_rate < consumed_rate)
878 			max_rate *= 10;
879 
880 		ch_budget = (consumed_rate * CPSW_POLL_WEIGHT) / max_rate;
881 		ch_budget = (CPSW_POLL_WEIGHT - ch_budget) /
882 			    (cpsw->tx_ch_num - rlim_ch_num);
883 		bigest_rate = (max_rate - consumed_rate) /
884 			      (cpsw->tx_ch_num - rlim_ch_num);
885 	}
886 
887 	/* split tx weight/budget */
888 	budget = CPSW_POLL_WEIGHT;
889 	for (i = 0; i < cpsw->tx_ch_num; i++) {
890 		ch_rate = cpdma_chan_get_rate(txv[i].ch);
891 		if (ch_rate) {
892 			txv[i].budget = (ch_rate * CPSW_POLL_WEIGHT) / max_rate;
893 			if (!txv[i].budget)
894 				txv[i].budget++;
895 			if (ch_rate > bigest_rate) {
896 				bigest_rate_ch = i;
897 				bigest_rate = ch_rate;
898 			}
899 
900 			ch_weight = (ch_rate * 100) / max_rate;
901 			if (!ch_weight)
902 				ch_weight++;
903 			cpdma_chan_set_weight(cpsw->txv[i].ch, ch_weight);
904 		} else {
905 			txv[i].budget = ch_budget;
906 			if (!bigest_rate_ch)
907 				bigest_rate_ch = i;
908 			cpdma_chan_set_weight(cpsw->txv[i].ch, 0);
909 		}
910 
911 		budget -= txv[i].budget;
912 	}
913 
914 	if (budget)
915 		txv[bigest_rate_ch].budget += budget;
916 
917 	/* split rx budget */
918 	budget = CPSW_POLL_WEIGHT;
919 	ch_budget = budget / cpsw->rx_ch_num;
920 	for (i = 0; i < cpsw->rx_ch_num; i++) {
921 		cpsw->rxv[i].budget = ch_budget;
922 		budget -= ch_budget;
923 	}
924 
925 	if (budget)
926 		cpsw->rxv[0].budget += budget;
927 }
928 
929 static irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id)
930 {
931 	struct cpsw_common *cpsw = dev_id;
932 
933 	writel(0, &cpsw->wr_regs->tx_en);
934 	cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_TX);
935 
936 	if (cpsw->quirk_irq) {
937 		disable_irq_nosync(cpsw->irqs_table[1]);
938 		cpsw->tx_irq_disabled = true;
939 	}
940 
941 	napi_schedule(&cpsw->napi_tx);
942 	return IRQ_HANDLED;
943 }
944 
945 static irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id)
946 {
947 	struct cpsw_common *cpsw = dev_id;
948 
949 	cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_RX);
950 	writel(0, &cpsw->wr_regs->rx_en);
951 
952 	if (cpsw->quirk_irq) {
953 		disable_irq_nosync(cpsw->irqs_table[0]);
954 		cpsw->rx_irq_disabled = true;
955 	}
956 
957 	napi_schedule(&cpsw->napi_rx);
958 	return IRQ_HANDLED;
959 }
960 
961 static int cpsw_tx_mq_poll(struct napi_struct *napi_tx, int budget)
962 {
963 	u32			ch_map;
964 	int			num_tx, cur_budget, ch;
965 	struct cpsw_common	*cpsw = napi_to_cpsw(napi_tx);
966 	struct cpsw_vector	*txv;
967 
968 	/* process every unprocessed channel */
969 	ch_map = cpdma_ctrl_txchs_state(cpsw->dma);
970 	for (ch = 0, num_tx = 0; ch_map; ch_map >>= 1, ch++) {
971 		if (!(ch_map & 0x01))
972 			continue;
973 
974 		txv = &cpsw->txv[ch];
975 		if (unlikely(txv->budget > budget - num_tx))
976 			cur_budget = budget - num_tx;
977 		else
978 			cur_budget = txv->budget;
979 
980 		num_tx += cpdma_chan_process(txv->ch, cur_budget);
981 		if (num_tx >= budget)
982 			break;
983 	}
984 
985 	if (num_tx < budget) {
986 		napi_complete(napi_tx);
987 		writel(0xff, &cpsw->wr_regs->tx_en);
988 	}
989 
990 	return num_tx;
991 }
992 
993 static int cpsw_tx_poll(struct napi_struct *napi_tx, int budget)
994 {
995 	struct cpsw_common *cpsw = napi_to_cpsw(napi_tx);
996 	int num_tx;
997 
998 	num_tx = cpdma_chan_process(cpsw->txv[0].ch, budget);
999 	if (num_tx < budget) {
1000 		napi_complete(napi_tx);
1001 		writel(0xff, &cpsw->wr_regs->tx_en);
1002 		if (cpsw->tx_irq_disabled) {
1003 			cpsw->tx_irq_disabled = false;
1004 			enable_irq(cpsw->irqs_table[1]);
1005 		}
1006 	}
1007 
1008 	return num_tx;
1009 }
1010 
1011 static int cpsw_rx_mq_poll(struct napi_struct *napi_rx, int budget)
1012 {
1013 	u32			ch_map;
1014 	int			num_rx, cur_budget, ch;
1015 	struct cpsw_common	*cpsw = napi_to_cpsw(napi_rx);
1016 	struct cpsw_vector	*rxv;
1017 
1018 	/* process every unprocessed channel */
1019 	ch_map = cpdma_ctrl_rxchs_state(cpsw->dma);
1020 	for (ch = 0, num_rx = 0; ch_map; ch_map >>= 1, ch++) {
1021 		if (!(ch_map & 0x01))
1022 			continue;
1023 
1024 		rxv = &cpsw->rxv[ch];
1025 		if (unlikely(rxv->budget > budget - num_rx))
1026 			cur_budget = budget - num_rx;
1027 		else
1028 			cur_budget = rxv->budget;
1029 
1030 		num_rx += cpdma_chan_process(rxv->ch, cur_budget);
1031 		if (num_rx >= budget)
1032 			break;
1033 	}
1034 
1035 	if (num_rx < budget) {
1036 		napi_complete_done(napi_rx, num_rx);
1037 		writel(0xff, &cpsw->wr_regs->rx_en);
1038 	}
1039 
1040 	return num_rx;
1041 }
1042 
1043 static int cpsw_rx_poll(struct napi_struct *napi_rx, int budget)
1044 {
1045 	struct cpsw_common *cpsw = napi_to_cpsw(napi_rx);
1046 	int num_rx;
1047 
1048 	num_rx = cpdma_chan_process(cpsw->rxv[0].ch, budget);
1049 	if (num_rx < budget) {
1050 		napi_complete_done(napi_rx, num_rx);
1051 		writel(0xff, &cpsw->wr_regs->rx_en);
1052 		if (cpsw->rx_irq_disabled) {
1053 			cpsw->rx_irq_disabled = false;
1054 			enable_irq(cpsw->irqs_table[0]);
1055 		}
1056 	}
1057 
1058 	return num_rx;
1059 }
1060 
1061 static inline void soft_reset(const char *module, void __iomem *reg)
1062 {
1063 	unsigned long timeout = jiffies + HZ;
1064 
1065 	writel_relaxed(1, reg);
1066 	do {
1067 		cpu_relax();
1068 	} while ((readl_relaxed(reg) & 1) && time_after(timeout, jiffies));
1069 
1070 	WARN(readl_relaxed(reg) & 1, "failed to soft-reset %s\n", module);
1071 }
1072 
1073 static void cpsw_set_slave_mac(struct cpsw_slave *slave,
1074 			       struct cpsw_priv *priv)
1075 {
1076 	slave_write(slave, mac_hi(priv->mac_addr), SA_HI);
1077 	slave_write(slave, mac_lo(priv->mac_addr), SA_LO);
1078 }
1079 
1080 static void _cpsw_adjust_link(struct cpsw_slave *slave,
1081 			      struct cpsw_priv *priv, bool *link)
1082 {
1083 	struct phy_device	*phy = slave->phy;
1084 	u32			mac_control = 0;
1085 	u32			slave_port;
1086 	struct cpsw_common *cpsw = priv->cpsw;
1087 
1088 	if (!phy)
1089 		return;
1090 
1091 	slave_port = cpsw_get_slave_port(slave->slave_num);
1092 
1093 	if (phy->link) {
1094 		mac_control = cpsw->data.mac_control;
1095 
1096 		/* enable forwarding */
1097 		cpsw_ale_control_set(cpsw->ale, slave_port,
1098 				     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
1099 
1100 		if (phy->speed == 1000)
1101 			mac_control |= BIT(7);	/* GIGABITEN	*/
1102 		if (phy->duplex)
1103 			mac_control |= BIT(0);	/* FULLDUPLEXEN	*/
1104 
1105 		/* set speed_in input in case RMII mode is used in 100Mbps */
1106 		if (phy->speed == 100)
1107 			mac_control |= BIT(15);
1108 		/* in band mode only works in 10Mbps RGMII mode */
1109 		else if ((phy->speed == 10) && phy_interface_is_rgmii(phy))
1110 			mac_control |= BIT(18); /* In Band mode */
1111 
1112 		if (priv->rx_pause)
1113 			mac_control |= BIT(3);
1114 
1115 		if (priv->tx_pause)
1116 			mac_control |= BIT(4);
1117 
1118 		*link = true;
1119 	} else {
1120 		mac_control = 0;
1121 		/* disable forwarding */
1122 		cpsw_ale_control_set(cpsw->ale, slave_port,
1123 				     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1124 	}
1125 
1126 	if (mac_control != slave->mac_control) {
1127 		phy_print_status(phy);
1128 		writel_relaxed(mac_control, &slave->sliver->mac_control);
1129 	}
1130 
1131 	slave->mac_control = mac_control;
1132 }
1133 
1134 static int cpsw_get_common_speed(struct cpsw_common *cpsw)
1135 {
1136 	int i, speed;
1137 
1138 	for (i = 0, speed = 0; i < cpsw->data.slaves; i++)
1139 		if (cpsw->slaves[i].phy && cpsw->slaves[i].phy->link)
1140 			speed += cpsw->slaves[i].phy->speed;
1141 
1142 	return speed;
1143 }
1144 
1145 static int cpsw_need_resplit(struct cpsw_common *cpsw)
1146 {
1147 	int i, rlim_ch_num;
1148 	int speed, ch_rate;
1149 
1150 	/* re-split resources only in case speed was changed */
1151 	speed = cpsw_get_common_speed(cpsw);
1152 	if (speed == cpsw->speed || !speed)
1153 		return 0;
1154 
1155 	cpsw->speed = speed;
1156 
1157 	for (i = 0, rlim_ch_num = 0; i < cpsw->tx_ch_num; i++) {
1158 		ch_rate = cpdma_chan_get_rate(cpsw->txv[i].ch);
1159 		if (!ch_rate)
1160 			break;
1161 
1162 		rlim_ch_num++;
1163 	}
1164 
1165 	/* cases not dependent on speed */
1166 	if (!rlim_ch_num || rlim_ch_num == cpsw->tx_ch_num)
1167 		return 0;
1168 
1169 	return 1;
1170 }
1171 
1172 static void cpsw_adjust_link(struct net_device *ndev)
1173 {
1174 	struct cpsw_priv	*priv = netdev_priv(ndev);
1175 	struct cpsw_common	*cpsw = priv->cpsw;
1176 	bool			link = false;
1177 
1178 	for_each_slave(priv, _cpsw_adjust_link, priv, &link);
1179 
1180 	if (link) {
1181 		if (cpsw_need_resplit(cpsw))
1182 			cpsw_split_res(ndev);
1183 
1184 		netif_carrier_on(ndev);
1185 		if (netif_running(ndev))
1186 			netif_tx_wake_all_queues(ndev);
1187 	} else {
1188 		netif_carrier_off(ndev);
1189 		netif_tx_stop_all_queues(ndev);
1190 	}
1191 }
1192 
1193 static int cpsw_get_coalesce(struct net_device *ndev,
1194 				struct ethtool_coalesce *coal)
1195 {
1196 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1197 
1198 	coal->rx_coalesce_usecs = cpsw->coal_intvl;
1199 	return 0;
1200 }
1201 
1202 static int cpsw_set_coalesce(struct net_device *ndev,
1203 				struct ethtool_coalesce *coal)
1204 {
1205 	struct cpsw_priv *priv = netdev_priv(ndev);
1206 	u32 int_ctrl;
1207 	u32 num_interrupts = 0;
1208 	u32 prescale = 0;
1209 	u32 addnl_dvdr = 1;
1210 	u32 coal_intvl = 0;
1211 	struct cpsw_common *cpsw = priv->cpsw;
1212 
1213 	coal_intvl = coal->rx_coalesce_usecs;
1214 
1215 	int_ctrl =  readl(&cpsw->wr_regs->int_control);
1216 	prescale = cpsw->bus_freq_mhz * 4;
1217 
1218 	if (!coal->rx_coalesce_usecs) {
1219 		int_ctrl &= ~(CPSW_INTPRESCALE_MASK | CPSW_INTPACEEN);
1220 		goto update_return;
1221 	}
1222 
1223 	if (coal_intvl < CPSW_CMINTMIN_INTVL)
1224 		coal_intvl = CPSW_CMINTMIN_INTVL;
1225 
1226 	if (coal_intvl > CPSW_CMINTMAX_INTVL) {
1227 		/* Interrupt pacer works with 4us Pulse, we can
1228 		 * throttle further by dilating the 4us pulse.
1229 		 */
1230 		addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale;
1231 
1232 		if (addnl_dvdr > 1) {
1233 			prescale *= addnl_dvdr;
1234 			if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr))
1235 				coal_intvl = (CPSW_CMINTMAX_INTVL
1236 						* addnl_dvdr);
1237 		} else {
1238 			addnl_dvdr = 1;
1239 			coal_intvl = CPSW_CMINTMAX_INTVL;
1240 		}
1241 	}
1242 
1243 	num_interrupts = (1000 * addnl_dvdr) / coal_intvl;
1244 	writel(num_interrupts, &cpsw->wr_regs->rx_imax);
1245 	writel(num_interrupts, &cpsw->wr_regs->tx_imax);
1246 
1247 	int_ctrl |= CPSW_INTPACEEN;
1248 	int_ctrl &= (~CPSW_INTPRESCALE_MASK);
1249 	int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK);
1250 
1251 update_return:
1252 	writel(int_ctrl, &cpsw->wr_regs->int_control);
1253 
1254 	cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl);
1255 	cpsw->coal_intvl = coal_intvl;
1256 
1257 	return 0;
1258 }
1259 
1260 static int cpsw_get_sset_count(struct net_device *ndev, int sset)
1261 {
1262 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1263 
1264 	switch (sset) {
1265 	case ETH_SS_STATS:
1266 		return (CPSW_STATS_COMMON_LEN +
1267 		       (cpsw->rx_ch_num + cpsw->tx_ch_num) *
1268 		       CPSW_STATS_CH_LEN);
1269 	default:
1270 		return -EOPNOTSUPP;
1271 	}
1272 }
1273 
1274 static void cpsw_add_ch_strings(u8 **p, int ch_num, int rx_dir)
1275 {
1276 	int ch_stats_len;
1277 	int line;
1278 	int i;
1279 
1280 	ch_stats_len = CPSW_STATS_CH_LEN * ch_num;
1281 	for (i = 0; i < ch_stats_len; i++) {
1282 		line = i % CPSW_STATS_CH_LEN;
1283 		snprintf(*p, ETH_GSTRING_LEN,
1284 			 "%s DMA chan %ld: %s", rx_dir ? "Rx" : "Tx",
1285 			 (long)(i / CPSW_STATS_CH_LEN),
1286 			 cpsw_gstrings_ch_stats[line].stat_string);
1287 		*p += ETH_GSTRING_LEN;
1288 	}
1289 }
1290 
1291 static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1292 {
1293 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1294 	u8 *p = data;
1295 	int i;
1296 
1297 	switch (stringset) {
1298 	case ETH_SS_STATS:
1299 		for (i = 0; i < CPSW_STATS_COMMON_LEN; i++) {
1300 			memcpy(p, cpsw_gstrings_stats[i].stat_string,
1301 			       ETH_GSTRING_LEN);
1302 			p += ETH_GSTRING_LEN;
1303 		}
1304 
1305 		cpsw_add_ch_strings(&p, cpsw->rx_ch_num, 1);
1306 		cpsw_add_ch_strings(&p, cpsw->tx_ch_num, 0);
1307 		break;
1308 	}
1309 }
1310 
1311 static void cpsw_get_ethtool_stats(struct net_device *ndev,
1312 				    struct ethtool_stats *stats, u64 *data)
1313 {
1314 	u8 *p;
1315 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1316 	struct cpdma_chan_stats ch_stats;
1317 	int i, l, ch;
1318 
1319 	/* Collect Davinci CPDMA stats for Rx and Tx Channel */
1320 	for (l = 0; l < CPSW_STATS_COMMON_LEN; l++)
1321 		data[l] = readl(cpsw->hw_stats +
1322 				cpsw_gstrings_stats[l].stat_offset);
1323 
1324 	for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1325 		cpdma_chan_get_stats(cpsw->rxv[ch].ch, &ch_stats);
1326 		for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
1327 			p = (u8 *)&ch_stats +
1328 				cpsw_gstrings_ch_stats[i].stat_offset;
1329 			data[l] = *(u32 *)p;
1330 		}
1331 	}
1332 
1333 	for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
1334 		cpdma_chan_get_stats(cpsw->txv[ch].ch, &ch_stats);
1335 		for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
1336 			p = (u8 *)&ch_stats +
1337 				cpsw_gstrings_ch_stats[i].stat_offset;
1338 			data[l] = *(u32 *)p;
1339 		}
1340 	}
1341 }
1342 
1343 static inline int cpsw_tx_packet_submit(struct cpsw_priv *priv,
1344 					struct sk_buff *skb,
1345 					struct cpdma_chan *txch)
1346 {
1347 	struct cpsw_common *cpsw = priv->cpsw;
1348 
1349 	skb_tx_timestamp(skb);
1350 	return cpdma_chan_submit(txch, skb, skb->data, skb->len,
1351 				 priv->emac_port + cpsw->data.dual_emac);
1352 }
1353 
1354 static inline void cpsw_add_dual_emac_def_ale_entries(
1355 		struct cpsw_priv *priv, struct cpsw_slave *slave,
1356 		u32 slave_port)
1357 {
1358 	struct cpsw_common *cpsw = priv->cpsw;
1359 	u32 port_mask = 1 << slave_port | ALE_PORT_HOST;
1360 
1361 	if (cpsw->version == CPSW_VERSION_1)
1362 		slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN);
1363 	else
1364 		slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN);
1365 	cpsw_ale_add_vlan(cpsw->ale, slave->port_vlan, port_mask,
1366 			  port_mask, port_mask, 0);
1367 	cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1368 			   port_mask, ALE_VLAN, slave->port_vlan, 0);
1369 	cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
1370 			   HOST_PORT_NUM, ALE_VLAN |
1371 			   ALE_SECURE, slave->port_vlan);
1372 	cpsw_ale_control_set(cpsw->ale, slave_port,
1373 			     ALE_PORT_DROP_UNKNOWN_VLAN, 1);
1374 }
1375 
1376 static void soft_reset_slave(struct cpsw_slave *slave)
1377 {
1378 	char name[32];
1379 
1380 	snprintf(name, sizeof(name), "slave-%d", slave->slave_num);
1381 	soft_reset(name, &slave->sliver->soft_reset);
1382 }
1383 
1384 static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv)
1385 {
1386 	u32 slave_port;
1387 	struct phy_device *phy;
1388 	struct cpsw_common *cpsw = priv->cpsw;
1389 
1390 	soft_reset_slave(slave);
1391 
1392 	/* setup priority mapping */
1393 	writel_relaxed(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map);
1394 
1395 	switch (cpsw->version) {
1396 	case CPSW_VERSION_1:
1397 		slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP);
1398 		/* Increase RX FIFO size to 5 for supporting fullduplex
1399 		 * flow control mode
1400 		 */
1401 		slave_write(slave,
1402 			    (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
1403 			    CPSW_MAX_BLKS_RX, CPSW1_MAX_BLKS);
1404 		break;
1405 	case CPSW_VERSION_2:
1406 	case CPSW_VERSION_3:
1407 	case CPSW_VERSION_4:
1408 		slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP);
1409 		/* Increase RX FIFO size to 5 for supporting fullduplex
1410 		 * flow control mode
1411 		 */
1412 		slave_write(slave,
1413 			    (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
1414 			    CPSW_MAX_BLKS_RX, CPSW2_MAX_BLKS);
1415 		break;
1416 	}
1417 
1418 	/* setup max packet size, and mac address */
1419 	writel_relaxed(cpsw->rx_packet_max, &slave->sliver->rx_maxlen);
1420 	cpsw_set_slave_mac(slave, priv);
1421 
1422 	slave->mac_control = 0;	/* no link yet */
1423 
1424 	slave_port = cpsw_get_slave_port(slave->slave_num);
1425 
1426 	if (cpsw->data.dual_emac)
1427 		cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port);
1428 	else
1429 		cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1430 				   1 << slave_port, 0, 0, ALE_MCAST_FWD_2);
1431 
1432 	if (slave->data->phy_node) {
1433 		phy = of_phy_connect(priv->ndev, slave->data->phy_node,
1434 				 &cpsw_adjust_link, 0, slave->data->phy_if);
1435 		if (!phy) {
1436 			dev_err(priv->dev, "phy \"%pOF\" not found on slave %d\n",
1437 				slave->data->phy_node,
1438 				slave->slave_num);
1439 			return;
1440 		}
1441 	} else {
1442 		phy = phy_connect(priv->ndev, slave->data->phy_id,
1443 				 &cpsw_adjust_link, slave->data->phy_if);
1444 		if (IS_ERR(phy)) {
1445 			dev_err(priv->dev,
1446 				"phy \"%s\" not found on slave %d, err %ld\n",
1447 				slave->data->phy_id, slave->slave_num,
1448 				PTR_ERR(phy));
1449 			return;
1450 		}
1451 	}
1452 
1453 	slave->phy = phy;
1454 
1455 	phy_attached_info(slave->phy);
1456 
1457 	phy_start(slave->phy);
1458 
1459 	/* Configure GMII_SEL register */
1460 	cpsw_phy_sel(cpsw->dev, slave->phy->interface, slave->slave_num);
1461 }
1462 
1463 static inline void cpsw_add_default_vlan(struct cpsw_priv *priv)
1464 {
1465 	struct cpsw_common *cpsw = priv->cpsw;
1466 	const int vlan = cpsw->data.default_vlan;
1467 	u32 reg;
1468 	int i;
1469 	int unreg_mcast_mask;
1470 
1471 	reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN :
1472 	       CPSW2_PORT_VLAN;
1473 
1474 	writel(vlan, &cpsw->host_port_regs->port_vlan);
1475 
1476 	for (i = 0; i < cpsw->data.slaves; i++)
1477 		slave_write(cpsw->slaves + i, vlan, reg);
1478 
1479 	if (priv->ndev->flags & IFF_ALLMULTI)
1480 		unreg_mcast_mask = ALE_ALL_PORTS;
1481 	else
1482 		unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
1483 
1484 	cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS,
1485 			  ALE_ALL_PORTS, ALE_ALL_PORTS,
1486 			  unreg_mcast_mask);
1487 }
1488 
1489 static void cpsw_init_host_port(struct cpsw_priv *priv)
1490 {
1491 	u32 fifo_mode;
1492 	u32 control_reg;
1493 	struct cpsw_common *cpsw = priv->cpsw;
1494 
1495 	/* soft reset the controller and initialize ale */
1496 	soft_reset("cpsw", &cpsw->regs->soft_reset);
1497 	cpsw_ale_start(cpsw->ale);
1498 
1499 	/* switch to vlan unaware mode */
1500 	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_VLAN_AWARE,
1501 			     CPSW_ALE_VLAN_AWARE);
1502 	control_reg = readl(&cpsw->regs->control);
1503 	control_reg |= CPSW_VLAN_AWARE | CPSW_RX_VLAN_ENCAP;
1504 	writel(control_reg, &cpsw->regs->control);
1505 	fifo_mode = (cpsw->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE :
1506 		     CPSW_FIFO_NORMAL_MODE;
1507 	writel(fifo_mode, &cpsw->host_port_regs->tx_in_ctl);
1508 
1509 	/* setup host port priority mapping */
1510 	writel_relaxed(CPDMA_TX_PRIORITY_MAP,
1511 		       &cpsw->host_port_regs->cpdma_tx_pri_map);
1512 	writel_relaxed(0, &cpsw->host_port_regs->cpdma_rx_chan_map);
1513 
1514 	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM,
1515 			     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
1516 
1517 	if (!cpsw->data.dual_emac) {
1518 		cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1519 				   0, 0);
1520 		cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1521 				   ALE_PORT_HOST, 0, 0, ALE_MCAST_FWD_2);
1522 	}
1523 }
1524 
1525 static int cpsw_fill_rx_channels(struct cpsw_priv *priv)
1526 {
1527 	struct cpsw_common *cpsw = priv->cpsw;
1528 	struct sk_buff *skb;
1529 	int ch_buf_num;
1530 	int ch, i, ret;
1531 
1532 	for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1533 		ch_buf_num = cpdma_chan_get_rx_buf_num(cpsw->rxv[ch].ch);
1534 		for (i = 0; i < ch_buf_num; i++) {
1535 			skb = __netdev_alloc_skb_ip_align(priv->ndev,
1536 							  cpsw->rx_packet_max,
1537 							  GFP_KERNEL);
1538 			if (!skb) {
1539 				cpsw_err(priv, ifup, "cannot allocate skb\n");
1540 				return -ENOMEM;
1541 			}
1542 
1543 			skb_set_queue_mapping(skb, ch);
1544 			ret = cpdma_chan_submit(cpsw->rxv[ch].ch, skb,
1545 						skb->data, skb_tailroom(skb),
1546 						0);
1547 			if (ret < 0) {
1548 				cpsw_err(priv, ifup,
1549 					 "cannot submit skb to channel %d rx, error %d\n",
1550 					 ch, ret);
1551 				kfree_skb(skb);
1552 				return ret;
1553 			}
1554 			kmemleak_not_leak(skb);
1555 		}
1556 
1557 		cpsw_info(priv, ifup, "ch %d rx, submitted %d descriptors\n",
1558 			  ch, ch_buf_num);
1559 	}
1560 
1561 	return 0;
1562 }
1563 
1564 static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_common *cpsw)
1565 {
1566 	u32 slave_port;
1567 
1568 	slave_port = cpsw_get_slave_port(slave->slave_num);
1569 
1570 	if (!slave->phy)
1571 		return;
1572 	phy_stop(slave->phy);
1573 	phy_disconnect(slave->phy);
1574 	slave->phy = NULL;
1575 	cpsw_ale_control_set(cpsw->ale, slave_port,
1576 			     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1577 	soft_reset_slave(slave);
1578 }
1579 
1580 static int cpsw_ndo_open(struct net_device *ndev)
1581 {
1582 	struct cpsw_priv *priv = netdev_priv(ndev);
1583 	struct cpsw_common *cpsw = priv->cpsw;
1584 	int ret;
1585 	u32 reg;
1586 
1587 	ret = pm_runtime_get_sync(cpsw->dev);
1588 	if (ret < 0) {
1589 		pm_runtime_put_noidle(cpsw->dev);
1590 		return ret;
1591 	}
1592 
1593 	netif_carrier_off(ndev);
1594 
1595 	/* Notify the stack of the actual queue counts. */
1596 	ret = netif_set_real_num_tx_queues(ndev, cpsw->tx_ch_num);
1597 	if (ret) {
1598 		dev_err(priv->dev, "cannot set real number of tx queues\n");
1599 		goto err_cleanup;
1600 	}
1601 
1602 	ret = netif_set_real_num_rx_queues(ndev, cpsw->rx_ch_num);
1603 	if (ret) {
1604 		dev_err(priv->dev, "cannot set real number of rx queues\n");
1605 		goto err_cleanup;
1606 	}
1607 
1608 	reg = cpsw->version;
1609 
1610 	dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n",
1611 		 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg),
1612 		 CPSW_RTL_VERSION(reg));
1613 
1614 	/* Initialize host and slave ports */
1615 	if (!cpsw->usage_count)
1616 		cpsw_init_host_port(priv);
1617 	for_each_slave(priv, cpsw_slave_open, priv);
1618 
1619 	/* Add default VLAN */
1620 	if (!cpsw->data.dual_emac)
1621 		cpsw_add_default_vlan(priv);
1622 	else
1623 		cpsw_ale_add_vlan(cpsw->ale, cpsw->data.default_vlan,
1624 				  ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0);
1625 
1626 	/* initialize shared resources for every ndev */
1627 	if (!cpsw->usage_count) {
1628 		/* disable priority elevation */
1629 		writel_relaxed(0, &cpsw->regs->ptype);
1630 
1631 		/* enable statistics collection only on all ports */
1632 		writel_relaxed(0x7, &cpsw->regs->stat_port_en);
1633 
1634 		/* Enable internal fifo flow control */
1635 		writel(0x7, &cpsw->regs->flow_control);
1636 
1637 		napi_enable(&cpsw->napi_rx);
1638 		napi_enable(&cpsw->napi_tx);
1639 
1640 		if (cpsw->tx_irq_disabled) {
1641 			cpsw->tx_irq_disabled = false;
1642 			enable_irq(cpsw->irqs_table[1]);
1643 		}
1644 
1645 		if (cpsw->rx_irq_disabled) {
1646 			cpsw->rx_irq_disabled = false;
1647 			enable_irq(cpsw->irqs_table[0]);
1648 		}
1649 
1650 		ret = cpsw_fill_rx_channels(priv);
1651 		if (ret < 0)
1652 			goto err_cleanup;
1653 
1654 		if (cpts_register(cpsw->cpts))
1655 			dev_err(priv->dev, "error registering cpts device\n");
1656 
1657 	}
1658 
1659 	/* Enable Interrupt pacing if configured */
1660 	if (cpsw->coal_intvl != 0) {
1661 		struct ethtool_coalesce coal;
1662 
1663 		coal.rx_coalesce_usecs = cpsw->coal_intvl;
1664 		cpsw_set_coalesce(ndev, &coal);
1665 	}
1666 
1667 	cpdma_ctlr_start(cpsw->dma);
1668 	cpsw_intr_enable(cpsw);
1669 	cpsw->usage_count++;
1670 
1671 	return 0;
1672 
1673 err_cleanup:
1674 	cpdma_ctlr_stop(cpsw->dma);
1675 	for_each_slave(priv, cpsw_slave_stop, cpsw);
1676 	pm_runtime_put_sync(cpsw->dev);
1677 	netif_carrier_off(priv->ndev);
1678 	return ret;
1679 }
1680 
1681 static int cpsw_ndo_stop(struct net_device *ndev)
1682 {
1683 	struct cpsw_priv *priv = netdev_priv(ndev);
1684 	struct cpsw_common *cpsw = priv->cpsw;
1685 
1686 	cpsw_info(priv, ifdown, "shutting down cpsw device\n");
1687 	netif_tx_stop_all_queues(priv->ndev);
1688 	netif_carrier_off(priv->ndev);
1689 
1690 	if (cpsw->usage_count <= 1) {
1691 		napi_disable(&cpsw->napi_rx);
1692 		napi_disable(&cpsw->napi_tx);
1693 		cpts_unregister(cpsw->cpts);
1694 		cpsw_intr_disable(cpsw);
1695 		cpdma_ctlr_stop(cpsw->dma);
1696 		cpsw_ale_stop(cpsw->ale);
1697 	}
1698 	for_each_slave(priv, cpsw_slave_stop, cpsw);
1699 
1700 	if (cpsw_need_resplit(cpsw))
1701 		cpsw_split_res(ndev);
1702 
1703 	cpsw->usage_count--;
1704 	pm_runtime_put_sync(cpsw->dev);
1705 	return 0;
1706 }
1707 
1708 static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb,
1709 				       struct net_device *ndev)
1710 {
1711 	struct cpsw_priv *priv = netdev_priv(ndev);
1712 	struct cpsw_common *cpsw = priv->cpsw;
1713 	struct cpts *cpts = cpsw->cpts;
1714 	struct netdev_queue *txq;
1715 	struct cpdma_chan *txch;
1716 	int ret, q_idx;
1717 
1718 	if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) {
1719 		cpsw_err(priv, tx_err, "packet pad failed\n");
1720 		ndev->stats.tx_dropped++;
1721 		return NET_XMIT_DROP;
1722 	}
1723 
1724 	if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
1725 	    cpts_is_tx_enabled(cpts) && cpts_can_timestamp(cpts, skb))
1726 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1727 
1728 	q_idx = skb_get_queue_mapping(skb);
1729 	if (q_idx >= cpsw->tx_ch_num)
1730 		q_idx = q_idx % cpsw->tx_ch_num;
1731 
1732 	txch = cpsw->txv[q_idx].ch;
1733 	txq = netdev_get_tx_queue(ndev, q_idx);
1734 	ret = cpsw_tx_packet_submit(priv, skb, txch);
1735 	if (unlikely(ret != 0)) {
1736 		cpsw_err(priv, tx_err, "desc submit failed\n");
1737 		goto fail;
1738 	}
1739 
1740 	/* If there is no more tx desc left free then we need to
1741 	 * tell the kernel to stop sending us tx frames.
1742 	 */
1743 	if (unlikely(!cpdma_check_free_tx_desc(txch))) {
1744 		netif_tx_stop_queue(txq);
1745 
1746 		/* Barrier, so that stop_queue visible to other cpus */
1747 		smp_mb__after_atomic();
1748 
1749 		if (cpdma_check_free_tx_desc(txch))
1750 			netif_tx_wake_queue(txq);
1751 	}
1752 
1753 	return NETDEV_TX_OK;
1754 fail:
1755 	ndev->stats.tx_dropped++;
1756 	netif_tx_stop_queue(txq);
1757 
1758 	/* Barrier, so that stop_queue visible to other cpus */
1759 	smp_mb__after_atomic();
1760 
1761 	if (cpdma_check_free_tx_desc(txch))
1762 		netif_tx_wake_queue(txq);
1763 
1764 	return NETDEV_TX_BUSY;
1765 }
1766 
1767 #if IS_ENABLED(CONFIG_TI_CPTS)
1768 
1769 static void cpsw_hwtstamp_v1(struct cpsw_common *cpsw)
1770 {
1771 	struct cpsw_slave *slave = &cpsw->slaves[cpsw->data.active_slave];
1772 	u32 ts_en, seq_id;
1773 
1774 	if (!cpts_is_tx_enabled(cpsw->cpts) &&
1775 	    !cpts_is_rx_enabled(cpsw->cpts)) {
1776 		slave_write(slave, 0, CPSW1_TS_CTL);
1777 		return;
1778 	}
1779 
1780 	seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588;
1781 	ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS;
1782 
1783 	if (cpts_is_tx_enabled(cpsw->cpts))
1784 		ts_en |= CPSW_V1_TS_TX_EN;
1785 
1786 	if (cpts_is_rx_enabled(cpsw->cpts))
1787 		ts_en |= CPSW_V1_TS_RX_EN;
1788 
1789 	slave_write(slave, ts_en, CPSW1_TS_CTL);
1790 	slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE);
1791 }
1792 
1793 static void cpsw_hwtstamp_v2(struct cpsw_priv *priv)
1794 {
1795 	struct cpsw_slave *slave;
1796 	struct cpsw_common *cpsw = priv->cpsw;
1797 	u32 ctrl, mtype;
1798 
1799 	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
1800 
1801 	ctrl = slave_read(slave, CPSW2_CONTROL);
1802 	switch (cpsw->version) {
1803 	case CPSW_VERSION_2:
1804 		ctrl &= ~CTRL_V2_ALL_TS_MASK;
1805 
1806 		if (cpts_is_tx_enabled(cpsw->cpts))
1807 			ctrl |= CTRL_V2_TX_TS_BITS;
1808 
1809 		if (cpts_is_rx_enabled(cpsw->cpts))
1810 			ctrl |= CTRL_V2_RX_TS_BITS;
1811 		break;
1812 	case CPSW_VERSION_3:
1813 	default:
1814 		ctrl &= ~CTRL_V3_ALL_TS_MASK;
1815 
1816 		if (cpts_is_tx_enabled(cpsw->cpts))
1817 			ctrl |= CTRL_V3_TX_TS_BITS;
1818 
1819 		if (cpts_is_rx_enabled(cpsw->cpts))
1820 			ctrl |= CTRL_V3_RX_TS_BITS;
1821 		break;
1822 	}
1823 
1824 	mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS;
1825 
1826 	slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE);
1827 	slave_write(slave, ctrl, CPSW2_CONTROL);
1828 	writel_relaxed(ETH_P_1588, &cpsw->regs->ts_ltype);
1829 }
1830 
1831 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
1832 {
1833 	struct cpsw_priv *priv = netdev_priv(dev);
1834 	struct hwtstamp_config cfg;
1835 	struct cpsw_common *cpsw = priv->cpsw;
1836 	struct cpts *cpts = cpsw->cpts;
1837 
1838 	if (cpsw->version != CPSW_VERSION_1 &&
1839 	    cpsw->version != CPSW_VERSION_2 &&
1840 	    cpsw->version != CPSW_VERSION_3)
1841 		return -EOPNOTSUPP;
1842 
1843 	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1844 		return -EFAULT;
1845 
1846 	/* reserved for future extensions */
1847 	if (cfg.flags)
1848 		return -EINVAL;
1849 
1850 	if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON)
1851 		return -ERANGE;
1852 
1853 	switch (cfg.rx_filter) {
1854 	case HWTSTAMP_FILTER_NONE:
1855 		cpts_rx_enable(cpts, 0);
1856 		break;
1857 	case HWTSTAMP_FILTER_ALL:
1858 	case HWTSTAMP_FILTER_NTP_ALL:
1859 		return -ERANGE;
1860 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1861 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1862 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1863 		cpts_rx_enable(cpts, HWTSTAMP_FILTER_PTP_V1_L4_EVENT);
1864 		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
1865 		break;
1866 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1867 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1868 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1869 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1870 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1871 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1872 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1873 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1874 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1875 		cpts_rx_enable(cpts, HWTSTAMP_FILTER_PTP_V2_EVENT);
1876 		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1877 		break;
1878 	default:
1879 		return -ERANGE;
1880 	}
1881 
1882 	cpts_tx_enable(cpts, cfg.tx_type == HWTSTAMP_TX_ON);
1883 
1884 	switch (cpsw->version) {
1885 	case CPSW_VERSION_1:
1886 		cpsw_hwtstamp_v1(cpsw);
1887 		break;
1888 	case CPSW_VERSION_2:
1889 	case CPSW_VERSION_3:
1890 		cpsw_hwtstamp_v2(priv);
1891 		break;
1892 	default:
1893 		WARN_ON(1);
1894 	}
1895 
1896 	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1897 }
1898 
1899 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
1900 {
1901 	struct cpsw_common *cpsw = ndev_to_cpsw(dev);
1902 	struct cpts *cpts = cpsw->cpts;
1903 	struct hwtstamp_config cfg;
1904 
1905 	if (cpsw->version != CPSW_VERSION_1 &&
1906 	    cpsw->version != CPSW_VERSION_2 &&
1907 	    cpsw->version != CPSW_VERSION_3)
1908 		return -EOPNOTSUPP;
1909 
1910 	cfg.flags = 0;
1911 	cfg.tx_type = cpts_is_tx_enabled(cpts) ?
1912 		      HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
1913 	cfg.rx_filter = (cpts_is_rx_enabled(cpts) ?
1914 			 cpts->rx_enable : HWTSTAMP_FILTER_NONE);
1915 
1916 	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1917 }
1918 #else
1919 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
1920 {
1921 	return -EOPNOTSUPP;
1922 }
1923 
1924 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
1925 {
1926 	return -EOPNOTSUPP;
1927 }
1928 #endif /*CONFIG_TI_CPTS*/
1929 
1930 static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
1931 {
1932 	struct cpsw_priv *priv = netdev_priv(dev);
1933 	struct cpsw_common *cpsw = priv->cpsw;
1934 	int slave_no = cpsw_slave_index(cpsw, priv);
1935 
1936 	if (!netif_running(dev))
1937 		return -EINVAL;
1938 
1939 	switch (cmd) {
1940 	case SIOCSHWTSTAMP:
1941 		return cpsw_hwtstamp_set(dev, req);
1942 	case SIOCGHWTSTAMP:
1943 		return cpsw_hwtstamp_get(dev, req);
1944 	}
1945 
1946 	if (!cpsw->slaves[slave_no].phy)
1947 		return -EOPNOTSUPP;
1948 	return phy_mii_ioctl(cpsw->slaves[slave_no].phy, req, cmd);
1949 }
1950 
1951 static void cpsw_ndo_tx_timeout(struct net_device *ndev)
1952 {
1953 	struct cpsw_priv *priv = netdev_priv(ndev);
1954 	struct cpsw_common *cpsw = priv->cpsw;
1955 	int ch;
1956 
1957 	cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n");
1958 	ndev->stats.tx_errors++;
1959 	cpsw_intr_disable(cpsw);
1960 	for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
1961 		cpdma_chan_stop(cpsw->txv[ch].ch);
1962 		cpdma_chan_start(cpsw->txv[ch].ch);
1963 	}
1964 
1965 	cpsw_intr_enable(cpsw);
1966 	netif_trans_update(ndev);
1967 	netif_tx_wake_all_queues(ndev);
1968 }
1969 
1970 static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p)
1971 {
1972 	struct cpsw_priv *priv = netdev_priv(ndev);
1973 	struct sockaddr *addr = (struct sockaddr *)p;
1974 	struct cpsw_common *cpsw = priv->cpsw;
1975 	int flags = 0;
1976 	u16 vid = 0;
1977 	int ret;
1978 
1979 	if (!is_valid_ether_addr(addr->sa_data))
1980 		return -EADDRNOTAVAIL;
1981 
1982 	ret = pm_runtime_get_sync(cpsw->dev);
1983 	if (ret < 0) {
1984 		pm_runtime_put_noidle(cpsw->dev);
1985 		return ret;
1986 	}
1987 
1988 	if (cpsw->data.dual_emac) {
1989 		vid = cpsw->slaves[priv->emac_port].port_vlan;
1990 		flags = ALE_VLAN;
1991 	}
1992 
1993 	cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1994 			   flags, vid);
1995 	cpsw_ale_add_ucast(cpsw->ale, addr->sa_data, HOST_PORT_NUM,
1996 			   flags, vid);
1997 
1998 	memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
1999 	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
2000 	for_each_slave(priv, cpsw_set_slave_mac, priv);
2001 
2002 	pm_runtime_put(cpsw->dev);
2003 
2004 	return 0;
2005 }
2006 
2007 #ifdef CONFIG_NET_POLL_CONTROLLER
2008 static void cpsw_ndo_poll_controller(struct net_device *ndev)
2009 {
2010 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2011 
2012 	cpsw_intr_disable(cpsw);
2013 	cpsw_rx_interrupt(cpsw->irqs_table[0], cpsw);
2014 	cpsw_tx_interrupt(cpsw->irqs_table[1], cpsw);
2015 	cpsw_intr_enable(cpsw);
2016 }
2017 #endif
2018 
2019 static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv,
2020 				unsigned short vid)
2021 {
2022 	int ret;
2023 	int unreg_mcast_mask = 0;
2024 	u32 port_mask;
2025 	struct cpsw_common *cpsw = priv->cpsw;
2026 
2027 	if (cpsw->data.dual_emac) {
2028 		port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST;
2029 
2030 		if (priv->ndev->flags & IFF_ALLMULTI)
2031 			unreg_mcast_mask = port_mask;
2032 	} else {
2033 		port_mask = ALE_ALL_PORTS;
2034 
2035 		if (priv->ndev->flags & IFF_ALLMULTI)
2036 			unreg_mcast_mask = ALE_ALL_PORTS;
2037 		else
2038 			unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
2039 	}
2040 
2041 	ret = cpsw_ale_add_vlan(cpsw->ale, vid, port_mask, 0, port_mask,
2042 				unreg_mcast_mask);
2043 	if (ret != 0)
2044 		return ret;
2045 
2046 	ret = cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
2047 				 HOST_PORT_NUM, ALE_VLAN, vid);
2048 	if (ret != 0)
2049 		goto clean_vid;
2050 
2051 	ret = cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
2052 				 port_mask, ALE_VLAN, vid, 0);
2053 	if (ret != 0)
2054 		goto clean_vlan_ucast;
2055 	return 0;
2056 
2057 clean_vlan_ucast:
2058 	cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
2059 			   HOST_PORT_NUM, ALE_VLAN, vid);
2060 clean_vid:
2061 	cpsw_ale_del_vlan(cpsw->ale, vid, 0);
2062 	return ret;
2063 }
2064 
2065 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
2066 				    __be16 proto, u16 vid)
2067 {
2068 	struct cpsw_priv *priv = netdev_priv(ndev);
2069 	struct cpsw_common *cpsw = priv->cpsw;
2070 	int ret;
2071 
2072 	if (vid == cpsw->data.default_vlan)
2073 		return 0;
2074 
2075 	ret = pm_runtime_get_sync(cpsw->dev);
2076 	if (ret < 0) {
2077 		pm_runtime_put_noidle(cpsw->dev);
2078 		return ret;
2079 	}
2080 
2081 	if (cpsw->data.dual_emac) {
2082 		/* In dual EMAC, reserved VLAN id should not be used for
2083 		 * creating VLAN interfaces as this can break the dual
2084 		 * EMAC port separation
2085 		 */
2086 		int i;
2087 
2088 		for (i = 0; i < cpsw->data.slaves; i++) {
2089 			if (vid == cpsw->slaves[i].port_vlan)
2090 				return -EINVAL;
2091 		}
2092 	}
2093 
2094 	dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid);
2095 	ret = cpsw_add_vlan_ale_entry(priv, vid);
2096 
2097 	pm_runtime_put(cpsw->dev);
2098 	return ret;
2099 }
2100 
2101 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev,
2102 				     __be16 proto, u16 vid)
2103 {
2104 	struct cpsw_priv *priv = netdev_priv(ndev);
2105 	struct cpsw_common *cpsw = priv->cpsw;
2106 	int ret;
2107 
2108 	if (vid == cpsw->data.default_vlan)
2109 		return 0;
2110 
2111 	ret = pm_runtime_get_sync(cpsw->dev);
2112 	if (ret < 0) {
2113 		pm_runtime_put_noidle(cpsw->dev);
2114 		return ret;
2115 	}
2116 
2117 	if (cpsw->data.dual_emac) {
2118 		int i;
2119 
2120 		for (i = 0; i < cpsw->data.slaves; i++) {
2121 			if (vid == cpsw->slaves[i].port_vlan)
2122 				return -EINVAL;
2123 		}
2124 	}
2125 
2126 	dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid);
2127 	ret = cpsw_ale_del_vlan(cpsw->ale, vid, 0);
2128 	if (ret != 0)
2129 		return ret;
2130 
2131 	ret = cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
2132 				 HOST_PORT_NUM, ALE_VLAN, vid);
2133 	if (ret != 0)
2134 		return ret;
2135 
2136 	ret = cpsw_ale_del_mcast(cpsw->ale, priv->ndev->broadcast,
2137 				 0, ALE_VLAN, vid);
2138 	pm_runtime_put(cpsw->dev);
2139 	return ret;
2140 }
2141 
2142 static int cpsw_ndo_set_tx_maxrate(struct net_device *ndev, int queue, u32 rate)
2143 {
2144 	struct cpsw_priv *priv = netdev_priv(ndev);
2145 	struct cpsw_common *cpsw = priv->cpsw;
2146 	struct cpsw_slave *slave;
2147 	u32 min_rate;
2148 	u32 ch_rate;
2149 	int i, ret;
2150 
2151 	ch_rate = netdev_get_tx_queue(ndev, queue)->tx_maxrate;
2152 	if (ch_rate == rate)
2153 		return 0;
2154 
2155 	ch_rate = rate * 1000;
2156 	min_rate = cpdma_chan_get_min_rate(cpsw->dma);
2157 	if ((ch_rate < min_rate && ch_rate)) {
2158 		dev_err(priv->dev, "The channel rate cannot be less than %dMbps",
2159 			min_rate);
2160 		return -EINVAL;
2161 	}
2162 
2163 	if (rate > cpsw->speed) {
2164 		dev_err(priv->dev, "The channel rate cannot be more than 2Gbps");
2165 		return -EINVAL;
2166 	}
2167 
2168 	ret = pm_runtime_get_sync(cpsw->dev);
2169 	if (ret < 0) {
2170 		pm_runtime_put_noidle(cpsw->dev);
2171 		return ret;
2172 	}
2173 
2174 	ret = cpdma_chan_set_rate(cpsw->txv[queue].ch, ch_rate);
2175 	pm_runtime_put(cpsw->dev);
2176 
2177 	if (ret)
2178 		return ret;
2179 
2180 	/* update rates for slaves tx queues */
2181 	for (i = 0; i < cpsw->data.slaves; i++) {
2182 		slave = &cpsw->slaves[i];
2183 		if (!slave->ndev)
2184 			continue;
2185 
2186 		netdev_get_tx_queue(slave->ndev, queue)->tx_maxrate = rate;
2187 	}
2188 
2189 	cpsw_split_res(ndev);
2190 	return ret;
2191 }
2192 
2193 static const struct net_device_ops cpsw_netdev_ops = {
2194 	.ndo_open		= cpsw_ndo_open,
2195 	.ndo_stop		= cpsw_ndo_stop,
2196 	.ndo_start_xmit		= cpsw_ndo_start_xmit,
2197 	.ndo_set_mac_address	= cpsw_ndo_set_mac_address,
2198 	.ndo_do_ioctl		= cpsw_ndo_ioctl,
2199 	.ndo_validate_addr	= eth_validate_addr,
2200 	.ndo_tx_timeout		= cpsw_ndo_tx_timeout,
2201 	.ndo_set_rx_mode	= cpsw_ndo_set_rx_mode,
2202 	.ndo_set_tx_maxrate	= cpsw_ndo_set_tx_maxrate,
2203 #ifdef CONFIG_NET_POLL_CONTROLLER
2204 	.ndo_poll_controller	= cpsw_ndo_poll_controller,
2205 #endif
2206 	.ndo_vlan_rx_add_vid	= cpsw_ndo_vlan_rx_add_vid,
2207 	.ndo_vlan_rx_kill_vid	= cpsw_ndo_vlan_rx_kill_vid,
2208 };
2209 
2210 static int cpsw_get_regs_len(struct net_device *ndev)
2211 {
2212 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2213 
2214 	return cpsw->data.ale_entries * ALE_ENTRY_WORDS * sizeof(u32);
2215 }
2216 
2217 static void cpsw_get_regs(struct net_device *ndev,
2218 			  struct ethtool_regs *regs, void *p)
2219 {
2220 	u32 *reg = p;
2221 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2222 
2223 	/* update CPSW IP version */
2224 	regs->version = cpsw->version;
2225 
2226 	cpsw_ale_dump(cpsw->ale, reg);
2227 }
2228 
2229 static void cpsw_get_drvinfo(struct net_device *ndev,
2230 			     struct ethtool_drvinfo *info)
2231 {
2232 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2233 	struct platform_device	*pdev = to_platform_device(cpsw->dev);
2234 
2235 	strlcpy(info->driver, "cpsw", sizeof(info->driver));
2236 	strlcpy(info->version, "1.0", sizeof(info->version));
2237 	strlcpy(info->bus_info, pdev->name, sizeof(info->bus_info));
2238 }
2239 
2240 static u32 cpsw_get_msglevel(struct net_device *ndev)
2241 {
2242 	struct cpsw_priv *priv = netdev_priv(ndev);
2243 	return priv->msg_enable;
2244 }
2245 
2246 static void cpsw_set_msglevel(struct net_device *ndev, u32 value)
2247 {
2248 	struct cpsw_priv *priv = netdev_priv(ndev);
2249 	priv->msg_enable = value;
2250 }
2251 
2252 #if IS_ENABLED(CONFIG_TI_CPTS)
2253 static int cpsw_get_ts_info(struct net_device *ndev,
2254 			    struct ethtool_ts_info *info)
2255 {
2256 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2257 
2258 	info->so_timestamping =
2259 		SOF_TIMESTAMPING_TX_HARDWARE |
2260 		SOF_TIMESTAMPING_TX_SOFTWARE |
2261 		SOF_TIMESTAMPING_RX_HARDWARE |
2262 		SOF_TIMESTAMPING_RX_SOFTWARE |
2263 		SOF_TIMESTAMPING_SOFTWARE |
2264 		SOF_TIMESTAMPING_RAW_HARDWARE;
2265 	info->phc_index = cpsw->cpts->phc_index;
2266 	info->tx_types =
2267 		(1 << HWTSTAMP_TX_OFF) |
2268 		(1 << HWTSTAMP_TX_ON);
2269 	info->rx_filters =
2270 		(1 << HWTSTAMP_FILTER_NONE) |
2271 		(1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
2272 		(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2273 	return 0;
2274 }
2275 #else
2276 static int cpsw_get_ts_info(struct net_device *ndev,
2277 			    struct ethtool_ts_info *info)
2278 {
2279 	info->so_timestamping =
2280 		SOF_TIMESTAMPING_TX_SOFTWARE |
2281 		SOF_TIMESTAMPING_RX_SOFTWARE |
2282 		SOF_TIMESTAMPING_SOFTWARE;
2283 	info->phc_index = -1;
2284 	info->tx_types = 0;
2285 	info->rx_filters = 0;
2286 	return 0;
2287 }
2288 #endif
2289 
2290 static int cpsw_get_link_ksettings(struct net_device *ndev,
2291 				   struct ethtool_link_ksettings *ecmd)
2292 {
2293 	struct cpsw_priv *priv = netdev_priv(ndev);
2294 	struct cpsw_common *cpsw = priv->cpsw;
2295 	int slave_no = cpsw_slave_index(cpsw, priv);
2296 
2297 	if (!cpsw->slaves[slave_no].phy)
2298 		return -EOPNOTSUPP;
2299 
2300 	phy_ethtool_ksettings_get(cpsw->slaves[slave_no].phy, ecmd);
2301 	return 0;
2302 }
2303 
2304 static int cpsw_set_link_ksettings(struct net_device *ndev,
2305 				   const struct ethtool_link_ksettings *ecmd)
2306 {
2307 	struct cpsw_priv *priv = netdev_priv(ndev);
2308 	struct cpsw_common *cpsw = priv->cpsw;
2309 	int slave_no = cpsw_slave_index(cpsw, priv);
2310 
2311 	if (cpsw->slaves[slave_no].phy)
2312 		return phy_ethtool_ksettings_set(cpsw->slaves[slave_no].phy,
2313 						 ecmd);
2314 	else
2315 		return -EOPNOTSUPP;
2316 }
2317 
2318 static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2319 {
2320 	struct cpsw_priv *priv = netdev_priv(ndev);
2321 	struct cpsw_common *cpsw = priv->cpsw;
2322 	int slave_no = cpsw_slave_index(cpsw, priv);
2323 
2324 	wol->supported = 0;
2325 	wol->wolopts = 0;
2326 
2327 	if (cpsw->slaves[slave_no].phy)
2328 		phy_ethtool_get_wol(cpsw->slaves[slave_no].phy, wol);
2329 }
2330 
2331 static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2332 {
2333 	struct cpsw_priv *priv = netdev_priv(ndev);
2334 	struct cpsw_common *cpsw = priv->cpsw;
2335 	int slave_no = cpsw_slave_index(cpsw, priv);
2336 
2337 	if (cpsw->slaves[slave_no].phy)
2338 		return phy_ethtool_set_wol(cpsw->slaves[slave_no].phy, wol);
2339 	else
2340 		return -EOPNOTSUPP;
2341 }
2342 
2343 static void cpsw_get_pauseparam(struct net_device *ndev,
2344 				struct ethtool_pauseparam *pause)
2345 {
2346 	struct cpsw_priv *priv = netdev_priv(ndev);
2347 
2348 	pause->autoneg = AUTONEG_DISABLE;
2349 	pause->rx_pause = priv->rx_pause ? true : false;
2350 	pause->tx_pause = priv->tx_pause ? true : false;
2351 }
2352 
2353 static int cpsw_set_pauseparam(struct net_device *ndev,
2354 			       struct ethtool_pauseparam *pause)
2355 {
2356 	struct cpsw_priv *priv = netdev_priv(ndev);
2357 	bool link;
2358 
2359 	priv->rx_pause = pause->rx_pause ? true : false;
2360 	priv->tx_pause = pause->tx_pause ? true : false;
2361 
2362 	for_each_slave(priv, _cpsw_adjust_link, priv, &link);
2363 	return 0;
2364 }
2365 
2366 static int cpsw_ethtool_op_begin(struct net_device *ndev)
2367 {
2368 	struct cpsw_priv *priv = netdev_priv(ndev);
2369 	struct cpsw_common *cpsw = priv->cpsw;
2370 	int ret;
2371 
2372 	ret = pm_runtime_get_sync(cpsw->dev);
2373 	if (ret < 0) {
2374 		cpsw_err(priv, drv, "ethtool begin failed %d\n", ret);
2375 		pm_runtime_put_noidle(cpsw->dev);
2376 	}
2377 
2378 	return ret;
2379 }
2380 
2381 static void cpsw_ethtool_op_complete(struct net_device *ndev)
2382 {
2383 	struct cpsw_priv *priv = netdev_priv(ndev);
2384 	int ret;
2385 
2386 	ret = pm_runtime_put(priv->cpsw->dev);
2387 	if (ret < 0)
2388 		cpsw_err(priv, drv, "ethtool complete failed %d\n", ret);
2389 }
2390 
2391 static void cpsw_get_channels(struct net_device *ndev,
2392 			      struct ethtool_channels *ch)
2393 {
2394 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2395 
2396 	ch->max_rx = cpsw->quirk_irq ? 1 : CPSW_MAX_QUEUES;
2397 	ch->max_tx = cpsw->quirk_irq ? 1 : CPSW_MAX_QUEUES;
2398 	ch->max_combined = 0;
2399 	ch->max_other = 0;
2400 	ch->other_count = 0;
2401 	ch->rx_count = cpsw->rx_ch_num;
2402 	ch->tx_count = cpsw->tx_ch_num;
2403 	ch->combined_count = 0;
2404 }
2405 
2406 static int cpsw_check_ch_settings(struct cpsw_common *cpsw,
2407 				  struct ethtool_channels *ch)
2408 {
2409 	if (cpsw->quirk_irq) {
2410 		dev_err(cpsw->dev, "Maximum one tx/rx queue is allowed");
2411 		return -EOPNOTSUPP;
2412 	}
2413 
2414 	if (ch->combined_count)
2415 		return -EINVAL;
2416 
2417 	/* verify we have at least one channel in each direction */
2418 	if (!ch->rx_count || !ch->tx_count)
2419 		return -EINVAL;
2420 
2421 	if (ch->rx_count > cpsw->data.channels ||
2422 	    ch->tx_count > cpsw->data.channels)
2423 		return -EINVAL;
2424 
2425 	return 0;
2426 }
2427 
2428 static int cpsw_update_channels_res(struct cpsw_priv *priv, int ch_num, int rx)
2429 {
2430 	struct cpsw_common *cpsw = priv->cpsw;
2431 	void (*handler)(void *, int, int);
2432 	struct netdev_queue *queue;
2433 	struct cpsw_vector *vec;
2434 	int ret, *ch;
2435 
2436 	if (rx) {
2437 		ch = &cpsw->rx_ch_num;
2438 		vec = cpsw->rxv;
2439 		handler = cpsw_rx_handler;
2440 	} else {
2441 		ch = &cpsw->tx_ch_num;
2442 		vec = cpsw->txv;
2443 		handler = cpsw_tx_handler;
2444 	}
2445 
2446 	while (*ch < ch_num) {
2447 		vec[*ch].ch = cpdma_chan_create(cpsw->dma, *ch, handler, rx);
2448 		queue = netdev_get_tx_queue(priv->ndev, *ch);
2449 		queue->tx_maxrate = 0;
2450 
2451 		if (IS_ERR(vec[*ch].ch))
2452 			return PTR_ERR(vec[*ch].ch);
2453 
2454 		if (!vec[*ch].ch)
2455 			return -EINVAL;
2456 
2457 		cpsw_info(priv, ifup, "created new %d %s channel\n", *ch,
2458 			  (rx ? "rx" : "tx"));
2459 		(*ch)++;
2460 	}
2461 
2462 	while (*ch > ch_num) {
2463 		(*ch)--;
2464 
2465 		ret = cpdma_chan_destroy(vec[*ch].ch);
2466 		if (ret)
2467 			return ret;
2468 
2469 		cpsw_info(priv, ifup, "destroyed %d %s channel\n", *ch,
2470 			  (rx ? "rx" : "tx"));
2471 	}
2472 
2473 	return 0;
2474 }
2475 
2476 static int cpsw_update_channels(struct cpsw_priv *priv,
2477 				struct ethtool_channels *ch)
2478 {
2479 	int ret;
2480 
2481 	ret = cpsw_update_channels_res(priv, ch->rx_count, 1);
2482 	if (ret)
2483 		return ret;
2484 
2485 	ret = cpsw_update_channels_res(priv, ch->tx_count, 0);
2486 	if (ret)
2487 		return ret;
2488 
2489 	return 0;
2490 }
2491 
2492 static void cpsw_suspend_data_pass(struct net_device *ndev)
2493 {
2494 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2495 	struct cpsw_slave *slave;
2496 	int i;
2497 
2498 	/* Disable NAPI scheduling */
2499 	cpsw_intr_disable(cpsw);
2500 
2501 	/* Stop all transmit queues for every network device.
2502 	 * Disable re-using rx descriptors with dormant_on.
2503 	 */
2504 	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
2505 		if (!(slave->ndev && netif_running(slave->ndev)))
2506 			continue;
2507 
2508 		netif_tx_stop_all_queues(slave->ndev);
2509 		netif_dormant_on(slave->ndev);
2510 	}
2511 
2512 	/* Handle rest of tx packets and stop cpdma channels */
2513 	cpdma_ctlr_stop(cpsw->dma);
2514 }
2515 
2516 static int cpsw_resume_data_pass(struct net_device *ndev)
2517 {
2518 	struct cpsw_priv *priv = netdev_priv(ndev);
2519 	struct cpsw_common *cpsw = priv->cpsw;
2520 	struct cpsw_slave *slave;
2521 	int i, ret;
2522 
2523 	/* Allow rx packets handling */
2524 	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++)
2525 		if (slave->ndev && netif_running(slave->ndev))
2526 			netif_dormant_off(slave->ndev);
2527 
2528 	/* After this receive is started */
2529 	if (cpsw->usage_count) {
2530 		ret = cpsw_fill_rx_channels(priv);
2531 		if (ret)
2532 			return ret;
2533 
2534 		cpdma_ctlr_start(cpsw->dma);
2535 		cpsw_intr_enable(cpsw);
2536 	}
2537 
2538 	/* Resume transmit for every affected interface */
2539 	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++)
2540 		if (slave->ndev && netif_running(slave->ndev))
2541 			netif_tx_start_all_queues(slave->ndev);
2542 
2543 	return 0;
2544 }
2545 
2546 static int cpsw_set_channels(struct net_device *ndev,
2547 			     struct ethtool_channels *chs)
2548 {
2549 	struct cpsw_priv *priv = netdev_priv(ndev);
2550 	struct cpsw_common *cpsw = priv->cpsw;
2551 	struct cpsw_slave *slave;
2552 	int i, ret;
2553 
2554 	ret = cpsw_check_ch_settings(cpsw, chs);
2555 	if (ret < 0)
2556 		return ret;
2557 
2558 	cpsw_suspend_data_pass(ndev);
2559 	ret = cpsw_update_channels(priv, chs);
2560 	if (ret)
2561 		goto err;
2562 
2563 	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
2564 		if (!(slave->ndev && netif_running(slave->ndev)))
2565 			continue;
2566 
2567 		/* Inform stack about new count of queues */
2568 		ret = netif_set_real_num_tx_queues(slave->ndev,
2569 						   cpsw->tx_ch_num);
2570 		if (ret) {
2571 			dev_err(priv->dev, "cannot set real number of tx queues\n");
2572 			goto err;
2573 		}
2574 
2575 		ret = netif_set_real_num_rx_queues(slave->ndev,
2576 						   cpsw->rx_ch_num);
2577 		if (ret) {
2578 			dev_err(priv->dev, "cannot set real number of rx queues\n");
2579 			goto err;
2580 		}
2581 	}
2582 
2583 	if (cpsw->usage_count)
2584 		cpsw_split_res(ndev);
2585 
2586 	ret = cpsw_resume_data_pass(ndev);
2587 	if (!ret)
2588 		return 0;
2589 err:
2590 	dev_err(priv->dev, "cannot update channels number, closing device\n");
2591 	dev_close(ndev);
2592 	return ret;
2593 }
2594 
2595 static int cpsw_get_eee(struct net_device *ndev, struct ethtool_eee *edata)
2596 {
2597 	struct cpsw_priv *priv = netdev_priv(ndev);
2598 	struct cpsw_common *cpsw = priv->cpsw;
2599 	int slave_no = cpsw_slave_index(cpsw, priv);
2600 
2601 	if (cpsw->slaves[slave_no].phy)
2602 		return phy_ethtool_get_eee(cpsw->slaves[slave_no].phy, edata);
2603 	else
2604 		return -EOPNOTSUPP;
2605 }
2606 
2607 static int cpsw_set_eee(struct net_device *ndev, struct ethtool_eee *edata)
2608 {
2609 	struct cpsw_priv *priv = netdev_priv(ndev);
2610 	struct cpsw_common *cpsw = priv->cpsw;
2611 	int slave_no = cpsw_slave_index(cpsw, priv);
2612 
2613 	if (cpsw->slaves[slave_no].phy)
2614 		return phy_ethtool_set_eee(cpsw->slaves[slave_no].phy, edata);
2615 	else
2616 		return -EOPNOTSUPP;
2617 }
2618 
2619 static int cpsw_nway_reset(struct net_device *ndev)
2620 {
2621 	struct cpsw_priv *priv = netdev_priv(ndev);
2622 	struct cpsw_common *cpsw = priv->cpsw;
2623 	int slave_no = cpsw_slave_index(cpsw, priv);
2624 
2625 	if (cpsw->slaves[slave_no].phy)
2626 		return genphy_restart_aneg(cpsw->slaves[slave_no].phy);
2627 	else
2628 		return -EOPNOTSUPP;
2629 }
2630 
2631 static void cpsw_get_ringparam(struct net_device *ndev,
2632 			       struct ethtool_ringparam *ering)
2633 {
2634 	struct cpsw_priv *priv = netdev_priv(ndev);
2635 	struct cpsw_common *cpsw = priv->cpsw;
2636 
2637 	/* not supported */
2638 	ering->tx_max_pending = 0;
2639 	ering->tx_pending = cpdma_get_num_tx_descs(cpsw->dma);
2640 	ering->rx_max_pending = descs_pool_size - CPSW_MAX_QUEUES;
2641 	ering->rx_pending = cpdma_get_num_rx_descs(cpsw->dma);
2642 }
2643 
2644 static int cpsw_set_ringparam(struct net_device *ndev,
2645 			      struct ethtool_ringparam *ering)
2646 {
2647 	struct cpsw_priv *priv = netdev_priv(ndev);
2648 	struct cpsw_common *cpsw = priv->cpsw;
2649 	int ret;
2650 
2651 	/* ignore ering->tx_pending - only rx_pending adjustment is supported */
2652 
2653 	if (ering->rx_mini_pending || ering->rx_jumbo_pending ||
2654 	    ering->rx_pending < CPSW_MAX_QUEUES ||
2655 	    ering->rx_pending > (descs_pool_size - CPSW_MAX_QUEUES))
2656 		return -EINVAL;
2657 
2658 	if (ering->rx_pending == cpdma_get_num_rx_descs(cpsw->dma))
2659 		return 0;
2660 
2661 	cpsw_suspend_data_pass(ndev);
2662 
2663 	cpdma_set_num_rx_descs(cpsw->dma, ering->rx_pending);
2664 
2665 	if (cpsw->usage_count)
2666 		cpdma_chan_split_pool(cpsw->dma);
2667 
2668 	ret = cpsw_resume_data_pass(ndev);
2669 	if (!ret)
2670 		return 0;
2671 
2672 	dev_err(&ndev->dev, "cannot set ring params, closing device\n");
2673 	dev_close(ndev);
2674 	return ret;
2675 }
2676 
2677 static const struct ethtool_ops cpsw_ethtool_ops = {
2678 	.get_drvinfo	= cpsw_get_drvinfo,
2679 	.get_msglevel	= cpsw_get_msglevel,
2680 	.set_msglevel	= cpsw_set_msglevel,
2681 	.get_link	= ethtool_op_get_link,
2682 	.get_ts_info	= cpsw_get_ts_info,
2683 	.get_coalesce	= cpsw_get_coalesce,
2684 	.set_coalesce	= cpsw_set_coalesce,
2685 	.get_sset_count		= cpsw_get_sset_count,
2686 	.get_strings		= cpsw_get_strings,
2687 	.get_ethtool_stats	= cpsw_get_ethtool_stats,
2688 	.get_pauseparam		= cpsw_get_pauseparam,
2689 	.set_pauseparam		= cpsw_set_pauseparam,
2690 	.get_wol	= cpsw_get_wol,
2691 	.set_wol	= cpsw_set_wol,
2692 	.get_regs_len	= cpsw_get_regs_len,
2693 	.get_regs	= cpsw_get_regs,
2694 	.begin		= cpsw_ethtool_op_begin,
2695 	.complete	= cpsw_ethtool_op_complete,
2696 	.get_channels	= cpsw_get_channels,
2697 	.set_channels	= cpsw_set_channels,
2698 	.get_link_ksettings	= cpsw_get_link_ksettings,
2699 	.set_link_ksettings	= cpsw_set_link_ksettings,
2700 	.get_eee	= cpsw_get_eee,
2701 	.set_eee	= cpsw_set_eee,
2702 	.nway_reset	= cpsw_nway_reset,
2703 	.get_ringparam = cpsw_get_ringparam,
2704 	.set_ringparam = cpsw_set_ringparam,
2705 };
2706 
2707 static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_common *cpsw,
2708 			    u32 slave_reg_ofs, u32 sliver_reg_ofs)
2709 {
2710 	void __iomem		*regs = cpsw->regs;
2711 	int			slave_num = slave->slave_num;
2712 	struct cpsw_slave_data	*data = cpsw->data.slave_data + slave_num;
2713 
2714 	slave->data	= data;
2715 	slave->regs	= regs + slave_reg_ofs;
2716 	slave->sliver	= regs + sliver_reg_ofs;
2717 	slave->port_vlan = data->dual_emac_res_vlan;
2718 }
2719 
2720 static int cpsw_probe_dt(struct cpsw_platform_data *data,
2721 			 struct platform_device *pdev)
2722 {
2723 	struct device_node *node = pdev->dev.of_node;
2724 	struct device_node *slave_node;
2725 	int i = 0, ret;
2726 	u32 prop;
2727 
2728 	if (!node)
2729 		return -EINVAL;
2730 
2731 	if (of_property_read_u32(node, "slaves", &prop)) {
2732 		dev_err(&pdev->dev, "Missing slaves property in the DT.\n");
2733 		return -EINVAL;
2734 	}
2735 	data->slaves = prop;
2736 
2737 	if (of_property_read_u32(node, "active_slave", &prop)) {
2738 		dev_err(&pdev->dev, "Missing active_slave property in the DT.\n");
2739 		return -EINVAL;
2740 	}
2741 	data->active_slave = prop;
2742 
2743 	data->slave_data = devm_kcalloc(&pdev->dev,
2744 					data->slaves,
2745 					sizeof(struct cpsw_slave_data),
2746 					GFP_KERNEL);
2747 	if (!data->slave_data)
2748 		return -ENOMEM;
2749 
2750 	if (of_property_read_u32(node, "cpdma_channels", &prop)) {
2751 		dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n");
2752 		return -EINVAL;
2753 	}
2754 	data->channels = prop;
2755 
2756 	if (of_property_read_u32(node, "ale_entries", &prop)) {
2757 		dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n");
2758 		return -EINVAL;
2759 	}
2760 	data->ale_entries = prop;
2761 
2762 	if (of_property_read_u32(node, "bd_ram_size", &prop)) {
2763 		dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n");
2764 		return -EINVAL;
2765 	}
2766 	data->bd_ram_size = prop;
2767 
2768 	if (of_property_read_u32(node, "mac_control", &prop)) {
2769 		dev_err(&pdev->dev, "Missing mac_control property in the DT.\n");
2770 		return -EINVAL;
2771 	}
2772 	data->mac_control = prop;
2773 
2774 	if (of_property_read_bool(node, "dual_emac"))
2775 		data->dual_emac = 1;
2776 
2777 	/*
2778 	 * Populate all the child nodes here...
2779 	 */
2780 	ret = of_platform_populate(node, NULL, NULL, &pdev->dev);
2781 	/* We do not want to force this, as in some cases may not have child */
2782 	if (ret)
2783 		dev_warn(&pdev->dev, "Doesn't have any child node\n");
2784 
2785 	for_each_available_child_of_node(node, slave_node) {
2786 		struct cpsw_slave_data *slave_data = data->slave_data + i;
2787 		const void *mac_addr = NULL;
2788 		int lenp;
2789 		const __be32 *parp;
2790 
2791 		/* This is no slave child node, continue */
2792 		if (strcmp(slave_node->name, "slave"))
2793 			continue;
2794 
2795 		slave_data->phy_node = of_parse_phandle(slave_node,
2796 							"phy-handle", 0);
2797 		parp = of_get_property(slave_node, "phy_id", &lenp);
2798 		if (slave_data->phy_node) {
2799 			dev_dbg(&pdev->dev,
2800 				"slave[%d] using phy-handle=\"%pOF\"\n",
2801 				i, slave_data->phy_node);
2802 		} else if (of_phy_is_fixed_link(slave_node)) {
2803 			/* In the case of a fixed PHY, the DT node associated
2804 			 * to the PHY is the Ethernet MAC DT node.
2805 			 */
2806 			ret = of_phy_register_fixed_link(slave_node);
2807 			if (ret) {
2808 				if (ret != -EPROBE_DEFER)
2809 					dev_err(&pdev->dev, "failed to register fixed-link phy: %d\n", ret);
2810 				return ret;
2811 			}
2812 			slave_data->phy_node = of_node_get(slave_node);
2813 		} else if (parp) {
2814 			u32 phyid;
2815 			struct device_node *mdio_node;
2816 			struct platform_device *mdio;
2817 
2818 			if (lenp != (sizeof(__be32) * 2)) {
2819 				dev_err(&pdev->dev, "Invalid slave[%d] phy_id property\n", i);
2820 				goto no_phy_slave;
2821 			}
2822 			mdio_node = of_find_node_by_phandle(be32_to_cpup(parp));
2823 			phyid = be32_to_cpup(parp+1);
2824 			mdio = of_find_device_by_node(mdio_node);
2825 			of_node_put(mdio_node);
2826 			if (!mdio) {
2827 				dev_err(&pdev->dev, "Missing mdio platform device\n");
2828 				return -EINVAL;
2829 			}
2830 			snprintf(slave_data->phy_id, sizeof(slave_data->phy_id),
2831 				 PHY_ID_FMT, mdio->name, phyid);
2832 			put_device(&mdio->dev);
2833 		} else {
2834 			dev_err(&pdev->dev,
2835 				"No slave[%d] phy_id, phy-handle, or fixed-link property\n",
2836 				i);
2837 			goto no_phy_slave;
2838 		}
2839 		slave_data->phy_if = of_get_phy_mode(slave_node);
2840 		if (slave_data->phy_if < 0) {
2841 			dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n",
2842 				i);
2843 			return slave_data->phy_if;
2844 		}
2845 
2846 no_phy_slave:
2847 		mac_addr = of_get_mac_address(slave_node);
2848 		if (mac_addr) {
2849 			memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN);
2850 		} else {
2851 			ret = ti_cm_get_macid(&pdev->dev, i,
2852 					      slave_data->mac_addr);
2853 			if (ret)
2854 				return ret;
2855 		}
2856 		if (data->dual_emac) {
2857 			if (of_property_read_u32(slave_node, "dual_emac_res_vlan",
2858 						 &prop)) {
2859 				dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n");
2860 				slave_data->dual_emac_res_vlan = i+1;
2861 				dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n",
2862 					slave_data->dual_emac_res_vlan, i);
2863 			} else {
2864 				slave_data->dual_emac_res_vlan = prop;
2865 			}
2866 		}
2867 
2868 		i++;
2869 		if (i == data->slaves)
2870 			break;
2871 	}
2872 
2873 	return 0;
2874 }
2875 
2876 static void cpsw_remove_dt(struct platform_device *pdev)
2877 {
2878 	struct net_device *ndev = platform_get_drvdata(pdev);
2879 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2880 	struct cpsw_platform_data *data = &cpsw->data;
2881 	struct device_node *node = pdev->dev.of_node;
2882 	struct device_node *slave_node;
2883 	int i = 0;
2884 
2885 	for_each_available_child_of_node(node, slave_node) {
2886 		struct cpsw_slave_data *slave_data = &data->slave_data[i];
2887 
2888 		if (strcmp(slave_node->name, "slave"))
2889 			continue;
2890 
2891 		if (of_phy_is_fixed_link(slave_node))
2892 			of_phy_deregister_fixed_link(slave_node);
2893 
2894 		of_node_put(slave_data->phy_node);
2895 
2896 		i++;
2897 		if (i == data->slaves)
2898 			break;
2899 	}
2900 
2901 	of_platform_depopulate(&pdev->dev);
2902 }
2903 
2904 static int cpsw_probe_dual_emac(struct cpsw_priv *priv)
2905 {
2906 	struct cpsw_common		*cpsw = priv->cpsw;
2907 	struct cpsw_platform_data	*data = &cpsw->data;
2908 	struct net_device		*ndev;
2909 	struct cpsw_priv		*priv_sl2;
2910 	int ret = 0;
2911 
2912 	ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
2913 	if (!ndev) {
2914 		dev_err(cpsw->dev, "cpsw: error allocating net_device\n");
2915 		return -ENOMEM;
2916 	}
2917 
2918 	priv_sl2 = netdev_priv(ndev);
2919 	priv_sl2->cpsw = cpsw;
2920 	priv_sl2->ndev = ndev;
2921 	priv_sl2->dev  = &ndev->dev;
2922 	priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
2923 
2924 	if (is_valid_ether_addr(data->slave_data[1].mac_addr)) {
2925 		memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr,
2926 			ETH_ALEN);
2927 		dev_info(cpsw->dev, "cpsw: Detected MACID = %pM\n",
2928 			 priv_sl2->mac_addr);
2929 	} else {
2930 		random_ether_addr(priv_sl2->mac_addr);
2931 		dev_info(cpsw->dev, "cpsw: Random MACID = %pM\n",
2932 			 priv_sl2->mac_addr);
2933 	}
2934 	memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN);
2935 
2936 	priv_sl2->emac_port = 1;
2937 	cpsw->slaves[1].ndev = ndev;
2938 	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2939 
2940 	ndev->netdev_ops = &cpsw_netdev_ops;
2941 	ndev->ethtool_ops = &cpsw_ethtool_ops;
2942 
2943 	/* register the network device */
2944 	SET_NETDEV_DEV(ndev, cpsw->dev);
2945 	ret = register_netdev(ndev);
2946 	if (ret) {
2947 		dev_err(cpsw->dev, "cpsw: error registering net device\n");
2948 		free_netdev(ndev);
2949 		ret = -ENODEV;
2950 	}
2951 
2952 	return ret;
2953 }
2954 
2955 static const struct of_device_id cpsw_of_mtable[] = {
2956 	{ .compatible = "ti,cpsw"},
2957 	{ .compatible = "ti,am335x-cpsw"},
2958 	{ .compatible = "ti,am4372-cpsw"},
2959 	{ .compatible = "ti,dra7-cpsw"},
2960 	{ /* sentinel */ },
2961 };
2962 MODULE_DEVICE_TABLE(of, cpsw_of_mtable);
2963 
2964 static const struct soc_device_attribute cpsw_soc_devices[] = {
2965 	{ .family = "AM33xx", .revision = "ES1.0"},
2966 	{ /* sentinel */ }
2967 };
2968 
2969 static int cpsw_probe(struct platform_device *pdev)
2970 {
2971 	struct clk			*clk;
2972 	struct cpsw_platform_data	*data;
2973 	struct net_device		*ndev;
2974 	struct cpsw_priv		*priv;
2975 	struct cpdma_params		dma_params;
2976 	struct cpsw_ale_params		ale_params;
2977 	void __iomem			*ss_regs;
2978 	void __iomem			*cpts_regs;
2979 	struct resource			*res, *ss_res;
2980 	struct gpio_descs		*mode;
2981 	u32 slave_offset, sliver_offset, slave_size;
2982 	const struct soc_device_attribute *soc;
2983 	struct cpsw_common		*cpsw;
2984 	int ret = 0, i;
2985 	int irq;
2986 
2987 	cpsw = devm_kzalloc(&pdev->dev, sizeof(struct cpsw_common), GFP_KERNEL);
2988 	if (!cpsw)
2989 		return -ENOMEM;
2990 
2991 	cpsw->dev = &pdev->dev;
2992 
2993 	ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
2994 	if (!ndev) {
2995 		dev_err(&pdev->dev, "error allocating net_device\n");
2996 		return -ENOMEM;
2997 	}
2998 
2999 	platform_set_drvdata(pdev, ndev);
3000 	priv = netdev_priv(ndev);
3001 	priv->cpsw = cpsw;
3002 	priv->ndev = ndev;
3003 	priv->dev  = &ndev->dev;
3004 	priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
3005 	cpsw->rx_packet_max = max(rx_packet_max, 128);
3006 
3007 	mode = devm_gpiod_get_array_optional(&pdev->dev, "mode", GPIOD_OUT_LOW);
3008 	if (IS_ERR(mode)) {
3009 		ret = PTR_ERR(mode);
3010 		dev_err(&pdev->dev, "gpio request failed, ret %d\n", ret);
3011 		goto clean_ndev_ret;
3012 	}
3013 
3014 	/*
3015 	 * This may be required here for child devices.
3016 	 */
3017 	pm_runtime_enable(&pdev->dev);
3018 
3019 	/* Select default pin state */
3020 	pinctrl_pm_select_default_state(&pdev->dev);
3021 
3022 	/* Need to enable clocks with runtime PM api to access module
3023 	 * registers
3024 	 */
3025 	ret = pm_runtime_get_sync(&pdev->dev);
3026 	if (ret < 0) {
3027 		pm_runtime_put_noidle(&pdev->dev);
3028 		goto clean_runtime_disable_ret;
3029 	}
3030 
3031 	ret = cpsw_probe_dt(&cpsw->data, pdev);
3032 	if (ret)
3033 		goto clean_dt_ret;
3034 
3035 	data = &cpsw->data;
3036 	cpsw->rx_ch_num = 1;
3037 	cpsw->tx_ch_num = 1;
3038 
3039 	if (is_valid_ether_addr(data->slave_data[0].mac_addr)) {
3040 		memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN);
3041 		dev_info(&pdev->dev, "Detected MACID = %pM\n", priv->mac_addr);
3042 	} else {
3043 		eth_random_addr(priv->mac_addr);
3044 		dev_info(&pdev->dev, "Random MACID = %pM\n", priv->mac_addr);
3045 	}
3046 
3047 	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
3048 
3049 	cpsw->slaves = devm_kcalloc(&pdev->dev,
3050 				    data->slaves, sizeof(struct cpsw_slave),
3051 				    GFP_KERNEL);
3052 	if (!cpsw->slaves) {
3053 		ret = -ENOMEM;
3054 		goto clean_dt_ret;
3055 	}
3056 	for (i = 0; i < data->slaves; i++)
3057 		cpsw->slaves[i].slave_num = i;
3058 
3059 	cpsw->slaves[0].ndev = ndev;
3060 	priv->emac_port = 0;
3061 
3062 	clk = devm_clk_get(&pdev->dev, "fck");
3063 	if (IS_ERR(clk)) {
3064 		dev_err(priv->dev, "fck is not found\n");
3065 		ret = -ENODEV;
3066 		goto clean_dt_ret;
3067 	}
3068 	cpsw->bus_freq_mhz = clk_get_rate(clk) / 1000000;
3069 
3070 	ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3071 	ss_regs = devm_ioremap_resource(&pdev->dev, ss_res);
3072 	if (IS_ERR(ss_regs)) {
3073 		ret = PTR_ERR(ss_regs);
3074 		goto clean_dt_ret;
3075 	}
3076 	cpsw->regs = ss_regs;
3077 
3078 	cpsw->version = readl(&cpsw->regs->id_ver);
3079 
3080 	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
3081 	cpsw->wr_regs = devm_ioremap_resource(&pdev->dev, res);
3082 	if (IS_ERR(cpsw->wr_regs)) {
3083 		ret = PTR_ERR(cpsw->wr_regs);
3084 		goto clean_dt_ret;
3085 	}
3086 
3087 	memset(&dma_params, 0, sizeof(dma_params));
3088 	memset(&ale_params, 0, sizeof(ale_params));
3089 
3090 	switch (cpsw->version) {
3091 	case CPSW_VERSION_1:
3092 		cpsw->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET;
3093 		cpts_regs		= ss_regs + CPSW1_CPTS_OFFSET;
3094 		cpsw->hw_stats	     = ss_regs + CPSW1_HW_STATS;
3095 		dma_params.dmaregs   = ss_regs + CPSW1_CPDMA_OFFSET;
3096 		dma_params.txhdp     = ss_regs + CPSW1_STATERAM_OFFSET;
3097 		ale_params.ale_regs  = ss_regs + CPSW1_ALE_OFFSET;
3098 		slave_offset         = CPSW1_SLAVE_OFFSET;
3099 		slave_size           = CPSW1_SLAVE_SIZE;
3100 		sliver_offset        = CPSW1_SLIVER_OFFSET;
3101 		dma_params.desc_mem_phys = 0;
3102 		break;
3103 	case CPSW_VERSION_2:
3104 	case CPSW_VERSION_3:
3105 	case CPSW_VERSION_4:
3106 		cpsw->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET;
3107 		cpts_regs		= ss_regs + CPSW2_CPTS_OFFSET;
3108 		cpsw->hw_stats	     = ss_regs + CPSW2_HW_STATS;
3109 		dma_params.dmaregs   = ss_regs + CPSW2_CPDMA_OFFSET;
3110 		dma_params.txhdp     = ss_regs + CPSW2_STATERAM_OFFSET;
3111 		ale_params.ale_regs  = ss_regs + CPSW2_ALE_OFFSET;
3112 		slave_offset         = CPSW2_SLAVE_OFFSET;
3113 		slave_size           = CPSW2_SLAVE_SIZE;
3114 		sliver_offset        = CPSW2_SLIVER_OFFSET;
3115 		dma_params.desc_mem_phys =
3116 			(u32 __force) ss_res->start + CPSW2_BD_OFFSET;
3117 		break;
3118 	default:
3119 		dev_err(priv->dev, "unknown version 0x%08x\n", cpsw->version);
3120 		ret = -ENODEV;
3121 		goto clean_dt_ret;
3122 	}
3123 	for (i = 0; i < cpsw->data.slaves; i++) {
3124 		struct cpsw_slave *slave = &cpsw->slaves[i];
3125 
3126 		cpsw_slave_init(slave, cpsw, slave_offset, sliver_offset);
3127 		slave_offset  += slave_size;
3128 		sliver_offset += SLIVER_SIZE;
3129 	}
3130 
3131 	dma_params.dev		= &pdev->dev;
3132 	dma_params.rxthresh	= dma_params.dmaregs + CPDMA_RXTHRESH;
3133 	dma_params.rxfree	= dma_params.dmaregs + CPDMA_RXFREE;
3134 	dma_params.rxhdp	= dma_params.txhdp + CPDMA_RXHDP;
3135 	dma_params.txcp		= dma_params.txhdp + CPDMA_TXCP;
3136 	dma_params.rxcp		= dma_params.txhdp + CPDMA_RXCP;
3137 
3138 	dma_params.num_chan		= data->channels;
3139 	dma_params.has_soft_reset	= true;
3140 	dma_params.min_packet_size	= CPSW_MIN_PACKET_SIZE;
3141 	dma_params.desc_mem_size	= data->bd_ram_size;
3142 	dma_params.desc_align		= 16;
3143 	dma_params.has_ext_regs		= true;
3144 	dma_params.desc_hw_addr         = dma_params.desc_mem_phys;
3145 	dma_params.bus_freq_mhz		= cpsw->bus_freq_mhz;
3146 	dma_params.descs_pool_size	= descs_pool_size;
3147 
3148 	cpsw->dma = cpdma_ctlr_create(&dma_params);
3149 	if (!cpsw->dma) {
3150 		dev_err(priv->dev, "error initializing dma\n");
3151 		ret = -ENOMEM;
3152 		goto clean_dt_ret;
3153 	}
3154 
3155 	soc = soc_device_match(cpsw_soc_devices);
3156 	if (soc)
3157 		cpsw->quirk_irq = 1;
3158 
3159 	cpsw->txv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_tx_handler, 0);
3160 	if (IS_ERR(cpsw->txv[0].ch)) {
3161 		dev_err(priv->dev, "error initializing tx dma channel\n");
3162 		ret = PTR_ERR(cpsw->txv[0].ch);
3163 		goto clean_dma_ret;
3164 	}
3165 
3166 	cpsw->rxv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_rx_handler, 1);
3167 	if (IS_ERR(cpsw->rxv[0].ch)) {
3168 		dev_err(priv->dev, "error initializing rx dma channel\n");
3169 		ret = PTR_ERR(cpsw->rxv[0].ch);
3170 		goto clean_dma_ret;
3171 	}
3172 
3173 	ale_params.dev			= &pdev->dev;
3174 	ale_params.ale_ageout		= ale_ageout;
3175 	ale_params.ale_entries		= data->ale_entries;
3176 	ale_params.ale_ports		= CPSW_ALE_PORTS_NUM;
3177 
3178 	cpsw->ale = cpsw_ale_create(&ale_params);
3179 	if (!cpsw->ale) {
3180 		dev_err(priv->dev, "error initializing ale engine\n");
3181 		ret = -ENODEV;
3182 		goto clean_dma_ret;
3183 	}
3184 
3185 	cpsw->cpts = cpts_create(cpsw->dev, cpts_regs, cpsw->dev->of_node);
3186 	if (IS_ERR(cpsw->cpts)) {
3187 		ret = PTR_ERR(cpsw->cpts);
3188 		goto clean_dma_ret;
3189 	}
3190 
3191 	ndev->irq = platform_get_irq(pdev, 1);
3192 	if (ndev->irq < 0) {
3193 		dev_err(priv->dev, "error getting irq resource\n");
3194 		ret = ndev->irq;
3195 		goto clean_dma_ret;
3196 	}
3197 
3198 	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX;
3199 
3200 	ndev->netdev_ops = &cpsw_netdev_ops;
3201 	ndev->ethtool_ops = &cpsw_ethtool_ops;
3202 	netif_napi_add(ndev, &cpsw->napi_rx,
3203 		       cpsw->quirk_irq ? cpsw_rx_poll : cpsw_rx_mq_poll,
3204 		       CPSW_POLL_WEIGHT);
3205 	netif_tx_napi_add(ndev, &cpsw->napi_tx,
3206 			  cpsw->quirk_irq ? cpsw_tx_poll : cpsw_tx_mq_poll,
3207 			  CPSW_POLL_WEIGHT);
3208 	cpsw_split_res(ndev);
3209 
3210 	/* register the network device */
3211 	SET_NETDEV_DEV(ndev, &pdev->dev);
3212 	ret = register_netdev(ndev);
3213 	if (ret) {
3214 		dev_err(priv->dev, "error registering net device\n");
3215 		ret = -ENODEV;
3216 		goto clean_dma_ret;
3217 	}
3218 
3219 	if (cpsw->data.dual_emac) {
3220 		ret = cpsw_probe_dual_emac(priv);
3221 		if (ret) {
3222 			cpsw_err(priv, probe, "error probe slave 2 emac interface\n");
3223 			goto clean_unregister_netdev_ret;
3224 		}
3225 	}
3226 
3227 	/* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and
3228 	 * MISC IRQs which are always kept disabled with this driver so
3229 	 * we will not request them.
3230 	 *
3231 	 * If anyone wants to implement support for those, make sure to
3232 	 * first request and append them to irqs_table array.
3233 	 */
3234 
3235 	/* RX IRQ */
3236 	irq = platform_get_irq(pdev, 1);
3237 	if (irq < 0) {
3238 		ret = irq;
3239 		goto clean_dma_ret;
3240 	}
3241 
3242 	cpsw->irqs_table[0] = irq;
3243 	ret = devm_request_irq(&pdev->dev, irq, cpsw_rx_interrupt,
3244 			       0, dev_name(&pdev->dev), cpsw);
3245 	if (ret < 0) {
3246 		dev_err(priv->dev, "error attaching irq (%d)\n", ret);
3247 		goto clean_dma_ret;
3248 	}
3249 
3250 	/* TX IRQ */
3251 	irq = platform_get_irq(pdev, 2);
3252 	if (irq < 0) {
3253 		ret = irq;
3254 		goto clean_dma_ret;
3255 	}
3256 
3257 	cpsw->irqs_table[1] = irq;
3258 	ret = devm_request_irq(&pdev->dev, irq, cpsw_tx_interrupt,
3259 			       0, dev_name(&pdev->dev), cpsw);
3260 	if (ret < 0) {
3261 		dev_err(priv->dev, "error attaching irq (%d)\n", ret);
3262 		goto clean_dma_ret;
3263 	}
3264 
3265 	cpsw_notice(priv, probe,
3266 		    "initialized device (regs %pa, irq %d, pool size %d)\n",
3267 		    &ss_res->start, ndev->irq, dma_params.descs_pool_size);
3268 
3269 	pm_runtime_put(&pdev->dev);
3270 
3271 	return 0;
3272 
3273 clean_unregister_netdev_ret:
3274 	unregister_netdev(ndev);
3275 clean_dma_ret:
3276 	cpdma_ctlr_destroy(cpsw->dma);
3277 clean_dt_ret:
3278 	cpsw_remove_dt(pdev);
3279 	pm_runtime_put_sync(&pdev->dev);
3280 clean_runtime_disable_ret:
3281 	pm_runtime_disable(&pdev->dev);
3282 clean_ndev_ret:
3283 	free_netdev(priv->ndev);
3284 	return ret;
3285 }
3286 
3287 static int cpsw_remove(struct platform_device *pdev)
3288 {
3289 	struct net_device *ndev = platform_get_drvdata(pdev);
3290 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
3291 	int ret;
3292 
3293 	ret = pm_runtime_get_sync(&pdev->dev);
3294 	if (ret < 0) {
3295 		pm_runtime_put_noidle(&pdev->dev);
3296 		return ret;
3297 	}
3298 
3299 	if (cpsw->data.dual_emac)
3300 		unregister_netdev(cpsw->slaves[1].ndev);
3301 	unregister_netdev(ndev);
3302 
3303 	cpts_release(cpsw->cpts);
3304 	cpdma_ctlr_destroy(cpsw->dma);
3305 	cpsw_remove_dt(pdev);
3306 	pm_runtime_put_sync(&pdev->dev);
3307 	pm_runtime_disable(&pdev->dev);
3308 	if (cpsw->data.dual_emac)
3309 		free_netdev(cpsw->slaves[1].ndev);
3310 	free_netdev(ndev);
3311 	return 0;
3312 }
3313 
3314 #ifdef CONFIG_PM_SLEEP
3315 static int cpsw_suspend(struct device *dev)
3316 {
3317 	struct platform_device	*pdev = to_platform_device(dev);
3318 	struct net_device	*ndev = platform_get_drvdata(pdev);
3319 	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
3320 
3321 	if (cpsw->data.dual_emac) {
3322 		int i;
3323 
3324 		for (i = 0; i < cpsw->data.slaves; i++) {
3325 			if (netif_running(cpsw->slaves[i].ndev))
3326 				cpsw_ndo_stop(cpsw->slaves[i].ndev);
3327 		}
3328 	} else {
3329 		if (netif_running(ndev))
3330 			cpsw_ndo_stop(ndev);
3331 	}
3332 
3333 	/* Select sleep pin state */
3334 	pinctrl_pm_select_sleep_state(dev);
3335 
3336 	return 0;
3337 }
3338 
3339 static int cpsw_resume(struct device *dev)
3340 {
3341 	struct platform_device	*pdev = to_platform_device(dev);
3342 	struct net_device	*ndev = platform_get_drvdata(pdev);
3343 	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
3344 
3345 	/* Select default pin state */
3346 	pinctrl_pm_select_default_state(dev);
3347 
3348 	/* shut up ASSERT_RTNL() warning in netif_set_real_num_tx/rx_queues */
3349 	rtnl_lock();
3350 	if (cpsw->data.dual_emac) {
3351 		int i;
3352 
3353 		for (i = 0; i < cpsw->data.slaves; i++) {
3354 			if (netif_running(cpsw->slaves[i].ndev))
3355 				cpsw_ndo_open(cpsw->slaves[i].ndev);
3356 		}
3357 	} else {
3358 		if (netif_running(ndev))
3359 			cpsw_ndo_open(ndev);
3360 	}
3361 	rtnl_unlock();
3362 
3363 	return 0;
3364 }
3365 #endif
3366 
3367 static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume);
3368 
3369 static struct platform_driver cpsw_driver = {
3370 	.driver = {
3371 		.name	 = "cpsw",
3372 		.pm	 = &cpsw_pm_ops,
3373 		.of_match_table = cpsw_of_mtable,
3374 	},
3375 	.probe = cpsw_probe,
3376 	.remove = cpsw_remove,
3377 };
3378 
3379 module_platform_driver(cpsw_driver);
3380 
3381 MODULE_LICENSE("GPL");
3382 MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>");
3383 MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>");
3384 MODULE_DESCRIPTION("TI CPSW Ethernet driver");
3385