1 /* 2 * Texas Instruments Ethernet Switch Driver 3 * 4 * Copyright (C) 2012 Texas Instruments 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License as 8 * published by the Free Software Foundation version 2. 9 * 10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any 11 * kind, whether express or implied; without even the implied warranty 12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/io.h> 18 #include <linux/clk.h> 19 #include <linux/timer.h> 20 #include <linux/module.h> 21 #include <linux/platform_device.h> 22 #include <linux/irqreturn.h> 23 #include <linux/interrupt.h> 24 #include <linux/if_ether.h> 25 #include <linux/etherdevice.h> 26 #include <linux/netdevice.h> 27 #include <linux/net_tstamp.h> 28 #include <linux/phy.h> 29 #include <linux/workqueue.h> 30 #include <linux/delay.h> 31 #include <linux/pm_runtime.h> 32 #include <linux/gpio.h> 33 #include <linux/of.h> 34 #include <linux/of_mdio.h> 35 #include <linux/of_net.h> 36 #include <linux/of_device.h> 37 #include <linux/if_vlan.h> 38 39 #include <linux/pinctrl/consumer.h> 40 41 #include "cpsw.h" 42 #include "cpsw_ale.h" 43 #include "cpts.h" 44 #include "davinci_cpdma.h" 45 46 #define CPSW_DEBUG (NETIF_MSG_HW | NETIF_MSG_WOL | \ 47 NETIF_MSG_DRV | NETIF_MSG_LINK | \ 48 NETIF_MSG_IFUP | NETIF_MSG_INTR | \ 49 NETIF_MSG_PROBE | NETIF_MSG_TIMER | \ 50 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | \ 51 NETIF_MSG_TX_ERR | NETIF_MSG_TX_DONE | \ 52 NETIF_MSG_PKTDATA | NETIF_MSG_TX_QUEUED | \ 53 NETIF_MSG_RX_STATUS) 54 55 #define cpsw_info(priv, type, format, ...) \ 56 do { \ 57 if (netif_msg_##type(priv) && net_ratelimit()) \ 58 dev_info(priv->dev, format, ## __VA_ARGS__); \ 59 } while (0) 60 61 #define cpsw_err(priv, type, format, ...) \ 62 do { \ 63 if (netif_msg_##type(priv) && net_ratelimit()) \ 64 dev_err(priv->dev, format, ## __VA_ARGS__); \ 65 } while (0) 66 67 #define cpsw_dbg(priv, type, format, ...) \ 68 do { \ 69 if (netif_msg_##type(priv) && net_ratelimit()) \ 70 dev_dbg(priv->dev, format, ## __VA_ARGS__); \ 71 } while (0) 72 73 #define cpsw_notice(priv, type, format, ...) \ 74 do { \ 75 if (netif_msg_##type(priv) && net_ratelimit()) \ 76 dev_notice(priv->dev, format, ## __VA_ARGS__); \ 77 } while (0) 78 79 #define ALE_ALL_PORTS 0x7 80 81 #define CPSW_MAJOR_VERSION(reg) (reg >> 8 & 0x7) 82 #define CPSW_MINOR_VERSION(reg) (reg & 0xff) 83 #define CPSW_RTL_VERSION(reg) ((reg >> 11) & 0x1f) 84 85 #define CPSW_VERSION_1 0x19010a 86 #define CPSW_VERSION_2 0x19010c 87 #define CPSW_VERSION_3 0x19010f 88 #define CPSW_VERSION_4 0x190112 89 90 #define HOST_PORT_NUM 0 91 #define SLIVER_SIZE 0x40 92 93 #define CPSW1_HOST_PORT_OFFSET 0x028 94 #define CPSW1_SLAVE_OFFSET 0x050 95 #define CPSW1_SLAVE_SIZE 0x040 96 #define CPSW1_CPDMA_OFFSET 0x100 97 #define CPSW1_STATERAM_OFFSET 0x200 98 #define CPSW1_HW_STATS 0x400 99 #define CPSW1_CPTS_OFFSET 0x500 100 #define CPSW1_ALE_OFFSET 0x600 101 #define CPSW1_SLIVER_OFFSET 0x700 102 103 #define CPSW2_HOST_PORT_OFFSET 0x108 104 #define CPSW2_SLAVE_OFFSET 0x200 105 #define CPSW2_SLAVE_SIZE 0x100 106 #define CPSW2_CPDMA_OFFSET 0x800 107 #define CPSW2_HW_STATS 0x900 108 #define CPSW2_STATERAM_OFFSET 0xa00 109 #define CPSW2_CPTS_OFFSET 0xc00 110 #define CPSW2_ALE_OFFSET 0xd00 111 #define CPSW2_SLIVER_OFFSET 0xd80 112 #define CPSW2_BD_OFFSET 0x2000 113 114 #define CPDMA_RXTHRESH 0x0c0 115 #define CPDMA_RXFREE 0x0e0 116 #define CPDMA_TXHDP 0x00 117 #define CPDMA_RXHDP 0x20 118 #define CPDMA_TXCP 0x40 119 #define CPDMA_RXCP 0x60 120 121 #define CPSW_POLL_WEIGHT 64 122 #define CPSW_MIN_PACKET_SIZE 60 123 #define CPSW_MAX_PACKET_SIZE (1500 + 14 + 4 + 4) 124 125 #define RX_PRIORITY_MAPPING 0x76543210 126 #define TX_PRIORITY_MAPPING 0x33221100 127 #define CPDMA_TX_PRIORITY_MAP 0x01234567 128 129 #define CPSW_VLAN_AWARE BIT(1) 130 #define CPSW_ALE_VLAN_AWARE 1 131 132 #define CPSW_FIFO_NORMAL_MODE (0 << 16) 133 #define CPSW_FIFO_DUAL_MAC_MODE (1 << 16) 134 #define CPSW_FIFO_RATE_LIMIT_MODE (2 << 16) 135 136 #define CPSW_INTPACEEN (0x3f << 16) 137 #define CPSW_INTPRESCALE_MASK (0x7FF << 0) 138 #define CPSW_CMINTMAX_CNT 63 139 #define CPSW_CMINTMIN_CNT 2 140 #define CPSW_CMINTMAX_INTVL (1000 / CPSW_CMINTMIN_CNT) 141 #define CPSW_CMINTMIN_INTVL ((1000 / CPSW_CMINTMAX_CNT) + 1) 142 143 #define cpsw_slave_index(cpsw, priv) \ 144 ((cpsw->data.dual_emac) ? priv->emac_port : \ 145 cpsw->data.active_slave) 146 #define IRQ_NUM 2 147 #define CPSW_MAX_QUEUES 8 148 149 static int debug_level; 150 module_param(debug_level, int, 0); 151 MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)"); 152 153 static int ale_ageout = 10; 154 module_param(ale_ageout, int, 0); 155 MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)"); 156 157 static int rx_packet_max = CPSW_MAX_PACKET_SIZE; 158 module_param(rx_packet_max, int, 0); 159 MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)"); 160 161 struct cpsw_wr_regs { 162 u32 id_ver; 163 u32 soft_reset; 164 u32 control; 165 u32 int_control; 166 u32 rx_thresh_en; 167 u32 rx_en; 168 u32 tx_en; 169 u32 misc_en; 170 u32 mem_allign1[8]; 171 u32 rx_thresh_stat; 172 u32 rx_stat; 173 u32 tx_stat; 174 u32 misc_stat; 175 u32 mem_allign2[8]; 176 u32 rx_imax; 177 u32 tx_imax; 178 179 }; 180 181 struct cpsw_ss_regs { 182 u32 id_ver; 183 u32 control; 184 u32 soft_reset; 185 u32 stat_port_en; 186 u32 ptype; 187 u32 soft_idle; 188 u32 thru_rate; 189 u32 gap_thresh; 190 u32 tx_start_wds; 191 u32 flow_control; 192 u32 vlan_ltype; 193 u32 ts_ltype; 194 u32 dlr_ltype; 195 }; 196 197 /* CPSW_PORT_V1 */ 198 #define CPSW1_MAX_BLKS 0x00 /* Maximum FIFO Blocks */ 199 #define CPSW1_BLK_CNT 0x04 /* FIFO Block Usage Count (Read Only) */ 200 #define CPSW1_TX_IN_CTL 0x08 /* Transmit FIFO Control */ 201 #define CPSW1_PORT_VLAN 0x0c /* VLAN Register */ 202 #define CPSW1_TX_PRI_MAP 0x10 /* Tx Header Priority to Switch Pri Mapping */ 203 #define CPSW1_TS_CTL 0x14 /* Time Sync Control */ 204 #define CPSW1_TS_SEQ_LTYPE 0x18 /* Time Sync Sequence ID Offset and Msg Type */ 205 #define CPSW1_TS_VLAN 0x1c /* Time Sync VLAN1 and VLAN2 */ 206 207 /* CPSW_PORT_V2 */ 208 #define CPSW2_CONTROL 0x00 /* Control Register */ 209 #define CPSW2_MAX_BLKS 0x08 /* Maximum FIFO Blocks */ 210 #define CPSW2_BLK_CNT 0x0c /* FIFO Block Usage Count (Read Only) */ 211 #define CPSW2_TX_IN_CTL 0x10 /* Transmit FIFO Control */ 212 #define CPSW2_PORT_VLAN 0x14 /* VLAN Register */ 213 #define CPSW2_TX_PRI_MAP 0x18 /* Tx Header Priority to Switch Pri Mapping */ 214 #define CPSW2_TS_SEQ_MTYPE 0x1c /* Time Sync Sequence ID Offset and Msg Type */ 215 216 /* CPSW_PORT_V1 and V2 */ 217 #define SA_LO 0x20 /* CPGMAC_SL Source Address Low */ 218 #define SA_HI 0x24 /* CPGMAC_SL Source Address High */ 219 #define SEND_PERCENT 0x28 /* Transmit Queue Send Percentages */ 220 221 /* CPSW_PORT_V2 only */ 222 #define RX_DSCP_PRI_MAP0 0x30 /* Rx DSCP Priority to Rx Packet Mapping */ 223 #define RX_DSCP_PRI_MAP1 0x34 /* Rx DSCP Priority to Rx Packet Mapping */ 224 #define RX_DSCP_PRI_MAP2 0x38 /* Rx DSCP Priority to Rx Packet Mapping */ 225 #define RX_DSCP_PRI_MAP3 0x3c /* Rx DSCP Priority to Rx Packet Mapping */ 226 #define RX_DSCP_PRI_MAP4 0x40 /* Rx DSCP Priority to Rx Packet Mapping */ 227 #define RX_DSCP_PRI_MAP5 0x44 /* Rx DSCP Priority to Rx Packet Mapping */ 228 #define RX_DSCP_PRI_MAP6 0x48 /* Rx DSCP Priority to Rx Packet Mapping */ 229 #define RX_DSCP_PRI_MAP7 0x4c /* Rx DSCP Priority to Rx Packet Mapping */ 230 231 /* Bit definitions for the CPSW2_CONTROL register */ 232 #define PASS_PRI_TAGGED (1<<24) /* Pass Priority Tagged */ 233 #define VLAN_LTYPE2_EN (1<<21) /* VLAN LTYPE 2 enable */ 234 #define VLAN_LTYPE1_EN (1<<20) /* VLAN LTYPE 1 enable */ 235 #define DSCP_PRI_EN (1<<16) /* DSCP Priority Enable */ 236 #define TS_320 (1<<14) /* Time Sync Dest Port 320 enable */ 237 #define TS_319 (1<<13) /* Time Sync Dest Port 319 enable */ 238 #define TS_132 (1<<12) /* Time Sync Dest IP Addr 132 enable */ 239 #define TS_131 (1<<11) /* Time Sync Dest IP Addr 131 enable */ 240 #define TS_130 (1<<10) /* Time Sync Dest IP Addr 130 enable */ 241 #define TS_129 (1<<9) /* Time Sync Dest IP Addr 129 enable */ 242 #define TS_TTL_NONZERO (1<<8) /* Time Sync Time To Live Non-zero enable */ 243 #define TS_ANNEX_F_EN (1<<6) /* Time Sync Annex F enable */ 244 #define TS_ANNEX_D_EN (1<<4) /* Time Sync Annex D enable */ 245 #define TS_LTYPE2_EN (1<<3) /* Time Sync LTYPE 2 enable */ 246 #define TS_LTYPE1_EN (1<<2) /* Time Sync LTYPE 1 enable */ 247 #define TS_TX_EN (1<<1) /* Time Sync Transmit Enable */ 248 #define TS_RX_EN (1<<0) /* Time Sync Receive Enable */ 249 250 #define CTRL_V2_TS_BITS \ 251 (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\ 252 TS_TTL_NONZERO | TS_ANNEX_D_EN | TS_LTYPE1_EN) 253 254 #define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN) 255 #define CTRL_V2_TX_TS_BITS (CTRL_V2_TS_BITS | TS_TX_EN) 256 #define CTRL_V2_RX_TS_BITS (CTRL_V2_TS_BITS | TS_RX_EN) 257 258 259 #define CTRL_V3_TS_BITS \ 260 (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\ 261 TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\ 262 TS_LTYPE1_EN) 263 264 #define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN) 265 #define CTRL_V3_TX_TS_BITS (CTRL_V3_TS_BITS | TS_TX_EN) 266 #define CTRL_V3_RX_TS_BITS (CTRL_V3_TS_BITS | TS_RX_EN) 267 268 /* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */ 269 #define TS_SEQ_ID_OFFSET_SHIFT (16) /* Time Sync Sequence ID Offset */ 270 #define TS_SEQ_ID_OFFSET_MASK (0x3f) 271 #define TS_MSG_TYPE_EN_SHIFT (0) /* Time Sync Message Type Enable */ 272 #define TS_MSG_TYPE_EN_MASK (0xffff) 273 274 /* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */ 275 #define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3)) 276 277 /* Bit definitions for the CPSW1_TS_CTL register */ 278 #define CPSW_V1_TS_RX_EN BIT(0) 279 #define CPSW_V1_TS_TX_EN BIT(4) 280 #define CPSW_V1_MSG_TYPE_OFS 16 281 282 /* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */ 283 #define CPSW_V1_SEQ_ID_OFS_SHIFT 16 284 285 struct cpsw_host_regs { 286 u32 max_blks; 287 u32 blk_cnt; 288 u32 tx_in_ctl; 289 u32 port_vlan; 290 u32 tx_pri_map; 291 u32 cpdma_tx_pri_map; 292 u32 cpdma_rx_chan_map; 293 }; 294 295 struct cpsw_sliver_regs { 296 u32 id_ver; 297 u32 mac_control; 298 u32 mac_status; 299 u32 soft_reset; 300 u32 rx_maxlen; 301 u32 __reserved_0; 302 u32 rx_pause; 303 u32 tx_pause; 304 u32 __reserved_1; 305 u32 rx_pri_map; 306 }; 307 308 struct cpsw_hw_stats { 309 u32 rxgoodframes; 310 u32 rxbroadcastframes; 311 u32 rxmulticastframes; 312 u32 rxpauseframes; 313 u32 rxcrcerrors; 314 u32 rxaligncodeerrors; 315 u32 rxoversizedframes; 316 u32 rxjabberframes; 317 u32 rxundersizedframes; 318 u32 rxfragments; 319 u32 __pad_0[2]; 320 u32 rxoctets; 321 u32 txgoodframes; 322 u32 txbroadcastframes; 323 u32 txmulticastframes; 324 u32 txpauseframes; 325 u32 txdeferredframes; 326 u32 txcollisionframes; 327 u32 txsinglecollframes; 328 u32 txmultcollframes; 329 u32 txexcessivecollisions; 330 u32 txlatecollisions; 331 u32 txunderrun; 332 u32 txcarriersenseerrors; 333 u32 txoctets; 334 u32 octetframes64; 335 u32 octetframes65t127; 336 u32 octetframes128t255; 337 u32 octetframes256t511; 338 u32 octetframes512t1023; 339 u32 octetframes1024tup; 340 u32 netoctets; 341 u32 rxsofoverruns; 342 u32 rxmofoverruns; 343 u32 rxdmaoverruns; 344 }; 345 346 struct cpsw_slave { 347 void __iomem *regs; 348 struct cpsw_sliver_regs __iomem *sliver; 349 int slave_num; 350 u32 mac_control; 351 struct cpsw_slave_data *data; 352 struct phy_device *phy; 353 struct net_device *ndev; 354 u32 port_vlan; 355 u32 open_stat; 356 }; 357 358 static inline u32 slave_read(struct cpsw_slave *slave, u32 offset) 359 { 360 return __raw_readl(slave->regs + offset); 361 } 362 363 static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset) 364 { 365 __raw_writel(val, slave->regs + offset); 366 } 367 368 struct cpsw_common { 369 struct device *dev; 370 struct cpsw_platform_data data; 371 struct napi_struct napi_rx; 372 struct napi_struct napi_tx; 373 struct cpsw_ss_regs __iomem *regs; 374 struct cpsw_wr_regs __iomem *wr_regs; 375 u8 __iomem *hw_stats; 376 struct cpsw_host_regs __iomem *host_port_regs; 377 u32 version; 378 u32 coal_intvl; 379 u32 bus_freq_mhz; 380 int rx_packet_max; 381 struct cpsw_slave *slaves; 382 struct cpdma_ctlr *dma; 383 struct cpdma_chan *txch[CPSW_MAX_QUEUES]; 384 struct cpdma_chan *rxch[CPSW_MAX_QUEUES]; 385 struct cpsw_ale *ale; 386 bool quirk_irq; 387 bool rx_irq_disabled; 388 bool tx_irq_disabled; 389 u32 irqs_table[IRQ_NUM]; 390 struct cpts *cpts; 391 int rx_ch_num, tx_ch_num; 392 }; 393 394 struct cpsw_priv { 395 struct net_device *ndev; 396 struct device *dev; 397 u32 msg_enable; 398 u8 mac_addr[ETH_ALEN]; 399 bool rx_pause; 400 bool tx_pause; 401 u32 emac_port; 402 struct cpsw_common *cpsw; 403 }; 404 405 struct cpsw_stats { 406 char stat_string[ETH_GSTRING_LEN]; 407 int type; 408 int sizeof_stat; 409 int stat_offset; 410 }; 411 412 enum { 413 CPSW_STATS, 414 CPDMA_RX_STATS, 415 CPDMA_TX_STATS, 416 }; 417 418 #define CPSW_STAT(m) CPSW_STATS, \ 419 sizeof(((struct cpsw_hw_stats *)0)->m), \ 420 offsetof(struct cpsw_hw_stats, m) 421 #define CPDMA_RX_STAT(m) CPDMA_RX_STATS, \ 422 sizeof(((struct cpdma_chan_stats *)0)->m), \ 423 offsetof(struct cpdma_chan_stats, m) 424 #define CPDMA_TX_STAT(m) CPDMA_TX_STATS, \ 425 sizeof(((struct cpdma_chan_stats *)0)->m), \ 426 offsetof(struct cpdma_chan_stats, m) 427 428 static const struct cpsw_stats cpsw_gstrings_stats[] = { 429 { "Good Rx Frames", CPSW_STAT(rxgoodframes) }, 430 { "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) }, 431 { "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) }, 432 { "Pause Rx Frames", CPSW_STAT(rxpauseframes) }, 433 { "Rx CRC Errors", CPSW_STAT(rxcrcerrors) }, 434 { "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) }, 435 { "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) }, 436 { "Rx Jabbers", CPSW_STAT(rxjabberframes) }, 437 { "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) }, 438 { "Rx Fragments", CPSW_STAT(rxfragments) }, 439 { "Rx Octets", CPSW_STAT(rxoctets) }, 440 { "Good Tx Frames", CPSW_STAT(txgoodframes) }, 441 { "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) }, 442 { "Multicast Tx Frames", CPSW_STAT(txmulticastframes) }, 443 { "Pause Tx Frames", CPSW_STAT(txpauseframes) }, 444 { "Deferred Tx Frames", CPSW_STAT(txdeferredframes) }, 445 { "Collisions", CPSW_STAT(txcollisionframes) }, 446 { "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) }, 447 { "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) }, 448 { "Excessive Collisions", CPSW_STAT(txexcessivecollisions) }, 449 { "Late Collisions", CPSW_STAT(txlatecollisions) }, 450 { "Tx Underrun", CPSW_STAT(txunderrun) }, 451 { "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) }, 452 { "Tx Octets", CPSW_STAT(txoctets) }, 453 { "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) }, 454 { "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) }, 455 { "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) }, 456 { "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) }, 457 { "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) }, 458 { "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) }, 459 { "Net Octets", CPSW_STAT(netoctets) }, 460 { "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) }, 461 { "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) }, 462 { "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) }, 463 }; 464 465 static const struct cpsw_stats cpsw_gstrings_ch_stats[] = { 466 { "head_enqueue", CPDMA_RX_STAT(head_enqueue) }, 467 { "tail_enqueue", CPDMA_RX_STAT(tail_enqueue) }, 468 { "pad_enqueue", CPDMA_RX_STAT(pad_enqueue) }, 469 { "misqueued", CPDMA_RX_STAT(misqueued) }, 470 { "desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) }, 471 { "pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) }, 472 { "runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) }, 473 { "runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) }, 474 { "empty_dequeue", CPDMA_RX_STAT(empty_dequeue) }, 475 { "busy_dequeue", CPDMA_RX_STAT(busy_dequeue) }, 476 { "good_dequeue", CPDMA_RX_STAT(good_dequeue) }, 477 { "requeue", CPDMA_RX_STAT(requeue) }, 478 { "teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) }, 479 }; 480 481 #define CPSW_STATS_COMMON_LEN ARRAY_SIZE(cpsw_gstrings_stats) 482 #define CPSW_STATS_CH_LEN ARRAY_SIZE(cpsw_gstrings_ch_stats) 483 484 #define ndev_to_cpsw(ndev) (((struct cpsw_priv *)netdev_priv(ndev))->cpsw) 485 #define napi_to_cpsw(napi) container_of(napi, struct cpsw_common, napi) 486 #define for_each_slave(priv, func, arg...) \ 487 do { \ 488 struct cpsw_slave *slave; \ 489 struct cpsw_common *cpsw = (priv)->cpsw; \ 490 int n; \ 491 if (cpsw->data.dual_emac) \ 492 (func)((cpsw)->slaves + priv->emac_port, ##arg);\ 493 else \ 494 for (n = cpsw->data.slaves, \ 495 slave = cpsw->slaves; \ 496 n; n--) \ 497 (func)(slave++, ##arg); \ 498 } while (0) 499 500 #define cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb) \ 501 do { \ 502 if (!cpsw->data.dual_emac) \ 503 break; \ 504 if (CPDMA_RX_SOURCE_PORT(status) == 1) { \ 505 ndev = cpsw->slaves[0].ndev; \ 506 skb->dev = ndev; \ 507 } else if (CPDMA_RX_SOURCE_PORT(status) == 2) { \ 508 ndev = cpsw->slaves[1].ndev; \ 509 skb->dev = ndev; \ 510 } \ 511 } while (0) 512 #define cpsw_add_mcast(cpsw, priv, addr) \ 513 do { \ 514 if (cpsw->data.dual_emac) { \ 515 struct cpsw_slave *slave = cpsw->slaves + \ 516 priv->emac_port; \ 517 int slave_port = cpsw_get_slave_port( \ 518 slave->slave_num); \ 519 cpsw_ale_add_mcast(cpsw->ale, addr, \ 520 1 << slave_port | ALE_PORT_HOST, \ 521 ALE_VLAN, slave->port_vlan, 0); \ 522 } else { \ 523 cpsw_ale_add_mcast(cpsw->ale, addr, \ 524 ALE_ALL_PORTS, \ 525 0, 0, 0); \ 526 } \ 527 } while (0) 528 529 static inline int cpsw_get_slave_port(u32 slave_num) 530 { 531 return slave_num + 1; 532 } 533 534 static void cpsw_set_promiscious(struct net_device *ndev, bool enable) 535 { 536 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 537 struct cpsw_ale *ale = cpsw->ale; 538 int i; 539 540 if (cpsw->data.dual_emac) { 541 bool flag = false; 542 543 /* Enabling promiscuous mode for one interface will be 544 * common for both the interface as the interface shares 545 * the same hardware resource. 546 */ 547 for (i = 0; i < cpsw->data.slaves; i++) 548 if (cpsw->slaves[i].ndev->flags & IFF_PROMISC) 549 flag = true; 550 551 if (!enable && flag) { 552 enable = true; 553 dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n"); 554 } 555 556 if (enable) { 557 /* Enable Bypass */ 558 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1); 559 560 dev_dbg(&ndev->dev, "promiscuity enabled\n"); 561 } else { 562 /* Disable Bypass */ 563 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0); 564 dev_dbg(&ndev->dev, "promiscuity disabled\n"); 565 } 566 } else { 567 if (enable) { 568 unsigned long timeout = jiffies + HZ; 569 570 /* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */ 571 for (i = 0; i <= cpsw->data.slaves; i++) { 572 cpsw_ale_control_set(ale, i, 573 ALE_PORT_NOLEARN, 1); 574 cpsw_ale_control_set(ale, i, 575 ALE_PORT_NO_SA_UPDATE, 1); 576 } 577 578 /* Clear All Untouched entries */ 579 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1); 580 do { 581 cpu_relax(); 582 if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT)) 583 break; 584 } while (time_after(timeout, jiffies)); 585 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1); 586 587 /* Clear all mcast from ALE */ 588 cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS, -1); 589 590 /* Flood All Unicast Packets to Host port */ 591 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1); 592 dev_dbg(&ndev->dev, "promiscuity enabled\n"); 593 } else { 594 /* Don't Flood All Unicast Packets to Host port */ 595 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0); 596 597 /* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */ 598 for (i = 0; i <= cpsw->data.slaves; i++) { 599 cpsw_ale_control_set(ale, i, 600 ALE_PORT_NOLEARN, 0); 601 cpsw_ale_control_set(ale, i, 602 ALE_PORT_NO_SA_UPDATE, 0); 603 } 604 dev_dbg(&ndev->dev, "promiscuity disabled\n"); 605 } 606 } 607 } 608 609 static void cpsw_ndo_set_rx_mode(struct net_device *ndev) 610 { 611 struct cpsw_priv *priv = netdev_priv(ndev); 612 struct cpsw_common *cpsw = priv->cpsw; 613 int vid; 614 615 if (cpsw->data.dual_emac) 616 vid = cpsw->slaves[priv->emac_port].port_vlan; 617 else 618 vid = cpsw->data.default_vlan; 619 620 if (ndev->flags & IFF_PROMISC) { 621 /* Enable promiscuous mode */ 622 cpsw_set_promiscious(ndev, true); 623 cpsw_ale_set_allmulti(cpsw->ale, IFF_ALLMULTI); 624 return; 625 } else { 626 /* Disable promiscuous mode */ 627 cpsw_set_promiscious(ndev, false); 628 } 629 630 /* Restore allmulti on vlans if necessary */ 631 cpsw_ale_set_allmulti(cpsw->ale, priv->ndev->flags & IFF_ALLMULTI); 632 633 /* Clear all mcast from ALE */ 634 cpsw_ale_flush_multicast(cpsw->ale, ALE_ALL_PORTS, vid); 635 636 if (!netdev_mc_empty(ndev)) { 637 struct netdev_hw_addr *ha; 638 639 /* program multicast address list into ALE register */ 640 netdev_for_each_mc_addr(ha, ndev) { 641 cpsw_add_mcast(cpsw, priv, (u8 *)ha->addr); 642 } 643 } 644 } 645 646 static void cpsw_intr_enable(struct cpsw_common *cpsw) 647 { 648 __raw_writel(0xFF, &cpsw->wr_regs->tx_en); 649 __raw_writel(0xFF, &cpsw->wr_regs->rx_en); 650 651 cpdma_ctlr_int_ctrl(cpsw->dma, true); 652 return; 653 } 654 655 static void cpsw_intr_disable(struct cpsw_common *cpsw) 656 { 657 __raw_writel(0, &cpsw->wr_regs->tx_en); 658 __raw_writel(0, &cpsw->wr_regs->rx_en); 659 660 cpdma_ctlr_int_ctrl(cpsw->dma, false); 661 return; 662 } 663 664 static void cpsw_tx_handler(void *token, int len, int status) 665 { 666 struct netdev_queue *txq; 667 struct sk_buff *skb = token; 668 struct net_device *ndev = skb->dev; 669 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 670 671 /* Check whether the queue is stopped due to stalled tx dma, if the 672 * queue is stopped then start the queue as we have free desc for tx 673 */ 674 txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb)); 675 if (unlikely(netif_tx_queue_stopped(txq))) 676 netif_tx_wake_queue(txq); 677 678 cpts_tx_timestamp(cpsw->cpts, skb); 679 ndev->stats.tx_packets++; 680 ndev->stats.tx_bytes += len; 681 dev_kfree_skb_any(skb); 682 } 683 684 static void cpsw_rx_handler(void *token, int len, int status) 685 { 686 struct cpdma_chan *ch; 687 struct sk_buff *skb = token; 688 struct sk_buff *new_skb; 689 struct net_device *ndev = skb->dev; 690 int ret = 0; 691 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 692 693 cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb); 694 695 if (unlikely(status < 0) || unlikely(!netif_running(ndev))) { 696 bool ndev_status = false; 697 struct cpsw_slave *slave = cpsw->slaves; 698 int n; 699 700 if (cpsw->data.dual_emac) { 701 /* In dual emac mode check for all interfaces */ 702 for (n = cpsw->data.slaves; n; n--, slave++) 703 if (netif_running(slave->ndev)) 704 ndev_status = true; 705 } 706 707 if (ndev_status && (status >= 0)) { 708 /* The packet received is for the interface which 709 * is already down and the other interface is up 710 * and running, instead of freeing which results 711 * in reducing of the number of rx descriptor in 712 * DMA engine, requeue skb back to cpdma. 713 */ 714 new_skb = skb; 715 goto requeue; 716 } 717 718 /* the interface is going down, skbs are purged */ 719 dev_kfree_skb_any(skb); 720 return; 721 } 722 723 new_skb = netdev_alloc_skb_ip_align(ndev, cpsw->rx_packet_max); 724 if (new_skb) { 725 skb_copy_queue_mapping(new_skb, skb); 726 skb_put(skb, len); 727 cpts_rx_timestamp(cpsw->cpts, skb); 728 skb->protocol = eth_type_trans(skb, ndev); 729 netif_receive_skb(skb); 730 ndev->stats.rx_bytes += len; 731 ndev->stats.rx_packets++; 732 kmemleak_not_leak(new_skb); 733 } else { 734 ndev->stats.rx_dropped++; 735 new_skb = skb; 736 } 737 738 requeue: 739 if (netif_dormant(ndev)) { 740 dev_kfree_skb_any(new_skb); 741 return; 742 } 743 744 ch = cpsw->rxch[skb_get_queue_mapping(new_skb)]; 745 ret = cpdma_chan_submit(ch, new_skb, new_skb->data, 746 skb_tailroom(new_skb), 0); 747 if (WARN_ON(ret < 0)) 748 dev_kfree_skb_any(new_skb); 749 } 750 751 static irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id) 752 { 753 struct cpsw_common *cpsw = dev_id; 754 755 writel(0, &cpsw->wr_regs->tx_en); 756 cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_TX); 757 758 if (cpsw->quirk_irq) { 759 disable_irq_nosync(cpsw->irqs_table[1]); 760 cpsw->tx_irq_disabled = true; 761 } 762 763 napi_schedule(&cpsw->napi_tx); 764 return IRQ_HANDLED; 765 } 766 767 static irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id) 768 { 769 struct cpsw_common *cpsw = dev_id; 770 771 cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_RX); 772 writel(0, &cpsw->wr_regs->rx_en); 773 774 if (cpsw->quirk_irq) { 775 disable_irq_nosync(cpsw->irqs_table[0]); 776 cpsw->rx_irq_disabled = true; 777 } 778 779 napi_schedule(&cpsw->napi_rx); 780 return IRQ_HANDLED; 781 } 782 783 static int cpsw_tx_poll(struct napi_struct *napi_tx, int budget) 784 { 785 u32 ch_map; 786 int num_tx, ch; 787 struct cpsw_common *cpsw = napi_to_cpsw(napi_tx); 788 789 /* process every unprocessed channel */ 790 ch_map = cpdma_ctrl_txchs_state(cpsw->dma); 791 for (ch = 0, num_tx = 0; num_tx < budget; ch_map >>= 1, ch++) { 792 if (!ch_map) { 793 ch_map = cpdma_ctrl_txchs_state(cpsw->dma); 794 if (!ch_map) 795 break; 796 797 ch = 0; 798 } 799 800 if (!(ch_map & 0x01)) 801 continue; 802 803 num_tx += cpdma_chan_process(cpsw->txch[ch], budget - num_tx); 804 } 805 806 if (num_tx < budget) { 807 napi_complete(napi_tx); 808 writel(0xff, &cpsw->wr_regs->tx_en); 809 if (cpsw->quirk_irq && cpsw->tx_irq_disabled) { 810 cpsw->tx_irq_disabled = false; 811 enable_irq(cpsw->irqs_table[1]); 812 } 813 } 814 815 return num_tx; 816 } 817 818 static int cpsw_rx_poll(struct napi_struct *napi_rx, int budget) 819 { 820 u32 ch_map; 821 int num_rx, ch; 822 struct cpsw_common *cpsw = napi_to_cpsw(napi_rx); 823 824 /* process every unprocessed channel */ 825 ch_map = cpdma_ctrl_rxchs_state(cpsw->dma); 826 for (ch = 0, num_rx = 0; num_rx < budget; ch_map >>= 1, ch++) { 827 if (!ch_map) { 828 ch_map = cpdma_ctrl_rxchs_state(cpsw->dma); 829 if (!ch_map) 830 break; 831 832 ch = 0; 833 } 834 835 if (!(ch_map & 0x01)) 836 continue; 837 838 num_rx += cpdma_chan_process(cpsw->rxch[ch], budget - num_rx); 839 } 840 841 if (num_rx < budget) { 842 napi_complete(napi_rx); 843 writel(0xff, &cpsw->wr_regs->rx_en); 844 if (cpsw->quirk_irq && cpsw->rx_irq_disabled) { 845 cpsw->rx_irq_disabled = false; 846 enable_irq(cpsw->irqs_table[0]); 847 } 848 } 849 850 return num_rx; 851 } 852 853 static inline void soft_reset(const char *module, void __iomem *reg) 854 { 855 unsigned long timeout = jiffies + HZ; 856 857 __raw_writel(1, reg); 858 do { 859 cpu_relax(); 860 } while ((__raw_readl(reg) & 1) && time_after(timeout, jiffies)); 861 862 WARN(__raw_readl(reg) & 1, "failed to soft-reset %s\n", module); 863 } 864 865 #define mac_hi(mac) (((mac)[0] << 0) | ((mac)[1] << 8) | \ 866 ((mac)[2] << 16) | ((mac)[3] << 24)) 867 #define mac_lo(mac) (((mac)[4] << 0) | ((mac)[5] << 8)) 868 869 static void cpsw_set_slave_mac(struct cpsw_slave *slave, 870 struct cpsw_priv *priv) 871 { 872 slave_write(slave, mac_hi(priv->mac_addr), SA_HI); 873 slave_write(slave, mac_lo(priv->mac_addr), SA_LO); 874 } 875 876 static void _cpsw_adjust_link(struct cpsw_slave *slave, 877 struct cpsw_priv *priv, bool *link) 878 { 879 struct phy_device *phy = slave->phy; 880 u32 mac_control = 0; 881 u32 slave_port; 882 struct cpsw_common *cpsw = priv->cpsw; 883 884 if (!phy) 885 return; 886 887 slave_port = cpsw_get_slave_port(slave->slave_num); 888 889 if (phy->link) { 890 mac_control = cpsw->data.mac_control; 891 892 /* enable forwarding */ 893 cpsw_ale_control_set(cpsw->ale, slave_port, 894 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD); 895 896 if (phy->speed == 1000) 897 mac_control |= BIT(7); /* GIGABITEN */ 898 if (phy->duplex) 899 mac_control |= BIT(0); /* FULLDUPLEXEN */ 900 901 /* set speed_in input in case RMII mode is used in 100Mbps */ 902 if (phy->speed == 100) 903 mac_control |= BIT(15); 904 else if (phy->speed == 10) 905 mac_control |= BIT(18); /* In Band mode */ 906 907 if (priv->rx_pause) 908 mac_control |= BIT(3); 909 910 if (priv->tx_pause) 911 mac_control |= BIT(4); 912 913 *link = true; 914 } else { 915 mac_control = 0; 916 /* disable forwarding */ 917 cpsw_ale_control_set(cpsw->ale, slave_port, 918 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE); 919 } 920 921 if (mac_control != slave->mac_control) { 922 phy_print_status(phy); 923 __raw_writel(mac_control, &slave->sliver->mac_control); 924 } 925 926 slave->mac_control = mac_control; 927 } 928 929 static void cpsw_adjust_link(struct net_device *ndev) 930 { 931 struct cpsw_priv *priv = netdev_priv(ndev); 932 bool link = false; 933 934 for_each_slave(priv, _cpsw_adjust_link, priv, &link); 935 936 if (link) { 937 netif_carrier_on(ndev); 938 if (netif_running(ndev)) 939 netif_tx_wake_all_queues(ndev); 940 } else { 941 netif_carrier_off(ndev); 942 netif_tx_stop_all_queues(ndev); 943 } 944 } 945 946 static int cpsw_get_coalesce(struct net_device *ndev, 947 struct ethtool_coalesce *coal) 948 { 949 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 950 951 coal->rx_coalesce_usecs = cpsw->coal_intvl; 952 return 0; 953 } 954 955 static int cpsw_set_coalesce(struct net_device *ndev, 956 struct ethtool_coalesce *coal) 957 { 958 struct cpsw_priv *priv = netdev_priv(ndev); 959 u32 int_ctrl; 960 u32 num_interrupts = 0; 961 u32 prescale = 0; 962 u32 addnl_dvdr = 1; 963 u32 coal_intvl = 0; 964 struct cpsw_common *cpsw = priv->cpsw; 965 966 coal_intvl = coal->rx_coalesce_usecs; 967 968 int_ctrl = readl(&cpsw->wr_regs->int_control); 969 prescale = cpsw->bus_freq_mhz * 4; 970 971 if (!coal->rx_coalesce_usecs) { 972 int_ctrl &= ~(CPSW_INTPRESCALE_MASK | CPSW_INTPACEEN); 973 goto update_return; 974 } 975 976 if (coal_intvl < CPSW_CMINTMIN_INTVL) 977 coal_intvl = CPSW_CMINTMIN_INTVL; 978 979 if (coal_intvl > CPSW_CMINTMAX_INTVL) { 980 /* Interrupt pacer works with 4us Pulse, we can 981 * throttle further by dilating the 4us pulse. 982 */ 983 addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale; 984 985 if (addnl_dvdr > 1) { 986 prescale *= addnl_dvdr; 987 if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr)) 988 coal_intvl = (CPSW_CMINTMAX_INTVL 989 * addnl_dvdr); 990 } else { 991 addnl_dvdr = 1; 992 coal_intvl = CPSW_CMINTMAX_INTVL; 993 } 994 } 995 996 num_interrupts = (1000 * addnl_dvdr) / coal_intvl; 997 writel(num_interrupts, &cpsw->wr_regs->rx_imax); 998 writel(num_interrupts, &cpsw->wr_regs->tx_imax); 999 1000 int_ctrl |= CPSW_INTPACEEN; 1001 int_ctrl &= (~CPSW_INTPRESCALE_MASK); 1002 int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK); 1003 1004 update_return: 1005 writel(int_ctrl, &cpsw->wr_regs->int_control); 1006 1007 cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl); 1008 cpsw->coal_intvl = coal_intvl; 1009 1010 return 0; 1011 } 1012 1013 static int cpsw_get_sset_count(struct net_device *ndev, int sset) 1014 { 1015 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1016 1017 switch (sset) { 1018 case ETH_SS_STATS: 1019 return (CPSW_STATS_COMMON_LEN + 1020 (cpsw->rx_ch_num + cpsw->tx_ch_num) * 1021 CPSW_STATS_CH_LEN); 1022 default: 1023 return -EOPNOTSUPP; 1024 } 1025 } 1026 1027 static void cpsw_add_ch_strings(u8 **p, int ch_num, int rx_dir) 1028 { 1029 int ch_stats_len; 1030 int line; 1031 int i; 1032 1033 ch_stats_len = CPSW_STATS_CH_LEN * ch_num; 1034 for (i = 0; i < ch_stats_len; i++) { 1035 line = i % CPSW_STATS_CH_LEN; 1036 snprintf(*p, ETH_GSTRING_LEN, 1037 "%s DMA chan %d: %s", rx_dir ? "Rx" : "Tx", 1038 i / CPSW_STATS_CH_LEN, 1039 cpsw_gstrings_ch_stats[line].stat_string); 1040 *p += ETH_GSTRING_LEN; 1041 } 1042 } 1043 1044 static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data) 1045 { 1046 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1047 u8 *p = data; 1048 int i; 1049 1050 switch (stringset) { 1051 case ETH_SS_STATS: 1052 for (i = 0; i < CPSW_STATS_COMMON_LEN; i++) { 1053 memcpy(p, cpsw_gstrings_stats[i].stat_string, 1054 ETH_GSTRING_LEN); 1055 p += ETH_GSTRING_LEN; 1056 } 1057 1058 cpsw_add_ch_strings(&p, cpsw->rx_ch_num, 1); 1059 cpsw_add_ch_strings(&p, cpsw->tx_ch_num, 0); 1060 break; 1061 } 1062 } 1063 1064 static void cpsw_get_ethtool_stats(struct net_device *ndev, 1065 struct ethtool_stats *stats, u64 *data) 1066 { 1067 u8 *p; 1068 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1069 struct cpdma_chan_stats ch_stats; 1070 int i, l, ch; 1071 1072 /* Collect Davinci CPDMA stats for Rx and Tx Channel */ 1073 for (l = 0; l < CPSW_STATS_COMMON_LEN; l++) 1074 data[l] = readl(cpsw->hw_stats + 1075 cpsw_gstrings_stats[l].stat_offset); 1076 1077 for (ch = 0; ch < cpsw->rx_ch_num; ch++) { 1078 cpdma_chan_get_stats(cpsw->rxch[ch], &ch_stats); 1079 for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) { 1080 p = (u8 *)&ch_stats + 1081 cpsw_gstrings_ch_stats[i].stat_offset; 1082 data[l] = *(u32 *)p; 1083 } 1084 } 1085 1086 for (ch = 0; ch < cpsw->tx_ch_num; ch++) { 1087 cpdma_chan_get_stats(cpsw->txch[ch], &ch_stats); 1088 for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) { 1089 p = (u8 *)&ch_stats + 1090 cpsw_gstrings_ch_stats[i].stat_offset; 1091 data[l] = *(u32 *)p; 1092 } 1093 } 1094 } 1095 1096 static int cpsw_common_res_usage_state(struct cpsw_common *cpsw) 1097 { 1098 u32 i; 1099 u32 usage_count = 0; 1100 1101 if (!cpsw->data.dual_emac) 1102 return 0; 1103 1104 for (i = 0; i < cpsw->data.slaves; i++) 1105 if (cpsw->slaves[i].open_stat) 1106 usage_count++; 1107 1108 return usage_count; 1109 } 1110 1111 static inline int cpsw_tx_packet_submit(struct cpsw_priv *priv, 1112 struct sk_buff *skb, 1113 struct cpdma_chan *txch) 1114 { 1115 struct cpsw_common *cpsw = priv->cpsw; 1116 1117 return cpdma_chan_submit(txch, skb, skb->data, skb->len, 1118 priv->emac_port + cpsw->data.dual_emac); 1119 } 1120 1121 static inline void cpsw_add_dual_emac_def_ale_entries( 1122 struct cpsw_priv *priv, struct cpsw_slave *slave, 1123 u32 slave_port) 1124 { 1125 struct cpsw_common *cpsw = priv->cpsw; 1126 u32 port_mask = 1 << slave_port | ALE_PORT_HOST; 1127 1128 if (cpsw->version == CPSW_VERSION_1) 1129 slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN); 1130 else 1131 slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN); 1132 cpsw_ale_add_vlan(cpsw->ale, slave->port_vlan, port_mask, 1133 port_mask, port_mask, 0); 1134 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, 1135 port_mask, ALE_VLAN, slave->port_vlan, 0); 1136 cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, 1137 HOST_PORT_NUM, ALE_VLAN | 1138 ALE_SECURE, slave->port_vlan); 1139 } 1140 1141 static void soft_reset_slave(struct cpsw_slave *slave) 1142 { 1143 char name[32]; 1144 1145 snprintf(name, sizeof(name), "slave-%d", slave->slave_num); 1146 soft_reset(name, &slave->sliver->soft_reset); 1147 } 1148 1149 static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv) 1150 { 1151 u32 slave_port; 1152 struct cpsw_common *cpsw = priv->cpsw; 1153 1154 soft_reset_slave(slave); 1155 1156 /* setup priority mapping */ 1157 __raw_writel(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map); 1158 1159 switch (cpsw->version) { 1160 case CPSW_VERSION_1: 1161 slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP); 1162 break; 1163 case CPSW_VERSION_2: 1164 case CPSW_VERSION_3: 1165 case CPSW_VERSION_4: 1166 slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP); 1167 break; 1168 } 1169 1170 /* setup max packet size, and mac address */ 1171 __raw_writel(cpsw->rx_packet_max, &slave->sliver->rx_maxlen); 1172 cpsw_set_slave_mac(slave, priv); 1173 1174 slave->mac_control = 0; /* no link yet */ 1175 1176 slave_port = cpsw_get_slave_port(slave->slave_num); 1177 1178 if (cpsw->data.dual_emac) 1179 cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port); 1180 else 1181 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, 1182 1 << slave_port, 0, 0, ALE_MCAST_FWD_2); 1183 1184 if (slave->data->phy_node) { 1185 slave->phy = of_phy_connect(priv->ndev, slave->data->phy_node, 1186 &cpsw_adjust_link, 0, slave->data->phy_if); 1187 if (!slave->phy) { 1188 dev_err(priv->dev, "phy \"%s\" not found on slave %d\n", 1189 slave->data->phy_node->full_name, 1190 slave->slave_num); 1191 return; 1192 } 1193 } else { 1194 slave->phy = phy_connect(priv->ndev, slave->data->phy_id, 1195 &cpsw_adjust_link, slave->data->phy_if); 1196 if (IS_ERR(slave->phy)) { 1197 dev_err(priv->dev, 1198 "phy \"%s\" not found on slave %d, err %ld\n", 1199 slave->data->phy_id, slave->slave_num, 1200 PTR_ERR(slave->phy)); 1201 slave->phy = NULL; 1202 return; 1203 } 1204 } 1205 1206 phy_attached_info(slave->phy); 1207 1208 phy_start(slave->phy); 1209 1210 /* Configure GMII_SEL register */ 1211 cpsw_phy_sel(cpsw->dev, slave->phy->interface, slave->slave_num); 1212 } 1213 1214 static inline void cpsw_add_default_vlan(struct cpsw_priv *priv) 1215 { 1216 struct cpsw_common *cpsw = priv->cpsw; 1217 const int vlan = cpsw->data.default_vlan; 1218 u32 reg; 1219 int i; 1220 int unreg_mcast_mask; 1221 1222 reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN : 1223 CPSW2_PORT_VLAN; 1224 1225 writel(vlan, &cpsw->host_port_regs->port_vlan); 1226 1227 for (i = 0; i < cpsw->data.slaves; i++) 1228 slave_write(cpsw->slaves + i, vlan, reg); 1229 1230 if (priv->ndev->flags & IFF_ALLMULTI) 1231 unreg_mcast_mask = ALE_ALL_PORTS; 1232 else 1233 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2; 1234 1235 cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS, 1236 ALE_ALL_PORTS, ALE_ALL_PORTS, 1237 unreg_mcast_mask); 1238 } 1239 1240 static void cpsw_init_host_port(struct cpsw_priv *priv) 1241 { 1242 u32 fifo_mode; 1243 u32 control_reg; 1244 struct cpsw_common *cpsw = priv->cpsw; 1245 1246 /* soft reset the controller and initialize ale */ 1247 soft_reset("cpsw", &cpsw->regs->soft_reset); 1248 cpsw_ale_start(cpsw->ale); 1249 1250 /* switch to vlan unaware mode */ 1251 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_VLAN_AWARE, 1252 CPSW_ALE_VLAN_AWARE); 1253 control_reg = readl(&cpsw->regs->control); 1254 control_reg |= CPSW_VLAN_AWARE; 1255 writel(control_reg, &cpsw->regs->control); 1256 fifo_mode = (cpsw->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE : 1257 CPSW_FIFO_NORMAL_MODE; 1258 writel(fifo_mode, &cpsw->host_port_regs->tx_in_ctl); 1259 1260 /* setup host port priority mapping */ 1261 __raw_writel(CPDMA_TX_PRIORITY_MAP, 1262 &cpsw->host_port_regs->cpdma_tx_pri_map); 1263 __raw_writel(0, &cpsw->host_port_regs->cpdma_rx_chan_map); 1264 1265 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, 1266 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD); 1267 1268 if (!cpsw->data.dual_emac) { 1269 cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM, 1270 0, 0); 1271 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, 1272 ALE_PORT_HOST, 0, 0, ALE_MCAST_FWD_2); 1273 } 1274 } 1275 1276 static int cpsw_fill_rx_channels(struct cpsw_priv *priv) 1277 { 1278 struct cpsw_common *cpsw = priv->cpsw; 1279 struct sk_buff *skb; 1280 int ch_buf_num; 1281 int ch, i, ret; 1282 1283 for (ch = 0; ch < cpsw->rx_ch_num; ch++) { 1284 ch_buf_num = cpdma_chan_get_rx_buf_num(cpsw->rxch[ch]); 1285 for (i = 0; i < ch_buf_num; i++) { 1286 skb = __netdev_alloc_skb_ip_align(priv->ndev, 1287 cpsw->rx_packet_max, 1288 GFP_KERNEL); 1289 if (!skb) { 1290 cpsw_err(priv, ifup, "cannot allocate skb\n"); 1291 return -ENOMEM; 1292 } 1293 1294 skb_set_queue_mapping(skb, ch); 1295 ret = cpdma_chan_submit(cpsw->rxch[ch], skb, skb->data, 1296 skb_tailroom(skb), 0); 1297 if (ret < 0) { 1298 cpsw_err(priv, ifup, 1299 "cannot submit skb to channel %d rx, error %d\n", 1300 ch, ret); 1301 kfree_skb(skb); 1302 return ret; 1303 } 1304 kmemleak_not_leak(skb); 1305 } 1306 1307 cpsw_info(priv, ifup, "ch %d rx, submitted %d descriptors\n", 1308 ch, ch_buf_num); 1309 } 1310 1311 return 0; 1312 } 1313 1314 static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_common *cpsw) 1315 { 1316 u32 slave_port; 1317 1318 slave_port = cpsw_get_slave_port(slave->slave_num); 1319 1320 if (!slave->phy) 1321 return; 1322 phy_stop(slave->phy); 1323 phy_disconnect(slave->phy); 1324 slave->phy = NULL; 1325 cpsw_ale_control_set(cpsw->ale, slave_port, 1326 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE); 1327 soft_reset_slave(slave); 1328 } 1329 1330 static int cpsw_ndo_open(struct net_device *ndev) 1331 { 1332 struct cpsw_priv *priv = netdev_priv(ndev); 1333 struct cpsw_common *cpsw = priv->cpsw; 1334 int ret; 1335 u32 reg; 1336 1337 ret = pm_runtime_get_sync(cpsw->dev); 1338 if (ret < 0) { 1339 pm_runtime_put_noidle(cpsw->dev); 1340 return ret; 1341 } 1342 1343 if (!cpsw_common_res_usage_state(cpsw)) 1344 cpsw_intr_disable(cpsw); 1345 netif_carrier_off(ndev); 1346 1347 /* Notify the stack of the actual queue counts. */ 1348 ret = netif_set_real_num_tx_queues(ndev, cpsw->tx_ch_num); 1349 if (ret) { 1350 dev_err(priv->dev, "cannot set real number of tx queues\n"); 1351 goto err_cleanup; 1352 } 1353 1354 ret = netif_set_real_num_rx_queues(ndev, cpsw->rx_ch_num); 1355 if (ret) { 1356 dev_err(priv->dev, "cannot set real number of rx queues\n"); 1357 goto err_cleanup; 1358 } 1359 1360 reg = cpsw->version; 1361 1362 dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n", 1363 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg), 1364 CPSW_RTL_VERSION(reg)); 1365 1366 /* initialize host and slave ports */ 1367 if (!cpsw_common_res_usage_state(cpsw)) 1368 cpsw_init_host_port(priv); 1369 for_each_slave(priv, cpsw_slave_open, priv); 1370 1371 /* Add default VLAN */ 1372 if (!cpsw->data.dual_emac) 1373 cpsw_add_default_vlan(priv); 1374 else 1375 cpsw_ale_add_vlan(cpsw->ale, cpsw->data.default_vlan, 1376 ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0); 1377 1378 if (!cpsw_common_res_usage_state(cpsw)) { 1379 /* setup tx dma to fixed prio and zero offset */ 1380 cpdma_control_set(cpsw->dma, CPDMA_TX_PRIO_FIXED, 1); 1381 cpdma_control_set(cpsw->dma, CPDMA_RX_BUFFER_OFFSET, 0); 1382 1383 /* disable priority elevation */ 1384 __raw_writel(0, &cpsw->regs->ptype); 1385 1386 /* enable statistics collection only on all ports */ 1387 __raw_writel(0x7, &cpsw->regs->stat_port_en); 1388 1389 /* Enable internal fifo flow control */ 1390 writel(0x7, &cpsw->regs->flow_control); 1391 1392 napi_enable(&cpsw->napi_rx); 1393 napi_enable(&cpsw->napi_tx); 1394 1395 if (cpsw->tx_irq_disabled) { 1396 cpsw->tx_irq_disabled = false; 1397 enable_irq(cpsw->irqs_table[1]); 1398 } 1399 1400 if (cpsw->rx_irq_disabled) { 1401 cpsw->rx_irq_disabled = false; 1402 enable_irq(cpsw->irqs_table[0]); 1403 } 1404 1405 ret = cpsw_fill_rx_channels(priv); 1406 if (ret < 0) 1407 goto err_cleanup; 1408 1409 if (cpts_register(cpsw->dev, cpsw->cpts, 1410 cpsw->data.cpts_clock_mult, 1411 cpsw->data.cpts_clock_shift)) 1412 dev_err(priv->dev, "error registering cpts device\n"); 1413 1414 } 1415 1416 /* Enable Interrupt pacing if configured */ 1417 if (cpsw->coal_intvl != 0) { 1418 struct ethtool_coalesce coal; 1419 1420 coal.rx_coalesce_usecs = cpsw->coal_intvl; 1421 cpsw_set_coalesce(ndev, &coal); 1422 } 1423 1424 cpdma_ctlr_start(cpsw->dma); 1425 cpsw_intr_enable(cpsw); 1426 1427 if (cpsw->data.dual_emac) 1428 cpsw->slaves[priv->emac_port].open_stat = true; 1429 1430 netif_tx_start_all_queues(ndev); 1431 1432 return 0; 1433 1434 err_cleanup: 1435 cpdma_ctlr_stop(cpsw->dma); 1436 for_each_slave(priv, cpsw_slave_stop, cpsw); 1437 pm_runtime_put_sync(cpsw->dev); 1438 netif_carrier_off(priv->ndev); 1439 return ret; 1440 } 1441 1442 static int cpsw_ndo_stop(struct net_device *ndev) 1443 { 1444 struct cpsw_priv *priv = netdev_priv(ndev); 1445 struct cpsw_common *cpsw = priv->cpsw; 1446 1447 cpsw_info(priv, ifdown, "shutting down cpsw device\n"); 1448 netif_tx_stop_all_queues(priv->ndev); 1449 netif_carrier_off(priv->ndev); 1450 1451 if (cpsw_common_res_usage_state(cpsw) <= 1) { 1452 napi_disable(&cpsw->napi_rx); 1453 napi_disable(&cpsw->napi_tx); 1454 cpts_unregister(cpsw->cpts); 1455 cpsw_intr_disable(cpsw); 1456 cpdma_ctlr_stop(cpsw->dma); 1457 cpsw_ale_stop(cpsw->ale); 1458 } 1459 for_each_slave(priv, cpsw_slave_stop, cpsw); 1460 pm_runtime_put_sync(cpsw->dev); 1461 if (cpsw->data.dual_emac) 1462 cpsw->slaves[priv->emac_port].open_stat = false; 1463 return 0; 1464 } 1465 1466 static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb, 1467 struct net_device *ndev) 1468 { 1469 struct cpsw_priv *priv = netdev_priv(ndev); 1470 struct cpsw_common *cpsw = priv->cpsw; 1471 struct netdev_queue *txq; 1472 struct cpdma_chan *txch; 1473 int ret, q_idx; 1474 1475 netif_trans_update(ndev); 1476 1477 if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) { 1478 cpsw_err(priv, tx_err, "packet pad failed\n"); 1479 ndev->stats.tx_dropped++; 1480 return NETDEV_TX_OK; 1481 } 1482 1483 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && 1484 cpsw->cpts->tx_enable) 1485 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1486 1487 skb_tx_timestamp(skb); 1488 1489 q_idx = skb_get_queue_mapping(skb); 1490 if (q_idx >= cpsw->tx_ch_num) 1491 q_idx = q_idx % cpsw->tx_ch_num; 1492 1493 txch = cpsw->txch[q_idx]; 1494 ret = cpsw_tx_packet_submit(priv, skb, txch); 1495 if (unlikely(ret != 0)) { 1496 cpsw_err(priv, tx_err, "desc submit failed\n"); 1497 goto fail; 1498 } 1499 1500 /* If there is no more tx desc left free then we need to 1501 * tell the kernel to stop sending us tx frames. 1502 */ 1503 if (unlikely(!cpdma_check_free_tx_desc(txch))) { 1504 txq = netdev_get_tx_queue(ndev, q_idx); 1505 netif_tx_stop_queue(txq); 1506 } 1507 1508 return NETDEV_TX_OK; 1509 fail: 1510 ndev->stats.tx_dropped++; 1511 txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb)); 1512 netif_tx_stop_queue(txq); 1513 return NETDEV_TX_BUSY; 1514 } 1515 1516 #ifdef CONFIG_TI_CPTS 1517 1518 static void cpsw_hwtstamp_v1(struct cpsw_common *cpsw) 1519 { 1520 struct cpsw_slave *slave = &cpsw->slaves[cpsw->data.active_slave]; 1521 u32 ts_en, seq_id; 1522 1523 if (!cpsw->cpts->tx_enable && !cpsw->cpts->rx_enable) { 1524 slave_write(slave, 0, CPSW1_TS_CTL); 1525 return; 1526 } 1527 1528 seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588; 1529 ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS; 1530 1531 if (cpsw->cpts->tx_enable) 1532 ts_en |= CPSW_V1_TS_TX_EN; 1533 1534 if (cpsw->cpts->rx_enable) 1535 ts_en |= CPSW_V1_TS_RX_EN; 1536 1537 slave_write(slave, ts_en, CPSW1_TS_CTL); 1538 slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE); 1539 } 1540 1541 static void cpsw_hwtstamp_v2(struct cpsw_priv *priv) 1542 { 1543 struct cpsw_slave *slave; 1544 struct cpsw_common *cpsw = priv->cpsw; 1545 u32 ctrl, mtype; 1546 1547 if (cpsw->data.dual_emac) 1548 slave = &cpsw->slaves[priv->emac_port]; 1549 else 1550 slave = &cpsw->slaves[cpsw->data.active_slave]; 1551 1552 ctrl = slave_read(slave, CPSW2_CONTROL); 1553 switch (cpsw->version) { 1554 case CPSW_VERSION_2: 1555 ctrl &= ~CTRL_V2_ALL_TS_MASK; 1556 1557 if (cpsw->cpts->tx_enable) 1558 ctrl |= CTRL_V2_TX_TS_BITS; 1559 1560 if (cpsw->cpts->rx_enable) 1561 ctrl |= CTRL_V2_RX_TS_BITS; 1562 break; 1563 case CPSW_VERSION_3: 1564 default: 1565 ctrl &= ~CTRL_V3_ALL_TS_MASK; 1566 1567 if (cpsw->cpts->tx_enable) 1568 ctrl |= CTRL_V3_TX_TS_BITS; 1569 1570 if (cpsw->cpts->rx_enable) 1571 ctrl |= CTRL_V3_RX_TS_BITS; 1572 break; 1573 } 1574 1575 mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS; 1576 1577 slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE); 1578 slave_write(slave, ctrl, CPSW2_CONTROL); 1579 __raw_writel(ETH_P_1588, &cpsw->regs->ts_ltype); 1580 } 1581 1582 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr) 1583 { 1584 struct cpsw_priv *priv = netdev_priv(dev); 1585 struct hwtstamp_config cfg; 1586 struct cpsw_common *cpsw = priv->cpsw; 1587 struct cpts *cpts = cpsw->cpts; 1588 1589 if (cpsw->version != CPSW_VERSION_1 && 1590 cpsw->version != CPSW_VERSION_2 && 1591 cpsw->version != CPSW_VERSION_3) 1592 return -EOPNOTSUPP; 1593 1594 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg))) 1595 return -EFAULT; 1596 1597 /* reserved for future extensions */ 1598 if (cfg.flags) 1599 return -EINVAL; 1600 1601 if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON) 1602 return -ERANGE; 1603 1604 switch (cfg.rx_filter) { 1605 case HWTSTAMP_FILTER_NONE: 1606 cpts->rx_enable = 0; 1607 break; 1608 case HWTSTAMP_FILTER_ALL: 1609 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 1610 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 1611 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 1612 return -ERANGE; 1613 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 1614 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 1615 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 1616 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 1617 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 1618 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 1619 case HWTSTAMP_FILTER_PTP_V2_EVENT: 1620 case HWTSTAMP_FILTER_PTP_V2_SYNC: 1621 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 1622 cpts->rx_enable = 1; 1623 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 1624 break; 1625 default: 1626 return -ERANGE; 1627 } 1628 1629 cpts->tx_enable = cfg.tx_type == HWTSTAMP_TX_ON; 1630 1631 switch (cpsw->version) { 1632 case CPSW_VERSION_1: 1633 cpsw_hwtstamp_v1(cpsw); 1634 break; 1635 case CPSW_VERSION_2: 1636 case CPSW_VERSION_3: 1637 cpsw_hwtstamp_v2(priv); 1638 break; 1639 default: 1640 WARN_ON(1); 1641 } 1642 1643 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; 1644 } 1645 1646 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr) 1647 { 1648 struct cpsw_common *cpsw = ndev_to_cpsw(dev); 1649 struct cpts *cpts = cpsw->cpts; 1650 struct hwtstamp_config cfg; 1651 1652 if (cpsw->version != CPSW_VERSION_1 && 1653 cpsw->version != CPSW_VERSION_2 && 1654 cpsw->version != CPSW_VERSION_3) 1655 return -EOPNOTSUPP; 1656 1657 cfg.flags = 0; 1658 cfg.tx_type = cpts->tx_enable ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF; 1659 cfg.rx_filter = (cpts->rx_enable ? 1660 HWTSTAMP_FILTER_PTP_V2_EVENT : HWTSTAMP_FILTER_NONE); 1661 1662 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; 1663 } 1664 1665 #endif /*CONFIG_TI_CPTS*/ 1666 1667 static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 1668 { 1669 struct cpsw_priv *priv = netdev_priv(dev); 1670 struct cpsw_common *cpsw = priv->cpsw; 1671 int slave_no = cpsw_slave_index(cpsw, priv); 1672 1673 if (!netif_running(dev)) 1674 return -EINVAL; 1675 1676 switch (cmd) { 1677 #ifdef CONFIG_TI_CPTS 1678 case SIOCSHWTSTAMP: 1679 return cpsw_hwtstamp_set(dev, req); 1680 case SIOCGHWTSTAMP: 1681 return cpsw_hwtstamp_get(dev, req); 1682 #endif 1683 } 1684 1685 if (!cpsw->slaves[slave_no].phy) 1686 return -EOPNOTSUPP; 1687 return phy_mii_ioctl(cpsw->slaves[slave_no].phy, req, cmd); 1688 } 1689 1690 static void cpsw_ndo_tx_timeout(struct net_device *ndev) 1691 { 1692 struct cpsw_priv *priv = netdev_priv(ndev); 1693 struct cpsw_common *cpsw = priv->cpsw; 1694 int ch; 1695 1696 cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n"); 1697 ndev->stats.tx_errors++; 1698 cpsw_intr_disable(cpsw); 1699 for (ch = 0; ch < cpsw->tx_ch_num; ch++) { 1700 cpdma_chan_stop(cpsw->txch[ch]); 1701 cpdma_chan_start(cpsw->txch[ch]); 1702 } 1703 1704 cpsw_intr_enable(cpsw); 1705 } 1706 1707 static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p) 1708 { 1709 struct cpsw_priv *priv = netdev_priv(ndev); 1710 struct sockaddr *addr = (struct sockaddr *)p; 1711 struct cpsw_common *cpsw = priv->cpsw; 1712 int flags = 0; 1713 u16 vid = 0; 1714 int ret; 1715 1716 if (!is_valid_ether_addr(addr->sa_data)) 1717 return -EADDRNOTAVAIL; 1718 1719 ret = pm_runtime_get_sync(cpsw->dev); 1720 if (ret < 0) { 1721 pm_runtime_put_noidle(cpsw->dev); 1722 return ret; 1723 } 1724 1725 if (cpsw->data.dual_emac) { 1726 vid = cpsw->slaves[priv->emac_port].port_vlan; 1727 flags = ALE_VLAN; 1728 } 1729 1730 cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM, 1731 flags, vid); 1732 cpsw_ale_add_ucast(cpsw->ale, addr->sa_data, HOST_PORT_NUM, 1733 flags, vid); 1734 1735 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN); 1736 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN); 1737 for_each_slave(priv, cpsw_set_slave_mac, priv); 1738 1739 pm_runtime_put(cpsw->dev); 1740 1741 return 0; 1742 } 1743 1744 #ifdef CONFIG_NET_POLL_CONTROLLER 1745 static void cpsw_ndo_poll_controller(struct net_device *ndev) 1746 { 1747 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1748 1749 cpsw_intr_disable(cpsw); 1750 cpsw_rx_interrupt(cpsw->irqs_table[0], cpsw); 1751 cpsw_tx_interrupt(cpsw->irqs_table[1], cpsw); 1752 cpsw_intr_enable(cpsw); 1753 } 1754 #endif 1755 1756 static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv, 1757 unsigned short vid) 1758 { 1759 int ret; 1760 int unreg_mcast_mask = 0; 1761 u32 port_mask; 1762 struct cpsw_common *cpsw = priv->cpsw; 1763 1764 if (cpsw->data.dual_emac) { 1765 port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST; 1766 1767 if (priv->ndev->flags & IFF_ALLMULTI) 1768 unreg_mcast_mask = port_mask; 1769 } else { 1770 port_mask = ALE_ALL_PORTS; 1771 1772 if (priv->ndev->flags & IFF_ALLMULTI) 1773 unreg_mcast_mask = ALE_ALL_PORTS; 1774 else 1775 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2; 1776 } 1777 1778 ret = cpsw_ale_add_vlan(cpsw->ale, vid, port_mask, 0, port_mask, 1779 unreg_mcast_mask); 1780 if (ret != 0) 1781 return ret; 1782 1783 ret = cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, 1784 HOST_PORT_NUM, ALE_VLAN, vid); 1785 if (ret != 0) 1786 goto clean_vid; 1787 1788 ret = cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, 1789 port_mask, ALE_VLAN, vid, 0); 1790 if (ret != 0) 1791 goto clean_vlan_ucast; 1792 return 0; 1793 1794 clean_vlan_ucast: 1795 cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, 1796 HOST_PORT_NUM, ALE_VLAN, vid); 1797 clean_vid: 1798 cpsw_ale_del_vlan(cpsw->ale, vid, 0); 1799 return ret; 1800 } 1801 1802 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev, 1803 __be16 proto, u16 vid) 1804 { 1805 struct cpsw_priv *priv = netdev_priv(ndev); 1806 struct cpsw_common *cpsw = priv->cpsw; 1807 int ret; 1808 1809 if (vid == cpsw->data.default_vlan) 1810 return 0; 1811 1812 ret = pm_runtime_get_sync(cpsw->dev); 1813 if (ret < 0) { 1814 pm_runtime_put_noidle(cpsw->dev); 1815 return ret; 1816 } 1817 1818 if (cpsw->data.dual_emac) { 1819 /* In dual EMAC, reserved VLAN id should not be used for 1820 * creating VLAN interfaces as this can break the dual 1821 * EMAC port separation 1822 */ 1823 int i; 1824 1825 for (i = 0; i < cpsw->data.slaves; i++) { 1826 if (vid == cpsw->slaves[i].port_vlan) 1827 return -EINVAL; 1828 } 1829 } 1830 1831 dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid); 1832 ret = cpsw_add_vlan_ale_entry(priv, vid); 1833 1834 pm_runtime_put(cpsw->dev); 1835 return ret; 1836 } 1837 1838 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev, 1839 __be16 proto, u16 vid) 1840 { 1841 struct cpsw_priv *priv = netdev_priv(ndev); 1842 struct cpsw_common *cpsw = priv->cpsw; 1843 int ret; 1844 1845 if (vid == cpsw->data.default_vlan) 1846 return 0; 1847 1848 ret = pm_runtime_get_sync(cpsw->dev); 1849 if (ret < 0) { 1850 pm_runtime_put_noidle(cpsw->dev); 1851 return ret; 1852 } 1853 1854 if (cpsw->data.dual_emac) { 1855 int i; 1856 1857 for (i = 0; i < cpsw->data.slaves; i++) { 1858 if (vid == cpsw->slaves[i].port_vlan) 1859 return -EINVAL; 1860 } 1861 } 1862 1863 dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid); 1864 ret = cpsw_ale_del_vlan(cpsw->ale, vid, 0); 1865 if (ret != 0) 1866 return ret; 1867 1868 ret = cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, 1869 HOST_PORT_NUM, ALE_VLAN, vid); 1870 if (ret != 0) 1871 return ret; 1872 1873 ret = cpsw_ale_del_mcast(cpsw->ale, priv->ndev->broadcast, 1874 0, ALE_VLAN, vid); 1875 pm_runtime_put(cpsw->dev); 1876 return ret; 1877 } 1878 1879 static const struct net_device_ops cpsw_netdev_ops = { 1880 .ndo_open = cpsw_ndo_open, 1881 .ndo_stop = cpsw_ndo_stop, 1882 .ndo_start_xmit = cpsw_ndo_start_xmit, 1883 .ndo_set_mac_address = cpsw_ndo_set_mac_address, 1884 .ndo_do_ioctl = cpsw_ndo_ioctl, 1885 .ndo_validate_addr = eth_validate_addr, 1886 .ndo_change_mtu = eth_change_mtu, 1887 .ndo_tx_timeout = cpsw_ndo_tx_timeout, 1888 .ndo_set_rx_mode = cpsw_ndo_set_rx_mode, 1889 #ifdef CONFIG_NET_POLL_CONTROLLER 1890 .ndo_poll_controller = cpsw_ndo_poll_controller, 1891 #endif 1892 .ndo_vlan_rx_add_vid = cpsw_ndo_vlan_rx_add_vid, 1893 .ndo_vlan_rx_kill_vid = cpsw_ndo_vlan_rx_kill_vid, 1894 }; 1895 1896 static int cpsw_get_regs_len(struct net_device *ndev) 1897 { 1898 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1899 1900 return cpsw->data.ale_entries * ALE_ENTRY_WORDS * sizeof(u32); 1901 } 1902 1903 static void cpsw_get_regs(struct net_device *ndev, 1904 struct ethtool_regs *regs, void *p) 1905 { 1906 u32 *reg = p; 1907 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1908 1909 /* update CPSW IP version */ 1910 regs->version = cpsw->version; 1911 1912 cpsw_ale_dump(cpsw->ale, reg); 1913 } 1914 1915 static void cpsw_get_drvinfo(struct net_device *ndev, 1916 struct ethtool_drvinfo *info) 1917 { 1918 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1919 struct platform_device *pdev = to_platform_device(cpsw->dev); 1920 1921 strlcpy(info->driver, "cpsw", sizeof(info->driver)); 1922 strlcpy(info->version, "1.0", sizeof(info->version)); 1923 strlcpy(info->bus_info, pdev->name, sizeof(info->bus_info)); 1924 } 1925 1926 static u32 cpsw_get_msglevel(struct net_device *ndev) 1927 { 1928 struct cpsw_priv *priv = netdev_priv(ndev); 1929 return priv->msg_enable; 1930 } 1931 1932 static void cpsw_set_msglevel(struct net_device *ndev, u32 value) 1933 { 1934 struct cpsw_priv *priv = netdev_priv(ndev); 1935 priv->msg_enable = value; 1936 } 1937 1938 static int cpsw_get_ts_info(struct net_device *ndev, 1939 struct ethtool_ts_info *info) 1940 { 1941 #ifdef CONFIG_TI_CPTS 1942 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1943 1944 info->so_timestamping = 1945 SOF_TIMESTAMPING_TX_HARDWARE | 1946 SOF_TIMESTAMPING_TX_SOFTWARE | 1947 SOF_TIMESTAMPING_RX_HARDWARE | 1948 SOF_TIMESTAMPING_RX_SOFTWARE | 1949 SOF_TIMESTAMPING_SOFTWARE | 1950 SOF_TIMESTAMPING_RAW_HARDWARE; 1951 info->phc_index = cpsw->cpts->phc_index; 1952 info->tx_types = 1953 (1 << HWTSTAMP_TX_OFF) | 1954 (1 << HWTSTAMP_TX_ON); 1955 info->rx_filters = 1956 (1 << HWTSTAMP_FILTER_NONE) | 1957 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 1958 #else 1959 info->so_timestamping = 1960 SOF_TIMESTAMPING_TX_SOFTWARE | 1961 SOF_TIMESTAMPING_RX_SOFTWARE | 1962 SOF_TIMESTAMPING_SOFTWARE; 1963 info->phc_index = -1; 1964 info->tx_types = 0; 1965 info->rx_filters = 0; 1966 #endif 1967 return 0; 1968 } 1969 1970 static int cpsw_get_settings(struct net_device *ndev, 1971 struct ethtool_cmd *ecmd) 1972 { 1973 struct cpsw_priv *priv = netdev_priv(ndev); 1974 struct cpsw_common *cpsw = priv->cpsw; 1975 int slave_no = cpsw_slave_index(cpsw, priv); 1976 1977 if (cpsw->slaves[slave_no].phy) 1978 return phy_ethtool_gset(cpsw->slaves[slave_no].phy, ecmd); 1979 else 1980 return -EOPNOTSUPP; 1981 } 1982 1983 static int cpsw_set_settings(struct net_device *ndev, struct ethtool_cmd *ecmd) 1984 { 1985 struct cpsw_priv *priv = netdev_priv(ndev); 1986 struct cpsw_common *cpsw = priv->cpsw; 1987 int slave_no = cpsw_slave_index(cpsw, priv); 1988 1989 if (cpsw->slaves[slave_no].phy) 1990 return phy_ethtool_sset(cpsw->slaves[slave_no].phy, ecmd); 1991 else 1992 return -EOPNOTSUPP; 1993 } 1994 1995 static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 1996 { 1997 struct cpsw_priv *priv = netdev_priv(ndev); 1998 struct cpsw_common *cpsw = priv->cpsw; 1999 int slave_no = cpsw_slave_index(cpsw, priv); 2000 2001 wol->supported = 0; 2002 wol->wolopts = 0; 2003 2004 if (cpsw->slaves[slave_no].phy) 2005 phy_ethtool_get_wol(cpsw->slaves[slave_no].phy, wol); 2006 } 2007 2008 static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 2009 { 2010 struct cpsw_priv *priv = netdev_priv(ndev); 2011 struct cpsw_common *cpsw = priv->cpsw; 2012 int slave_no = cpsw_slave_index(cpsw, priv); 2013 2014 if (cpsw->slaves[slave_no].phy) 2015 return phy_ethtool_set_wol(cpsw->slaves[slave_no].phy, wol); 2016 else 2017 return -EOPNOTSUPP; 2018 } 2019 2020 static void cpsw_get_pauseparam(struct net_device *ndev, 2021 struct ethtool_pauseparam *pause) 2022 { 2023 struct cpsw_priv *priv = netdev_priv(ndev); 2024 2025 pause->autoneg = AUTONEG_DISABLE; 2026 pause->rx_pause = priv->rx_pause ? true : false; 2027 pause->tx_pause = priv->tx_pause ? true : false; 2028 } 2029 2030 static int cpsw_set_pauseparam(struct net_device *ndev, 2031 struct ethtool_pauseparam *pause) 2032 { 2033 struct cpsw_priv *priv = netdev_priv(ndev); 2034 bool link; 2035 2036 priv->rx_pause = pause->rx_pause ? true : false; 2037 priv->tx_pause = pause->tx_pause ? true : false; 2038 2039 for_each_slave(priv, _cpsw_adjust_link, priv, &link); 2040 return 0; 2041 } 2042 2043 static int cpsw_ethtool_op_begin(struct net_device *ndev) 2044 { 2045 struct cpsw_priv *priv = netdev_priv(ndev); 2046 struct cpsw_common *cpsw = priv->cpsw; 2047 int ret; 2048 2049 ret = pm_runtime_get_sync(cpsw->dev); 2050 if (ret < 0) { 2051 cpsw_err(priv, drv, "ethtool begin failed %d\n", ret); 2052 pm_runtime_put_noidle(cpsw->dev); 2053 } 2054 2055 return ret; 2056 } 2057 2058 static void cpsw_ethtool_op_complete(struct net_device *ndev) 2059 { 2060 struct cpsw_priv *priv = netdev_priv(ndev); 2061 int ret; 2062 2063 ret = pm_runtime_put(priv->cpsw->dev); 2064 if (ret < 0) 2065 cpsw_err(priv, drv, "ethtool complete failed %d\n", ret); 2066 } 2067 2068 static void cpsw_get_channels(struct net_device *ndev, 2069 struct ethtool_channels *ch) 2070 { 2071 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 2072 2073 ch->max_combined = 0; 2074 ch->max_rx = CPSW_MAX_QUEUES; 2075 ch->max_tx = CPSW_MAX_QUEUES; 2076 ch->max_other = 0; 2077 ch->other_count = 0; 2078 ch->rx_count = cpsw->rx_ch_num; 2079 ch->tx_count = cpsw->tx_ch_num; 2080 ch->combined_count = 0; 2081 } 2082 2083 static int cpsw_check_ch_settings(struct cpsw_common *cpsw, 2084 struct ethtool_channels *ch) 2085 { 2086 if (ch->combined_count) 2087 return -EINVAL; 2088 2089 /* verify we have at least one channel in each direction */ 2090 if (!ch->rx_count || !ch->tx_count) 2091 return -EINVAL; 2092 2093 if (ch->rx_count > cpsw->data.channels || 2094 ch->tx_count > cpsw->data.channels) 2095 return -EINVAL; 2096 2097 return 0; 2098 } 2099 2100 static int cpsw_update_channels_res(struct cpsw_priv *priv, int ch_num, int rx) 2101 { 2102 int (*poll)(struct napi_struct *, int); 2103 struct cpsw_common *cpsw = priv->cpsw; 2104 void (*handler)(void *, int, int); 2105 struct cpdma_chan **chan; 2106 int ret, *ch; 2107 2108 if (rx) { 2109 ch = &cpsw->rx_ch_num; 2110 chan = cpsw->rxch; 2111 handler = cpsw_rx_handler; 2112 poll = cpsw_rx_poll; 2113 } else { 2114 ch = &cpsw->tx_ch_num; 2115 chan = cpsw->txch; 2116 handler = cpsw_tx_handler; 2117 poll = cpsw_tx_poll; 2118 } 2119 2120 while (*ch < ch_num) { 2121 chan[*ch] = cpdma_chan_create(cpsw->dma, *ch, handler, rx); 2122 2123 if (IS_ERR(chan[*ch])) 2124 return PTR_ERR(chan[*ch]); 2125 2126 if (!chan[*ch]) 2127 return -EINVAL; 2128 2129 cpsw_info(priv, ifup, "created new %d %s channel\n", *ch, 2130 (rx ? "rx" : "tx")); 2131 (*ch)++; 2132 } 2133 2134 while (*ch > ch_num) { 2135 (*ch)--; 2136 2137 ret = cpdma_chan_destroy(chan[*ch]); 2138 if (ret) 2139 return ret; 2140 2141 cpsw_info(priv, ifup, "destroyed %d %s channel\n", *ch, 2142 (rx ? "rx" : "tx")); 2143 } 2144 2145 return 0; 2146 } 2147 2148 static int cpsw_update_channels(struct cpsw_priv *priv, 2149 struct ethtool_channels *ch) 2150 { 2151 int ret; 2152 2153 ret = cpsw_update_channels_res(priv, ch->rx_count, 1); 2154 if (ret) 2155 return ret; 2156 2157 ret = cpsw_update_channels_res(priv, ch->tx_count, 0); 2158 if (ret) 2159 return ret; 2160 2161 return 0; 2162 } 2163 2164 static int cpsw_set_channels(struct net_device *ndev, 2165 struct ethtool_channels *chs) 2166 { 2167 struct cpsw_priv *priv = netdev_priv(ndev); 2168 struct cpsw_common *cpsw = priv->cpsw; 2169 struct cpsw_slave *slave; 2170 int i, ret; 2171 2172 ret = cpsw_check_ch_settings(cpsw, chs); 2173 if (ret < 0) 2174 return ret; 2175 2176 /* Disable NAPI scheduling */ 2177 cpsw_intr_disable(cpsw); 2178 2179 /* Stop all transmit queues for every network device. 2180 * Disable re-using rx descriptors with dormant_on. 2181 */ 2182 for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) { 2183 if (!(slave->ndev && netif_running(slave->ndev))) 2184 continue; 2185 2186 netif_tx_stop_all_queues(slave->ndev); 2187 netif_dormant_on(slave->ndev); 2188 } 2189 2190 /* Handle rest of tx packets and stop cpdma channels */ 2191 cpdma_ctlr_stop(cpsw->dma); 2192 ret = cpsw_update_channels(priv, chs); 2193 if (ret) 2194 goto err; 2195 2196 for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) { 2197 if (!(slave->ndev && netif_running(slave->ndev))) 2198 continue; 2199 2200 /* Inform stack about new count of queues */ 2201 ret = netif_set_real_num_tx_queues(slave->ndev, 2202 cpsw->tx_ch_num); 2203 if (ret) { 2204 dev_err(priv->dev, "cannot set real number of tx queues\n"); 2205 goto err; 2206 } 2207 2208 ret = netif_set_real_num_rx_queues(slave->ndev, 2209 cpsw->rx_ch_num); 2210 if (ret) { 2211 dev_err(priv->dev, "cannot set real number of rx queues\n"); 2212 goto err; 2213 } 2214 2215 /* Enable rx packets handling */ 2216 netif_dormant_off(slave->ndev); 2217 } 2218 2219 if (cpsw_common_res_usage_state(cpsw)) { 2220 ret = cpsw_fill_rx_channels(priv); 2221 if (ret) 2222 goto err; 2223 2224 /* After this receive is started */ 2225 cpdma_ctlr_start(cpsw->dma); 2226 cpsw_intr_enable(cpsw); 2227 } 2228 2229 /* Resume transmit for every affected interface */ 2230 for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) { 2231 if (!(slave->ndev && netif_running(slave->ndev))) 2232 continue; 2233 netif_tx_start_all_queues(slave->ndev); 2234 } 2235 return 0; 2236 err: 2237 dev_err(priv->dev, "cannot update channels number, closing device\n"); 2238 dev_close(ndev); 2239 return ret; 2240 } 2241 2242 static const struct ethtool_ops cpsw_ethtool_ops = { 2243 .get_drvinfo = cpsw_get_drvinfo, 2244 .get_msglevel = cpsw_get_msglevel, 2245 .set_msglevel = cpsw_set_msglevel, 2246 .get_link = ethtool_op_get_link, 2247 .get_ts_info = cpsw_get_ts_info, 2248 .get_settings = cpsw_get_settings, 2249 .set_settings = cpsw_set_settings, 2250 .get_coalesce = cpsw_get_coalesce, 2251 .set_coalesce = cpsw_set_coalesce, 2252 .get_sset_count = cpsw_get_sset_count, 2253 .get_strings = cpsw_get_strings, 2254 .get_ethtool_stats = cpsw_get_ethtool_stats, 2255 .get_pauseparam = cpsw_get_pauseparam, 2256 .set_pauseparam = cpsw_set_pauseparam, 2257 .get_wol = cpsw_get_wol, 2258 .set_wol = cpsw_set_wol, 2259 .get_regs_len = cpsw_get_regs_len, 2260 .get_regs = cpsw_get_regs, 2261 .begin = cpsw_ethtool_op_begin, 2262 .complete = cpsw_ethtool_op_complete, 2263 .get_channels = cpsw_get_channels, 2264 .set_channels = cpsw_set_channels, 2265 }; 2266 2267 static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_common *cpsw, 2268 u32 slave_reg_ofs, u32 sliver_reg_ofs) 2269 { 2270 void __iomem *regs = cpsw->regs; 2271 int slave_num = slave->slave_num; 2272 struct cpsw_slave_data *data = cpsw->data.slave_data + slave_num; 2273 2274 slave->data = data; 2275 slave->regs = regs + slave_reg_ofs; 2276 slave->sliver = regs + sliver_reg_ofs; 2277 slave->port_vlan = data->dual_emac_res_vlan; 2278 } 2279 2280 static int cpsw_probe_dt(struct cpsw_platform_data *data, 2281 struct platform_device *pdev) 2282 { 2283 struct device_node *node = pdev->dev.of_node; 2284 struct device_node *slave_node; 2285 int i = 0, ret; 2286 u32 prop; 2287 2288 if (!node) 2289 return -EINVAL; 2290 2291 if (of_property_read_u32(node, "slaves", &prop)) { 2292 dev_err(&pdev->dev, "Missing slaves property in the DT.\n"); 2293 return -EINVAL; 2294 } 2295 data->slaves = prop; 2296 2297 if (of_property_read_u32(node, "active_slave", &prop)) { 2298 dev_err(&pdev->dev, "Missing active_slave property in the DT.\n"); 2299 return -EINVAL; 2300 } 2301 data->active_slave = prop; 2302 2303 if (of_property_read_u32(node, "cpts_clock_mult", &prop)) { 2304 dev_err(&pdev->dev, "Missing cpts_clock_mult property in the DT.\n"); 2305 return -EINVAL; 2306 } 2307 data->cpts_clock_mult = prop; 2308 2309 if (of_property_read_u32(node, "cpts_clock_shift", &prop)) { 2310 dev_err(&pdev->dev, "Missing cpts_clock_shift property in the DT.\n"); 2311 return -EINVAL; 2312 } 2313 data->cpts_clock_shift = prop; 2314 2315 data->slave_data = devm_kzalloc(&pdev->dev, data->slaves 2316 * sizeof(struct cpsw_slave_data), 2317 GFP_KERNEL); 2318 if (!data->slave_data) 2319 return -ENOMEM; 2320 2321 if (of_property_read_u32(node, "cpdma_channels", &prop)) { 2322 dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n"); 2323 return -EINVAL; 2324 } 2325 data->channels = prop; 2326 2327 if (of_property_read_u32(node, "ale_entries", &prop)) { 2328 dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n"); 2329 return -EINVAL; 2330 } 2331 data->ale_entries = prop; 2332 2333 if (of_property_read_u32(node, "bd_ram_size", &prop)) { 2334 dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n"); 2335 return -EINVAL; 2336 } 2337 data->bd_ram_size = prop; 2338 2339 if (of_property_read_u32(node, "mac_control", &prop)) { 2340 dev_err(&pdev->dev, "Missing mac_control property in the DT.\n"); 2341 return -EINVAL; 2342 } 2343 data->mac_control = prop; 2344 2345 if (of_property_read_bool(node, "dual_emac")) 2346 data->dual_emac = 1; 2347 2348 /* 2349 * Populate all the child nodes here... 2350 */ 2351 ret = of_platform_populate(node, NULL, NULL, &pdev->dev); 2352 /* We do not want to force this, as in some cases may not have child */ 2353 if (ret) 2354 dev_warn(&pdev->dev, "Doesn't have any child node\n"); 2355 2356 for_each_available_child_of_node(node, slave_node) { 2357 struct cpsw_slave_data *slave_data = data->slave_data + i; 2358 const void *mac_addr = NULL; 2359 int lenp; 2360 const __be32 *parp; 2361 2362 /* This is no slave child node, continue */ 2363 if (strcmp(slave_node->name, "slave")) 2364 continue; 2365 2366 slave_data->phy_node = of_parse_phandle(slave_node, 2367 "phy-handle", 0); 2368 parp = of_get_property(slave_node, "phy_id", &lenp); 2369 if (slave_data->phy_node) { 2370 dev_dbg(&pdev->dev, 2371 "slave[%d] using phy-handle=\"%s\"\n", 2372 i, slave_data->phy_node->full_name); 2373 } else if (of_phy_is_fixed_link(slave_node)) { 2374 /* In the case of a fixed PHY, the DT node associated 2375 * to the PHY is the Ethernet MAC DT node. 2376 */ 2377 ret = of_phy_register_fixed_link(slave_node); 2378 if (ret) 2379 return ret; 2380 slave_data->phy_node = of_node_get(slave_node); 2381 } else if (parp) { 2382 u32 phyid; 2383 struct device_node *mdio_node; 2384 struct platform_device *mdio; 2385 2386 if (lenp != (sizeof(__be32) * 2)) { 2387 dev_err(&pdev->dev, "Invalid slave[%d] phy_id property\n", i); 2388 goto no_phy_slave; 2389 } 2390 mdio_node = of_find_node_by_phandle(be32_to_cpup(parp)); 2391 phyid = be32_to_cpup(parp+1); 2392 mdio = of_find_device_by_node(mdio_node); 2393 of_node_put(mdio_node); 2394 if (!mdio) { 2395 dev_err(&pdev->dev, "Missing mdio platform device\n"); 2396 return -EINVAL; 2397 } 2398 snprintf(slave_data->phy_id, sizeof(slave_data->phy_id), 2399 PHY_ID_FMT, mdio->name, phyid); 2400 } else { 2401 dev_err(&pdev->dev, 2402 "No slave[%d] phy_id, phy-handle, or fixed-link property\n", 2403 i); 2404 goto no_phy_slave; 2405 } 2406 slave_data->phy_if = of_get_phy_mode(slave_node); 2407 if (slave_data->phy_if < 0) { 2408 dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n", 2409 i); 2410 return slave_data->phy_if; 2411 } 2412 2413 no_phy_slave: 2414 mac_addr = of_get_mac_address(slave_node); 2415 if (mac_addr) { 2416 memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN); 2417 } else { 2418 ret = ti_cm_get_macid(&pdev->dev, i, 2419 slave_data->mac_addr); 2420 if (ret) 2421 return ret; 2422 } 2423 if (data->dual_emac) { 2424 if (of_property_read_u32(slave_node, "dual_emac_res_vlan", 2425 &prop)) { 2426 dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n"); 2427 slave_data->dual_emac_res_vlan = i+1; 2428 dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n", 2429 slave_data->dual_emac_res_vlan, i); 2430 } else { 2431 slave_data->dual_emac_res_vlan = prop; 2432 } 2433 } 2434 2435 i++; 2436 if (i == data->slaves) 2437 break; 2438 } 2439 2440 return 0; 2441 } 2442 2443 static int cpsw_probe_dual_emac(struct cpsw_priv *priv) 2444 { 2445 struct cpsw_common *cpsw = priv->cpsw; 2446 struct cpsw_platform_data *data = &cpsw->data; 2447 struct net_device *ndev; 2448 struct cpsw_priv *priv_sl2; 2449 int ret = 0; 2450 2451 ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES); 2452 if (!ndev) { 2453 dev_err(cpsw->dev, "cpsw: error allocating net_device\n"); 2454 return -ENOMEM; 2455 } 2456 2457 priv_sl2 = netdev_priv(ndev); 2458 priv_sl2->cpsw = cpsw; 2459 priv_sl2->ndev = ndev; 2460 priv_sl2->dev = &ndev->dev; 2461 priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG); 2462 2463 if (is_valid_ether_addr(data->slave_data[1].mac_addr)) { 2464 memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr, 2465 ETH_ALEN); 2466 dev_info(cpsw->dev, "cpsw: Detected MACID = %pM\n", 2467 priv_sl2->mac_addr); 2468 } else { 2469 random_ether_addr(priv_sl2->mac_addr); 2470 dev_info(cpsw->dev, "cpsw: Random MACID = %pM\n", 2471 priv_sl2->mac_addr); 2472 } 2473 memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN); 2474 2475 priv_sl2->emac_port = 1; 2476 cpsw->slaves[1].ndev = ndev; 2477 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 2478 2479 ndev->netdev_ops = &cpsw_netdev_ops; 2480 ndev->ethtool_ops = &cpsw_ethtool_ops; 2481 2482 /* register the network device */ 2483 SET_NETDEV_DEV(ndev, cpsw->dev); 2484 ret = register_netdev(ndev); 2485 if (ret) { 2486 dev_err(cpsw->dev, "cpsw: error registering net device\n"); 2487 free_netdev(ndev); 2488 ret = -ENODEV; 2489 } 2490 2491 return ret; 2492 } 2493 2494 #define CPSW_QUIRK_IRQ BIT(0) 2495 2496 static struct platform_device_id cpsw_devtype[] = { 2497 { 2498 /* keep it for existing comaptibles */ 2499 .name = "cpsw", 2500 .driver_data = CPSW_QUIRK_IRQ, 2501 }, { 2502 .name = "am335x-cpsw", 2503 .driver_data = CPSW_QUIRK_IRQ, 2504 }, { 2505 .name = "am4372-cpsw", 2506 .driver_data = 0, 2507 }, { 2508 .name = "dra7-cpsw", 2509 .driver_data = 0, 2510 }, { 2511 /* sentinel */ 2512 } 2513 }; 2514 MODULE_DEVICE_TABLE(platform, cpsw_devtype); 2515 2516 enum ti_cpsw_type { 2517 CPSW = 0, 2518 AM335X_CPSW, 2519 AM4372_CPSW, 2520 DRA7_CPSW, 2521 }; 2522 2523 static const struct of_device_id cpsw_of_mtable[] = { 2524 { .compatible = "ti,cpsw", .data = &cpsw_devtype[CPSW], }, 2525 { .compatible = "ti,am335x-cpsw", .data = &cpsw_devtype[AM335X_CPSW], }, 2526 { .compatible = "ti,am4372-cpsw", .data = &cpsw_devtype[AM4372_CPSW], }, 2527 { .compatible = "ti,dra7-cpsw", .data = &cpsw_devtype[DRA7_CPSW], }, 2528 { /* sentinel */ }, 2529 }; 2530 MODULE_DEVICE_TABLE(of, cpsw_of_mtable); 2531 2532 static int cpsw_probe(struct platform_device *pdev) 2533 { 2534 struct clk *clk; 2535 struct cpsw_platform_data *data; 2536 struct net_device *ndev; 2537 struct cpsw_priv *priv; 2538 struct cpdma_params dma_params; 2539 struct cpsw_ale_params ale_params; 2540 void __iomem *ss_regs; 2541 struct resource *res, *ss_res; 2542 const struct of_device_id *of_id; 2543 struct gpio_descs *mode; 2544 u32 slave_offset, sliver_offset, slave_size; 2545 struct cpsw_common *cpsw; 2546 int ret = 0, i; 2547 int irq; 2548 2549 cpsw = devm_kzalloc(&pdev->dev, sizeof(struct cpsw_common), GFP_KERNEL); 2550 cpsw->dev = &pdev->dev; 2551 2552 ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES); 2553 if (!ndev) { 2554 dev_err(&pdev->dev, "error allocating net_device\n"); 2555 return -ENOMEM; 2556 } 2557 2558 platform_set_drvdata(pdev, ndev); 2559 priv = netdev_priv(ndev); 2560 priv->cpsw = cpsw; 2561 priv->ndev = ndev; 2562 priv->dev = &ndev->dev; 2563 priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG); 2564 cpsw->rx_packet_max = max(rx_packet_max, 128); 2565 cpsw->cpts = devm_kzalloc(&pdev->dev, sizeof(struct cpts), GFP_KERNEL); 2566 if (!cpsw->cpts) { 2567 dev_err(&pdev->dev, "error allocating cpts\n"); 2568 ret = -ENOMEM; 2569 goto clean_ndev_ret; 2570 } 2571 2572 mode = devm_gpiod_get_array_optional(&pdev->dev, "mode", GPIOD_OUT_LOW); 2573 if (IS_ERR(mode)) { 2574 ret = PTR_ERR(mode); 2575 dev_err(&pdev->dev, "gpio request failed, ret %d\n", ret); 2576 goto clean_ndev_ret; 2577 } 2578 2579 /* 2580 * This may be required here for child devices. 2581 */ 2582 pm_runtime_enable(&pdev->dev); 2583 2584 /* Select default pin state */ 2585 pinctrl_pm_select_default_state(&pdev->dev); 2586 2587 if (cpsw_probe_dt(&cpsw->data, pdev)) { 2588 dev_err(&pdev->dev, "cpsw: platform data missing\n"); 2589 ret = -ENODEV; 2590 goto clean_runtime_disable_ret; 2591 } 2592 data = &cpsw->data; 2593 cpsw->rx_ch_num = 1; 2594 cpsw->tx_ch_num = 1; 2595 2596 if (is_valid_ether_addr(data->slave_data[0].mac_addr)) { 2597 memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN); 2598 dev_info(&pdev->dev, "Detected MACID = %pM\n", priv->mac_addr); 2599 } else { 2600 eth_random_addr(priv->mac_addr); 2601 dev_info(&pdev->dev, "Random MACID = %pM\n", priv->mac_addr); 2602 } 2603 2604 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN); 2605 2606 cpsw->slaves = devm_kzalloc(&pdev->dev, 2607 sizeof(struct cpsw_slave) * data->slaves, 2608 GFP_KERNEL); 2609 if (!cpsw->slaves) { 2610 ret = -ENOMEM; 2611 goto clean_runtime_disable_ret; 2612 } 2613 for (i = 0; i < data->slaves; i++) 2614 cpsw->slaves[i].slave_num = i; 2615 2616 cpsw->slaves[0].ndev = ndev; 2617 priv->emac_port = 0; 2618 2619 clk = devm_clk_get(&pdev->dev, "fck"); 2620 if (IS_ERR(clk)) { 2621 dev_err(priv->dev, "fck is not found\n"); 2622 ret = -ENODEV; 2623 goto clean_runtime_disable_ret; 2624 } 2625 cpsw->bus_freq_mhz = clk_get_rate(clk) / 1000000; 2626 2627 ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2628 ss_regs = devm_ioremap_resource(&pdev->dev, ss_res); 2629 if (IS_ERR(ss_regs)) { 2630 ret = PTR_ERR(ss_regs); 2631 goto clean_runtime_disable_ret; 2632 } 2633 cpsw->regs = ss_regs; 2634 2635 /* Need to enable clocks with runtime PM api to access module 2636 * registers 2637 */ 2638 ret = pm_runtime_get_sync(&pdev->dev); 2639 if (ret < 0) { 2640 pm_runtime_put_noidle(&pdev->dev); 2641 goto clean_runtime_disable_ret; 2642 } 2643 cpsw->version = readl(&cpsw->regs->id_ver); 2644 pm_runtime_put_sync(&pdev->dev); 2645 2646 res = platform_get_resource(pdev, IORESOURCE_MEM, 1); 2647 cpsw->wr_regs = devm_ioremap_resource(&pdev->dev, res); 2648 if (IS_ERR(cpsw->wr_regs)) { 2649 ret = PTR_ERR(cpsw->wr_regs); 2650 goto clean_runtime_disable_ret; 2651 } 2652 2653 memset(&dma_params, 0, sizeof(dma_params)); 2654 memset(&ale_params, 0, sizeof(ale_params)); 2655 2656 switch (cpsw->version) { 2657 case CPSW_VERSION_1: 2658 cpsw->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET; 2659 cpsw->cpts->reg = ss_regs + CPSW1_CPTS_OFFSET; 2660 cpsw->hw_stats = ss_regs + CPSW1_HW_STATS; 2661 dma_params.dmaregs = ss_regs + CPSW1_CPDMA_OFFSET; 2662 dma_params.txhdp = ss_regs + CPSW1_STATERAM_OFFSET; 2663 ale_params.ale_regs = ss_regs + CPSW1_ALE_OFFSET; 2664 slave_offset = CPSW1_SLAVE_OFFSET; 2665 slave_size = CPSW1_SLAVE_SIZE; 2666 sliver_offset = CPSW1_SLIVER_OFFSET; 2667 dma_params.desc_mem_phys = 0; 2668 break; 2669 case CPSW_VERSION_2: 2670 case CPSW_VERSION_3: 2671 case CPSW_VERSION_4: 2672 cpsw->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET; 2673 cpsw->cpts->reg = ss_regs + CPSW2_CPTS_OFFSET; 2674 cpsw->hw_stats = ss_regs + CPSW2_HW_STATS; 2675 dma_params.dmaregs = ss_regs + CPSW2_CPDMA_OFFSET; 2676 dma_params.txhdp = ss_regs + CPSW2_STATERAM_OFFSET; 2677 ale_params.ale_regs = ss_regs + CPSW2_ALE_OFFSET; 2678 slave_offset = CPSW2_SLAVE_OFFSET; 2679 slave_size = CPSW2_SLAVE_SIZE; 2680 sliver_offset = CPSW2_SLIVER_OFFSET; 2681 dma_params.desc_mem_phys = 2682 (u32 __force) ss_res->start + CPSW2_BD_OFFSET; 2683 break; 2684 default: 2685 dev_err(priv->dev, "unknown version 0x%08x\n", cpsw->version); 2686 ret = -ENODEV; 2687 goto clean_runtime_disable_ret; 2688 } 2689 for (i = 0; i < cpsw->data.slaves; i++) { 2690 struct cpsw_slave *slave = &cpsw->slaves[i]; 2691 2692 cpsw_slave_init(slave, cpsw, slave_offset, sliver_offset); 2693 slave_offset += slave_size; 2694 sliver_offset += SLIVER_SIZE; 2695 } 2696 2697 dma_params.dev = &pdev->dev; 2698 dma_params.rxthresh = dma_params.dmaregs + CPDMA_RXTHRESH; 2699 dma_params.rxfree = dma_params.dmaregs + CPDMA_RXFREE; 2700 dma_params.rxhdp = dma_params.txhdp + CPDMA_RXHDP; 2701 dma_params.txcp = dma_params.txhdp + CPDMA_TXCP; 2702 dma_params.rxcp = dma_params.txhdp + CPDMA_RXCP; 2703 2704 dma_params.num_chan = data->channels; 2705 dma_params.has_soft_reset = true; 2706 dma_params.min_packet_size = CPSW_MIN_PACKET_SIZE; 2707 dma_params.desc_mem_size = data->bd_ram_size; 2708 dma_params.desc_align = 16; 2709 dma_params.has_ext_regs = true; 2710 dma_params.desc_hw_addr = dma_params.desc_mem_phys; 2711 2712 cpsw->dma = cpdma_ctlr_create(&dma_params); 2713 if (!cpsw->dma) { 2714 dev_err(priv->dev, "error initializing dma\n"); 2715 ret = -ENOMEM; 2716 goto clean_runtime_disable_ret; 2717 } 2718 2719 cpsw->txch[0] = cpdma_chan_create(cpsw->dma, 0, cpsw_tx_handler, 0); 2720 cpsw->rxch[0] = cpdma_chan_create(cpsw->dma, 0, cpsw_rx_handler, 1); 2721 if (WARN_ON(!cpsw->rxch[0] || !cpsw->txch[0])) { 2722 dev_err(priv->dev, "error initializing dma channels\n"); 2723 ret = -ENOMEM; 2724 goto clean_dma_ret; 2725 } 2726 2727 ale_params.dev = &ndev->dev; 2728 ale_params.ale_ageout = ale_ageout; 2729 ale_params.ale_entries = data->ale_entries; 2730 ale_params.ale_ports = data->slaves; 2731 2732 cpsw->ale = cpsw_ale_create(&ale_params); 2733 if (!cpsw->ale) { 2734 dev_err(priv->dev, "error initializing ale engine\n"); 2735 ret = -ENODEV; 2736 goto clean_dma_ret; 2737 } 2738 2739 ndev->irq = platform_get_irq(pdev, 1); 2740 if (ndev->irq < 0) { 2741 dev_err(priv->dev, "error getting irq resource\n"); 2742 ret = ndev->irq; 2743 goto clean_ale_ret; 2744 } 2745 2746 of_id = of_match_device(cpsw_of_mtable, &pdev->dev); 2747 if (of_id) { 2748 pdev->id_entry = of_id->data; 2749 if (pdev->id_entry->driver_data) 2750 cpsw->quirk_irq = true; 2751 } 2752 2753 /* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and 2754 * MISC IRQs which are always kept disabled with this driver so 2755 * we will not request them. 2756 * 2757 * If anyone wants to implement support for those, make sure to 2758 * first request and append them to irqs_table array. 2759 */ 2760 2761 /* RX IRQ */ 2762 irq = platform_get_irq(pdev, 1); 2763 if (irq < 0) { 2764 ret = irq; 2765 goto clean_ale_ret; 2766 } 2767 2768 cpsw->irqs_table[0] = irq; 2769 ret = devm_request_irq(&pdev->dev, irq, cpsw_rx_interrupt, 2770 0, dev_name(&pdev->dev), cpsw); 2771 if (ret < 0) { 2772 dev_err(priv->dev, "error attaching irq (%d)\n", ret); 2773 goto clean_ale_ret; 2774 } 2775 2776 /* TX IRQ */ 2777 irq = platform_get_irq(pdev, 2); 2778 if (irq < 0) { 2779 ret = irq; 2780 goto clean_ale_ret; 2781 } 2782 2783 cpsw->irqs_table[1] = irq; 2784 ret = devm_request_irq(&pdev->dev, irq, cpsw_tx_interrupt, 2785 0, dev_name(&pdev->dev), cpsw); 2786 if (ret < 0) { 2787 dev_err(priv->dev, "error attaching irq (%d)\n", ret); 2788 goto clean_ale_ret; 2789 } 2790 2791 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 2792 2793 ndev->netdev_ops = &cpsw_netdev_ops; 2794 ndev->ethtool_ops = &cpsw_ethtool_ops; 2795 netif_napi_add(ndev, &cpsw->napi_rx, cpsw_rx_poll, CPSW_POLL_WEIGHT); 2796 netif_tx_napi_add(ndev, &cpsw->napi_tx, cpsw_tx_poll, CPSW_POLL_WEIGHT); 2797 2798 /* register the network device */ 2799 SET_NETDEV_DEV(ndev, &pdev->dev); 2800 ret = register_netdev(ndev); 2801 if (ret) { 2802 dev_err(priv->dev, "error registering net device\n"); 2803 ret = -ENODEV; 2804 goto clean_ale_ret; 2805 } 2806 2807 cpsw_notice(priv, probe, "initialized device (regs %pa, irq %d)\n", 2808 &ss_res->start, ndev->irq); 2809 2810 if (cpsw->data.dual_emac) { 2811 ret = cpsw_probe_dual_emac(priv); 2812 if (ret) { 2813 cpsw_err(priv, probe, "error probe slave 2 emac interface\n"); 2814 goto clean_ale_ret; 2815 } 2816 } 2817 2818 return 0; 2819 2820 clean_ale_ret: 2821 cpsw_ale_destroy(cpsw->ale); 2822 clean_dma_ret: 2823 cpdma_ctlr_destroy(cpsw->dma); 2824 clean_runtime_disable_ret: 2825 pm_runtime_disable(&pdev->dev); 2826 clean_ndev_ret: 2827 free_netdev(priv->ndev); 2828 return ret; 2829 } 2830 2831 static int cpsw_remove(struct platform_device *pdev) 2832 { 2833 struct net_device *ndev = platform_get_drvdata(pdev); 2834 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 2835 int ret; 2836 2837 ret = pm_runtime_get_sync(&pdev->dev); 2838 if (ret < 0) { 2839 pm_runtime_put_noidle(&pdev->dev); 2840 return ret; 2841 } 2842 2843 if (cpsw->data.dual_emac) 2844 unregister_netdev(cpsw->slaves[1].ndev); 2845 unregister_netdev(ndev); 2846 2847 cpsw_ale_destroy(cpsw->ale); 2848 cpdma_ctlr_destroy(cpsw->dma); 2849 of_platform_depopulate(&pdev->dev); 2850 pm_runtime_put_sync(&pdev->dev); 2851 pm_runtime_disable(&pdev->dev); 2852 if (cpsw->data.dual_emac) 2853 free_netdev(cpsw->slaves[1].ndev); 2854 free_netdev(ndev); 2855 return 0; 2856 } 2857 2858 #ifdef CONFIG_PM_SLEEP 2859 static int cpsw_suspend(struct device *dev) 2860 { 2861 struct platform_device *pdev = to_platform_device(dev); 2862 struct net_device *ndev = platform_get_drvdata(pdev); 2863 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 2864 2865 if (cpsw->data.dual_emac) { 2866 int i; 2867 2868 for (i = 0; i < cpsw->data.slaves; i++) { 2869 if (netif_running(cpsw->slaves[i].ndev)) 2870 cpsw_ndo_stop(cpsw->slaves[i].ndev); 2871 } 2872 } else { 2873 if (netif_running(ndev)) 2874 cpsw_ndo_stop(ndev); 2875 } 2876 2877 /* Select sleep pin state */ 2878 pinctrl_pm_select_sleep_state(dev); 2879 2880 return 0; 2881 } 2882 2883 static int cpsw_resume(struct device *dev) 2884 { 2885 struct platform_device *pdev = to_platform_device(dev); 2886 struct net_device *ndev = platform_get_drvdata(pdev); 2887 struct cpsw_common *cpsw = netdev_priv(ndev); 2888 2889 /* Select default pin state */ 2890 pinctrl_pm_select_default_state(dev); 2891 2892 if (cpsw->data.dual_emac) { 2893 int i; 2894 2895 for (i = 0; i < cpsw->data.slaves; i++) { 2896 if (netif_running(cpsw->slaves[i].ndev)) 2897 cpsw_ndo_open(cpsw->slaves[i].ndev); 2898 } 2899 } else { 2900 if (netif_running(ndev)) 2901 cpsw_ndo_open(ndev); 2902 } 2903 return 0; 2904 } 2905 #endif 2906 2907 static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume); 2908 2909 static struct platform_driver cpsw_driver = { 2910 .driver = { 2911 .name = "cpsw", 2912 .pm = &cpsw_pm_ops, 2913 .of_match_table = cpsw_of_mtable, 2914 }, 2915 .probe = cpsw_probe, 2916 .remove = cpsw_remove, 2917 }; 2918 2919 module_platform_driver(cpsw_driver); 2920 2921 MODULE_LICENSE("GPL"); 2922 MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>"); 2923 MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>"); 2924 MODULE_DESCRIPTION("TI CPSW Ethernet driver"); 2925