xref: /openbmc/linux/drivers/net/ethernet/ti/cpsw.c (revision dc6a81c3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Texas Instruments Ethernet Switch Driver
4  *
5  * Copyright (C) 2012 Texas Instruments
6  *
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/io.h>
11 #include <linux/clk.h>
12 #include <linux/timer.h>
13 #include <linux/module.h>
14 #include <linux/platform_device.h>
15 #include <linux/irqreturn.h>
16 #include <linux/interrupt.h>
17 #include <linux/if_ether.h>
18 #include <linux/etherdevice.h>
19 #include <linux/netdevice.h>
20 #include <linux/net_tstamp.h>
21 #include <linux/phy.h>
22 #include <linux/phy/phy.h>
23 #include <linux/workqueue.h>
24 #include <linux/delay.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/gpio/consumer.h>
27 #include <linux/of.h>
28 #include <linux/of_mdio.h>
29 #include <linux/of_net.h>
30 #include <linux/of_device.h>
31 #include <linux/if_vlan.h>
32 #include <linux/kmemleak.h>
33 #include <linux/sys_soc.h>
34 #include <net/page_pool.h>
35 #include <linux/bpf.h>
36 #include <linux/bpf_trace.h>
37 
38 #include <linux/pinctrl/consumer.h>
39 #include <net/pkt_cls.h>
40 
41 #include "cpsw.h"
42 #include "cpsw_ale.h"
43 #include "cpsw_priv.h"
44 #include "cpsw_sl.h"
45 #include "cpts.h"
46 #include "davinci_cpdma.h"
47 
48 #include <net/pkt_sched.h>
49 
50 static int debug_level;
51 module_param(debug_level, int, 0);
52 MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)");
53 
54 static int ale_ageout = 10;
55 module_param(ale_ageout, int, 0);
56 MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)");
57 
58 static int rx_packet_max = CPSW_MAX_PACKET_SIZE;
59 module_param(rx_packet_max, int, 0);
60 MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)");
61 
62 static int descs_pool_size = CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT;
63 module_param(descs_pool_size, int, 0444);
64 MODULE_PARM_DESC(descs_pool_size, "Number of CPDMA CPPI descriptors in pool");
65 
66 #define for_each_slave(priv, func, arg...)				\
67 	do {								\
68 		struct cpsw_slave *slave;				\
69 		struct cpsw_common *cpsw = (priv)->cpsw;		\
70 		int n;							\
71 		if (cpsw->data.dual_emac)				\
72 			(func)((cpsw)->slaves + priv->emac_port, ##arg);\
73 		else							\
74 			for (n = cpsw->data.slaves,			\
75 					slave = cpsw->slaves;		\
76 					n; n--)				\
77 				(func)(slave++, ##arg);			\
78 	} while (0)
79 
80 static int cpsw_slave_index_priv(struct cpsw_common *cpsw,
81 				 struct cpsw_priv *priv)
82 {
83 	return cpsw->data.dual_emac ? priv->emac_port : cpsw->data.active_slave;
84 }
85 
86 static int cpsw_get_slave_port(u32 slave_num)
87 {
88 	return slave_num + 1;
89 }
90 
91 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
92 				    __be16 proto, u16 vid);
93 
94 static void cpsw_set_promiscious(struct net_device *ndev, bool enable)
95 {
96 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
97 	struct cpsw_ale *ale = cpsw->ale;
98 	int i;
99 
100 	if (cpsw->data.dual_emac) {
101 		bool flag = false;
102 
103 		/* Enabling promiscuous mode for one interface will be
104 		 * common for both the interface as the interface shares
105 		 * the same hardware resource.
106 		 */
107 		for (i = 0; i < cpsw->data.slaves; i++)
108 			if (cpsw->slaves[i].ndev->flags & IFF_PROMISC)
109 				flag = true;
110 
111 		if (!enable && flag) {
112 			enable = true;
113 			dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n");
114 		}
115 
116 		if (enable) {
117 			/* Enable Bypass */
118 			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1);
119 
120 			dev_dbg(&ndev->dev, "promiscuity enabled\n");
121 		} else {
122 			/* Disable Bypass */
123 			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0);
124 			dev_dbg(&ndev->dev, "promiscuity disabled\n");
125 		}
126 	} else {
127 		if (enable) {
128 			unsigned long timeout = jiffies + HZ;
129 
130 			/* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */
131 			for (i = 0; i <= cpsw->data.slaves; i++) {
132 				cpsw_ale_control_set(ale, i,
133 						     ALE_PORT_NOLEARN, 1);
134 				cpsw_ale_control_set(ale, i,
135 						     ALE_PORT_NO_SA_UPDATE, 1);
136 			}
137 
138 			/* Clear All Untouched entries */
139 			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
140 			do {
141 				cpu_relax();
142 				if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT))
143 					break;
144 			} while (time_after(timeout, jiffies));
145 			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
146 
147 			/* Clear all mcast from ALE */
148 			cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS, -1);
149 			__hw_addr_ref_unsync_dev(&ndev->mc, ndev, NULL);
150 
151 			/* Flood All Unicast Packets to Host port */
152 			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1);
153 			dev_dbg(&ndev->dev, "promiscuity enabled\n");
154 		} else {
155 			/* Don't Flood All Unicast Packets to Host port */
156 			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0);
157 
158 			/* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */
159 			for (i = 0; i <= cpsw->data.slaves; i++) {
160 				cpsw_ale_control_set(ale, i,
161 						     ALE_PORT_NOLEARN, 0);
162 				cpsw_ale_control_set(ale, i,
163 						     ALE_PORT_NO_SA_UPDATE, 0);
164 			}
165 			dev_dbg(&ndev->dev, "promiscuity disabled\n");
166 		}
167 	}
168 }
169 
170 /**
171  * cpsw_set_mc - adds multicast entry to the table if it's not added or deletes
172  * if it's not deleted
173  * @ndev: device to sync
174  * @addr: address to be added or deleted
175  * @vid: vlan id, if vid < 0 set/unset address for real device
176  * @add: add address if the flag is set or remove otherwise
177  */
178 static int cpsw_set_mc(struct net_device *ndev, const u8 *addr,
179 		       int vid, int add)
180 {
181 	struct cpsw_priv *priv = netdev_priv(ndev);
182 	struct cpsw_common *cpsw = priv->cpsw;
183 	int mask, flags, ret;
184 
185 	if (vid < 0) {
186 		if (cpsw->data.dual_emac)
187 			vid = cpsw->slaves[priv->emac_port].port_vlan;
188 		else
189 			vid = 0;
190 	}
191 
192 	mask = cpsw->data.dual_emac ? ALE_PORT_HOST : ALE_ALL_PORTS;
193 	flags = vid ? ALE_VLAN : 0;
194 
195 	if (add)
196 		ret = cpsw_ale_add_mcast(cpsw->ale, addr, mask, flags, vid, 0);
197 	else
198 		ret = cpsw_ale_del_mcast(cpsw->ale, addr, 0, flags, vid);
199 
200 	return ret;
201 }
202 
203 static int cpsw_update_vlan_mc(struct net_device *vdev, int vid, void *ctx)
204 {
205 	struct addr_sync_ctx *sync_ctx = ctx;
206 	struct netdev_hw_addr *ha;
207 	int found = 0, ret = 0;
208 
209 	if (!vdev || !(vdev->flags & IFF_UP))
210 		return 0;
211 
212 	/* vlan address is relevant if its sync_cnt != 0 */
213 	netdev_for_each_mc_addr(ha, vdev) {
214 		if (ether_addr_equal(ha->addr, sync_ctx->addr)) {
215 			found = ha->sync_cnt;
216 			break;
217 		}
218 	}
219 
220 	if (found)
221 		sync_ctx->consumed++;
222 
223 	if (sync_ctx->flush) {
224 		if (!found)
225 			cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 0);
226 		return 0;
227 	}
228 
229 	if (found)
230 		ret = cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 1);
231 
232 	return ret;
233 }
234 
235 static int cpsw_add_mc_addr(struct net_device *ndev, const u8 *addr, int num)
236 {
237 	struct addr_sync_ctx sync_ctx;
238 	int ret;
239 
240 	sync_ctx.consumed = 0;
241 	sync_ctx.addr = addr;
242 	sync_ctx.ndev = ndev;
243 	sync_ctx.flush = 0;
244 
245 	ret = vlan_for_each(ndev, cpsw_update_vlan_mc, &sync_ctx);
246 	if (sync_ctx.consumed < num && !ret)
247 		ret = cpsw_set_mc(ndev, addr, -1, 1);
248 
249 	return ret;
250 }
251 
252 static int cpsw_del_mc_addr(struct net_device *ndev, const u8 *addr, int num)
253 {
254 	struct addr_sync_ctx sync_ctx;
255 
256 	sync_ctx.consumed = 0;
257 	sync_ctx.addr = addr;
258 	sync_ctx.ndev = ndev;
259 	sync_ctx.flush = 1;
260 
261 	vlan_for_each(ndev, cpsw_update_vlan_mc, &sync_ctx);
262 	if (sync_ctx.consumed == num)
263 		cpsw_set_mc(ndev, addr, -1, 0);
264 
265 	return 0;
266 }
267 
268 static int cpsw_purge_vlan_mc(struct net_device *vdev, int vid, void *ctx)
269 {
270 	struct addr_sync_ctx *sync_ctx = ctx;
271 	struct netdev_hw_addr *ha;
272 	int found = 0;
273 
274 	if (!vdev || !(vdev->flags & IFF_UP))
275 		return 0;
276 
277 	/* vlan address is relevant if its sync_cnt != 0 */
278 	netdev_for_each_mc_addr(ha, vdev) {
279 		if (ether_addr_equal(ha->addr, sync_ctx->addr)) {
280 			found = ha->sync_cnt;
281 			break;
282 		}
283 	}
284 
285 	if (!found)
286 		return 0;
287 
288 	sync_ctx->consumed++;
289 	cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 0);
290 	return 0;
291 }
292 
293 static int cpsw_purge_all_mc(struct net_device *ndev, const u8 *addr, int num)
294 {
295 	struct addr_sync_ctx sync_ctx;
296 
297 	sync_ctx.addr = addr;
298 	sync_ctx.ndev = ndev;
299 	sync_ctx.consumed = 0;
300 
301 	vlan_for_each(ndev, cpsw_purge_vlan_mc, &sync_ctx);
302 	if (sync_ctx.consumed < num)
303 		cpsw_set_mc(ndev, addr, -1, 0);
304 
305 	return 0;
306 }
307 
308 static void cpsw_ndo_set_rx_mode(struct net_device *ndev)
309 {
310 	struct cpsw_priv *priv = netdev_priv(ndev);
311 	struct cpsw_common *cpsw = priv->cpsw;
312 	int slave_port = -1;
313 
314 	if (cpsw->data.dual_emac)
315 		slave_port = priv->emac_port + 1;
316 
317 	if (ndev->flags & IFF_PROMISC) {
318 		/* Enable promiscuous mode */
319 		cpsw_set_promiscious(ndev, true);
320 		cpsw_ale_set_allmulti(cpsw->ale, IFF_ALLMULTI, slave_port);
321 		return;
322 	} else {
323 		/* Disable promiscuous mode */
324 		cpsw_set_promiscious(ndev, false);
325 	}
326 
327 	/* Restore allmulti on vlans if necessary */
328 	cpsw_ale_set_allmulti(cpsw->ale,
329 			      ndev->flags & IFF_ALLMULTI, slave_port);
330 
331 	/* add/remove mcast address either for real netdev or for vlan */
332 	__hw_addr_ref_sync_dev(&ndev->mc, ndev, cpsw_add_mc_addr,
333 			       cpsw_del_mc_addr);
334 }
335 
336 static unsigned int cpsw_rxbuf_total_len(unsigned int len)
337 {
338 	len += CPSW_HEADROOM;
339 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
340 
341 	return SKB_DATA_ALIGN(len);
342 }
343 
344 static void cpsw_rx_handler(void *token, int len, int status)
345 {
346 	struct page		*new_page, *page = token;
347 	void			*pa = page_address(page);
348 	struct cpsw_meta_xdp	*xmeta = pa + CPSW_XMETA_OFFSET;
349 	struct cpsw_common	*cpsw = ndev_to_cpsw(xmeta->ndev);
350 	int			pkt_size = cpsw->rx_packet_max;
351 	int			ret = 0, port, ch = xmeta->ch;
352 	int			headroom = CPSW_HEADROOM;
353 	struct net_device	*ndev = xmeta->ndev;
354 	struct cpsw_priv	*priv;
355 	struct page_pool	*pool;
356 	struct sk_buff		*skb;
357 	struct xdp_buff		xdp;
358 	dma_addr_t		dma;
359 
360 	if (cpsw->data.dual_emac && status >= 0) {
361 		port = CPDMA_RX_SOURCE_PORT(status);
362 		if (port)
363 			ndev = cpsw->slaves[--port].ndev;
364 	}
365 
366 	priv = netdev_priv(ndev);
367 	pool = cpsw->page_pool[ch];
368 	if (unlikely(status < 0) || unlikely(!netif_running(ndev))) {
369 		/* In dual emac mode check for all interfaces */
370 		if (cpsw->data.dual_emac && cpsw->usage_count &&
371 		    (status >= 0)) {
372 			/* The packet received is for the interface which
373 			 * is already down and the other interface is up
374 			 * and running, instead of freeing which results
375 			 * in reducing of the number of rx descriptor in
376 			 * DMA engine, requeue page back to cpdma.
377 			 */
378 			new_page = page;
379 			goto requeue;
380 		}
381 
382 		/* the interface is going down, pages are purged */
383 		page_pool_recycle_direct(pool, page);
384 		return;
385 	}
386 
387 	new_page = page_pool_dev_alloc_pages(pool);
388 	if (unlikely(!new_page)) {
389 		new_page = page;
390 		ndev->stats.rx_dropped++;
391 		goto requeue;
392 	}
393 
394 	if (priv->xdp_prog) {
395 		if (status & CPDMA_RX_VLAN_ENCAP) {
396 			xdp.data = pa + CPSW_HEADROOM +
397 				   CPSW_RX_VLAN_ENCAP_HDR_SIZE;
398 			xdp.data_end = xdp.data + len -
399 				       CPSW_RX_VLAN_ENCAP_HDR_SIZE;
400 		} else {
401 			xdp.data = pa + CPSW_HEADROOM;
402 			xdp.data_end = xdp.data + len;
403 		}
404 
405 		xdp_set_data_meta_invalid(&xdp);
406 
407 		xdp.data_hard_start = pa;
408 		xdp.rxq = &priv->xdp_rxq[ch];
409 
410 		port = priv->emac_port + cpsw->data.dual_emac;
411 		ret = cpsw_run_xdp(priv, ch, &xdp, page, port);
412 		if (ret != CPSW_XDP_PASS)
413 			goto requeue;
414 
415 		/* XDP prog might have changed packet data and boundaries */
416 		len = xdp.data_end - xdp.data;
417 		headroom = xdp.data - xdp.data_hard_start;
418 
419 		/* XDP prog can modify vlan tag, so can't use encap header */
420 		status &= ~CPDMA_RX_VLAN_ENCAP;
421 	}
422 
423 	/* pass skb to netstack if no XDP prog or returned XDP_PASS */
424 	skb = build_skb(pa, cpsw_rxbuf_total_len(pkt_size));
425 	if (!skb) {
426 		ndev->stats.rx_dropped++;
427 		page_pool_recycle_direct(pool, page);
428 		goto requeue;
429 	}
430 
431 	skb_reserve(skb, headroom);
432 	skb_put(skb, len);
433 	skb->dev = ndev;
434 	if (status & CPDMA_RX_VLAN_ENCAP)
435 		cpsw_rx_vlan_encap(skb);
436 	if (priv->rx_ts_enabled)
437 		cpts_rx_timestamp(cpsw->cpts, skb);
438 	skb->protocol = eth_type_trans(skb, ndev);
439 
440 	/* unmap page as no netstack skb page recycling */
441 	page_pool_release_page(pool, page);
442 	netif_receive_skb(skb);
443 
444 	ndev->stats.rx_bytes += len;
445 	ndev->stats.rx_packets++;
446 
447 requeue:
448 	xmeta = page_address(new_page) + CPSW_XMETA_OFFSET;
449 	xmeta->ndev = ndev;
450 	xmeta->ch = ch;
451 
452 	dma = page_pool_get_dma_addr(new_page) + CPSW_HEADROOM;
453 	ret = cpdma_chan_submit_mapped(cpsw->rxv[ch].ch, new_page, dma,
454 				       pkt_size, 0);
455 	if (ret < 0) {
456 		WARN_ON(ret == -ENOMEM);
457 		page_pool_recycle_direct(pool, new_page);
458 	}
459 }
460 
461 static void _cpsw_adjust_link(struct cpsw_slave *slave,
462 			      struct cpsw_priv *priv, bool *link)
463 {
464 	struct phy_device	*phy = slave->phy;
465 	u32			mac_control = 0;
466 	u32			slave_port;
467 	struct cpsw_common *cpsw = priv->cpsw;
468 
469 	if (!phy)
470 		return;
471 
472 	slave_port = cpsw_get_slave_port(slave->slave_num);
473 
474 	if (phy->link) {
475 		mac_control = CPSW_SL_CTL_GMII_EN;
476 
477 		if (phy->speed == 1000)
478 			mac_control |= CPSW_SL_CTL_GIG;
479 		if (phy->duplex)
480 			mac_control |= CPSW_SL_CTL_FULLDUPLEX;
481 
482 		/* set speed_in input in case RMII mode is used in 100Mbps */
483 		if (phy->speed == 100)
484 			mac_control |= CPSW_SL_CTL_IFCTL_A;
485 		/* in band mode only works in 10Mbps RGMII mode */
486 		else if ((phy->speed == 10) && phy_interface_is_rgmii(phy))
487 			mac_control |= CPSW_SL_CTL_EXT_EN; /* In Band mode */
488 
489 		if (priv->rx_pause)
490 			mac_control |= CPSW_SL_CTL_RX_FLOW_EN;
491 
492 		if (priv->tx_pause)
493 			mac_control |= CPSW_SL_CTL_TX_FLOW_EN;
494 
495 		if (mac_control != slave->mac_control)
496 			cpsw_sl_ctl_set(slave->mac_sl, mac_control);
497 
498 		/* enable forwarding */
499 		cpsw_ale_control_set(cpsw->ale, slave_port,
500 				     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
501 
502 		*link = true;
503 
504 		if (priv->shp_cfg_speed &&
505 		    priv->shp_cfg_speed != slave->phy->speed &&
506 		    !cpsw_shp_is_off(priv))
507 			dev_warn(priv->dev,
508 				 "Speed was changed, CBS shaper speeds are changed!");
509 	} else {
510 		mac_control = 0;
511 		/* disable forwarding */
512 		cpsw_ale_control_set(cpsw->ale, slave_port,
513 				     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
514 
515 		cpsw_sl_wait_for_idle(slave->mac_sl, 100);
516 
517 		cpsw_sl_ctl_reset(slave->mac_sl);
518 	}
519 
520 	if (mac_control != slave->mac_control)
521 		phy_print_status(phy);
522 
523 	slave->mac_control = mac_control;
524 }
525 
526 static void cpsw_adjust_link(struct net_device *ndev)
527 {
528 	struct cpsw_priv	*priv = netdev_priv(ndev);
529 	struct cpsw_common	*cpsw = priv->cpsw;
530 	bool			link = false;
531 
532 	for_each_slave(priv, _cpsw_adjust_link, priv, &link);
533 
534 	if (link) {
535 		if (cpsw_need_resplit(cpsw))
536 			cpsw_split_res(cpsw);
537 
538 		netif_carrier_on(ndev);
539 		if (netif_running(ndev))
540 			netif_tx_wake_all_queues(ndev);
541 	} else {
542 		netif_carrier_off(ndev);
543 		netif_tx_stop_all_queues(ndev);
544 	}
545 }
546 
547 static inline void cpsw_add_dual_emac_def_ale_entries(
548 		struct cpsw_priv *priv, struct cpsw_slave *slave,
549 		u32 slave_port)
550 {
551 	struct cpsw_common *cpsw = priv->cpsw;
552 	u32 port_mask = 1 << slave_port | ALE_PORT_HOST;
553 
554 	if (cpsw->version == CPSW_VERSION_1)
555 		slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN);
556 	else
557 		slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN);
558 	cpsw_ale_add_vlan(cpsw->ale, slave->port_vlan, port_mask,
559 			  port_mask, port_mask, 0);
560 	cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
561 			   ALE_PORT_HOST, ALE_VLAN, slave->port_vlan, 0);
562 	cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
563 			   HOST_PORT_NUM, ALE_VLAN |
564 			   ALE_SECURE, slave->port_vlan);
565 	cpsw_ale_control_set(cpsw->ale, slave_port,
566 			     ALE_PORT_DROP_UNKNOWN_VLAN, 1);
567 }
568 
569 static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv)
570 {
571 	u32 slave_port;
572 	struct phy_device *phy;
573 	struct cpsw_common *cpsw = priv->cpsw;
574 
575 	cpsw_sl_reset(slave->mac_sl, 100);
576 	cpsw_sl_ctl_reset(slave->mac_sl);
577 
578 	/* setup priority mapping */
579 	cpsw_sl_reg_write(slave->mac_sl, CPSW_SL_RX_PRI_MAP,
580 			  RX_PRIORITY_MAPPING);
581 
582 	switch (cpsw->version) {
583 	case CPSW_VERSION_1:
584 		slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP);
585 		/* Increase RX FIFO size to 5 for supporting fullduplex
586 		 * flow control mode
587 		 */
588 		slave_write(slave,
589 			    (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
590 			    CPSW_MAX_BLKS_RX, CPSW1_MAX_BLKS);
591 		break;
592 	case CPSW_VERSION_2:
593 	case CPSW_VERSION_3:
594 	case CPSW_VERSION_4:
595 		slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP);
596 		/* Increase RX FIFO size to 5 for supporting fullduplex
597 		 * flow control mode
598 		 */
599 		slave_write(slave,
600 			    (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
601 			    CPSW_MAX_BLKS_RX, CPSW2_MAX_BLKS);
602 		break;
603 	}
604 
605 	/* setup max packet size, and mac address */
606 	cpsw_sl_reg_write(slave->mac_sl, CPSW_SL_RX_MAXLEN,
607 			  cpsw->rx_packet_max);
608 	cpsw_set_slave_mac(slave, priv);
609 
610 	slave->mac_control = 0;	/* no link yet */
611 
612 	slave_port = cpsw_get_slave_port(slave->slave_num);
613 
614 	if (cpsw->data.dual_emac)
615 		cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port);
616 	else
617 		cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
618 				   1 << slave_port, 0, 0, ALE_MCAST_FWD_2);
619 
620 	if (slave->data->phy_node) {
621 		phy = of_phy_connect(priv->ndev, slave->data->phy_node,
622 				 &cpsw_adjust_link, 0, slave->data->phy_if);
623 		if (!phy) {
624 			dev_err(priv->dev, "phy \"%pOF\" not found on slave %d\n",
625 				slave->data->phy_node,
626 				slave->slave_num);
627 			return;
628 		}
629 	} else {
630 		phy = phy_connect(priv->ndev, slave->data->phy_id,
631 				 &cpsw_adjust_link, slave->data->phy_if);
632 		if (IS_ERR(phy)) {
633 			dev_err(priv->dev,
634 				"phy \"%s\" not found on slave %d, err %ld\n",
635 				slave->data->phy_id, slave->slave_num,
636 				PTR_ERR(phy));
637 			return;
638 		}
639 	}
640 
641 	slave->phy = phy;
642 
643 	phy_attached_info(slave->phy);
644 
645 	phy_start(slave->phy);
646 
647 	/* Configure GMII_SEL register */
648 	if (!IS_ERR(slave->data->ifphy))
649 		phy_set_mode_ext(slave->data->ifphy, PHY_MODE_ETHERNET,
650 				 slave->data->phy_if);
651 	else
652 		cpsw_phy_sel(cpsw->dev, slave->phy->interface,
653 			     slave->slave_num);
654 }
655 
656 static inline void cpsw_add_default_vlan(struct cpsw_priv *priv)
657 {
658 	struct cpsw_common *cpsw = priv->cpsw;
659 	const int vlan = cpsw->data.default_vlan;
660 	u32 reg;
661 	int i;
662 	int unreg_mcast_mask;
663 
664 	reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN :
665 	       CPSW2_PORT_VLAN;
666 
667 	writel(vlan, &cpsw->host_port_regs->port_vlan);
668 
669 	for (i = 0; i < cpsw->data.slaves; i++)
670 		slave_write(cpsw->slaves + i, vlan, reg);
671 
672 	if (priv->ndev->flags & IFF_ALLMULTI)
673 		unreg_mcast_mask = ALE_ALL_PORTS;
674 	else
675 		unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
676 
677 	cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS,
678 			  ALE_ALL_PORTS, ALE_ALL_PORTS,
679 			  unreg_mcast_mask);
680 }
681 
682 static void cpsw_init_host_port(struct cpsw_priv *priv)
683 {
684 	u32 fifo_mode;
685 	u32 control_reg;
686 	struct cpsw_common *cpsw = priv->cpsw;
687 
688 	/* soft reset the controller and initialize ale */
689 	soft_reset("cpsw", &cpsw->regs->soft_reset);
690 	cpsw_ale_start(cpsw->ale);
691 
692 	/* switch to vlan unaware mode */
693 	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_VLAN_AWARE,
694 			     CPSW_ALE_VLAN_AWARE);
695 	control_reg = readl(&cpsw->regs->control);
696 	control_reg |= CPSW_VLAN_AWARE | CPSW_RX_VLAN_ENCAP;
697 	writel(control_reg, &cpsw->regs->control);
698 	fifo_mode = (cpsw->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE :
699 		     CPSW_FIFO_NORMAL_MODE;
700 	writel(fifo_mode, &cpsw->host_port_regs->tx_in_ctl);
701 
702 	/* setup host port priority mapping */
703 	writel_relaxed(CPDMA_TX_PRIORITY_MAP,
704 		       &cpsw->host_port_regs->cpdma_tx_pri_map);
705 	writel_relaxed(0, &cpsw->host_port_regs->cpdma_rx_chan_map);
706 
707 	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM,
708 			     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
709 
710 	if (!cpsw->data.dual_emac) {
711 		cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
712 				   0, 0);
713 		cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
714 				   ALE_PORT_HOST, 0, 0, ALE_MCAST_FWD_2);
715 	}
716 }
717 
718 static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_common *cpsw)
719 {
720 	u32 slave_port;
721 
722 	slave_port = cpsw_get_slave_port(slave->slave_num);
723 
724 	if (!slave->phy)
725 		return;
726 	phy_stop(slave->phy);
727 	phy_disconnect(slave->phy);
728 	slave->phy = NULL;
729 	cpsw_ale_control_set(cpsw->ale, slave_port,
730 			     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
731 	cpsw_sl_reset(slave->mac_sl, 100);
732 	cpsw_sl_ctl_reset(slave->mac_sl);
733 }
734 
735 static int cpsw_restore_vlans(struct net_device *vdev, int vid, void *arg)
736 {
737 	struct cpsw_priv *priv = arg;
738 
739 	if (!vdev)
740 		return 0;
741 
742 	cpsw_ndo_vlan_rx_add_vid(priv->ndev, 0, vid);
743 	return 0;
744 }
745 
746 /* restore resources after port reset */
747 static void cpsw_restore(struct cpsw_priv *priv)
748 {
749 	/* restore vlan configurations */
750 	vlan_for_each(priv->ndev, cpsw_restore_vlans, priv);
751 
752 	/* restore MQPRIO offload */
753 	for_each_slave(priv, cpsw_mqprio_resume, priv);
754 
755 	/* restore CBS offload */
756 	for_each_slave(priv, cpsw_cbs_resume, priv);
757 }
758 
759 static int cpsw_ndo_open(struct net_device *ndev)
760 {
761 	struct cpsw_priv *priv = netdev_priv(ndev);
762 	struct cpsw_common *cpsw = priv->cpsw;
763 	int ret;
764 	u32 reg;
765 
766 	ret = pm_runtime_get_sync(cpsw->dev);
767 	if (ret < 0) {
768 		pm_runtime_put_noidle(cpsw->dev);
769 		return ret;
770 	}
771 
772 	netif_carrier_off(ndev);
773 
774 	/* Notify the stack of the actual queue counts. */
775 	ret = netif_set_real_num_tx_queues(ndev, cpsw->tx_ch_num);
776 	if (ret) {
777 		dev_err(priv->dev, "cannot set real number of tx queues\n");
778 		goto err_cleanup;
779 	}
780 
781 	ret = netif_set_real_num_rx_queues(ndev, cpsw->rx_ch_num);
782 	if (ret) {
783 		dev_err(priv->dev, "cannot set real number of rx queues\n");
784 		goto err_cleanup;
785 	}
786 
787 	reg = cpsw->version;
788 
789 	dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n",
790 		 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg),
791 		 CPSW_RTL_VERSION(reg));
792 
793 	/* Initialize host and slave ports */
794 	if (!cpsw->usage_count)
795 		cpsw_init_host_port(priv);
796 	for_each_slave(priv, cpsw_slave_open, priv);
797 
798 	/* Add default VLAN */
799 	if (!cpsw->data.dual_emac)
800 		cpsw_add_default_vlan(priv);
801 	else
802 		cpsw_ale_add_vlan(cpsw->ale, cpsw->data.default_vlan,
803 				  ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0);
804 
805 	/* initialize shared resources for every ndev */
806 	if (!cpsw->usage_count) {
807 		/* disable priority elevation */
808 		writel_relaxed(0, &cpsw->regs->ptype);
809 
810 		/* enable statistics collection only on all ports */
811 		writel_relaxed(0x7, &cpsw->regs->stat_port_en);
812 
813 		/* Enable internal fifo flow control */
814 		writel(0x7, &cpsw->regs->flow_control);
815 
816 		napi_enable(&cpsw->napi_rx);
817 		napi_enable(&cpsw->napi_tx);
818 
819 		if (cpsw->tx_irq_disabled) {
820 			cpsw->tx_irq_disabled = false;
821 			enable_irq(cpsw->irqs_table[1]);
822 		}
823 
824 		if (cpsw->rx_irq_disabled) {
825 			cpsw->rx_irq_disabled = false;
826 			enable_irq(cpsw->irqs_table[0]);
827 		}
828 
829 		/* create rxqs for both infs in dual mac as they use same pool
830 		 * and must be destroyed together when no users.
831 		 */
832 		ret = cpsw_create_xdp_rxqs(cpsw);
833 		if (ret < 0)
834 			goto err_cleanup;
835 
836 		ret = cpsw_fill_rx_channels(priv);
837 		if (ret < 0)
838 			goto err_cleanup;
839 
840 		if (cpts_register(cpsw->cpts))
841 			dev_err(priv->dev, "error registering cpts device\n");
842 
843 	}
844 
845 	cpsw_restore(priv);
846 
847 	/* Enable Interrupt pacing if configured */
848 	if (cpsw->coal_intvl != 0) {
849 		struct ethtool_coalesce coal;
850 
851 		coal.rx_coalesce_usecs = cpsw->coal_intvl;
852 		cpsw_set_coalesce(ndev, &coal);
853 	}
854 
855 	cpdma_ctlr_start(cpsw->dma);
856 	cpsw_intr_enable(cpsw);
857 	cpsw->usage_count++;
858 
859 	return 0;
860 
861 err_cleanup:
862 	if (!cpsw->usage_count) {
863 		cpdma_ctlr_stop(cpsw->dma);
864 		cpsw_destroy_xdp_rxqs(cpsw);
865 	}
866 
867 	for_each_slave(priv, cpsw_slave_stop, cpsw);
868 	pm_runtime_put_sync(cpsw->dev);
869 	netif_carrier_off(priv->ndev);
870 	return ret;
871 }
872 
873 static int cpsw_ndo_stop(struct net_device *ndev)
874 {
875 	struct cpsw_priv *priv = netdev_priv(ndev);
876 	struct cpsw_common *cpsw = priv->cpsw;
877 
878 	cpsw_info(priv, ifdown, "shutting down cpsw device\n");
879 	__hw_addr_ref_unsync_dev(&ndev->mc, ndev, cpsw_purge_all_mc);
880 	netif_tx_stop_all_queues(priv->ndev);
881 	netif_carrier_off(priv->ndev);
882 
883 	if (cpsw->usage_count <= 1) {
884 		napi_disable(&cpsw->napi_rx);
885 		napi_disable(&cpsw->napi_tx);
886 		cpts_unregister(cpsw->cpts);
887 		cpsw_intr_disable(cpsw);
888 		cpdma_ctlr_stop(cpsw->dma);
889 		cpsw_ale_stop(cpsw->ale);
890 		cpsw_destroy_xdp_rxqs(cpsw);
891 	}
892 	for_each_slave(priv, cpsw_slave_stop, cpsw);
893 
894 	if (cpsw_need_resplit(cpsw))
895 		cpsw_split_res(cpsw);
896 
897 	cpsw->usage_count--;
898 	pm_runtime_put_sync(cpsw->dev);
899 	return 0;
900 }
901 
902 static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb,
903 				       struct net_device *ndev)
904 {
905 	struct cpsw_priv *priv = netdev_priv(ndev);
906 	struct cpsw_common *cpsw = priv->cpsw;
907 	struct cpts *cpts = cpsw->cpts;
908 	struct netdev_queue *txq;
909 	struct cpdma_chan *txch;
910 	int ret, q_idx;
911 
912 	if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) {
913 		cpsw_err(priv, tx_err, "packet pad failed\n");
914 		ndev->stats.tx_dropped++;
915 		return NET_XMIT_DROP;
916 	}
917 
918 	if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
919 	    priv->tx_ts_enabled && cpts_can_timestamp(cpts, skb))
920 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
921 
922 	q_idx = skb_get_queue_mapping(skb);
923 	if (q_idx >= cpsw->tx_ch_num)
924 		q_idx = q_idx % cpsw->tx_ch_num;
925 
926 	txch = cpsw->txv[q_idx].ch;
927 	txq = netdev_get_tx_queue(ndev, q_idx);
928 	skb_tx_timestamp(skb);
929 	ret = cpdma_chan_submit(txch, skb, skb->data, skb->len,
930 				priv->emac_port + cpsw->data.dual_emac);
931 	if (unlikely(ret != 0)) {
932 		cpsw_err(priv, tx_err, "desc submit failed\n");
933 		goto fail;
934 	}
935 
936 	/* If there is no more tx desc left free then we need to
937 	 * tell the kernel to stop sending us tx frames.
938 	 */
939 	if (unlikely(!cpdma_check_free_tx_desc(txch))) {
940 		netif_tx_stop_queue(txq);
941 
942 		/* Barrier, so that stop_queue visible to other cpus */
943 		smp_mb__after_atomic();
944 
945 		if (cpdma_check_free_tx_desc(txch))
946 			netif_tx_wake_queue(txq);
947 	}
948 
949 	return NETDEV_TX_OK;
950 fail:
951 	ndev->stats.tx_dropped++;
952 	netif_tx_stop_queue(txq);
953 
954 	/* Barrier, so that stop_queue visible to other cpus */
955 	smp_mb__after_atomic();
956 
957 	if (cpdma_check_free_tx_desc(txch))
958 		netif_tx_wake_queue(txq);
959 
960 	return NETDEV_TX_BUSY;
961 }
962 
963 static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p)
964 {
965 	struct cpsw_priv *priv = netdev_priv(ndev);
966 	struct sockaddr *addr = (struct sockaddr *)p;
967 	struct cpsw_common *cpsw = priv->cpsw;
968 	int flags = 0;
969 	u16 vid = 0;
970 	int ret;
971 
972 	if (!is_valid_ether_addr(addr->sa_data))
973 		return -EADDRNOTAVAIL;
974 
975 	ret = pm_runtime_get_sync(cpsw->dev);
976 	if (ret < 0) {
977 		pm_runtime_put_noidle(cpsw->dev);
978 		return ret;
979 	}
980 
981 	if (cpsw->data.dual_emac) {
982 		vid = cpsw->slaves[priv->emac_port].port_vlan;
983 		flags = ALE_VLAN;
984 	}
985 
986 	cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
987 			   flags, vid);
988 	cpsw_ale_add_ucast(cpsw->ale, addr->sa_data, HOST_PORT_NUM,
989 			   flags, vid);
990 
991 	memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
992 	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
993 	for_each_slave(priv, cpsw_set_slave_mac, priv);
994 
995 	pm_runtime_put(cpsw->dev);
996 
997 	return 0;
998 }
999 
1000 static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv,
1001 				unsigned short vid)
1002 {
1003 	int ret;
1004 	int unreg_mcast_mask = 0;
1005 	int mcast_mask;
1006 	u32 port_mask;
1007 	struct cpsw_common *cpsw = priv->cpsw;
1008 
1009 	if (cpsw->data.dual_emac) {
1010 		port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST;
1011 
1012 		mcast_mask = ALE_PORT_HOST;
1013 		if (priv->ndev->flags & IFF_ALLMULTI)
1014 			unreg_mcast_mask = mcast_mask;
1015 	} else {
1016 		port_mask = ALE_ALL_PORTS;
1017 		mcast_mask = port_mask;
1018 
1019 		if (priv->ndev->flags & IFF_ALLMULTI)
1020 			unreg_mcast_mask = ALE_ALL_PORTS;
1021 		else
1022 			unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
1023 	}
1024 
1025 	ret = cpsw_ale_add_vlan(cpsw->ale, vid, port_mask, 0, port_mask,
1026 				unreg_mcast_mask);
1027 	if (ret != 0)
1028 		return ret;
1029 
1030 	ret = cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
1031 				 HOST_PORT_NUM, ALE_VLAN, vid);
1032 	if (ret != 0)
1033 		goto clean_vid;
1034 
1035 	ret = cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1036 				 mcast_mask, ALE_VLAN, vid, 0);
1037 	if (ret != 0)
1038 		goto clean_vlan_ucast;
1039 	return 0;
1040 
1041 clean_vlan_ucast:
1042 	cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
1043 			   HOST_PORT_NUM, ALE_VLAN, vid);
1044 clean_vid:
1045 	cpsw_ale_del_vlan(cpsw->ale, vid, 0);
1046 	return ret;
1047 }
1048 
1049 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
1050 				    __be16 proto, u16 vid)
1051 {
1052 	struct cpsw_priv *priv = netdev_priv(ndev);
1053 	struct cpsw_common *cpsw = priv->cpsw;
1054 	int ret;
1055 
1056 	if (vid == cpsw->data.default_vlan)
1057 		return 0;
1058 
1059 	ret = pm_runtime_get_sync(cpsw->dev);
1060 	if (ret < 0) {
1061 		pm_runtime_put_noidle(cpsw->dev);
1062 		return ret;
1063 	}
1064 
1065 	if (cpsw->data.dual_emac) {
1066 		/* In dual EMAC, reserved VLAN id should not be used for
1067 		 * creating VLAN interfaces as this can break the dual
1068 		 * EMAC port separation
1069 		 */
1070 		int i;
1071 
1072 		for (i = 0; i < cpsw->data.slaves; i++) {
1073 			if (vid == cpsw->slaves[i].port_vlan) {
1074 				ret = -EINVAL;
1075 				goto err;
1076 			}
1077 		}
1078 	}
1079 
1080 	dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid);
1081 	ret = cpsw_add_vlan_ale_entry(priv, vid);
1082 err:
1083 	pm_runtime_put(cpsw->dev);
1084 	return ret;
1085 }
1086 
1087 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev,
1088 				     __be16 proto, u16 vid)
1089 {
1090 	struct cpsw_priv *priv = netdev_priv(ndev);
1091 	struct cpsw_common *cpsw = priv->cpsw;
1092 	int ret;
1093 
1094 	if (vid == cpsw->data.default_vlan)
1095 		return 0;
1096 
1097 	ret = pm_runtime_get_sync(cpsw->dev);
1098 	if (ret < 0) {
1099 		pm_runtime_put_noidle(cpsw->dev);
1100 		return ret;
1101 	}
1102 
1103 	if (cpsw->data.dual_emac) {
1104 		int i;
1105 
1106 		for (i = 0; i < cpsw->data.slaves; i++) {
1107 			if (vid == cpsw->slaves[i].port_vlan)
1108 				goto err;
1109 		}
1110 	}
1111 
1112 	dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid);
1113 	ret = cpsw_ale_del_vlan(cpsw->ale, vid, 0);
1114 	ret |= cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
1115 				  HOST_PORT_NUM, ALE_VLAN, vid);
1116 	ret |= cpsw_ale_del_mcast(cpsw->ale, priv->ndev->broadcast,
1117 				  0, ALE_VLAN, vid);
1118 	ret |= cpsw_ale_flush_multicast(cpsw->ale, 0, vid);
1119 err:
1120 	pm_runtime_put(cpsw->dev);
1121 	return ret;
1122 }
1123 
1124 static int cpsw_ndo_xdp_xmit(struct net_device *ndev, int n,
1125 			     struct xdp_frame **frames, u32 flags)
1126 {
1127 	struct cpsw_priv *priv = netdev_priv(ndev);
1128 	struct cpsw_common *cpsw = priv->cpsw;
1129 	struct xdp_frame *xdpf;
1130 	int i, drops = 0, port;
1131 
1132 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
1133 		return -EINVAL;
1134 
1135 	for (i = 0; i < n; i++) {
1136 		xdpf = frames[i];
1137 		if (xdpf->len < CPSW_MIN_PACKET_SIZE) {
1138 			xdp_return_frame_rx_napi(xdpf);
1139 			drops++;
1140 			continue;
1141 		}
1142 
1143 		port = priv->emac_port + cpsw->data.dual_emac;
1144 		if (cpsw_xdp_tx_frame(priv, xdpf, NULL, port))
1145 			drops++;
1146 	}
1147 
1148 	return n - drops;
1149 }
1150 
1151 #ifdef CONFIG_NET_POLL_CONTROLLER
1152 static void cpsw_ndo_poll_controller(struct net_device *ndev)
1153 {
1154 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1155 
1156 	cpsw_intr_disable(cpsw);
1157 	cpsw_rx_interrupt(cpsw->irqs_table[0], cpsw);
1158 	cpsw_tx_interrupt(cpsw->irqs_table[1], cpsw);
1159 	cpsw_intr_enable(cpsw);
1160 }
1161 #endif
1162 
1163 static const struct net_device_ops cpsw_netdev_ops = {
1164 	.ndo_open		= cpsw_ndo_open,
1165 	.ndo_stop		= cpsw_ndo_stop,
1166 	.ndo_start_xmit		= cpsw_ndo_start_xmit,
1167 	.ndo_set_mac_address	= cpsw_ndo_set_mac_address,
1168 	.ndo_do_ioctl		= cpsw_ndo_ioctl,
1169 	.ndo_validate_addr	= eth_validate_addr,
1170 	.ndo_tx_timeout		= cpsw_ndo_tx_timeout,
1171 	.ndo_set_rx_mode	= cpsw_ndo_set_rx_mode,
1172 	.ndo_set_tx_maxrate	= cpsw_ndo_set_tx_maxrate,
1173 #ifdef CONFIG_NET_POLL_CONTROLLER
1174 	.ndo_poll_controller	= cpsw_ndo_poll_controller,
1175 #endif
1176 	.ndo_vlan_rx_add_vid	= cpsw_ndo_vlan_rx_add_vid,
1177 	.ndo_vlan_rx_kill_vid	= cpsw_ndo_vlan_rx_kill_vid,
1178 	.ndo_setup_tc           = cpsw_ndo_setup_tc,
1179 	.ndo_bpf		= cpsw_ndo_bpf,
1180 	.ndo_xdp_xmit		= cpsw_ndo_xdp_xmit,
1181 };
1182 
1183 static void cpsw_get_drvinfo(struct net_device *ndev,
1184 			     struct ethtool_drvinfo *info)
1185 {
1186 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1187 	struct platform_device	*pdev = to_platform_device(cpsw->dev);
1188 
1189 	strlcpy(info->driver, "cpsw", sizeof(info->driver));
1190 	strlcpy(info->version, "1.0", sizeof(info->version));
1191 	strlcpy(info->bus_info, pdev->name, sizeof(info->bus_info));
1192 }
1193 
1194 static int cpsw_set_pauseparam(struct net_device *ndev,
1195 			       struct ethtool_pauseparam *pause)
1196 {
1197 	struct cpsw_priv *priv = netdev_priv(ndev);
1198 	bool link;
1199 
1200 	priv->rx_pause = pause->rx_pause ? true : false;
1201 	priv->tx_pause = pause->tx_pause ? true : false;
1202 
1203 	for_each_slave(priv, _cpsw_adjust_link, priv, &link);
1204 	return 0;
1205 }
1206 
1207 static int cpsw_set_channels(struct net_device *ndev,
1208 			     struct ethtool_channels *chs)
1209 {
1210 	return cpsw_set_channels_common(ndev, chs, cpsw_rx_handler);
1211 }
1212 
1213 static const struct ethtool_ops cpsw_ethtool_ops = {
1214 	.get_drvinfo	= cpsw_get_drvinfo,
1215 	.get_msglevel	= cpsw_get_msglevel,
1216 	.set_msglevel	= cpsw_set_msglevel,
1217 	.get_link	= ethtool_op_get_link,
1218 	.get_ts_info	= cpsw_get_ts_info,
1219 	.get_coalesce	= cpsw_get_coalesce,
1220 	.set_coalesce	= cpsw_set_coalesce,
1221 	.get_sset_count		= cpsw_get_sset_count,
1222 	.get_strings		= cpsw_get_strings,
1223 	.get_ethtool_stats	= cpsw_get_ethtool_stats,
1224 	.get_pauseparam		= cpsw_get_pauseparam,
1225 	.set_pauseparam		= cpsw_set_pauseparam,
1226 	.get_wol	= cpsw_get_wol,
1227 	.set_wol	= cpsw_set_wol,
1228 	.get_regs_len	= cpsw_get_regs_len,
1229 	.get_regs	= cpsw_get_regs,
1230 	.begin		= cpsw_ethtool_op_begin,
1231 	.complete	= cpsw_ethtool_op_complete,
1232 	.get_channels	= cpsw_get_channels,
1233 	.set_channels	= cpsw_set_channels,
1234 	.get_link_ksettings	= cpsw_get_link_ksettings,
1235 	.set_link_ksettings	= cpsw_set_link_ksettings,
1236 	.get_eee	= cpsw_get_eee,
1237 	.set_eee	= cpsw_set_eee,
1238 	.nway_reset	= cpsw_nway_reset,
1239 	.get_ringparam = cpsw_get_ringparam,
1240 	.set_ringparam = cpsw_set_ringparam,
1241 };
1242 
1243 static int cpsw_probe_dt(struct cpsw_platform_data *data,
1244 			 struct platform_device *pdev)
1245 {
1246 	struct device_node *node = pdev->dev.of_node;
1247 	struct device_node *slave_node;
1248 	int i = 0, ret;
1249 	u32 prop;
1250 
1251 	if (!node)
1252 		return -EINVAL;
1253 
1254 	if (of_property_read_u32(node, "slaves", &prop)) {
1255 		dev_err(&pdev->dev, "Missing slaves property in the DT.\n");
1256 		return -EINVAL;
1257 	}
1258 	data->slaves = prop;
1259 
1260 	if (of_property_read_u32(node, "active_slave", &prop)) {
1261 		dev_err(&pdev->dev, "Missing active_slave property in the DT.\n");
1262 		return -EINVAL;
1263 	}
1264 	data->active_slave = prop;
1265 
1266 	data->slave_data = devm_kcalloc(&pdev->dev,
1267 					data->slaves,
1268 					sizeof(struct cpsw_slave_data),
1269 					GFP_KERNEL);
1270 	if (!data->slave_data)
1271 		return -ENOMEM;
1272 
1273 	if (of_property_read_u32(node, "cpdma_channels", &prop)) {
1274 		dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n");
1275 		return -EINVAL;
1276 	}
1277 	data->channels = prop;
1278 
1279 	if (of_property_read_u32(node, "ale_entries", &prop)) {
1280 		dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n");
1281 		return -EINVAL;
1282 	}
1283 	data->ale_entries = prop;
1284 
1285 	if (of_property_read_u32(node, "bd_ram_size", &prop)) {
1286 		dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n");
1287 		return -EINVAL;
1288 	}
1289 	data->bd_ram_size = prop;
1290 
1291 	if (of_property_read_u32(node, "mac_control", &prop)) {
1292 		dev_err(&pdev->dev, "Missing mac_control property in the DT.\n");
1293 		return -EINVAL;
1294 	}
1295 	data->mac_control = prop;
1296 
1297 	if (of_property_read_bool(node, "dual_emac"))
1298 		data->dual_emac = 1;
1299 
1300 	/*
1301 	 * Populate all the child nodes here...
1302 	 */
1303 	ret = of_platform_populate(node, NULL, NULL, &pdev->dev);
1304 	/* We do not want to force this, as in some cases may not have child */
1305 	if (ret)
1306 		dev_warn(&pdev->dev, "Doesn't have any child node\n");
1307 
1308 	for_each_available_child_of_node(node, slave_node) {
1309 		struct cpsw_slave_data *slave_data = data->slave_data + i;
1310 		const void *mac_addr = NULL;
1311 		int lenp;
1312 		const __be32 *parp;
1313 
1314 		/* This is no slave child node, continue */
1315 		if (!of_node_name_eq(slave_node, "slave"))
1316 			continue;
1317 
1318 		slave_data->ifphy = devm_of_phy_get(&pdev->dev, slave_node,
1319 						    NULL);
1320 		if (!IS_ENABLED(CONFIG_TI_CPSW_PHY_SEL) &&
1321 		    IS_ERR(slave_data->ifphy)) {
1322 			ret = PTR_ERR(slave_data->ifphy);
1323 			dev_err(&pdev->dev,
1324 				"%d: Error retrieving port phy: %d\n", i, ret);
1325 			goto err_node_put;
1326 		}
1327 
1328 		slave_data->slave_node = slave_node;
1329 		slave_data->phy_node = of_parse_phandle(slave_node,
1330 							"phy-handle", 0);
1331 		parp = of_get_property(slave_node, "phy_id", &lenp);
1332 		if (slave_data->phy_node) {
1333 			dev_dbg(&pdev->dev,
1334 				"slave[%d] using phy-handle=\"%pOF\"\n",
1335 				i, slave_data->phy_node);
1336 		} else if (of_phy_is_fixed_link(slave_node)) {
1337 			/* In the case of a fixed PHY, the DT node associated
1338 			 * to the PHY is the Ethernet MAC DT node.
1339 			 */
1340 			ret = of_phy_register_fixed_link(slave_node);
1341 			if (ret) {
1342 				if (ret != -EPROBE_DEFER)
1343 					dev_err(&pdev->dev, "failed to register fixed-link phy: %d\n", ret);
1344 				goto err_node_put;
1345 			}
1346 			slave_data->phy_node = of_node_get(slave_node);
1347 		} else if (parp) {
1348 			u32 phyid;
1349 			struct device_node *mdio_node;
1350 			struct platform_device *mdio;
1351 
1352 			if (lenp != (sizeof(__be32) * 2)) {
1353 				dev_err(&pdev->dev, "Invalid slave[%d] phy_id property\n", i);
1354 				goto no_phy_slave;
1355 			}
1356 			mdio_node = of_find_node_by_phandle(be32_to_cpup(parp));
1357 			phyid = be32_to_cpup(parp+1);
1358 			mdio = of_find_device_by_node(mdio_node);
1359 			of_node_put(mdio_node);
1360 			if (!mdio) {
1361 				dev_err(&pdev->dev, "Missing mdio platform device\n");
1362 				ret = -EINVAL;
1363 				goto err_node_put;
1364 			}
1365 			snprintf(slave_data->phy_id, sizeof(slave_data->phy_id),
1366 				 PHY_ID_FMT, mdio->name, phyid);
1367 			put_device(&mdio->dev);
1368 		} else {
1369 			dev_err(&pdev->dev,
1370 				"No slave[%d] phy_id, phy-handle, or fixed-link property\n",
1371 				i);
1372 			goto no_phy_slave;
1373 		}
1374 		ret = of_get_phy_mode(slave_node, &slave_data->phy_if);
1375 		if (ret) {
1376 			dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n",
1377 				i);
1378 			goto err_node_put;
1379 		}
1380 
1381 no_phy_slave:
1382 		mac_addr = of_get_mac_address(slave_node);
1383 		if (!IS_ERR(mac_addr)) {
1384 			ether_addr_copy(slave_data->mac_addr, mac_addr);
1385 		} else {
1386 			ret = ti_cm_get_macid(&pdev->dev, i,
1387 					      slave_data->mac_addr);
1388 			if (ret)
1389 				goto err_node_put;
1390 		}
1391 		if (data->dual_emac) {
1392 			if (of_property_read_u32(slave_node, "dual_emac_res_vlan",
1393 						 &prop)) {
1394 				dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n");
1395 				slave_data->dual_emac_res_vlan = i+1;
1396 				dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n",
1397 					slave_data->dual_emac_res_vlan, i);
1398 			} else {
1399 				slave_data->dual_emac_res_vlan = prop;
1400 			}
1401 		}
1402 
1403 		i++;
1404 		if (i == data->slaves) {
1405 			ret = 0;
1406 			goto err_node_put;
1407 		}
1408 	}
1409 
1410 	return 0;
1411 
1412 err_node_put:
1413 	of_node_put(slave_node);
1414 	return ret;
1415 }
1416 
1417 static void cpsw_remove_dt(struct platform_device *pdev)
1418 {
1419 	struct cpsw_common *cpsw = platform_get_drvdata(pdev);
1420 	struct cpsw_platform_data *data = &cpsw->data;
1421 	struct device_node *node = pdev->dev.of_node;
1422 	struct device_node *slave_node;
1423 	int i = 0;
1424 
1425 	for_each_available_child_of_node(node, slave_node) {
1426 		struct cpsw_slave_data *slave_data = &data->slave_data[i];
1427 
1428 		if (!of_node_name_eq(slave_node, "slave"))
1429 			continue;
1430 
1431 		if (of_phy_is_fixed_link(slave_node))
1432 			of_phy_deregister_fixed_link(slave_node);
1433 
1434 		of_node_put(slave_data->phy_node);
1435 
1436 		i++;
1437 		if (i == data->slaves) {
1438 			of_node_put(slave_node);
1439 			break;
1440 		}
1441 	}
1442 
1443 	of_platform_depopulate(&pdev->dev);
1444 }
1445 
1446 static int cpsw_probe_dual_emac(struct cpsw_priv *priv)
1447 {
1448 	struct cpsw_common		*cpsw = priv->cpsw;
1449 	struct cpsw_platform_data	*data = &cpsw->data;
1450 	struct net_device		*ndev;
1451 	struct cpsw_priv		*priv_sl2;
1452 	int ret = 0;
1453 
1454 	ndev = devm_alloc_etherdev_mqs(cpsw->dev, sizeof(struct cpsw_priv),
1455 				       CPSW_MAX_QUEUES, CPSW_MAX_QUEUES);
1456 	if (!ndev) {
1457 		dev_err(cpsw->dev, "cpsw: error allocating net_device\n");
1458 		return -ENOMEM;
1459 	}
1460 
1461 	priv_sl2 = netdev_priv(ndev);
1462 	priv_sl2->cpsw = cpsw;
1463 	priv_sl2->ndev = ndev;
1464 	priv_sl2->dev  = &ndev->dev;
1465 	priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
1466 
1467 	if (is_valid_ether_addr(data->slave_data[1].mac_addr)) {
1468 		memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr,
1469 			ETH_ALEN);
1470 		dev_info(cpsw->dev, "cpsw: Detected MACID = %pM\n",
1471 			 priv_sl2->mac_addr);
1472 	} else {
1473 		eth_random_addr(priv_sl2->mac_addr);
1474 		dev_info(cpsw->dev, "cpsw: Random MACID = %pM\n",
1475 			 priv_sl2->mac_addr);
1476 	}
1477 	memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN);
1478 
1479 	priv_sl2->emac_port = 1;
1480 	cpsw->slaves[1].ndev = ndev;
1481 	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX;
1482 
1483 	ndev->netdev_ops = &cpsw_netdev_ops;
1484 	ndev->ethtool_ops = &cpsw_ethtool_ops;
1485 
1486 	/* register the network device */
1487 	SET_NETDEV_DEV(ndev, cpsw->dev);
1488 	ndev->dev.of_node = cpsw->slaves[1].data->slave_node;
1489 	ret = register_netdev(ndev);
1490 	if (ret)
1491 		dev_err(cpsw->dev, "cpsw: error registering net device\n");
1492 
1493 	return ret;
1494 }
1495 
1496 static const struct of_device_id cpsw_of_mtable[] = {
1497 	{ .compatible = "ti,cpsw"},
1498 	{ .compatible = "ti,am335x-cpsw"},
1499 	{ .compatible = "ti,am4372-cpsw"},
1500 	{ .compatible = "ti,dra7-cpsw"},
1501 	{ /* sentinel */ },
1502 };
1503 MODULE_DEVICE_TABLE(of, cpsw_of_mtable);
1504 
1505 static const struct soc_device_attribute cpsw_soc_devices[] = {
1506 	{ .family = "AM33xx", .revision = "ES1.0"},
1507 	{ /* sentinel */ }
1508 };
1509 
1510 static int cpsw_probe(struct platform_device *pdev)
1511 {
1512 	struct device			*dev = &pdev->dev;
1513 	struct clk			*clk;
1514 	struct cpsw_platform_data	*data;
1515 	struct net_device		*ndev;
1516 	struct cpsw_priv		*priv;
1517 	void __iomem			*ss_regs;
1518 	struct resource			*ss_res;
1519 	struct gpio_descs		*mode;
1520 	const struct soc_device_attribute *soc;
1521 	struct cpsw_common		*cpsw;
1522 	int ret = 0, ch;
1523 	int irq;
1524 
1525 	cpsw = devm_kzalloc(dev, sizeof(struct cpsw_common), GFP_KERNEL);
1526 	if (!cpsw)
1527 		return -ENOMEM;
1528 
1529 	platform_set_drvdata(pdev, cpsw);
1530 	cpsw_slave_index = cpsw_slave_index_priv;
1531 
1532 	cpsw->dev = dev;
1533 
1534 	mode = devm_gpiod_get_array_optional(dev, "mode", GPIOD_OUT_LOW);
1535 	if (IS_ERR(mode)) {
1536 		ret = PTR_ERR(mode);
1537 		dev_err(dev, "gpio request failed, ret %d\n", ret);
1538 		return ret;
1539 	}
1540 
1541 	clk = devm_clk_get(dev, "fck");
1542 	if (IS_ERR(clk)) {
1543 		ret = PTR_ERR(clk);
1544 		dev_err(dev, "fck is not found %d\n", ret);
1545 		return ret;
1546 	}
1547 	cpsw->bus_freq_mhz = clk_get_rate(clk) / 1000000;
1548 
1549 	ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1550 	ss_regs = devm_ioremap_resource(dev, ss_res);
1551 	if (IS_ERR(ss_regs))
1552 		return PTR_ERR(ss_regs);
1553 	cpsw->regs = ss_regs;
1554 
1555 	cpsw->wr_regs = devm_platform_ioremap_resource(pdev, 1);
1556 	if (IS_ERR(cpsw->wr_regs))
1557 		return PTR_ERR(cpsw->wr_regs);
1558 
1559 	/* RX IRQ */
1560 	irq = platform_get_irq(pdev, 1);
1561 	if (irq < 0)
1562 		return irq;
1563 	cpsw->irqs_table[0] = irq;
1564 
1565 	/* TX IRQ */
1566 	irq = platform_get_irq(pdev, 2);
1567 	if (irq < 0)
1568 		return irq;
1569 	cpsw->irqs_table[1] = irq;
1570 
1571 	/*
1572 	 * This may be required here for child devices.
1573 	 */
1574 	pm_runtime_enable(dev);
1575 
1576 	/* Need to enable clocks with runtime PM api to access module
1577 	 * registers
1578 	 */
1579 	ret = pm_runtime_get_sync(dev);
1580 	if (ret < 0) {
1581 		pm_runtime_put_noidle(dev);
1582 		goto clean_runtime_disable_ret;
1583 	}
1584 
1585 	ret = cpsw_probe_dt(&cpsw->data, pdev);
1586 	if (ret)
1587 		goto clean_dt_ret;
1588 
1589 	soc = soc_device_match(cpsw_soc_devices);
1590 	if (soc)
1591 		cpsw->quirk_irq = 1;
1592 
1593 	data = &cpsw->data;
1594 	cpsw->slaves = devm_kcalloc(dev,
1595 				    data->slaves, sizeof(struct cpsw_slave),
1596 				    GFP_KERNEL);
1597 	if (!cpsw->slaves) {
1598 		ret = -ENOMEM;
1599 		goto clean_dt_ret;
1600 	}
1601 
1602 	cpsw->rx_packet_max = max(rx_packet_max, CPSW_MAX_PACKET_SIZE);
1603 	cpsw->descs_pool_size = descs_pool_size;
1604 
1605 	ret = cpsw_init_common(cpsw, ss_regs, ale_ageout,
1606 			       ss_res->start + CPSW2_BD_OFFSET,
1607 			       descs_pool_size);
1608 	if (ret)
1609 		goto clean_dt_ret;
1610 
1611 	ch = cpsw->quirk_irq ? 0 : 7;
1612 	cpsw->txv[0].ch = cpdma_chan_create(cpsw->dma, ch, cpsw_tx_handler, 0);
1613 	if (IS_ERR(cpsw->txv[0].ch)) {
1614 		dev_err(dev, "error initializing tx dma channel\n");
1615 		ret = PTR_ERR(cpsw->txv[0].ch);
1616 		goto clean_cpts;
1617 	}
1618 
1619 	cpsw->rxv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_rx_handler, 1);
1620 	if (IS_ERR(cpsw->rxv[0].ch)) {
1621 		dev_err(dev, "error initializing rx dma channel\n");
1622 		ret = PTR_ERR(cpsw->rxv[0].ch);
1623 		goto clean_cpts;
1624 	}
1625 	cpsw_split_res(cpsw);
1626 
1627 	/* setup netdev */
1628 	ndev = devm_alloc_etherdev_mqs(dev, sizeof(struct cpsw_priv),
1629 				       CPSW_MAX_QUEUES, CPSW_MAX_QUEUES);
1630 	if (!ndev) {
1631 		dev_err(dev, "error allocating net_device\n");
1632 		goto clean_cpts;
1633 	}
1634 
1635 	priv = netdev_priv(ndev);
1636 	priv->cpsw = cpsw;
1637 	priv->ndev = ndev;
1638 	priv->dev  = dev;
1639 	priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
1640 	priv->emac_port = 0;
1641 
1642 	if (is_valid_ether_addr(data->slave_data[0].mac_addr)) {
1643 		memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN);
1644 		dev_info(dev, "Detected MACID = %pM\n", priv->mac_addr);
1645 	} else {
1646 		eth_random_addr(priv->mac_addr);
1647 		dev_info(dev, "Random MACID = %pM\n", priv->mac_addr);
1648 	}
1649 
1650 	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
1651 
1652 	cpsw->slaves[0].ndev = ndev;
1653 
1654 	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX;
1655 
1656 	ndev->netdev_ops = &cpsw_netdev_ops;
1657 	ndev->ethtool_ops = &cpsw_ethtool_ops;
1658 	netif_napi_add(ndev, &cpsw->napi_rx,
1659 		       cpsw->quirk_irq ? cpsw_rx_poll : cpsw_rx_mq_poll,
1660 		       CPSW_POLL_WEIGHT);
1661 	netif_tx_napi_add(ndev, &cpsw->napi_tx,
1662 			  cpsw->quirk_irq ? cpsw_tx_poll : cpsw_tx_mq_poll,
1663 			  CPSW_POLL_WEIGHT);
1664 
1665 	/* register the network device */
1666 	SET_NETDEV_DEV(ndev, dev);
1667 	ndev->dev.of_node = cpsw->slaves[0].data->slave_node;
1668 	ret = register_netdev(ndev);
1669 	if (ret) {
1670 		dev_err(dev, "error registering net device\n");
1671 		ret = -ENODEV;
1672 		goto clean_cpts;
1673 	}
1674 
1675 	if (cpsw->data.dual_emac) {
1676 		ret = cpsw_probe_dual_emac(priv);
1677 		if (ret) {
1678 			cpsw_err(priv, probe, "error probe slave 2 emac interface\n");
1679 			goto clean_unregister_netdev_ret;
1680 		}
1681 	}
1682 
1683 	/* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and
1684 	 * MISC IRQs which are always kept disabled with this driver so
1685 	 * we will not request them.
1686 	 *
1687 	 * If anyone wants to implement support for those, make sure to
1688 	 * first request and append them to irqs_table array.
1689 	 */
1690 	ret = devm_request_irq(dev, cpsw->irqs_table[0], cpsw_rx_interrupt,
1691 			       0, dev_name(dev), cpsw);
1692 	if (ret < 0) {
1693 		dev_err(dev, "error attaching irq (%d)\n", ret);
1694 		goto clean_unregister_netdev_ret;
1695 	}
1696 
1697 
1698 	ret = devm_request_irq(dev, cpsw->irqs_table[1], cpsw_tx_interrupt,
1699 			       0, dev_name(&pdev->dev), cpsw);
1700 	if (ret < 0) {
1701 		dev_err(dev, "error attaching irq (%d)\n", ret);
1702 		goto clean_unregister_netdev_ret;
1703 	}
1704 
1705 	cpsw_notice(priv, probe,
1706 		    "initialized device (regs %pa, irq %d, pool size %d)\n",
1707 		    &ss_res->start, cpsw->irqs_table[0], descs_pool_size);
1708 
1709 	pm_runtime_put(&pdev->dev);
1710 
1711 	return 0;
1712 
1713 clean_unregister_netdev_ret:
1714 	unregister_netdev(ndev);
1715 clean_cpts:
1716 	cpts_release(cpsw->cpts);
1717 	cpdma_ctlr_destroy(cpsw->dma);
1718 clean_dt_ret:
1719 	cpsw_remove_dt(pdev);
1720 	pm_runtime_put_sync(&pdev->dev);
1721 clean_runtime_disable_ret:
1722 	pm_runtime_disable(&pdev->dev);
1723 	return ret;
1724 }
1725 
1726 static int cpsw_remove(struct platform_device *pdev)
1727 {
1728 	struct cpsw_common *cpsw = platform_get_drvdata(pdev);
1729 	int i, ret;
1730 
1731 	ret = pm_runtime_get_sync(&pdev->dev);
1732 	if (ret < 0) {
1733 		pm_runtime_put_noidle(&pdev->dev);
1734 		return ret;
1735 	}
1736 
1737 	for (i = 0; i < cpsw->data.slaves; i++)
1738 		if (cpsw->slaves[i].ndev)
1739 			unregister_netdev(cpsw->slaves[i].ndev);
1740 
1741 	cpts_release(cpsw->cpts);
1742 	cpdma_ctlr_destroy(cpsw->dma);
1743 	cpsw_remove_dt(pdev);
1744 	pm_runtime_put_sync(&pdev->dev);
1745 	pm_runtime_disable(&pdev->dev);
1746 	return 0;
1747 }
1748 
1749 #ifdef CONFIG_PM_SLEEP
1750 static int cpsw_suspend(struct device *dev)
1751 {
1752 	struct cpsw_common *cpsw = dev_get_drvdata(dev);
1753 	int i;
1754 
1755 	for (i = 0; i < cpsw->data.slaves; i++)
1756 		if (cpsw->slaves[i].ndev)
1757 			if (netif_running(cpsw->slaves[i].ndev))
1758 				cpsw_ndo_stop(cpsw->slaves[i].ndev);
1759 
1760 	/* Select sleep pin state */
1761 	pinctrl_pm_select_sleep_state(dev);
1762 
1763 	return 0;
1764 }
1765 
1766 static int cpsw_resume(struct device *dev)
1767 {
1768 	struct cpsw_common *cpsw = dev_get_drvdata(dev);
1769 	int i;
1770 
1771 	/* Select default pin state */
1772 	pinctrl_pm_select_default_state(dev);
1773 
1774 	/* shut up ASSERT_RTNL() warning in netif_set_real_num_tx/rx_queues */
1775 	rtnl_lock();
1776 
1777 	for (i = 0; i < cpsw->data.slaves; i++)
1778 		if (cpsw->slaves[i].ndev)
1779 			if (netif_running(cpsw->slaves[i].ndev))
1780 				cpsw_ndo_open(cpsw->slaves[i].ndev);
1781 
1782 	rtnl_unlock();
1783 
1784 	return 0;
1785 }
1786 #endif
1787 
1788 static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume);
1789 
1790 static struct platform_driver cpsw_driver = {
1791 	.driver = {
1792 		.name	 = "cpsw",
1793 		.pm	 = &cpsw_pm_ops,
1794 		.of_match_table = cpsw_of_mtable,
1795 	},
1796 	.probe = cpsw_probe,
1797 	.remove = cpsw_remove,
1798 };
1799 
1800 module_platform_driver(cpsw_driver);
1801 
1802 MODULE_LICENSE("GPL");
1803 MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>");
1804 MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>");
1805 MODULE_DESCRIPTION("TI CPSW Ethernet driver");
1806