1 /* 2 * Texas Instruments Ethernet Switch Driver 3 * 4 * Copyright (C) 2012 Texas Instruments 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License as 8 * published by the Free Software Foundation version 2. 9 * 10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any 11 * kind, whether express or implied; without even the implied warranty 12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/io.h> 18 #include <linux/clk.h> 19 #include <linux/timer.h> 20 #include <linux/module.h> 21 #include <linux/platform_device.h> 22 #include <linux/irqreturn.h> 23 #include <linux/interrupt.h> 24 #include <linux/if_ether.h> 25 #include <linux/etherdevice.h> 26 #include <linux/netdevice.h> 27 #include <linux/net_tstamp.h> 28 #include <linux/phy.h> 29 #include <linux/phy/phy.h> 30 #include <linux/workqueue.h> 31 #include <linux/delay.h> 32 #include <linux/pm_runtime.h> 33 #include <linux/gpio/consumer.h> 34 #include <linux/of.h> 35 #include <linux/of_mdio.h> 36 #include <linux/of_net.h> 37 #include <linux/of_device.h> 38 #include <linux/if_vlan.h> 39 #include <linux/kmemleak.h> 40 #include <linux/sys_soc.h> 41 42 #include <linux/pinctrl/consumer.h> 43 #include <net/pkt_cls.h> 44 45 #include "cpsw.h" 46 #include "cpsw_ale.h" 47 #include "cpts.h" 48 #include "davinci_cpdma.h" 49 50 #include <net/pkt_sched.h> 51 52 #define CPSW_DEBUG (NETIF_MSG_HW | NETIF_MSG_WOL | \ 53 NETIF_MSG_DRV | NETIF_MSG_LINK | \ 54 NETIF_MSG_IFUP | NETIF_MSG_INTR | \ 55 NETIF_MSG_PROBE | NETIF_MSG_TIMER | \ 56 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | \ 57 NETIF_MSG_TX_ERR | NETIF_MSG_TX_DONE | \ 58 NETIF_MSG_PKTDATA | NETIF_MSG_TX_QUEUED | \ 59 NETIF_MSG_RX_STATUS) 60 61 #define cpsw_info(priv, type, format, ...) \ 62 do { \ 63 if (netif_msg_##type(priv) && net_ratelimit()) \ 64 dev_info(priv->dev, format, ## __VA_ARGS__); \ 65 } while (0) 66 67 #define cpsw_err(priv, type, format, ...) \ 68 do { \ 69 if (netif_msg_##type(priv) && net_ratelimit()) \ 70 dev_err(priv->dev, format, ## __VA_ARGS__); \ 71 } while (0) 72 73 #define cpsw_dbg(priv, type, format, ...) \ 74 do { \ 75 if (netif_msg_##type(priv) && net_ratelimit()) \ 76 dev_dbg(priv->dev, format, ## __VA_ARGS__); \ 77 } while (0) 78 79 #define cpsw_notice(priv, type, format, ...) \ 80 do { \ 81 if (netif_msg_##type(priv) && net_ratelimit()) \ 82 dev_notice(priv->dev, format, ## __VA_ARGS__); \ 83 } while (0) 84 85 #define ALE_ALL_PORTS 0x7 86 87 #define CPSW_MAJOR_VERSION(reg) (reg >> 8 & 0x7) 88 #define CPSW_MINOR_VERSION(reg) (reg & 0xff) 89 #define CPSW_RTL_VERSION(reg) ((reg >> 11) & 0x1f) 90 91 #define CPSW_VERSION_1 0x19010a 92 #define CPSW_VERSION_2 0x19010c 93 #define CPSW_VERSION_3 0x19010f 94 #define CPSW_VERSION_4 0x190112 95 96 #define HOST_PORT_NUM 0 97 #define CPSW_ALE_PORTS_NUM 3 98 #define SLIVER_SIZE 0x40 99 100 #define CPSW1_HOST_PORT_OFFSET 0x028 101 #define CPSW1_SLAVE_OFFSET 0x050 102 #define CPSW1_SLAVE_SIZE 0x040 103 #define CPSW1_CPDMA_OFFSET 0x100 104 #define CPSW1_STATERAM_OFFSET 0x200 105 #define CPSW1_HW_STATS 0x400 106 #define CPSW1_CPTS_OFFSET 0x500 107 #define CPSW1_ALE_OFFSET 0x600 108 #define CPSW1_SLIVER_OFFSET 0x700 109 110 #define CPSW2_HOST_PORT_OFFSET 0x108 111 #define CPSW2_SLAVE_OFFSET 0x200 112 #define CPSW2_SLAVE_SIZE 0x100 113 #define CPSW2_CPDMA_OFFSET 0x800 114 #define CPSW2_HW_STATS 0x900 115 #define CPSW2_STATERAM_OFFSET 0xa00 116 #define CPSW2_CPTS_OFFSET 0xc00 117 #define CPSW2_ALE_OFFSET 0xd00 118 #define CPSW2_SLIVER_OFFSET 0xd80 119 #define CPSW2_BD_OFFSET 0x2000 120 121 #define CPDMA_RXTHRESH 0x0c0 122 #define CPDMA_RXFREE 0x0e0 123 #define CPDMA_TXHDP 0x00 124 #define CPDMA_RXHDP 0x20 125 #define CPDMA_TXCP 0x40 126 #define CPDMA_RXCP 0x60 127 128 #define CPSW_POLL_WEIGHT 64 129 #define CPSW_RX_VLAN_ENCAP_HDR_SIZE 4 130 #define CPSW_MIN_PACKET_SIZE (VLAN_ETH_ZLEN) 131 #define CPSW_MAX_PACKET_SIZE (VLAN_ETH_FRAME_LEN +\ 132 ETH_FCS_LEN +\ 133 CPSW_RX_VLAN_ENCAP_HDR_SIZE) 134 135 #define RX_PRIORITY_MAPPING 0x76543210 136 #define TX_PRIORITY_MAPPING 0x33221100 137 #define CPDMA_TX_PRIORITY_MAP 0x76543210 138 139 #define CPSW_VLAN_AWARE BIT(1) 140 #define CPSW_RX_VLAN_ENCAP BIT(2) 141 #define CPSW_ALE_VLAN_AWARE 1 142 143 #define CPSW_FIFO_NORMAL_MODE (0 << 16) 144 #define CPSW_FIFO_DUAL_MAC_MODE (1 << 16) 145 #define CPSW_FIFO_RATE_LIMIT_MODE (2 << 16) 146 147 #define CPSW_INTPACEEN (0x3f << 16) 148 #define CPSW_INTPRESCALE_MASK (0x7FF << 0) 149 #define CPSW_CMINTMAX_CNT 63 150 #define CPSW_CMINTMIN_CNT 2 151 #define CPSW_CMINTMAX_INTVL (1000 / CPSW_CMINTMIN_CNT) 152 #define CPSW_CMINTMIN_INTVL ((1000 / CPSW_CMINTMAX_CNT) + 1) 153 154 #define cpsw_slave_index(cpsw, priv) \ 155 ((cpsw->data.dual_emac) ? priv->emac_port : \ 156 cpsw->data.active_slave) 157 #define IRQ_NUM 2 158 #define CPSW_MAX_QUEUES 8 159 #define CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT 256 160 #define CPSW_FIFO_QUEUE_TYPE_SHIFT 16 161 #define CPSW_FIFO_SHAPE_EN_SHIFT 16 162 #define CPSW_FIFO_RATE_EN_SHIFT 20 163 #define CPSW_TC_NUM 4 164 #define CPSW_FIFO_SHAPERS_NUM (CPSW_TC_NUM - 1) 165 #define CPSW_PCT_MASK 0x7f 166 167 #define CPSW_RX_VLAN_ENCAP_HDR_PRIO_SHIFT 29 168 #define CPSW_RX_VLAN_ENCAP_HDR_PRIO_MSK GENMASK(2, 0) 169 #define CPSW_RX_VLAN_ENCAP_HDR_VID_SHIFT 16 170 #define CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_SHIFT 8 171 #define CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_MSK GENMASK(1, 0) 172 enum { 173 CPSW_RX_VLAN_ENCAP_HDR_PKT_VLAN_TAG = 0, 174 CPSW_RX_VLAN_ENCAP_HDR_PKT_RESERV, 175 CPSW_RX_VLAN_ENCAP_HDR_PKT_PRIO_TAG, 176 CPSW_RX_VLAN_ENCAP_HDR_PKT_UNTAG, 177 }; 178 179 static int debug_level; 180 module_param(debug_level, int, 0); 181 MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)"); 182 183 static int ale_ageout = 10; 184 module_param(ale_ageout, int, 0); 185 MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)"); 186 187 static int rx_packet_max = CPSW_MAX_PACKET_SIZE; 188 module_param(rx_packet_max, int, 0); 189 MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)"); 190 191 static int descs_pool_size = CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT; 192 module_param(descs_pool_size, int, 0444); 193 MODULE_PARM_DESC(descs_pool_size, "Number of CPDMA CPPI descriptors in pool"); 194 195 struct cpsw_wr_regs { 196 u32 id_ver; 197 u32 soft_reset; 198 u32 control; 199 u32 int_control; 200 u32 rx_thresh_en; 201 u32 rx_en; 202 u32 tx_en; 203 u32 misc_en; 204 u32 mem_allign1[8]; 205 u32 rx_thresh_stat; 206 u32 rx_stat; 207 u32 tx_stat; 208 u32 misc_stat; 209 u32 mem_allign2[8]; 210 u32 rx_imax; 211 u32 tx_imax; 212 213 }; 214 215 struct cpsw_ss_regs { 216 u32 id_ver; 217 u32 control; 218 u32 soft_reset; 219 u32 stat_port_en; 220 u32 ptype; 221 u32 soft_idle; 222 u32 thru_rate; 223 u32 gap_thresh; 224 u32 tx_start_wds; 225 u32 flow_control; 226 u32 vlan_ltype; 227 u32 ts_ltype; 228 u32 dlr_ltype; 229 }; 230 231 /* CPSW_PORT_V1 */ 232 #define CPSW1_MAX_BLKS 0x00 /* Maximum FIFO Blocks */ 233 #define CPSW1_BLK_CNT 0x04 /* FIFO Block Usage Count (Read Only) */ 234 #define CPSW1_TX_IN_CTL 0x08 /* Transmit FIFO Control */ 235 #define CPSW1_PORT_VLAN 0x0c /* VLAN Register */ 236 #define CPSW1_TX_PRI_MAP 0x10 /* Tx Header Priority to Switch Pri Mapping */ 237 #define CPSW1_TS_CTL 0x14 /* Time Sync Control */ 238 #define CPSW1_TS_SEQ_LTYPE 0x18 /* Time Sync Sequence ID Offset and Msg Type */ 239 #define CPSW1_TS_VLAN 0x1c /* Time Sync VLAN1 and VLAN2 */ 240 241 /* CPSW_PORT_V2 */ 242 #define CPSW2_CONTROL 0x00 /* Control Register */ 243 #define CPSW2_MAX_BLKS 0x08 /* Maximum FIFO Blocks */ 244 #define CPSW2_BLK_CNT 0x0c /* FIFO Block Usage Count (Read Only) */ 245 #define CPSW2_TX_IN_CTL 0x10 /* Transmit FIFO Control */ 246 #define CPSW2_PORT_VLAN 0x14 /* VLAN Register */ 247 #define CPSW2_TX_PRI_MAP 0x18 /* Tx Header Priority to Switch Pri Mapping */ 248 #define CPSW2_TS_SEQ_MTYPE 0x1c /* Time Sync Sequence ID Offset and Msg Type */ 249 250 /* CPSW_PORT_V1 and V2 */ 251 #define SA_LO 0x20 /* CPGMAC_SL Source Address Low */ 252 #define SA_HI 0x24 /* CPGMAC_SL Source Address High */ 253 #define SEND_PERCENT 0x28 /* Transmit Queue Send Percentages */ 254 255 /* CPSW_PORT_V2 only */ 256 #define RX_DSCP_PRI_MAP0 0x30 /* Rx DSCP Priority to Rx Packet Mapping */ 257 #define RX_DSCP_PRI_MAP1 0x34 /* Rx DSCP Priority to Rx Packet Mapping */ 258 #define RX_DSCP_PRI_MAP2 0x38 /* Rx DSCP Priority to Rx Packet Mapping */ 259 #define RX_DSCP_PRI_MAP3 0x3c /* Rx DSCP Priority to Rx Packet Mapping */ 260 #define RX_DSCP_PRI_MAP4 0x40 /* Rx DSCP Priority to Rx Packet Mapping */ 261 #define RX_DSCP_PRI_MAP5 0x44 /* Rx DSCP Priority to Rx Packet Mapping */ 262 #define RX_DSCP_PRI_MAP6 0x48 /* Rx DSCP Priority to Rx Packet Mapping */ 263 #define RX_DSCP_PRI_MAP7 0x4c /* Rx DSCP Priority to Rx Packet Mapping */ 264 265 /* Bit definitions for the CPSW2_CONTROL register */ 266 #define PASS_PRI_TAGGED BIT(24) /* Pass Priority Tagged */ 267 #define VLAN_LTYPE2_EN BIT(21) /* VLAN LTYPE 2 enable */ 268 #define VLAN_LTYPE1_EN BIT(20) /* VLAN LTYPE 1 enable */ 269 #define DSCP_PRI_EN BIT(16) /* DSCP Priority Enable */ 270 #define TS_107 BIT(15) /* Tyme Sync Dest IP Address 107 */ 271 #define TS_320 BIT(14) /* Time Sync Dest Port 320 enable */ 272 #define TS_319 BIT(13) /* Time Sync Dest Port 319 enable */ 273 #define TS_132 BIT(12) /* Time Sync Dest IP Addr 132 enable */ 274 #define TS_131 BIT(11) /* Time Sync Dest IP Addr 131 enable */ 275 #define TS_130 BIT(10) /* Time Sync Dest IP Addr 130 enable */ 276 #define TS_129 BIT(9) /* Time Sync Dest IP Addr 129 enable */ 277 #define TS_TTL_NONZERO BIT(8) /* Time Sync Time To Live Non-zero enable */ 278 #define TS_ANNEX_F_EN BIT(6) /* Time Sync Annex F enable */ 279 #define TS_ANNEX_D_EN BIT(4) /* Time Sync Annex D enable */ 280 #define TS_LTYPE2_EN BIT(3) /* Time Sync LTYPE 2 enable */ 281 #define TS_LTYPE1_EN BIT(2) /* Time Sync LTYPE 1 enable */ 282 #define TS_TX_EN BIT(1) /* Time Sync Transmit Enable */ 283 #define TS_RX_EN BIT(0) /* Time Sync Receive Enable */ 284 285 #define CTRL_V2_TS_BITS \ 286 (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\ 287 TS_TTL_NONZERO | TS_ANNEX_D_EN | TS_LTYPE1_EN | VLAN_LTYPE1_EN) 288 289 #define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN) 290 #define CTRL_V2_TX_TS_BITS (CTRL_V2_TS_BITS | TS_TX_EN) 291 #define CTRL_V2_RX_TS_BITS (CTRL_V2_TS_BITS | TS_RX_EN) 292 293 294 #define CTRL_V3_TS_BITS \ 295 (TS_107 | TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\ 296 TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\ 297 TS_LTYPE1_EN | VLAN_LTYPE1_EN) 298 299 #define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN) 300 #define CTRL_V3_TX_TS_BITS (CTRL_V3_TS_BITS | TS_TX_EN) 301 #define CTRL_V3_RX_TS_BITS (CTRL_V3_TS_BITS | TS_RX_EN) 302 303 /* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */ 304 #define TS_SEQ_ID_OFFSET_SHIFT (16) /* Time Sync Sequence ID Offset */ 305 #define TS_SEQ_ID_OFFSET_MASK (0x3f) 306 #define TS_MSG_TYPE_EN_SHIFT (0) /* Time Sync Message Type Enable */ 307 #define TS_MSG_TYPE_EN_MASK (0xffff) 308 309 /* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */ 310 #define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3)) 311 312 /* Bit definitions for the CPSW1_TS_CTL register */ 313 #define CPSW_V1_TS_RX_EN BIT(0) 314 #define CPSW_V1_TS_TX_EN BIT(4) 315 #define CPSW_V1_MSG_TYPE_OFS 16 316 317 /* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */ 318 #define CPSW_V1_SEQ_ID_OFS_SHIFT 16 319 320 #define CPSW_MAX_BLKS_TX 15 321 #define CPSW_MAX_BLKS_TX_SHIFT 4 322 #define CPSW_MAX_BLKS_RX 5 323 324 struct cpsw_host_regs { 325 u32 max_blks; 326 u32 blk_cnt; 327 u32 tx_in_ctl; 328 u32 port_vlan; 329 u32 tx_pri_map; 330 u32 cpdma_tx_pri_map; 331 u32 cpdma_rx_chan_map; 332 }; 333 334 struct cpsw_sliver_regs { 335 u32 id_ver; 336 u32 mac_control; 337 u32 mac_status; 338 u32 soft_reset; 339 u32 rx_maxlen; 340 u32 __reserved_0; 341 u32 rx_pause; 342 u32 tx_pause; 343 u32 __reserved_1; 344 u32 rx_pri_map; 345 }; 346 347 struct cpsw_hw_stats { 348 u32 rxgoodframes; 349 u32 rxbroadcastframes; 350 u32 rxmulticastframes; 351 u32 rxpauseframes; 352 u32 rxcrcerrors; 353 u32 rxaligncodeerrors; 354 u32 rxoversizedframes; 355 u32 rxjabberframes; 356 u32 rxundersizedframes; 357 u32 rxfragments; 358 u32 __pad_0[2]; 359 u32 rxoctets; 360 u32 txgoodframes; 361 u32 txbroadcastframes; 362 u32 txmulticastframes; 363 u32 txpauseframes; 364 u32 txdeferredframes; 365 u32 txcollisionframes; 366 u32 txsinglecollframes; 367 u32 txmultcollframes; 368 u32 txexcessivecollisions; 369 u32 txlatecollisions; 370 u32 txunderrun; 371 u32 txcarriersenseerrors; 372 u32 txoctets; 373 u32 octetframes64; 374 u32 octetframes65t127; 375 u32 octetframes128t255; 376 u32 octetframes256t511; 377 u32 octetframes512t1023; 378 u32 octetframes1024tup; 379 u32 netoctets; 380 u32 rxsofoverruns; 381 u32 rxmofoverruns; 382 u32 rxdmaoverruns; 383 }; 384 385 struct cpsw_slave_data { 386 struct device_node *phy_node; 387 char phy_id[MII_BUS_ID_SIZE]; 388 int phy_if; 389 u8 mac_addr[ETH_ALEN]; 390 u16 dual_emac_res_vlan; /* Reserved VLAN for DualEMAC */ 391 struct phy *ifphy; 392 }; 393 394 struct cpsw_platform_data { 395 struct cpsw_slave_data *slave_data; 396 u32 ss_reg_ofs; /* Subsystem control register offset */ 397 u32 channels; /* number of cpdma channels (symmetric) */ 398 u32 slaves; /* number of slave cpgmac ports */ 399 u32 active_slave; /* time stamping, ethtool and SIOCGMIIPHY slave */ 400 u32 ale_entries; /* ale table size */ 401 u32 bd_ram_size; /*buffer descriptor ram size */ 402 u32 mac_control; /* Mac control register */ 403 u16 default_vlan; /* Def VLAN for ALE lookup in VLAN aware mode*/ 404 bool dual_emac; /* Enable Dual EMAC mode */ 405 }; 406 407 struct cpsw_slave { 408 void __iomem *regs; 409 struct cpsw_sliver_regs __iomem *sliver; 410 int slave_num; 411 u32 mac_control; 412 struct cpsw_slave_data *data; 413 struct phy_device *phy; 414 struct net_device *ndev; 415 u32 port_vlan; 416 }; 417 418 static inline u32 slave_read(struct cpsw_slave *slave, u32 offset) 419 { 420 return readl_relaxed(slave->regs + offset); 421 } 422 423 static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset) 424 { 425 writel_relaxed(val, slave->regs + offset); 426 } 427 428 struct cpsw_vector { 429 struct cpdma_chan *ch; 430 int budget; 431 }; 432 433 struct cpsw_common { 434 struct device *dev; 435 struct cpsw_platform_data data; 436 struct napi_struct napi_rx; 437 struct napi_struct napi_tx; 438 struct cpsw_ss_regs __iomem *regs; 439 struct cpsw_wr_regs __iomem *wr_regs; 440 u8 __iomem *hw_stats; 441 struct cpsw_host_regs __iomem *host_port_regs; 442 u32 version; 443 u32 coal_intvl; 444 u32 bus_freq_mhz; 445 int rx_packet_max; 446 struct cpsw_slave *slaves; 447 struct cpdma_ctlr *dma; 448 struct cpsw_vector txv[CPSW_MAX_QUEUES]; 449 struct cpsw_vector rxv[CPSW_MAX_QUEUES]; 450 struct cpsw_ale *ale; 451 bool quirk_irq; 452 bool rx_irq_disabled; 453 bool tx_irq_disabled; 454 u32 irqs_table[IRQ_NUM]; 455 struct cpts *cpts; 456 int rx_ch_num, tx_ch_num; 457 int speed; 458 int usage_count; 459 }; 460 461 struct cpsw_priv { 462 struct net_device *ndev; 463 struct device *dev; 464 u32 msg_enable; 465 u8 mac_addr[ETH_ALEN]; 466 bool rx_pause; 467 bool tx_pause; 468 bool mqprio_hw; 469 int fifo_bw[CPSW_TC_NUM]; 470 int shp_cfg_speed; 471 int tx_ts_enabled; 472 int rx_ts_enabled; 473 u32 emac_port; 474 struct cpsw_common *cpsw; 475 }; 476 477 struct cpsw_stats { 478 char stat_string[ETH_GSTRING_LEN]; 479 int type; 480 int sizeof_stat; 481 int stat_offset; 482 }; 483 484 enum { 485 CPSW_STATS, 486 CPDMA_RX_STATS, 487 CPDMA_TX_STATS, 488 }; 489 490 #define CPSW_STAT(m) CPSW_STATS, \ 491 FIELD_SIZEOF(struct cpsw_hw_stats, m), \ 492 offsetof(struct cpsw_hw_stats, m) 493 #define CPDMA_RX_STAT(m) CPDMA_RX_STATS, \ 494 FIELD_SIZEOF(struct cpdma_chan_stats, m), \ 495 offsetof(struct cpdma_chan_stats, m) 496 #define CPDMA_TX_STAT(m) CPDMA_TX_STATS, \ 497 FIELD_SIZEOF(struct cpdma_chan_stats, m), \ 498 offsetof(struct cpdma_chan_stats, m) 499 500 static const struct cpsw_stats cpsw_gstrings_stats[] = { 501 { "Good Rx Frames", CPSW_STAT(rxgoodframes) }, 502 { "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) }, 503 { "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) }, 504 { "Pause Rx Frames", CPSW_STAT(rxpauseframes) }, 505 { "Rx CRC Errors", CPSW_STAT(rxcrcerrors) }, 506 { "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) }, 507 { "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) }, 508 { "Rx Jabbers", CPSW_STAT(rxjabberframes) }, 509 { "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) }, 510 { "Rx Fragments", CPSW_STAT(rxfragments) }, 511 { "Rx Octets", CPSW_STAT(rxoctets) }, 512 { "Good Tx Frames", CPSW_STAT(txgoodframes) }, 513 { "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) }, 514 { "Multicast Tx Frames", CPSW_STAT(txmulticastframes) }, 515 { "Pause Tx Frames", CPSW_STAT(txpauseframes) }, 516 { "Deferred Tx Frames", CPSW_STAT(txdeferredframes) }, 517 { "Collisions", CPSW_STAT(txcollisionframes) }, 518 { "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) }, 519 { "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) }, 520 { "Excessive Collisions", CPSW_STAT(txexcessivecollisions) }, 521 { "Late Collisions", CPSW_STAT(txlatecollisions) }, 522 { "Tx Underrun", CPSW_STAT(txunderrun) }, 523 { "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) }, 524 { "Tx Octets", CPSW_STAT(txoctets) }, 525 { "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) }, 526 { "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) }, 527 { "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) }, 528 { "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) }, 529 { "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) }, 530 { "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) }, 531 { "Net Octets", CPSW_STAT(netoctets) }, 532 { "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) }, 533 { "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) }, 534 { "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) }, 535 }; 536 537 static const struct cpsw_stats cpsw_gstrings_ch_stats[] = { 538 { "head_enqueue", CPDMA_RX_STAT(head_enqueue) }, 539 { "tail_enqueue", CPDMA_RX_STAT(tail_enqueue) }, 540 { "pad_enqueue", CPDMA_RX_STAT(pad_enqueue) }, 541 { "misqueued", CPDMA_RX_STAT(misqueued) }, 542 { "desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) }, 543 { "pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) }, 544 { "runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) }, 545 { "runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) }, 546 { "empty_dequeue", CPDMA_RX_STAT(empty_dequeue) }, 547 { "busy_dequeue", CPDMA_RX_STAT(busy_dequeue) }, 548 { "good_dequeue", CPDMA_RX_STAT(good_dequeue) }, 549 { "requeue", CPDMA_RX_STAT(requeue) }, 550 { "teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) }, 551 }; 552 553 #define CPSW_STATS_COMMON_LEN ARRAY_SIZE(cpsw_gstrings_stats) 554 #define CPSW_STATS_CH_LEN ARRAY_SIZE(cpsw_gstrings_ch_stats) 555 556 #define ndev_to_cpsw(ndev) (((struct cpsw_priv *)netdev_priv(ndev))->cpsw) 557 #define napi_to_cpsw(napi) container_of(napi, struct cpsw_common, napi) 558 #define for_each_slave(priv, func, arg...) \ 559 do { \ 560 struct cpsw_slave *slave; \ 561 struct cpsw_common *cpsw = (priv)->cpsw; \ 562 int n; \ 563 if (cpsw->data.dual_emac) \ 564 (func)((cpsw)->slaves + priv->emac_port, ##arg);\ 565 else \ 566 for (n = cpsw->data.slaves, \ 567 slave = cpsw->slaves; \ 568 n; n--) \ 569 (func)(slave++, ##arg); \ 570 } while (0) 571 572 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev, 573 __be16 proto, u16 vid); 574 575 static inline int cpsw_get_slave_port(u32 slave_num) 576 { 577 return slave_num + 1; 578 } 579 580 static void cpsw_set_promiscious(struct net_device *ndev, bool enable) 581 { 582 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 583 struct cpsw_ale *ale = cpsw->ale; 584 int i; 585 586 if (cpsw->data.dual_emac) { 587 bool flag = false; 588 589 /* Enabling promiscuous mode for one interface will be 590 * common for both the interface as the interface shares 591 * the same hardware resource. 592 */ 593 for (i = 0; i < cpsw->data.slaves; i++) 594 if (cpsw->slaves[i].ndev->flags & IFF_PROMISC) 595 flag = true; 596 597 if (!enable && flag) { 598 enable = true; 599 dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n"); 600 } 601 602 if (enable) { 603 /* Enable Bypass */ 604 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1); 605 606 dev_dbg(&ndev->dev, "promiscuity enabled\n"); 607 } else { 608 /* Disable Bypass */ 609 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0); 610 dev_dbg(&ndev->dev, "promiscuity disabled\n"); 611 } 612 } else { 613 if (enable) { 614 unsigned long timeout = jiffies + HZ; 615 616 /* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */ 617 for (i = 0; i <= cpsw->data.slaves; i++) { 618 cpsw_ale_control_set(ale, i, 619 ALE_PORT_NOLEARN, 1); 620 cpsw_ale_control_set(ale, i, 621 ALE_PORT_NO_SA_UPDATE, 1); 622 } 623 624 /* Clear All Untouched entries */ 625 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1); 626 do { 627 cpu_relax(); 628 if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT)) 629 break; 630 } while (time_after(timeout, jiffies)); 631 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1); 632 633 /* Clear all mcast from ALE */ 634 cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS, -1); 635 __hw_addr_ref_unsync_dev(&ndev->mc, ndev, NULL); 636 637 /* Flood All Unicast Packets to Host port */ 638 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1); 639 dev_dbg(&ndev->dev, "promiscuity enabled\n"); 640 } else { 641 /* Don't Flood All Unicast Packets to Host port */ 642 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0); 643 644 /* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */ 645 for (i = 0; i <= cpsw->data.slaves; i++) { 646 cpsw_ale_control_set(ale, i, 647 ALE_PORT_NOLEARN, 0); 648 cpsw_ale_control_set(ale, i, 649 ALE_PORT_NO_SA_UPDATE, 0); 650 } 651 dev_dbg(&ndev->dev, "promiscuity disabled\n"); 652 } 653 } 654 } 655 656 struct addr_sync_ctx { 657 struct net_device *ndev; 658 const u8 *addr; /* address to be synched */ 659 int consumed; /* number of address instances */ 660 int flush; /* flush flag */ 661 }; 662 663 /** 664 * cpsw_set_mc - adds multicast entry to the table if it's not added or deletes 665 * if it's not deleted 666 * @ndev: device to sync 667 * @addr: address to be added or deleted 668 * @vid: vlan id, if vid < 0 set/unset address for real device 669 * @add: add address if the flag is set or remove otherwise 670 */ 671 static int cpsw_set_mc(struct net_device *ndev, const u8 *addr, 672 int vid, int add) 673 { 674 struct cpsw_priv *priv = netdev_priv(ndev); 675 struct cpsw_common *cpsw = priv->cpsw; 676 int mask, flags, ret; 677 678 if (vid < 0) { 679 if (cpsw->data.dual_emac) 680 vid = cpsw->slaves[priv->emac_port].port_vlan; 681 else 682 vid = 0; 683 } 684 685 mask = cpsw->data.dual_emac ? ALE_PORT_HOST : ALE_ALL_PORTS; 686 flags = vid ? ALE_VLAN : 0; 687 688 if (add) 689 ret = cpsw_ale_add_mcast(cpsw->ale, addr, mask, flags, vid, 0); 690 else 691 ret = cpsw_ale_del_mcast(cpsw->ale, addr, 0, flags, vid); 692 693 return ret; 694 } 695 696 static int cpsw_update_vlan_mc(struct net_device *vdev, int vid, void *ctx) 697 { 698 struct addr_sync_ctx *sync_ctx = ctx; 699 struct netdev_hw_addr *ha; 700 int found = 0, ret = 0; 701 702 if (!vdev || !(vdev->flags & IFF_UP)) 703 return 0; 704 705 /* vlan address is relevant if its sync_cnt != 0 */ 706 netdev_for_each_mc_addr(ha, vdev) { 707 if (ether_addr_equal(ha->addr, sync_ctx->addr)) { 708 found = ha->sync_cnt; 709 break; 710 } 711 } 712 713 if (found) 714 sync_ctx->consumed++; 715 716 if (sync_ctx->flush) { 717 if (!found) 718 cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 0); 719 return 0; 720 } 721 722 if (found) 723 ret = cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 1); 724 725 return ret; 726 } 727 728 static int cpsw_add_mc_addr(struct net_device *ndev, const u8 *addr, int num) 729 { 730 struct addr_sync_ctx sync_ctx; 731 int ret; 732 733 sync_ctx.consumed = 0; 734 sync_ctx.addr = addr; 735 sync_ctx.ndev = ndev; 736 sync_ctx.flush = 0; 737 738 ret = vlan_for_each(ndev, cpsw_update_vlan_mc, &sync_ctx); 739 if (sync_ctx.consumed < num && !ret) 740 ret = cpsw_set_mc(ndev, addr, -1, 1); 741 742 return ret; 743 } 744 745 static int cpsw_del_mc_addr(struct net_device *ndev, const u8 *addr, int num) 746 { 747 struct addr_sync_ctx sync_ctx; 748 749 sync_ctx.consumed = 0; 750 sync_ctx.addr = addr; 751 sync_ctx.ndev = ndev; 752 sync_ctx.flush = 1; 753 754 vlan_for_each(ndev, cpsw_update_vlan_mc, &sync_ctx); 755 if (sync_ctx.consumed == num) 756 cpsw_set_mc(ndev, addr, -1, 0); 757 758 return 0; 759 } 760 761 static int cpsw_purge_vlan_mc(struct net_device *vdev, int vid, void *ctx) 762 { 763 struct addr_sync_ctx *sync_ctx = ctx; 764 struct netdev_hw_addr *ha; 765 int found = 0; 766 767 if (!vdev || !(vdev->flags & IFF_UP)) 768 return 0; 769 770 /* vlan address is relevant if its sync_cnt != 0 */ 771 netdev_for_each_mc_addr(ha, vdev) { 772 if (ether_addr_equal(ha->addr, sync_ctx->addr)) { 773 found = ha->sync_cnt; 774 break; 775 } 776 } 777 778 if (!found) 779 return 0; 780 781 sync_ctx->consumed++; 782 cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 0); 783 return 0; 784 } 785 786 static int cpsw_purge_all_mc(struct net_device *ndev, const u8 *addr, int num) 787 { 788 struct addr_sync_ctx sync_ctx; 789 790 sync_ctx.addr = addr; 791 sync_ctx.ndev = ndev; 792 sync_ctx.consumed = 0; 793 794 vlan_for_each(ndev, cpsw_purge_vlan_mc, &sync_ctx); 795 if (sync_ctx.consumed < num) 796 cpsw_set_mc(ndev, addr, -1, 0); 797 798 return 0; 799 } 800 801 static void cpsw_ndo_set_rx_mode(struct net_device *ndev) 802 { 803 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 804 805 if (ndev->flags & IFF_PROMISC) { 806 /* Enable promiscuous mode */ 807 cpsw_set_promiscious(ndev, true); 808 cpsw_ale_set_allmulti(cpsw->ale, IFF_ALLMULTI); 809 return; 810 } else { 811 /* Disable promiscuous mode */ 812 cpsw_set_promiscious(ndev, false); 813 } 814 815 /* Restore allmulti on vlans if necessary */ 816 cpsw_ale_set_allmulti(cpsw->ale, ndev->flags & IFF_ALLMULTI); 817 818 /* add/remove mcast address either for real netdev or for vlan */ 819 __hw_addr_ref_sync_dev(&ndev->mc, ndev, cpsw_add_mc_addr, 820 cpsw_del_mc_addr); 821 } 822 823 static void cpsw_intr_enable(struct cpsw_common *cpsw) 824 { 825 writel_relaxed(0xFF, &cpsw->wr_regs->tx_en); 826 writel_relaxed(0xFF, &cpsw->wr_regs->rx_en); 827 828 cpdma_ctlr_int_ctrl(cpsw->dma, true); 829 return; 830 } 831 832 static void cpsw_intr_disable(struct cpsw_common *cpsw) 833 { 834 writel_relaxed(0, &cpsw->wr_regs->tx_en); 835 writel_relaxed(0, &cpsw->wr_regs->rx_en); 836 837 cpdma_ctlr_int_ctrl(cpsw->dma, false); 838 return; 839 } 840 841 static void cpsw_tx_handler(void *token, int len, int status) 842 { 843 struct netdev_queue *txq; 844 struct sk_buff *skb = token; 845 struct net_device *ndev = skb->dev; 846 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 847 848 /* Check whether the queue is stopped due to stalled tx dma, if the 849 * queue is stopped then start the queue as we have free desc for tx 850 */ 851 txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb)); 852 if (unlikely(netif_tx_queue_stopped(txq))) 853 netif_tx_wake_queue(txq); 854 855 cpts_tx_timestamp(cpsw->cpts, skb); 856 ndev->stats.tx_packets++; 857 ndev->stats.tx_bytes += len; 858 dev_kfree_skb_any(skb); 859 } 860 861 static void cpsw_rx_vlan_encap(struct sk_buff *skb) 862 { 863 struct cpsw_priv *priv = netdev_priv(skb->dev); 864 struct cpsw_common *cpsw = priv->cpsw; 865 u32 rx_vlan_encap_hdr = *((u32 *)skb->data); 866 u16 vtag, vid, prio, pkt_type; 867 868 /* Remove VLAN header encapsulation word */ 869 skb_pull(skb, CPSW_RX_VLAN_ENCAP_HDR_SIZE); 870 871 pkt_type = (rx_vlan_encap_hdr >> 872 CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_SHIFT) & 873 CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_MSK; 874 /* Ignore unknown & Priority-tagged packets*/ 875 if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_RESERV || 876 pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_PRIO_TAG) 877 return; 878 879 vid = (rx_vlan_encap_hdr >> 880 CPSW_RX_VLAN_ENCAP_HDR_VID_SHIFT) & 881 VLAN_VID_MASK; 882 /* Ignore vid 0 and pass packet as is */ 883 if (!vid) 884 return; 885 /* Ignore default vlans in dual mac mode */ 886 if (cpsw->data.dual_emac && 887 vid == cpsw->slaves[priv->emac_port].port_vlan) 888 return; 889 890 prio = (rx_vlan_encap_hdr >> 891 CPSW_RX_VLAN_ENCAP_HDR_PRIO_SHIFT) & 892 CPSW_RX_VLAN_ENCAP_HDR_PRIO_MSK; 893 894 vtag = (prio << VLAN_PRIO_SHIFT) | vid; 895 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vtag); 896 897 /* strip vlan tag for VLAN-tagged packet */ 898 if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_VLAN_TAG) { 899 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); 900 skb_pull(skb, VLAN_HLEN); 901 } 902 } 903 904 static void cpsw_rx_handler(void *token, int len, int status) 905 { 906 struct cpdma_chan *ch; 907 struct sk_buff *skb = token; 908 struct sk_buff *new_skb; 909 struct net_device *ndev = skb->dev; 910 int ret = 0, port; 911 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 912 struct cpsw_priv *priv; 913 914 if (cpsw->data.dual_emac) { 915 port = CPDMA_RX_SOURCE_PORT(status); 916 if (port) { 917 ndev = cpsw->slaves[--port].ndev; 918 skb->dev = ndev; 919 } 920 } 921 922 if (unlikely(status < 0) || unlikely(!netif_running(ndev))) { 923 /* In dual emac mode check for all interfaces */ 924 if (cpsw->data.dual_emac && cpsw->usage_count && 925 (status >= 0)) { 926 /* The packet received is for the interface which 927 * is already down and the other interface is up 928 * and running, instead of freeing which results 929 * in reducing of the number of rx descriptor in 930 * DMA engine, requeue skb back to cpdma. 931 */ 932 new_skb = skb; 933 goto requeue; 934 } 935 936 /* the interface is going down, skbs are purged */ 937 dev_kfree_skb_any(skb); 938 return; 939 } 940 941 new_skb = netdev_alloc_skb_ip_align(ndev, cpsw->rx_packet_max); 942 if (new_skb) { 943 skb_copy_queue_mapping(new_skb, skb); 944 skb_put(skb, len); 945 if (status & CPDMA_RX_VLAN_ENCAP) 946 cpsw_rx_vlan_encap(skb); 947 priv = netdev_priv(ndev); 948 if (priv->rx_ts_enabled) 949 cpts_rx_timestamp(cpsw->cpts, skb); 950 skb->protocol = eth_type_trans(skb, ndev); 951 netif_receive_skb(skb); 952 ndev->stats.rx_bytes += len; 953 ndev->stats.rx_packets++; 954 kmemleak_not_leak(new_skb); 955 } else { 956 ndev->stats.rx_dropped++; 957 new_skb = skb; 958 } 959 960 requeue: 961 if (netif_dormant(ndev)) { 962 dev_kfree_skb_any(new_skb); 963 return; 964 } 965 966 ch = cpsw->rxv[skb_get_queue_mapping(new_skb)].ch; 967 ret = cpdma_chan_submit(ch, new_skb, new_skb->data, 968 skb_tailroom(new_skb), 0); 969 if (WARN_ON(ret < 0)) 970 dev_kfree_skb_any(new_skb); 971 } 972 973 static void cpsw_split_res(struct net_device *ndev) 974 { 975 struct cpsw_priv *priv = netdev_priv(ndev); 976 u32 consumed_rate = 0, bigest_rate = 0; 977 struct cpsw_common *cpsw = priv->cpsw; 978 struct cpsw_vector *txv = cpsw->txv; 979 int i, ch_weight, rlim_ch_num = 0; 980 int budget, bigest_rate_ch = 0; 981 u32 ch_rate, max_rate; 982 int ch_budget = 0; 983 984 for (i = 0; i < cpsw->tx_ch_num; i++) { 985 ch_rate = cpdma_chan_get_rate(txv[i].ch); 986 if (!ch_rate) 987 continue; 988 989 rlim_ch_num++; 990 consumed_rate += ch_rate; 991 } 992 993 if (cpsw->tx_ch_num == rlim_ch_num) { 994 max_rate = consumed_rate; 995 } else if (!rlim_ch_num) { 996 ch_budget = CPSW_POLL_WEIGHT / cpsw->tx_ch_num; 997 bigest_rate = 0; 998 max_rate = consumed_rate; 999 } else { 1000 max_rate = cpsw->speed * 1000; 1001 1002 /* if max_rate is less then expected due to reduced link speed, 1003 * split proportionally according next potential max speed 1004 */ 1005 if (max_rate < consumed_rate) 1006 max_rate *= 10; 1007 1008 if (max_rate < consumed_rate) 1009 max_rate *= 10; 1010 1011 ch_budget = (consumed_rate * CPSW_POLL_WEIGHT) / max_rate; 1012 ch_budget = (CPSW_POLL_WEIGHT - ch_budget) / 1013 (cpsw->tx_ch_num - rlim_ch_num); 1014 bigest_rate = (max_rate - consumed_rate) / 1015 (cpsw->tx_ch_num - rlim_ch_num); 1016 } 1017 1018 /* split tx weight/budget */ 1019 budget = CPSW_POLL_WEIGHT; 1020 for (i = 0; i < cpsw->tx_ch_num; i++) { 1021 ch_rate = cpdma_chan_get_rate(txv[i].ch); 1022 if (ch_rate) { 1023 txv[i].budget = (ch_rate * CPSW_POLL_WEIGHT) / max_rate; 1024 if (!txv[i].budget) 1025 txv[i].budget++; 1026 if (ch_rate > bigest_rate) { 1027 bigest_rate_ch = i; 1028 bigest_rate = ch_rate; 1029 } 1030 1031 ch_weight = (ch_rate * 100) / max_rate; 1032 if (!ch_weight) 1033 ch_weight++; 1034 cpdma_chan_set_weight(cpsw->txv[i].ch, ch_weight); 1035 } else { 1036 txv[i].budget = ch_budget; 1037 if (!bigest_rate_ch) 1038 bigest_rate_ch = i; 1039 cpdma_chan_set_weight(cpsw->txv[i].ch, 0); 1040 } 1041 1042 budget -= txv[i].budget; 1043 } 1044 1045 if (budget) 1046 txv[bigest_rate_ch].budget += budget; 1047 1048 /* split rx budget */ 1049 budget = CPSW_POLL_WEIGHT; 1050 ch_budget = budget / cpsw->rx_ch_num; 1051 for (i = 0; i < cpsw->rx_ch_num; i++) { 1052 cpsw->rxv[i].budget = ch_budget; 1053 budget -= ch_budget; 1054 } 1055 1056 if (budget) 1057 cpsw->rxv[0].budget += budget; 1058 } 1059 1060 static irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id) 1061 { 1062 struct cpsw_common *cpsw = dev_id; 1063 1064 writel(0, &cpsw->wr_regs->tx_en); 1065 cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_TX); 1066 1067 if (cpsw->quirk_irq) { 1068 disable_irq_nosync(cpsw->irqs_table[1]); 1069 cpsw->tx_irq_disabled = true; 1070 } 1071 1072 napi_schedule(&cpsw->napi_tx); 1073 return IRQ_HANDLED; 1074 } 1075 1076 static irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id) 1077 { 1078 struct cpsw_common *cpsw = dev_id; 1079 1080 cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_RX); 1081 writel(0, &cpsw->wr_regs->rx_en); 1082 1083 if (cpsw->quirk_irq) { 1084 disable_irq_nosync(cpsw->irqs_table[0]); 1085 cpsw->rx_irq_disabled = true; 1086 } 1087 1088 napi_schedule(&cpsw->napi_rx); 1089 return IRQ_HANDLED; 1090 } 1091 1092 static int cpsw_tx_mq_poll(struct napi_struct *napi_tx, int budget) 1093 { 1094 u32 ch_map; 1095 int num_tx, cur_budget, ch; 1096 struct cpsw_common *cpsw = napi_to_cpsw(napi_tx); 1097 struct cpsw_vector *txv; 1098 1099 /* process every unprocessed channel */ 1100 ch_map = cpdma_ctrl_txchs_state(cpsw->dma); 1101 for (ch = 0, num_tx = 0; ch_map & 0xff; ch_map <<= 1, ch++) { 1102 if (!(ch_map & 0x80)) 1103 continue; 1104 1105 txv = &cpsw->txv[ch]; 1106 if (unlikely(txv->budget > budget - num_tx)) 1107 cur_budget = budget - num_tx; 1108 else 1109 cur_budget = txv->budget; 1110 1111 num_tx += cpdma_chan_process(txv->ch, cur_budget); 1112 if (num_tx >= budget) 1113 break; 1114 } 1115 1116 if (num_tx < budget) { 1117 napi_complete(napi_tx); 1118 writel(0xff, &cpsw->wr_regs->tx_en); 1119 } 1120 1121 return num_tx; 1122 } 1123 1124 static int cpsw_tx_poll(struct napi_struct *napi_tx, int budget) 1125 { 1126 struct cpsw_common *cpsw = napi_to_cpsw(napi_tx); 1127 int num_tx; 1128 1129 num_tx = cpdma_chan_process(cpsw->txv[0].ch, budget); 1130 if (num_tx < budget) { 1131 napi_complete(napi_tx); 1132 writel(0xff, &cpsw->wr_regs->tx_en); 1133 if (cpsw->tx_irq_disabled) { 1134 cpsw->tx_irq_disabled = false; 1135 enable_irq(cpsw->irqs_table[1]); 1136 } 1137 } 1138 1139 return num_tx; 1140 } 1141 1142 static int cpsw_rx_mq_poll(struct napi_struct *napi_rx, int budget) 1143 { 1144 u32 ch_map; 1145 int num_rx, cur_budget, ch; 1146 struct cpsw_common *cpsw = napi_to_cpsw(napi_rx); 1147 struct cpsw_vector *rxv; 1148 1149 /* process every unprocessed channel */ 1150 ch_map = cpdma_ctrl_rxchs_state(cpsw->dma); 1151 for (ch = 0, num_rx = 0; ch_map; ch_map >>= 1, ch++) { 1152 if (!(ch_map & 0x01)) 1153 continue; 1154 1155 rxv = &cpsw->rxv[ch]; 1156 if (unlikely(rxv->budget > budget - num_rx)) 1157 cur_budget = budget - num_rx; 1158 else 1159 cur_budget = rxv->budget; 1160 1161 num_rx += cpdma_chan_process(rxv->ch, cur_budget); 1162 if (num_rx >= budget) 1163 break; 1164 } 1165 1166 if (num_rx < budget) { 1167 napi_complete_done(napi_rx, num_rx); 1168 writel(0xff, &cpsw->wr_regs->rx_en); 1169 } 1170 1171 return num_rx; 1172 } 1173 1174 static int cpsw_rx_poll(struct napi_struct *napi_rx, int budget) 1175 { 1176 struct cpsw_common *cpsw = napi_to_cpsw(napi_rx); 1177 int num_rx; 1178 1179 num_rx = cpdma_chan_process(cpsw->rxv[0].ch, budget); 1180 if (num_rx < budget) { 1181 napi_complete_done(napi_rx, num_rx); 1182 writel(0xff, &cpsw->wr_regs->rx_en); 1183 if (cpsw->rx_irq_disabled) { 1184 cpsw->rx_irq_disabled = false; 1185 enable_irq(cpsw->irqs_table[0]); 1186 } 1187 } 1188 1189 return num_rx; 1190 } 1191 1192 static inline void soft_reset(const char *module, void __iomem *reg) 1193 { 1194 unsigned long timeout = jiffies + HZ; 1195 1196 writel_relaxed(1, reg); 1197 do { 1198 cpu_relax(); 1199 } while ((readl_relaxed(reg) & 1) && time_after(timeout, jiffies)); 1200 1201 WARN(readl_relaxed(reg) & 1, "failed to soft-reset %s\n", module); 1202 } 1203 1204 static void cpsw_set_slave_mac(struct cpsw_slave *slave, 1205 struct cpsw_priv *priv) 1206 { 1207 slave_write(slave, mac_hi(priv->mac_addr), SA_HI); 1208 slave_write(slave, mac_lo(priv->mac_addr), SA_LO); 1209 } 1210 1211 static bool cpsw_shp_is_off(struct cpsw_priv *priv) 1212 { 1213 struct cpsw_common *cpsw = priv->cpsw; 1214 struct cpsw_slave *slave; 1215 u32 shift, mask, val; 1216 1217 val = readl_relaxed(&cpsw->regs->ptype); 1218 1219 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; 1220 shift = CPSW_FIFO_SHAPE_EN_SHIFT + 3 * slave->slave_num; 1221 mask = 7 << shift; 1222 val = val & mask; 1223 1224 return !val; 1225 } 1226 1227 static void cpsw_fifo_shp_on(struct cpsw_priv *priv, int fifo, int on) 1228 { 1229 struct cpsw_common *cpsw = priv->cpsw; 1230 struct cpsw_slave *slave; 1231 u32 shift, mask, val; 1232 1233 val = readl_relaxed(&cpsw->regs->ptype); 1234 1235 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; 1236 shift = CPSW_FIFO_SHAPE_EN_SHIFT + 3 * slave->slave_num; 1237 mask = (1 << --fifo) << shift; 1238 val = on ? val | mask : val & ~mask; 1239 1240 writel_relaxed(val, &cpsw->regs->ptype); 1241 } 1242 1243 static void _cpsw_adjust_link(struct cpsw_slave *slave, 1244 struct cpsw_priv *priv, bool *link) 1245 { 1246 struct phy_device *phy = slave->phy; 1247 u32 mac_control = 0; 1248 u32 slave_port; 1249 struct cpsw_common *cpsw = priv->cpsw; 1250 1251 if (!phy) 1252 return; 1253 1254 slave_port = cpsw_get_slave_port(slave->slave_num); 1255 1256 if (phy->link) { 1257 mac_control = cpsw->data.mac_control; 1258 1259 /* enable forwarding */ 1260 cpsw_ale_control_set(cpsw->ale, slave_port, 1261 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD); 1262 1263 if (phy->speed == 1000) 1264 mac_control |= BIT(7); /* GIGABITEN */ 1265 if (phy->duplex) 1266 mac_control |= BIT(0); /* FULLDUPLEXEN */ 1267 1268 /* set speed_in input in case RMII mode is used in 100Mbps */ 1269 if (phy->speed == 100) 1270 mac_control |= BIT(15); 1271 /* in band mode only works in 10Mbps RGMII mode */ 1272 else if ((phy->speed == 10) && phy_interface_is_rgmii(phy)) 1273 mac_control |= BIT(18); /* In Band mode */ 1274 1275 if (priv->rx_pause) 1276 mac_control |= BIT(3); 1277 1278 if (priv->tx_pause) 1279 mac_control |= BIT(4); 1280 1281 *link = true; 1282 1283 if (priv->shp_cfg_speed && 1284 priv->shp_cfg_speed != slave->phy->speed && 1285 !cpsw_shp_is_off(priv)) 1286 dev_warn(priv->dev, 1287 "Speed was changed, CBS shaper speeds are changed!"); 1288 } else { 1289 mac_control = 0; 1290 /* disable forwarding */ 1291 cpsw_ale_control_set(cpsw->ale, slave_port, 1292 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE); 1293 } 1294 1295 if (mac_control != slave->mac_control) { 1296 phy_print_status(phy); 1297 writel_relaxed(mac_control, &slave->sliver->mac_control); 1298 } 1299 1300 slave->mac_control = mac_control; 1301 } 1302 1303 static int cpsw_get_common_speed(struct cpsw_common *cpsw) 1304 { 1305 int i, speed; 1306 1307 for (i = 0, speed = 0; i < cpsw->data.slaves; i++) 1308 if (cpsw->slaves[i].phy && cpsw->slaves[i].phy->link) 1309 speed += cpsw->slaves[i].phy->speed; 1310 1311 return speed; 1312 } 1313 1314 static int cpsw_need_resplit(struct cpsw_common *cpsw) 1315 { 1316 int i, rlim_ch_num; 1317 int speed, ch_rate; 1318 1319 /* re-split resources only in case speed was changed */ 1320 speed = cpsw_get_common_speed(cpsw); 1321 if (speed == cpsw->speed || !speed) 1322 return 0; 1323 1324 cpsw->speed = speed; 1325 1326 for (i = 0, rlim_ch_num = 0; i < cpsw->tx_ch_num; i++) { 1327 ch_rate = cpdma_chan_get_rate(cpsw->txv[i].ch); 1328 if (!ch_rate) 1329 break; 1330 1331 rlim_ch_num++; 1332 } 1333 1334 /* cases not dependent on speed */ 1335 if (!rlim_ch_num || rlim_ch_num == cpsw->tx_ch_num) 1336 return 0; 1337 1338 return 1; 1339 } 1340 1341 static void cpsw_adjust_link(struct net_device *ndev) 1342 { 1343 struct cpsw_priv *priv = netdev_priv(ndev); 1344 struct cpsw_common *cpsw = priv->cpsw; 1345 bool link = false; 1346 1347 for_each_slave(priv, _cpsw_adjust_link, priv, &link); 1348 1349 if (link) { 1350 if (cpsw_need_resplit(cpsw)) 1351 cpsw_split_res(ndev); 1352 1353 netif_carrier_on(ndev); 1354 if (netif_running(ndev)) 1355 netif_tx_wake_all_queues(ndev); 1356 } else { 1357 netif_carrier_off(ndev); 1358 netif_tx_stop_all_queues(ndev); 1359 } 1360 } 1361 1362 static int cpsw_get_coalesce(struct net_device *ndev, 1363 struct ethtool_coalesce *coal) 1364 { 1365 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1366 1367 coal->rx_coalesce_usecs = cpsw->coal_intvl; 1368 return 0; 1369 } 1370 1371 static int cpsw_set_coalesce(struct net_device *ndev, 1372 struct ethtool_coalesce *coal) 1373 { 1374 struct cpsw_priv *priv = netdev_priv(ndev); 1375 u32 int_ctrl; 1376 u32 num_interrupts = 0; 1377 u32 prescale = 0; 1378 u32 addnl_dvdr = 1; 1379 u32 coal_intvl = 0; 1380 struct cpsw_common *cpsw = priv->cpsw; 1381 1382 coal_intvl = coal->rx_coalesce_usecs; 1383 1384 int_ctrl = readl(&cpsw->wr_regs->int_control); 1385 prescale = cpsw->bus_freq_mhz * 4; 1386 1387 if (!coal->rx_coalesce_usecs) { 1388 int_ctrl &= ~(CPSW_INTPRESCALE_MASK | CPSW_INTPACEEN); 1389 goto update_return; 1390 } 1391 1392 if (coal_intvl < CPSW_CMINTMIN_INTVL) 1393 coal_intvl = CPSW_CMINTMIN_INTVL; 1394 1395 if (coal_intvl > CPSW_CMINTMAX_INTVL) { 1396 /* Interrupt pacer works with 4us Pulse, we can 1397 * throttle further by dilating the 4us pulse. 1398 */ 1399 addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale; 1400 1401 if (addnl_dvdr > 1) { 1402 prescale *= addnl_dvdr; 1403 if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr)) 1404 coal_intvl = (CPSW_CMINTMAX_INTVL 1405 * addnl_dvdr); 1406 } else { 1407 addnl_dvdr = 1; 1408 coal_intvl = CPSW_CMINTMAX_INTVL; 1409 } 1410 } 1411 1412 num_interrupts = (1000 * addnl_dvdr) / coal_intvl; 1413 writel(num_interrupts, &cpsw->wr_regs->rx_imax); 1414 writel(num_interrupts, &cpsw->wr_regs->tx_imax); 1415 1416 int_ctrl |= CPSW_INTPACEEN; 1417 int_ctrl &= (~CPSW_INTPRESCALE_MASK); 1418 int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK); 1419 1420 update_return: 1421 writel(int_ctrl, &cpsw->wr_regs->int_control); 1422 1423 cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl); 1424 cpsw->coal_intvl = coal_intvl; 1425 1426 return 0; 1427 } 1428 1429 static int cpsw_get_sset_count(struct net_device *ndev, int sset) 1430 { 1431 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1432 1433 switch (sset) { 1434 case ETH_SS_STATS: 1435 return (CPSW_STATS_COMMON_LEN + 1436 (cpsw->rx_ch_num + cpsw->tx_ch_num) * 1437 CPSW_STATS_CH_LEN); 1438 default: 1439 return -EOPNOTSUPP; 1440 } 1441 } 1442 1443 static void cpsw_add_ch_strings(u8 **p, int ch_num, int rx_dir) 1444 { 1445 int ch_stats_len; 1446 int line; 1447 int i; 1448 1449 ch_stats_len = CPSW_STATS_CH_LEN * ch_num; 1450 for (i = 0; i < ch_stats_len; i++) { 1451 line = i % CPSW_STATS_CH_LEN; 1452 snprintf(*p, ETH_GSTRING_LEN, 1453 "%s DMA chan %ld: %s", rx_dir ? "Rx" : "Tx", 1454 (long)(i / CPSW_STATS_CH_LEN), 1455 cpsw_gstrings_ch_stats[line].stat_string); 1456 *p += ETH_GSTRING_LEN; 1457 } 1458 } 1459 1460 static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data) 1461 { 1462 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1463 u8 *p = data; 1464 int i; 1465 1466 switch (stringset) { 1467 case ETH_SS_STATS: 1468 for (i = 0; i < CPSW_STATS_COMMON_LEN; i++) { 1469 memcpy(p, cpsw_gstrings_stats[i].stat_string, 1470 ETH_GSTRING_LEN); 1471 p += ETH_GSTRING_LEN; 1472 } 1473 1474 cpsw_add_ch_strings(&p, cpsw->rx_ch_num, 1); 1475 cpsw_add_ch_strings(&p, cpsw->tx_ch_num, 0); 1476 break; 1477 } 1478 } 1479 1480 static void cpsw_get_ethtool_stats(struct net_device *ndev, 1481 struct ethtool_stats *stats, u64 *data) 1482 { 1483 u8 *p; 1484 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1485 struct cpdma_chan_stats ch_stats; 1486 int i, l, ch; 1487 1488 /* Collect Davinci CPDMA stats for Rx and Tx Channel */ 1489 for (l = 0; l < CPSW_STATS_COMMON_LEN; l++) 1490 data[l] = readl(cpsw->hw_stats + 1491 cpsw_gstrings_stats[l].stat_offset); 1492 1493 for (ch = 0; ch < cpsw->rx_ch_num; ch++) { 1494 cpdma_chan_get_stats(cpsw->rxv[ch].ch, &ch_stats); 1495 for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) { 1496 p = (u8 *)&ch_stats + 1497 cpsw_gstrings_ch_stats[i].stat_offset; 1498 data[l] = *(u32 *)p; 1499 } 1500 } 1501 1502 for (ch = 0; ch < cpsw->tx_ch_num; ch++) { 1503 cpdma_chan_get_stats(cpsw->txv[ch].ch, &ch_stats); 1504 for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) { 1505 p = (u8 *)&ch_stats + 1506 cpsw_gstrings_ch_stats[i].stat_offset; 1507 data[l] = *(u32 *)p; 1508 } 1509 } 1510 } 1511 1512 static inline int cpsw_tx_packet_submit(struct cpsw_priv *priv, 1513 struct sk_buff *skb, 1514 struct cpdma_chan *txch) 1515 { 1516 struct cpsw_common *cpsw = priv->cpsw; 1517 1518 skb_tx_timestamp(skb); 1519 return cpdma_chan_submit(txch, skb, skb->data, skb->len, 1520 priv->emac_port + cpsw->data.dual_emac); 1521 } 1522 1523 static inline void cpsw_add_dual_emac_def_ale_entries( 1524 struct cpsw_priv *priv, struct cpsw_slave *slave, 1525 u32 slave_port) 1526 { 1527 struct cpsw_common *cpsw = priv->cpsw; 1528 u32 port_mask = 1 << slave_port | ALE_PORT_HOST; 1529 1530 if (cpsw->version == CPSW_VERSION_1) 1531 slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN); 1532 else 1533 slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN); 1534 cpsw_ale_add_vlan(cpsw->ale, slave->port_vlan, port_mask, 1535 port_mask, port_mask, 0); 1536 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, 1537 ALE_PORT_HOST, ALE_VLAN, slave->port_vlan, 0); 1538 cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, 1539 HOST_PORT_NUM, ALE_VLAN | 1540 ALE_SECURE, slave->port_vlan); 1541 cpsw_ale_control_set(cpsw->ale, slave_port, 1542 ALE_PORT_DROP_UNKNOWN_VLAN, 1); 1543 } 1544 1545 static void soft_reset_slave(struct cpsw_slave *slave) 1546 { 1547 char name[32]; 1548 1549 snprintf(name, sizeof(name), "slave-%d", slave->slave_num); 1550 soft_reset(name, &slave->sliver->soft_reset); 1551 } 1552 1553 static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv) 1554 { 1555 u32 slave_port; 1556 struct phy_device *phy; 1557 struct cpsw_common *cpsw = priv->cpsw; 1558 1559 soft_reset_slave(slave); 1560 1561 /* setup priority mapping */ 1562 writel_relaxed(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map); 1563 1564 switch (cpsw->version) { 1565 case CPSW_VERSION_1: 1566 slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP); 1567 /* Increase RX FIFO size to 5 for supporting fullduplex 1568 * flow control mode 1569 */ 1570 slave_write(slave, 1571 (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) | 1572 CPSW_MAX_BLKS_RX, CPSW1_MAX_BLKS); 1573 break; 1574 case CPSW_VERSION_2: 1575 case CPSW_VERSION_3: 1576 case CPSW_VERSION_4: 1577 slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP); 1578 /* Increase RX FIFO size to 5 for supporting fullduplex 1579 * flow control mode 1580 */ 1581 slave_write(slave, 1582 (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) | 1583 CPSW_MAX_BLKS_RX, CPSW2_MAX_BLKS); 1584 break; 1585 } 1586 1587 /* setup max packet size, and mac address */ 1588 writel_relaxed(cpsw->rx_packet_max, &slave->sliver->rx_maxlen); 1589 cpsw_set_slave_mac(slave, priv); 1590 1591 slave->mac_control = 0; /* no link yet */ 1592 1593 slave_port = cpsw_get_slave_port(slave->slave_num); 1594 1595 if (cpsw->data.dual_emac) 1596 cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port); 1597 else 1598 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, 1599 1 << slave_port, 0, 0, ALE_MCAST_FWD_2); 1600 1601 if (slave->data->phy_node) { 1602 phy = of_phy_connect(priv->ndev, slave->data->phy_node, 1603 &cpsw_adjust_link, 0, slave->data->phy_if); 1604 if (!phy) { 1605 dev_err(priv->dev, "phy \"%pOF\" not found on slave %d\n", 1606 slave->data->phy_node, 1607 slave->slave_num); 1608 return; 1609 } 1610 } else { 1611 phy = phy_connect(priv->ndev, slave->data->phy_id, 1612 &cpsw_adjust_link, slave->data->phy_if); 1613 if (IS_ERR(phy)) { 1614 dev_err(priv->dev, 1615 "phy \"%s\" not found on slave %d, err %ld\n", 1616 slave->data->phy_id, slave->slave_num, 1617 PTR_ERR(phy)); 1618 return; 1619 } 1620 } 1621 1622 slave->phy = phy; 1623 1624 phy_attached_info(slave->phy); 1625 1626 phy_start(slave->phy); 1627 1628 /* Configure GMII_SEL register */ 1629 if (!IS_ERR(slave->data->ifphy)) 1630 phy_set_mode_ext(slave->data->ifphy, PHY_MODE_ETHERNET, 1631 slave->data->phy_if); 1632 else 1633 cpsw_phy_sel(cpsw->dev, slave->phy->interface, 1634 slave->slave_num); 1635 } 1636 1637 static inline void cpsw_add_default_vlan(struct cpsw_priv *priv) 1638 { 1639 struct cpsw_common *cpsw = priv->cpsw; 1640 const int vlan = cpsw->data.default_vlan; 1641 u32 reg; 1642 int i; 1643 int unreg_mcast_mask; 1644 1645 reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN : 1646 CPSW2_PORT_VLAN; 1647 1648 writel(vlan, &cpsw->host_port_regs->port_vlan); 1649 1650 for (i = 0; i < cpsw->data.slaves; i++) 1651 slave_write(cpsw->slaves + i, vlan, reg); 1652 1653 if (priv->ndev->flags & IFF_ALLMULTI) 1654 unreg_mcast_mask = ALE_ALL_PORTS; 1655 else 1656 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2; 1657 1658 cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS, 1659 ALE_ALL_PORTS, ALE_ALL_PORTS, 1660 unreg_mcast_mask); 1661 } 1662 1663 static void cpsw_init_host_port(struct cpsw_priv *priv) 1664 { 1665 u32 fifo_mode; 1666 u32 control_reg; 1667 struct cpsw_common *cpsw = priv->cpsw; 1668 1669 /* soft reset the controller and initialize ale */ 1670 soft_reset("cpsw", &cpsw->regs->soft_reset); 1671 cpsw_ale_start(cpsw->ale); 1672 1673 /* switch to vlan unaware mode */ 1674 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_VLAN_AWARE, 1675 CPSW_ALE_VLAN_AWARE); 1676 control_reg = readl(&cpsw->regs->control); 1677 control_reg |= CPSW_VLAN_AWARE | CPSW_RX_VLAN_ENCAP; 1678 writel(control_reg, &cpsw->regs->control); 1679 fifo_mode = (cpsw->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE : 1680 CPSW_FIFO_NORMAL_MODE; 1681 writel(fifo_mode, &cpsw->host_port_regs->tx_in_ctl); 1682 1683 /* setup host port priority mapping */ 1684 writel_relaxed(CPDMA_TX_PRIORITY_MAP, 1685 &cpsw->host_port_regs->cpdma_tx_pri_map); 1686 writel_relaxed(0, &cpsw->host_port_regs->cpdma_rx_chan_map); 1687 1688 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, 1689 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD); 1690 1691 if (!cpsw->data.dual_emac) { 1692 cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM, 1693 0, 0); 1694 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, 1695 ALE_PORT_HOST, 0, 0, ALE_MCAST_FWD_2); 1696 } 1697 } 1698 1699 static int cpsw_fill_rx_channels(struct cpsw_priv *priv) 1700 { 1701 struct cpsw_common *cpsw = priv->cpsw; 1702 struct sk_buff *skb; 1703 int ch_buf_num; 1704 int ch, i, ret; 1705 1706 for (ch = 0; ch < cpsw->rx_ch_num; ch++) { 1707 ch_buf_num = cpdma_chan_get_rx_buf_num(cpsw->rxv[ch].ch); 1708 for (i = 0; i < ch_buf_num; i++) { 1709 skb = __netdev_alloc_skb_ip_align(priv->ndev, 1710 cpsw->rx_packet_max, 1711 GFP_KERNEL); 1712 if (!skb) { 1713 cpsw_err(priv, ifup, "cannot allocate skb\n"); 1714 return -ENOMEM; 1715 } 1716 1717 skb_set_queue_mapping(skb, ch); 1718 ret = cpdma_chan_submit(cpsw->rxv[ch].ch, skb, 1719 skb->data, skb_tailroom(skb), 1720 0); 1721 if (ret < 0) { 1722 cpsw_err(priv, ifup, 1723 "cannot submit skb to channel %d rx, error %d\n", 1724 ch, ret); 1725 kfree_skb(skb); 1726 return ret; 1727 } 1728 kmemleak_not_leak(skb); 1729 } 1730 1731 cpsw_info(priv, ifup, "ch %d rx, submitted %d descriptors\n", 1732 ch, ch_buf_num); 1733 } 1734 1735 return 0; 1736 } 1737 1738 static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_common *cpsw) 1739 { 1740 u32 slave_port; 1741 1742 slave_port = cpsw_get_slave_port(slave->slave_num); 1743 1744 if (!slave->phy) 1745 return; 1746 phy_stop(slave->phy); 1747 phy_disconnect(slave->phy); 1748 slave->phy = NULL; 1749 cpsw_ale_control_set(cpsw->ale, slave_port, 1750 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE); 1751 soft_reset_slave(slave); 1752 } 1753 1754 static int cpsw_tc_to_fifo(int tc, int num_tc) 1755 { 1756 if (tc == num_tc - 1) 1757 return 0; 1758 1759 return CPSW_FIFO_SHAPERS_NUM - tc; 1760 } 1761 1762 static int cpsw_set_fifo_bw(struct cpsw_priv *priv, int fifo, int bw) 1763 { 1764 struct cpsw_common *cpsw = priv->cpsw; 1765 u32 val = 0, send_pct, shift; 1766 struct cpsw_slave *slave; 1767 int pct = 0, i; 1768 1769 if (bw > priv->shp_cfg_speed * 1000) 1770 goto err; 1771 1772 /* shaping has to stay enabled for highest fifos linearly 1773 * and fifo bw no more then interface can allow 1774 */ 1775 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; 1776 send_pct = slave_read(slave, SEND_PERCENT); 1777 for (i = CPSW_FIFO_SHAPERS_NUM; i > 0; i--) { 1778 if (!bw) { 1779 if (i >= fifo || !priv->fifo_bw[i]) 1780 continue; 1781 1782 dev_warn(priv->dev, "Prev FIFO%d is shaped", i); 1783 continue; 1784 } 1785 1786 if (!priv->fifo_bw[i] && i > fifo) { 1787 dev_err(priv->dev, "Upper FIFO%d is not shaped", i); 1788 return -EINVAL; 1789 } 1790 1791 shift = (i - 1) * 8; 1792 if (i == fifo) { 1793 send_pct &= ~(CPSW_PCT_MASK << shift); 1794 val = DIV_ROUND_UP(bw, priv->shp_cfg_speed * 10); 1795 if (!val) 1796 val = 1; 1797 1798 send_pct |= val << shift; 1799 pct += val; 1800 continue; 1801 } 1802 1803 if (priv->fifo_bw[i]) 1804 pct += (send_pct >> shift) & CPSW_PCT_MASK; 1805 } 1806 1807 if (pct >= 100) 1808 goto err; 1809 1810 slave_write(slave, send_pct, SEND_PERCENT); 1811 priv->fifo_bw[fifo] = bw; 1812 1813 dev_warn(priv->dev, "set FIFO%d bw = %d\n", fifo, 1814 DIV_ROUND_CLOSEST(val * priv->shp_cfg_speed, 100)); 1815 1816 return 0; 1817 err: 1818 dev_err(priv->dev, "Bandwidth doesn't fit in tc configuration"); 1819 return -EINVAL; 1820 } 1821 1822 static int cpsw_set_fifo_rlimit(struct cpsw_priv *priv, int fifo, int bw) 1823 { 1824 struct cpsw_common *cpsw = priv->cpsw; 1825 struct cpsw_slave *slave; 1826 u32 tx_in_ctl_rg, val; 1827 int ret; 1828 1829 ret = cpsw_set_fifo_bw(priv, fifo, bw); 1830 if (ret) 1831 return ret; 1832 1833 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; 1834 tx_in_ctl_rg = cpsw->version == CPSW_VERSION_1 ? 1835 CPSW1_TX_IN_CTL : CPSW2_TX_IN_CTL; 1836 1837 if (!bw) 1838 cpsw_fifo_shp_on(priv, fifo, bw); 1839 1840 val = slave_read(slave, tx_in_ctl_rg); 1841 if (cpsw_shp_is_off(priv)) { 1842 /* disable FIFOs rate limited queues */ 1843 val &= ~(0xf << CPSW_FIFO_RATE_EN_SHIFT); 1844 1845 /* set type of FIFO queues to normal priority mode */ 1846 val &= ~(3 << CPSW_FIFO_QUEUE_TYPE_SHIFT); 1847 1848 /* set type of FIFO queues to be rate limited */ 1849 if (bw) 1850 val |= 2 << CPSW_FIFO_QUEUE_TYPE_SHIFT; 1851 else 1852 priv->shp_cfg_speed = 0; 1853 } 1854 1855 /* toggle a FIFO rate limited queue */ 1856 if (bw) 1857 val |= BIT(fifo + CPSW_FIFO_RATE_EN_SHIFT); 1858 else 1859 val &= ~BIT(fifo + CPSW_FIFO_RATE_EN_SHIFT); 1860 slave_write(slave, val, tx_in_ctl_rg); 1861 1862 /* FIFO transmit shape enable */ 1863 cpsw_fifo_shp_on(priv, fifo, bw); 1864 return 0; 1865 } 1866 1867 /* Defaults: 1868 * class A - prio 3 1869 * class B - prio 2 1870 * shaping for class A should be set first 1871 */ 1872 static int cpsw_set_cbs(struct net_device *ndev, 1873 struct tc_cbs_qopt_offload *qopt) 1874 { 1875 struct cpsw_priv *priv = netdev_priv(ndev); 1876 struct cpsw_common *cpsw = priv->cpsw; 1877 struct cpsw_slave *slave; 1878 int prev_speed = 0; 1879 int tc, ret, fifo; 1880 u32 bw = 0; 1881 1882 tc = netdev_txq_to_tc(priv->ndev, qopt->queue); 1883 1884 /* enable channels in backward order, as highest FIFOs must be rate 1885 * limited first and for compliance with CPDMA rate limited channels 1886 * that also used in bacward order. FIFO0 cannot be rate limited. 1887 */ 1888 fifo = cpsw_tc_to_fifo(tc, ndev->num_tc); 1889 if (!fifo) { 1890 dev_err(priv->dev, "Last tc%d can't be rate limited", tc); 1891 return -EINVAL; 1892 } 1893 1894 /* do nothing, it's disabled anyway */ 1895 if (!qopt->enable && !priv->fifo_bw[fifo]) 1896 return 0; 1897 1898 /* shapers can be set if link speed is known */ 1899 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; 1900 if (slave->phy && slave->phy->link) { 1901 if (priv->shp_cfg_speed && 1902 priv->shp_cfg_speed != slave->phy->speed) 1903 prev_speed = priv->shp_cfg_speed; 1904 1905 priv->shp_cfg_speed = slave->phy->speed; 1906 } 1907 1908 if (!priv->shp_cfg_speed) { 1909 dev_err(priv->dev, "Link speed is not known"); 1910 return -1; 1911 } 1912 1913 ret = pm_runtime_get_sync(cpsw->dev); 1914 if (ret < 0) { 1915 pm_runtime_put_noidle(cpsw->dev); 1916 return ret; 1917 } 1918 1919 bw = qopt->enable ? qopt->idleslope : 0; 1920 ret = cpsw_set_fifo_rlimit(priv, fifo, bw); 1921 if (ret) { 1922 priv->shp_cfg_speed = prev_speed; 1923 prev_speed = 0; 1924 } 1925 1926 if (bw && prev_speed) 1927 dev_warn(priv->dev, 1928 "Speed was changed, CBS shaper speeds are changed!"); 1929 1930 pm_runtime_put_sync(cpsw->dev); 1931 return ret; 1932 } 1933 1934 static void cpsw_cbs_resume(struct cpsw_slave *slave, struct cpsw_priv *priv) 1935 { 1936 int fifo, bw; 1937 1938 for (fifo = CPSW_FIFO_SHAPERS_NUM; fifo > 0; fifo--) { 1939 bw = priv->fifo_bw[fifo]; 1940 if (!bw) 1941 continue; 1942 1943 cpsw_set_fifo_rlimit(priv, fifo, bw); 1944 } 1945 } 1946 1947 static void cpsw_mqprio_resume(struct cpsw_slave *slave, struct cpsw_priv *priv) 1948 { 1949 struct cpsw_common *cpsw = priv->cpsw; 1950 u32 tx_prio_map = 0; 1951 int i, tc, fifo; 1952 u32 tx_prio_rg; 1953 1954 if (!priv->mqprio_hw) 1955 return; 1956 1957 for (i = 0; i < 8; i++) { 1958 tc = netdev_get_prio_tc_map(priv->ndev, i); 1959 fifo = CPSW_FIFO_SHAPERS_NUM - tc; 1960 tx_prio_map |= fifo << (4 * i); 1961 } 1962 1963 tx_prio_rg = cpsw->version == CPSW_VERSION_1 ? 1964 CPSW1_TX_PRI_MAP : CPSW2_TX_PRI_MAP; 1965 1966 slave_write(slave, tx_prio_map, tx_prio_rg); 1967 } 1968 1969 static int cpsw_restore_vlans(struct net_device *vdev, int vid, void *arg) 1970 { 1971 struct cpsw_priv *priv = arg; 1972 1973 if (!vdev) 1974 return 0; 1975 1976 cpsw_ndo_vlan_rx_add_vid(priv->ndev, 0, vid); 1977 return 0; 1978 } 1979 1980 /* restore resources after port reset */ 1981 static void cpsw_restore(struct cpsw_priv *priv) 1982 { 1983 /* restore vlan configurations */ 1984 vlan_for_each(priv->ndev, cpsw_restore_vlans, priv); 1985 1986 /* restore MQPRIO offload */ 1987 for_each_slave(priv, cpsw_mqprio_resume, priv); 1988 1989 /* restore CBS offload */ 1990 for_each_slave(priv, cpsw_cbs_resume, priv); 1991 } 1992 1993 static int cpsw_ndo_open(struct net_device *ndev) 1994 { 1995 struct cpsw_priv *priv = netdev_priv(ndev); 1996 struct cpsw_common *cpsw = priv->cpsw; 1997 int ret; 1998 u32 reg; 1999 2000 ret = pm_runtime_get_sync(cpsw->dev); 2001 if (ret < 0) { 2002 pm_runtime_put_noidle(cpsw->dev); 2003 return ret; 2004 } 2005 2006 netif_carrier_off(ndev); 2007 2008 /* Notify the stack of the actual queue counts. */ 2009 ret = netif_set_real_num_tx_queues(ndev, cpsw->tx_ch_num); 2010 if (ret) { 2011 dev_err(priv->dev, "cannot set real number of tx queues\n"); 2012 goto err_cleanup; 2013 } 2014 2015 ret = netif_set_real_num_rx_queues(ndev, cpsw->rx_ch_num); 2016 if (ret) { 2017 dev_err(priv->dev, "cannot set real number of rx queues\n"); 2018 goto err_cleanup; 2019 } 2020 2021 reg = cpsw->version; 2022 2023 dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n", 2024 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg), 2025 CPSW_RTL_VERSION(reg)); 2026 2027 /* Initialize host and slave ports */ 2028 if (!cpsw->usage_count) 2029 cpsw_init_host_port(priv); 2030 for_each_slave(priv, cpsw_slave_open, priv); 2031 2032 /* Add default VLAN */ 2033 if (!cpsw->data.dual_emac) 2034 cpsw_add_default_vlan(priv); 2035 else 2036 cpsw_ale_add_vlan(cpsw->ale, cpsw->data.default_vlan, 2037 ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0); 2038 2039 /* initialize shared resources for every ndev */ 2040 if (!cpsw->usage_count) { 2041 /* disable priority elevation */ 2042 writel_relaxed(0, &cpsw->regs->ptype); 2043 2044 /* enable statistics collection only on all ports */ 2045 writel_relaxed(0x7, &cpsw->regs->stat_port_en); 2046 2047 /* Enable internal fifo flow control */ 2048 writel(0x7, &cpsw->regs->flow_control); 2049 2050 napi_enable(&cpsw->napi_rx); 2051 napi_enable(&cpsw->napi_tx); 2052 2053 if (cpsw->tx_irq_disabled) { 2054 cpsw->tx_irq_disabled = false; 2055 enable_irq(cpsw->irqs_table[1]); 2056 } 2057 2058 if (cpsw->rx_irq_disabled) { 2059 cpsw->rx_irq_disabled = false; 2060 enable_irq(cpsw->irqs_table[0]); 2061 } 2062 2063 ret = cpsw_fill_rx_channels(priv); 2064 if (ret < 0) 2065 goto err_cleanup; 2066 2067 if (cpts_register(cpsw->cpts)) 2068 dev_err(priv->dev, "error registering cpts device\n"); 2069 2070 } 2071 2072 cpsw_restore(priv); 2073 2074 /* Enable Interrupt pacing if configured */ 2075 if (cpsw->coal_intvl != 0) { 2076 struct ethtool_coalesce coal; 2077 2078 coal.rx_coalesce_usecs = cpsw->coal_intvl; 2079 cpsw_set_coalesce(ndev, &coal); 2080 } 2081 2082 cpdma_ctlr_start(cpsw->dma); 2083 cpsw_intr_enable(cpsw); 2084 cpsw->usage_count++; 2085 2086 return 0; 2087 2088 err_cleanup: 2089 cpdma_ctlr_stop(cpsw->dma); 2090 for_each_slave(priv, cpsw_slave_stop, cpsw); 2091 pm_runtime_put_sync(cpsw->dev); 2092 netif_carrier_off(priv->ndev); 2093 return ret; 2094 } 2095 2096 static int cpsw_ndo_stop(struct net_device *ndev) 2097 { 2098 struct cpsw_priv *priv = netdev_priv(ndev); 2099 struct cpsw_common *cpsw = priv->cpsw; 2100 2101 cpsw_info(priv, ifdown, "shutting down cpsw device\n"); 2102 __hw_addr_ref_unsync_dev(&ndev->mc, ndev, cpsw_purge_all_mc); 2103 netif_tx_stop_all_queues(priv->ndev); 2104 netif_carrier_off(priv->ndev); 2105 2106 if (cpsw->usage_count <= 1) { 2107 napi_disable(&cpsw->napi_rx); 2108 napi_disable(&cpsw->napi_tx); 2109 cpts_unregister(cpsw->cpts); 2110 cpsw_intr_disable(cpsw); 2111 cpdma_ctlr_stop(cpsw->dma); 2112 cpsw_ale_stop(cpsw->ale); 2113 } 2114 for_each_slave(priv, cpsw_slave_stop, cpsw); 2115 2116 if (cpsw_need_resplit(cpsw)) 2117 cpsw_split_res(ndev); 2118 2119 cpsw->usage_count--; 2120 pm_runtime_put_sync(cpsw->dev); 2121 return 0; 2122 } 2123 2124 static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb, 2125 struct net_device *ndev) 2126 { 2127 struct cpsw_priv *priv = netdev_priv(ndev); 2128 struct cpsw_common *cpsw = priv->cpsw; 2129 struct cpts *cpts = cpsw->cpts; 2130 struct netdev_queue *txq; 2131 struct cpdma_chan *txch; 2132 int ret, q_idx; 2133 2134 if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) { 2135 cpsw_err(priv, tx_err, "packet pad failed\n"); 2136 ndev->stats.tx_dropped++; 2137 return NET_XMIT_DROP; 2138 } 2139 2140 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && 2141 priv->tx_ts_enabled && cpts_can_timestamp(cpts, skb)) 2142 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 2143 2144 q_idx = skb_get_queue_mapping(skb); 2145 if (q_idx >= cpsw->tx_ch_num) 2146 q_idx = q_idx % cpsw->tx_ch_num; 2147 2148 txch = cpsw->txv[q_idx].ch; 2149 txq = netdev_get_tx_queue(ndev, q_idx); 2150 ret = cpsw_tx_packet_submit(priv, skb, txch); 2151 if (unlikely(ret != 0)) { 2152 cpsw_err(priv, tx_err, "desc submit failed\n"); 2153 goto fail; 2154 } 2155 2156 /* If there is no more tx desc left free then we need to 2157 * tell the kernel to stop sending us tx frames. 2158 */ 2159 if (unlikely(!cpdma_check_free_tx_desc(txch))) { 2160 netif_tx_stop_queue(txq); 2161 2162 /* Barrier, so that stop_queue visible to other cpus */ 2163 smp_mb__after_atomic(); 2164 2165 if (cpdma_check_free_tx_desc(txch)) 2166 netif_tx_wake_queue(txq); 2167 } 2168 2169 return NETDEV_TX_OK; 2170 fail: 2171 ndev->stats.tx_dropped++; 2172 netif_tx_stop_queue(txq); 2173 2174 /* Barrier, so that stop_queue visible to other cpus */ 2175 smp_mb__after_atomic(); 2176 2177 if (cpdma_check_free_tx_desc(txch)) 2178 netif_tx_wake_queue(txq); 2179 2180 return NETDEV_TX_BUSY; 2181 } 2182 2183 #if IS_ENABLED(CONFIG_TI_CPTS) 2184 2185 static void cpsw_hwtstamp_v1(struct cpsw_priv *priv) 2186 { 2187 struct cpsw_common *cpsw = priv->cpsw; 2188 struct cpsw_slave *slave = &cpsw->slaves[cpsw->data.active_slave]; 2189 u32 ts_en, seq_id; 2190 2191 if (!priv->tx_ts_enabled && !priv->rx_ts_enabled) { 2192 slave_write(slave, 0, CPSW1_TS_CTL); 2193 return; 2194 } 2195 2196 seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588; 2197 ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS; 2198 2199 if (priv->tx_ts_enabled) 2200 ts_en |= CPSW_V1_TS_TX_EN; 2201 2202 if (priv->rx_ts_enabled) 2203 ts_en |= CPSW_V1_TS_RX_EN; 2204 2205 slave_write(slave, ts_en, CPSW1_TS_CTL); 2206 slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE); 2207 } 2208 2209 static void cpsw_hwtstamp_v2(struct cpsw_priv *priv) 2210 { 2211 struct cpsw_slave *slave; 2212 struct cpsw_common *cpsw = priv->cpsw; 2213 u32 ctrl, mtype; 2214 2215 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; 2216 2217 ctrl = slave_read(slave, CPSW2_CONTROL); 2218 switch (cpsw->version) { 2219 case CPSW_VERSION_2: 2220 ctrl &= ~CTRL_V2_ALL_TS_MASK; 2221 2222 if (priv->tx_ts_enabled) 2223 ctrl |= CTRL_V2_TX_TS_BITS; 2224 2225 if (priv->rx_ts_enabled) 2226 ctrl |= CTRL_V2_RX_TS_BITS; 2227 break; 2228 case CPSW_VERSION_3: 2229 default: 2230 ctrl &= ~CTRL_V3_ALL_TS_MASK; 2231 2232 if (priv->tx_ts_enabled) 2233 ctrl |= CTRL_V3_TX_TS_BITS; 2234 2235 if (priv->rx_ts_enabled) 2236 ctrl |= CTRL_V3_RX_TS_BITS; 2237 break; 2238 } 2239 2240 mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS; 2241 2242 slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE); 2243 slave_write(slave, ctrl, CPSW2_CONTROL); 2244 writel_relaxed(ETH_P_1588, &cpsw->regs->ts_ltype); 2245 writel_relaxed(ETH_P_8021Q, &cpsw->regs->vlan_ltype); 2246 } 2247 2248 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr) 2249 { 2250 struct cpsw_priv *priv = netdev_priv(dev); 2251 struct hwtstamp_config cfg; 2252 struct cpsw_common *cpsw = priv->cpsw; 2253 2254 if (cpsw->version != CPSW_VERSION_1 && 2255 cpsw->version != CPSW_VERSION_2 && 2256 cpsw->version != CPSW_VERSION_3) 2257 return -EOPNOTSUPP; 2258 2259 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg))) 2260 return -EFAULT; 2261 2262 /* reserved for future extensions */ 2263 if (cfg.flags) 2264 return -EINVAL; 2265 2266 if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON) 2267 return -ERANGE; 2268 2269 switch (cfg.rx_filter) { 2270 case HWTSTAMP_FILTER_NONE: 2271 priv->rx_ts_enabled = 0; 2272 break; 2273 case HWTSTAMP_FILTER_ALL: 2274 case HWTSTAMP_FILTER_NTP_ALL: 2275 return -ERANGE; 2276 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 2277 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 2278 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 2279 priv->rx_ts_enabled = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 2280 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 2281 break; 2282 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 2283 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 2284 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 2285 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 2286 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 2287 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 2288 case HWTSTAMP_FILTER_PTP_V2_EVENT: 2289 case HWTSTAMP_FILTER_PTP_V2_SYNC: 2290 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 2291 priv->rx_ts_enabled = HWTSTAMP_FILTER_PTP_V2_EVENT; 2292 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 2293 break; 2294 default: 2295 return -ERANGE; 2296 } 2297 2298 priv->tx_ts_enabled = cfg.tx_type == HWTSTAMP_TX_ON; 2299 2300 switch (cpsw->version) { 2301 case CPSW_VERSION_1: 2302 cpsw_hwtstamp_v1(priv); 2303 break; 2304 case CPSW_VERSION_2: 2305 case CPSW_VERSION_3: 2306 cpsw_hwtstamp_v2(priv); 2307 break; 2308 default: 2309 WARN_ON(1); 2310 } 2311 2312 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; 2313 } 2314 2315 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr) 2316 { 2317 struct cpsw_common *cpsw = ndev_to_cpsw(dev); 2318 struct cpsw_priv *priv = netdev_priv(dev); 2319 struct hwtstamp_config cfg; 2320 2321 if (cpsw->version != CPSW_VERSION_1 && 2322 cpsw->version != CPSW_VERSION_2 && 2323 cpsw->version != CPSW_VERSION_3) 2324 return -EOPNOTSUPP; 2325 2326 cfg.flags = 0; 2327 cfg.tx_type = priv->tx_ts_enabled ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF; 2328 cfg.rx_filter = priv->rx_ts_enabled; 2329 2330 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; 2331 } 2332 #else 2333 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr) 2334 { 2335 return -EOPNOTSUPP; 2336 } 2337 2338 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr) 2339 { 2340 return -EOPNOTSUPP; 2341 } 2342 #endif /*CONFIG_TI_CPTS*/ 2343 2344 static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 2345 { 2346 struct cpsw_priv *priv = netdev_priv(dev); 2347 struct cpsw_common *cpsw = priv->cpsw; 2348 int slave_no = cpsw_slave_index(cpsw, priv); 2349 2350 if (!netif_running(dev)) 2351 return -EINVAL; 2352 2353 switch (cmd) { 2354 case SIOCSHWTSTAMP: 2355 return cpsw_hwtstamp_set(dev, req); 2356 case SIOCGHWTSTAMP: 2357 return cpsw_hwtstamp_get(dev, req); 2358 } 2359 2360 if (!cpsw->slaves[slave_no].phy) 2361 return -EOPNOTSUPP; 2362 return phy_mii_ioctl(cpsw->slaves[slave_no].phy, req, cmd); 2363 } 2364 2365 static void cpsw_ndo_tx_timeout(struct net_device *ndev) 2366 { 2367 struct cpsw_priv *priv = netdev_priv(ndev); 2368 struct cpsw_common *cpsw = priv->cpsw; 2369 int ch; 2370 2371 cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n"); 2372 ndev->stats.tx_errors++; 2373 cpsw_intr_disable(cpsw); 2374 for (ch = 0; ch < cpsw->tx_ch_num; ch++) { 2375 cpdma_chan_stop(cpsw->txv[ch].ch); 2376 cpdma_chan_start(cpsw->txv[ch].ch); 2377 } 2378 2379 cpsw_intr_enable(cpsw); 2380 netif_trans_update(ndev); 2381 netif_tx_wake_all_queues(ndev); 2382 } 2383 2384 static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p) 2385 { 2386 struct cpsw_priv *priv = netdev_priv(ndev); 2387 struct sockaddr *addr = (struct sockaddr *)p; 2388 struct cpsw_common *cpsw = priv->cpsw; 2389 int flags = 0; 2390 u16 vid = 0; 2391 int ret; 2392 2393 if (!is_valid_ether_addr(addr->sa_data)) 2394 return -EADDRNOTAVAIL; 2395 2396 ret = pm_runtime_get_sync(cpsw->dev); 2397 if (ret < 0) { 2398 pm_runtime_put_noidle(cpsw->dev); 2399 return ret; 2400 } 2401 2402 if (cpsw->data.dual_emac) { 2403 vid = cpsw->slaves[priv->emac_port].port_vlan; 2404 flags = ALE_VLAN; 2405 } 2406 2407 cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM, 2408 flags, vid); 2409 cpsw_ale_add_ucast(cpsw->ale, addr->sa_data, HOST_PORT_NUM, 2410 flags, vid); 2411 2412 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN); 2413 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN); 2414 for_each_slave(priv, cpsw_set_slave_mac, priv); 2415 2416 pm_runtime_put(cpsw->dev); 2417 2418 return 0; 2419 } 2420 2421 #ifdef CONFIG_NET_POLL_CONTROLLER 2422 static void cpsw_ndo_poll_controller(struct net_device *ndev) 2423 { 2424 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 2425 2426 cpsw_intr_disable(cpsw); 2427 cpsw_rx_interrupt(cpsw->irqs_table[0], cpsw); 2428 cpsw_tx_interrupt(cpsw->irqs_table[1], cpsw); 2429 cpsw_intr_enable(cpsw); 2430 } 2431 #endif 2432 2433 static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv, 2434 unsigned short vid) 2435 { 2436 int ret; 2437 int unreg_mcast_mask = 0; 2438 int mcast_mask; 2439 u32 port_mask; 2440 struct cpsw_common *cpsw = priv->cpsw; 2441 2442 if (cpsw->data.dual_emac) { 2443 port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST; 2444 2445 mcast_mask = ALE_PORT_HOST; 2446 if (priv->ndev->flags & IFF_ALLMULTI) 2447 unreg_mcast_mask = mcast_mask; 2448 } else { 2449 port_mask = ALE_ALL_PORTS; 2450 mcast_mask = port_mask; 2451 2452 if (priv->ndev->flags & IFF_ALLMULTI) 2453 unreg_mcast_mask = ALE_ALL_PORTS; 2454 else 2455 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2; 2456 } 2457 2458 ret = cpsw_ale_add_vlan(cpsw->ale, vid, port_mask, 0, port_mask, 2459 unreg_mcast_mask); 2460 if (ret != 0) 2461 return ret; 2462 2463 ret = cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, 2464 HOST_PORT_NUM, ALE_VLAN, vid); 2465 if (ret != 0) 2466 goto clean_vid; 2467 2468 ret = cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, 2469 mcast_mask, ALE_VLAN, vid, 0); 2470 if (ret != 0) 2471 goto clean_vlan_ucast; 2472 return 0; 2473 2474 clean_vlan_ucast: 2475 cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, 2476 HOST_PORT_NUM, ALE_VLAN, vid); 2477 clean_vid: 2478 cpsw_ale_del_vlan(cpsw->ale, vid, 0); 2479 return ret; 2480 } 2481 2482 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev, 2483 __be16 proto, u16 vid) 2484 { 2485 struct cpsw_priv *priv = netdev_priv(ndev); 2486 struct cpsw_common *cpsw = priv->cpsw; 2487 int ret; 2488 2489 if (vid == cpsw->data.default_vlan) 2490 return 0; 2491 2492 ret = pm_runtime_get_sync(cpsw->dev); 2493 if (ret < 0) { 2494 pm_runtime_put_noidle(cpsw->dev); 2495 return ret; 2496 } 2497 2498 if (cpsw->data.dual_emac) { 2499 /* In dual EMAC, reserved VLAN id should not be used for 2500 * creating VLAN interfaces as this can break the dual 2501 * EMAC port separation 2502 */ 2503 int i; 2504 2505 for (i = 0; i < cpsw->data.slaves; i++) { 2506 if (vid == cpsw->slaves[i].port_vlan) { 2507 ret = -EINVAL; 2508 goto err; 2509 } 2510 } 2511 } 2512 2513 dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid); 2514 ret = cpsw_add_vlan_ale_entry(priv, vid); 2515 err: 2516 pm_runtime_put(cpsw->dev); 2517 return ret; 2518 } 2519 2520 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev, 2521 __be16 proto, u16 vid) 2522 { 2523 struct cpsw_priv *priv = netdev_priv(ndev); 2524 struct cpsw_common *cpsw = priv->cpsw; 2525 int ret; 2526 2527 if (vid == cpsw->data.default_vlan) 2528 return 0; 2529 2530 ret = pm_runtime_get_sync(cpsw->dev); 2531 if (ret < 0) { 2532 pm_runtime_put_noidle(cpsw->dev); 2533 return ret; 2534 } 2535 2536 if (cpsw->data.dual_emac) { 2537 int i; 2538 2539 for (i = 0; i < cpsw->data.slaves; i++) { 2540 if (vid == cpsw->slaves[i].port_vlan) 2541 goto err; 2542 } 2543 } 2544 2545 dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid); 2546 ret = cpsw_ale_del_vlan(cpsw->ale, vid, 0); 2547 ret |= cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, 2548 HOST_PORT_NUM, ALE_VLAN, vid); 2549 ret |= cpsw_ale_del_mcast(cpsw->ale, priv->ndev->broadcast, 2550 0, ALE_VLAN, vid); 2551 ret |= cpsw_ale_flush_multicast(cpsw->ale, 0, vid); 2552 err: 2553 pm_runtime_put(cpsw->dev); 2554 return ret; 2555 } 2556 2557 static int cpsw_ndo_set_tx_maxrate(struct net_device *ndev, int queue, u32 rate) 2558 { 2559 struct cpsw_priv *priv = netdev_priv(ndev); 2560 struct cpsw_common *cpsw = priv->cpsw; 2561 struct cpsw_slave *slave; 2562 u32 min_rate; 2563 u32 ch_rate; 2564 int i, ret; 2565 2566 ch_rate = netdev_get_tx_queue(ndev, queue)->tx_maxrate; 2567 if (ch_rate == rate) 2568 return 0; 2569 2570 ch_rate = rate * 1000; 2571 min_rate = cpdma_chan_get_min_rate(cpsw->dma); 2572 if ((ch_rate < min_rate && ch_rate)) { 2573 dev_err(priv->dev, "The channel rate cannot be less than %dMbps", 2574 min_rate); 2575 return -EINVAL; 2576 } 2577 2578 if (rate > cpsw->speed) { 2579 dev_err(priv->dev, "The channel rate cannot be more than 2Gbps"); 2580 return -EINVAL; 2581 } 2582 2583 ret = pm_runtime_get_sync(cpsw->dev); 2584 if (ret < 0) { 2585 pm_runtime_put_noidle(cpsw->dev); 2586 return ret; 2587 } 2588 2589 ret = cpdma_chan_set_rate(cpsw->txv[queue].ch, ch_rate); 2590 pm_runtime_put(cpsw->dev); 2591 2592 if (ret) 2593 return ret; 2594 2595 /* update rates for slaves tx queues */ 2596 for (i = 0; i < cpsw->data.slaves; i++) { 2597 slave = &cpsw->slaves[i]; 2598 if (!slave->ndev) 2599 continue; 2600 2601 netdev_get_tx_queue(slave->ndev, queue)->tx_maxrate = rate; 2602 } 2603 2604 cpsw_split_res(ndev); 2605 return ret; 2606 } 2607 2608 static int cpsw_set_mqprio(struct net_device *ndev, void *type_data) 2609 { 2610 struct tc_mqprio_qopt_offload *mqprio = type_data; 2611 struct cpsw_priv *priv = netdev_priv(ndev); 2612 struct cpsw_common *cpsw = priv->cpsw; 2613 int fifo, num_tc, count, offset; 2614 struct cpsw_slave *slave; 2615 u32 tx_prio_map = 0; 2616 int i, tc, ret; 2617 2618 num_tc = mqprio->qopt.num_tc; 2619 if (num_tc > CPSW_TC_NUM) 2620 return -EINVAL; 2621 2622 if (mqprio->mode != TC_MQPRIO_MODE_DCB) 2623 return -EINVAL; 2624 2625 ret = pm_runtime_get_sync(cpsw->dev); 2626 if (ret < 0) { 2627 pm_runtime_put_noidle(cpsw->dev); 2628 return ret; 2629 } 2630 2631 if (num_tc) { 2632 for (i = 0; i < 8; i++) { 2633 tc = mqprio->qopt.prio_tc_map[i]; 2634 fifo = cpsw_tc_to_fifo(tc, num_tc); 2635 tx_prio_map |= fifo << (4 * i); 2636 } 2637 2638 netdev_set_num_tc(ndev, num_tc); 2639 for (i = 0; i < num_tc; i++) { 2640 count = mqprio->qopt.count[i]; 2641 offset = mqprio->qopt.offset[i]; 2642 netdev_set_tc_queue(ndev, i, count, offset); 2643 } 2644 } 2645 2646 if (!mqprio->qopt.hw) { 2647 /* restore default configuration */ 2648 netdev_reset_tc(ndev); 2649 tx_prio_map = TX_PRIORITY_MAPPING; 2650 } 2651 2652 priv->mqprio_hw = mqprio->qopt.hw; 2653 2654 offset = cpsw->version == CPSW_VERSION_1 ? 2655 CPSW1_TX_PRI_MAP : CPSW2_TX_PRI_MAP; 2656 2657 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; 2658 slave_write(slave, tx_prio_map, offset); 2659 2660 pm_runtime_put_sync(cpsw->dev); 2661 2662 return 0; 2663 } 2664 2665 static int cpsw_ndo_setup_tc(struct net_device *ndev, enum tc_setup_type type, 2666 void *type_data) 2667 { 2668 switch (type) { 2669 case TC_SETUP_QDISC_CBS: 2670 return cpsw_set_cbs(ndev, type_data); 2671 2672 case TC_SETUP_QDISC_MQPRIO: 2673 return cpsw_set_mqprio(ndev, type_data); 2674 2675 default: 2676 return -EOPNOTSUPP; 2677 } 2678 } 2679 2680 static const struct net_device_ops cpsw_netdev_ops = { 2681 .ndo_open = cpsw_ndo_open, 2682 .ndo_stop = cpsw_ndo_stop, 2683 .ndo_start_xmit = cpsw_ndo_start_xmit, 2684 .ndo_set_mac_address = cpsw_ndo_set_mac_address, 2685 .ndo_do_ioctl = cpsw_ndo_ioctl, 2686 .ndo_validate_addr = eth_validate_addr, 2687 .ndo_tx_timeout = cpsw_ndo_tx_timeout, 2688 .ndo_set_rx_mode = cpsw_ndo_set_rx_mode, 2689 .ndo_set_tx_maxrate = cpsw_ndo_set_tx_maxrate, 2690 #ifdef CONFIG_NET_POLL_CONTROLLER 2691 .ndo_poll_controller = cpsw_ndo_poll_controller, 2692 #endif 2693 .ndo_vlan_rx_add_vid = cpsw_ndo_vlan_rx_add_vid, 2694 .ndo_vlan_rx_kill_vid = cpsw_ndo_vlan_rx_kill_vid, 2695 .ndo_setup_tc = cpsw_ndo_setup_tc, 2696 }; 2697 2698 static int cpsw_get_regs_len(struct net_device *ndev) 2699 { 2700 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 2701 2702 return cpsw->data.ale_entries * ALE_ENTRY_WORDS * sizeof(u32); 2703 } 2704 2705 static void cpsw_get_regs(struct net_device *ndev, 2706 struct ethtool_regs *regs, void *p) 2707 { 2708 u32 *reg = p; 2709 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 2710 2711 /* update CPSW IP version */ 2712 regs->version = cpsw->version; 2713 2714 cpsw_ale_dump(cpsw->ale, reg); 2715 } 2716 2717 static void cpsw_get_drvinfo(struct net_device *ndev, 2718 struct ethtool_drvinfo *info) 2719 { 2720 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 2721 struct platform_device *pdev = to_platform_device(cpsw->dev); 2722 2723 strlcpy(info->driver, "cpsw", sizeof(info->driver)); 2724 strlcpy(info->version, "1.0", sizeof(info->version)); 2725 strlcpy(info->bus_info, pdev->name, sizeof(info->bus_info)); 2726 } 2727 2728 static u32 cpsw_get_msglevel(struct net_device *ndev) 2729 { 2730 struct cpsw_priv *priv = netdev_priv(ndev); 2731 return priv->msg_enable; 2732 } 2733 2734 static void cpsw_set_msglevel(struct net_device *ndev, u32 value) 2735 { 2736 struct cpsw_priv *priv = netdev_priv(ndev); 2737 priv->msg_enable = value; 2738 } 2739 2740 #if IS_ENABLED(CONFIG_TI_CPTS) 2741 static int cpsw_get_ts_info(struct net_device *ndev, 2742 struct ethtool_ts_info *info) 2743 { 2744 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 2745 2746 info->so_timestamping = 2747 SOF_TIMESTAMPING_TX_HARDWARE | 2748 SOF_TIMESTAMPING_TX_SOFTWARE | 2749 SOF_TIMESTAMPING_RX_HARDWARE | 2750 SOF_TIMESTAMPING_RX_SOFTWARE | 2751 SOF_TIMESTAMPING_SOFTWARE | 2752 SOF_TIMESTAMPING_RAW_HARDWARE; 2753 info->phc_index = cpsw->cpts->phc_index; 2754 info->tx_types = 2755 (1 << HWTSTAMP_TX_OFF) | 2756 (1 << HWTSTAMP_TX_ON); 2757 info->rx_filters = 2758 (1 << HWTSTAMP_FILTER_NONE) | 2759 (1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) | 2760 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 2761 return 0; 2762 } 2763 #else 2764 static int cpsw_get_ts_info(struct net_device *ndev, 2765 struct ethtool_ts_info *info) 2766 { 2767 info->so_timestamping = 2768 SOF_TIMESTAMPING_TX_SOFTWARE | 2769 SOF_TIMESTAMPING_RX_SOFTWARE | 2770 SOF_TIMESTAMPING_SOFTWARE; 2771 info->phc_index = -1; 2772 info->tx_types = 0; 2773 info->rx_filters = 0; 2774 return 0; 2775 } 2776 #endif 2777 2778 static int cpsw_get_link_ksettings(struct net_device *ndev, 2779 struct ethtool_link_ksettings *ecmd) 2780 { 2781 struct cpsw_priv *priv = netdev_priv(ndev); 2782 struct cpsw_common *cpsw = priv->cpsw; 2783 int slave_no = cpsw_slave_index(cpsw, priv); 2784 2785 if (!cpsw->slaves[slave_no].phy) 2786 return -EOPNOTSUPP; 2787 2788 phy_ethtool_ksettings_get(cpsw->slaves[slave_no].phy, ecmd); 2789 return 0; 2790 } 2791 2792 static int cpsw_set_link_ksettings(struct net_device *ndev, 2793 const struct ethtool_link_ksettings *ecmd) 2794 { 2795 struct cpsw_priv *priv = netdev_priv(ndev); 2796 struct cpsw_common *cpsw = priv->cpsw; 2797 int slave_no = cpsw_slave_index(cpsw, priv); 2798 2799 if (cpsw->slaves[slave_no].phy) 2800 return phy_ethtool_ksettings_set(cpsw->slaves[slave_no].phy, 2801 ecmd); 2802 else 2803 return -EOPNOTSUPP; 2804 } 2805 2806 static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 2807 { 2808 struct cpsw_priv *priv = netdev_priv(ndev); 2809 struct cpsw_common *cpsw = priv->cpsw; 2810 int slave_no = cpsw_slave_index(cpsw, priv); 2811 2812 wol->supported = 0; 2813 wol->wolopts = 0; 2814 2815 if (cpsw->slaves[slave_no].phy) 2816 phy_ethtool_get_wol(cpsw->slaves[slave_no].phy, wol); 2817 } 2818 2819 static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 2820 { 2821 struct cpsw_priv *priv = netdev_priv(ndev); 2822 struct cpsw_common *cpsw = priv->cpsw; 2823 int slave_no = cpsw_slave_index(cpsw, priv); 2824 2825 if (cpsw->slaves[slave_no].phy) 2826 return phy_ethtool_set_wol(cpsw->slaves[slave_no].phy, wol); 2827 else 2828 return -EOPNOTSUPP; 2829 } 2830 2831 static void cpsw_get_pauseparam(struct net_device *ndev, 2832 struct ethtool_pauseparam *pause) 2833 { 2834 struct cpsw_priv *priv = netdev_priv(ndev); 2835 2836 pause->autoneg = AUTONEG_DISABLE; 2837 pause->rx_pause = priv->rx_pause ? true : false; 2838 pause->tx_pause = priv->tx_pause ? true : false; 2839 } 2840 2841 static int cpsw_set_pauseparam(struct net_device *ndev, 2842 struct ethtool_pauseparam *pause) 2843 { 2844 struct cpsw_priv *priv = netdev_priv(ndev); 2845 bool link; 2846 2847 priv->rx_pause = pause->rx_pause ? true : false; 2848 priv->tx_pause = pause->tx_pause ? true : false; 2849 2850 for_each_slave(priv, _cpsw_adjust_link, priv, &link); 2851 return 0; 2852 } 2853 2854 static int cpsw_ethtool_op_begin(struct net_device *ndev) 2855 { 2856 struct cpsw_priv *priv = netdev_priv(ndev); 2857 struct cpsw_common *cpsw = priv->cpsw; 2858 int ret; 2859 2860 ret = pm_runtime_get_sync(cpsw->dev); 2861 if (ret < 0) { 2862 cpsw_err(priv, drv, "ethtool begin failed %d\n", ret); 2863 pm_runtime_put_noidle(cpsw->dev); 2864 } 2865 2866 return ret; 2867 } 2868 2869 static void cpsw_ethtool_op_complete(struct net_device *ndev) 2870 { 2871 struct cpsw_priv *priv = netdev_priv(ndev); 2872 int ret; 2873 2874 ret = pm_runtime_put(priv->cpsw->dev); 2875 if (ret < 0) 2876 cpsw_err(priv, drv, "ethtool complete failed %d\n", ret); 2877 } 2878 2879 static void cpsw_get_channels(struct net_device *ndev, 2880 struct ethtool_channels *ch) 2881 { 2882 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 2883 2884 ch->max_rx = cpsw->quirk_irq ? 1 : CPSW_MAX_QUEUES; 2885 ch->max_tx = cpsw->quirk_irq ? 1 : CPSW_MAX_QUEUES; 2886 ch->max_combined = 0; 2887 ch->max_other = 0; 2888 ch->other_count = 0; 2889 ch->rx_count = cpsw->rx_ch_num; 2890 ch->tx_count = cpsw->tx_ch_num; 2891 ch->combined_count = 0; 2892 } 2893 2894 static int cpsw_check_ch_settings(struct cpsw_common *cpsw, 2895 struct ethtool_channels *ch) 2896 { 2897 if (cpsw->quirk_irq) { 2898 dev_err(cpsw->dev, "Maximum one tx/rx queue is allowed"); 2899 return -EOPNOTSUPP; 2900 } 2901 2902 if (ch->combined_count) 2903 return -EINVAL; 2904 2905 /* verify we have at least one channel in each direction */ 2906 if (!ch->rx_count || !ch->tx_count) 2907 return -EINVAL; 2908 2909 if (ch->rx_count > cpsw->data.channels || 2910 ch->tx_count > cpsw->data.channels) 2911 return -EINVAL; 2912 2913 return 0; 2914 } 2915 2916 static int cpsw_update_channels_res(struct cpsw_priv *priv, int ch_num, int rx) 2917 { 2918 struct cpsw_common *cpsw = priv->cpsw; 2919 void (*handler)(void *, int, int); 2920 struct netdev_queue *queue; 2921 struct cpsw_vector *vec; 2922 int ret, *ch, vch; 2923 2924 if (rx) { 2925 ch = &cpsw->rx_ch_num; 2926 vec = cpsw->rxv; 2927 handler = cpsw_rx_handler; 2928 } else { 2929 ch = &cpsw->tx_ch_num; 2930 vec = cpsw->txv; 2931 handler = cpsw_tx_handler; 2932 } 2933 2934 while (*ch < ch_num) { 2935 vch = rx ? *ch : 7 - *ch; 2936 vec[*ch].ch = cpdma_chan_create(cpsw->dma, vch, handler, rx); 2937 queue = netdev_get_tx_queue(priv->ndev, *ch); 2938 queue->tx_maxrate = 0; 2939 2940 if (IS_ERR(vec[*ch].ch)) 2941 return PTR_ERR(vec[*ch].ch); 2942 2943 if (!vec[*ch].ch) 2944 return -EINVAL; 2945 2946 cpsw_info(priv, ifup, "created new %d %s channel\n", *ch, 2947 (rx ? "rx" : "tx")); 2948 (*ch)++; 2949 } 2950 2951 while (*ch > ch_num) { 2952 (*ch)--; 2953 2954 ret = cpdma_chan_destroy(vec[*ch].ch); 2955 if (ret) 2956 return ret; 2957 2958 cpsw_info(priv, ifup, "destroyed %d %s channel\n", *ch, 2959 (rx ? "rx" : "tx")); 2960 } 2961 2962 return 0; 2963 } 2964 2965 static int cpsw_update_channels(struct cpsw_priv *priv, 2966 struct ethtool_channels *ch) 2967 { 2968 int ret; 2969 2970 ret = cpsw_update_channels_res(priv, ch->rx_count, 1); 2971 if (ret) 2972 return ret; 2973 2974 ret = cpsw_update_channels_res(priv, ch->tx_count, 0); 2975 if (ret) 2976 return ret; 2977 2978 return 0; 2979 } 2980 2981 static void cpsw_suspend_data_pass(struct net_device *ndev) 2982 { 2983 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 2984 struct cpsw_slave *slave; 2985 int i; 2986 2987 /* Disable NAPI scheduling */ 2988 cpsw_intr_disable(cpsw); 2989 2990 /* Stop all transmit queues for every network device. 2991 * Disable re-using rx descriptors with dormant_on. 2992 */ 2993 for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) { 2994 if (!(slave->ndev && netif_running(slave->ndev))) 2995 continue; 2996 2997 netif_tx_stop_all_queues(slave->ndev); 2998 netif_dormant_on(slave->ndev); 2999 } 3000 3001 /* Handle rest of tx packets and stop cpdma channels */ 3002 cpdma_ctlr_stop(cpsw->dma); 3003 } 3004 3005 static int cpsw_resume_data_pass(struct net_device *ndev) 3006 { 3007 struct cpsw_priv *priv = netdev_priv(ndev); 3008 struct cpsw_common *cpsw = priv->cpsw; 3009 struct cpsw_slave *slave; 3010 int i, ret; 3011 3012 /* Allow rx packets handling */ 3013 for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) 3014 if (slave->ndev && netif_running(slave->ndev)) 3015 netif_dormant_off(slave->ndev); 3016 3017 /* After this receive is started */ 3018 if (cpsw->usage_count) { 3019 ret = cpsw_fill_rx_channels(priv); 3020 if (ret) 3021 return ret; 3022 3023 cpdma_ctlr_start(cpsw->dma); 3024 cpsw_intr_enable(cpsw); 3025 } 3026 3027 /* Resume transmit for every affected interface */ 3028 for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) 3029 if (slave->ndev && netif_running(slave->ndev)) 3030 netif_tx_start_all_queues(slave->ndev); 3031 3032 return 0; 3033 } 3034 3035 static int cpsw_set_channels(struct net_device *ndev, 3036 struct ethtool_channels *chs) 3037 { 3038 struct cpsw_priv *priv = netdev_priv(ndev); 3039 struct cpsw_common *cpsw = priv->cpsw; 3040 struct cpsw_slave *slave; 3041 int i, ret; 3042 3043 ret = cpsw_check_ch_settings(cpsw, chs); 3044 if (ret < 0) 3045 return ret; 3046 3047 cpsw_suspend_data_pass(ndev); 3048 ret = cpsw_update_channels(priv, chs); 3049 if (ret) 3050 goto err; 3051 3052 for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) { 3053 if (!(slave->ndev && netif_running(slave->ndev))) 3054 continue; 3055 3056 /* Inform stack about new count of queues */ 3057 ret = netif_set_real_num_tx_queues(slave->ndev, 3058 cpsw->tx_ch_num); 3059 if (ret) { 3060 dev_err(priv->dev, "cannot set real number of tx queues\n"); 3061 goto err; 3062 } 3063 3064 ret = netif_set_real_num_rx_queues(slave->ndev, 3065 cpsw->rx_ch_num); 3066 if (ret) { 3067 dev_err(priv->dev, "cannot set real number of rx queues\n"); 3068 goto err; 3069 } 3070 } 3071 3072 if (cpsw->usage_count) 3073 cpsw_split_res(ndev); 3074 3075 ret = cpsw_resume_data_pass(ndev); 3076 if (!ret) 3077 return 0; 3078 err: 3079 dev_err(priv->dev, "cannot update channels number, closing device\n"); 3080 dev_close(ndev); 3081 return ret; 3082 } 3083 3084 static int cpsw_get_eee(struct net_device *ndev, struct ethtool_eee *edata) 3085 { 3086 struct cpsw_priv *priv = netdev_priv(ndev); 3087 struct cpsw_common *cpsw = priv->cpsw; 3088 int slave_no = cpsw_slave_index(cpsw, priv); 3089 3090 if (cpsw->slaves[slave_no].phy) 3091 return phy_ethtool_get_eee(cpsw->slaves[slave_no].phy, edata); 3092 else 3093 return -EOPNOTSUPP; 3094 } 3095 3096 static int cpsw_set_eee(struct net_device *ndev, struct ethtool_eee *edata) 3097 { 3098 struct cpsw_priv *priv = netdev_priv(ndev); 3099 struct cpsw_common *cpsw = priv->cpsw; 3100 int slave_no = cpsw_slave_index(cpsw, priv); 3101 3102 if (cpsw->slaves[slave_no].phy) 3103 return phy_ethtool_set_eee(cpsw->slaves[slave_no].phy, edata); 3104 else 3105 return -EOPNOTSUPP; 3106 } 3107 3108 static int cpsw_nway_reset(struct net_device *ndev) 3109 { 3110 struct cpsw_priv *priv = netdev_priv(ndev); 3111 struct cpsw_common *cpsw = priv->cpsw; 3112 int slave_no = cpsw_slave_index(cpsw, priv); 3113 3114 if (cpsw->slaves[slave_no].phy) 3115 return genphy_restart_aneg(cpsw->slaves[slave_no].phy); 3116 else 3117 return -EOPNOTSUPP; 3118 } 3119 3120 static void cpsw_get_ringparam(struct net_device *ndev, 3121 struct ethtool_ringparam *ering) 3122 { 3123 struct cpsw_priv *priv = netdev_priv(ndev); 3124 struct cpsw_common *cpsw = priv->cpsw; 3125 3126 /* not supported */ 3127 ering->tx_max_pending = 0; 3128 ering->tx_pending = cpdma_get_num_tx_descs(cpsw->dma); 3129 ering->rx_max_pending = descs_pool_size - CPSW_MAX_QUEUES; 3130 ering->rx_pending = cpdma_get_num_rx_descs(cpsw->dma); 3131 } 3132 3133 static int cpsw_set_ringparam(struct net_device *ndev, 3134 struct ethtool_ringparam *ering) 3135 { 3136 struct cpsw_priv *priv = netdev_priv(ndev); 3137 struct cpsw_common *cpsw = priv->cpsw; 3138 int ret; 3139 3140 /* ignore ering->tx_pending - only rx_pending adjustment is supported */ 3141 3142 if (ering->rx_mini_pending || ering->rx_jumbo_pending || 3143 ering->rx_pending < CPSW_MAX_QUEUES || 3144 ering->rx_pending > (descs_pool_size - CPSW_MAX_QUEUES)) 3145 return -EINVAL; 3146 3147 if (ering->rx_pending == cpdma_get_num_rx_descs(cpsw->dma)) 3148 return 0; 3149 3150 cpsw_suspend_data_pass(ndev); 3151 3152 cpdma_set_num_rx_descs(cpsw->dma, ering->rx_pending); 3153 3154 if (cpsw->usage_count) 3155 cpdma_chan_split_pool(cpsw->dma); 3156 3157 ret = cpsw_resume_data_pass(ndev); 3158 if (!ret) 3159 return 0; 3160 3161 dev_err(&ndev->dev, "cannot set ring params, closing device\n"); 3162 dev_close(ndev); 3163 return ret; 3164 } 3165 3166 static const struct ethtool_ops cpsw_ethtool_ops = { 3167 .get_drvinfo = cpsw_get_drvinfo, 3168 .get_msglevel = cpsw_get_msglevel, 3169 .set_msglevel = cpsw_set_msglevel, 3170 .get_link = ethtool_op_get_link, 3171 .get_ts_info = cpsw_get_ts_info, 3172 .get_coalesce = cpsw_get_coalesce, 3173 .set_coalesce = cpsw_set_coalesce, 3174 .get_sset_count = cpsw_get_sset_count, 3175 .get_strings = cpsw_get_strings, 3176 .get_ethtool_stats = cpsw_get_ethtool_stats, 3177 .get_pauseparam = cpsw_get_pauseparam, 3178 .set_pauseparam = cpsw_set_pauseparam, 3179 .get_wol = cpsw_get_wol, 3180 .set_wol = cpsw_set_wol, 3181 .get_regs_len = cpsw_get_regs_len, 3182 .get_regs = cpsw_get_regs, 3183 .begin = cpsw_ethtool_op_begin, 3184 .complete = cpsw_ethtool_op_complete, 3185 .get_channels = cpsw_get_channels, 3186 .set_channels = cpsw_set_channels, 3187 .get_link_ksettings = cpsw_get_link_ksettings, 3188 .set_link_ksettings = cpsw_set_link_ksettings, 3189 .get_eee = cpsw_get_eee, 3190 .set_eee = cpsw_set_eee, 3191 .nway_reset = cpsw_nway_reset, 3192 .get_ringparam = cpsw_get_ringparam, 3193 .set_ringparam = cpsw_set_ringparam, 3194 }; 3195 3196 static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_common *cpsw, 3197 u32 slave_reg_ofs, u32 sliver_reg_ofs) 3198 { 3199 void __iomem *regs = cpsw->regs; 3200 int slave_num = slave->slave_num; 3201 struct cpsw_slave_data *data = cpsw->data.slave_data + slave_num; 3202 3203 slave->data = data; 3204 slave->regs = regs + slave_reg_ofs; 3205 slave->sliver = regs + sliver_reg_ofs; 3206 slave->port_vlan = data->dual_emac_res_vlan; 3207 } 3208 3209 static int cpsw_probe_dt(struct cpsw_platform_data *data, 3210 struct platform_device *pdev) 3211 { 3212 struct device_node *node = pdev->dev.of_node; 3213 struct device_node *slave_node; 3214 int i = 0, ret; 3215 u32 prop; 3216 3217 if (!node) 3218 return -EINVAL; 3219 3220 if (of_property_read_u32(node, "slaves", &prop)) { 3221 dev_err(&pdev->dev, "Missing slaves property in the DT.\n"); 3222 return -EINVAL; 3223 } 3224 data->slaves = prop; 3225 3226 if (of_property_read_u32(node, "active_slave", &prop)) { 3227 dev_err(&pdev->dev, "Missing active_slave property in the DT.\n"); 3228 return -EINVAL; 3229 } 3230 data->active_slave = prop; 3231 3232 data->slave_data = devm_kcalloc(&pdev->dev, 3233 data->slaves, 3234 sizeof(struct cpsw_slave_data), 3235 GFP_KERNEL); 3236 if (!data->slave_data) 3237 return -ENOMEM; 3238 3239 if (of_property_read_u32(node, "cpdma_channels", &prop)) { 3240 dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n"); 3241 return -EINVAL; 3242 } 3243 data->channels = prop; 3244 3245 if (of_property_read_u32(node, "ale_entries", &prop)) { 3246 dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n"); 3247 return -EINVAL; 3248 } 3249 data->ale_entries = prop; 3250 3251 if (of_property_read_u32(node, "bd_ram_size", &prop)) { 3252 dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n"); 3253 return -EINVAL; 3254 } 3255 data->bd_ram_size = prop; 3256 3257 if (of_property_read_u32(node, "mac_control", &prop)) { 3258 dev_err(&pdev->dev, "Missing mac_control property in the DT.\n"); 3259 return -EINVAL; 3260 } 3261 data->mac_control = prop; 3262 3263 if (of_property_read_bool(node, "dual_emac")) 3264 data->dual_emac = 1; 3265 3266 /* 3267 * Populate all the child nodes here... 3268 */ 3269 ret = of_platform_populate(node, NULL, NULL, &pdev->dev); 3270 /* We do not want to force this, as in some cases may not have child */ 3271 if (ret) 3272 dev_warn(&pdev->dev, "Doesn't have any child node\n"); 3273 3274 for_each_available_child_of_node(node, slave_node) { 3275 struct cpsw_slave_data *slave_data = data->slave_data + i; 3276 const void *mac_addr = NULL; 3277 int lenp; 3278 const __be32 *parp; 3279 3280 /* This is no slave child node, continue */ 3281 if (!of_node_name_eq(slave_node, "slave")) 3282 continue; 3283 3284 slave_data->ifphy = devm_of_phy_get(&pdev->dev, slave_node, 3285 NULL); 3286 if (!IS_ENABLED(CONFIG_TI_CPSW_PHY_SEL) && 3287 IS_ERR(slave_data->ifphy)) { 3288 ret = PTR_ERR(slave_data->ifphy); 3289 dev_err(&pdev->dev, 3290 "%d: Error retrieving port phy: %d\n", i, ret); 3291 return ret; 3292 } 3293 3294 slave_data->phy_node = of_parse_phandle(slave_node, 3295 "phy-handle", 0); 3296 parp = of_get_property(slave_node, "phy_id", &lenp); 3297 if (slave_data->phy_node) { 3298 dev_dbg(&pdev->dev, 3299 "slave[%d] using phy-handle=\"%pOF\"\n", 3300 i, slave_data->phy_node); 3301 } else if (of_phy_is_fixed_link(slave_node)) { 3302 /* In the case of a fixed PHY, the DT node associated 3303 * to the PHY is the Ethernet MAC DT node. 3304 */ 3305 ret = of_phy_register_fixed_link(slave_node); 3306 if (ret) { 3307 if (ret != -EPROBE_DEFER) 3308 dev_err(&pdev->dev, "failed to register fixed-link phy: %d\n", ret); 3309 return ret; 3310 } 3311 slave_data->phy_node = of_node_get(slave_node); 3312 } else if (parp) { 3313 u32 phyid; 3314 struct device_node *mdio_node; 3315 struct platform_device *mdio; 3316 3317 if (lenp != (sizeof(__be32) * 2)) { 3318 dev_err(&pdev->dev, "Invalid slave[%d] phy_id property\n", i); 3319 goto no_phy_slave; 3320 } 3321 mdio_node = of_find_node_by_phandle(be32_to_cpup(parp)); 3322 phyid = be32_to_cpup(parp+1); 3323 mdio = of_find_device_by_node(mdio_node); 3324 of_node_put(mdio_node); 3325 if (!mdio) { 3326 dev_err(&pdev->dev, "Missing mdio platform device\n"); 3327 return -EINVAL; 3328 } 3329 snprintf(slave_data->phy_id, sizeof(slave_data->phy_id), 3330 PHY_ID_FMT, mdio->name, phyid); 3331 put_device(&mdio->dev); 3332 } else { 3333 dev_err(&pdev->dev, 3334 "No slave[%d] phy_id, phy-handle, or fixed-link property\n", 3335 i); 3336 goto no_phy_slave; 3337 } 3338 slave_data->phy_if = of_get_phy_mode(slave_node); 3339 if (slave_data->phy_if < 0) { 3340 dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n", 3341 i); 3342 return slave_data->phy_if; 3343 } 3344 3345 no_phy_slave: 3346 mac_addr = of_get_mac_address(slave_node); 3347 if (mac_addr) { 3348 memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN); 3349 } else { 3350 ret = ti_cm_get_macid(&pdev->dev, i, 3351 slave_data->mac_addr); 3352 if (ret) 3353 return ret; 3354 } 3355 if (data->dual_emac) { 3356 if (of_property_read_u32(slave_node, "dual_emac_res_vlan", 3357 &prop)) { 3358 dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n"); 3359 slave_data->dual_emac_res_vlan = i+1; 3360 dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n", 3361 slave_data->dual_emac_res_vlan, i); 3362 } else { 3363 slave_data->dual_emac_res_vlan = prop; 3364 } 3365 } 3366 3367 i++; 3368 if (i == data->slaves) 3369 break; 3370 } 3371 3372 return 0; 3373 } 3374 3375 static void cpsw_remove_dt(struct platform_device *pdev) 3376 { 3377 struct net_device *ndev = platform_get_drvdata(pdev); 3378 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 3379 struct cpsw_platform_data *data = &cpsw->data; 3380 struct device_node *node = pdev->dev.of_node; 3381 struct device_node *slave_node; 3382 int i = 0; 3383 3384 for_each_available_child_of_node(node, slave_node) { 3385 struct cpsw_slave_data *slave_data = &data->slave_data[i]; 3386 3387 if (!of_node_name_eq(slave_node, "slave")) 3388 continue; 3389 3390 if (of_phy_is_fixed_link(slave_node)) 3391 of_phy_deregister_fixed_link(slave_node); 3392 3393 of_node_put(slave_data->phy_node); 3394 3395 i++; 3396 if (i == data->slaves) 3397 break; 3398 } 3399 3400 of_platform_depopulate(&pdev->dev); 3401 } 3402 3403 static int cpsw_probe_dual_emac(struct cpsw_priv *priv) 3404 { 3405 struct cpsw_common *cpsw = priv->cpsw; 3406 struct cpsw_platform_data *data = &cpsw->data; 3407 struct net_device *ndev; 3408 struct cpsw_priv *priv_sl2; 3409 int ret = 0; 3410 3411 ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES); 3412 if (!ndev) { 3413 dev_err(cpsw->dev, "cpsw: error allocating net_device\n"); 3414 return -ENOMEM; 3415 } 3416 3417 priv_sl2 = netdev_priv(ndev); 3418 priv_sl2->cpsw = cpsw; 3419 priv_sl2->ndev = ndev; 3420 priv_sl2->dev = &ndev->dev; 3421 priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG); 3422 3423 if (is_valid_ether_addr(data->slave_data[1].mac_addr)) { 3424 memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr, 3425 ETH_ALEN); 3426 dev_info(cpsw->dev, "cpsw: Detected MACID = %pM\n", 3427 priv_sl2->mac_addr); 3428 } else { 3429 eth_random_addr(priv_sl2->mac_addr); 3430 dev_info(cpsw->dev, "cpsw: Random MACID = %pM\n", 3431 priv_sl2->mac_addr); 3432 } 3433 memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN); 3434 3435 priv_sl2->emac_port = 1; 3436 cpsw->slaves[1].ndev = ndev; 3437 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX; 3438 3439 ndev->netdev_ops = &cpsw_netdev_ops; 3440 ndev->ethtool_ops = &cpsw_ethtool_ops; 3441 3442 /* register the network device */ 3443 SET_NETDEV_DEV(ndev, cpsw->dev); 3444 ret = register_netdev(ndev); 3445 if (ret) { 3446 dev_err(cpsw->dev, "cpsw: error registering net device\n"); 3447 free_netdev(ndev); 3448 ret = -ENODEV; 3449 } 3450 3451 return ret; 3452 } 3453 3454 static const struct of_device_id cpsw_of_mtable[] = { 3455 { .compatible = "ti,cpsw"}, 3456 { .compatible = "ti,am335x-cpsw"}, 3457 { .compatible = "ti,am4372-cpsw"}, 3458 { .compatible = "ti,dra7-cpsw"}, 3459 { /* sentinel */ }, 3460 }; 3461 MODULE_DEVICE_TABLE(of, cpsw_of_mtable); 3462 3463 static const struct soc_device_attribute cpsw_soc_devices[] = { 3464 { .family = "AM33xx", .revision = "ES1.0"}, 3465 { /* sentinel */ } 3466 }; 3467 3468 static int cpsw_probe(struct platform_device *pdev) 3469 { 3470 struct clk *clk; 3471 struct cpsw_platform_data *data; 3472 struct net_device *ndev; 3473 struct cpsw_priv *priv; 3474 struct cpdma_params dma_params; 3475 struct cpsw_ale_params ale_params; 3476 void __iomem *ss_regs; 3477 void __iomem *cpts_regs; 3478 struct resource *res, *ss_res; 3479 struct gpio_descs *mode; 3480 u32 slave_offset, sliver_offset, slave_size; 3481 const struct soc_device_attribute *soc; 3482 struct cpsw_common *cpsw; 3483 int ret = 0, i, ch; 3484 int irq; 3485 3486 cpsw = devm_kzalloc(&pdev->dev, sizeof(struct cpsw_common), GFP_KERNEL); 3487 if (!cpsw) 3488 return -ENOMEM; 3489 3490 cpsw->dev = &pdev->dev; 3491 3492 ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES); 3493 if (!ndev) { 3494 dev_err(&pdev->dev, "error allocating net_device\n"); 3495 return -ENOMEM; 3496 } 3497 3498 platform_set_drvdata(pdev, ndev); 3499 priv = netdev_priv(ndev); 3500 priv->cpsw = cpsw; 3501 priv->ndev = ndev; 3502 priv->dev = &ndev->dev; 3503 priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG); 3504 cpsw->rx_packet_max = max(rx_packet_max, 128); 3505 3506 mode = devm_gpiod_get_array_optional(&pdev->dev, "mode", GPIOD_OUT_LOW); 3507 if (IS_ERR(mode)) { 3508 ret = PTR_ERR(mode); 3509 dev_err(&pdev->dev, "gpio request failed, ret %d\n", ret); 3510 goto clean_ndev_ret; 3511 } 3512 3513 /* 3514 * This may be required here for child devices. 3515 */ 3516 pm_runtime_enable(&pdev->dev); 3517 3518 /* Select default pin state */ 3519 pinctrl_pm_select_default_state(&pdev->dev); 3520 3521 /* Need to enable clocks with runtime PM api to access module 3522 * registers 3523 */ 3524 ret = pm_runtime_get_sync(&pdev->dev); 3525 if (ret < 0) { 3526 pm_runtime_put_noidle(&pdev->dev); 3527 goto clean_runtime_disable_ret; 3528 } 3529 3530 ret = cpsw_probe_dt(&cpsw->data, pdev); 3531 if (ret) 3532 goto clean_dt_ret; 3533 3534 data = &cpsw->data; 3535 cpsw->rx_ch_num = 1; 3536 cpsw->tx_ch_num = 1; 3537 3538 if (is_valid_ether_addr(data->slave_data[0].mac_addr)) { 3539 memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN); 3540 dev_info(&pdev->dev, "Detected MACID = %pM\n", priv->mac_addr); 3541 } else { 3542 eth_random_addr(priv->mac_addr); 3543 dev_info(&pdev->dev, "Random MACID = %pM\n", priv->mac_addr); 3544 } 3545 3546 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN); 3547 3548 cpsw->slaves = devm_kcalloc(&pdev->dev, 3549 data->slaves, sizeof(struct cpsw_slave), 3550 GFP_KERNEL); 3551 if (!cpsw->slaves) { 3552 ret = -ENOMEM; 3553 goto clean_dt_ret; 3554 } 3555 for (i = 0; i < data->slaves; i++) 3556 cpsw->slaves[i].slave_num = i; 3557 3558 cpsw->slaves[0].ndev = ndev; 3559 priv->emac_port = 0; 3560 3561 clk = devm_clk_get(&pdev->dev, "fck"); 3562 if (IS_ERR(clk)) { 3563 dev_err(priv->dev, "fck is not found\n"); 3564 ret = -ENODEV; 3565 goto clean_dt_ret; 3566 } 3567 cpsw->bus_freq_mhz = clk_get_rate(clk) / 1000000; 3568 3569 ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 3570 ss_regs = devm_ioremap_resource(&pdev->dev, ss_res); 3571 if (IS_ERR(ss_regs)) { 3572 ret = PTR_ERR(ss_regs); 3573 goto clean_dt_ret; 3574 } 3575 cpsw->regs = ss_regs; 3576 3577 cpsw->version = readl(&cpsw->regs->id_ver); 3578 3579 res = platform_get_resource(pdev, IORESOURCE_MEM, 1); 3580 cpsw->wr_regs = devm_ioremap_resource(&pdev->dev, res); 3581 if (IS_ERR(cpsw->wr_regs)) { 3582 ret = PTR_ERR(cpsw->wr_regs); 3583 goto clean_dt_ret; 3584 } 3585 3586 memset(&dma_params, 0, sizeof(dma_params)); 3587 memset(&ale_params, 0, sizeof(ale_params)); 3588 3589 switch (cpsw->version) { 3590 case CPSW_VERSION_1: 3591 cpsw->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET; 3592 cpts_regs = ss_regs + CPSW1_CPTS_OFFSET; 3593 cpsw->hw_stats = ss_regs + CPSW1_HW_STATS; 3594 dma_params.dmaregs = ss_regs + CPSW1_CPDMA_OFFSET; 3595 dma_params.txhdp = ss_regs + CPSW1_STATERAM_OFFSET; 3596 ale_params.ale_regs = ss_regs + CPSW1_ALE_OFFSET; 3597 slave_offset = CPSW1_SLAVE_OFFSET; 3598 slave_size = CPSW1_SLAVE_SIZE; 3599 sliver_offset = CPSW1_SLIVER_OFFSET; 3600 dma_params.desc_mem_phys = 0; 3601 break; 3602 case CPSW_VERSION_2: 3603 case CPSW_VERSION_3: 3604 case CPSW_VERSION_4: 3605 cpsw->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET; 3606 cpts_regs = ss_regs + CPSW2_CPTS_OFFSET; 3607 cpsw->hw_stats = ss_regs + CPSW2_HW_STATS; 3608 dma_params.dmaregs = ss_regs + CPSW2_CPDMA_OFFSET; 3609 dma_params.txhdp = ss_regs + CPSW2_STATERAM_OFFSET; 3610 ale_params.ale_regs = ss_regs + CPSW2_ALE_OFFSET; 3611 slave_offset = CPSW2_SLAVE_OFFSET; 3612 slave_size = CPSW2_SLAVE_SIZE; 3613 sliver_offset = CPSW2_SLIVER_OFFSET; 3614 dma_params.desc_mem_phys = 3615 (u32 __force) ss_res->start + CPSW2_BD_OFFSET; 3616 break; 3617 default: 3618 dev_err(priv->dev, "unknown version 0x%08x\n", cpsw->version); 3619 ret = -ENODEV; 3620 goto clean_dt_ret; 3621 } 3622 for (i = 0; i < cpsw->data.slaves; i++) { 3623 struct cpsw_slave *slave = &cpsw->slaves[i]; 3624 3625 cpsw_slave_init(slave, cpsw, slave_offset, sliver_offset); 3626 slave_offset += slave_size; 3627 sliver_offset += SLIVER_SIZE; 3628 } 3629 3630 dma_params.dev = &pdev->dev; 3631 dma_params.rxthresh = dma_params.dmaregs + CPDMA_RXTHRESH; 3632 dma_params.rxfree = dma_params.dmaregs + CPDMA_RXFREE; 3633 dma_params.rxhdp = dma_params.txhdp + CPDMA_RXHDP; 3634 dma_params.txcp = dma_params.txhdp + CPDMA_TXCP; 3635 dma_params.rxcp = dma_params.txhdp + CPDMA_RXCP; 3636 3637 dma_params.num_chan = data->channels; 3638 dma_params.has_soft_reset = true; 3639 dma_params.min_packet_size = CPSW_MIN_PACKET_SIZE; 3640 dma_params.desc_mem_size = data->bd_ram_size; 3641 dma_params.desc_align = 16; 3642 dma_params.has_ext_regs = true; 3643 dma_params.desc_hw_addr = dma_params.desc_mem_phys; 3644 dma_params.bus_freq_mhz = cpsw->bus_freq_mhz; 3645 dma_params.descs_pool_size = descs_pool_size; 3646 3647 cpsw->dma = cpdma_ctlr_create(&dma_params); 3648 if (!cpsw->dma) { 3649 dev_err(priv->dev, "error initializing dma\n"); 3650 ret = -ENOMEM; 3651 goto clean_dt_ret; 3652 } 3653 3654 soc = soc_device_match(cpsw_soc_devices); 3655 if (soc) 3656 cpsw->quirk_irq = 1; 3657 3658 ch = cpsw->quirk_irq ? 0 : 7; 3659 cpsw->txv[0].ch = cpdma_chan_create(cpsw->dma, ch, cpsw_tx_handler, 0); 3660 if (IS_ERR(cpsw->txv[0].ch)) { 3661 dev_err(priv->dev, "error initializing tx dma channel\n"); 3662 ret = PTR_ERR(cpsw->txv[0].ch); 3663 goto clean_dma_ret; 3664 } 3665 3666 cpsw->rxv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_rx_handler, 1); 3667 if (IS_ERR(cpsw->rxv[0].ch)) { 3668 dev_err(priv->dev, "error initializing rx dma channel\n"); 3669 ret = PTR_ERR(cpsw->rxv[0].ch); 3670 goto clean_dma_ret; 3671 } 3672 3673 ale_params.dev = &pdev->dev; 3674 ale_params.ale_ageout = ale_ageout; 3675 ale_params.ale_entries = data->ale_entries; 3676 ale_params.ale_ports = CPSW_ALE_PORTS_NUM; 3677 3678 cpsw->ale = cpsw_ale_create(&ale_params); 3679 if (!cpsw->ale) { 3680 dev_err(priv->dev, "error initializing ale engine\n"); 3681 ret = -ENODEV; 3682 goto clean_dma_ret; 3683 } 3684 3685 cpsw->cpts = cpts_create(cpsw->dev, cpts_regs, cpsw->dev->of_node); 3686 if (IS_ERR(cpsw->cpts)) { 3687 ret = PTR_ERR(cpsw->cpts); 3688 goto clean_dma_ret; 3689 } 3690 3691 ndev->irq = platform_get_irq(pdev, 1); 3692 if (ndev->irq < 0) { 3693 dev_err(priv->dev, "error getting irq resource\n"); 3694 ret = ndev->irq; 3695 goto clean_dma_ret; 3696 } 3697 3698 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX; 3699 3700 ndev->netdev_ops = &cpsw_netdev_ops; 3701 ndev->ethtool_ops = &cpsw_ethtool_ops; 3702 netif_napi_add(ndev, &cpsw->napi_rx, 3703 cpsw->quirk_irq ? cpsw_rx_poll : cpsw_rx_mq_poll, 3704 CPSW_POLL_WEIGHT); 3705 netif_tx_napi_add(ndev, &cpsw->napi_tx, 3706 cpsw->quirk_irq ? cpsw_tx_poll : cpsw_tx_mq_poll, 3707 CPSW_POLL_WEIGHT); 3708 cpsw_split_res(ndev); 3709 3710 /* register the network device */ 3711 SET_NETDEV_DEV(ndev, &pdev->dev); 3712 ret = register_netdev(ndev); 3713 if (ret) { 3714 dev_err(priv->dev, "error registering net device\n"); 3715 ret = -ENODEV; 3716 goto clean_dma_ret; 3717 } 3718 3719 if (cpsw->data.dual_emac) { 3720 ret = cpsw_probe_dual_emac(priv); 3721 if (ret) { 3722 cpsw_err(priv, probe, "error probe slave 2 emac interface\n"); 3723 goto clean_unregister_netdev_ret; 3724 } 3725 } 3726 3727 /* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and 3728 * MISC IRQs which are always kept disabled with this driver so 3729 * we will not request them. 3730 * 3731 * If anyone wants to implement support for those, make sure to 3732 * first request and append them to irqs_table array. 3733 */ 3734 3735 /* RX IRQ */ 3736 irq = platform_get_irq(pdev, 1); 3737 if (irq < 0) { 3738 ret = irq; 3739 goto clean_dma_ret; 3740 } 3741 3742 cpsw->irqs_table[0] = irq; 3743 ret = devm_request_irq(&pdev->dev, irq, cpsw_rx_interrupt, 3744 0, dev_name(&pdev->dev), cpsw); 3745 if (ret < 0) { 3746 dev_err(priv->dev, "error attaching irq (%d)\n", ret); 3747 goto clean_dma_ret; 3748 } 3749 3750 /* TX IRQ */ 3751 irq = platform_get_irq(pdev, 2); 3752 if (irq < 0) { 3753 ret = irq; 3754 goto clean_dma_ret; 3755 } 3756 3757 cpsw->irqs_table[1] = irq; 3758 ret = devm_request_irq(&pdev->dev, irq, cpsw_tx_interrupt, 3759 0, dev_name(&pdev->dev), cpsw); 3760 if (ret < 0) { 3761 dev_err(priv->dev, "error attaching irq (%d)\n", ret); 3762 goto clean_dma_ret; 3763 } 3764 3765 cpsw_notice(priv, probe, 3766 "initialized device (regs %pa, irq %d, pool size %d)\n", 3767 &ss_res->start, ndev->irq, dma_params.descs_pool_size); 3768 3769 pm_runtime_put(&pdev->dev); 3770 3771 return 0; 3772 3773 clean_unregister_netdev_ret: 3774 unregister_netdev(ndev); 3775 clean_dma_ret: 3776 cpdma_ctlr_destroy(cpsw->dma); 3777 clean_dt_ret: 3778 cpsw_remove_dt(pdev); 3779 pm_runtime_put_sync(&pdev->dev); 3780 clean_runtime_disable_ret: 3781 pm_runtime_disable(&pdev->dev); 3782 clean_ndev_ret: 3783 free_netdev(priv->ndev); 3784 return ret; 3785 } 3786 3787 static int cpsw_remove(struct platform_device *pdev) 3788 { 3789 struct net_device *ndev = platform_get_drvdata(pdev); 3790 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 3791 int ret; 3792 3793 ret = pm_runtime_get_sync(&pdev->dev); 3794 if (ret < 0) { 3795 pm_runtime_put_noidle(&pdev->dev); 3796 return ret; 3797 } 3798 3799 if (cpsw->data.dual_emac) 3800 unregister_netdev(cpsw->slaves[1].ndev); 3801 unregister_netdev(ndev); 3802 3803 cpts_release(cpsw->cpts); 3804 cpdma_ctlr_destroy(cpsw->dma); 3805 cpsw_remove_dt(pdev); 3806 pm_runtime_put_sync(&pdev->dev); 3807 pm_runtime_disable(&pdev->dev); 3808 if (cpsw->data.dual_emac) 3809 free_netdev(cpsw->slaves[1].ndev); 3810 free_netdev(ndev); 3811 return 0; 3812 } 3813 3814 #ifdef CONFIG_PM_SLEEP 3815 static int cpsw_suspend(struct device *dev) 3816 { 3817 struct net_device *ndev = dev_get_drvdata(dev); 3818 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 3819 3820 if (cpsw->data.dual_emac) { 3821 int i; 3822 3823 for (i = 0; i < cpsw->data.slaves; i++) { 3824 if (netif_running(cpsw->slaves[i].ndev)) 3825 cpsw_ndo_stop(cpsw->slaves[i].ndev); 3826 } 3827 } else { 3828 if (netif_running(ndev)) 3829 cpsw_ndo_stop(ndev); 3830 } 3831 3832 /* Select sleep pin state */ 3833 pinctrl_pm_select_sleep_state(dev); 3834 3835 return 0; 3836 } 3837 3838 static int cpsw_resume(struct device *dev) 3839 { 3840 struct net_device *ndev = dev_get_drvdata(dev); 3841 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 3842 3843 /* Select default pin state */ 3844 pinctrl_pm_select_default_state(dev); 3845 3846 /* shut up ASSERT_RTNL() warning in netif_set_real_num_tx/rx_queues */ 3847 rtnl_lock(); 3848 if (cpsw->data.dual_emac) { 3849 int i; 3850 3851 for (i = 0; i < cpsw->data.slaves; i++) { 3852 if (netif_running(cpsw->slaves[i].ndev)) 3853 cpsw_ndo_open(cpsw->slaves[i].ndev); 3854 } 3855 } else { 3856 if (netif_running(ndev)) 3857 cpsw_ndo_open(ndev); 3858 } 3859 rtnl_unlock(); 3860 3861 return 0; 3862 } 3863 #endif 3864 3865 static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume); 3866 3867 static struct platform_driver cpsw_driver = { 3868 .driver = { 3869 .name = "cpsw", 3870 .pm = &cpsw_pm_ops, 3871 .of_match_table = cpsw_of_mtable, 3872 }, 3873 .probe = cpsw_probe, 3874 .remove = cpsw_remove, 3875 }; 3876 3877 module_platform_driver(cpsw_driver); 3878 3879 MODULE_LICENSE("GPL"); 3880 MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>"); 3881 MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>"); 3882 MODULE_DESCRIPTION("TI CPSW Ethernet driver"); 3883