1 /* 2 * Texas Instruments Ethernet Switch Driver 3 * 4 * Copyright (C) 2012 Texas Instruments 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License as 8 * published by the Free Software Foundation version 2. 9 * 10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any 11 * kind, whether express or implied; without even the implied warranty 12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/io.h> 18 #include <linux/clk.h> 19 #include <linux/timer.h> 20 #include <linux/module.h> 21 #include <linux/platform_device.h> 22 #include <linux/irqreturn.h> 23 #include <linux/interrupt.h> 24 #include <linux/if_ether.h> 25 #include <linux/etherdevice.h> 26 #include <linux/netdevice.h> 27 #include <linux/net_tstamp.h> 28 #include <linux/phy.h> 29 #include <linux/workqueue.h> 30 #include <linux/delay.h> 31 #include <linux/pm_runtime.h> 32 #include <linux/of.h> 33 #include <linux/of_mdio.h> 34 #include <linux/of_net.h> 35 #include <linux/of_device.h> 36 #include <linux/if_vlan.h> 37 38 #include <linux/pinctrl/consumer.h> 39 40 #include "cpsw.h" 41 #include "cpsw_ale.h" 42 #include "cpts.h" 43 #include "davinci_cpdma.h" 44 45 #define CPSW_DEBUG (NETIF_MSG_HW | NETIF_MSG_WOL | \ 46 NETIF_MSG_DRV | NETIF_MSG_LINK | \ 47 NETIF_MSG_IFUP | NETIF_MSG_INTR | \ 48 NETIF_MSG_PROBE | NETIF_MSG_TIMER | \ 49 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | \ 50 NETIF_MSG_TX_ERR | NETIF_MSG_TX_DONE | \ 51 NETIF_MSG_PKTDATA | NETIF_MSG_TX_QUEUED | \ 52 NETIF_MSG_RX_STATUS) 53 54 #define cpsw_info(priv, type, format, ...) \ 55 do { \ 56 if (netif_msg_##type(priv) && net_ratelimit()) \ 57 dev_info(priv->dev, format, ## __VA_ARGS__); \ 58 } while (0) 59 60 #define cpsw_err(priv, type, format, ...) \ 61 do { \ 62 if (netif_msg_##type(priv) && net_ratelimit()) \ 63 dev_err(priv->dev, format, ## __VA_ARGS__); \ 64 } while (0) 65 66 #define cpsw_dbg(priv, type, format, ...) \ 67 do { \ 68 if (netif_msg_##type(priv) && net_ratelimit()) \ 69 dev_dbg(priv->dev, format, ## __VA_ARGS__); \ 70 } while (0) 71 72 #define cpsw_notice(priv, type, format, ...) \ 73 do { \ 74 if (netif_msg_##type(priv) && net_ratelimit()) \ 75 dev_notice(priv->dev, format, ## __VA_ARGS__); \ 76 } while (0) 77 78 #define ALE_ALL_PORTS 0x7 79 80 #define CPSW_MAJOR_VERSION(reg) (reg >> 8 & 0x7) 81 #define CPSW_MINOR_VERSION(reg) (reg & 0xff) 82 #define CPSW_RTL_VERSION(reg) ((reg >> 11) & 0x1f) 83 84 #define CPSW_VERSION_1 0x19010a 85 #define CPSW_VERSION_2 0x19010c 86 #define CPSW_VERSION_3 0x19010f 87 #define CPSW_VERSION_4 0x190112 88 89 #define HOST_PORT_NUM 0 90 #define SLIVER_SIZE 0x40 91 92 #define CPSW1_HOST_PORT_OFFSET 0x028 93 #define CPSW1_SLAVE_OFFSET 0x050 94 #define CPSW1_SLAVE_SIZE 0x040 95 #define CPSW1_CPDMA_OFFSET 0x100 96 #define CPSW1_STATERAM_OFFSET 0x200 97 #define CPSW1_HW_STATS 0x400 98 #define CPSW1_CPTS_OFFSET 0x500 99 #define CPSW1_ALE_OFFSET 0x600 100 #define CPSW1_SLIVER_OFFSET 0x700 101 102 #define CPSW2_HOST_PORT_OFFSET 0x108 103 #define CPSW2_SLAVE_OFFSET 0x200 104 #define CPSW2_SLAVE_SIZE 0x100 105 #define CPSW2_CPDMA_OFFSET 0x800 106 #define CPSW2_HW_STATS 0x900 107 #define CPSW2_STATERAM_OFFSET 0xa00 108 #define CPSW2_CPTS_OFFSET 0xc00 109 #define CPSW2_ALE_OFFSET 0xd00 110 #define CPSW2_SLIVER_OFFSET 0xd80 111 #define CPSW2_BD_OFFSET 0x2000 112 113 #define CPDMA_RXTHRESH 0x0c0 114 #define CPDMA_RXFREE 0x0e0 115 #define CPDMA_TXHDP 0x00 116 #define CPDMA_RXHDP 0x20 117 #define CPDMA_TXCP 0x40 118 #define CPDMA_RXCP 0x60 119 120 #define CPSW_POLL_WEIGHT 64 121 #define CPSW_MIN_PACKET_SIZE 60 122 #define CPSW_MAX_PACKET_SIZE (1500 + 14 + 4 + 4) 123 124 #define RX_PRIORITY_MAPPING 0x76543210 125 #define TX_PRIORITY_MAPPING 0x33221100 126 #define CPDMA_TX_PRIORITY_MAP 0x76543210 127 128 #define CPSW_VLAN_AWARE BIT(1) 129 #define CPSW_ALE_VLAN_AWARE 1 130 131 #define CPSW_FIFO_NORMAL_MODE (0 << 16) 132 #define CPSW_FIFO_DUAL_MAC_MODE (1 << 16) 133 #define CPSW_FIFO_RATE_LIMIT_MODE (2 << 16) 134 135 #define CPSW_INTPACEEN (0x3f << 16) 136 #define CPSW_INTPRESCALE_MASK (0x7FF << 0) 137 #define CPSW_CMINTMAX_CNT 63 138 #define CPSW_CMINTMIN_CNT 2 139 #define CPSW_CMINTMAX_INTVL (1000 / CPSW_CMINTMIN_CNT) 140 #define CPSW_CMINTMIN_INTVL ((1000 / CPSW_CMINTMAX_CNT) + 1) 141 142 #define cpsw_slave_index(priv) \ 143 ((priv->data.dual_emac) ? priv->emac_port : \ 144 priv->data.active_slave) 145 146 static int debug_level; 147 module_param(debug_level, int, 0); 148 MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)"); 149 150 static int ale_ageout = 10; 151 module_param(ale_ageout, int, 0); 152 MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)"); 153 154 static int rx_packet_max = CPSW_MAX_PACKET_SIZE; 155 module_param(rx_packet_max, int, 0); 156 MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)"); 157 158 struct cpsw_wr_regs { 159 u32 id_ver; 160 u32 soft_reset; 161 u32 control; 162 u32 int_control; 163 u32 rx_thresh_en; 164 u32 rx_en; 165 u32 tx_en; 166 u32 misc_en; 167 u32 mem_allign1[8]; 168 u32 rx_thresh_stat; 169 u32 rx_stat; 170 u32 tx_stat; 171 u32 misc_stat; 172 u32 mem_allign2[8]; 173 u32 rx_imax; 174 u32 tx_imax; 175 176 }; 177 178 struct cpsw_ss_regs { 179 u32 id_ver; 180 u32 control; 181 u32 soft_reset; 182 u32 stat_port_en; 183 u32 ptype; 184 u32 soft_idle; 185 u32 thru_rate; 186 u32 gap_thresh; 187 u32 tx_start_wds; 188 u32 flow_control; 189 u32 vlan_ltype; 190 u32 ts_ltype; 191 u32 dlr_ltype; 192 }; 193 194 /* CPSW_PORT_V1 */ 195 #define CPSW1_MAX_BLKS 0x00 /* Maximum FIFO Blocks */ 196 #define CPSW1_BLK_CNT 0x04 /* FIFO Block Usage Count (Read Only) */ 197 #define CPSW1_TX_IN_CTL 0x08 /* Transmit FIFO Control */ 198 #define CPSW1_PORT_VLAN 0x0c /* VLAN Register */ 199 #define CPSW1_TX_PRI_MAP 0x10 /* Tx Header Priority to Switch Pri Mapping */ 200 #define CPSW1_TS_CTL 0x14 /* Time Sync Control */ 201 #define CPSW1_TS_SEQ_LTYPE 0x18 /* Time Sync Sequence ID Offset and Msg Type */ 202 #define CPSW1_TS_VLAN 0x1c /* Time Sync VLAN1 and VLAN2 */ 203 204 /* CPSW_PORT_V2 */ 205 #define CPSW2_CONTROL 0x00 /* Control Register */ 206 #define CPSW2_MAX_BLKS 0x08 /* Maximum FIFO Blocks */ 207 #define CPSW2_BLK_CNT 0x0c /* FIFO Block Usage Count (Read Only) */ 208 #define CPSW2_TX_IN_CTL 0x10 /* Transmit FIFO Control */ 209 #define CPSW2_PORT_VLAN 0x14 /* VLAN Register */ 210 #define CPSW2_TX_PRI_MAP 0x18 /* Tx Header Priority to Switch Pri Mapping */ 211 #define CPSW2_TS_SEQ_MTYPE 0x1c /* Time Sync Sequence ID Offset and Msg Type */ 212 213 /* CPSW_PORT_V1 and V2 */ 214 #define SA_LO 0x20 /* CPGMAC_SL Source Address Low */ 215 #define SA_HI 0x24 /* CPGMAC_SL Source Address High */ 216 #define SEND_PERCENT 0x28 /* Transmit Queue Send Percentages */ 217 218 /* CPSW_PORT_V2 only */ 219 #define RX_DSCP_PRI_MAP0 0x30 /* Rx DSCP Priority to Rx Packet Mapping */ 220 #define RX_DSCP_PRI_MAP1 0x34 /* Rx DSCP Priority to Rx Packet Mapping */ 221 #define RX_DSCP_PRI_MAP2 0x38 /* Rx DSCP Priority to Rx Packet Mapping */ 222 #define RX_DSCP_PRI_MAP3 0x3c /* Rx DSCP Priority to Rx Packet Mapping */ 223 #define RX_DSCP_PRI_MAP4 0x40 /* Rx DSCP Priority to Rx Packet Mapping */ 224 #define RX_DSCP_PRI_MAP5 0x44 /* Rx DSCP Priority to Rx Packet Mapping */ 225 #define RX_DSCP_PRI_MAP6 0x48 /* Rx DSCP Priority to Rx Packet Mapping */ 226 #define RX_DSCP_PRI_MAP7 0x4c /* Rx DSCP Priority to Rx Packet Mapping */ 227 228 /* Bit definitions for the CPSW2_CONTROL register */ 229 #define PASS_PRI_TAGGED (1<<24) /* Pass Priority Tagged */ 230 #define VLAN_LTYPE2_EN (1<<21) /* VLAN LTYPE 2 enable */ 231 #define VLAN_LTYPE1_EN (1<<20) /* VLAN LTYPE 1 enable */ 232 #define DSCP_PRI_EN (1<<16) /* DSCP Priority Enable */ 233 #define TS_320 (1<<14) /* Time Sync Dest Port 320 enable */ 234 #define TS_319 (1<<13) /* Time Sync Dest Port 319 enable */ 235 #define TS_132 (1<<12) /* Time Sync Dest IP Addr 132 enable */ 236 #define TS_131 (1<<11) /* Time Sync Dest IP Addr 131 enable */ 237 #define TS_130 (1<<10) /* Time Sync Dest IP Addr 130 enable */ 238 #define TS_129 (1<<9) /* Time Sync Dest IP Addr 129 enable */ 239 #define TS_TTL_NONZERO (1<<8) /* Time Sync Time To Live Non-zero enable */ 240 #define TS_ANNEX_F_EN (1<<6) /* Time Sync Annex F enable */ 241 #define TS_ANNEX_D_EN (1<<4) /* Time Sync Annex D enable */ 242 #define TS_LTYPE2_EN (1<<3) /* Time Sync LTYPE 2 enable */ 243 #define TS_LTYPE1_EN (1<<2) /* Time Sync LTYPE 1 enable */ 244 #define TS_TX_EN (1<<1) /* Time Sync Transmit Enable */ 245 #define TS_RX_EN (1<<0) /* Time Sync Receive Enable */ 246 247 #define CTRL_V2_TS_BITS \ 248 (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\ 249 TS_TTL_NONZERO | TS_ANNEX_D_EN | TS_LTYPE1_EN) 250 251 #define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN) 252 #define CTRL_V2_TX_TS_BITS (CTRL_V2_TS_BITS | TS_TX_EN) 253 #define CTRL_V2_RX_TS_BITS (CTRL_V2_TS_BITS | TS_RX_EN) 254 255 256 #define CTRL_V3_TS_BITS \ 257 (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\ 258 TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\ 259 TS_LTYPE1_EN) 260 261 #define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN) 262 #define CTRL_V3_TX_TS_BITS (CTRL_V3_TS_BITS | TS_TX_EN) 263 #define CTRL_V3_RX_TS_BITS (CTRL_V3_TS_BITS | TS_RX_EN) 264 265 /* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */ 266 #define TS_SEQ_ID_OFFSET_SHIFT (16) /* Time Sync Sequence ID Offset */ 267 #define TS_SEQ_ID_OFFSET_MASK (0x3f) 268 #define TS_MSG_TYPE_EN_SHIFT (0) /* Time Sync Message Type Enable */ 269 #define TS_MSG_TYPE_EN_MASK (0xffff) 270 271 /* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */ 272 #define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3)) 273 274 /* Bit definitions for the CPSW1_TS_CTL register */ 275 #define CPSW_V1_TS_RX_EN BIT(0) 276 #define CPSW_V1_TS_TX_EN BIT(4) 277 #define CPSW_V1_MSG_TYPE_OFS 16 278 279 /* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */ 280 #define CPSW_V1_SEQ_ID_OFS_SHIFT 16 281 282 struct cpsw_host_regs { 283 u32 max_blks; 284 u32 blk_cnt; 285 u32 tx_in_ctl; 286 u32 port_vlan; 287 u32 tx_pri_map; 288 u32 cpdma_tx_pri_map; 289 u32 cpdma_rx_chan_map; 290 }; 291 292 struct cpsw_sliver_regs { 293 u32 id_ver; 294 u32 mac_control; 295 u32 mac_status; 296 u32 soft_reset; 297 u32 rx_maxlen; 298 u32 __reserved_0; 299 u32 rx_pause; 300 u32 tx_pause; 301 u32 __reserved_1; 302 u32 rx_pri_map; 303 }; 304 305 struct cpsw_hw_stats { 306 u32 rxgoodframes; 307 u32 rxbroadcastframes; 308 u32 rxmulticastframes; 309 u32 rxpauseframes; 310 u32 rxcrcerrors; 311 u32 rxaligncodeerrors; 312 u32 rxoversizedframes; 313 u32 rxjabberframes; 314 u32 rxundersizedframes; 315 u32 rxfragments; 316 u32 __pad_0[2]; 317 u32 rxoctets; 318 u32 txgoodframes; 319 u32 txbroadcastframes; 320 u32 txmulticastframes; 321 u32 txpauseframes; 322 u32 txdeferredframes; 323 u32 txcollisionframes; 324 u32 txsinglecollframes; 325 u32 txmultcollframes; 326 u32 txexcessivecollisions; 327 u32 txlatecollisions; 328 u32 txunderrun; 329 u32 txcarriersenseerrors; 330 u32 txoctets; 331 u32 octetframes64; 332 u32 octetframes65t127; 333 u32 octetframes128t255; 334 u32 octetframes256t511; 335 u32 octetframes512t1023; 336 u32 octetframes1024tup; 337 u32 netoctets; 338 u32 rxsofoverruns; 339 u32 rxmofoverruns; 340 u32 rxdmaoverruns; 341 }; 342 343 struct cpsw_slave { 344 void __iomem *regs; 345 struct cpsw_sliver_regs __iomem *sliver; 346 int slave_num; 347 u32 mac_control; 348 struct cpsw_slave_data *data; 349 struct phy_device *phy; 350 struct net_device *ndev; 351 u32 port_vlan; 352 u32 open_stat; 353 }; 354 355 static inline u32 slave_read(struct cpsw_slave *slave, u32 offset) 356 { 357 return __raw_readl(slave->regs + offset); 358 } 359 360 static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset) 361 { 362 __raw_writel(val, slave->regs + offset); 363 } 364 365 struct cpsw_priv { 366 spinlock_t lock; 367 struct platform_device *pdev; 368 struct net_device *ndev; 369 struct device_node *phy_node; 370 struct napi_struct napi_rx; 371 struct napi_struct napi_tx; 372 struct device *dev; 373 struct cpsw_platform_data data; 374 struct cpsw_ss_regs __iomem *regs; 375 struct cpsw_wr_regs __iomem *wr_regs; 376 u8 __iomem *hw_stats; 377 struct cpsw_host_regs __iomem *host_port_regs; 378 u32 msg_enable; 379 u32 version; 380 u32 coal_intvl; 381 u32 bus_freq_mhz; 382 int rx_packet_max; 383 int host_port; 384 struct clk *clk; 385 u8 mac_addr[ETH_ALEN]; 386 struct cpsw_slave *slaves; 387 struct cpdma_ctlr *dma; 388 struct cpdma_chan *txch, *rxch; 389 struct cpsw_ale *ale; 390 bool rx_pause; 391 bool tx_pause; 392 bool quirk_irq; 393 bool rx_irq_disabled; 394 bool tx_irq_disabled; 395 /* snapshot of IRQ numbers */ 396 u32 irqs_table[4]; 397 u32 num_irqs; 398 struct cpts *cpts; 399 u32 emac_port; 400 }; 401 402 struct cpsw_stats { 403 char stat_string[ETH_GSTRING_LEN]; 404 int type; 405 int sizeof_stat; 406 int stat_offset; 407 }; 408 409 enum { 410 CPSW_STATS, 411 CPDMA_RX_STATS, 412 CPDMA_TX_STATS, 413 }; 414 415 #define CPSW_STAT(m) CPSW_STATS, \ 416 sizeof(((struct cpsw_hw_stats *)0)->m), \ 417 offsetof(struct cpsw_hw_stats, m) 418 #define CPDMA_RX_STAT(m) CPDMA_RX_STATS, \ 419 sizeof(((struct cpdma_chan_stats *)0)->m), \ 420 offsetof(struct cpdma_chan_stats, m) 421 #define CPDMA_TX_STAT(m) CPDMA_TX_STATS, \ 422 sizeof(((struct cpdma_chan_stats *)0)->m), \ 423 offsetof(struct cpdma_chan_stats, m) 424 425 static const struct cpsw_stats cpsw_gstrings_stats[] = { 426 { "Good Rx Frames", CPSW_STAT(rxgoodframes) }, 427 { "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) }, 428 { "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) }, 429 { "Pause Rx Frames", CPSW_STAT(rxpauseframes) }, 430 { "Rx CRC Errors", CPSW_STAT(rxcrcerrors) }, 431 { "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) }, 432 { "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) }, 433 { "Rx Jabbers", CPSW_STAT(rxjabberframes) }, 434 { "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) }, 435 { "Rx Fragments", CPSW_STAT(rxfragments) }, 436 { "Rx Octets", CPSW_STAT(rxoctets) }, 437 { "Good Tx Frames", CPSW_STAT(txgoodframes) }, 438 { "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) }, 439 { "Multicast Tx Frames", CPSW_STAT(txmulticastframes) }, 440 { "Pause Tx Frames", CPSW_STAT(txpauseframes) }, 441 { "Deferred Tx Frames", CPSW_STAT(txdeferredframes) }, 442 { "Collisions", CPSW_STAT(txcollisionframes) }, 443 { "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) }, 444 { "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) }, 445 { "Excessive Collisions", CPSW_STAT(txexcessivecollisions) }, 446 { "Late Collisions", CPSW_STAT(txlatecollisions) }, 447 { "Tx Underrun", CPSW_STAT(txunderrun) }, 448 { "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) }, 449 { "Tx Octets", CPSW_STAT(txoctets) }, 450 { "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) }, 451 { "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) }, 452 { "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) }, 453 { "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) }, 454 { "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) }, 455 { "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) }, 456 { "Net Octets", CPSW_STAT(netoctets) }, 457 { "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) }, 458 { "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) }, 459 { "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) }, 460 { "Rx DMA chan: head_enqueue", CPDMA_RX_STAT(head_enqueue) }, 461 { "Rx DMA chan: tail_enqueue", CPDMA_RX_STAT(tail_enqueue) }, 462 { "Rx DMA chan: pad_enqueue", CPDMA_RX_STAT(pad_enqueue) }, 463 { "Rx DMA chan: misqueued", CPDMA_RX_STAT(misqueued) }, 464 { "Rx DMA chan: desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) }, 465 { "Rx DMA chan: pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) }, 466 { "Rx DMA chan: runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) }, 467 { "Rx DMA chan: runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) }, 468 { "Rx DMA chan: empty_dequeue", CPDMA_RX_STAT(empty_dequeue) }, 469 { "Rx DMA chan: busy_dequeue", CPDMA_RX_STAT(busy_dequeue) }, 470 { "Rx DMA chan: good_dequeue", CPDMA_RX_STAT(good_dequeue) }, 471 { "Rx DMA chan: requeue", CPDMA_RX_STAT(requeue) }, 472 { "Rx DMA chan: teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) }, 473 { "Tx DMA chan: head_enqueue", CPDMA_TX_STAT(head_enqueue) }, 474 { "Tx DMA chan: tail_enqueue", CPDMA_TX_STAT(tail_enqueue) }, 475 { "Tx DMA chan: pad_enqueue", CPDMA_TX_STAT(pad_enqueue) }, 476 { "Tx DMA chan: misqueued", CPDMA_TX_STAT(misqueued) }, 477 { "Tx DMA chan: desc_alloc_fail", CPDMA_TX_STAT(desc_alloc_fail) }, 478 { "Tx DMA chan: pad_alloc_fail", CPDMA_TX_STAT(pad_alloc_fail) }, 479 { "Tx DMA chan: runt_receive_buf", CPDMA_TX_STAT(runt_receive_buff) }, 480 { "Tx DMA chan: runt_transmit_buf", CPDMA_TX_STAT(runt_transmit_buff) }, 481 { "Tx DMA chan: empty_dequeue", CPDMA_TX_STAT(empty_dequeue) }, 482 { "Tx DMA chan: busy_dequeue", CPDMA_TX_STAT(busy_dequeue) }, 483 { "Tx DMA chan: good_dequeue", CPDMA_TX_STAT(good_dequeue) }, 484 { "Tx DMA chan: requeue", CPDMA_TX_STAT(requeue) }, 485 { "Tx DMA chan: teardown_dequeue", CPDMA_TX_STAT(teardown_dequeue) }, 486 }; 487 488 #define CPSW_STATS_LEN ARRAY_SIZE(cpsw_gstrings_stats) 489 490 #define napi_to_priv(napi) container_of(napi, struct cpsw_priv, napi) 491 #define for_each_slave(priv, func, arg...) \ 492 do { \ 493 struct cpsw_slave *slave; \ 494 int n; \ 495 if (priv->data.dual_emac) \ 496 (func)((priv)->slaves + priv->emac_port, ##arg);\ 497 else \ 498 for (n = (priv)->data.slaves, \ 499 slave = (priv)->slaves; \ 500 n; n--) \ 501 (func)(slave++, ##arg); \ 502 } while (0) 503 #define cpsw_get_slave_ndev(priv, __slave_no__) \ 504 ((__slave_no__ < priv->data.slaves) ? \ 505 priv->slaves[__slave_no__].ndev : NULL) 506 #define cpsw_get_slave_priv(priv, __slave_no__) \ 507 (((__slave_no__ < priv->data.slaves) && \ 508 (priv->slaves[__slave_no__].ndev)) ? \ 509 netdev_priv(priv->slaves[__slave_no__].ndev) : NULL) \ 510 511 #define cpsw_dual_emac_src_port_detect(status, priv, ndev, skb) \ 512 do { \ 513 if (!priv->data.dual_emac) \ 514 break; \ 515 if (CPDMA_RX_SOURCE_PORT(status) == 1) { \ 516 ndev = cpsw_get_slave_ndev(priv, 0); \ 517 priv = netdev_priv(ndev); \ 518 skb->dev = ndev; \ 519 } else if (CPDMA_RX_SOURCE_PORT(status) == 2) { \ 520 ndev = cpsw_get_slave_ndev(priv, 1); \ 521 priv = netdev_priv(ndev); \ 522 skb->dev = ndev; \ 523 } \ 524 } while (0) 525 #define cpsw_add_mcast(priv, addr) \ 526 do { \ 527 if (priv->data.dual_emac) { \ 528 struct cpsw_slave *slave = priv->slaves + \ 529 priv->emac_port; \ 530 int slave_port = cpsw_get_slave_port(priv, \ 531 slave->slave_num); \ 532 cpsw_ale_add_mcast(priv->ale, addr, \ 533 1 << slave_port | 1 << priv->host_port, \ 534 ALE_VLAN, slave->port_vlan, 0); \ 535 } else { \ 536 cpsw_ale_add_mcast(priv->ale, addr, \ 537 ALE_ALL_PORTS << priv->host_port, \ 538 0, 0, 0); \ 539 } \ 540 } while (0) 541 542 static inline int cpsw_get_slave_port(struct cpsw_priv *priv, u32 slave_num) 543 { 544 if (priv->host_port == 0) 545 return slave_num + 1; 546 else 547 return slave_num; 548 } 549 550 static void cpsw_set_promiscious(struct net_device *ndev, bool enable) 551 { 552 struct cpsw_priv *priv = netdev_priv(ndev); 553 struct cpsw_ale *ale = priv->ale; 554 int i; 555 556 if (priv->data.dual_emac) { 557 bool flag = false; 558 559 /* Enabling promiscuous mode for one interface will be 560 * common for both the interface as the interface shares 561 * the same hardware resource. 562 */ 563 for (i = 0; i < priv->data.slaves; i++) 564 if (priv->slaves[i].ndev->flags & IFF_PROMISC) 565 flag = true; 566 567 if (!enable && flag) { 568 enable = true; 569 dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n"); 570 } 571 572 if (enable) { 573 /* Enable Bypass */ 574 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1); 575 576 dev_dbg(&ndev->dev, "promiscuity enabled\n"); 577 } else { 578 /* Disable Bypass */ 579 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0); 580 dev_dbg(&ndev->dev, "promiscuity disabled\n"); 581 } 582 } else { 583 if (enable) { 584 unsigned long timeout = jiffies + HZ; 585 586 /* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */ 587 for (i = 0; i <= priv->data.slaves; i++) { 588 cpsw_ale_control_set(ale, i, 589 ALE_PORT_NOLEARN, 1); 590 cpsw_ale_control_set(ale, i, 591 ALE_PORT_NO_SA_UPDATE, 1); 592 } 593 594 /* Clear All Untouched entries */ 595 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1); 596 do { 597 cpu_relax(); 598 if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT)) 599 break; 600 } while (time_after(timeout, jiffies)); 601 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1); 602 603 /* Clear all mcast from ALE */ 604 cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS << 605 priv->host_port, -1); 606 607 /* Flood All Unicast Packets to Host port */ 608 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1); 609 dev_dbg(&ndev->dev, "promiscuity enabled\n"); 610 } else { 611 /* Don't Flood All Unicast Packets to Host port */ 612 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0); 613 614 /* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */ 615 for (i = 0; i <= priv->data.slaves; i++) { 616 cpsw_ale_control_set(ale, i, 617 ALE_PORT_NOLEARN, 0); 618 cpsw_ale_control_set(ale, i, 619 ALE_PORT_NO_SA_UPDATE, 0); 620 } 621 dev_dbg(&ndev->dev, "promiscuity disabled\n"); 622 } 623 } 624 } 625 626 static void cpsw_ndo_set_rx_mode(struct net_device *ndev) 627 { 628 struct cpsw_priv *priv = netdev_priv(ndev); 629 int vid; 630 631 if (priv->data.dual_emac) 632 vid = priv->slaves[priv->emac_port].port_vlan; 633 else 634 vid = priv->data.default_vlan; 635 636 if (ndev->flags & IFF_PROMISC) { 637 /* Enable promiscuous mode */ 638 cpsw_set_promiscious(ndev, true); 639 cpsw_ale_set_allmulti(priv->ale, IFF_ALLMULTI); 640 return; 641 } else { 642 /* Disable promiscuous mode */ 643 cpsw_set_promiscious(ndev, false); 644 } 645 646 /* Restore allmulti on vlans if necessary */ 647 cpsw_ale_set_allmulti(priv->ale, priv->ndev->flags & IFF_ALLMULTI); 648 649 /* Clear all mcast from ALE */ 650 cpsw_ale_flush_multicast(priv->ale, ALE_ALL_PORTS << priv->host_port, 651 vid); 652 653 if (!netdev_mc_empty(ndev)) { 654 struct netdev_hw_addr *ha; 655 656 /* program multicast address list into ALE register */ 657 netdev_for_each_mc_addr(ha, ndev) { 658 cpsw_add_mcast(priv, (u8 *)ha->addr); 659 } 660 } 661 } 662 663 static void cpsw_intr_enable(struct cpsw_priv *priv) 664 { 665 __raw_writel(0xFF, &priv->wr_regs->tx_en); 666 __raw_writel(0xFF, &priv->wr_regs->rx_en); 667 668 cpdma_ctlr_int_ctrl(priv->dma, true); 669 return; 670 } 671 672 static void cpsw_intr_disable(struct cpsw_priv *priv) 673 { 674 __raw_writel(0, &priv->wr_regs->tx_en); 675 __raw_writel(0, &priv->wr_regs->rx_en); 676 677 cpdma_ctlr_int_ctrl(priv->dma, false); 678 return; 679 } 680 681 static void cpsw_tx_handler(void *token, int len, int status) 682 { 683 struct sk_buff *skb = token; 684 struct net_device *ndev = skb->dev; 685 struct cpsw_priv *priv = netdev_priv(ndev); 686 687 /* Check whether the queue is stopped due to stalled tx dma, if the 688 * queue is stopped then start the queue as we have free desc for tx 689 */ 690 if (unlikely(netif_queue_stopped(ndev))) 691 netif_wake_queue(ndev); 692 cpts_tx_timestamp(priv->cpts, skb); 693 ndev->stats.tx_packets++; 694 ndev->stats.tx_bytes += len; 695 dev_kfree_skb_any(skb); 696 } 697 698 static void cpsw_rx_handler(void *token, int len, int status) 699 { 700 struct sk_buff *skb = token; 701 struct sk_buff *new_skb; 702 struct net_device *ndev = skb->dev; 703 struct cpsw_priv *priv = netdev_priv(ndev); 704 int ret = 0; 705 706 cpsw_dual_emac_src_port_detect(status, priv, ndev, skb); 707 708 if (unlikely(status < 0) || unlikely(!netif_running(ndev))) { 709 bool ndev_status = false; 710 struct cpsw_slave *slave = priv->slaves; 711 int n; 712 713 if (priv->data.dual_emac) { 714 /* In dual emac mode check for all interfaces */ 715 for (n = priv->data.slaves; n; n--, slave++) 716 if (netif_running(slave->ndev)) 717 ndev_status = true; 718 } 719 720 if (ndev_status && (status >= 0)) { 721 /* The packet received is for the interface which 722 * is already down and the other interface is up 723 * and running, instead of freeing which results 724 * in reducing of the number of rx descriptor in 725 * DMA engine, requeue skb back to cpdma. 726 */ 727 new_skb = skb; 728 goto requeue; 729 } 730 731 /* the interface is going down, skbs are purged */ 732 dev_kfree_skb_any(skb); 733 return; 734 } 735 736 new_skb = netdev_alloc_skb_ip_align(ndev, priv->rx_packet_max); 737 if (new_skb) { 738 skb_put(skb, len); 739 cpts_rx_timestamp(priv->cpts, skb); 740 skb->protocol = eth_type_trans(skb, ndev); 741 netif_receive_skb(skb); 742 ndev->stats.rx_bytes += len; 743 ndev->stats.rx_packets++; 744 } else { 745 ndev->stats.rx_dropped++; 746 new_skb = skb; 747 } 748 749 requeue: 750 ret = cpdma_chan_submit(priv->rxch, new_skb, new_skb->data, 751 skb_tailroom(new_skb), 0); 752 if (WARN_ON(ret < 0)) 753 dev_kfree_skb_any(new_skb); 754 } 755 756 static irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id) 757 { 758 struct cpsw_priv *priv = dev_id; 759 760 writel(0, &priv->wr_regs->tx_en); 761 cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_TX); 762 763 if (priv->quirk_irq) { 764 disable_irq_nosync(priv->irqs_table[1]); 765 priv->tx_irq_disabled = true; 766 } 767 768 napi_schedule(&priv->napi_tx); 769 return IRQ_HANDLED; 770 } 771 772 static irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id) 773 { 774 struct cpsw_priv *priv = dev_id; 775 776 cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_RX); 777 writel(0, &priv->wr_regs->rx_en); 778 779 if (priv->quirk_irq) { 780 disable_irq_nosync(priv->irqs_table[0]); 781 priv->rx_irq_disabled = true; 782 } 783 784 napi_schedule(&priv->napi_rx); 785 return IRQ_HANDLED; 786 } 787 788 static int cpsw_tx_poll(struct napi_struct *napi_tx, int budget) 789 { 790 struct cpsw_priv *priv = napi_to_priv(napi_tx); 791 int num_tx; 792 793 num_tx = cpdma_chan_process(priv->txch, budget); 794 if (num_tx < budget) { 795 napi_complete(napi_tx); 796 writel(0xff, &priv->wr_regs->tx_en); 797 if (priv->quirk_irq && priv->tx_irq_disabled) { 798 priv->tx_irq_disabled = false; 799 enable_irq(priv->irqs_table[1]); 800 } 801 } 802 803 if (num_tx) 804 cpsw_dbg(priv, intr, "poll %d tx pkts\n", num_tx); 805 806 return num_tx; 807 } 808 809 static int cpsw_rx_poll(struct napi_struct *napi_rx, int budget) 810 { 811 struct cpsw_priv *priv = napi_to_priv(napi_rx); 812 int num_rx; 813 814 num_rx = cpdma_chan_process(priv->rxch, budget); 815 if (num_rx < budget) { 816 napi_complete(napi_rx); 817 writel(0xff, &priv->wr_regs->rx_en); 818 if (priv->quirk_irq && priv->rx_irq_disabled) { 819 priv->rx_irq_disabled = false; 820 enable_irq(priv->irqs_table[0]); 821 } 822 } 823 824 if (num_rx) 825 cpsw_dbg(priv, intr, "poll %d rx pkts\n", num_rx); 826 827 return num_rx; 828 } 829 830 static inline void soft_reset(const char *module, void __iomem *reg) 831 { 832 unsigned long timeout = jiffies + HZ; 833 834 __raw_writel(1, reg); 835 do { 836 cpu_relax(); 837 } while ((__raw_readl(reg) & 1) && time_after(timeout, jiffies)); 838 839 WARN(__raw_readl(reg) & 1, "failed to soft-reset %s\n", module); 840 } 841 842 #define mac_hi(mac) (((mac)[0] << 0) | ((mac)[1] << 8) | \ 843 ((mac)[2] << 16) | ((mac)[3] << 24)) 844 #define mac_lo(mac) (((mac)[4] << 0) | ((mac)[5] << 8)) 845 846 static void cpsw_set_slave_mac(struct cpsw_slave *slave, 847 struct cpsw_priv *priv) 848 { 849 slave_write(slave, mac_hi(priv->mac_addr), SA_HI); 850 slave_write(slave, mac_lo(priv->mac_addr), SA_LO); 851 } 852 853 static void _cpsw_adjust_link(struct cpsw_slave *slave, 854 struct cpsw_priv *priv, bool *link) 855 { 856 struct phy_device *phy = slave->phy; 857 u32 mac_control = 0; 858 u32 slave_port; 859 860 if (!phy) 861 return; 862 863 slave_port = cpsw_get_slave_port(priv, slave->slave_num); 864 865 if (phy->link) { 866 mac_control = priv->data.mac_control; 867 868 /* enable forwarding */ 869 cpsw_ale_control_set(priv->ale, slave_port, 870 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD); 871 872 if (phy->speed == 1000) 873 mac_control |= BIT(7); /* GIGABITEN */ 874 if (phy->duplex) 875 mac_control |= BIT(0); /* FULLDUPLEXEN */ 876 877 /* set speed_in input in case RMII mode is used in 100Mbps */ 878 if (phy->speed == 100) 879 mac_control |= BIT(15); 880 else if (phy->speed == 10) 881 mac_control |= BIT(18); /* In Band mode */ 882 883 if (priv->rx_pause) 884 mac_control |= BIT(3); 885 886 if (priv->tx_pause) 887 mac_control |= BIT(4); 888 889 *link = true; 890 } else { 891 mac_control = 0; 892 /* disable forwarding */ 893 cpsw_ale_control_set(priv->ale, slave_port, 894 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE); 895 } 896 897 if (mac_control != slave->mac_control) { 898 phy_print_status(phy); 899 __raw_writel(mac_control, &slave->sliver->mac_control); 900 } 901 902 slave->mac_control = mac_control; 903 } 904 905 static void cpsw_adjust_link(struct net_device *ndev) 906 { 907 struct cpsw_priv *priv = netdev_priv(ndev); 908 bool link = false; 909 910 for_each_slave(priv, _cpsw_adjust_link, priv, &link); 911 912 if (link) { 913 netif_carrier_on(ndev); 914 if (netif_running(ndev)) 915 netif_wake_queue(ndev); 916 } else { 917 netif_carrier_off(ndev); 918 netif_stop_queue(ndev); 919 } 920 } 921 922 static int cpsw_get_coalesce(struct net_device *ndev, 923 struct ethtool_coalesce *coal) 924 { 925 struct cpsw_priv *priv = netdev_priv(ndev); 926 927 coal->rx_coalesce_usecs = priv->coal_intvl; 928 return 0; 929 } 930 931 static int cpsw_set_coalesce(struct net_device *ndev, 932 struct ethtool_coalesce *coal) 933 { 934 struct cpsw_priv *priv = netdev_priv(ndev); 935 u32 int_ctrl; 936 u32 num_interrupts = 0; 937 u32 prescale = 0; 938 u32 addnl_dvdr = 1; 939 u32 coal_intvl = 0; 940 941 coal_intvl = coal->rx_coalesce_usecs; 942 943 int_ctrl = readl(&priv->wr_regs->int_control); 944 prescale = priv->bus_freq_mhz * 4; 945 946 if (!coal->rx_coalesce_usecs) { 947 int_ctrl &= ~(CPSW_INTPRESCALE_MASK | CPSW_INTPACEEN); 948 goto update_return; 949 } 950 951 if (coal_intvl < CPSW_CMINTMIN_INTVL) 952 coal_intvl = CPSW_CMINTMIN_INTVL; 953 954 if (coal_intvl > CPSW_CMINTMAX_INTVL) { 955 /* Interrupt pacer works with 4us Pulse, we can 956 * throttle further by dilating the 4us pulse. 957 */ 958 addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale; 959 960 if (addnl_dvdr > 1) { 961 prescale *= addnl_dvdr; 962 if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr)) 963 coal_intvl = (CPSW_CMINTMAX_INTVL 964 * addnl_dvdr); 965 } else { 966 addnl_dvdr = 1; 967 coal_intvl = CPSW_CMINTMAX_INTVL; 968 } 969 } 970 971 num_interrupts = (1000 * addnl_dvdr) / coal_intvl; 972 writel(num_interrupts, &priv->wr_regs->rx_imax); 973 writel(num_interrupts, &priv->wr_regs->tx_imax); 974 975 int_ctrl |= CPSW_INTPACEEN; 976 int_ctrl &= (~CPSW_INTPRESCALE_MASK); 977 int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK); 978 979 update_return: 980 writel(int_ctrl, &priv->wr_regs->int_control); 981 982 cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl); 983 if (priv->data.dual_emac) { 984 int i; 985 986 for (i = 0; i < priv->data.slaves; i++) { 987 priv = netdev_priv(priv->slaves[i].ndev); 988 priv->coal_intvl = coal_intvl; 989 } 990 } else { 991 priv->coal_intvl = coal_intvl; 992 } 993 994 return 0; 995 } 996 997 static int cpsw_get_sset_count(struct net_device *ndev, int sset) 998 { 999 switch (sset) { 1000 case ETH_SS_STATS: 1001 return CPSW_STATS_LEN; 1002 default: 1003 return -EOPNOTSUPP; 1004 } 1005 } 1006 1007 static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data) 1008 { 1009 u8 *p = data; 1010 int i; 1011 1012 switch (stringset) { 1013 case ETH_SS_STATS: 1014 for (i = 0; i < CPSW_STATS_LEN; i++) { 1015 memcpy(p, cpsw_gstrings_stats[i].stat_string, 1016 ETH_GSTRING_LEN); 1017 p += ETH_GSTRING_LEN; 1018 } 1019 break; 1020 } 1021 } 1022 1023 static void cpsw_get_ethtool_stats(struct net_device *ndev, 1024 struct ethtool_stats *stats, u64 *data) 1025 { 1026 struct cpsw_priv *priv = netdev_priv(ndev); 1027 struct cpdma_chan_stats rx_stats; 1028 struct cpdma_chan_stats tx_stats; 1029 u32 val; 1030 u8 *p; 1031 int i; 1032 1033 /* Collect Davinci CPDMA stats for Rx and Tx Channel */ 1034 cpdma_chan_get_stats(priv->rxch, &rx_stats); 1035 cpdma_chan_get_stats(priv->txch, &tx_stats); 1036 1037 for (i = 0; i < CPSW_STATS_LEN; i++) { 1038 switch (cpsw_gstrings_stats[i].type) { 1039 case CPSW_STATS: 1040 val = readl(priv->hw_stats + 1041 cpsw_gstrings_stats[i].stat_offset); 1042 data[i] = val; 1043 break; 1044 1045 case CPDMA_RX_STATS: 1046 p = (u8 *)&rx_stats + 1047 cpsw_gstrings_stats[i].stat_offset; 1048 data[i] = *(u32 *)p; 1049 break; 1050 1051 case CPDMA_TX_STATS: 1052 p = (u8 *)&tx_stats + 1053 cpsw_gstrings_stats[i].stat_offset; 1054 data[i] = *(u32 *)p; 1055 break; 1056 } 1057 } 1058 } 1059 1060 static int cpsw_common_res_usage_state(struct cpsw_priv *priv) 1061 { 1062 u32 i; 1063 u32 usage_count = 0; 1064 1065 if (!priv->data.dual_emac) 1066 return 0; 1067 1068 for (i = 0; i < priv->data.slaves; i++) 1069 if (priv->slaves[i].open_stat) 1070 usage_count++; 1071 1072 return usage_count; 1073 } 1074 1075 static inline int cpsw_tx_packet_submit(struct net_device *ndev, 1076 struct cpsw_priv *priv, struct sk_buff *skb) 1077 { 1078 if (!priv->data.dual_emac) 1079 return cpdma_chan_submit(priv->txch, skb, skb->data, 1080 skb->len, 0); 1081 1082 if (ndev == cpsw_get_slave_ndev(priv, 0)) 1083 return cpdma_chan_submit(priv->txch, skb, skb->data, 1084 skb->len, 1); 1085 else 1086 return cpdma_chan_submit(priv->txch, skb, skb->data, 1087 skb->len, 2); 1088 } 1089 1090 static inline void cpsw_add_dual_emac_def_ale_entries( 1091 struct cpsw_priv *priv, struct cpsw_slave *slave, 1092 u32 slave_port) 1093 { 1094 u32 port_mask = 1 << slave_port | 1 << priv->host_port; 1095 1096 if (priv->version == CPSW_VERSION_1) 1097 slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN); 1098 else 1099 slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN); 1100 cpsw_ale_add_vlan(priv->ale, slave->port_vlan, port_mask, 1101 port_mask, port_mask, 0); 1102 cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast, 1103 port_mask, ALE_VLAN, slave->port_vlan, 0); 1104 cpsw_ale_add_ucast(priv->ale, priv->mac_addr, 1105 priv->host_port, ALE_VLAN | ALE_SECURE, slave->port_vlan); 1106 } 1107 1108 static void soft_reset_slave(struct cpsw_slave *slave) 1109 { 1110 char name[32]; 1111 1112 snprintf(name, sizeof(name), "slave-%d", slave->slave_num); 1113 soft_reset(name, &slave->sliver->soft_reset); 1114 } 1115 1116 static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv) 1117 { 1118 u32 slave_port; 1119 1120 soft_reset_slave(slave); 1121 1122 /* setup priority mapping */ 1123 __raw_writel(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map); 1124 1125 switch (priv->version) { 1126 case CPSW_VERSION_1: 1127 slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP); 1128 break; 1129 case CPSW_VERSION_2: 1130 case CPSW_VERSION_3: 1131 case CPSW_VERSION_4: 1132 slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP); 1133 break; 1134 } 1135 1136 /* setup max packet size, and mac address */ 1137 __raw_writel(priv->rx_packet_max, &slave->sliver->rx_maxlen); 1138 cpsw_set_slave_mac(slave, priv); 1139 1140 slave->mac_control = 0; /* no link yet */ 1141 1142 slave_port = cpsw_get_slave_port(priv, slave->slave_num); 1143 1144 if (priv->data.dual_emac) 1145 cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port); 1146 else 1147 cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast, 1148 1 << slave_port, 0, 0, ALE_MCAST_FWD_2); 1149 1150 if (priv->phy_node) 1151 slave->phy = of_phy_connect(priv->ndev, priv->phy_node, 1152 &cpsw_adjust_link, 0, slave->data->phy_if); 1153 else 1154 slave->phy = phy_connect(priv->ndev, slave->data->phy_id, 1155 &cpsw_adjust_link, slave->data->phy_if); 1156 if (IS_ERR(slave->phy)) { 1157 dev_err(priv->dev, "phy %s not found on slave %d\n", 1158 slave->data->phy_id, slave->slave_num); 1159 slave->phy = NULL; 1160 } else { 1161 dev_info(priv->dev, "phy found : id is : 0x%x\n", 1162 slave->phy->phy_id); 1163 phy_start(slave->phy); 1164 1165 /* Configure GMII_SEL register */ 1166 cpsw_phy_sel(&priv->pdev->dev, slave->phy->interface, 1167 slave->slave_num); 1168 } 1169 } 1170 1171 static inline void cpsw_add_default_vlan(struct cpsw_priv *priv) 1172 { 1173 const int vlan = priv->data.default_vlan; 1174 const int port = priv->host_port; 1175 u32 reg; 1176 int i; 1177 int unreg_mcast_mask; 1178 1179 reg = (priv->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN : 1180 CPSW2_PORT_VLAN; 1181 1182 writel(vlan, &priv->host_port_regs->port_vlan); 1183 1184 for (i = 0; i < priv->data.slaves; i++) 1185 slave_write(priv->slaves + i, vlan, reg); 1186 1187 if (priv->ndev->flags & IFF_ALLMULTI) 1188 unreg_mcast_mask = ALE_ALL_PORTS; 1189 else 1190 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2; 1191 1192 cpsw_ale_add_vlan(priv->ale, vlan, ALE_ALL_PORTS << port, 1193 ALE_ALL_PORTS << port, ALE_ALL_PORTS << port, 1194 unreg_mcast_mask << port); 1195 } 1196 1197 static void cpsw_init_host_port(struct cpsw_priv *priv) 1198 { 1199 u32 control_reg; 1200 u32 fifo_mode; 1201 1202 /* soft reset the controller and initialize ale */ 1203 soft_reset("cpsw", &priv->regs->soft_reset); 1204 cpsw_ale_start(priv->ale); 1205 1206 /* switch to vlan unaware mode */ 1207 cpsw_ale_control_set(priv->ale, priv->host_port, ALE_VLAN_AWARE, 1208 CPSW_ALE_VLAN_AWARE); 1209 control_reg = readl(&priv->regs->control); 1210 control_reg |= CPSW_VLAN_AWARE; 1211 writel(control_reg, &priv->regs->control); 1212 fifo_mode = (priv->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE : 1213 CPSW_FIFO_NORMAL_MODE; 1214 writel(fifo_mode, &priv->host_port_regs->tx_in_ctl); 1215 1216 /* setup host port priority mapping */ 1217 __raw_writel(CPDMA_TX_PRIORITY_MAP, 1218 &priv->host_port_regs->cpdma_tx_pri_map); 1219 __raw_writel(0, &priv->host_port_regs->cpdma_rx_chan_map); 1220 1221 cpsw_ale_control_set(priv->ale, priv->host_port, 1222 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD); 1223 1224 if (!priv->data.dual_emac) { 1225 cpsw_ale_add_ucast(priv->ale, priv->mac_addr, priv->host_port, 1226 0, 0); 1227 cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast, 1228 1 << priv->host_port, 0, 0, ALE_MCAST_FWD_2); 1229 } 1230 } 1231 1232 static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_priv *priv) 1233 { 1234 u32 slave_port; 1235 1236 slave_port = cpsw_get_slave_port(priv, slave->slave_num); 1237 1238 if (!slave->phy) 1239 return; 1240 phy_stop(slave->phy); 1241 phy_disconnect(slave->phy); 1242 slave->phy = NULL; 1243 cpsw_ale_control_set(priv->ale, slave_port, 1244 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE); 1245 } 1246 1247 static int cpsw_ndo_open(struct net_device *ndev) 1248 { 1249 struct cpsw_priv *priv = netdev_priv(ndev); 1250 int i, ret; 1251 u32 reg; 1252 1253 if (!cpsw_common_res_usage_state(priv)) 1254 cpsw_intr_disable(priv); 1255 netif_carrier_off(ndev); 1256 1257 pm_runtime_get_sync(&priv->pdev->dev); 1258 1259 reg = priv->version; 1260 1261 dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n", 1262 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg), 1263 CPSW_RTL_VERSION(reg)); 1264 1265 /* initialize host and slave ports */ 1266 if (!cpsw_common_res_usage_state(priv)) 1267 cpsw_init_host_port(priv); 1268 for_each_slave(priv, cpsw_slave_open, priv); 1269 1270 /* Add default VLAN */ 1271 if (!priv->data.dual_emac) 1272 cpsw_add_default_vlan(priv); 1273 else 1274 cpsw_ale_add_vlan(priv->ale, priv->data.default_vlan, 1275 ALE_ALL_PORTS << priv->host_port, 1276 ALE_ALL_PORTS << priv->host_port, 0, 0); 1277 1278 if (!cpsw_common_res_usage_state(priv)) { 1279 struct cpsw_priv *priv_sl0 = cpsw_get_slave_priv(priv, 0); 1280 1281 /* setup tx dma to fixed prio and zero offset */ 1282 cpdma_control_set(priv->dma, CPDMA_TX_PRIO_FIXED, 1); 1283 cpdma_control_set(priv->dma, CPDMA_RX_BUFFER_OFFSET, 0); 1284 1285 /* disable priority elevation */ 1286 __raw_writel(0, &priv->regs->ptype); 1287 1288 /* enable statistics collection only on all ports */ 1289 __raw_writel(0x7, &priv->regs->stat_port_en); 1290 1291 /* Enable internal fifo flow control */ 1292 writel(0x7, &priv->regs->flow_control); 1293 1294 napi_enable(&priv_sl0->napi_rx); 1295 napi_enable(&priv_sl0->napi_tx); 1296 1297 if (priv_sl0->tx_irq_disabled) { 1298 priv_sl0->tx_irq_disabled = false; 1299 enable_irq(priv->irqs_table[1]); 1300 } 1301 1302 if (priv_sl0->rx_irq_disabled) { 1303 priv_sl0->rx_irq_disabled = false; 1304 enable_irq(priv->irqs_table[0]); 1305 } 1306 1307 if (WARN_ON(!priv->data.rx_descs)) 1308 priv->data.rx_descs = 128; 1309 1310 for (i = 0; i < priv->data.rx_descs; i++) { 1311 struct sk_buff *skb; 1312 1313 ret = -ENOMEM; 1314 skb = __netdev_alloc_skb_ip_align(priv->ndev, 1315 priv->rx_packet_max, GFP_KERNEL); 1316 if (!skb) 1317 goto err_cleanup; 1318 ret = cpdma_chan_submit(priv->rxch, skb, skb->data, 1319 skb_tailroom(skb), 0); 1320 if (ret < 0) { 1321 kfree_skb(skb); 1322 goto err_cleanup; 1323 } 1324 } 1325 /* continue even if we didn't manage to submit all 1326 * receive descs 1327 */ 1328 cpsw_info(priv, ifup, "submitted %d rx descriptors\n", i); 1329 1330 if (cpts_register(&priv->pdev->dev, priv->cpts, 1331 priv->data.cpts_clock_mult, 1332 priv->data.cpts_clock_shift)) 1333 dev_err(priv->dev, "error registering cpts device\n"); 1334 1335 } 1336 1337 /* Enable Interrupt pacing if configured */ 1338 if (priv->coal_intvl != 0) { 1339 struct ethtool_coalesce coal; 1340 1341 coal.rx_coalesce_usecs = (priv->coal_intvl << 4); 1342 cpsw_set_coalesce(ndev, &coal); 1343 } 1344 1345 cpdma_ctlr_start(priv->dma); 1346 cpsw_intr_enable(priv); 1347 1348 if (priv->data.dual_emac) 1349 priv->slaves[priv->emac_port].open_stat = true; 1350 return 0; 1351 1352 err_cleanup: 1353 cpdma_ctlr_stop(priv->dma); 1354 for_each_slave(priv, cpsw_slave_stop, priv); 1355 pm_runtime_put_sync(&priv->pdev->dev); 1356 netif_carrier_off(priv->ndev); 1357 return ret; 1358 } 1359 1360 static int cpsw_ndo_stop(struct net_device *ndev) 1361 { 1362 struct cpsw_priv *priv = netdev_priv(ndev); 1363 1364 cpsw_info(priv, ifdown, "shutting down cpsw device\n"); 1365 netif_stop_queue(priv->ndev); 1366 netif_carrier_off(priv->ndev); 1367 1368 if (cpsw_common_res_usage_state(priv) <= 1) { 1369 struct cpsw_priv *priv_sl0 = cpsw_get_slave_priv(priv, 0); 1370 1371 napi_disable(&priv_sl0->napi_rx); 1372 napi_disable(&priv_sl0->napi_tx); 1373 cpts_unregister(priv->cpts); 1374 cpsw_intr_disable(priv); 1375 cpdma_ctlr_stop(priv->dma); 1376 cpsw_ale_stop(priv->ale); 1377 } 1378 for_each_slave(priv, cpsw_slave_stop, priv); 1379 pm_runtime_put_sync(&priv->pdev->dev); 1380 if (priv->data.dual_emac) 1381 priv->slaves[priv->emac_port].open_stat = false; 1382 return 0; 1383 } 1384 1385 static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb, 1386 struct net_device *ndev) 1387 { 1388 struct cpsw_priv *priv = netdev_priv(ndev); 1389 int ret; 1390 1391 ndev->trans_start = jiffies; 1392 1393 if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) { 1394 cpsw_err(priv, tx_err, "packet pad failed\n"); 1395 ndev->stats.tx_dropped++; 1396 return NETDEV_TX_OK; 1397 } 1398 1399 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && 1400 priv->cpts->tx_enable) 1401 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1402 1403 skb_tx_timestamp(skb); 1404 1405 ret = cpsw_tx_packet_submit(ndev, priv, skb); 1406 if (unlikely(ret != 0)) { 1407 cpsw_err(priv, tx_err, "desc submit failed\n"); 1408 goto fail; 1409 } 1410 1411 /* If there is no more tx desc left free then we need to 1412 * tell the kernel to stop sending us tx frames. 1413 */ 1414 if (unlikely(!cpdma_check_free_tx_desc(priv->txch))) 1415 netif_stop_queue(ndev); 1416 1417 return NETDEV_TX_OK; 1418 fail: 1419 ndev->stats.tx_dropped++; 1420 netif_stop_queue(ndev); 1421 return NETDEV_TX_BUSY; 1422 } 1423 1424 #ifdef CONFIG_TI_CPTS 1425 1426 static void cpsw_hwtstamp_v1(struct cpsw_priv *priv) 1427 { 1428 struct cpsw_slave *slave = &priv->slaves[priv->data.active_slave]; 1429 u32 ts_en, seq_id; 1430 1431 if (!priv->cpts->tx_enable && !priv->cpts->rx_enable) { 1432 slave_write(slave, 0, CPSW1_TS_CTL); 1433 return; 1434 } 1435 1436 seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588; 1437 ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS; 1438 1439 if (priv->cpts->tx_enable) 1440 ts_en |= CPSW_V1_TS_TX_EN; 1441 1442 if (priv->cpts->rx_enable) 1443 ts_en |= CPSW_V1_TS_RX_EN; 1444 1445 slave_write(slave, ts_en, CPSW1_TS_CTL); 1446 slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE); 1447 } 1448 1449 static void cpsw_hwtstamp_v2(struct cpsw_priv *priv) 1450 { 1451 struct cpsw_slave *slave; 1452 u32 ctrl, mtype; 1453 1454 if (priv->data.dual_emac) 1455 slave = &priv->slaves[priv->emac_port]; 1456 else 1457 slave = &priv->slaves[priv->data.active_slave]; 1458 1459 ctrl = slave_read(slave, CPSW2_CONTROL); 1460 switch (priv->version) { 1461 case CPSW_VERSION_2: 1462 ctrl &= ~CTRL_V2_ALL_TS_MASK; 1463 1464 if (priv->cpts->tx_enable) 1465 ctrl |= CTRL_V2_TX_TS_BITS; 1466 1467 if (priv->cpts->rx_enable) 1468 ctrl |= CTRL_V2_RX_TS_BITS; 1469 break; 1470 case CPSW_VERSION_3: 1471 default: 1472 ctrl &= ~CTRL_V3_ALL_TS_MASK; 1473 1474 if (priv->cpts->tx_enable) 1475 ctrl |= CTRL_V3_TX_TS_BITS; 1476 1477 if (priv->cpts->rx_enable) 1478 ctrl |= CTRL_V3_RX_TS_BITS; 1479 break; 1480 } 1481 1482 mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS; 1483 1484 slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE); 1485 slave_write(slave, ctrl, CPSW2_CONTROL); 1486 __raw_writel(ETH_P_1588, &priv->regs->ts_ltype); 1487 } 1488 1489 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr) 1490 { 1491 struct cpsw_priv *priv = netdev_priv(dev); 1492 struct cpts *cpts = priv->cpts; 1493 struct hwtstamp_config cfg; 1494 1495 if (priv->version != CPSW_VERSION_1 && 1496 priv->version != CPSW_VERSION_2 && 1497 priv->version != CPSW_VERSION_3) 1498 return -EOPNOTSUPP; 1499 1500 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg))) 1501 return -EFAULT; 1502 1503 /* reserved for future extensions */ 1504 if (cfg.flags) 1505 return -EINVAL; 1506 1507 if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON) 1508 return -ERANGE; 1509 1510 switch (cfg.rx_filter) { 1511 case HWTSTAMP_FILTER_NONE: 1512 cpts->rx_enable = 0; 1513 break; 1514 case HWTSTAMP_FILTER_ALL: 1515 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 1516 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 1517 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 1518 return -ERANGE; 1519 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 1520 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 1521 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 1522 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 1523 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 1524 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 1525 case HWTSTAMP_FILTER_PTP_V2_EVENT: 1526 case HWTSTAMP_FILTER_PTP_V2_SYNC: 1527 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 1528 cpts->rx_enable = 1; 1529 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 1530 break; 1531 default: 1532 return -ERANGE; 1533 } 1534 1535 cpts->tx_enable = cfg.tx_type == HWTSTAMP_TX_ON; 1536 1537 switch (priv->version) { 1538 case CPSW_VERSION_1: 1539 cpsw_hwtstamp_v1(priv); 1540 break; 1541 case CPSW_VERSION_2: 1542 case CPSW_VERSION_3: 1543 cpsw_hwtstamp_v2(priv); 1544 break; 1545 default: 1546 WARN_ON(1); 1547 } 1548 1549 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; 1550 } 1551 1552 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr) 1553 { 1554 struct cpsw_priv *priv = netdev_priv(dev); 1555 struct cpts *cpts = priv->cpts; 1556 struct hwtstamp_config cfg; 1557 1558 if (priv->version != CPSW_VERSION_1 && 1559 priv->version != CPSW_VERSION_2 && 1560 priv->version != CPSW_VERSION_3) 1561 return -EOPNOTSUPP; 1562 1563 cfg.flags = 0; 1564 cfg.tx_type = cpts->tx_enable ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF; 1565 cfg.rx_filter = (cpts->rx_enable ? 1566 HWTSTAMP_FILTER_PTP_V2_EVENT : HWTSTAMP_FILTER_NONE); 1567 1568 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; 1569 } 1570 1571 #endif /*CONFIG_TI_CPTS*/ 1572 1573 static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 1574 { 1575 struct cpsw_priv *priv = netdev_priv(dev); 1576 int slave_no = cpsw_slave_index(priv); 1577 1578 if (!netif_running(dev)) 1579 return -EINVAL; 1580 1581 switch (cmd) { 1582 #ifdef CONFIG_TI_CPTS 1583 case SIOCSHWTSTAMP: 1584 return cpsw_hwtstamp_set(dev, req); 1585 case SIOCGHWTSTAMP: 1586 return cpsw_hwtstamp_get(dev, req); 1587 #endif 1588 } 1589 1590 if (!priv->slaves[slave_no].phy) 1591 return -EOPNOTSUPP; 1592 return phy_mii_ioctl(priv->slaves[slave_no].phy, req, cmd); 1593 } 1594 1595 static void cpsw_ndo_tx_timeout(struct net_device *ndev) 1596 { 1597 struct cpsw_priv *priv = netdev_priv(ndev); 1598 1599 cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n"); 1600 ndev->stats.tx_errors++; 1601 cpsw_intr_disable(priv); 1602 cpdma_chan_stop(priv->txch); 1603 cpdma_chan_start(priv->txch); 1604 cpsw_intr_enable(priv); 1605 } 1606 1607 static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p) 1608 { 1609 struct cpsw_priv *priv = netdev_priv(ndev); 1610 struct sockaddr *addr = (struct sockaddr *)p; 1611 int flags = 0; 1612 u16 vid = 0; 1613 1614 if (!is_valid_ether_addr(addr->sa_data)) 1615 return -EADDRNOTAVAIL; 1616 1617 if (priv->data.dual_emac) { 1618 vid = priv->slaves[priv->emac_port].port_vlan; 1619 flags = ALE_VLAN; 1620 } 1621 1622 cpsw_ale_del_ucast(priv->ale, priv->mac_addr, priv->host_port, 1623 flags, vid); 1624 cpsw_ale_add_ucast(priv->ale, addr->sa_data, priv->host_port, 1625 flags, vid); 1626 1627 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN); 1628 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN); 1629 for_each_slave(priv, cpsw_set_slave_mac, priv); 1630 1631 return 0; 1632 } 1633 1634 #ifdef CONFIG_NET_POLL_CONTROLLER 1635 static void cpsw_ndo_poll_controller(struct net_device *ndev) 1636 { 1637 struct cpsw_priv *priv = netdev_priv(ndev); 1638 1639 cpsw_intr_disable(priv); 1640 cpsw_rx_interrupt(priv->irqs_table[0], priv); 1641 cpsw_tx_interrupt(priv->irqs_table[1], priv); 1642 cpsw_intr_enable(priv); 1643 } 1644 #endif 1645 1646 static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv, 1647 unsigned short vid) 1648 { 1649 int ret; 1650 int unreg_mcast_mask = 0; 1651 u32 port_mask; 1652 1653 if (priv->data.dual_emac) { 1654 port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST; 1655 1656 if (priv->ndev->flags & IFF_ALLMULTI) 1657 unreg_mcast_mask = port_mask; 1658 } else { 1659 port_mask = ALE_ALL_PORTS; 1660 1661 if (priv->ndev->flags & IFF_ALLMULTI) 1662 unreg_mcast_mask = ALE_ALL_PORTS; 1663 else 1664 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2; 1665 } 1666 1667 ret = cpsw_ale_add_vlan(priv->ale, vid, port_mask, 0, port_mask, 1668 unreg_mcast_mask << priv->host_port); 1669 if (ret != 0) 1670 return ret; 1671 1672 ret = cpsw_ale_add_ucast(priv->ale, priv->mac_addr, 1673 priv->host_port, ALE_VLAN, vid); 1674 if (ret != 0) 1675 goto clean_vid; 1676 1677 ret = cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast, 1678 port_mask, ALE_VLAN, vid, 0); 1679 if (ret != 0) 1680 goto clean_vlan_ucast; 1681 return 0; 1682 1683 clean_vlan_ucast: 1684 cpsw_ale_del_ucast(priv->ale, priv->mac_addr, 1685 priv->host_port, ALE_VLAN, vid); 1686 clean_vid: 1687 cpsw_ale_del_vlan(priv->ale, vid, 0); 1688 return ret; 1689 } 1690 1691 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev, 1692 __be16 proto, u16 vid) 1693 { 1694 struct cpsw_priv *priv = netdev_priv(ndev); 1695 1696 if (vid == priv->data.default_vlan) 1697 return 0; 1698 1699 if (priv->data.dual_emac) { 1700 /* In dual EMAC, reserved VLAN id should not be used for 1701 * creating VLAN interfaces as this can break the dual 1702 * EMAC port separation 1703 */ 1704 int i; 1705 1706 for (i = 0; i < priv->data.slaves; i++) { 1707 if (vid == priv->slaves[i].port_vlan) 1708 return -EINVAL; 1709 } 1710 } 1711 1712 dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid); 1713 return cpsw_add_vlan_ale_entry(priv, vid); 1714 } 1715 1716 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev, 1717 __be16 proto, u16 vid) 1718 { 1719 struct cpsw_priv *priv = netdev_priv(ndev); 1720 int ret; 1721 1722 if (vid == priv->data.default_vlan) 1723 return 0; 1724 1725 if (priv->data.dual_emac) { 1726 int i; 1727 1728 for (i = 0; i < priv->data.slaves; i++) { 1729 if (vid == priv->slaves[i].port_vlan) 1730 return -EINVAL; 1731 } 1732 } 1733 1734 dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid); 1735 ret = cpsw_ale_del_vlan(priv->ale, vid, 0); 1736 if (ret != 0) 1737 return ret; 1738 1739 ret = cpsw_ale_del_ucast(priv->ale, priv->mac_addr, 1740 priv->host_port, ALE_VLAN, vid); 1741 if (ret != 0) 1742 return ret; 1743 1744 return cpsw_ale_del_mcast(priv->ale, priv->ndev->broadcast, 1745 0, ALE_VLAN, vid); 1746 } 1747 1748 static const struct net_device_ops cpsw_netdev_ops = { 1749 .ndo_open = cpsw_ndo_open, 1750 .ndo_stop = cpsw_ndo_stop, 1751 .ndo_start_xmit = cpsw_ndo_start_xmit, 1752 .ndo_set_mac_address = cpsw_ndo_set_mac_address, 1753 .ndo_do_ioctl = cpsw_ndo_ioctl, 1754 .ndo_validate_addr = eth_validate_addr, 1755 .ndo_change_mtu = eth_change_mtu, 1756 .ndo_tx_timeout = cpsw_ndo_tx_timeout, 1757 .ndo_set_rx_mode = cpsw_ndo_set_rx_mode, 1758 #ifdef CONFIG_NET_POLL_CONTROLLER 1759 .ndo_poll_controller = cpsw_ndo_poll_controller, 1760 #endif 1761 .ndo_vlan_rx_add_vid = cpsw_ndo_vlan_rx_add_vid, 1762 .ndo_vlan_rx_kill_vid = cpsw_ndo_vlan_rx_kill_vid, 1763 }; 1764 1765 static int cpsw_get_regs_len(struct net_device *ndev) 1766 { 1767 struct cpsw_priv *priv = netdev_priv(ndev); 1768 1769 return priv->data.ale_entries * ALE_ENTRY_WORDS * sizeof(u32); 1770 } 1771 1772 static void cpsw_get_regs(struct net_device *ndev, 1773 struct ethtool_regs *regs, void *p) 1774 { 1775 struct cpsw_priv *priv = netdev_priv(ndev); 1776 u32 *reg = p; 1777 1778 /* update CPSW IP version */ 1779 regs->version = priv->version; 1780 1781 cpsw_ale_dump(priv->ale, reg); 1782 } 1783 1784 static void cpsw_get_drvinfo(struct net_device *ndev, 1785 struct ethtool_drvinfo *info) 1786 { 1787 struct cpsw_priv *priv = netdev_priv(ndev); 1788 1789 strlcpy(info->driver, "cpsw", sizeof(info->driver)); 1790 strlcpy(info->version, "1.0", sizeof(info->version)); 1791 strlcpy(info->bus_info, priv->pdev->name, sizeof(info->bus_info)); 1792 info->regdump_len = cpsw_get_regs_len(ndev); 1793 } 1794 1795 static u32 cpsw_get_msglevel(struct net_device *ndev) 1796 { 1797 struct cpsw_priv *priv = netdev_priv(ndev); 1798 return priv->msg_enable; 1799 } 1800 1801 static void cpsw_set_msglevel(struct net_device *ndev, u32 value) 1802 { 1803 struct cpsw_priv *priv = netdev_priv(ndev); 1804 priv->msg_enable = value; 1805 } 1806 1807 static int cpsw_get_ts_info(struct net_device *ndev, 1808 struct ethtool_ts_info *info) 1809 { 1810 #ifdef CONFIG_TI_CPTS 1811 struct cpsw_priv *priv = netdev_priv(ndev); 1812 1813 info->so_timestamping = 1814 SOF_TIMESTAMPING_TX_HARDWARE | 1815 SOF_TIMESTAMPING_TX_SOFTWARE | 1816 SOF_TIMESTAMPING_RX_HARDWARE | 1817 SOF_TIMESTAMPING_RX_SOFTWARE | 1818 SOF_TIMESTAMPING_SOFTWARE | 1819 SOF_TIMESTAMPING_RAW_HARDWARE; 1820 info->phc_index = priv->cpts->phc_index; 1821 info->tx_types = 1822 (1 << HWTSTAMP_TX_OFF) | 1823 (1 << HWTSTAMP_TX_ON); 1824 info->rx_filters = 1825 (1 << HWTSTAMP_FILTER_NONE) | 1826 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 1827 #else 1828 info->so_timestamping = 1829 SOF_TIMESTAMPING_TX_SOFTWARE | 1830 SOF_TIMESTAMPING_RX_SOFTWARE | 1831 SOF_TIMESTAMPING_SOFTWARE; 1832 info->phc_index = -1; 1833 info->tx_types = 0; 1834 info->rx_filters = 0; 1835 #endif 1836 return 0; 1837 } 1838 1839 static int cpsw_get_settings(struct net_device *ndev, 1840 struct ethtool_cmd *ecmd) 1841 { 1842 struct cpsw_priv *priv = netdev_priv(ndev); 1843 int slave_no = cpsw_slave_index(priv); 1844 1845 if (priv->slaves[slave_no].phy) 1846 return phy_ethtool_gset(priv->slaves[slave_no].phy, ecmd); 1847 else 1848 return -EOPNOTSUPP; 1849 } 1850 1851 static int cpsw_set_settings(struct net_device *ndev, struct ethtool_cmd *ecmd) 1852 { 1853 struct cpsw_priv *priv = netdev_priv(ndev); 1854 int slave_no = cpsw_slave_index(priv); 1855 1856 if (priv->slaves[slave_no].phy) 1857 return phy_ethtool_sset(priv->slaves[slave_no].phy, ecmd); 1858 else 1859 return -EOPNOTSUPP; 1860 } 1861 1862 static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 1863 { 1864 struct cpsw_priv *priv = netdev_priv(ndev); 1865 int slave_no = cpsw_slave_index(priv); 1866 1867 wol->supported = 0; 1868 wol->wolopts = 0; 1869 1870 if (priv->slaves[slave_no].phy) 1871 phy_ethtool_get_wol(priv->slaves[slave_no].phy, wol); 1872 } 1873 1874 static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 1875 { 1876 struct cpsw_priv *priv = netdev_priv(ndev); 1877 int slave_no = cpsw_slave_index(priv); 1878 1879 if (priv->slaves[slave_no].phy) 1880 return phy_ethtool_set_wol(priv->slaves[slave_no].phy, wol); 1881 else 1882 return -EOPNOTSUPP; 1883 } 1884 1885 static void cpsw_get_pauseparam(struct net_device *ndev, 1886 struct ethtool_pauseparam *pause) 1887 { 1888 struct cpsw_priv *priv = netdev_priv(ndev); 1889 1890 pause->autoneg = AUTONEG_DISABLE; 1891 pause->rx_pause = priv->rx_pause ? true : false; 1892 pause->tx_pause = priv->tx_pause ? true : false; 1893 } 1894 1895 static int cpsw_set_pauseparam(struct net_device *ndev, 1896 struct ethtool_pauseparam *pause) 1897 { 1898 struct cpsw_priv *priv = netdev_priv(ndev); 1899 bool link; 1900 1901 priv->rx_pause = pause->rx_pause ? true : false; 1902 priv->tx_pause = pause->tx_pause ? true : false; 1903 1904 for_each_slave(priv, _cpsw_adjust_link, priv, &link); 1905 1906 return 0; 1907 } 1908 1909 static const struct ethtool_ops cpsw_ethtool_ops = { 1910 .get_drvinfo = cpsw_get_drvinfo, 1911 .get_msglevel = cpsw_get_msglevel, 1912 .set_msglevel = cpsw_set_msglevel, 1913 .get_link = ethtool_op_get_link, 1914 .get_ts_info = cpsw_get_ts_info, 1915 .get_settings = cpsw_get_settings, 1916 .set_settings = cpsw_set_settings, 1917 .get_coalesce = cpsw_get_coalesce, 1918 .set_coalesce = cpsw_set_coalesce, 1919 .get_sset_count = cpsw_get_sset_count, 1920 .get_strings = cpsw_get_strings, 1921 .get_ethtool_stats = cpsw_get_ethtool_stats, 1922 .get_pauseparam = cpsw_get_pauseparam, 1923 .set_pauseparam = cpsw_set_pauseparam, 1924 .get_wol = cpsw_get_wol, 1925 .set_wol = cpsw_set_wol, 1926 .get_regs_len = cpsw_get_regs_len, 1927 .get_regs = cpsw_get_regs, 1928 }; 1929 1930 static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_priv *priv, 1931 u32 slave_reg_ofs, u32 sliver_reg_ofs) 1932 { 1933 void __iomem *regs = priv->regs; 1934 int slave_num = slave->slave_num; 1935 struct cpsw_slave_data *data = priv->data.slave_data + slave_num; 1936 1937 slave->data = data; 1938 slave->regs = regs + slave_reg_ofs; 1939 slave->sliver = regs + sliver_reg_ofs; 1940 slave->port_vlan = data->dual_emac_res_vlan; 1941 } 1942 1943 static int cpsw_probe_dt(struct cpsw_priv *priv, 1944 struct platform_device *pdev) 1945 { 1946 struct device_node *node = pdev->dev.of_node; 1947 struct device_node *slave_node; 1948 struct cpsw_platform_data *data = &priv->data; 1949 int i = 0, ret; 1950 u32 prop; 1951 1952 if (!node) 1953 return -EINVAL; 1954 1955 if (of_property_read_u32(node, "slaves", &prop)) { 1956 dev_err(&pdev->dev, "Missing slaves property in the DT.\n"); 1957 return -EINVAL; 1958 } 1959 data->slaves = prop; 1960 1961 if (of_property_read_u32(node, "active_slave", &prop)) { 1962 dev_err(&pdev->dev, "Missing active_slave property in the DT.\n"); 1963 return -EINVAL; 1964 } 1965 data->active_slave = prop; 1966 1967 if (of_property_read_u32(node, "cpts_clock_mult", &prop)) { 1968 dev_err(&pdev->dev, "Missing cpts_clock_mult property in the DT.\n"); 1969 return -EINVAL; 1970 } 1971 data->cpts_clock_mult = prop; 1972 1973 if (of_property_read_u32(node, "cpts_clock_shift", &prop)) { 1974 dev_err(&pdev->dev, "Missing cpts_clock_shift property in the DT.\n"); 1975 return -EINVAL; 1976 } 1977 data->cpts_clock_shift = prop; 1978 1979 data->slave_data = devm_kzalloc(&pdev->dev, data->slaves 1980 * sizeof(struct cpsw_slave_data), 1981 GFP_KERNEL); 1982 if (!data->slave_data) 1983 return -ENOMEM; 1984 1985 if (of_property_read_u32(node, "cpdma_channels", &prop)) { 1986 dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n"); 1987 return -EINVAL; 1988 } 1989 data->channels = prop; 1990 1991 if (of_property_read_u32(node, "ale_entries", &prop)) { 1992 dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n"); 1993 return -EINVAL; 1994 } 1995 data->ale_entries = prop; 1996 1997 if (of_property_read_u32(node, "bd_ram_size", &prop)) { 1998 dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n"); 1999 return -EINVAL; 2000 } 2001 data->bd_ram_size = prop; 2002 2003 if (of_property_read_u32(node, "rx_descs", &prop)) { 2004 dev_err(&pdev->dev, "Missing rx_descs property in the DT.\n"); 2005 return -EINVAL; 2006 } 2007 data->rx_descs = prop; 2008 2009 if (of_property_read_u32(node, "mac_control", &prop)) { 2010 dev_err(&pdev->dev, "Missing mac_control property in the DT.\n"); 2011 return -EINVAL; 2012 } 2013 data->mac_control = prop; 2014 2015 if (of_property_read_bool(node, "dual_emac")) 2016 data->dual_emac = 1; 2017 2018 /* 2019 * Populate all the child nodes here... 2020 */ 2021 ret = of_platform_populate(node, NULL, NULL, &pdev->dev); 2022 /* We do not want to force this, as in some cases may not have child */ 2023 if (ret) 2024 dev_warn(&pdev->dev, "Doesn't have any child node\n"); 2025 2026 for_each_child_of_node(node, slave_node) { 2027 struct cpsw_slave_data *slave_data = data->slave_data + i; 2028 const void *mac_addr = NULL; 2029 u32 phyid; 2030 int lenp; 2031 const __be32 *parp; 2032 struct device_node *mdio_node; 2033 struct platform_device *mdio; 2034 2035 /* This is no slave child node, continue */ 2036 if (strcmp(slave_node->name, "slave")) 2037 continue; 2038 2039 priv->phy_node = of_parse_phandle(slave_node, "phy-handle", 0); 2040 parp = of_get_property(slave_node, "phy_id", &lenp); 2041 if ((parp == NULL) || (lenp != (sizeof(void *) * 2))) { 2042 dev_err(&pdev->dev, "Missing slave[%d] phy_id property\n", i); 2043 goto no_phy_slave; 2044 } 2045 mdio_node = of_find_node_by_phandle(be32_to_cpup(parp)); 2046 phyid = be32_to_cpup(parp+1); 2047 mdio = of_find_device_by_node(mdio_node); 2048 of_node_put(mdio_node); 2049 if (!mdio) { 2050 dev_err(&pdev->dev, "Missing mdio platform device\n"); 2051 return -EINVAL; 2052 } 2053 snprintf(slave_data->phy_id, sizeof(slave_data->phy_id), 2054 PHY_ID_FMT, mdio->name, phyid); 2055 slave_data->phy_if = of_get_phy_mode(slave_node); 2056 if (slave_data->phy_if < 0) { 2057 dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n", 2058 i); 2059 return slave_data->phy_if; 2060 } 2061 2062 no_phy_slave: 2063 mac_addr = of_get_mac_address(slave_node); 2064 if (mac_addr) { 2065 memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN); 2066 } else { 2067 if (of_machine_is_compatible("ti,am33xx")) { 2068 ret = cpsw_am33xx_cm_get_macid(&pdev->dev, 2069 0x630, i, 2070 slave_data->mac_addr); 2071 if (ret) 2072 return ret; 2073 } 2074 } 2075 if (data->dual_emac) { 2076 if (of_property_read_u32(slave_node, "dual_emac_res_vlan", 2077 &prop)) { 2078 dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n"); 2079 slave_data->dual_emac_res_vlan = i+1; 2080 dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n", 2081 slave_data->dual_emac_res_vlan, i); 2082 } else { 2083 slave_data->dual_emac_res_vlan = prop; 2084 } 2085 } 2086 2087 i++; 2088 if (i == data->slaves) 2089 break; 2090 } 2091 2092 return 0; 2093 } 2094 2095 static int cpsw_probe_dual_emac(struct platform_device *pdev, 2096 struct cpsw_priv *priv) 2097 { 2098 struct cpsw_platform_data *data = &priv->data; 2099 struct net_device *ndev; 2100 struct cpsw_priv *priv_sl2; 2101 int ret = 0, i; 2102 2103 ndev = alloc_etherdev(sizeof(struct cpsw_priv)); 2104 if (!ndev) { 2105 dev_err(&pdev->dev, "cpsw: error allocating net_device\n"); 2106 return -ENOMEM; 2107 } 2108 2109 priv_sl2 = netdev_priv(ndev); 2110 spin_lock_init(&priv_sl2->lock); 2111 priv_sl2->data = *data; 2112 priv_sl2->pdev = pdev; 2113 priv_sl2->ndev = ndev; 2114 priv_sl2->dev = &ndev->dev; 2115 priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG); 2116 priv_sl2->rx_packet_max = max(rx_packet_max, 128); 2117 2118 if (is_valid_ether_addr(data->slave_data[1].mac_addr)) { 2119 memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr, 2120 ETH_ALEN); 2121 dev_info(&pdev->dev, "cpsw: Detected MACID = %pM\n", priv_sl2->mac_addr); 2122 } else { 2123 random_ether_addr(priv_sl2->mac_addr); 2124 dev_info(&pdev->dev, "cpsw: Random MACID = %pM\n", priv_sl2->mac_addr); 2125 } 2126 memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN); 2127 2128 priv_sl2->slaves = priv->slaves; 2129 priv_sl2->clk = priv->clk; 2130 2131 priv_sl2->coal_intvl = 0; 2132 priv_sl2->bus_freq_mhz = priv->bus_freq_mhz; 2133 2134 priv_sl2->regs = priv->regs; 2135 priv_sl2->host_port = priv->host_port; 2136 priv_sl2->host_port_regs = priv->host_port_regs; 2137 priv_sl2->wr_regs = priv->wr_regs; 2138 priv_sl2->hw_stats = priv->hw_stats; 2139 priv_sl2->dma = priv->dma; 2140 priv_sl2->txch = priv->txch; 2141 priv_sl2->rxch = priv->rxch; 2142 priv_sl2->ale = priv->ale; 2143 priv_sl2->emac_port = 1; 2144 priv->slaves[1].ndev = ndev; 2145 priv_sl2->cpts = priv->cpts; 2146 priv_sl2->version = priv->version; 2147 2148 for (i = 0; i < priv->num_irqs; i++) { 2149 priv_sl2->irqs_table[i] = priv->irqs_table[i]; 2150 priv_sl2->num_irqs = priv->num_irqs; 2151 } 2152 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 2153 2154 ndev->netdev_ops = &cpsw_netdev_ops; 2155 ndev->ethtool_ops = &cpsw_ethtool_ops; 2156 2157 /* register the network device */ 2158 SET_NETDEV_DEV(ndev, &pdev->dev); 2159 ret = register_netdev(ndev); 2160 if (ret) { 2161 dev_err(&pdev->dev, "cpsw: error registering net device\n"); 2162 free_netdev(ndev); 2163 ret = -ENODEV; 2164 } 2165 2166 return ret; 2167 } 2168 2169 #define CPSW_QUIRK_IRQ BIT(0) 2170 2171 static struct platform_device_id cpsw_devtype[] = { 2172 { 2173 /* keep it for existing comaptibles */ 2174 .name = "cpsw", 2175 .driver_data = CPSW_QUIRK_IRQ, 2176 }, { 2177 .name = "am335x-cpsw", 2178 .driver_data = CPSW_QUIRK_IRQ, 2179 }, { 2180 .name = "am4372-cpsw", 2181 .driver_data = 0, 2182 }, { 2183 .name = "dra7-cpsw", 2184 .driver_data = 0, 2185 }, { 2186 /* sentinel */ 2187 } 2188 }; 2189 MODULE_DEVICE_TABLE(platform, cpsw_devtype); 2190 2191 enum ti_cpsw_type { 2192 CPSW = 0, 2193 AM335X_CPSW, 2194 AM4372_CPSW, 2195 DRA7_CPSW, 2196 }; 2197 2198 static const struct of_device_id cpsw_of_mtable[] = { 2199 { .compatible = "ti,cpsw", .data = &cpsw_devtype[CPSW], }, 2200 { .compatible = "ti,am335x-cpsw", .data = &cpsw_devtype[AM335X_CPSW], }, 2201 { .compatible = "ti,am4372-cpsw", .data = &cpsw_devtype[AM4372_CPSW], }, 2202 { .compatible = "ti,dra7-cpsw", .data = &cpsw_devtype[DRA7_CPSW], }, 2203 { /* sentinel */ }, 2204 }; 2205 MODULE_DEVICE_TABLE(of, cpsw_of_mtable); 2206 2207 static int cpsw_probe(struct platform_device *pdev) 2208 { 2209 struct cpsw_platform_data *data; 2210 struct net_device *ndev; 2211 struct cpsw_priv *priv; 2212 struct cpdma_params dma_params; 2213 struct cpsw_ale_params ale_params; 2214 void __iomem *ss_regs; 2215 struct resource *res, *ss_res; 2216 const struct of_device_id *of_id; 2217 u32 slave_offset, sliver_offset, slave_size; 2218 int ret = 0, i; 2219 int irq; 2220 2221 ndev = alloc_etherdev(sizeof(struct cpsw_priv)); 2222 if (!ndev) { 2223 dev_err(&pdev->dev, "error allocating net_device\n"); 2224 return -ENOMEM; 2225 } 2226 2227 platform_set_drvdata(pdev, ndev); 2228 priv = netdev_priv(ndev); 2229 spin_lock_init(&priv->lock); 2230 priv->pdev = pdev; 2231 priv->ndev = ndev; 2232 priv->dev = &ndev->dev; 2233 priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG); 2234 priv->rx_packet_max = max(rx_packet_max, 128); 2235 priv->cpts = devm_kzalloc(&pdev->dev, sizeof(struct cpts), GFP_KERNEL); 2236 if (!priv->cpts) { 2237 dev_err(&pdev->dev, "error allocating cpts\n"); 2238 ret = -ENOMEM; 2239 goto clean_ndev_ret; 2240 } 2241 2242 /* 2243 * This may be required here for child devices. 2244 */ 2245 pm_runtime_enable(&pdev->dev); 2246 2247 /* Select default pin state */ 2248 pinctrl_pm_select_default_state(&pdev->dev); 2249 2250 if (cpsw_probe_dt(priv, pdev)) { 2251 dev_err(&pdev->dev, "cpsw: platform data missing\n"); 2252 ret = -ENODEV; 2253 goto clean_runtime_disable_ret; 2254 } 2255 data = &priv->data; 2256 2257 if (is_valid_ether_addr(data->slave_data[0].mac_addr)) { 2258 memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN); 2259 dev_info(&pdev->dev, "Detected MACID = %pM\n", priv->mac_addr); 2260 } else { 2261 eth_random_addr(priv->mac_addr); 2262 dev_info(&pdev->dev, "Random MACID = %pM\n", priv->mac_addr); 2263 } 2264 2265 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN); 2266 2267 priv->slaves = devm_kzalloc(&pdev->dev, 2268 sizeof(struct cpsw_slave) * data->slaves, 2269 GFP_KERNEL); 2270 if (!priv->slaves) { 2271 ret = -ENOMEM; 2272 goto clean_runtime_disable_ret; 2273 } 2274 for (i = 0; i < data->slaves; i++) 2275 priv->slaves[i].slave_num = i; 2276 2277 priv->slaves[0].ndev = ndev; 2278 priv->emac_port = 0; 2279 2280 priv->clk = devm_clk_get(&pdev->dev, "fck"); 2281 if (IS_ERR(priv->clk)) { 2282 dev_err(priv->dev, "fck is not found\n"); 2283 ret = -ENODEV; 2284 goto clean_runtime_disable_ret; 2285 } 2286 priv->coal_intvl = 0; 2287 priv->bus_freq_mhz = clk_get_rate(priv->clk) / 1000000; 2288 2289 ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2290 ss_regs = devm_ioremap_resource(&pdev->dev, ss_res); 2291 if (IS_ERR(ss_regs)) { 2292 ret = PTR_ERR(ss_regs); 2293 goto clean_runtime_disable_ret; 2294 } 2295 priv->regs = ss_regs; 2296 priv->host_port = HOST_PORT_NUM; 2297 2298 /* Need to enable clocks with runtime PM api to access module 2299 * registers 2300 */ 2301 pm_runtime_get_sync(&pdev->dev); 2302 priv->version = readl(&priv->regs->id_ver); 2303 pm_runtime_put_sync(&pdev->dev); 2304 2305 res = platform_get_resource(pdev, IORESOURCE_MEM, 1); 2306 priv->wr_regs = devm_ioremap_resource(&pdev->dev, res); 2307 if (IS_ERR(priv->wr_regs)) { 2308 ret = PTR_ERR(priv->wr_regs); 2309 goto clean_runtime_disable_ret; 2310 } 2311 2312 memset(&dma_params, 0, sizeof(dma_params)); 2313 memset(&ale_params, 0, sizeof(ale_params)); 2314 2315 switch (priv->version) { 2316 case CPSW_VERSION_1: 2317 priv->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET; 2318 priv->cpts->reg = ss_regs + CPSW1_CPTS_OFFSET; 2319 priv->hw_stats = ss_regs + CPSW1_HW_STATS; 2320 dma_params.dmaregs = ss_regs + CPSW1_CPDMA_OFFSET; 2321 dma_params.txhdp = ss_regs + CPSW1_STATERAM_OFFSET; 2322 ale_params.ale_regs = ss_regs + CPSW1_ALE_OFFSET; 2323 slave_offset = CPSW1_SLAVE_OFFSET; 2324 slave_size = CPSW1_SLAVE_SIZE; 2325 sliver_offset = CPSW1_SLIVER_OFFSET; 2326 dma_params.desc_mem_phys = 0; 2327 break; 2328 case CPSW_VERSION_2: 2329 case CPSW_VERSION_3: 2330 case CPSW_VERSION_4: 2331 priv->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET; 2332 priv->cpts->reg = ss_regs + CPSW2_CPTS_OFFSET; 2333 priv->hw_stats = ss_regs + CPSW2_HW_STATS; 2334 dma_params.dmaregs = ss_regs + CPSW2_CPDMA_OFFSET; 2335 dma_params.txhdp = ss_regs + CPSW2_STATERAM_OFFSET; 2336 ale_params.ale_regs = ss_regs + CPSW2_ALE_OFFSET; 2337 slave_offset = CPSW2_SLAVE_OFFSET; 2338 slave_size = CPSW2_SLAVE_SIZE; 2339 sliver_offset = CPSW2_SLIVER_OFFSET; 2340 dma_params.desc_mem_phys = 2341 (u32 __force) ss_res->start + CPSW2_BD_OFFSET; 2342 break; 2343 default: 2344 dev_err(priv->dev, "unknown version 0x%08x\n", priv->version); 2345 ret = -ENODEV; 2346 goto clean_runtime_disable_ret; 2347 } 2348 for (i = 0; i < priv->data.slaves; i++) { 2349 struct cpsw_slave *slave = &priv->slaves[i]; 2350 cpsw_slave_init(slave, priv, slave_offset, sliver_offset); 2351 slave_offset += slave_size; 2352 sliver_offset += SLIVER_SIZE; 2353 } 2354 2355 dma_params.dev = &pdev->dev; 2356 dma_params.rxthresh = dma_params.dmaregs + CPDMA_RXTHRESH; 2357 dma_params.rxfree = dma_params.dmaregs + CPDMA_RXFREE; 2358 dma_params.rxhdp = dma_params.txhdp + CPDMA_RXHDP; 2359 dma_params.txcp = dma_params.txhdp + CPDMA_TXCP; 2360 dma_params.rxcp = dma_params.txhdp + CPDMA_RXCP; 2361 2362 dma_params.num_chan = data->channels; 2363 dma_params.has_soft_reset = true; 2364 dma_params.min_packet_size = CPSW_MIN_PACKET_SIZE; 2365 dma_params.desc_mem_size = data->bd_ram_size; 2366 dma_params.desc_align = 16; 2367 dma_params.has_ext_regs = true; 2368 dma_params.desc_hw_addr = dma_params.desc_mem_phys; 2369 2370 priv->dma = cpdma_ctlr_create(&dma_params); 2371 if (!priv->dma) { 2372 dev_err(priv->dev, "error initializing dma\n"); 2373 ret = -ENOMEM; 2374 goto clean_runtime_disable_ret; 2375 } 2376 2377 priv->txch = cpdma_chan_create(priv->dma, tx_chan_num(0), 2378 cpsw_tx_handler); 2379 priv->rxch = cpdma_chan_create(priv->dma, rx_chan_num(0), 2380 cpsw_rx_handler); 2381 2382 if (WARN_ON(!priv->txch || !priv->rxch)) { 2383 dev_err(priv->dev, "error initializing dma channels\n"); 2384 ret = -ENOMEM; 2385 goto clean_dma_ret; 2386 } 2387 2388 ale_params.dev = &ndev->dev; 2389 ale_params.ale_ageout = ale_ageout; 2390 ale_params.ale_entries = data->ale_entries; 2391 ale_params.ale_ports = data->slaves; 2392 2393 priv->ale = cpsw_ale_create(&ale_params); 2394 if (!priv->ale) { 2395 dev_err(priv->dev, "error initializing ale engine\n"); 2396 ret = -ENODEV; 2397 goto clean_dma_ret; 2398 } 2399 2400 ndev->irq = platform_get_irq(pdev, 1); 2401 if (ndev->irq < 0) { 2402 dev_err(priv->dev, "error getting irq resource\n"); 2403 ret = -ENOENT; 2404 goto clean_ale_ret; 2405 } 2406 2407 of_id = of_match_device(cpsw_of_mtable, &pdev->dev); 2408 if (of_id) { 2409 pdev->id_entry = of_id->data; 2410 if (pdev->id_entry->driver_data) 2411 priv->quirk_irq = true; 2412 } 2413 2414 /* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and 2415 * MISC IRQs which are always kept disabled with this driver so 2416 * we will not request them. 2417 * 2418 * If anyone wants to implement support for those, make sure to 2419 * first request and append them to irqs_table array. 2420 */ 2421 2422 /* RX IRQ */ 2423 irq = platform_get_irq(pdev, 1); 2424 if (irq < 0) 2425 goto clean_ale_ret; 2426 2427 priv->irqs_table[0] = irq; 2428 ret = devm_request_irq(&pdev->dev, irq, cpsw_rx_interrupt, 2429 0, dev_name(&pdev->dev), priv); 2430 if (ret < 0) { 2431 dev_err(priv->dev, "error attaching irq (%d)\n", ret); 2432 goto clean_ale_ret; 2433 } 2434 2435 /* TX IRQ */ 2436 irq = platform_get_irq(pdev, 2); 2437 if (irq < 0) 2438 goto clean_ale_ret; 2439 2440 priv->irqs_table[1] = irq; 2441 ret = devm_request_irq(&pdev->dev, irq, cpsw_tx_interrupt, 2442 0, dev_name(&pdev->dev), priv); 2443 if (ret < 0) { 2444 dev_err(priv->dev, "error attaching irq (%d)\n", ret); 2445 goto clean_ale_ret; 2446 } 2447 priv->num_irqs = 2; 2448 2449 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 2450 2451 ndev->netdev_ops = &cpsw_netdev_ops; 2452 ndev->ethtool_ops = &cpsw_ethtool_ops; 2453 netif_napi_add(ndev, &priv->napi_rx, cpsw_rx_poll, CPSW_POLL_WEIGHT); 2454 netif_napi_add(ndev, &priv->napi_tx, cpsw_tx_poll, CPSW_POLL_WEIGHT); 2455 2456 /* register the network device */ 2457 SET_NETDEV_DEV(ndev, &pdev->dev); 2458 ret = register_netdev(ndev); 2459 if (ret) { 2460 dev_err(priv->dev, "error registering net device\n"); 2461 ret = -ENODEV; 2462 goto clean_ale_ret; 2463 } 2464 2465 cpsw_notice(priv, probe, "initialized device (regs %pa, irq %d)\n", 2466 &ss_res->start, ndev->irq); 2467 2468 if (priv->data.dual_emac) { 2469 ret = cpsw_probe_dual_emac(pdev, priv); 2470 if (ret) { 2471 cpsw_err(priv, probe, "error probe slave 2 emac interface\n"); 2472 goto clean_ale_ret; 2473 } 2474 } 2475 2476 return 0; 2477 2478 clean_ale_ret: 2479 cpsw_ale_destroy(priv->ale); 2480 clean_dma_ret: 2481 cpdma_chan_destroy(priv->txch); 2482 cpdma_chan_destroy(priv->rxch); 2483 cpdma_ctlr_destroy(priv->dma); 2484 clean_runtime_disable_ret: 2485 pm_runtime_disable(&pdev->dev); 2486 clean_ndev_ret: 2487 free_netdev(priv->ndev); 2488 return ret; 2489 } 2490 2491 static int cpsw_remove_child_device(struct device *dev, void *c) 2492 { 2493 struct platform_device *pdev = to_platform_device(dev); 2494 2495 of_device_unregister(pdev); 2496 2497 return 0; 2498 } 2499 2500 static int cpsw_remove(struct platform_device *pdev) 2501 { 2502 struct net_device *ndev = platform_get_drvdata(pdev); 2503 struct cpsw_priv *priv = netdev_priv(ndev); 2504 2505 if (priv->data.dual_emac) 2506 unregister_netdev(cpsw_get_slave_ndev(priv, 1)); 2507 unregister_netdev(ndev); 2508 2509 cpsw_ale_destroy(priv->ale); 2510 cpdma_chan_destroy(priv->txch); 2511 cpdma_chan_destroy(priv->rxch); 2512 cpdma_ctlr_destroy(priv->dma); 2513 pm_runtime_disable(&pdev->dev); 2514 device_for_each_child(&pdev->dev, NULL, cpsw_remove_child_device); 2515 if (priv->data.dual_emac) 2516 free_netdev(cpsw_get_slave_ndev(priv, 1)); 2517 free_netdev(ndev); 2518 return 0; 2519 } 2520 2521 #ifdef CONFIG_PM_SLEEP 2522 static int cpsw_suspend(struct device *dev) 2523 { 2524 struct platform_device *pdev = to_platform_device(dev); 2525 struct net_device *ndev = platform_get_drvdata(pdev); 2526 struct cpsw_priv *priv = netdev_priv(ndev); 2527 2528 if (priv->data.dual_emac) { 2529 int i; 2530 2531 for (i = 0; i < priv->data.slaves; i++) { 2532 if (netif_running(priv->slaves[i].ndev)) 2533 cpsw_ndo_stop(priv->slaves[i].ndev); 2534 soft_reset_slave(priv->slaves + i); 2535 } 2536 } else { 2537 if (netif_running(ndev)) 2538 cpsw_ndo_stop(ndev); 2539 for_each_slave(priv, soft_reset_slave); 2540 } 2541 2542 pm_runtime_put_sync(&pdev->dev); 2543 2544 /* Select sleep pin state */ 2545 pinctrl_pm_select_sleep_state(&pdev->dev); 2546 2547 return 0; 2548 } 2549 2550 static int cpsw_resume(struct device *dev) 2551 { 2552 struct platform_device *pdev = to_platform_device(dev); 2553 struct net_device *ndev = platform_get_drvdata(pdev); 2554 struct cpsw_priv *priv = netdev_priv(ndev); 2555 2556 pm_runtime_get_sync(&pdev->dev); 2557 2558 /* Select default pin state */ 2559 pinctrl_pm_select_default_state(&pdev->dev); 2560 2561 if (priv->data.dual_emac) { 2562 int i; 2563 2564 for (i = 0; i < priv->data.slaves; i++) { 2565 if (netif_running(priv->slaves[i].ndev)) 2566 cpsw_ndo_open(priv->slaves[i].ndev); 2567 } 2568 } else { 2569 if (netif_running(ndev)) 2570 cpsw_ndo_open(ndev); 2571 } 2572 return 0; 2573 } 2574 #endif 2575 2576 static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume); 2577 2578 static struct platform_driver cpsw_driver = { 2579 .driver = { 2580 .name = "cpsw", 2581 .pm = &cpsw_pm_ops, 2582 .of_match_table = cpsw_of_mtable, 2583 }, 2584 .probe = cpsw_probe, 2585 .remove = cpsw_remove, 2586 }; 2587 2588 static int __init cpsw_init(void) 2589 { 2590 return platform_driver_register(&cpsw_driver); 2591 } 2592 late_initcall(cpsw_init); 2593 2594 static void __exit cpsw_exit(void) 2595 { 2596 platform_driver_unregister(&cpsw_driver); 2597 } 2598 module_exit(cpsw_exit); 2599 2600 MODULE_LICENSE("GPL"); 2601 MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>"); 2602 MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>"); 2603 MODULE_DESCRIPTION("TI CPSW Ethernet driver"); 2604