1 /* 2 * Texas Instruments Ethernet Switch Driver 3 * 4 * Copyright (C) 2012 Texas Instruments 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License as 8 * published by the Free Software Foundation version 2. 9 * 10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any 11 * kind, whether express or implied; without even the implied warranty 12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/io.h> 18 #include <linux/clk.h> 19 #include <linux/timer.h> 20 #include <linux/module.h> 21 #include <linux/platform_device.h> 22 #include <linux/irqreturn.h> 23 #include <linux/interrupt.h> 24 #include <linux/if_ether.h> 25 #include <linux/etherdevice.h> 26 #include <linux/netdevice.h> 27 #include <linux/net_tstamp.h> 28 #include <linux/phy.h> 29 #include <linux/workqueue.h> 30 #include <linux/delay.h> 31 #include <linux/pm_runtime.h> 32 #include <linux/of.h> 33 #include <linux/of_net.h> 34 #include <linux/of_device.h> 35 #include <linux/if_vlan.h> 36 #include <linux/mfd/syscon.h> 37 #include <linux/regmap.h> 38 39 #include <linux/pinctrl/consumer.h> 40 41 #include "cpsw.h" 42 #include "cpsw_ale.h" 43 #include "cpts.h" 44 #include "davinci_cpdma.h" 45 46 #define CPSW_DEBUG (NETIF_MSG_HW | NETIF_MSG_WOL | \ 47 NETIF_MSG_DRV | NETIF_MSG_LINK | \ 48 NETIF_MSG_IFUP | NETIF_MSG_INTR | \ 49 NETIF_MSG_PROBE | NETIF_MSG_TIMER | \ 50 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | \ 51 NETIF_MSG_TX_ERR | NETIF_MSG_TX_DONE | \ 52 NETIF_MSG_PKTDATA | NETIF_MSG_TX_QUEUED | \ 53 NETIF_MSG_RX_STATUS) 54 55 #define cpsw_info(priv, type, format, ...) \ 56 do { \ 57 if (netif_msg_##type(priv) && net_ratelimit()) \ 58 dev_info(priv->dev, format, ## __VA_ARGS__); \ 59 } while (0) 60 61 #define cpsw_err(priv, type, format, ...) \ 62 do { \ 63 if (netif_msg_##type(priv) && net_ratelimit()) \ 64 dev_err(priv->dev, format, ## __VA_ARGS__); \ 65 } while (0) 66 67 #define cpsw_dbg(priv, type, format, ...) \ 68 do { \ 69 if (netif_msg_##type(priv) && net_ratelimit()) \ 70 dev_dbg(priv->dev, format, ## __VA_ARGS__); \ 71 } while (0) 72 73 #define cpsw_notice(priv, type, format, ...) \ 74 do { \ 75 if (netif_msg_##type(priv) && net_ratelimit()) \ 76 dev_notice(priv->dev, format, ## __VA_ARGS__); \ 77 } while (0) 78 79 #define ALE_ALL_PORTS 0x7 80 81 #define CPSW_MAJOR_VERSION(reg) (reg >> 8 & 0x7) 82 #define CPSW_MINOR_VERSION(reg) (reg & 0xff) 83 #define CPSW_RTL_VERSION(reg) ((reg >> 11) & 0x1f) 84 85 #define CPSW_VERSION_1 0x19010a 86 #define CPSW_VERSION_2 0x19010c 87 #define CPSW_VERSION_3 0x19010f 88 #define CPSW_VERSION_4 0x190112 89 90 #define HOST_PORT_NUM 0 91 #define SLIVER_SIZE 0x40 92 93 #define CPSW1_HOST_PORT_OFFSET 0x028 94 #define CPSW1_SLAVE_OFFSET 0x050 95 #define CPSW1_SLAVE_SIZE 0x040 96 #define CPSW1_CPDMA_OFFSET 0x100 97 #define CPSW1_STATERAM_OFFSET 0x200 98 #define CPSW1_HW_STATS 0x400 99 #define CPSW1_CPTS_OFFSET 0x500 100 #define CPSW1_ALE_OFFSET 0x600 101 #define CPSW1_SLIVER_OFFSET 0x700 102 103 #define CPSW2_HOST_PORT_OFFSET 0x108 104 #define CPSW2_SLAVE_OFFSET 0x200 105 #define CPSW2_SLAVE_SIZE 0x100 106 #define CPSW2_CPDMA_OFFSET 0x800 107 #define CPSW2_HW_STATS 0x900 108 #define CPSW2_STATERAM_OFFSET 0xa00 109 #define CPSW2_CPTS_OFFSET 0xc00 110 #define CPSW2_ALE_OFFSET 0xd00 111 #define CPSW2_SLIVER_OFFSET 0xd80 112 #define CPSW2_BD_OFFSET 0x2000 113 114 #define CPDMA_RXTHRESH 0x0c0 115 #define CPDMA_RXFREE 0x0e0 116 #define CPDMA_TXHDP 0x00 117 #define CPDMA_RXHDP 0x20 118 #define CPDMA_TXCP 0x40 119 #define CPDMA_RXCP 0x60 120 121 #define CPSW_POLL_WEIGHT 64 122 #define CPSW_MIN_PACKET_SIZE 60 123 #define CPSW_MAX_PACKET_SIZE (1500 + 14 + 4 + 4) 124 125 #define RX_PRIORITY_MAPPING 0x76543210 126 #define TX_PRIORITY_MAPPING 0x33221100 127 #define CPDMA_TX_PRIORITY_MAP 0x76543210 128 129 #define CPSW_VLAN_AWARE BIT(1) 130 #define CPSW_ALE_VLAN_AWARE 1 131 132 #define CPSW_FIFO_NORMAL_MODE (0 << 16) 133 #define CPSW_FIFO_DUAL_MAC_MODE (1 << 16) 134 #define CPSW_FIFO_RATE_LIMIT_MODE (2 << 16) 135 136 #define CPSW_INTPACEEN (0x3f << 16) 137 #define CPSW_INTPRESCALE_MASK (0x7FF << 0) 138 #define CPSW_CMINTMAX_CNT 63 139 #define CPSW_CMINTMIN_CNT 2 140 #define CPSW_CMINTMAX_INTVL (1000 / CPSW_CMINTMIN_CNT) 141 #define CPSW_CMINTMIN_INTVL ((1000 / CPSW_CMINTMAX_CNT) + 1) 142 143 #define cpsw_enable_irq(priv) \ 144 do { \ 145 u32 i; \ 146 for (i = 0; i < priv->num_irqs; i++) \ 147 enable_irq(priv->irqs_table[i]); \ 148 } while (0) 149 #define cpsw_disable_irq(priv) \ 150 do { \ 151 u32 i; \ 152 for (i = 0; i < priv->num_irqs; i++) \ 153 disable_irq_nosync(priv->irqs_table[i]); \ 154 } while (0) 155 156 #define cpsw_slave_index(priv) \ 157 ((priv->data.dual_emac) ? priv->emac_port : \ 158 priv->data.active_slave) 159 160 static int debug_level; 161 module_param(debug_level, int, 0); 162 MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)"); 163 164 static int ale_ageout = 10; 165 module_param(ale_ageout, int, 0); 166 MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)"); 167 168 static int rx_packet_max = CPSW_MAX_PACKET_SIZE; 169 module_param(rx_packet_max, int, 0); 170 MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)"); 171 172 struct cpsw_wr_regs { 173 u32 id_ver; 174 u32 soft_reset; 175 u32 control; 176 u32 int_control; 177 u32 rx_thresh_en; 178 u32 rx_en; 179 u32 tx_en; 180 u32 misc_en; 181 u32 mem_allign1[8]; 182 u32 rx_thresh_stat; 183 u32 rx_stat; 184 u32 tx_stat; 185 u32 misc_stat; 186 u32 mem_allign2[8]; 187 u32 rx_imax; 188 u32 tx_imax; 189 190 }; 191 192 struct cpsw_ss_regs { 193 u32 id_ver; 194 u32 control; 195 u32 soft_reset; 196 u32 stat_port_en; 197 u32 ptype; 198 u32 soft_idle; 199 u32 thru_rate; 200 u32 gap_thresh; 201 u32 tx_start_wds; 202 u32 flow_control; 203 u32 vlan_ltype; 204 u32 ts_ltype; 205 u32 dlr_ltype; 206 }; 207 208 /* CPSW_PORT_V1 */ 209 #define CPSW1_MAX_BLKS 0x00 /* Maximum FIFO Blocks */ 210 #define CPSW1_BLK_CNT 0x04 /* FIFO Block Usage Count (Read Only) */ 211 #define CPSW1_TX_IN_CTL 0x08 /* Transmit FIFO Control */ 212 #define CPSW1_PORT_VLAN 0x0c /* VLAN Register */ 213 #define CPSW1_TX_PRI_MAP 0x10 /* Tx Header Priority to Switch Pri Mapping */ 214 #define CPSW1_TS_CTL 0x14 /* Time Sync Control */ 215 #define CPSW1_TS_SEQ_LTYPE 0x18 /* Time Sync Sequence ID Offset and Msg Type */ 216 #define CPSW1_TS_VLAN 0x1c /* Time Sync VLAN1 and VLAN2 */ 217 218 /* CPSW_PORT_V2 */ 219 #define CPSW2_CONTROL 0x00 /* Control Register */ 220 #define CPSW2_MAX_BLKS 0x08 /* Maximum FIFO Blocks */ 221 #define CPSW2_BLK_CNT 0x0c /* FIFO Block Usage Count (Read Only) */ 222 #define CPSW2_TX_IN_CTL 0x10 /* Transmit FIFO Control */ 223 #define CPSW2_PORT_VLAN 0x14 /* VLAN Register */ 224 #define CPSW2_TX_PRI_MAP 0x18 /* Tx Header Priority to Switch Pri Mapping */ 225 #define CPSW2_TS_SEQ_MTYPE 0x1c /* Time Sync Sequence ID Offset and Msg Type */ 226 227 /* CPSW_PORT_V1 and V2 */ 228 #define SA_LO 0x20 /* CPGMAC_SL Source Address Low */ 229 #define SA_HI 0x24 /* CPGMAC_SL Source Address High */ 230 #define SEND_PERCENT 0x28 /* Transmit Queue Send Percentages */ 231 232 /* CPSW_PORT_V2 only */ 233 #define RX_DSCP_PRI_MAP0 0x30 /* Rx DSCP Priority to Rx Packet Mapping */ 234 #define RX_DSCP_PRI_MAP1 0x34 /* Rx DSCP Priority to Rx Packet Mapping */ 235 #define RX_DSCP_PRI_MAP2 0x38 /* Rx DSCP Priority to Rx Packet Mapping */ 236 #define RX_DSCP_PRI_MAP3 0x3c /* Rx DSCP Priority to Rx Packet Mapping */ 237 #define RX_DSCP_PRI_MAP4 0x40 /* Rx DSCP Priority to Rx Packet Mapping */ 238 #define RX_DSCP_PRI_MAP5 0x44 /* Rx DSCP Priority to Rx Packet Mapping */ 239 #define RX_DSCP_PRI_MAP6 0x48 /* Rx DSCP Priority to Rx Packet Mapping */ 240 #define RX_DSCP_PRI_MAP7 0x4c /* Rx DSCP Priority to Rx Packet Mapping */ 241 242 /* Bit definitions for the CPSW2_CONTROL register */ 243 #define PASS_PRI_TAGGED (1<<24) /* Pass Priority Tagged */ 244 #define VLAN_LTYPE2_EN (1<<21) /* VLAN LTYPE 2 enable */ 245 #define VLAN_LTYPE1_EN (1<<20) /* VLAN LTYPE 1 enable */ 246 #define DSCP_PRI_EN (1<<16) /* DSCP Priority Enable */ 247 #define TS_320 (1<<14) /* Time Sync Dest Port 320 enable */ 248 #define TS_319 (1<<13) /* Time Sync Dest Port 319 enable */ 249 #define TS_132 (1<<12) /* Time Sync Dest IP Addr 132 enable */ 250 #define TS_131 (1<<11) /* Time Sync Dest IP Addr 131 enable */ 251 #define TS_130 (1<<10) /* Time Sync Dest IP Addr 130 enable */ 252 #define TS_129 (1<<9) /* Time Sync Dest IP Addr 129 enable */ 253 #define TS_TTL_NONZERO (1<<8) /* Time Sync Time To Live Non-zero enable */ 254 #define TS_ANNEX_F_EN (1<<6) /* Time Sync Annex F enable */ 255 #define TS_ANNEX_D_EN (1<<4) /* Time Sync Annex D enable */ 256 #define TS_LTYPE2_EN (1<<3) /* Time Sync LTYPE 2 enable */ 257 #define TS_LTYPE1_EN (1<<2) /* Time Sync LTYPE 1 enable */ 258 #define TS_TX_EN (1<<1) /* Time Sync Transmit Enable */ 259 #define TS_RX_EN (1<<0) /* Time Sync Receive Enable */ 260 261 #define CTRL_V2_TS_BITS \ 262 (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\ 263 TS_TTL_NONZERO | TS_ANNEX_D_EN | TS_LTYPE1_EN) 264 265 #define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN) 266 #define CTRL_V2_TX_TS_BITS (CTRL_V2_TS_BITS | TS_TX_EN) 267 #define CTRL_V2_RX_TS_BITS (CTRL_V2_TS_BITS | TS_RX_EN) 268 269 270 #define CTRL_V3_TS_BITS \ 271 (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\ 272 TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\ 273 TS_LTYPE1_EN) 274 275 #define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN) 276 #define CTRL_V3_TX_TS_BITS (CTRL_V3_TS_BITS | TS_TX_EN) 277 #define CTRL_V3_RX_TS_BITS (CTRL_V3_TS_BITS | TS_RX_EN) 278 279 /* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */ 280 #define TS_SEQ_ID_OFFSET_SHIFT (16) /* Time Sync Sequence ID Offset */ 281 #define TS_SEQ_ID_OFFSET_MASK (0x3f) 282 #define TS_MSG_TYPE_EN_SHIFT (0) /* Time Sync Message Type Enable */ 283 #define TS_MSG_TYPE_EN_MASK (0xffff) 284 285 /* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */ 286 #define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3)) 287 288 /* Bit definitions for the CPSW1_TS_CTL register */ 289 #define CPSW_V1_TS_RX_EN BIT(0) 290 #define CPSW_V1_TS_TX_EN BIT(4) 291 #define CPSW_V1_MSG_TYPE_OFS 16 292 293 /* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */ 294 #define CPSW_V1_SEQ_ID_OFS_SHIFT 16 295 296 struct cpsw_host_regs { 297 u32 max_blks; 298 u32 blk_cnt; 299 u32 tx_in_ctl; 300 u32 port_vlan; 301 u32 tx_pri_map; 302 u32 cpdma_tx_pri_map; 303 u32 cpdma_rx_chan_map; 304 }; 305 306 struct cpsw_sliver_regs { 307 u32 id_ver; 308 u32 mac_control; 309 u32 mac_status; 310 u32 soft_reset; 311 u32 rx_maxlen; 312 u32 __reserved_0; 313 u32 rx_pause; 314 u32 tx_pause; 315 u32 __reserved_1; 316 u32 rx_pri_map; 317 }; 318 319 struct cpsw_hw_stats { 320 u32 rxgoodframes; 321 u32 rxbroadcastframes; 322 u32 rxmulticastframes; 323 u32 rxpauseframes; 324 u32 rxcrcerrors; 325 u32 rxaligncodeerrors; 326 u32 rxoversizedframes; 327 u32 rxjabberframes; 328 u32 rxundersizedframes; 329 u32 rxfragments; 330 u32 __pad_0[2]; 331 u32 rxoctets; 332 u32 txgoodframes; 333 u32 txbroadcastframes; 334 u32 txmulticastframes; 335 u32 txpauseframes; 336 u32 txdeferredframes; 337 u32 txcollisionframes; 338 u32 txsinglecollframes; 339 u32 txmultcollframes; 340 u32 txexcessivecollisions; 341 u32 txlatecollisions; 342 u32 txunderrun; 343 u32 txcarriersenseerrors; 344 u32 txoctets; 345 u32 octetframes64; 346 u32 octetframes65t127; 347 u32 octetframes128t255; 348 u32 octetframes256t511; 349 u32 octetframes512t1023; 350 u32 octetframes1024tup; 351 u32 netoctets; 352 u32 rxsofoverruns; 353 u32 rxmofoverruns; 354 u32 rxdmaoverruns; 355 }; 356 357 struct cpsw_slave { 358 void __iomem *regs; 359 struct cpsw_sliver_regs __iomem *sliver; 360 int slave_num; 361 u32 mac_control; 362 struct cpsw_slave_data *data; 363 struct phy_device *phy; 364 struct net_device *ndev; 365 u32 port_vlan; 366 u32 open_stat; 367 }; 368 369 static inline u32 slave_read(struct cpsw_slave *slave, u32 offset) 370 { 371 return __raw_readl(slave->regs + offset); 372 } 373 374 static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset) 375 { 376 __raw_writel(val, slave->regs + offset); 377 } 378 379 struct cpsw_priv { 380 spinlock_t lock; 381 struct platform_device *pdev; 382 struct net_device *ndev; 383 struct napi_struct napi; 384 struct device *dev; 385 struct cpsw_platform_data data; 386 struct cpsw_ss_regs __iomem *regs; 387 struct cpsw_wr_regs __iomem *wr_regs; 388 u8 __iomem *hw_stats; 389 struct cpsw_host_regs __iomem *host_port_regs; 390 u32 msg_enable; 391 u32 version; 392 u32 coal_intvl; 393 u32 bus_freq_mhz; 394 int rx_packet_max; 395 int host_port; 396 struct clk *clk; 397 u8 mac_addr[ETH_ALEN]; 398 struct cpsw_slave *slaves; 399 struct cpdma_ctlr *dma; 400 struct cpdma_chan *txch, *rxch; 401 struct cpsw_ale *ale; 402 bool rx_pause; 403 bool tx_pause; 404 /* snapshot of IRQ numbers */ 405 u32 irqs_table[4]; 406 u32 num_irqs; 407 bool irq_enabled; 408 struct cpts *cpts; 409 u32 emac_port; 410 }; 411 412 struct cpsw_stats { 413 char stat_string[ETH_GSTRING_LEN]; 414 int type; 415 int sizeof_stat; 416 int stat_offset; 417 }; 418 419 enum { 420 CPSW_STATS, 421 CPDMA_RX_STATS, 422 CPDMA_TX_STATS, 423 }; 424 425 #define CPSW_STAT(m) CPSW_STATS, \ 426 sizeof(((struct cpsw_hw_stats *)0)->m), \ 427 offsetof(struct cpsw_hw_stats, m) 428 #define CPDMA_RX_STAT(m) CPDMA_RX_STATS, \ 429 sizeof(((struct cpdma_chan_stats *)0)->m), \ 430 offsetof(struct cpdma_chan_stats, m) 431 #define CPDMA_TX_STAT(m) CPDMA_TX_STATS, \ 432 sizeof(((struct cpdma_chan_stats *)0)->m), \ 433 offsetof(struct cpdma_chan_stats, m) 434 435 static const struct cpsw_stats cpsw_gstrings_stats[] = { 436 { "Good Rx Frames", CPSW_STAT(rxgoodframes) }, 437 { "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) }, 438 { "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) }, 439 { "Pause Rx Frames", CPSW_STAT(rxpauseframes) }, 440 { "Rx CRC Errors", CPSW_STAT(rxcrcerrors) }, 441 { "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) }, 442 { "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) }, 443 { "Rx Jabbers", CPSW_STAT(rxjabberframes) }, 444 { "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) }, 445 { "Rx Fragments", CPSW_STAT(rxfragments) }, 446 { "Rx Octets", CPSW_STAT(rxoctets) }, 447 { "Good Tx Frames", CPSW_STAT(txgoodframes) }, 448 { "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) }, 449 { "Multicast Tx Frames", CPSW_STAT(txmulticastframes) }, 450 { "Pause Tx Frames", CPSW_STAT(txpauseframes) }, 451 { "Deferred Tx Frames", CPSW_STAT(txdeferredframes) }, 452 { "Collisions", CPSW_STAT(txcollisionframes) }, 453 { "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) }, 454 { "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) }, 455 { "Excessive Collisions", CPSW_STAT(txexcessivecollisions) }, 456 { "Late Collisions", CPSW_STAT(txlatecollisions) }, 457 { "Tx Underrun", CPSW_STAT(txunderrun) }, 458 { "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) }, 459 { "Tx Octets", CPSW_STAT(txoctets) }, 460 { "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) }, 461 { "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) }, 462 { "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) }, 463 { "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) }, 464 { "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) }, 465 { "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) }, 466 { "Net Octets", CPSW_STAT(netoctets) }, 467 { "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) }, 468 { "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) }, 469 { "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) }, 470 { "Rx DMA chan: head_enqueue", CPDMA_RX_STAT(head_enqueue) }, 471 { "Rx DMA chan: tail_enqueue", CPDMA_RX_STAT(tail_enqueue) }, 472 { "Rx DMA chan: pad_enqueue", CPDMA_RX_STAT(pad_enqueue) }, 473 { "Rx DMA chan: misqueued", CPDMA_RX_STAT(misqueued) }, 474 { "Rx DMA chan: desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) }, 475 { "Rx DMA chan: pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) }, 476 { "Rx DMA chan: runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) }, 477 { "Rx DMA chan: runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) }, 478 { "Rx DMA chan: empty_dequeue", CPDMA_RX_STAT(empty_dequeue) }, 479 { "Rx DMA chan: busy_dequeue", CPDMA_RX_STAT(busy_dequeue) }, 480 { "Rx DMA chan: good_dequeue", CPDMA_RX_STAT(good_dequeue) }, 481 { "Rx DMA chan: requeue", CPDMA_RX_STAT(requeue) }, 482 { "Rx DMA chan: teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) }, 483 { "Tx DMA chan: head_enqueue", CPDMA_TX_STAT(head_enqueue) }, 484 { "Tx DMA chan: tail_enqueue", CPDMA_TX_STAT(tail_enqueue) }, 485 { "Tx DMA chan: pad_enqueue", CPDMA_TX_STAT(pad_enqueue) }, 486 { "Tx DMA chan: misqueued", CPDMA_TX_STAT(misqueued) }, 487 { "Tx DMA chan: desc_alloc_fail", CPDMA_TX_STAT(desc_alloc_fail) }, 488 { "Tx DMA chan: pad_alloc_fail", CPDMA_TX_STAT(pad_alloc_fail) }, 489 { "Tx DMA chan: runt_receive_buf", CPDMA_TX_STAT(runt_receive_buff) }, 490 { "Tx DMA chan: runt_transmit_buf", CPDMA_TX_STAT(runt_transmit_buff) }, 491 { "Tx DMA chan: empty_dequeue", CPDMA_TX_STAT(empty_dequeue) }, 492 { "Tx DMA chan: busy_dequeue", CPDMA_TX_STAT(busy_dequeue) }, 493 { "Tx DMA chan: good_dequeue", CPDMA_TX_STAT(good_dequeue) }, 494 { "Tx DMA chan: requeue", CPDMA_TX_STAT(requeue) }, 495 { "Tx DMA chan: teardown_dequeue", CPDMA_TX_STAT(teardown_dequeue) }, 496 }; 497 498 #define CPSW_STATS_LEN ARRAY_SIZE(cpsw_gstrings_stats) 499 500 #define napi_to_priv(napi) container_of(napi, struct cpsw_priv, napi) 501 #define for_each_slave(priv, func, arg...) \ 502 do { \ 503 struct cpsw_slave *slave; \ 504 int n; \ 505 if (priv->data.dual_emac) \ 506 (func)((priv)->slaves + priv->emac_port, ##arg);\ 507 else \ 508 for (n = (priv)->data.slaves, \ 509 slave = (priv)->slaves; \ 510 n; n--) \ 511 (func)(slave++, ##arg); \ 512 } while (0) 513 #define cpsw_get_slave_ndev(priv, __slave_no__) \ 514 (priv->slaves[__slave_no__].ndev) 515 #define cpsw_get_slave_priv(priv, __slave_no__) \ 516 ((priv->slaves[__slave_no__].ndev) ? \ 517 netdev_priv(priv->slaves[__slave_no__].ndev) : NULL) \ 518 519 #define cpsw_dual_emac_src_port_detect(status, priv, ndev, skb) \ 520 do { \ 521 if (!priv->data.dual_emac) \ 522 break; \ 523 if (CPDMA_RX_SOURCE_PORT(status) == 1) { \ 524 ndev = cpsw_get_slave_ndev(priv, 0); \ 525 priv = netdev_priv(ndev); \ 526 skb->dev = ndev; \ 527 } else if (CPDMA_RX_SOURCE_PORT(status) == 2) { \ 528 ndev = cpsw_get_slave_ndev(priv, 1); \ 529 priv = netdev_priv(ndev); \ 530 skb->dev = ndev; \ 531 } \ 532 } while (0) 533 #define cpsw_add_mcast(priv, addr) \ 534 do { \ 535 if (priv->data.dual_emac) { \ 536 struct cpsw_slave *slave = priv->slaves + \ 537 priv->emac_port; \ 538 int slave_port = cpsw_get_slave_port(priv, \ 539 slave->slave_num); \ 540 cpsw_ale_add_mcast(priv->ale, addr, \ 541 1 << slave_port | 1 << priv->host_port, \ 542 ALE_VLAN, slave->port_vlan, 0); \ 543 } else { \ 544 cpsw_ale_add_mcast(priv->ale, addr, \ 545 ALE_ALL_PORTS << priv->host_port, \ 546 0, 0, 0); \ 547 } \ 548 } while (0) 549 550 static inline int cpsw_get_slave_port(struct cpsw_priv *priv, u32 slave_num) 551 { 552 if (priv->host_port == 0) 553 return slave_num + 1; 554 else 555 return slave_num; 556 } 557 558 static void cpsw_set_promiscious(struct net_device *ndev, bool enable) 559 { 560 struct cpsw_priv *priv = netdev_priv(ndev); 561 struct cpsw_ale *ale = priv->ale; 562 int i; 563 564 if (priv->data.dual_emac) { 565 bool flag = false; 566 567 /* Enabling promiscuous mode for one interface will be 568 * common for both the interface as the interface shares 569 * the same hardware resource. 570 */ 571 for (i = 0; i < priv->data.slaves; i++) 572 if (priv->slaves[i].ndev->flags & IFF_PROMISC) 573 flag = true; 574 575 if (!enable && flag) { 576 enable = true; 577 dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n"); 578 } 579 580 if (enable) { 581 /* Enable Bypass */ 582 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1); 583 584 dev_dbg(&ndev->dev, "promiscuity enabled\n"); 585 } else { 586 /* Disable Bypass */ 587 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0); 588 dev_dbg(&ndev->dev, "promiscuity disabled\n"); 589 } 590 } else { 591 if (enable) { 592 unsigned long timeout = jiffies + HZ; 593 594 /* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */ 595 for (i = 0; i <= priv->data.slaves; i++) { 596 cpsw_ale_control_set(ale, i, 597 ALE_PORT_NOLEARN, 1); 598 cpsw_ale_control_set(ale, i, 599 ALE_PORT_NO_SA_UPDATE, 1); 600 } 601 602 /* Clear All Untouched entries */ 603 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1); 604 do { 605 cpu_relax(); 606 if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT)) 607 break; 608 } while (time_after(timeout, jiffies)); 609 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1); 610 611 /* Clear all mcast from ALE */ 612 cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS << 613 priv->host_port, -1); 614 615 /* Flood All Unicast Packets to Host port */ 616 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1); 617 dev_dbg(&ndev->dev, "promiscuity enabled\n"); 618 } else { 619 /* Don't Flood All Unicast Packets to Host port */ 620 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0); 621 622 /* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */ 623 for (i = 0; i <= priv->data.slaves; i++) { 624 cpsw_ale_control_set(ale, i, 625 ALE_PORT_NOLEARN, 0); 626 cpsw_ale_control_set(ale, i, 627 ALE_PORT_NO_SA_UPDATE, 0); 628 } 629 dev_dbg(&ndev->dev, "promiscuity disabled\n"); 630 } 631 } 632 } 633 634 static void cpsw_ndo_set_rx_mode(struct net_device *ndev) 635 { 636 struct cpsw_priv *priv = netdev_priv(ndev); 637 int vid; 638 639 if (priv->data.dual_emac) 640 vid = priv->slaves[priv->emac_port].port_vlan; 641 else 642 vid = priv->data.default_vlan; 643 644 if (ndev->flags & IFF_PROMISC) { 645 /* Enable promiscuous mode */ 646 cpsw_set_promiscious(ndev, true); 647 cpsw_ale_set_allmulti(priv->ale, IFF_ALLMULTI); 648 return; 649 } else { 650 /* Disable promiscuous mode */ 651 cpsw_set_promiscious(ndev, false); 652 } 653 654 /* Restore allmulti on vlans if necessary */ 655 cpsw_ale_set_allmulti(priv->ale, priv->ndev->flags & IFF_ALLMULTI); 656 657 /* Clear all mcast from ALE */ 658 cpsw_ale_flush_multicast(priv->ale, ALE_ALL_PORTS << priv->host_port, 659 vid); 660 661 if (!netdev_mc_empty(ndev)) { 662 struct netdev_hw_addr *ha; 663 664 /* program multicast address list into ALE register */ 665 netdev_for_each_mc_addr(ha, ndev) { 666 cpsw_add_mcast(priv, (u8 *)ha->addr); 667 } 668 } 669 } 670 671 static void cpsw_intr_enable(struct cpsw_priv *priv) 672 { 673 __raw_writel(0xFF, &priv->wr_regs->tx_en); 674 __raw_writel(0xFF, &priv->wr_regs->rx_en); 675 676 cpdma_ctlr_int_ctrl(priv->dma, true); 677 return; 678 } 679 680 static void cpsw_intr_disable(struct cpsw_priv *priv) 681 { 682 __raw_writel(0, &priv->wr_regs->tx_en); 683 __raw_writel(0, &priv->wr_regs->rx_en); 684 685 cpdma_ctlr_int_ctrl(priv->dma, false); 686 return; 687 } 688 689 static void cpsw_tx_handler(void *token, int len, int status) 690 { 691 struct sk_buff *skb = token; 692 struct net_device *ndev = skb->dev; 693 struct cpsw_priv *priv = netdev_priv(ndev); 694 695 /* Check whether the queue is stopped due to stalled tx dma, if the 696 * queue is stopped then start the queue as we have free desc for tx 697 */ 698 if (unlikely(netif_queue_stopped(ndev))) 699 netif_wake_queue(ndev); 700 cpts_tx_timestamp(priv->cpts, skb); 701 ndev->stats.tx_packets++; 702 ndev->stats.tx_bytes += len; 703 dev_kfree_skb_any(skb); 704 } 705 706 static void cpsw_rx_handler(void *token, int len, int status) 707 { 708 struct sk_buff *skb = token; 709 struct sk_buff *new_skb; 710 struct net_device *ndev = skb->dev; 711 struct cpsw_priv *priv = netdev_priv(ndev); 712 int ret = 0; 713 714 cpsw_dual_emac_src_port_detect(status, priv, ndev, skb); 715 716 if (unlikely(status < 0) || unlikely(!netif_running(ndev))) { 717 bool ndev_status = false; 718 struct cpsw_slave *slave = priv->slaves; 719 int n; 720 721 if (priv->data.dual_emac) { 722 /* In dual emac mode check for all interfaces */ 723 for (n = priv->data.slaves; n; n--, slave++) 724 if (netif_running(slave->ndev)) 725 ndev_status = true; 726 } 727 728 if (ndev_status && (status >= 0)) { 729 /* The packet received is for the interface which 730 * is already down and the other interface is up 731 * and running, intead of freeing which results 732 * in reducing of the number of rx descriptor in 733 * DMA engine, requeue skb back to cpdma. 734 */ 735 new_skb = skb; 736 goto requeue; 737 } 738 739 /* the interface is going down, skbs are purged */ 740 dev_kfree_skb_any(skb); 741 return; 742 } 743 744 new_skb = netdev_alloc_skb_ip_align(ndev, priv->rx_packet_max); 745 if (new_skb) { 746 skb_put(skb, len); 747 cpts_rx_timestamp(priv->cpts, skb); 748 skb->protocol = eth_type_trans(skb, ndev); 749 netif_receive_skb(skb); 750 ndev->stats.rx_bytes += len; 751 ndev->stats.rx_packets++; 752 } else { 753 ndev->stats.rx_dropped++; 754 new_skb = skb; 755 } 756 757 requeue: 758 ret = cpdma_chan_submit(priv->rxch, new_skb, new_skb->data, 759 skb_tailroom(new_skb), 0); 760 if (WARN_ON(ret < 0)) 761 dev_kfree_skb_any(new_skb); 762 } 763 764 static irqreturn_t cpsw_interrupt(int irq, void *dev_id) 765 { 766 struct cpsw_priv *priv = dev_id; 767 int value = irq - priv->irqs_table[0]; 768 769 /* NOTICE: Ending IRQ here. The trick with the 'value' variable above 770 * is to make sure we will always write the correct value to the EOI 771 * register. Namely 0 for RX_THRESH Interrupt, 1 for RX Interrupt, 2 772 * for TX Interrupt and 3 for MISC Interrupt. 773 */ 774 cpdma_ctlr_eoi(priv->dma, value); 775 776 cpsw_intr_disable(priv); 777 if (priv->irq_enabled == true) { 778 cpsw_disable_irq(priv); 779 priv->irq_enabled = false; 780 } 781 782 if (netif_running(priv->ndev)) { 783 napi_schedule(&priv->napi); 784 return IRQ_HANDLED; 785 } 786 787 priv = cpsw_get_slave_priv(priv, 1); 788 if (!priv) 789 return IRQ_NONE; 790 791 if (netif_running(priv->ndev)) { 792 napi_schedule(&priv->napi); 793 return IRQ_HANDLED; 794 } 795 return IRQ_NONE; 796 } 797 798 static int cpsw_poll(struct napi_struct *napi, int budget) 799 { 800 struct cpsw_priv *priv = napi_to_priv(napi); 801 int num_tx, num_rx; 802 803 num_tx = cpdma_chan_process(priv->txch, 128); 804 805 num_rx = cpdma_chan_process(priv->rxch, budget); 806 if (num_rx < budget) { 807 struct cpsw_priv *prim_cpsw; 808 809 napi_complete(napi); 810 cpsw_intr_enable(priv); 811 prim_cpsw = cpsw_get_slave_priv(priv, 0); 812 if (prim_cpsw->irq_enabled == false) { 813 prim_cpsw->irq_enabled = true; 814 cpsw_enable_irq(priv); 815 } 816 } 817 818 if (num_rx || num_tx) 819 cpsw_dbg(priv, intr, "poll %d rx, %d tx pkts\n", 820 num_rx, num_tx); 821 822 return num_rx; 823 } 824 825 static inline void soft_reset(const char *module, void __iomem *reg) 826 { 827 unsigned long timeout = jiffies + HZ; 828 829 __raw_writel(1, reg); 830 do { 831 cpu_relax(); 832 } while ((__raw_readl(reg) & 1) && time_after(timeout, jiffies)); 833 834 WARN(__raw_readl(reg) & 1, "failed to soft-reset %s\n", module); 835 } 836 837 #define mac_hi(mac) (((mac)[0] << 0) | ((mac)[1] << 8) | \ 838 ((mac)[2] << 16) | ((mac)[3] << 24)) 839 #define mac_lo(mac) (((mac)[4] << 0) | ((mac)[5] << 8)) 840 841 static void cpsw_set_slave_mac(struct cpsw_slave *slave, 842 struct cpsw_priv *priv) 843 { 844 slave_write(slave, mac_hi(priv->mac_addr), SA_HI); 845 slave_write(slave, mac_lo(priv->mac_addr), SA_LO); 846 } 847 848 static void _cpsw_adjust_link(struct cpsw_slave *slave, 849 struct cpsw_priv *priv, bool *link) 850 { 851 struct phy_device *phy = slave->phy; 852 u32 mac_control = 0; 853 u32 slave_port; 854 855 if (!phy) 856 return; 857 858 slave_port = cpsw_get_slave_port(priv, slave->slave_num); 859 860 if (phy->link) { 861 mac_control = priv->data.mac_control; 862 863 /* enable forwarding */ 864 cpsw_ale_control_set(priv->ale, slave_port, 865 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD); 866 867 if (phy->speed == 1000) 868 mac_control |= BIT(7); /* GIGABITEN */ 869 if (phy->duplex) 870 mac_control |= BIT(0); /* FULLDUPLEXEN */ 871 872 /* set speed_in input in case RMII mode is used in 100Mbps */ 873 if (phy->speed == 100) 874 mac_control |= BIT(15); 875 else if (phy->speed == 10) 876 mac_control |= BIT(18); /* In Band mode */ 877 878 if (priv->rx_pause) 879 mac_control |= BIT(3); 880 881 if (priv->tx_pause) 882 mac_control |= BIT(4); 883 884 *link = true; 885 } else { 886 mac_control = 0; 887 /* disable forwarding */ 888 cpsw_ale_control_set(priv->ale, slave_port, 889 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE); 890 } 891 892 if (mac_control != slave->mac_control) { 893 phy_print_status(phy); 894 __raw_writel(mac_control, &slave->sliver->mac_control); 895 } 896 897 slave->mac_control = mac_control; 898 } 899 900 static void cpsw_adjust_link(struct net_device *ndev) 901 { 902 struct cpsw_priv *priv = netdev_priv(ndev); 903 bool link = false; 904 905 for_each_slave(priv, _cpsw_adjust_link, priv, &link); 906 907 if (link) { 908 netif_carrier_on(ndev); 909 if (netif_running(ndev)) 910 netif_wake_queue(ndev); 911 } else { 912 netif_carrier_off(ndev); 913 netif_stop_queue(ndev); 914 } 915 } 916 917 static int cpsw_get_coalesce(struct net_device *ndev, 918 struct ethtool_coalesce *coal) 919 { 920 struct cpsw_priv *priv = netdev_priv(ndev); 921 922 coal->rx_coalesce_usecs = priv->coal_intvl; 923 return 0; 924 } 925 926 static int cpsw_set_coalesce(struct net_device *ndev, 927 struct ethtool_coalesce *coal) 928 { 929 struct cpsw_priv *priv = netdev_priv(ndev); 930 u32 int_ctrl; 931 u32 num_interrupts = 0; 932 u32 prescale = 0; 933 u32 addnl_dvdr = 1; 934 u32 coal_intvl = 0; 935 936 coal_intvl = coal->rx_coalesce_usecs; 937 938 int_ctrl = readl(&priv->wr_regs->int_control); 939 prescale = priv->bus_freq_mhz * 4; 940 941 if (!coal->rx_coalesce_usecs) { 942 int_ctrl &= ~(CPSW_INTPRESCALE_MASK | CPSW_INTPACEEN); 943 goto update_return; 944 } 945 946 if (coal_intvl < CPSW_CMINTMIN_INTVL) 947 coal_intvl = CPSW_CMINTMIN_INTVL; 948 949 if (coal_intvl > CPSW_CMINTMAX_INTVL) { 950 /* Interrupt pacer works with 4us Pulse, we can 951 * throttle further by dilating the 4us pulse. 952 */ 953 addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale; 954 955 if (addnl_dvdr > 1) { 956 prescale *= addnl_dvdr; 957 if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr)) 958 coal_intvl = (CPSW_CMINTMAX_INTVL 959 * addnl_dvdr); 960 } else { 961 addnl_dvdr = 1; 962 coal_intvl = CPSW_CMINTMAX_INTVL; 963 } 964 } 965 966 num_interrupts = (1000 * addnl_dvdr) / coal_intvl; 967 writel(num_interrupts, &priv->wr_regs->rx_imax); 968 writel(num_interrupts, &priv->wr_regs->tx_imax); 969 970 int_ctrl |= CPSW_INTPACEEN; 971 int_ctrl &= (~CPSW_INTPRESCALE_MASK); 972 int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK); 973 974 update_return: 975 writel(int_ctrl, &priv->wr_regs->int_control); 976 977 cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl); 978 if (priv->data.dual_emac) { 979 int i; 980 981 for (i = 0; i < priv->data.slaves; i++) { 982 priv = netdev_priv(priv->slaves[i].ndev); 983 priv->coal_intvl = coal_intvl; 984 } 985 } else { 986 priv->coal_intvl = coal_intvl; 987 } 988 989 return 0; 990 } 991 992 static int cpsw_get_sset_count(struct net_device *ndev, int sset) 993 { 994 switch (sset) { 995 case ETH_SS_STATS: 996 return CPSW_STATS_LEN; 997 default: 998 return -EOPNOTSUPP; 999 } 1000 } 1001 1002 static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data) 1003 { 1004 u8 *p = data; 1005 int i; 1006 1007 switch (stringset) { 1008 case ETH_SS_STATS: 1009 for (i = 0; i < CPSW_STATS_LEN; i++) { 1010 memcpy(p, cpsw_gstrings_stats[i].stat_string, 1011 ETH_GSTRING_LEN); 1012 p += ETH_GSTRING_LEN; 1013 } 1014 break; 1015 } 1016 } 1017 1018 static void cpsw_get_ethtool_stats(struct net_device *ndev, 1019 struct ethtool_stats *stats, u64 *data) 1020 { 1021 struct cpsw_priv *priv = netdev_priv(ndev); 1022 struct cpdma_chan_stats rx_stats; 1023 struct cpdma_chan_stats tx_stats; 1024 u32 val; 1025 u8 *p; 1026 int i; 1027 1028 /* Collect Davinci CPDMA stats for Rx and Tx Channel */ 1029 cpdma_chan_get_stats(priv->rxch, &rx_stats); 1030 cpdma_chan_get_stats(priv->txch, &tx_stats); 1031 1032 for (i = 0; i < CPSW_STATS_LEN; i++) { 1033 switch (cpsw_gstrings_stats[i].type) { 1034 case CPSW_STATS: 1035 val = readl(priv->hw_stats + 1036 cpsw_gstrings_stats[i].stat_offset); 1037 data[i] = val; 1038 break; 1039 1040 case CPDMA_RX_STATS: 1041 p = (u8 *)&rx_stats + 1042 cpsw_gstrings_stats[i].stat_offset; 1043 data[i] = *(u32 *)p; 1044 break; 1045 1046 case CPDMA_TX_STATS: 1047 p = (u8 *)&tx_stats + 1048 cpsw_gstrings_stats[i].stat_offset; 1049 data[i] = *(u32 *)p; 1050 break; 1051 } 1052 } 1053 } 1054 1055 static int cpsw_common_res_usage_state(struct cpsw_priv *priv) 1056 { 1057 u32 i; 1058 u32 usage_count = 0; 1059 1060 if (!priv->data.dual_emac) 1061 return 0; 1062 1063 for (i = 0; i < priv->data.slaves; i++) 1064 if (priv->slaves[i].open_stat) 1065 usage_count++; 1066 1067 return usage_count; 1068 } 1069 1070 static inline int cpsw_tx_packet_submit(struct net_device *ndev, 1071 struct cpsw_priv *priv, struct sk_buff *skb) 1072 { 1073 if (!priv->data.dual_emac) 1074 return cpdma_chan_submit(priv->txch, skb, skb->data, 1075 skb->len, 0); 1076 1077 if (ndev == cpsw_get_slave_ndev(priv, 0)) 1078 return cpdma_chan_submit(priv->txch, skb, skb->data, 1079 skb->len, 1); 1080 else 1081 return cpdma_chan_submit(priv->txch, skb, skb->data, 1082 skb->len, 2); 1083 } 1084 1085 static inline void cpsw_add_dual_emac_def_ale_entries( 1086 struct cpsw_priv *priv, struct cpsw_slave *slave, 1087 u32 slave_port) 1088 { 1089 u32 port_mask = 1 << slave_port | 1 << priv->host_port; 1090 1091 if (priv->version == CPSW_VERSION_1) 1092 slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN); 1093 else 1094 slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN); 1095 cpsw_ale_add_vlan(priv->ale, slave->port_vlan, port_mask, 1096 port_mask, port_mask, 0); 1097 cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast, 1098 port_mask, ALE_VLAN, slave->port_vlan, 0); 1099 cpsw_ale_add_ucast(priv->ale, priv->mac_addr, 1100 priv->host_port, ALE_VLAN, slave->port_vlan); 1101 } 1102 1103 static void soft_reset_slave(struct cpsw_slave *slave) 1104 { 1105 char name[32]; 1106 1107 snprintf(name, sizeof(name), "slave-%d", slave->slave_num); 1108 soft_reset(name, &slave->sliver->soft_reset); 1109 } 1110 1111 static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv) 1112 { 1113 u32 slave_port; 1114 1115 soft_reset_slave(slave); 1116 1117 /* setup priority mapping */ 1118 __raw_writel(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map); 1119 1120 switch (priv->version) { 1121 case CPSW_VERSION_1: 1122 slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP); 1123 break; 1124 case CPSW_VERSION_2: 1125 case CPSW_VERSION_3: 1126 case CPSW_VERSION_4: 1127 slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP); 1128 break; 1129 } 1130 1131 /* setup max packet size, and mac address */ 1132 __raw_writel(priv->rx_packet_max, &slave->sliver->rx_maxlen); 1133 cpsw_set_slave_mac(slave, priv); 1134 1135 slave->mac_control = 0; /* no link yet */ 1136 1137 slave_port = cpsw_get_slave_port(priv, slave->slave_num); 1138 1139 if (priv->data.dual_emac) 1140 cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port); 1141 else 1142 cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast, 1143 1 << slave_port, 0, 0, ALE_MCAST_FWD_2); 1144 1145 slave->phy = phy_connect(priv->ndev, slave->data->phy_id, 1146 &cpsw_adjust_link, slave->data->phy_if); 1147 if (IS_ERR(slave->phy)) { 1148 dev_err(priv->dev, "phy %s not found on slave %d\n", 1149 slave->data->phy_id, slave->slave_num); 1150 slave->phy = NULL; 1151 } else { 1152 dev_info(priv->dev, "phy found : id is : 0x%x\n", 1153 slave->phy->phy_id); 1154 phy_start(slave->phy); 1155 1156 /* Configure GMII_SEL register */ 1157 cpsw_phy_sel(&priv->pdev->dev, slave->phy->interface, 1158 slave->slave_num); 1159 } 1160 } 1161 1162 static inline void cpsw_add_default_vlan(struct cpsw_priv *priv) 1163 { 1164 const int vlan = priv->data.default_vlan; 1165 const int port = priv->host_port; 1166 u32 reg; 1167 int i; 1168 int unreg_mcast_mask; 1169 1170 reg = (priv->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN : 1171 CPSW2_PORT_VLAN; 1172 1173 writel(vlan, &priv->host_port_regs->port_vlan); 1174 1175 for (i = 0; i < priv->data.slaves; i++) 1176 slave_write(priv->slaves + i, vlan, reg); 1177 1178 if (priv->ndev->flags & IFF_ALLMULTI) 1179 unreg_mcast_mask = ALE_ALL_PORTS; 1180 else 1181 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2; 1182 1183 cpsw_ale_add_vlan(priv->ale, vlan, ALE_ALL_PORTS << port, 1184 ALE_ALL_PORTS << port, ALE_ALL_PORTS << port, 1185 unreg_mcast_mask << port); 1186 } 1187 1188 static void cpsw_init_host_port(struct cpsw_priv *priv) 1189 { 1190 u32 control_reg; 1191 u32 fifo_mode; 1192 1193 /* soft reset the controller and initialize ale */ 1194 soft_reset("cpsw", &priv->regs->soft_reset); 1195 cpsw_ale_start(priv->ale); 1196 1197 /* switch to vlan unaware mode */ 1198 cpsw_ale_control_set(priv->ale, priv->host_port, ALE_VLAN_AWARE, 1199 CPSW_ALE_VLAN_AWARE); 1200 control_reg = readl(&priv->regs->control); 1201 control_reg |= CPSW_VLAN_AWARE; 1202 writel(control_reg, &priv->regs->control); 1203 fifo_mode = (priv->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE : 1204 CPSW_FIFO_NORMAL_MODE; 1205 writel(fifo_mode, &priv->host_port_regs->tx_in_ctl); 1206 1207 /* setup host port priority mapping */ 1208 __raw_writel(CPDMA_TX_PRIORITY_MAP, 1209 &priv->host_port_regs->cpdma_tx_pri_map); 1210 __raw_writel(0, &priv->host_port_regs->cpdma_rx_chan_map); 1211 1212 cpsw_ale_control_set(priv->ale, priv->host_port, 1213 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD); 1214 1215 if (!priv->data.dual_emac) { 1216 cpsw_ale_add_ucast(priv->ale, priv->mac_addr, priv->host_port, 1217 0, 0); 1218 cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast, 1219 1 << priv->host_port, 0, 0, ALE_MCAST_FWD_2); 1220 } 1221 } 1222 1223 static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_priv *priv) 1224 { 1225 u32 slave_port; 1226 1227 slave_port = cpsw_get_slave_port(priv, slave->slave_num); 1228 1229 if (!slave->phy) 1230 return; 1231 phy_stop(slave->phy); 1232 phy_disconnect(slave->phy); 1233 slave->phy = NULL; 1234 cpsw_ale_control_set(priv->ale, slave_port, 1235 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE); 1236 } 1237 1238 static int cpsw_ndo_open(struct net_device *ndev) 1239 { 1240 struct cpsw_priv *priv = netdev_priv(ndev); 1241 struct cpsw_priv *prim_cpsw; 1242 int i, ret; 1243 u32 reg; 1244 1245 if (!cpsw_common_res_usage_state(priv)) 1246 cpsw_intr_disable(priv); 1247 netif_carrier_off(ndev); 1248 1249 pm_runtime_get_sync(&priv->pdev->dev); 1250 1251 reg = priv->version; 1252 1253 dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n", 1254 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg), 1255 CPSW_RTL_VERSION(reg)); 1256 1257 /* initialize host and slave ports */ 1258 if (!cpsw_common_res_usage_state(priv)) 1259 cpsw_init_host_port(priv); 1260 for_each_slave(priv, cpsw_slave_open, priv); 1261 1262 /* Add default VLAN */ 1263 if (!priv->data.dual_emac) 1264 cpsw_add_default_vlan(priv); 1265 else 1266 cpsw_ale_add_vlan(priv->ale, priv->data.default_vlan, 1267 ALE_ALL_PORTS << priv->host_port, 1268 ALE_ALL_PORTS << priv->host_port, 0, 0); 1269 1270 if (!cpsw_common_res_usage_state(priv)) { 1271 /* setup tx dma to fixed prio and zero offset */ 1272 cpdma_control_set(priv->dma, CPDMA_TX_PRIO_FIXED, 1); 1273 cpdma_control_set(priv->dma, CPDMA_RX_BUFFER_OFFSET, 0); 1274 1275 /* disable priority elevation */ 1276 __raw_writel(0, &priv->regs->ptype); 1277 1278 /* enable statistics collection only on all ports */ 1279 __raw_writel(0x7, &priv->regs->stat_port_en); 1280 1281 /* Enable internal fifo flow control */ 1282 writel(0x7, &priv->regs->flow_control); 1283 1284 if (WARN_ON(!priv->data.rx_descs)) 1285 priv->data.rx_descs = 128; 1286 1287 for (i = 0; i < priv->data.rx_descs; i++) { 1288 struct sk_buff *skb; 1289 1290 ret = -ENOMEM; 1291 skb = __netdev_alloc_skb_ip_align(priv->ndev, 1292 priv->rx_packet_max, GFP_KERNEL); 1293 if (!skb) 1294 goto err_cleanup; 1295 ret = cpdma_chan_submit(priv->rxch, skb, skb->data, 1296 skb_tailroom(skb), 0); 1297 if (ret < 0) { 1298 kfree_skb(skb); 1299 goto err_cleanup; 1300 } 1301 } 1302 /* continue even if we didn't manage to submit all 1303 * receive descs 1304 */ 1305 cpsw_info(priv, ifup, "submitted %d rx descriptors\n", i); 1306 1307 if (cpts_register(&priv->pdev->dev, priv->cpts, 1308 priv->data.cpts_clock_mult, 1309 priv->data.cpts_clock_shift)) 1310 dev_err(priv->dev, "error registering cpts device\n"); 1311 1312 } 1313 1314 /* Enable Interrupt pacing if configured */ 1315 if (priv->coal_intvl != 0) { 1316 struct ethtool_coalesce coal; 1317 1318 coal.rx_coalesce_usecs = (priv->coal_intvl << 4); 1319 cpsw_set_coalesce(ndev, &coal); 1320 } 1321 1322 napi_enable(&priv->napi); 1323 cpdma_ctlr_start(priv->dma); 1324 cpsw_intr_enable(priv); 1325 1326 prim_cpsw = cpsw_get_slave_priv(priv, 0); 1327 if (prim_cpsw->irq_enabled == false) { 1328 if ((priv == prim_cpsw) || !netif_running(prim_cpsw->ndev)) { 1329 prim_cpsw->irq_enabled = true; 1330 cpsw_enable_irq(prim_cpsw); 1331 } 1332 } 1333 1334 if (priv->data.dual_emac) 1335 priv->slaves[priv->emac_port].open_stat = true; 1336 return 0; 1337 1338 err_cleanup: 1339 cpdma_ctlr_stop(priv->dma); 1340 for_each_slave(priv, cpsw_slave_stop, priv); 1341 pm_runtime_put_sync(&priv->pdev->dev); 1342 netif_carrier_off(priv->ndev); 1343 return ret; 1344 } 1345 1346 static int cpsw_ndo_stop(struct net_device *ndev) 1347 { 1348 struct cpsw_priv *priv = netdev_priv(ndev); 1349 1350 cpsw_info(priv, ifdown, "shutting down cpsw device\n"); 1351 netif_stop_queue(priv->ndev); 1352 napi_disable(&priv->napi); 1353 netif_carrier_off(priv->ndev); 1354 1355 if (cpsw_common_res_usage_state(priv) <= 1) { 1356 cpts_unregister(priv->cpts); 1357 cpsw_intr_disable(priv); 1358 cpdma_ctlr_int_ctrl(priv->dma, false); 1359 cpdma_ctlr_stop(priv->dma); 1360 cpsw_ale_stop(priv->ale); 1361 } 1362 for_each_slave(priv, cpsw_slave_stop, priv); 1363 pm_runtime_put_sync(&priv->pdev->dev); 1364 if (priv->data.dual_emac) 1365 priv->slaves[priv->emac_port].open_stat = false; 1366 return 0; 1367 } 1368 1369 static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb, 1370 struct net_device *ndev) 1371 { 1372 struct cpsw_priv *priv = netdev_priv(ndev); 1373 int ret; 1374 1375 ndev->trans_start = jiffies; 1376 1377 if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) { 1378 cpsw_err(priv, tx_err, "packet pad failed\n"); 1379 ndev->stats.tx_dropped++; 1380 return NETDEV_TX_OK; 1381 } 1382 1383 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && 1384 priv->cpts->tx_enable) 1385 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1386 1387 skb_tx_timestamp(skb); 1388 1389 ret = cpsw_tx_packet_submit(ndev, priv, skb); 1390 if (unlikely(ret != 0)) { 1391 cpsw_err(priv, tx_err, "desc submit failed\n"); 1392 goto fail; 1393 } 1394 1395 /* If there is no more tx desc left free then we need to 1396 * tell the kernel to stop sending us tx frames. 1397 */ 1398 if (unlikely(!cpdma_check_free_tx_desc(priv->txch))) 1399 netif_stop_queue(ndev); 1400 1401 return NETDEV_TX_OK; 1402 fail: 1403 ndev->stats.tx_dropped++; 1404 netif_stop_queue(ndev); 1405 return NETDEV_TX_BUSY; 1406 } 1407 1408 #ifdef CONFIG_TI_CPTS 1409 1410 static void cpsw_hwtstamp_v1(struct cpsw_priv *priv) 1411 { 1412 struct cpsw_slave *slave = &priv->slaves[priv->data.active_slave]; 1413 u32 ts_en, seq_id; 1414 1415 if (!priv->cpts->tx_enable && !priv->cpts->rx_enable) { 1416 slave_write(slave, 0, CPSW1_TS_CTL); 1417 return; 1418 } 1419 1420 seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588; 1421 ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS; 1422 1423 if (priv->cpts->tx_enable) 1424 ts_en |= CPSW_V1_TS_TX_EN; 1425 1426 if (priv->cpts->rx_enable) 1427 ts_en |= CPSW_V1_TS_RX_EN; 1428 1429 slave_write(slave, ts_en, CPSW1_TS_CTL); 1430 slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE); 1431 } 1432 1433 static void cpsw_hwtstamp_v2(struct cpsw_priv *priv) 1434 { 1435 struct cpsw_slave *slave; 1436 u32 ctrl, mtype; 1437 1438 if (priv->data.dual_emac) 1439 slave = &priv->slaves[priv->emac_port]; 1440 else 1441 slave = &priv->slaves[priv->data.active_slave]; 1442 1443 ctrl = slave_read(slave, CPSW2_CONTROL); 1444 switch (priv->version) { 1445 case CPSW_VERSION_2: 1446 ctrl &= ~CTRL_V2_ALL_TS_MASK; 1447 1448 if (priv->cpts->tx_enable) 1449 ctrl |= CTRL_V2_TX_TS_BITS; 1450 1451 if (priv->cpts->rx_enable) 1452 ctrl |= CTRL_V2_RX_TS_BITS; 1453 break; 1454 case CPSW_VERSION_3: 1455 default: 1456 ctrl &= ~CTRL_V3_ALL_TS_MASK; 1457 1458 if (priv->cpts->tx_enable) 1459 ctrl |= CTRL_V3_TX_TS_BITS; 1460 1461 if (priv->cpts->rx_enable) 1462 ctrl |= CTRL_V3_RX_TS_BITS; 1463 break; 1464 } 1465 1466 mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS; 1467 1468 slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE); 1469 slave_write(slave, ctrl, CPSW2_CONTROL); 1470 __raw_writel(ETH_P_1588, &priv->regs->ts_ltype); 1471 } 1472 1473 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr) 1474 { 1475 struct cpsw_priv *priv = netdev_priv(dev); 1476 struct cpts *cpts = priv->cpts; 1477 struct hwtstamp_config cfg; 1478 1479 if (priv->version != CPSW_VERSION_1 && 1480 priv->version != CPSW_VERSION_2 && 1481 priv->version != CPSW_VERSION_3) 1482 return -EOPNOTSUPP; 1483 1484 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg))) 1485 return -EFAULT; 1486 1487 /* reserved for future extensions */ 1488 if (cfg.flags) 1489 return -EINVAL; 1490 1491 if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON) 1492 return -ERANGE; 1493 1494 switch (cfg.rx_filter) { 1495 case HWTSTAMP_FILTER_NONE: 1496 cpts->rx_enable = 0; 1497 break; 1498 case HWTSTAMP_FILTER_ALL: 1499 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 1500 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 1501 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 1502 return -ERANGE; 1503 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 1504 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 1505 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 1506 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 1507 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 1508 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 1509 case HWTSTAMP_FILTER_PTP_V2_EVENT: 1510 case HWTSTAMP_FILTER_PTP_V2_SYNC: 1511 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 1512 cpts->rx_enable = 1; 1513 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 1514 break; 1515 default: 1516 return -ERANGE; 1517 } 1518 1519 cpts->tx_enable = cfg.tx_type == HWTSTAMP_TX_ON; 1520 1521 switch (priv->version) { 1522 case CPSW_VERSION_1: 1523 cpsw_hwtstamp_v1(priv); 1524 break; 1525 case CPSW_VERSION_2: 1526 case CPSW_VERSION_3: 1527 cpsw_hwtstamp_v2(priv); 1528 break; 1529 default: 1530 WARN_ON(1); 1531 } 1532 1533 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; 1534 } 1535 1536 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr) 1537 { 1538 struct cpsw_priv *priv = netdev_priv(dev); 1539 struct cpts *cpts = priv->cpts; 1540 struct hwtstamp_config cfg; 1541 1542 if (priv->version != CPSW_VERSION_1 && 1543 priv->version != CPSW_VERSION_2 && 1544 priv->version != CPSW_VERSION_3) 1545 return -EOPNOTSUPP; 1546 1547 cfg.flags = 0; 1548 cfg.tx_type = cpts->tx_enable ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF; 1549 cfg.rx_filter = (cpts->rx_enable ? 1550 HWTSTAMP_FILTER_PTP_V2_EVENT : HWTSTAMP_FILTER_NONE); 1551 1552 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; 1553 } 1554 1555 #endif /*CONFIG_TI_CPTS*/ 1556 1557 static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 1558 { 1559 struct cpsw_priv *priv = netdev_priv(dev); 1560 int slave_no = cpsw_slave_index(priv); 1561 1562 if (!netif_running(dev)) 1563 return -EINVAL; 1564 1565 switch (cmd) { 1566 #ifdef CONFIG_TI_CPTS 1567 case SIOCSHWTSTAMP: 1568 return cpsw_hwtstamp_set(dev, req); 1569 case SIOCGHWTSTAMP: 1570 return cpsw_hwtstamp_get(dev, req); 1571 #endif 1572 } 1573 1574 if (!priv->slaves[slave_no].phy) 1575 return -EOPNOTSUPP; 1576 return phy_mii_ioctl(priv->slaves[slave_no].phy, req, cmd); 1577 } 1578 1579 static void cpsw_ndo_tx_timeout(struct net_device *ndev) 1580 { 1581 struct cpsw_priv *priv = netdev_priv(ndev); 1582 1583 cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n"); 1584 ndev->stats.tx_errors++; 1585 cpsw_intr_disable(priv); 1586 cpdma_ctlr_int_ctrl(priv->dma, false); 1587 cpdma_chan_stop(priv->txch); 1588 cpdma_chan_start(priv->txch); 1589 cpdma_ctlr_int_ctrl(priv->dma, true); 1590 cpsw_intr_enable(priv); 1591 } 1592 1593 static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p) 1594 { 1595 struct cpsw_priv *priv = netdev_priv(ndev); 1596 struct sockaddr *addr = (struct sockaddr *)p; 1597 int flags = 0; 1598 u16 vid = 0; 1599 1600 if (!is_valid_ether_addr(addr->sa_data)) 1601 return -EADDRNOTAVAIL; 1602 1603 if (priv->data.dual_emac) { 1604 vid = priv->slaves[priv->emac_port].port_vlan; 1605 flags = ALE_VLAN; 1606 } 1607 1608 cpsw_ale_del_ucast(priv->ale, priv->mac_addr, priv->host_port, 1609 flags, vid); 1610 cpsw_ale_add_ucast(priv->ale, addr->sa_data, priv->host_port, 1611 flags, vid); 1612 1613 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN); 1614 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN); 1615 for_each_slave(priv, cpsw_set_slave_mac, priv); 1616 1617 return 0; 1618 } 1619 1620 #ifdef CONFIG_NET_POLL_CONTROLLER 1621 static void cpsw_ndo_poll_controller(struct net_device *ndev) 1622 { 1623 struct cpsw_priv *priv = netdev_priv(ndev); 1624 1625 cpsw_intr_disable(priv); 1626 cpdma_ctlr_int_ctrl(priv->dma, false); 1627 cpsw_interrupt(ndev->irq, priv); 1628 cpdma_ctlr_int_ctrl(priv->dma, true); 1629 cpsw_intr_enable(priv); 1630 } 1631 #endif 1632 1633 static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv, 1634 unsigned short vid) 1635 { 1636 int ret; 1637 int unreg_mcast_mask = 0; 1638 u32 port_mask; 1639 1640 if (priv->data.dual_emac) { 1641 port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST; 1642 1643 if (priv->ndev->flags & IFF_ALLMULTI) 1644 unreg_mcast_mask = port_mask; 1645 } else { 1646 port_mask = ALE_ALL_PORTS; 1647 1648 if (priv->ndev->flags & IFF_ALLMULTI) 1649 unreg_mcast_mask = ALE_ALL_PORTS; 1650 else 1651 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2; 1652 } 1653 1654 ret = cpsw_ale_add_vlan(priv->ale, vid, port_mask, 0, port_mask, 1655 unreg_mcast_mask << priv->host_port); 1656 if (ret != 0) 1657 return ret; 1658 1659 ret = cpsw_ale_add_ucast(priv->ale, priv->mac_addr, 1660 priv->host_port, ALE_VLAN, vid); 1661 if (ret != 0) 1662 goto clean_vid; 1663 1664 ret = cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast, 1665 port_mask, ALE_VLAN, vid, 0); 1666 if (ret != 0) 1667 goto clean_vlan_ucast; 1668 return 0; 1669 1670 clean_vlan_ucast: 1671 cpsw_ale_del_ucast(priv->ale, priv->mac_addr, 1672 priv->host_port, ALE_VLAN, vid); 1673 clean_vid: 1674 cpsw_ale_del_vlan(priv->ale, vid, 0); 1675 return ret; 1676 } 1677 1678 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev, 1679 __be16 proto, u16 vid) 1680 { 1681 struct cpsw_priv *priv = netdev_priv(ndev); 1682 1683 if (vid == priv->data.default_vlan) 1684 return 0; 1685 1686 if (priv->data.dual_emac) { 1687 /* In dual EMAC, reserved VLAN id should not be used for 1688 * creating VLAN interfaces as this can break the dual 1689 * EMAC port separation 1690 */ 1691 int i; 1692 1693 for (i = 0; i < priv->data.slaves; i++) { 1694 if (vid == priv->slaves[i].port_vlan) 1695 return -EINVAL; 1696 } 1697 } 1698 1699 dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid); 1700 return cpsw_add_vlan_ale_entry(priv, vid); 1701 } 1702 1703 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev, 1704 __be16 proto, u16 vid) 1705 { 1706 struct cpsw_priv *priv = netdev_priv(ndev); 1707 int ret; 1708 1709 if (vid == priv->data.default_vlan) 1710 return 0; 1711 1712 if (priv->data.dual_emac) { 1713 int i; 1714 1715 for (i = 0; i < priv->data.slaves; i++) { 1716 if (vid == priv->slaves[i].port_vlan) 1717 return -EINVAL; 1718 } 1719 } 1720 1721 dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid); 1722 ret = cpsw_ale_del_vlan(priv->ale, vid, 0); 1723 if (ret != 0) 1724 return ret; 1725 1726 ret = cpsw_ale_del_ucast(priv->ale, priv->mac_addr, 1727 priv->host_port, ALE_VLAN, vid); 1728 if (ret != 0) 1729 return ret; 1730 1731 return cpsw_ale_del_mcast(priv->ale, priv->ndev->broadcast, 1732 0, ALE_VLAN, vid); 1733 } 1734 1735 static const struct net_device_ops cpsw_netdev_ops = { 1736 .ndo_open = cpsw_ndo_open, 1737 .ndo_stop = cpsw_ndo_stop, 1738 .ndo_start_xmit = cpsw_ndo_start_xmit, 1739 .ndo_set_mac_address = cpsw_ndo_set_mac_address, 1740 .ndo_do_ioctl = cpsw_ndo_ioctl, 1741 .ndo_validate_addr = eth_validate_addr, 1742 .ndo_change_mtu = eth_change_mtu, 1743 .ndo_tx_timeout = cpsw_ndo_tx_timeout, 1744 .ndo_set_rx_mode = cpsw_ndo_set_rx_mode, 1745 #ifdef CONFIG_NET_POLL_CONTROLLER 1746 .ndo_poll_controller = cpsw_ndo_poll_controller, 1747 #endif 1748 .ndo_vlan_rx_add_vid = cpsw_ndo_vlan_rx_add_vid, 1749 .ndo_vlan_rx_kill_vid = cpsw_ndo_vlan_rx_kill_vid, 1750 }; 1751 1752 static int cpsw_get_regs_len(struct net_device *ndev) 1753 { 1754 struct cpsw_priv *priv = netdev_priv(ndev); 1755 1756 return priv->data.ale_entries * ALE_ENTRY_WORDS * sizeof(u32); 1757 } 1758 1759 static void cpsw_get_regs(struct net_device *ndev, 1760 struct ethtool_regs *regs, void *p) 1761 { 1762 struct cpsw_priv *priv = netdev_priv(ndev); 1763 u32 *reg = p; 1764 1765 /* update CPSW IP version */ 1766 regs->version = priv->version; 1767 1768 cpsw_ale_dump(priv->ale, reg); 1769 } 1770 1771 static void cpsw_get_drvinfo(struct net_device *ndev, 1772 struct ethtool_drvinfo *info) 1773 { 1774 struct cpsw_priv *priv = netdev_priv(ndev); 1775 1776 strlcpy(info->driver, "cpsw", sizeof(info->driver)); 1777 strlcpy(info->version, "1.0", sizeof(info->version)); 1778 strlcpy(info->bus_info, priv->pdev->name, sizeof(info->bus_info)); 1779 info->regdump_len = cpsw_get_regs_len(ndev); 1780 } 1781 1782 static u32 cpsw_get_msglevel(struct net_device *ndev) 1783 { 1784 struct cpsw_priv *priv = netdev_priv(ndev); 1785 return priv->msg_enable; 1786 } 1787 1788 static void cpsw_set_msglevel(struct net_device *ndev, u32 value) 1789 { 1790 struct cpsw_priv *priv = netdev_priv(ndev); 1791 priv->msg_enable = value; 1792 } 1793 1794 static int cpsw_get_ts_info(struct net_device *ndev, 1795 struct ethtool_ts_info *info) 1796 { 1797 #ifdef CONFIG_TI_CPTS 1798 struct cpsw_priv *priv = netdev_priv(ndev); 1799 1800 info->so_timestamping = 1801 SOF_TIMESTAMPING_TX_HARDWARE | 1802 SOF_TIMESTAMPING_TX_SOFTWARE | 1803 SOF_TIMESTAMPING_RX_HARDWARE | 1804 SOF_TIMESTAMPING_RX_SOFTWARE | 1805 SOF_TIMESTAMPING_SOFTWARE | 1806 SOF_TIMESTAMPING_RAW_HARDWARE; 1807 info->phc_index = priv->cpts->phc_index; 1808 info->tx_types = 1809 (1 << HWTSTAMP_TX_OFF) | 1810 (1 << HWTSTAMP_TX_ON); 1811 info->rx_filters = 1812 (1 << HWTSTAMP_FILTER_NONE) | 1813 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 1814 #else 1815 info->so_timestamping = 1816 SOF_TIMESTAMPING_TX_SOFTWARE | 1817 SOF_TIMESTAMPING_RX_SOFTWARE | 1818 SOF_TIMESTAMPING_SOFTWARE; 1819 info->phc_index = -1; 1820 info->tx_types = 0; 1821 info->rx_filters = 0; 1822 #endif 1823 return 0; 1824 } 1825 1826 static int cpsw_get_settings(struct net_device *ndev, 1827 struct ethtool_cmd *ecmd) 1828 { 1829 struct cpsw_priv *priv = netdev_priv(ndev); 1830 int slave_no = cpsw_slave_index(priv); 1831 1832 if (priv->slaves[slave_no].phy) 1833 return phy_ethtool_gset(priv->slaves[slave_no].phy, ecmd); 1834 else 1835 return -EOPNOTSUPP; 1836 } 1837 1838 static int cpsw_set_settings(struct net_device *ndev, struct ethtool_cmd *ecmd) 1839 { 1840 struct cpsw_priv *priv = netdev_priv(ndev); 1841 int slave_no = cpsw_slave_index(priv); 1842 1843 if (priv->slaves[slave_no].phy) 1844 return phy_ethtool_sset(priv->slaves[slave_no].phy, ecmd); 1845 else 1846 return -EOPNOTSUPP; 1847 } 1848 1849 static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 1850 { 1851 struct cpsw_priv *priv = netdev_priv(ndev); 1852 int slave_no = cpsw_slave_index(priv); 1853 1854 wol->supported = 0; 1855 wol->wolopts = 0; 1856 1857 if (priv->slaves[slave_no].phy) 1858 phy_ethtool_get_wol(priv->slaves[slave_no].phy, wol); 1859 } 1860 1861 static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 1862 { 1863 struct cpsw_priv *priv = netdev_priv(ndev); 1864 int slave_no = cpsw_slave_index(priv); 1865 1866 if (priv->slaves[slave_no].phy) 1867 return phy_ethtool_set_wol(priv->slaves[slave_no].phy, wol); 1868 else 1869 return -EOPNOTSUPP; 1870 } 1871 1872 static void cpsw_get_pauseparam(struct net_device *ndev, 1873 struct ethtool_pauseparam *pause) 1874 { 1875 struct cpsw_priv *priv = netdev_priv(ndev); 1876 1877 pause->autoneg = AUTONEG_DISABLE; 1878 pause->rx_pause = priv->rx_pause ? true : false; 1879 pause->tx_pause = priv->tx_pause ? true : false; 1880 } 1881 1882 static int cpsw_set_pauseparam(struct net_device *ndev, 1883 struct ethtool_pauseparam *pause) 1884 { 1885 struct cpsw_priv *priv = netdev_priv(ndev); 1886 bool link; 1887 1888 priv->rx_pause = pause->rx_pause ? true : false; 1889 priv->tx_pause = pause->tx_pause ? true : false; 1890 1891 for_each_slave(priv, _cpsw_adjust_link, priv, &link); 1892 1893 return 0; 1894 } 1895 1896 static const struct ethtool_ops cpsw_ethtool_ops = { 1897 .get_drvinfo = cpsw_get_drvinfo, 1898 .get_msglevel = cpsw_get_msglevel, 1899 .set_msglevel = cpsw_set_msglevel, 1900 .get_link = ethtool_op_get_link, 1901 .get_ts_info = cpsw_get_ts_info, 1902 .get_settings = cpsw_get_settings, 1903 .set_settings = cpsw_set_settings, 1904 .get_coalesce = cpsw_get_coalesce, 1905 .set_coalesce = cpsw_set_coalesce, 1906 .get_sset_count = cpsw_get_sset_count, 1907 .get_strings = cpsw_get_strings, 1908 .get_ethtool_stats = cpsw_get_ethtool_stats, 1909 .get_pauseparam = cpsw_get_pauseparam, 1910 .set_pauseparam = cpsw_set_pauseparam, 1911 .get_wol = cpsw_get_wol, 1912 .set_wol = cpsw_set_wol, 1913 .get_regs_len = cpsw_get_regs_len, 1914 .get_regs = cpsw_get_regs, 1915 }; 1916 1917 static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_priv *priv, 1918 u32 slave_reg_ofs, u32 sliver_reg_ofs) 1919 { 1920 void __iomem *regs = priv->regs; 1921 int slave_num = slave->slave_num; 1922 struct cpsw_slave_data *data = priv->data.slave_data + slave_num; 1923 1924 slave->data = data; 1925 slave->regs = regs + slave_reg_ofs; 1926 slave->sliver = regs + sliver_reg_ofs; 1927 slave->port_vlan = data->dual_emac_res_vlan; 1928 } 1929 1930 #define AM33XX_CTRL_MAC_LO_REG(id) (0x630 + 0x8 * id) 1931 #define AM33XX_CTRL_MAC_HI_REG(id) (0x630 + 0x8 * id + 0x4) 1932 1933 static int cpsw_am33xx_cm_get_macid(struct device *dev, int slave, 1934 u8 *mac_addr) 1935 { 1936 u32 macid_lo; 1937 u32 macid_hi; 1938 struct regmap *syscon; 1939 1940 syscon = syscon_regmap_lookup_by_phandle(dev->of_node, "syscon"); 1941 if (IS_ERR(syscon)) { 1942 if (PTR_ERR(syscon) == -ENODEV) 1943 return 0; 1944 return PTR_ERR(syscon); 1945 } 1946 1947 regmap_read(syscon, AM33XX_CTRL_MAC_LO_REG(slave), &macid_lo); 1948 regmap_read(syscon, AM33XX_CTRL_MAC_HI_REG(slave), &macid_hi); 1949 1950 mac_addr[5] = (macid_lo >> 8) & 0xff; 1951 mac_addr[4] = macid_lo & 0xff; 1952 mac_addr[3] = (macid_hi >> 24) & 0xff; 1953 mac_addr[2] = (macid_hi >> 16) & 0xff; 1954 mac_addr[1] = (macid_hi >> 8) & 0xff; 1955 mac_addr[0] = macid_hi & 0xff; 1956 1957 return 0; 1958 } 1959 1960 static int cpsw_probe_dt(struct cpsw_platform_data *data, 1961 struct platform_device *pdev) 1962 { 1963 struct device_node *node = pdev->dev.of_node; 1964 struct device_node *slave_node; 1965 int i = 0, ret; 1966 u32 prop; 1967 1968 if (!node) 1969 return -EINVAL; 1970 1971 if (of_property_read_u32(node, "slaves", &prop)) { 1972 dev_err(&pdev->dev, "Missing slaves property in the DT.\n"); 1973 return -EINVAL; 1974 } 1975 data->slaves = prop; 1976 1977 if (of_property_read_u32(node, "active_slave", &prop)) { 1978 dev_err(&pdev->dev, "Missing active_slave property in the DT.\n"); 1979 return -EINVAL; 1980 } 1981 data->active_slave = prop; 1982 1983 if (of_property_read_u32(node, "cpts_clock_mult", &prop)) { 1984 dev_err(&pdev->dev, "Missing cpts_clock_mult property in the DT.\n"); 1985 return -EINVAL; 1986 } 1987 data->cpts_clock_mult = prop; 1988 1989 if (of_property_read_u32(node, "cpts_clock_shift", &prop)) { 1990 dev_err(&pdev->dev, "Missing cpts_clock_shift property in the DT.\n"); 1991 return -EINVAL; 1992 } 1993 data->cpts_clock_shift = prop; 1994 1995 data->slave_data = devm_kzalloc(&pdev->dev, data->slaves 1996 * sizeof(struct cpsw_slave_data), 1997 GFP_KERNEL); 1998 if (!data->slave_data) 1999 return -ENOMEM; 2000 2001 if (of_property_read_u32(node, "cpdma_channels", &prop)) { 2002 dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n"); 2003 return -EINVAL; 2004 } 2005 data->channels = prop; 2006 2007 if (of_property_read_u32(node, "ale_entries", &prop)) { 2008 dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n"); 2009 return -EINVAL; 2010 } 2011 data->ale_entries = prop; 2012 2013 if (of_property_read_u32(node, "bd_ram_size", &prop)) { 2014 dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n"); 2015 return -EINVAL; 2016 } 2017 data->bd_ram_size = prop; 2018 2019 if (of_property_read_u32(node, "rx_descs", &prop)) { 2020 dev_err(&pdev->dev, "Missing rx_descs property in the DT.\n"); 2021 return -EINVAL; 2022 } 2023 data->rx_descs = prop; 2024 2025 if (of_property_read_u32(node, "mac_control", &prop)) { 2026 dev_err(&pdev->dev, "Missing mac_control property in the DT.\n"); 2027 return -EINVAL; 2028 } 2029 data->mac_control = prop; 2030 2031 if (of_property_read_bool(node, "dual_emac")) 2032 data->dual_emac = 1; 2033 2034 /* 2035 * Populate all the child nodes here... 2036 */ 2037 ret = of_platform_populate(node, NULL, NULL, &pdev->dev); 2038 /* We do not want to force this, as in some cases may not have child */ 2039 if (ret) 2040 dev_warn(&pdev->dev, "Doesn't have any child node\n"); 2041 2042 for_each_child_of_node(node, slave_node) { 2043 struct cpsw_slave_data *slave_data = data->slave_data + i; 2044 const void *mac_addr = NULL; 2045 u32 phyid; 2046 int lenp; 2047 const __be32 *parp; 2048 struct device_node *mdio_node; 2049 struct platform_device *mdio; 2050 2051 /* This is no slave child node, continue */ 2052 if (strcmp(slave_node->name, "slave")) 2053 continue; 2054 2055 parp = of_get_property(slave_node, "phy_id", &lenp); 2056 if ((parp == NULL) || (lenp != (sizeof(void *) * 2))) { 2057 dev_err(&pdev->dev, "Missing slave[%d] phy_id property\n", i); 2058 goto no_phy_slave; 2059 } 2060 mdio_node = of_find_node_by_phandle(be32_to_cpup(parp)); 2061 phyid = be32_to_cpup(parp+1); 2062 mdio = of_find_device_by_node(mdio_node); 2063 of_node_put(mdio_node); 2064 if (!mdio) { 2065 dev_err(&pdev->dev, "Missing mdio platform device\n"); 2066 return -EINVAL; 2067 } 2068 snprintf(slave_data->phy_id, sizeof(slave_data->phy_id), 2069 PHY_ID_FMT, mdio->name, phyid); 2070 2071 slave_data->phy_if = of_get_phy_mode(slave_node); 2072 if (slave_data->phy_if < 0) { 2073 dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n", 2074 i); 2075 return slave_data->phy_if; 2076 } 2077 2078 no_phy_slave: 2079 mac_addr = of_get_mac_address(slave_node); 2080 if (mac_addr) { 2081 memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN); 2082 } else { 2083 if (of_machine_is_compatible("ti,am33xx")) { 2084 ret = cpsw_am33xx_cm_get_macid(&pdev->dev, i, 2085 slave_data->mac_addr); 2086 if (ret) 2087 return ret; 2088 } 2089 } 2090 if (data->dual_emac) { 2091 if (of_property_read_u32(slave_node, "dual_emac_res_vlan", 2092 &prop)) { 2093 dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n"); 2094 slave_data->dual_emac_res_vlan = i+1; 2095 dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n", 2096 slave_data->dual_emac_res_vlan, i); 2097 } else { 2098 slave_data->dual_emac_res_vlan = prop; 2099 } 2100 } 2101 2102 i++; 2103 if (i == data->slaves) 2104 break; 2105 } 2106 2107 return 0; 2108 } 2109 2110 static int cpsw_probe_dual_emac(struct platform_device *pdev, 2111 struct cpsw_priv *priv) 2112 { 2113 struct cpsw_platform_data *data = &priv->data; 2114 struct net_device *ndev; 2115 struct cpsw_priv *priv_sl2; 2116 int ret = 0, i; 2117 2118 ndev = alloc_etherdev(sizeof(struct cpsw_priv)); 2119 if (!ndev) { 2120 dev_err(&pdev->dev, "cpsw: error allocating net_device\n"); 2121 return -ENOMEM; 2122 } 2123 2124 priv_sl2 = netdev_priv(ndev); 2125 spin_lock_init(&priv_sl2->lock); 2126 priv_sl2->data = *data; 2127 priv_sl2->pdev = pdev; 2128 priv_sl2->ndev = ndev; 2129 priv_sl2->dev = &ndev->dev; 2130 priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG); 2131 priv_sl2->rx_packet_max = max(rx_packet_max, 128); 2132 2133 if (is_valid_ether_addr(data->slave_data[1].mac_addr)) { 2134 memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr, 2135 ETH_ALEN); 2136 dev_info(&pdev->dev, "cpsw: Detected MACID = %pM\n", priv_sl2->mac_addr); 2137 } else { 2138 random_ether_addr(priv_sl2->mac_addr); 2139 dev_info(&pdev->dev, "cpsw: Random MACID = %pM\n", priv_sl2->mac_addr); 2140 } 2141 memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN); 2142 2143 priv_sl2->slaves = priv->slaves; 2144 priv_sl2->clk = priv->clk; 2145 2146 priv_sl2->coal_intvl = 0; 2147 priv_sl2->bus_freq_mhz = priv->bus_freq_mhz; 2148 2149 priv_sl2->regs = priv->regs; 2150 priv_sl2->host_port = priv->host_port; 2151 priv_sl2->host_port_regs = priv->host_port_regs; 2152 priv_sl2->wr_regs = priv->wr_regs; 2153 priv_sl2->hw_stats = priv->hw_stats; 2154 priv_sl2->dma = priv->dma; 2155 priv_sl2->txch = priv->txch; 2156 priv_sl2->rxch = priv->rxch; 2157 priv_sl2->ale = priv->ale; 2158 priv_sl2->emac_port = 1; 2159 priv->slaves[1].ndev = ndev; 2160 priv_sl2->cpts = priv->cpts; 2161 priv_sl2->version = priv->version; 2162 2163 for (i = 0; i < priv->num_irqs; i++) { 2164 priv_sl2->irqs_table[i] = priv->irqs_table[i]; 2165 priv_sl2->num_irqs = priv->num_irqs; 2166 } 2167 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 2168 2169 ndev->netdev_ops = &cpsw_netdev_ops; 2170 ndev->ethtool_ops = &cpsw_ethtool_ops; 2171 netif_napi_add(ndev, &priv_sl2->napi, cpsw_poll, CPSW_POLL_WEIGHT); 2172 2173 /* register the network device */ 2174 SET_NETDEV_DEV(ndev, &pdev->dev); 2175 ret = register_netdev(ndev); 2176 if (ret) { 2177 dev_err(&pdev->dev, "cpsw: error registering net device\n"); 2178 free_netdev(ndev); 2179 ret = -ENODEV; 2180 } 2181 2182 return ret; 2183 } 2184 2185 static int cpsw_probe(struct platform_device *pdev) 2186 { 2187 struct cpsw_platform_data *data; 2188 struct net_device *ndev; 2189 struct cpsw_priv *priv; 2190 struct cpdma_params dma_params; 2191 struct cpsw_ale_params ale_params; 2192 void __iomem *ss_regs; 2193 struct resource *res, *ss_res; 2194 u32 slave_offset, sliver_offset, slave_size; 2195 int ret = 0, i, k = 0; 2196 2197 ndev = alloc_etherdev(sizeof(struct cpsw_priv)); 2198 if (!ndev) { 2199 dev_err(&pdev->dev, "error allocating net_device\n"); 2200 return -ENOMEM; 2201 } 2202 2203 platform_set_drvdata(pdev, ndev); 2204 priv = netdev_priv(ndev); 2205 spin_lock_init(&priv->lock); 2206 priv->pdev = pdev; 2207 priv->ndev = ndev; 2208 priv->dev = &ndev->dev; 2209 priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG); 2210 priv->rx_packet_max = max(rx_packet_max, 128); 2211 priv->cpts = devm_kzalloc(&pdev->dev, sizeof(struct cpts), GFP_KERNEL); 2212 priv->irq_enabled = true; 2213 if (!priv->cpts) { 2214 dev_err(&pdev->dev, "error allocating cpts\n"); 2215 ret = -ENOMEM; 2216 goto clean_ndev_ret; 2217 } 2218 2219 /* 2220 * This may be required here for child devices. 2221 */ 2222 pm_runtime_enable(&pdev->dev); 2223 2224 /* Select default pin state */ 2225 pinctrl_pm_select_default_state(&pdev->dev); 2226 2227 if (cpsw_probe_dt(&priv->data, pdev)) { 2228 dev_err(&pdev->dev, "cpsw: platform data missing\n"); 2229 ret = -ENODEV; 2230 goto clean_runtime_disable_ret; 2231 } 2232 data = &priv->data; 2233 2234 if (is_valid_ether_addr(data->slave_data[0].mac_addr)) { 2235 memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN); 2236 dev_info(&pdev->dev, "Detected MACID = %pM\n", priv->mac_addr); 2237 } else { 2238 eth_random_addr(priv->mac_addr); 2239 dev_info(&pdev->dev, "Random MACID = %pM\n", priv->mac_addr); 2240 } 2241 2242 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN); 2243 2244 priv->slaves = devm_kzalloc(&pdev->dev, 2245 sizeof(struct cpsw_slave) * data->slaves, 2246 GFP_KERNEL); 2247 if (!priv->slaves) { 2248 ret = -ENOMEM; 2249 goto clean_runtime_disable_ret; 2250 } 2251 for (i = 0; i < data->slaves; i++) 2252 priv->slaves[i].slave_num = i; 2253 2254 priv->slaves[0].ndev = ndev; 2255 priv->emac_port = 0; 2256 2257 priv->clk = devm_clk_get(&pdev->dev, "fck"); 2258 if (IS_ERR(priv->clk)) { 2259 dev_err(priv->dev, "fck is not found\n"); 2260 ret = -ENODEV; 2261 goto clean_runtime_disable_ret; 2262 } 2263 priv->coal_intvl = 0; 2264 priv->bus_freq_mhz = clk_get_rate(priv->clk) / 1000000; 2265 2266 ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2267 ss_regs = devm_ioremap_resource(&pdev->dev, ss_res); 2268 if (IS_ERR(ss_regs)) { 2269 ret = PTR_ERR(ss_regs); 2270 goto clean_runtime_disable_ret; 2271 } 2272 priv->regs = ss_regs; 2273 priv->host_port = HOST_PORT_NUM; 2274 2275 /* Need to enable clocks with runtime PM api to access module 2276 * registers 2277 */ 2278 pm_runtime_get_sync(&pdev->dev); 2279 priv->version = readl(&priv->regs->id_ver); 2280 pm_runtime_put_sync(&pdev->dev); 2281 2282 res = platform_get_resource(pdev, IORESOURCE_MEM, 1); 2283 priv->wr_regs = devm_ioremap_resource(&pdev->dev, res); 2284 if (IS_ERR(priv->wr_regs)) { 2285 ret = PTR_ERR(priv->wr_regs); 2286 goto clean_runtime_disable_ret; 2287 } 2288 2289 memset(&dma_params, 0, sizeof(dma_params)); 2290 memset(&ale_params, 0, sizeof(ale_params)); 2291 2292 switch (priv->version) { 2293 case CPSW_VERSION_1: 2294 priv->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET; 2295 priv->cpts->reg = ss_regs + CPSW1_CPTS_OFFSET; 2296 priv->hw_stats = ss_regs + CPSW1_HW_STATS; 2297 dma_params.dmaregs = ss_regs + CPSW1_CPDMA_OFFSET; 2298 dma_params.txhdp = ss_regs + CPSW1_STATERAM_OFFSET; 2299 ale_params.ale_regs = ss_regs + CPSW1_ALE_OFFSET; 2300 slave_offset = CPSW1_SLAVE_OFFSET; 2301 slave_size = CPSW1_SLAVE_SIZE; 2302 sliver_offset = CPSW1_SLIVER_OFFSET; 2303 dma_params.desc_mem_phys = 0; 2304 break; 2305 case CPSW_VERSION_2: 2306 case CPSW_VERSION_3: 2307 case CPSW_VERSION_4: 2308 priv->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET; 2309 priv->cpts->reg = ss_regs + CPSW2_CPTS_OFFSET; 2310 priv->hw_stats = ss_regs + CPSW2_HW_STATS; 2311 dma_params.dmaregs = ss_regs + CPSW2_CPDMA_OFFSET; 2312 dma_params.txhdp = ss_regs + CPSW2_STATERAM_OFFSET; 2313 ale_params.ale_regs = ss_regs + CPSW2_ALE_OFFSET; 2314 slave_offset = CPSW2_SLAVE_OFFSET; 2315 slave_size = CPSW2_SLAVE_SIZE; 2316 sliver_offset = CPSW2_SLIVER_OFFSET; 2317 dma_params.desc_mem_phys = 2318 (u32 __force) ss_res->start + CPSW2_BD_OFFSET; 2319 break; 2320 default: 2321 dev_err(priv->dev, "unknown version 0x%08x\n", priv->version); 2322 ret = -ENODEV; 2323 goto clean_runtime_disable_ret; 2324 } 2325 for (i = 0; i < priv->data.slaves; i++) { 2326 struct cpsw_slave *slave = &priv->slaves[i]; 2327 cpsw_slave_init(slave, priv, slave_offset, sliver_offset); 2328 slave_offset += slave_size; 2329 sliver_offset += SLIVER_SIZE; 2330 } 2331 2332 dma_params.dev = &pdev->dev; 2333 dma_params.rxthresh = dma_params.dmaregs + CPDMA_RXTHRESH; 2334 dma_params.rxfree = dma_params.dmaregs + CPDMA_RXFREE; 2335 dma_params.rxhdp = dma_params.txhdp + CPDMA_RXHDP; 2336 dma_params.txcp = dma_params.txhdp + CPDMA_TXCP; 2337 dma_params.rxcp = dma_params.txhdp + CPDMA_RXCP; 2338 2339 dma_params.num_chan = data->channels; 2340 dma_params.has_soft_reset = true; 2341 dma_params.min_packet_size = CPSW_MIN_PACKET_SIZE; 2342 dma_params.desc_mem_size = data->bd_ram_size; 2343 dma_params.desc_align = 16; 2344 dma_params.has_ext_regs = true; 2345 dma_params.desc_hw_addr = dma_params.desc_mem_phys; 2346 2347 priv->dma = cpdma_ctlr_create(&dma_params); 2348 if (!priv->dma) { 2349 dev_err(priv->dev, "error initializing dma\n"); 2350 ret = -ENOMEM; 2351 goto clean_runtime_disable_ret; 2352 } 2353 2354 priv->txch = cpdma_chan_create(priv->dma, tx_chan_num(0), 2355 cpsw_tx_handler); 2356 priv->rxch = cpdma_chan_create(priv->dma, rx_chan_num(0), 2357 cpsw_rx_handler); 2358 2359 if (WARN_ON(!priv->txch || !priv->rxch)) { 2360 dev_err(priv->dev, "error initializing dma channels\n"); 2361 ret = -ENOMEM; 2362 goto clean_dma_ret; 2363 } 2364 2365 ale_params.dev = &ndev->dev; 2366 ale_params.ale_ageout = ale_ageout; 2367 ale_params.ale_entries = data->ale_entries; 2368 ale_params.ale_ports = data->slaves; 2369 2370 priv->ale = cpsw_ale_create(&ale_params); 2371 if (!priv->ale) { 2372 dev_err(priv->dev, "error initializing ale engine\n"); 2373 ret = -ENODEV; 2374 goto clean_dma_ret; 2375 } 2376 2377 ndev->irq = platform_get_irq(pdev, 0); 2378 if (ndev->irq < 0) { 2379 dev_err(priv->dev, "error getting irq resource\n"); 2380 ret = -ENOENT; 2381 goto clean_ale_ret; 2382 } 2383 2384 while ((res = platform_get_resource(priv->pdev, IORESOURCE_IRQ, k))) { 2385 if (k >= ARRAY_SIZE(priv->irqs_table)) { 2386 ret = -EINVAL; 2387 goto clean_ale_ret; 2388 } 2389 2390 ret = devm_request_irq(&pdev->dev, res->start, cpsw_interrupt, 2391 0, dev_name(&pdev->dev), priv); 2392 if (ret < 0) { 2393 dev_err(priv->dev, "error attaching irq (%d)\n", ret); 2394 goto clean_ale_ret; 2395 } 2396 2397 priv->irqs_table[k] = res->start; 2398 k++; 2399 } 2400 2401 priv->num_irqs = k; 2402 2403 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 2404 2405 ndev->netdev_ops = &cpsw_netdev_ops; 2406 ndev->ethtool_ops = &cpsw_ethtool_ops; 2407 netif_napi_add(ndev, &priv->napi, cpsw_poll, CPSW_POLL_WEIGHT); 2408 2409 /* register the network device */ 2410 SET_NETDEV_DEV(ndev, &pdev->dev); 2411 ret = register_netdev(ndev); 2412 if (ret) { 2413 dev_err(priv->dev, "error registering net device\n"); 2414 ret = -ENODEV; 2415 goto clean_ale_ret; 2416 } 2417 2418 cpsw_notice(priv, probe, "initialized device (regs %pa, irq %d)\n", 2419 &ss_res->start, ndev->irq); 2420 2421 if (priv->data.dual_emac) { 2422 ret = cpsw_probe_dual_emac(pdev, priv); 2423 if (ret) { 2424 cpsw_err(priv, probe, "error probe slave 2 emac interface\n"); 2425 goto clean_ale_ret; 2426 } 2427 } 2428 2429 return 0; 2430 2431 clean_ale_ret: 2432 cpsw_ale_destroy(priv->ale); 2433 clean_dma_ret: 2434 cpdma_chan_destroy(priv->txch); 2435 cpdma_chan_destroy(priv->rxch); 2436 cpdma_ctlr_destroy(priv->dma); 2437 clean_runtime_disable_ret: 2438 pm_runtime_disable(&pdev->dev); 2439 clean_ndev_ret: 2440 free_netdev(priv->ndev); 2441 return ret; 2442 } 2443 2444 static int cpsw_remove_child_device(struct device *dev, void *c) 2445 { 2446 struct platform_device *pdev = to_platform_device(dev); 2447 2448 of_device_unregister(pdev); 2449 2450 return 0; 2451 } 2452 2453 static int cpsw_remove(struct platform_device *pdev) 2454 { 2455 struct net_device *ndev = platform_get_drvdata(pdev); 2456 struct cpsw_priv *priv = netdev_priv(ndev); 2457 2458 if (priv->data.dual_emac) 2459 unregister_netdev(cpsw_get_slave_ndev(priv, 1)); 2460 unregister_netdev(ndev); 2461 2462 cpsw_ale_destroy(priv->ale); 2463 cpdma_chan_destroy(priv->txch); 2464 cpdma_chan_destroy(priv->rxch); 2465 cpdma_ctlr_destroy(priv->dma); 2466 pm_runtime_disable(&pdev->dev); 2467 device_for_each_child(&pdev->dev, NULL, cpsw_remove_child_device); 2468 if (priv->data.dual_emac) 2469 free_netdev(cpsw_get_slave_ndev(priv, 1)); 2470 free_netdev(ndev); 2471 return 0; 2472 } 2473 2474 static int cpsw_suspend(struct device *dev) 2475 { 2476 struct platform_device *pdev = to_platform_device(dev); 2477 struct net_device *ndev = platform_get_drvdata(pdev); 2478 struct cpsw_priv *priv = netdev_priv(ndev); 2479 2480 if (priv->data.dual_emac) { 2481 int i; 2482 2483 for (i = 0; i < priv->data.slaves; i++) { 2484 if (netif_running(priv->slaves[i].ndev)) 2485 cpsw_ndo_stop(priv->slaves[i].ndev); 2486 soft_reset_slave(priv->slaves + i); 2487 } 2488 } else { 2489 if (netif_running(ndev)) 2490 cpsw_ndo_stop(ndev); 2491 for_each_slave(priv, soft_reset_slave); 2492 } 2493 2494 pm_runtime_put_sync(&pdev->dev); 2495 2496 /* Select sleep pin state */ 2497 pinctrl_pm_select_sleep_state(&pdev->dev); 2498 2499 return 0; 2500 } 2501 2502 static int cpsw_resume(struct device *dev) 2503 { 2504 struct platform_device *pdev = to_platform_device(dev); 2505 struct net_device *ndev = platform_get_drvdata(pdev); 2506 struct cpsw_priv *priv = netdev_priv(ndev); 2507 2508 pm_runtime_get_sync(&pdev->dev); 2509 2510 /* Select default pin state */ 2511 pinctrl_pm_select_default_state(&pdev->dev); 2512 2513 if (priv->data.dual_emac) { 2514 int i; 2515 2516 for (i = 0; i < priv->data.slaves; i++) { 2517 if (netif_running(priv->slaves[i].ndev)) 2518 cpsw_ndo_open(priv->slaves[i].ndev); 2519 } 2520 } else { 2521 if (netif_running(ndev)) 2522 cpsw_ndo_open(ndev); 2523 } 2524 return 0; 2525 } 2526 2527 static const struct dev_pm_ops cpsw_pm_ops = { 2528 .suspend = cpsw_suspend, 2529 .resume = cpsw_resume, 2530 }; 2531 2532 static const struct of_device_id cpsw_of_mtable[] = { 2533 { .compatible = "ti,cpsw", }, 2534 { /* sentinel */ }, 2535 }; 2536 MODULE_DEVICE_TABLE(of, cpsw_of_mtable); 2537 2538 static struct platform_driver cpsw_driver = { 2539 .driver = { 2540 .name = "cpsw", 2541 .pm = &cpsw_pm_ops, 2542 .of_match_table = cpsw_of_mtable, 2543 }, 2544 .probe = cpsw_probe, 2545 .remove = cpsw_remove, 2546 }; 2547 2548 static int __init cpsw_init(void) 2549 { 2550 return platform_driver_register(&cpsw_driver); 2551 } 2552 late_initcall(cpsw_init); 2553 2554 static void __exit cpsw_exit(void) 2555 { 2556 platform_driver_unregister(&cpsw_driver); 2557 } 2558 module_exit(cpsw_exit); 2559 2560 MODULE_LICENSE("GPL"); 2561 MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>"); 2562 MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>"); 2563 MODULE_DESCRIPTION("TI CPSW Ethernet driver"); 2564