1 /* 2 * Texas Instruments Ethernet Switch Driver 3 * 4 * Copyright (C) 2012 Texas Instruments 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License as 8 * published by the Free Software Foundation version 2. 9 * 10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any 11 * kind, whether express or implied; without even the implied warranty 12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/io.h> 18 #include <linux/clk.h> 19 #include <linux/timer.h> 20 #include <linux/module.h> 21 #include <linux/platform_device.h> 22 #include <linux/irqreturn.h> 23 #include <linux/interrupt.h> 24 #include <linux/if_ether.h> 25 #include <linux/etherdevice.h> 26 #include <linux/netdevice.h> 27 #include <linux/net_tstamp.h> 28 #include <linux/phy.h> 29 #include <linux/workqueue.h> 30 #include <linux/delay.h> 31 #include <linux/pm_runtime.h> 32 #include <linux/gpio.h> 33 #include <linux/of.h> 34 #include <linux/of_mdio.h> 35 #include <linux/of_net.h> 36 #include <linux/of_device.h> 37 #include <linux/if_vlan.h> 38 #include <linux/kmemleak.h> 39 40 #include <linux/pinctrl/consumer.h> 41 42 #include "cpsw.h" 43 #include "cpsw_ale.h" 44 #include "cpts.h" 45 #include "davinci_cpdma.h" 46 47 #define CPSW_DEBUG (NETIF_MSG_HW | NETIF_MSG_WOL | \ 48 NETIF_MSG_DRV | NETIF_MSG_LINK | \ 49 NETIF_MSG_IFUP | NETIF_MSG_INTR | \ 50 NETIF_MSG_PROBE | NETIF_MSG_TIMER | \ 51 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | \ 52 NETIF_MSG_TX_ERR | NETIF_MSG_TX_DONE | \ 53 NETIF_MSG_PKTDATA | NETIF_MSG_TX_QUEUED | \ 54 NETIF_MSG_RX_STATUS) 55 56 #define cpsw_info(priv, type, format, ...) \ 57 do { \ 58 if (netif_msg_##type(priv) && net_ratelimit()) \ 59 dev_info(priv->dev, format, ## __VA_ARGS__); \ 60 } while (0) 61 62 #define cpsw_err(priv, type, format, ...) \ 63 do { \ 64 if (netif_msg_##type(priv) && net_ratelimit()) \ 65 dev_err(priv->dev, format, ## __VA_ARGS__); \ 66 } while (0) 67 68 #define cpsw_dbg(priv, type, format, ...) \ 69 do { \ 70 if (netif_msg_##type(priv) && net_ratelimit()) \ 71 dev_dbg(priv->dev, format, ## __VA_ARGS__); \ 72 } while (0) 73 74 #define cpsw_notice(priv, type, format, ...) \ 75 do { \ 76 if (netif_msg_##type(priv) && net_ratelimit()) \ 77 dev_notice(priv->dev, format, ## __VA_ARGS__); \ 78 } while (0) 79 80 #define ALE_ALL_PORTS 0x7 81 82 #define CPSW_MAJOR_VERSION(reg) (reg >> 8 & 0x7) 83 #define CPSW_MINOR_VERSION(reg) (reg & 0xff) 84 #define CPSW_RTL_VERSION(reg) ((reg >> 11) & 0x1f) 85 86 #define CPSW_VERSION_1 0x19010a 87 #define CPSW_VERSION_2 0x19010c 88 #define CPSW_VERSION_3 0x19010f 89 #define CPSW_VERSION_4 0x190112 90 91 #define HOST_PORT_NUM 0 92 #define CPSW_ALE_PORTS_NUM 3 93 #define SLIVER_SIZE 0x40 94 95 #define CPSW1_HOST_PORT_OFFSET 0x028 96 #define CPSW1_SLAVE_OFFSET 0x050 97 #define CPSW1_SLAVE_SIZE 0x040 98 #define CPSW1_CPDMA_OFFSET 0x100 99 #define CPSW1_STATERAM_OFFSET 0x200 100 #define CPSW1_HW_STATS 0x400 101 #define CPSW1_CPTS_OFFSET 0x500 102 #define CPSW1_ALE_OFFSET 0x600 103 #define CPSW1_SLIVER_OFFSET 0x700 104 105 #define CPSW2_HOST_PORT_OFFSET 0x108 106 #define CPSW2_SLAVE_OFFSET 0x200 107 #define CPSW2_SLAVE_SIZE 0x100 108 #define CPSW2_CPDMA_OFFSET 0x800 109 #define CPSW2_HW_STATS 0x900 110 #define CPSW2_STATERAM_OFFSET 0xa00 111 #define CPSW2_CPTS_OFFSET 0xc00 112 #define CPSW2_ALE_OFFSET 0xd00 113 #define CPSW2_SLIVER_OFFSET 0xd80 114 #define CPSW2_BD_OFFSET 0x2000 115 116 #define CPDMA_RXTHRESH 0x0c0 117 #define CPDMA_RXFREE 0x0e0 118 #define CPDMA_TXHDP 0x00 119 #define CPDMA_RXHDP 0x20 120 #define CPDMA_TXCP 0x40 121 #define CPDMA_RXCP 0x60 122 123 #define CPSW_POLL_WEIGHT 64 124 #define CPSW_RX_VLAN_ENCAP_HDR_SIZE 4 125 #define CPSW_MIN_PACKET_SIZE (VLAN_ETH_ZLEN) 126 #define CPSW_MAX_PACKET_SIZE (VLAN_ETH_FRAME_LEN +\ 127 ETH_FCS_LEN +\ 128 CPSW_RX_VLAN_ENCAP_HDR_SIZE) 129 130 #define RX_PRIORITY_MAPPING 0x76543210 131 #define TX_PRIORITY_MAPPING 0x33221100 132 #define CPDMA_TX_PRIORITY_MAP 0x76543210 133 134 #define CPSW_VLAN_AWARE BIT(1) 135 #define CPSW_RX_VLAN_ENCAP BIT(2) 136 #define CPSW_ALE_VLAN_AWARE 1 137 138 #define CPSW_FIFO_NORMAL_MODE (0 << 16) 139 #define CPSW_FIFO_DUAL_MAC_MODE (1 << 16) 140 #define CPSW_FIFO_RATE_LIMIT_MODE (2 << 16) 141 142 #define CPSW_INTPACEEN (0x3f << 16) 143 #define CPSW_INTPRESCALE_MASK (0x7FF << 0) 144 #define CPSW_CMINTMAX_CNT 63 145 #define CPSW_CMINTMIN_CNT 2 146 #define CPSW_CMINTMAX_INTVL (1000 / CPSW_CMINTMIN_CNT) 147 #define CPSW_CMINTMIN_INTVL ((1000 / CPSW_CMINTMAX_CNT) + 1) 148 149 #define cpsw_slave_index(cpsw, priv) \ 150 ((cpsw->data.dual_emac) ? priv->emac_port : \ 151 cpsw->data.active_slave) 152 #define IRQ_NUM 2 153 #define CPSW_MAX_QUEUES 8 154 #define CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT 256 155 156 #define CPSW_RX_VLAN_ENCAP_HDR_PRIO_SHIFT 29 157 #define CPSW_RX_VLAN_ENCAP_HDR_PRIO_MSK GENMASK(2, 0) 158 #define CPSW_RX_VLAN_ENCAP_HDR_VID_SHIFT 16 159 #define CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_SHIFT 8 160 #define CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_MSK GENMASK(1, 0) 161 enum { 162 CPSW_RX_VLAN_ENCAP_HDR_PKT_VLAN_TAG = 0, 163 CPSW_RX_VLAN_ENCAP_HDR_PKT_RESERV, 164 CPSW_RX_VLAN_ENCAP_HDR_PKT_PRIO_TAG, 165 CPSW_RX_VLAN_ENCAP_HDR_PKT_UNTAG, 166 }; 167 168 static int debug_level; 169 module_param(debug_level, int, 0); 170 MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)"); 171 172 static int ale_ageout = 10; 173 module_param(ale_ageout, int, 0); 174 MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)"); 175 176 static int rx_packet_max = CPSW_MAX_PACKET_SIZE; 177 module_param(rx_packet_max, int, 0); 178 MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)"); 179 180 static int descs_pool_size = CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT; 181 module_param(descs_pool_size, int, 0444); 182 MODULE_PARM_DESC(descs_pool_size, "Number of CPDMA CPPI descriptors in pool"); 183 184 struct cpsw_wr_regs { 185 u32 id_ver; 186 u32 soft_reset; 187 u32 control; 188 u32 int_control; 189 u32 rx_thresh_en; 190 u32 rx_en; 191 u32 tx_en; 192 u32 misc_en; 193 u32 mem_allign1[8]; 194 u32 rx_thresh_stat; 195 u32 rx_stat; 196 u32 tx_stat; 197 u32 misc_stat; 198 u32 mem_allign2[8]; 199 u32 rx_imax; 200 u32 tx_imax; 201 202 }; 203 204 struct cpsw_ss_regs { 205 u32 id_ver; 206 u32 control; 207 u32 soft_reset; 208 u32 stat_port_en; 209 u32 ptype; 210 u32 soft_idle; 211 u32 thru_rate; 212 u32 gap_thresh; 213 u32 tx_start_wds; 214 u32 flow_control; 215 u32 vlan_ltype; 216 u32 ts_ltype; 217 u32 dlr_ltype; 218 }; 219 220 /* CPSW_PORT_V1 */ 221 #define CPSW1_MAX_BLKS 0x00 /* Maximum FIFO Blocks */ 222 #define CPSW1_BLK_CNT 0x04 /* FIFO Block Usage Count (Read Only) */ 223 #define CPSW1_TX_IN_CTL 0x08 /* Transmit FIFO Control */ 224 #define CPSW1_PORT_VLAN 0x0c /* VLAN Register */ 225 #define CPSW1_TX_PRI_MAP 0x10 /* Tx Header Priority to Switch Pri Mapping */ 226 #define CPSW1_TS_CTL 0x14 /* Time Sync Control */ 227 #define CPSW1_TS_SEQ_LTYPE 0x18 /* Time Sync Sequence ID Offset and Msg Type */ 228 #define CPSW1_TS_VLAN 0x1c /* Time Sync VLAN1 and VLAN2 */ 229 230 /* CPSW_PORT_V2 */ 231 #define CPSW2_CONTROL 0x00 /* Control Register */ 232 #define CPSW2_MAX_BLKS 0x08 /* Maximum FIFO Blocks */ 233 #define CPSW2_BLK_CNT 0x0c /* FIFO Block Usage Count (Read Only) */ 234 #define CPSW2_TX_IN_CTL 0x10 /* Transmit FIFO Control */ 235 #define CPSW2_PORT_VLAN 0x14 /* VLAN Register */ 236 #define CPSW2_TX_PRI_MAP 0x18 /* Tx Header Priority to Switch Pri Mapping */ 237 #define CPSW2_TS_SEQ_MTYPE 0x1c /* Time Sync Sequence ID Offset and Msg Type */ 238 239 /* CPSW_PORT_V1 and V2 */ 240 #define SA_LO 0x20 /* CPGMAC_SL Source Address Low */ 241 #define SA_HI 0x24 /* CPGMAC_SL Source Address High */ 242 #define SEND_PERCENT 0x28 /* Transmit Queue Send Percentages */ 243 244 /* CPSW_PORT_V2 only */ 245 #define RX_DSCP_PRI_MAP0 0x30 /* Rx DSCP Priority to Rx Packet Mapping */ 246 #define RX_DSCP_PRI_MAP1 0x34 /* Rx DSCP Priority to Rx Packet Mapping */ 247 #define RX_DSCP_PRI_MAP2 0x38 /* Rx DSCP Priority to Rx Packet Mapping */ 248 #define RX_DSCP_PRI_MAP3 0x3c /* Rx DSCP Priority to Rx Packet Mapping */ 249 #define RX_DSCP_PRI_MAP4 0x40 /* Rx DSCP Priority to Rx Packet Mapping */ 250 #define RX_DSCP_PRI_MAP5 0x44 /* Rx DSCP Priority to Rx Packet Mapping */ 251 #define RX_DSCP_PRI_MAP6 0x48 /* Rx DSCP Priority to Rx Packet Mapping */ 252 #define RX_DSCP_PRI_MAP7 0x4c /* Rx DSCP Priority to Rx Packet Mapping */ 253 254 /* Bit definitions for the CPSW2_CONTROL register */ 255 #define PASS_PRI_TAGGED (1<<24) /* Pass Priority Tagged */ 256 #define VLAN_LTYPE2_EN (1<<21) /* VLAN LTYPE 2 enable */ 257 #define VLAN_LTYPE1_EN (1<<20) /* VLAN LTYPE 1 enable */ 258 #define DSCP_PRI_EN (1<<16) /* DSCP Priority Enable */ 259 #define TS_320 (1<<14) /* Time Sync Dest Port 320 enable */ 260 #define TS_319 (1<<13) /* Time Sync Dest Port 319 enable */ 261 #define TS_132 (1<<12) /* Time Sync Dest IP Addr 132 enable */ 262 #define TS_131 (1<<11) /* Time Sync Dest IP Addr 131 enable */ 263 #define TS_130 (1<<10) /* Time Sync Dest IP Addr 130 enable */ 264 #define TS_129 (1<<9) /* Time Sync Dest IP Addr 129 enable */ 265 #define TS_TTL_NONZERO (1<<8) /* Time Sync Time To Live Non-zero enable */ 266 #define TS_ANNEX_F_EN (1<<6) /* Time Sync Annex F enable */ 267 #define TS_ANNEX_D_EN (1<<4) /* Time Sync Annex D enable */ 268 #define TS_LTYPE2_EN (1<<3) /* Time Sync LTYPE 2 enable */ 269 #define TS_LTYPE1_EN (1<<2) /* Time Sync LTYPE 1 enable */ 270 #define TS_TX_EN (1<<1) /* Time Sync Transmit Enable */ 271 #define TS_RX_EN (1<<0) /* Time Sync Receive Enable */ 272 273 #define CTRL_V2_TS_BITS \ 274 (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\ 275 TS_TTL_NONZERO | TS_ANNEX_D_EN | TS_LTYPE1_EN) 276 277 #define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN) 278 #define CTRL_V2_TX_TS_BITS (CTRL_V2_TS_BITS | TS_TX_EN) 279 #define CTRL_V2_RX_TS_BITS (CTRL_V2_TS_BITS | TS_RX_EN) 280 281 282 #define CTRL_V3_TS_BITS \ 283 (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\ 284 TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\ 285 TS_LTYPE1_EN) 286 287 #define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN) 288 #define CTRL_V3_TX_TS_BITS (CTRL_V3_TS_BITS | TS_TX_EN) 289 #define CTRL_V3_RX_TS_BITS (CTRL_V3_TS_BITS | TS_RX_EN) 290 291 /* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */ 292 #define TS_SEQ_ID_OFFSET_SHIFT (16) /* Time Sync Sequence ID Offset */ 293 #define TS_SEQ_ID_OFFSET_MASK (0x3f) 294 #define TS_MSG_TYPE_EN_SHIFT (0) /* Time Sync Message Type Enable */ 295 #define TS_MSG_TYPE_EN_MASK (0xffff) 296 297 /* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */ 298 #define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3)) 299 300 /* Bit definitions for the CPSW1_TS_CTL register */ 301 #define CPSW_V1_TS_RX_EN BIT(0) 302 #define CPSW_V1_TS_TX_EN BIT(4) 303 #define CPSW_V1_MSG_TYPE_OFS 16 304 305 /* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */ 306 #define CPSW_V1_SEQ_ID_OFS_SHIFT 16 307 308 #define CPSW_MAX_BLKS_TX 15 309 #define CPSW_MAX_BLKS_TX_SHIFT 4 310 #define CPSW_MAX_BLKS_RX 5 311 312 struct cpsw_host_regs { 313 u32 max_blks; 314 u32 blk_cnt; 315 u32 tx_in_ctl; 316 u32 port_vlan; 317 u32 tx_pri_map; 318 u32 cpdma_tx_pri_map; 319 u32 cpdma_rx_chan_map; 320 }; 321 322 struct cpsw_sliver_regs { 323 u32 id_ver; 324 u32 mac_control; 325 u32 mac_status; 326 u32 soft_reset; 327 u32 rx_maxlen; 328 u32 __reserved_0; 329 u32 rx_pause; 330 u32 tx_pause; 331 u32 __reserved_1; 332 u32 rx_pri_map; 333 }; 334 335 struct cpsw_hw_stats { 336 u32 rxgoodframes; 337 u32 rxbroadcastframes; 338 u32 rxmulticastframes; 339 u32 rxpauseframes; 340 u32 rxcrcerrors; 341 u32 rxaligncodeerrors; 342 u32 rxoversizedframes; 343 u32 rxjabberframes; 344 u32 rxundersizedframes; 345 u32 rxfragments; 346 u32 __pad_0[2]; 347 u32 rxoctets; 348 u32 txgoodframes; 349 u32 txbroadcastframes; 350 u32 txmulticastframes; 351 u32 txpauseframes; 352 u32 txdeferredframes; 353 u32 txcollisionframes; 354 u32 txsinglecollframes; 355 u32 txmultcollframes; 356 u32 txexcessivecollisions; 357 u32 txlatecollisions; 358 u32 txunderrun; 359 u32 txcarriersenseerrors; 360 u32 txoctets; 361 u32 octetframes64; 362 u32 octetframes65t127; 363 u32 octetframes128t255; 364 u32 octetframes256t511; 365 u32 octetframes512t1023; 366 u32 octetframes1024tup; 367 u32 netoctets; 368 u32 rxsofoverruns; 369 u32 rxmofoverruns; 370 u32 rxdmaoverruns; 371 }; 372 373 struct cpsw_slave_data { 374 struct device_node *phy_node; 375 char phy_id[MII_BUS_ID_SIZE]; 376 int phy_if; 377 u8 mac_addr[ETH_ALEN]; 378 u16 dual_emac_res_vlan; /* Reserved VLAN for DualEMAC */ 379 }; 380 381 struct cpsw_platform_data { 382 struct cpsw_slave_data *slave_data; 383 u32 ss_reg_ofs; /* Subsystem control register offset */ 384 u32 channels; /* number of cpdma channels (symmetric) */ 385 u32 slaves; /* number of slave cpgmac ports */ 386 u32 active_slave; /* time stamping, ethtool and SIOCGMIIPHY slave */ 387 u32 ale_entries; /* ale table size */ 388 u32 bd_ram_size; /*buffer descriptor ram size */ 389 u32 mac_control; /* Mac control register */ 390 u16 default_vlan; /* Def VLAN for ALE lookup in VLAN aware mode*/ 391 bool dual_emac; /* Enable Dual EMAC mode */ 392 }; 393 394 struct cpsw_slave { 395 void __iomem *regs; 396 struct cpsw_sliver_regs __iomem *sliver; 397 int slave_num; 398 u32 mac_control; 399 struct cpsw_slave_data *data; 400 struct phy_device *phy; 401 struct net_device *ndev; 402 u32 port_vlan; 403 }; 404 405 static inline u32 slave_read(struct cpsw_slave *slave, u32 offset) 406 { 407 return readl_relaxed(slave->regs + offset); 408 } 409 410 static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset) 411 { 412 writel_relaxed(val, slave->regs + offset); 413 } 414 415 struct cpsw_vector { 416 struct cpdma_chan *ch; 417 int budget; 418 }; 419 420 struct cpsw_common { 421 struct device *dev; 422 struct cpsw_platform_data data; 423 struct napi_struct napi_rx; 424 struct napi_struct napi_tx; 425 struct cpsw_ss_regs __iomem *regs; 426 struct cpsw_wr_regs __iomem *wr_regs; 427 u8 __iomem *hw_stats; 428 struct cpsw_host_regs __iomem *host_port_regs; 429 u32 version; 430 u32 coal_intvl; 431 u32 bus_freq_mhz; 432 int rx_packet_max; 433 struct cpsw_slave *slaves; 434 struct cpdma_ctlr *dma; 435 struct cpsw_vector txv[CPSW_MAX_QUEUES]; 436 struct cpsw_vector rxv[CPSW_MAX_QUEUES]; 437 struct cpsw_ale *ale; 438 bool quirk_irq; 439 bool rx_irq_disabled; 440 bool tx_irq_disabled; 441 u32 irqs_table[IRQ_NUM]; 442 struct cpts *cpts; 443 int rx_ch_num, tx_ch_num; 444 int speed; 445 int usage_count; 446 }; 447 448 struct cpsw_priv { 449 struct net_device *ndev; 450 struct device *dev; 451 u32 msg_enable; 452 u8 mac_addr[ETH_ALEN]; 453 bool rx_pause; 454 bool tx_pause; 455 u32 emac_port; 456 struct cpsw_common *cpsw; 457 }; 458 459 struct cpsw_stats { 460 char stat_string[ETH_GSTRING_LEN]; 461 int type; 462 int sizeof_stat; 463 int stat_offset; 464 }; 465 466 enum { 467 CPSW_STATS, 468 CPDMA_RX_STATS, 469 CPDMA_TX_STATS, 470 }; 471 472 #define CPSW_STAT(m) CPSW_STATS, \ 473 sizeof(((struct cpsw_hw_stats *)0)->m), \ 474 offsetof(struct cpsw_hw_stats, m) 475 #define CPDMA_RX_STAT(m) CPDMA_RX_STATS, \ 476 sizeof(((struct cpdma_chan_stats *)0)->m), \ 477 offsetof(struct cpdma_chan_stats, m) 478 #define CPDMA_TX_STAT(m) CPDMA_TX_STATS, \ 479 sizeof(((struct cpdma_chan_stats *)0)->m), \ 480 offsetof(struct cpdma_chan_stats, m) 481 482 static const struct cpsw_stats cpsw_gstrings_stats[] = { 483 { "Good Rx Frames", CPSW_STAT(rxgoodframes) }, 484 { "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) }, 485 { "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) }, 486 { "Pause Rx Frames", CPSW_STAT(rxpauseframes) }, 487 { "Rx CRC Errors", CPSW_STAT(rxcrcerrors) }, 488 { "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) }, 489 { "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) }, 490 { "Rx Jabbers", CPSW_STAT(rxjabberframes) }, 491 { "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) }, 492 { "Rx Fragments", CPSW_STAT(rxfragments) }, 493 { "Rx Octets", CPSW_STAT(rxoctets) }, 494 { "Good Tx Frames", CPSW_STAT(txgoodframes) }, 495 { "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) }, 496 { "Multicast Tx Frames", CPSW_STAT(txmulticastframes) }, 497 { "Pause Tx Frames", CPSW_STAT(txpauseframes) }, 498 { "Deferred Tx Frames", CPSW_STAT(txdeferredframes) }, 499 { "Collisions", CPSW_STAT(txcollisionframes) }, 500 { "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) }, 501 { "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) }, 502 { "Excessive Collisions", CPSW_STAT(txexcessivecollisions) }, 503 { "Late Collisions", CPSW_STAT(txlatecollisions) }, 504 { "Tx Underrun", CPSW_STAT(txunderrun) }, 505 { "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) }, 506 { "Tx Octets", CPSW_STAT(txoctets) }, 507 { "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) }, 508 { "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) }, 509 { "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) }, 510 { "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) }, 511 { "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) }, 512 { "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) }, 513 { "Net Octets", CPSW_STAT(netoctets) }, 514 { "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) }, 515 { "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) }, 516 { "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) }, 517 }; 518 519 static const struct cpsw_stats cpsw_gstrings_ch_stats[] = { 520 { "head_enqueue", CPDMA_RX_STAT(head_enqueue) }, 521 { "tail_enqueue", CPDMA_RX_STAT(tail_enqueue) }, 522 { "pad_enqueue", CPDMA_RX_STAT(pad_enqueue) }, 523 { "misqueued", CPDMA_RX_STAT(misqueued) }, 524 { "desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) }, 525 { "pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) }, 526 { "runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) }, 527 { "runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) }, 528 { "empty_dequeue", CPDMA_RX_STAT(empty_dequeue) }, 529 { "busy_dequeue", CPDMA_RX_STAT(busy_dequeue) }, 530 { "good_dequeue", CPDMA_RX_STAT(good_dequeue) }, 531 { "requeue", CPDMA_RX_STAT(requeue) }, 532 { "teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) }, 533 }; 534 535 #define CPSW_STATS_COMMON_LEN ARRAY_SIZE(cpsw_gstrings_stats) 536 #define CPSW_STATS_CH_LEN ARRAY_SIZE(cpsw_gstrings_ch_stats) 537 538 #define ndev_to_cpsw(ndev) (((struct cpsw_priv *)netdev_priv(ndev))->cpsw) 539 #define napi_to_cpsw(napi) container_of(napi, struct cpsw_common, napi) 540 #define for_each_slave(priv, func, arg...) \ 541 do { \ 542 struct cpsw_slave *slave; \ 543 struct cpsw_common *cpsw = (priv)->cpsw; \ 544 int n; \ 545 if (cpsw->data.dual_emac) \ 546 (func)((cpsw)->slaves + priv->emac_port, ##arg);\ 547 else \ 548 for (n = cpsw->data.slaves, \ 549 slave = cpsw->slaves; \ 550 n; n--) \ 551 (func)(slave++, ##arg); \ 552 } while (0) 553 554 #define cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb) \ 555 do { \ 556 if (!cpsw->data.dual_emac) \ 557 break; \ 558 if (CPDMA_RX_SOURCE_PORT(status) == 1) { \ 559 ndev = cpsw->slaves[0].ndev; \ 560 skb->dev = ndev; \ 561 } else if (CPDMA_RX_SOURCE_PORT(status) == 2) { \ 562 ndev = cpsw->slaves[1].ndev; \ 563 skb->dev = ndev; \ 564 } \ 565 } while (0) 566 #define cpsw_add_mcast(cpsw, priv, addr) \ 567 do { \ 568 if (cpsw->data.dual_emac) { \ 569 struct cpsw_slave *slave = cpsw->slaves + \ 570 priv->emac_port; \ 571 int slave_port = cpsw_get_slave_port( \ 572 slave->slave_num); \ 573 cpsw_ale_add_mcast(cpsw->ale, addr, \ 574 1 << slave_port | ALE_PORT_HOST, \ 575 ALE_VLAN, slave->port_vlan, 0); \ 576 } else { \ 577 cpsw_ale_add_mcast(cpsw->ale, addr, \ 578 ALE_ALL_PORTS, \ 579 0, 0, 0); \ 580 } \ 581 } while (0) 582 583 static inline int cpsw_get_slave_port(u32 slave_num) 584 { 585 return slave_num + 1; 586 } 587 588 static void cpsw_set_promiscious(struct net_device *ndev, bool enable) 589 { 590 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 591 struct cpsw_ale *ale = cpsw->ale; 592 int i; 593 594 if (cpsw->data.dual_emac) { 595 bool flag = false; 596 597 /* Enabling promiscuous mode for one interface will be 598 * common for both the interface as the interface shares 599 * the same hardware resource. 600 */ 601 for (i = 0; i < cpsw->data.slaves; i++) 602 if (cpsw->slaves[i].ndev->flags & IFF_PROMISC) 603 flag = true; 604 605 if (!enable && flag) { 606 enable = true; 607 dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n"); 608 } 609 610 if (enable) { 611 /* Enable Bypass */ 612 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1); 613 614 dev_dbg(&ndev->dev, "promiscuity enabled\n"); 615 } else { 616 /* Disable Bypass */ 617 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0); 618 dev_dbg(&ndev->dev, "promiscuity disabled\n"); 619 } 620 } else { 621 if (enable) { 622 unsigned long timeout = jiffies + HZ; 623 624 /* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */ 625 for (i = 0; i <= cpsw->data.slaves; i++) { 626 cpsw_ale_control_set(ale, i, 627 ALE_PORT_NOLEARN, 1); 628 cpsw_ale_control_set(ale, i, 629 ALE_PORT_NO_SA_UPDATE, 1); 630 } 631 632 /* Clear All Untouched entries */ 633 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1); 634 do { 635 cpu_relax(); 636 if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT)) 637 break; 638 } while (time_after(timeout, jiffies)); 639 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1); 640 641 /* Clear all mcast from ALE */ 642 cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS, -1); 643 644 /* Flood All Unicast Packets to Host port */ 645 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1); 646 dev_dbg(&ndev->dev, "promiscuity enabled\n"); 647 } else { 648 /* Don't Flood All Unicast Packets to Host port */ 649 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0); 650 651 /* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */ 652 for (i = 0; i <= cpsw->data.slaves; i++) { 653 cpsw_ale_control_set(ale, i, 654 ALE_PORT_NOLEARN, 0); 655 cpsw_ale_control_set(ale, i, 656 ALE_PORT_NO_SA_UPDATE, 0); 657 } 658 dev_dbg(&ndev->dev, "promiscuity disabled\n"); 659 } 660 } 661 } 662 663 static void cpsw_ndo_set_rx_mode(struct net_device *ndev) 664 { 665 struct cpsw_priv *priv = netdev_priv(ndev); 666 struct cpsw_common *cpsw = priv->cpsw; 667 int vid; 668 669 if (cpsw->data.dual_emac) 670 vid = cpsw->slaves[priv->emac_port].port_vlan; 671 else 672 vid = cpsw->data.default_vlan; 673 674 if (ndev->flags & IFF_PROMISC) { 675 /* Enable promiscuous mode */ 676 cpsw_set_promiscious(ndev, true); 677 cpsw_ale_set_allmulti(cpsw->ale, IFF_ALLMULTI); 678 return; 679 } else { 680 /* Disable promiscuous mode */ 681 cpsw_set_promiscious(ndev, false); 682 } 683 684 /* Restore allmulti on vlans if necessary */ 685 cpsw_ale_set_allmulti(cpsw->ale, priv->ndev->flags & IFF_ALLMULTI); 686 687 /* Clear all mcast from ALE */ 688 cpsw_ale_flush_multicast(cpsw->ale, ALE_ALL_PORTS, vid); 689 690 if (!netdev_mc_empty(ndev)) { 691 struct netdev_hw_addr *ha; 692 693 /* program multicast address list into ALE register */ 694 netdev_for_each_mc_addr(ha, ndev) { 695 cpsw_add_mcast(cpsw, priv, (u8 *)ha->addr); 696 } 697 } 698 } 699 700 static void cpsw_intr_enable(struct cpsw_common *cpsw) 701 { 702 writel_relaxed(0xFF, &cpsw->wr_regs->tx_en); 703 writel_relaxed(0xFF, &cpsw->wr_regs->rx_en); 704 705 cpdma_ctlr_int_ctrl(cpsw->dma, true); 706 return; 707 } 708 709 static void cpsw_intr_disable(struct cpsw_common *cpsw) 710 { 711 writel_relaxed(0, &cpsw->wr_regs->tx_en); 712 writel_relaxed(0, &cpsw->wr_regs->rx_en); 713 714 cpdma_ctlr_int_ctrl(cpsw->dma, false); 715 return; 716 } 717 718 static void cpsw_tx_handler(void *token, int len, int status) 719 { 720 struct netdev_queue *txq; 721 struct sk_buff *skb = token; 722 struct net_device *ndev = skb->dev; 723 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 724 725 /* Check whether the queue is stopped due to stalled tx dma, if the 726 * queue is stopped then start the queue as we have free desc for tx 727 */ 728 txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb)); 729 if (unlikely(netif_tx_queue_stopped(txq))) 730 netif_tx_wake_queue(txq); 731 732 cpts_tx_timestamp(cpsw->cpts, skb); 733 ndev->stats.tx_packets++; 734 ndev->stats.tx_bytes += len; 735 dev_kfree_skb_any(skb); 736 } 737 738 static void cpsw_rx_vlan_encap(struct sk_buff *skb) 739 { 740 struct cpsw_priv *priv = netdev_priv(skb->dev); 741 struct cpsw_common *cpsw = priv->cpsw; 742 u32 rx_vlan_encap_hdr = *((u32 *)skb->data); 743 u16 vtag, vid, prio, pkt_type; 744 745 /* Remove VLAN header encapsulation word */ 746 skb_pull(skb, CPSW_RX_VLAN_ENCAP_HDR_SIZE); 747 748 pkt_type = (rx_vlan_encap_hdr >> 749 CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_SHIFT) & 750 CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_MSK; 751 /* Ignore unknown & Priority-tagged packets*/ 752 if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_RESERV || 753 pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_PRIO_TAG) 754 return; 755 756 vid = (rx_vlan_encap_hdr >> 757 CPSW_RX_VLAN_ENCAP_HDR_VID_SHIFT) & 758 VLAN_VID_MASK; 759 /* Ignore vid 0 and pass packet as is */ 760 if (!vid) 761 return; 762 /* Ignore default vlans in dual mac mode */ 763 if (cpsw->data.dual_emac && 764 vid == cpsw->slaves[priv->emac_port].port_vlan) 765 return; 766 767 prio = (rx_vlan_encap_hdr >> 768 CPSW_RX_VLAN_ENCAP_HDR_PRIO_SHIFT) & 769 CPSW_RX_VLAN_ENCAP_HDR_PRIO_MSK; 770 771 vtag = (prio << VLAN_PRIO_SHIFT) | vid; 772 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vtag); 773 774 /* strip vlan tag for VLAN-tagged packet */ 775 if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_VLAN_TAG) { 776 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); 777 skb_pull(skb, VLAN_HLEN); 778 } 779 } 780 781 static void cpsw_rx_handler(void *token, int len, int status) 782 { 783 struct cpdma_chan *ch; 784 struct sk_buff *skb = token; 785 struct sk_buff *new_skb; 786 struct net_device *ndev = skb->dev; 787 int ret = 0; 788 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 789 790 cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb); 791 792 if (unlikely(status < 0) || unlikely(!netif_running(ndev))) { 793 /* In dual emac mode check for all interfaces */ 794 if (cpsw->data.dual_emac && cpsw->usage_count && 795 (status >= 0)) { 796 /* The packet received is for the interface which 797 * is already down and the other interface is up 798 * and running, instead of freeing which results 799 * in reducing of the number of rx descriptor in 800 * DMA engine, requeue skb back to cpdma. 801 */ 802 new_skb = skb; 803 goto requeue; 804 } 805 806 /* the interface is going down, skbs are purged */ 807 dev_kfree_skb_any(skb); 808 return; 809 } 810 811 new_skb = netdev_alloc_skb_ip_align(ndev, cpsw->rx_packet_max); 812 if (new_skb) { 813 skb_copy_queue_mapping(new_skb, skb); 814 skb_put(skb, len); 815 if (status & CPDMA_RX_VLAN_ENCAP) 816 cpsw_rx_vlan_encap(skb); 817 cpts_rx_timestamp(cpsw->cpts, skb); 818 skb->protocol = eth_type_trans(skb, ndev); 819 netif_receive_skb(skb); 820 ndev->stats.rx_bytes += len; 821 ndev->stats.rx_packets++; 822 kmemleak_not_leak(new_skb); 823 } else { 824 ndev->stats.rx_dropped++; 825 new_skb = skb; 826 } 827 828 requeue: 829 if (netif_dormant(ndev)) { 830 dev_kfree_skb_any(new_skb); 831 return; 832 } 833 834 ch = cpsw->rxv[skb_get_queue_mapping(new_skb)].ch; 835 ret = cpdma_chan_submit(ch, new_skb, new_skb->data, 836 skb_tailroom(new_skb), 0); 837 if (WARN_ON(ret < 0)) 838 dev_kfree_skb_any(new_skb); 839 } 840 841 static void cpsw_split_res(struct net_device *ndev) 842 { 843 struct cpsw_priv *priv = netdev_priv(ndev); 844 u32 consumed_rate = 0, bigest_rate = 0; 845 struct cpsw_common *cpsw = priv->cpsw; 846 struct cpsw_vector *txv = cpsw->txv; 847 int i, ch_weight, rlim_ch_num = 0; 848 int budget, bigest_rate_ch = 0; 849 u32 ch_rate, max_rate; 850 int ch_budget = 0; 851 852 for (i = 0; i < cpsw->tx_ch_num; i++) { 853 ch_rate = cpdma_chan_get_rate(txv[i].ch); 854 if (!ch_rate) 855 continue; 856 857 rlim_ch_num++; 858 consumed_rate += ch_rate; 859 } 860 861 if (cpsw->tx_ch_num == rlim_ch_num) { 862 max_rate = consumed_rate; 863 } else if (!rlim_ch_num) { 864 ch_budget = CPSW_POLL_WEIGHT / cpsw->tx_ch_num; 865 bigest_rate = 0; 866 max_rate = consumed_rate; 867 } else { 868 max_rate = cpsw->speed * 1000; 869 870 /* if max_rate is less then expected due to reduced link speed, 871 * split proportionally according next potential max speed 872 */ 873 if (max_rate < consumed_rate) 874 max_rate *= 10; 875 876 if (max_rate < consumed_rate) 877 max_rate *= 10; 878 879 ch_budget = (consumed_rate * CPSW_POLL_WEIGHT) / max_rate; 880 ch_budget = (CPSW_POLL_WEIGHT - ch_budget) / 881 (cpsw->tx_ch_num - rlim_ch_num); 882 bigest_rate = (max_rate - consumed_rate) / 883 (cpsw->tx_ch_num - rlim_ch_num); 884 } 885 886 /* split tx weight/budget */ 887 budget = CPSW_POLL_WEIGHT; 888 for (i = 0; i < cpsw->tx_ch_num; i++) { 889 ch_rate = cpdma_chan_get_rate(txv[i].ch); 890 if (ch_rate) { 891 txv[i].budget = (ch_rate * CPSW_POLL_WEIGHT) / max_rate; 892 if (!txv[i].budget) 893 txv[i].budget++; 894 if (ch_rate > bigest_rate) { 895 bigest_rate_ch = i; 896 bigest_rate = ch_rate; 897 } 898 899 ch_weight = (ch_rate * 100) / max_rate; 900 if (!ch_weight) 901 ch_weight++; 902 cpdma_chan_set_weight(cpsw->txv[i].ch, ch_weight); 903 } else { 904 txv[i].budget = ch_budget; 905 if (!bigest_rate_ch) 906 bigest_rate_ch = i; 907 cpdma_chan_set_weight(cpsw->txv[i].ch, 0); 908 } 909 910 budget -= txv[i].budget; 911 } 912 913 if (budget) 914 txv[bigest_rate_ch].budget += budget; 915 916 /* split rx budget */ 917 budget = CPSW_POLL_WEIGHT; 918 ch_budget = budget / cpsw->rx_ch_num; 919 for (i = 0; i < cpsw->rx_ch_num; i++) { 920 cpsw->rxv[i].budget = ch_budget; 921 budget -= ch_budget; 922 } 923 924 if (budget) 925 cpsw->rxv[0].budget += budget; 926 } 927 928 static irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id) 929 { 930 struct cpsw_common *cpsw = dev_id; 931 932 writel(0, &cpsw->wr_regs->tx_en); 933 cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_TX); 934 935 if (cpsw->quirk_irq) { 936 disable_irq_nosync(cpsw->irqs_table[1]); 937 cpsw->tx_irq_disabled = true; 938 } 939 940 napi_schedule(&cpsw->napi_tx); 941 return IRQ_HANDLED; 942 } 943 944 static irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id) 945 { 946 struct cpsw_common *cpsw = dev_id; 947 948 cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_RX); 949 writel(0, &cpsw->wr_regs->rx_en); 950 951 if (cpsw->quirk_irq) { 952 disable_irq_nosync(cpsw->irqs_table[0]); 953 cpsw->rx_irq_disabled = true; 954 } 955 956 napi_schedule(&cpsw->napi_rx); 957 return IRQ_HANDLED; 958 } 959 960 static int cpsw_tx_poll(struct napi_struct *napi_tx, int budget) 961 { 962 u32 ch_map; 963 int num_tx, cur_budget, ch; 964 struct cpsw_common *cpsw = napi_to_cpsw(napi_tx); 965 struct cpsw_vector *txv; 966 967 /* process every unprocessed channel */ 968 ch_map = cpdma_ctrl_txchs_state(cpsw->dma); 969 for (ch = 0, num_tx = 0; ch_map; ch_map >>= 1, ch++) { 970 if (!(ch_map & 0x01)) 971 continue; 972 973 txv = &cpsw->txv[ch]; 974 if (unlikely(txv->budget > budget - num_tx)) 975 cur_budget = budget - num_tx; 976 else 977 cur_budget = txv->budget; 978 979 num_tx += cpdma_chan_process(txv->ch, cur_budget); 980 if (num_tx >= budget) 981 break; 982 } 983 984 if (num_tx < budget) { 985 napi_complete(napi_tx); 986 writel(0xff, &cpsw->wr_regs->tx_en); 987 if (cpsw->quirk_irq && cpsw->tx_irq_disabled) { 988 cpsw->tx_irq_disabled = false; 989 enable_irq(cpsw->irqs_table[1]); 990 } 991 } 992 993 return num_tx; 994 } 995 996 static int cpsw_rx_poll(struct napi_struct *napi_rx, int budget) 997 { 998 u32 ch_map; 999 int num_rx, cur_budget, ch; 1000 struct cpsw_common *cpsw = napi_to_cpsw(napi_rx); 1001 struct cpsw_vector *rxv; 1002 1003 /* process every unprocessed channel */ 1004 ch_map = cpdma_ctrl_rxchs_state(cpsw->dma); 1005 for (ch = 0, num_rx = 0; ch_map; ch_map >>= 1, ch++) { 1006 if (!(ch_map & 0x01)) 1007 continue; 1008 1009 rxv = &cpsw->rxv[ch]; 1010 if (unlikely(rxv->budget > budget - num_rx)) 1011 cur_budget = budget - num_rx; 1012 else 1013 cur_budget = rxv->budget; 1014 1015 num_rx += cpdma_chan_process(rxv->ch, cur_budget); 1016 if (num_rx >= budget) 1017 break; 1018 } 1019 1020 if (num_rx < budget) { 1021 napi_complete_done(napi_rx, num_rx); 1022 writel(0xff, &cpsw->wr_regs->rx_en); 1023 if (cpsw->quirk_irq && cpsw->rx_irq_disabled) { 1024 cpsw->rx_irq_disabled = false; 1025 enable_irq(cpsw->irqs_table[0]); 1026 } 1027 } 1028 1029 return num_rx; 1030 } 1031 1032 static inline void soft_reset(const char *module, void __iomem *reg) 1033 { 1034 unsigned long timeout = jiffies + HZ; 1035 1036 writel_relaxed(1, reg); 1037 do { 1038 cpu_relax(); 1039 } while ((readl_relaxed(reg) & 1) && time_after(timeout, jiffies)); 1040 1041 WARN(readl_relaxed(reg) & 1, "failed to soft-reset %s\n", module); 1042 } 1043 1044 static void cpsw_set_slave_mac(struct cpsw_slave *slave, 1045 struct cpsw_priv *priv) 1046 { 1047 slave_write(slave, mac_hi(priv->mac_addr), SA_HI); 1048 slave_write(slave, mac_lo(priv->mac_addr), SA_LO); 1049 } 1050 1051 static void _cpsw_adjust_link(struct cpsw_slave *slave, 1052 struct cpsw_priv *priv, bool *link) 1053 { 1054 struct phy_device *phy = slave->phy; 1055 u32 mac_control = 0; 1056 u32 slave_port; 1057 struct cpsw_common *cpsw = priv->cpsw; 1058 1059 if (!phy) 1060 return; 1061 1062 slave_port = cpsw_get_slave_port(slave->slave_num); 1063 1064 if (phy->link) { 1065 mac_control = cpsw->data.mac_control; 1066 1067 /* enable forwarding */ 1068 cpsw_ale_control_set(cpsw->ale, slave_port, 1069 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD); 1070 1071 if (phy->speed == 1000) 1072 mac_control |= BIT(7); /* GIGABITEN */ 1073 if (phy->duplex) 1074 mac_control |= BIT(0); /* FULLDUPLEXEN */ 1075 1076 /* set speed_in input in case RMII mode is used in 100Mbps */ 1077 if (phy->speed == 100) 1078 mac_control |= BIT(15); 1079 /* in band mode only works in 10Mbps RGMII mode */ 1080 else if ((phy->speed == 10) && phy_interface_is_rgmii(phy)) 1081 mac_control |= BIT(18); /* In Band mode */ 1082 1083 if (priv->rx_pause) 1084 mac_control |= BIT(3); 1085 1086 if (priv->tx_pause) 1087 mac_control |= BIT(4); 1088 1089 *link = true; 1090 } else { 1091 mac_control = 0; 1092 /* disable forwarding */ 1093 cpsw_ale_control_set(cpsw->ale, slave_port, 1094 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE); 1095 } 1096 1097 if (mac_control != slave->mac_control) { 1098 phy_print_status(phy); 1099 writel_relaxed(mac_control, &slave->sliver->mac_control); 1100 } 1101 1102 slave->mac_control = mac_control; 1103 } 1104 1105 static int cpsw_get_common_speed(struct cpsw_common *cpsw) 1106 { 1107 int i, speed; 1108 1109 for (i = 0, speed = 0; i < cpsw->data.slaves; i++) 1110 if (cpsw->slaves[i].phy && cpsw->slaves[i].phy->link) 1111 speed += cpsw->slaves[i].phy->speed; 1112 1113 return speed; 1114 } 1115 1116 static int cpsw_need_resplit(struct cpsw_common *cpsw) 1117 { 1118 int i, rlim_ch_num; 1119 int speed, ch_rate; 1120 1121 /* re-split resources only in case speed was changed */ 1122 speed = cpsw_get_common_speed(cpsw); 1123 if (speed == cpsw->speed || !speed) 1124 return 0; 1125 1126 cpsw->speed = speed; 1127 1128 for (i = 0, rlim_ch_num = 0; i < cpsw->tx_ch_num; i++) { 1129 ch_rate = cpdma_chan_get_rate(cpsw->txv[i].ch); 1130 if (!ch_rate) 1131 break; 1132 1133 rlim_ch_num++; 1134 } 1135 1136 /* cases not dependent on speed */ 1137 if (!rlim_ch_num || rlim_ch_num == cpsw->tx_ch_num) 1138 return 0; 1139 1140 return 1; 1141 } 1142 1143 static void cpsw_adjust_link(struct net_device *ndev) 1144 { 1145 struct cpsw_priv *priv = netdev_priv(ndev); 1146 struct cpsw_common *cpsw = priv->cpsw; 1147 bool link = false; 1148 1149 for_each_slave(priv, _cpsw_adjust_link, priv, &link); 1150 1151 if (link) { 1152 if (cpsw_need_resplit(cpsw)) 1153 cpsw_split_res(ndev); 1154 1155 netif_carrier_on(ndev); 1156 if (netif_running(ndev)) 1157 netif_tx_wake_all_queues(ndev); 1158 } else { 1159 netif_carrier_off(ndev); 1160 netif_tx_stop_all_queues(ndev); 1161 } 1162 } 1163 1164 static int cpsw_get_coalesce(struct net_device *ndev, 1165 struct ethtool_coalesce *coal) 1166 { 1167 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1168 1169 coal->rx_coalesce_usecs = cpsw->coal_intvl; 1170 return 0; 1171 } 1172 1173 static int cpsw_set_coalesce(struct net_device *ndev, 1174 struct ethtool_coalesce *coal) 1175 { 1176 struct cpsw_priv *priv = netdev_priv(ndev); 1177 u32 int_ctrl; 1178 u32 num_interrupts = 0; 1179 u32 prescale = 0; 1180 u32 addnl_dvdr = 1; 1181 u32 coal_intvl = 0; 1182 struct cpsw_common *cpsw = priv->cpsw; 1183 1184 coal_intvl = coal->rx_coalesce_usecs; 1185 1186 int_ctrl = readl(&cpsw->wr_regs->int_control); 1187 prescale = cpsw->bus_freq_mhz * 4; 1188 1189 if (!coal->rx_coalesce_usecs) { 1190 int_ctrl &= ~(CPSW_INTPRESCALE_MASK | CPSW_INTPACEEN); 1191 goto update_return; 1192 } 1193 1194 if (coal_intvl < CPSW_CMINTMIN_INTVL) 1195 coal_intvl = CPSW_CMINTMIN_INTVL; 1196 1197 if (coal_intvl > CPSW_CMINTMAX_INTVL) { 1198 /* Interrupt pacer works with 4us Pulse, we can 1199 * throttle further by dilating the 4us pulse. 1200 */ 1201 addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale; 1202 1203 if (addnl_dvdr > 1) { 1204 prescale *= addnl_dvdr; 1205 if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr)) 1206 coal_intvl = (CPSW_CMINTMAX_INTVL 1207 * addnl_dvdr); 1208 } else { 1209 addnl_dvdr = 1; 1210 coal_intvl = CPSW_CMINTMAX_INTVL; 1211 } 1212 } 1213 1214 num_interrupts = (1000 * addnl_dvdr) / coal_intvl; 1215 writel(num_interrupts, &cpsw->wr_regs->rx_imax); 1216 writel(num_interrupts, &cpsw->wr_regs->tx_imax); 1217 1218 int_ctrl |= CPSW_INTPACEEN; 1219 int_ctrl &= (~CPSW_INTPRESCALE_MASK); 1220 int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK); 1221 1222 update_return: 1223 writel(int_ctrl, &cpsw->wr_regs->int_control); 1224 1225 cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl); 1226 cpsw->coal_intvl = coal_intvl; 1227 1228 return 0; 1229 } 1230 1231 static int cpsw_get_sset_count(struct net_device *ndev, int sset) 1232 { 1233 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1234 1235 switch (sset) { 1236 case ETH_SS_STATS: 1237 return (CPSW_STATS_COMMON_LEN + 1238 (cpsw->rx_ch_num + cpsw->tx_ch_num) * 1239 CPSW_STATS_CH_LEN); 1240 default: 1241 return -EOPNOTSUPP; 1242 } 1243 } 1244 1245 static void cpsw_add_ch_strings(u8 **p, int ch_num, int rx_dir) 1246 { 1247 int ch_stats_len; 1248 int line; 1249 int i; 1250 1251 ch_stats_len = CPSW_STATS_CH_LEN * ch_num; 1252 for (i = 0; i < ch_stats_len; i++) { 1253 line = i % CPSW_STATS_CH_LEN; 1254 snprintf(*p, ETH_GSTRING_LEN, 1255 "%s DMA chan %d: %s", rx_dir ? "Rx" : "Tx", 1256 i / CPSW_STATS_CH_LEN, 1257 cpsw_gstrings_ch_stats[line].stat_string); 1258 *p += ETH_GSTRING_LEN; 1259 } 1260 } 1261 1262 static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data) 1263 { 1264 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1265 u8 *p = data; 1266 int i; 1267 1268 switch (stringset) { 1269 case ETH_SS_STATS: 1270 for (i = 0; i < CPSW_STATS_COMMON_LEN; i++) { 1271 memcpy(p, cpsw_gstrings_stats[i].stat_string, 1272 ETH_GSTRING_LEN); 1273 p += ETH_GSTRING_LEN; 1274 } 1275 1276 cpsw_add_ch_strings(&p, cpsw->rx_ch_num, 1); 1277 cpsw_add_ch_strings(&p, cpsw->tx_ch_num, 0); 1278 break; 1279 } 1280 } 1281 1282 static void cpsw_get_ethtool_stats(struct net_device *ndev, 1283 struct ethtool_stats *stats, u64 *data) 1284 { 1285 u8 *p; 1286 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1287 struct cpdma_chan_stats ch_stats; 1288 int i, l, ch; 1289 1290 /* Collect Davinci CPDMA stats for Rx and Tx Channel */ 1291 for (l = 0; l < CPSW_STATS_COMMON_LEN; l++) 1292 data[l] = readl(cpsw->hw_stats + 1293 cpsw_gstrings_stats[l].stat_offset); 1294 1295 for (ch = 0; ch < cpsw->rx_ch_num; ch++) { 1296 cpdma_chan_get_stats(cpsw->rxv[ch].ch, &ch_stats); 1297 for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) { 1298 p = (u8 *)&ch_stats + 1299 cpsw_gstrings_ch_stats[i].stat_offset; 1300 data[l] = *(u32 *)p; 1301 } 1302 } 1303 1304 for (ch = 0; ch < cpsw->tx_ch_num; ch++) { 1305 cpdma_chan_get_stats(cpsw->txv[ch].ch, &ch_stats); 1306 for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) { 1307 p = (u8 *)&ch_stats + 1308 cpsw_gstrings_ch_stats[i].stat_offset; 1309 data[l] = *(u32 *)p; 1310 } 1311 } 1312 } 1313 1314 static inline int cpsw_tx_packet_submit(struct cpsw_priv *priv, 1315 struct sk_buff *skb, 1316 struct cpdma_chan *txch) 1317 { 1318 struct cpsw_common *cpsw = priv->cpsw; 1319 1320 skb_tx_timestamp(skb); 1321 return cpdma_chan_submit(txch, skb, skb->data, skb->len, 1322 priv->emac_port + cpsw->data.dual_emac); 1323 } 1324 1325 static inline void cpsw_add_dual_emac_def_ale_entries( 1326 struct cpsw_priv *priv, struct cpsw_slave *slave, 1327 u32 slave_port) 1328 { 1329 struct cpsw_common *cpsw = priv->cpsw; 1330 u32 port_mask = 1 << slave_port | ALE_PORT_HOST; 1331 1332 if (cpsw->version == CPSW_VERSION_1) 1333 slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN); 1334 else 1335 slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN); 1336 cpsw_ale_add_vlan(cpsw->ale, slave->port_vlan, port_mask, 1337 port_mask, port_mask, 0); 1338 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, 1339 port_mask, ALE_VLAN, slave->port_vlan, 0); 1340 cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, 1341 HOST_PORT_NUM, ALE_VLAN | 1342 ALE_SECURE, slave->port_vlan); 1343 } 1344 1345 static void soft_reset_slave(struct cpsw_slave *slave) 1346 { 1347 char name[32]; 1348 1349 snprintf(name, sizeof(name), "slave-%d", slave->slave_num); 1350 soft_reset(name, &slave->sliver->soft_reset); 1351 } 1352 1353 static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv) 1354 { 1355 u32 slave_port; 1356 struct phy_device *phy; 1357 struct cpsw_common *cpsw = priv->cpsw; 1358 1359 soft_reset_slave(slave); 1360 1361 /* setup priority mapping */ 1362 writel_relaxed(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map); 1363 1364 switch (cpsw->version) { 1365 case CPSW_VERSION_1: 1366 slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP); 1367 /* Increase RX FIFO size to 5 for supporting fullduplex 1368 * flow control mode 1369 */ 1370 slave_write(slave, 1371 (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) | 1372 CPSW_MAX_BLKS_RX, CPSW1_MAX_BLKS); 1373 break; 1374 case CPSW_VERSION_2: 1375 case CPSW_VERSION_3: 1376 case CPSW_VERSION_4: 1377 slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP); 1378 /* Increase RX FIFO size to 5 for supporting fullduplex 1379 * flow control mode 1380 */ 1381 slave_write(slave, 1382 (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) | 1383 CPSW_MAX_BLKS_RX, CPSW2_MAX_BLKS); 1384 break; 1385 } 1386 1387 /* setup max packet size, and mac address */ 1388 writel_relaxed(cpsw->rx_packet_max, &slave->sliver->rx_maxlen); 1389 cpsw_set_slave_mac(slave, priv); 1390 1391 slave->mac_control = 0; /* no link yet */ 1392 1393 slave_port = cpsw_get_slave_port(slave->slave_num); 1394 1395 if (cpsw->data.dual_emac) 1396 cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port); 1397 else 1398 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, 1399 1 << slave_port, 0, 0, ALE_MCAST_FWD_2); 1400 1401 if (slave->data->phy_node) { 1402 phy = of_phy_connect(priv->ndev, slave->data->phy_node, 1403 &cpsw_adjust_link, 0, slave->data->phy_if); 1404 if (!phy) { 1405 dev_err(priv->dev, "phy \"%pOF\" not found on slave %d\n", 1406 slave->data->phy_node, 1407 slave->slave_num); 1408 return; 1409 } 1410 } else { 1411 phy = phy_connect(priv->ndev, slave->data->phy_id, 1412 &cpsw_adjust_link, slave->data->phy_if); 1413 if (IS_ERR(phy)) { 1414 dev_err(priv->dev, 1415 "phy \"%s\" not found on slave %d, err %ld\n", 1416 slave->data->phy_id, slave->slave_num, 1417 PTR_ERR(phy)); 1418 return; 1419 } 1420 } 1421 1422 slave->phy = phy; 1423 1424 phy_attached_info(slave->phy); 1425 1426 phy_start(slave->phy); 1427 1428 /* Configure GMII_SEL register */ 1429 cpsw_phy_sel(cpsw->dev, slave->phy->interface, slave->slave_num); 1430 } 1431 1432 static inline void cpsw_add_default_vlan(struct cpsw_priv *priv) 1433 { 1434 struct cpsw_common *cpsw = priv->cpsw; 1435 const int vlan = cpsw->data.default_vlan; 1436 u32 reg; 1437 int i; 1438 int unreg_mcast_mask; 1439 1440 reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN : 1441 CPSW2_PORT_VLAN; 1442 1443 writel(vlan, &cpsw->host_port_regs->port_vlan); 1444 1445 for (i = 0; i < cpsw->data.slaves; i++) 1446 slave_write(cpsw->slaves + i, vlan, reg); 1447 1448 if (priv->ndev->flags & IFF_ALLMULTI) 1449 unreg_mcast_mask = ALE_ALL_PORTS; 1450 else 1451 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2; 1452 1453 cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS, 1454 ALE_ALL_PORTS, ALE_ALL_PORTS, 1455 unreg_mcast_mask); 1456 } 1457 1458 static void cpsw_init_host_port(struct cpsw_priv *priv) 1459 { 1460 u32 fifo_mode; 1461 u32 control_reg; 1462 struct cpsw_common *cpsw = priv->cpsw; 1463 1464 /* soft reset the controller and initialize ale */ 1465 soft_reset("cpsw", &cpsw->regs->soft_reset); 1466 cpsw_ale_start(cpsw->ale); 1467 1468 /* switch to vlan unaware mode */ 1469 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_VLAN_AWARE, 1470 CPSW_ALE_VLAN_AWARE); 1471 control_reg = readl(&cpsw->regs->control); 1472 control_reg |= CPSW_VLAN_AWARE | CPSW_RX_VLAN_ENCAP; 1473 writel(control_reg, &cpsw->regs->control); 1474 fifo_mode = (cpsw->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE : 1475 CPSW_FIFO_NORMAL_MODE; 1476 writel(fifo_mode, &cpsw->host_port_regs->tx_in_ctl); 1477 1478 /* setup host port priority mapping */ 1479 writel_relaxed(CPDMA_TX_PRIORITY_MAP, 1480 &cpsw->host_port_regs->cpdma_tx_pri_map); 1481 writel_relaxed(0, &cpsw->host_port_regs->cpdma_rx_chan_map); 1482 1483 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, 1484 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD); 1485 1486 if (!cpsw->data.dual_emac) { 1487 cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM, 1488 0, 0); 1489 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, 1490 ALE_PORT_HOST, 0, 0, ALE_MCAST_FWD_2); 1491 } 1492 } 1493 1494 static int cpsw_fill_rx_channels(struct cpsw_priv *priv) 1495 { 1496 struct cpsw_common *cpsw = priv->cpsw; 1497 struct sk_buff *skb; 1498 int ch_buf_num; 1499 int ch, i, ret; 1500 1501 for (ch = 0; ch < cpsw->rx_ch_num; ch++) { 1502 ch_buf_num = cpdma_chan_get_rx_buf_num(cpsw->rxv[ch].ch); 1503 for (i = 0; i < ch_buf_num; i++) { 1504 skb = __netdev_alloc_skb_ip_align(priv->ndev, 1505 cpsw->rx_packet_max, 1506 GFP_KERNEL); 1507 if (!skb) { 1508 cpsw_err(priv, ifup, "cannot allocate skb\n"); 1509 return -ENOMEM; 1510 } 1511 1512 skb_set_queue_mapping(skb, ch); 1513 ret = cpdma_chan_submit(cpsw->rxv[ch].ch, skb, 1514 skb->data, skb_tailroom(skb), 1515 0); 1516 if (ret < 0) { 1517 cpsw_err(priv, ifup, 1518 "cannot submit skb to channel %d rx, error %d\n", 1519 ch, ret); 1520 kfree_skb(skb); 1521 return ret; 1522 } 1523 kmemleak_not_leak(skb); 1524 } 1525 1526 cpsw_info(priv, ifup, "ch %d rx, submitted %d descriptors\n", 1527 ch, ch_buf_num); 1528 } 1529 1530 return 0; 1531 } 1532 1533 static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_common *cpsw) 1534 { 1535 u32 slave_port; 1536 1537 slave_port = cpsw_get_slave_port(slave->slave_num); 1538 1539 if (!slave->phy) 1540 return; 1541 phy_stop(slave->phy); 1542 phy_disconnect(slave->phy); 1543 slave->phy = NULL; 1544 cpsw_ale_control_set(cpsw->ale, slave_port, 1545 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE); 1546 soft_reset_slave(slave); 1547 } 1548 1549 static int cpsw_ndo_open(struct net_device *ndev) 1550 { 1551 struct cpsw_priv *priv = netdev_priv(ndev); 1552 struct cpsw_common *cpsw = priv->cpsw; 1553 int ret; 1554 u32 reg; 1555 1556 ret = pm_runtime_get_sync(cpsw->dev); 1557 if (ret < 0) { 1558 pm_runtime_put_noidle(cpsw->dev); 1559 return ret; 1560 } 1561 1562 netif_carrier_off(ndev); 1563 1564 /* Notify the stack of the actual queue counts. */ 1565 ret = netif_set_real_num_tx_queues(ndev, cpsw->tx_ch_num); 1566 if (ret) { 1567 dev_err(priv->dev, "cannot set real number of tx queues\n"); 1568 goto err_cleanup; 1569 } 1570 1571 ret = netif_set_real_num_rx_queues(ndev, cpsw->rx_ch_num); 1572 if (ret) { 1573 dev_err(priv->dev, "cannot set real number of rx queues\n"); 1574 goto err_cleanup; 1575 } 1576 1577 reg = cpsw->version; 1578 1579 dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n", 1580 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg), 1581 CPSW_RTL_VERSION(reg)); 1582 1583 /* Initialize host and slave ports */ 1584 if (!cpsw->usage_count) 1585 cpsw_init_host_port(priv); 1586 for_each_slave(priv, cpsw_slave_open, priv); 1587 1588 /* Add default VLAN */ 1589 if (!cpsw->data.dual_emac) 1590 cpsw_add_default_vlan(priv); 1591 else 1592 cpsw_ale_add_vlan(cpsw->ale, cpsw->data.default_vlan, 1593 ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0); 1594 1595 /* initialize shared resources for every ndev */ 1596 if (!cpsw->usage_count) { 1597 /* disable priority elevation */ 1598 writel_relaxed(0, &cpsw->regs->ptype); 1599 1600 /* enable statistics collection only on all ports */ 1601 writel_relaxed(0x7, &cpsw->regs->stat_port_en); 1602 1603 /* Enable internal fifo flow control */ 1604 writel(0x7, &cpsw->regs->flow_control); 1605 1606 napi_enable(&cpsw->napi_rx); 1607 napi_enable(&cpsw->napi_tx); 1608 1609 if (cpsw->tx_irq_disabled) { 1610 cpsw->tx_irq_disabled = false; 1611 enable_irq(cpsw->irqs_table[1]); 1612 } 1613 1614 if (cpsw->rx_irq_disabled) { 1615 cpsw->rx_irq_disabled = false; 1616 enable_irq(cpsw->irqs_table[0]); 1617 } 1618 1619 ret = cpsw_fill_rx_channels(priv); 1620 if (ret < 0) 1621 goto err_cleanup; 1622 1623 if (cpts_register(cpsw->cpts)) 1624 dev_err(priv->dev, "error registering cpts device\n"); 1625 1626 } 1627 1628 /* Enable Interrupt pacing if configured */ 1629 if (cpsw->coal_intvl != 0) { 1630 struct ethtool_coalesce coal; 1631 1632 coal.rx_coalesce_usecs = cpsw->coal_intvl; 1633 cpsw_set_coalesce(ndev, &coal); 1634 } 1635 1636 cpdma_ctlr_start(cpsw->dma); 1637 cpsw_intr_enable(cpsw); 1638 cpsw->usage_count++; 1639 1640 return 0; 1641 1642 err_cleanup: 1643 cpdma_ctlr_stop(cpsw->dma); 1644 for_each_slave(priv, cpsw_slave_stop, cpsw); 1645 pm_runtime_put_sync(cpsw->dev); 1646 netif_carrier_off(priv->ndev); 1647 return ret; 1648 } 1649 1650 static int cpsw_ndo_stop(struct net_device *ndev) 1651 { 1652 struct cpsw_priv *priv = netdev_priv(ndev); 1653 struct cpsw_common *cpsw = priv->cpsw; 1654 1655 cpsw_info(priv, ifdown, "shutting down cpsw device\n"); 1656 netif_tx_stop_all_queues(priv->ndev); 1657 netif_carrier_off(priv->ndev); 1658 1659 if (cpsw->usage_count <= 1) { 1660 napi_disable(&cpsw->napi_rx); 1661 napi_disable(&cpsw->napi_tx); 1662 cpts_unregister(cpsw->cpts); 1663 cpsw_intr_disable(cpsw); 1664 cpdma_ctlr_stop(cpsw->dma); 1665 cpsw_ale_stop(cpsw->ale); 1666 } 1667 for_each_slave(priv, cpsw_slave_stop, cpsw); 1668 1669 if (cpsw_need_resplit(cpsw)) 1670 cpsw_split_res(ndev); 1671 1672 cpsw->usage_count--; 1673 pm_runtime_put_sync(cpsw->dev); 1674 return 0; 1675 } 1676 1677 static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb, 1678 struct net_device *ndev) 1679 { 1680 struct cpsw_priv *priv = netdev_priv(ndev); 1681 struct cpsw_common *cpsw = priv->cpsw; 1682 struct cpts *cpts = cpsw->cpts; 1683 struct netdev_queue *txq; 1684 struct cpdma_chan *txch; 1685 int ret, q_idx; 1686 1687 if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) { 1688 cpsw_err(priv, tx_err, "packet pad failed\n"); 1689 ndev->stats.tx_dropped++; 1690 return NET_XMIT_DROP; 1691 } 1692 1693 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && 1694 cpts_is_tx_enabled(cpts) && cpts_can_timestamp(cpts, skb)) 1695 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1696 1697 q_idx = skb_get_queue_mapping(skb); 1698 if (q_idx >= cpsw->tx_ch_num) 1699 q_idx = q_idx % cpsw->tx_ch_num; 1700 1701 txch = cpsw->txv[q_idx].ch; 1702 txq = netdev_get_tx_queue(ndev, q_idx); 1703 ret = cpsw_tx_packet_submit(priv, skb, txch); 1704 if (unlikely(ret != 0)) { 1705 cpsw_err(priv, tx_err, "desc submit failed\n"); 1706 goto fail; 1707 } 1708 1709 /* If there is no more tx desc left free then we need to 1710 * tell the kernel to stop sending us tx frames. 1711 */ 1712 if (unlikely(!cpdma_check_free_tx_desc(txch))) { 1713 netif_tx_stop_queue(txq); 1714 1715 /* Barrier, so that stop_queue visible to other cpus */ 1716 smp_mb__after_atomic(); 1717 1718 if (cpdma_check_free_tx_desc(txch)) 1719 netif_tx_wake_queue(txq); 1720 } 1721 1722 return NETDEV_TX_OK; 1723 fail: 1724 ndev->stats.tx_dropped++; 1725 netif_tx_stop_queue(txq); 1726 1727 /* Barrier, so that stop_queue visible to other cpus */ 1728 smp_mb__after_atomic(); 1729 1730 if (cpdma_check_free_tx_desc(txch)) 1731 netif_tx_wake_queue(txq); 1732 1733 return NETDEV_TX_BUSY; 1734 } 1735 1736 #if IS_ENABLED(CONFIG_TI_CPTS) 1737 1738 static void cpsw_hwtstamp_v1(struct cpsw_common *cpsw) 1739 { 1740 struct cpsw_slave *slave = &cpsw->slaves[cpsw->data.active_slave]; 1741 u32 ts_en, seq_id; 1742 1743 if (!cpts_is_tx_enabled(cpsw->cpts) && 1744 !cpts_is_rx_enabled(cpsw->cpts)) { 1745 slave_write(slave, 0, CPSW1_TS_CTL); 1746 return; 1747 } 1748 1749 seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588; 1750 ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS; 1751 1752 if (cpts_is_tx_enabled(cpsw->cpts)) 1753 ts_en |= CPSW_V1_TS_TX_EN; 1754 1755 if (cpts_is_rx_enabled(cpsw->cpts)) 1756 ts_en |= CPSW_V1_TS_RX_EN; 1757 1758 slave_write(slave, ts_en, CPSW1_TS_CTL); 1759 slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE); 1760 } 1761 1762 static void cpsw_hwtstamp_v2(struct cpsw_priv *priv) 1763 { 1764 struct cpsw_slave *slave; 1765 struct cpsw_common *cpsw = priv->cpsw; 1766 u32 ctrl, mtype; 1767 1768 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; 1769 1770 ctrl = slave_read(slave, CPSW2_CONTROL); 1771 switch (cpsw->version) { 1772 case CPSW_VERSION_2: 1773 ctrl &= ~CTRL_V2_ALL_TS_MASK; 1774 1775 if (cpts_is_tx_enabled(cpsw->cpts)) 1776 ctrl |= CTRL_V2_TX_TS_BITS; 1777 1778 if (cpts_is_rx_enabled(cpsw->cpts)) 1779 ctrl |= CTRL_V2_RX_TS_BITS; 1780 break; 1781 case CPSW_VERSION_3: 1782 default: 1783 ctrl &= ~CTRL_V3_ALL_TS_MASK; 1784 1785 if (cpts_is_tx_enabled(cpsw->cpts)) 1786 ctrl |= CTRL_V3_TX_TS_BITS; 1787 1788 if (cpts_is_rx_enabled(cpsw->cpts)) 1789 ctrl |= CTRL_V3_RX_TS_BITS; 1790 break; 1791 } 1792 1793 mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS; 1794 1795 slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE); 1796 slave_write(slave, ctrl, CPSW2_CONTROL); 1797 writel_relaxed(ETH_P_1588, &cpsw->regs->ts_ltype); 1798 } 1799 1800 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr) 1801 { 1802 struct cpsw_priv *priv = netdev_priv(dev); 1803 struct hwtstamp_config cfg; 1804 struct cpsw_common *cpsw = priv->cpsw; 1805 struct cpts *cpts = cpsw->cpts; 1806 1807 if (cpsw->version != CPSW_VERSION_1 && 1808 cpsw->version != CPSW_VERSION_2 && 1809 cpsw->version != CPSW_VERSION_3) 1810 return -EOPNOTSUPP; 1811 1812 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg))) 1813 return -EFAULT; 1814 1815 /* reserved for future extensions */ 1816 if (cfg.flags) 1817 return -EINVAL; 1818 1819 if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON) 1820 return -ERANGE; 1821 1822 switch (cfg.rx_filter) { 1823 case HWTSTAMP_FILTER_NONE: 1824 cpts_rx_enable(cpts, 0); 1825 break; 1826 case HWTSTAMP_FILTER_ALL: 1827 case HWTSTAMP_FILTER_NTP_ALL: 1828 return -ERANGE; 1829 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 1830 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 1831 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 1832 cpts_rx_enable(cpts, HWTSTAMP_FILTER_PTP_V1_L4_EVENT); 1833 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 1834 break; 1835 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 1836 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 1837 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 1838 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 1839 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 1840 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 1841 case HWTSTAMP_FILTER_PTP_V2_EVENT: 1842 case HWTSTAMP_FILTER_PTP_V2_SYNC: 1843 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 1844 cpts_rx_enable(cpts, HWTSTAMP_FILTER_PTP_V2_EVENT); 1845 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 1846 break; 1847 default: 1848 return -ERANGE; 1849 } 1850 1851 cpts_tx_enable(cpts, cfg.tx_type == HWTSTAMP_TX_ON); 1852 1853 switch (cpsw->version) { 1854 case CPSW_VERSION_1: 1855 cpsw_hwtstamp_v1(cpsw); 1856 break; 1857 case CPSW_VERSION_2: 1858 case CPSW_VERSION_3: 1859 cpsw_hwtstamp_v2(priv); 1860 break; 1861 default: 1862 WARN_ON(1); 1863 } 1864 1865 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; 1866 } 1867 1868 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr) 1869 { 1870 struct cpsw_common *cpsw = ndev_to_cpsw(dev); 1871 struct cpts *cpts = cpsw->cpts; 1872 struct hwtstamp_config cfg; 1873 1874 if (cpsw->version != CPSW_VERSION_1 && 1875 cpsw->version != CPSW_VERSION_2 && 1876 cpsw->version != CPSW_VERSION_3) 1877 return -EOPNOTSUPP; 1878 1879 cfg.flags = 0; 1880 cfg.tx_type = cpts_is_tx_enabled(cpts) ? 1881 HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF; 1882 cfg.rx_filter = (cpts_is_rx_enabled(cpts) ? 1883 cpts->rx_enable : HWTSTAMP_FILTER_NONE); 1884 1885 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; 1886 } 1887 #else 1888 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr) 1889 { 1890 return -EOPNOTSUPP; 1891 } 1892 1893 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr) 1894 { 1895 return -EOPNOTSUPP; 1896 } 1897 #endif /*CONFIG_TI_CPTS*/ 1898 1899 static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 1900 { 1901 struct cpsw_priv *priv = netdev_priv(dev); 1902 struct cpsw_common *cpsw = priv->cpsw; 1903 int slave_no = cpsw_slave_index(cpsw, priv); 1904 1905 if (!netif_running(dev)) 1906 return -EINVAL; 1907 1908 switch (cmd) { 1909 case SIOCSHWTSTAMP: 1910 return cpsw_hwtstamp_set(dev, req); 1911 case SIOCGHWTSTAMP: 1912 return cpsw_hwtstamp_get(dev, req); 1913 } 1914 1915 if (!cpsw->slaves[slave_no].phy) 1916 return -EOPNOTSUPP; 1917 return phy_mii_ioctl(cpsw->slaves[slave_no].phy, req, cmd); 1918 } 1919 1920 static void cpsw_ndo_tx_timeout(struct net_device *ndev) 1921 { 1922 struct cpsw_priv *priv = netdev_priv(ndev); 1923 struct cpsw_common *cpsw = priv->cpsw; 1924 int ch; 1925 1926 cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n"); 1927 ndev->stats.tx_errors++; 1928 cpsw_intr_disable(cpsw); 1929 for (ch = 0; ch < cpsw->tx_ch_num; ch++) { 1930 cpdma_chan_stop(cpsw->txv[ch].ch); 1931 cpdma_chan_start(cpsw->txv[ch].ch); 1932 } 1933 1934 cpsw_intr_enable(cpsw); 1935 netif_trans_update(ndev); 1936 netif_tx_wake_all_queues(ndev); 1937 } 1938 1939 static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p) 1940 { 1941 struct cpsw_priv *priv = netdev_priv(ndev); 1942 struct sockaddr *addr = (struct sockaddr *)p; 1943 struct cpsw_common *cpsw = priv->cpsw; 1944 int flags = 0; 1945 u16 vid = 0; 1946 int ret; 1947 1948 if (!is_valid_ether_addr(addr->sa_data)) 1949 return -EADDRNOTAVAIL; 1950 1951 ret = pm_runtime_get_sync(cpsw->dev); 1952 if (ret < 0) { 1953 pm_runtime_put_noidle(cpsw->dev); 1954 return ret; 1955 } 1956 1957 if (cpsw->data.dual_emac) { 1958 vid = cpsw->slaves[priv->emac_port].port_vlan; 1959 flags = ALE_VLAN; 1960 } 1961 1962 cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM, 1963 flags, vid); 1964 cpsw_ale_add_ucast(cpsw->ale, addr->sa_data, HOST_PORT_NUM, 1965 flags, vid); 1966 1967 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN); 1968 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN); 1969 for_each_slave(priv, cpsw_set_slave_mac, priv); 1970 1971 pm_runtime_put(cpsw->dev); 1972 1973 return 0; 1974 } 1975 1976 #ifdef CONFIG_NET_POLL_CONTROLLER 1977 static void cpsw_ndo_poll_controller(struct net_device *ndev) 1978 { 1979 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1980 1981 cpsw_intr_disable(cpsw); 1982 cpsw_rx_interrupt(cpsw->irqs_table[0], cpsw); 1983 cpsw_tx_interrupt(cpsw->irqs_table[1], cpsw); 1984 cpsw_intr_enable(cpsw); 1985 } 1986 #endif 1987 1988 static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv, 1989 unsigned short vid) 1990 { 1991 int ret; 1992 int unreg_mcast_mask = 0; 1993 u32 port_mask; 1994 struct cpsw_common *cpsw = priv->cpsw; 1995 1996 if (cpsw->data.dual_emac) { 1997 port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST; 1998 1999 if (priv->ndev->flags & IFF_ALLMULTI) 2000 unreg_mcast_mask = port_mask; 2001 } else { 2002 port_mask = ALE_ALL_PORTS; 2003 2004 if (priv->ndev->flags & IFF_ALLMULTI) 2005 unreg_mcast_mask = ALE_ALL_PORTS; 2006 else 2007 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2; 2008 } 2009 2010 ret = cpsw_ale_add_vlan(cpsw->ale, vid, port_mask, 0, port_mask, 2011 unreg_mcast_mask); 2012 if (ret != 0) 2013 return ret; 2014 2015 ret = cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, 2016 HOST_PORT_NUM, ALE_VLAN, vid); 2017 if (ret != 0) 2018 goto clean_vid; 2019 2020 ret = cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, 2021 port_mask, ALE_VLAN, vid, 0); 2022 if (ret != 0) 2023 goto clean_vlan_ucast; 2024 return 0; 2025 2026 clean_vlan_ucast: 2027 cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, 2028 HOST_PORT_NUM, ALE_VLAN, vid); 2029 clean_vid: 2030 cpsw_ale_del_vlan(cpsw->ale, vid, 0); 2031 return ret; 2032 } 2033 2034 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev, 2035 __be16 proto, u16 vid) 2036 { 2037 struct cpsw_priv *priv = netdev_priv(ndev); 2038 struct cpsw_common *cpsw = priv->cpsw; 2039 int ret; 2040 2041 if (vid == cpsw->data.default_vlan) 2042 return 0; 2043 2044 ret = pm_runtime_get_sync(cpsw->dev); 2045 if (ret < 0) { 2046 pm_runtime_put_noidle(cpsw->dev); 2047 return ret; 2048 } 2049 2050 if (cpsw->data.dual_emac) { 2051 /* In dual EMAC, reserved VLAN id should not be used for 2052 * creating VLAN interfaces as this can break the dual 2053 * EMAC port separation 2054 */ 2055 int i; 2056 2057 for (i = 0; i < cpsw->data.slaves; i++) { 2058 if (vid == cpsw->slaves[i].port_vlan) 2059 return -EINVAL; 2060 } 2061 } 2062 2063 dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid); 2064 ret = cpsw_add_vlan_ale_entry(priv, vid); 2065 2066 pm_runtime_put(cpsw->dev); 2067 return ret; 2068 } 2069 2070 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev, 2071 __be16 proto, u16 vid) 2072 { 2073 struct cpsw_priv *priv = netdev_priv(ndev); 2074 struct cpsw_common *cpsw = priv->cpsw; 2075 int ret; 2076 2077 if (vid == cpsw->data.default_vlan) 2078 return 0; 2079 2080 ret = pm_runtime_get_sync(cpsw->dev); 2081 if (ret < 0) { 2082 pm_runtime_put_noidle(cpsw->dev); 2083 return ret; 2084 } 2085 2086 if (cpsw->data.dual_emac) { 2087 int i; 2088 2089 for (i = 0; i < cpsw->data.slaves; i++) { 2090 if (vid == cpsw->slaves[i].port_vlan) 2091 return -EINVAL; 2092 } 2093 } 2094 2095 dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid); 2096 ret = cpsw_ale_del_vlan(cpsw->ale, vid, 0); 2097 if (ret != 0) 2098 return ret; 2099 2100 ret = cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, 2101 HOST_PORT_NUM, ALE_VLAN, vid); 2102 if (ret != 0) 2103 return ret; 2104 2105 ret = cpsw_ale_del_mcast(cpsw->ale, priv->ndev->broadcast, 2106 0, ALE_VLAN, vid); 2107 pm_runtime_put(cpsw->dev); 2108 return ret; 2109 } 2110 2111 static int cpsw_ndo_set_tx_maxrate(struct net_device *ndev, int queue, u32 rate) 2112 { 2113 struct cpsw_priv *priv = netdev_priv(ndev); 2114 struct cpsw_common *cpsw = priv->cpsw; 2115 struct cpsw_slave *slave; 2116 u32 min_rate; 2117 u32 ch_rate; 2118 int i, ret; 2119 2120 ch_rate = netdev_get_tx_queue(ndev, queue)->tx_maxrate; 2121 if (ch_rate == rate) 2122 return 0; 2123 2124 ch_rate = rate * 1000; 2125 min_rate = cpdma_chan_get_min_rate(cpsw->dma); 2126 if ((ch_rate < min_rate && ch_rate)) { 2127 dev_err(priv->dev, "The channel rate cannot be less than %dMbps", 2128 min_rate); 2129 return -EINVAL; 2130 } 2131 2132 if (rate > cpsw->speed) { 2133 dev_err(priv->dev, "The channel rate cannot be more than 2Gbps"); 2134 return -EINVAL; 2135 } 2136 2137 ret = pm_runtime_get_sync(cpsw->dev); 2138 if (ret < 0) { 2139 pm_runtime_put_noidle(cpsw->dev); 2140 return ret; 2141 } 2142 2143 ret = cpdma_chan_set_rate(cpsw->txv[queue].ch, ch_rate); 2144 pm_runtime_put(cpsw->dev); 2145 2146 if (ret) 2147 return ret; 2148 2149 /* update rates for slaves tx queues */ 2150 for (i = 0; i < cpsw->data.slaves; i++) { 2151 slave = &cpsw->slaves[i]; 2152 if (!slave->ndev) 2153 continue; 2154 2155 netdev_get_tx_queue(slave->ndev, queue)->tx_maxrate = rate; 2156 } 2157 2158 cpsw_split_res(ndev); 2159 return ret; 2160 } 2161 2162 static const struct net_device_ops cpsw_netdev_ops = { 2163 .ndo_open = cpsw_ndo_open, 2164 .ndo_stop = cpsw_ndo_stop, 2165 .ndo_start_xmit = cpsw_ndo_start_xmit, 2166 .ndo_set_mac_address = cpsw_ndo_set_mac_address, 2167 .ndo_do_ioctl = cpsw_ndo_ioctl, 2168 .ndo_validate_addr = eth_validate_addr, 2169 .ndo_tx_timeout = cpsw_ndo_tx_timeout, 2170 .ndo_set_rx_mode = cpsw_ndo_set_rx_mode, 2171 .ndo_set_tx_maxrate = cpsw_ndo_set_tx_maxrate, 2172 #ifdef CONFIG_NET_POLL_CONTROLLER 2173 .ndo_poll_controller = cpsw_ndo_poll_controller, 2174 #endif 2175 .ndo_vlan_rx_add_vid = cpsw_ndo_vlan_rx_add_vid, 2176 .ndo_vlan_rx_kill_vid = cpsw_ndo_vlan_rx_kill_vid, 2177 }; 2178 2179 static int cpsw_get_regs_len(struct net_device *ndev) 2180 { 2181 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 2182 2183 return cpsw->data.ale_entries * ALE_ENTRY_WORDS * sizeof(u32); 2184 } 2185 2186 static void cpsw_get_regs(struct net_device *ndev, 2187 struct ethtool_regs *regs, void *p) 2188 { 2189 u32 *reg = p; 2190 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 2191 2192 /* update CPSW IP version */ 2193 regs->version = cpsw->version; 2194 2195 cpsw_ale_dump(cpsw->ale, reg); 2196 } 2197 2198 static void cpsw_get_drvinfo(struct net_device *ndev, 2199 struct ethtool_drvinfo *info) 2200 { 2201 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 2202 struct platform_device *pdev = to_platform_device(cpsw->dev); 2203 2204 strlcpy(info->driver, "cpsw", sizeof(info->driver)); 2205 strlcpy(info->version, "1.0", sizeof(info->version)); 2206 strlcpy(info->bus_info, pdev->name, sizeof(info->bus_info)); 2207 } 2208 2209 static u32 cpsw_get_msglevel(struct net_device *ndev) 2210 { 2211 struct cpsw_priv *priv = netdev_priv(ndev); 2212 return priv->msg_enable; 2213 } 2214 2215 static void cpsw_set_msglevel(struct net_device *ndev, u32 value) 2216 { 2217 struct cpsw_priv *priv = netdev_priv(ndev); 2218 priv->msg_enable = value; 2219 } 2220 2221 #if IS_ENABLED(CONFIG_TI_CPTS) 2222 static int cpsw_get_ts_info(struct net_device *ndev, 2223 struct ethtool_ts_info *info) 2224 { 2225 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 2226 2227 info->so_timestamping = 2228 SOF_TIMESTAMPING_TX_HARDWARE | 2229 SOF_TIMESTAMPING_TX_SOFTWARE | 2230 SOF_TIMESTAMPING_RX_HARDWARE | 2231 SOF_TIMESTAMPING_RX_SOFTWARE | 2232 SOF_TIMESTAMPING_SOFTWARE | 2233 SOF_TIMESTAMPING_RAW_HARDWARE; 2234 info->phc_index = cpsw->cpts->phc_index; 2235 info->tx_types = 2236 (1 << HWTSTAMP_TX_OFF) | 2237 (1 << HWTSTAMP_TX_ON); 2238 info->rx_filters = 2239 (1 << HWTSTAMP_FILTER_NONE) | 2240 (1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) | 2241 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 2242 return 0; 2243 } 2244 #else 2245 static int cpsw_get_ts_info(struct net_device *ndev, 2246 struct ethtool_ts_info *info) 2247 { 2248 info->so_timestamping = 2249 SOF_TIMESTAMPING_TX_SOFTWARE | 2250 SOF_TIMESTAMPING_RX_SOFTWARE | 2251 SOF_TIMESTAMPING_SOFTWARE; 2252 info->phc_index = -1; 2253 info->tx_types = 0; 2254 info->rx_filters = 0; 2255 return 0; 2256 } 2257 #endif 2258 2259 static int cpsw_get_link_ksettings(struct net_device *ndev, 2260 struct ethtool_link_ksettings *ecmd) 2261 { 2262 struct cpsw_priv *priv = netdev_priv(ndev); 2263 struct cpsw_common *cpsw = priv->cpsw; 2264 int slave_no = cpsw_slave_index(cpsw, priv); 2265 2266 if (!cpsw->slaves[slave_no].phy) 2267 return -EOPNOTSUPP; 2268 2269 phy_ethtool_ksettings_get(cpsw->slaves[slave_no].phy, ecmd); 2270 return 0; 2271 } 2272 2273 static int cpsw_set_link_ksettings(struct net_device *ndev, 2274 const struct ethtool_link_ksettings *ecmd) 2275 { 2276 struct cpsw_priv *priv = netdev_priv(ndev); 2277 struct cpsw_common *cpsw = priv->cpsw; 2278 int slave_no = cpsw_slave_index(cpsw, priv); 2279 2280 if (cpsw->slaves[slave_no].phy) 2281 return phy_ethtool_ksettings_set(cpsw->slaves[slave_no].phy, 2282 ecmd); 2283 else 2284 return -EOPNOTSUPP; 2285 } 2286 2287 static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 2288 { 2289 struct cpsw_priv *priv = netdev_priv(ndev); 2290 struct cpsw_common *cpsw = priv->cpsw; 2291 int slave_no = cpsw_slave_index(cpsw, priv); 2292 2293 wol->supported = 0; 2294 wol->wolopts = 0; 2295 2296 if (cpsw->slaves[slave_no].phy) 2297 phy_ethtool_get_wol(cpsw->slaves[slave_no].phy, wol); 2298 } 2299 2300 static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 2301 { 2302 struct cpsw_priv *priv = netdev_priv(ndev); 2303 struct cpsw_common *cpsw = priv->cpsw; 2304 int slave_no = cpsw_slave_index(cpsw, priv); 2305 2306 if (cpsw->slaves[slave_no].phy) 2307 return phy_ethtool_set_wol(cpsw->slaves[slave_no].phy, wol); 2308 else 2309 return -EOPNOTSUPP; 2310 } 2311 2312 static void cpsw_get_pauseparam(struct net_device *ndev, 2313 struct ethtool_pauseparam *pause) 2314 { 2315 struct cpsw_priv *priv = netdev_priv(ndev); 2316 2317 pause->autoneg = AUTONEG_DISABLE; 2318 pause->rx_pause = priv->rx_pause ? true : false; 2319 pause->tx_pause = priv->tx_pause ? true : false; 2320 } 2321 2322 static int cpsw_set_pauseparam(struct net_device *ndev, 2323 struct ethtool_pauseparam *pause) 2324 { 2325 struct cpsw_priv *priv = netdev_priv(ndev); 2326 bool link; 2327 2328 priv->rx_pause = pause->rx_pause ? true : false; 2329 priv->tx_pause = pause->tx_pause ? true : false; 2330 2331 for_each_slave(priv, _cpsw_adjust_link, priv, &link); 2332 return 0; 2333 } 2334 2335 static int cpsw_ethtool_op_begin(struct net_device *ndev) 2336 { 2337 struct cpsw_priv *priv = netdev_priv(ndev); 2338 struct cpsw_common *cpsw = priv->cpsw; 2339 int ret; 2340 2341 ret = pm_runtime_get_sync(cpsw->dev); 2342 if (ret < 0) { 2343 cpsw_err(priv, drv, "ethtool begin failed %d\n", ret); 2344 pm_runtime_put_noidle(cpsw->dev); 2345 } 2346 2347 return ret; 2348 } 2349 2350 static void cpsw_ethtool_op_complete(struct net_device *ndev) 2351 { 2352 struct cpsw_priv *priv = netdev_priv(ndev); 2353 int ret; 2354 2355 ret = pm_runtime_put(priv->cpsw->dev); 2356 if (ret < 0) 2357 cpsw_err(priv, drv, "ethtool complete failed %d\n", ret); 2358 } 2359 2360 static void cpsw_get_channels(struct net_device *ndev, 2361 struct ethtool_channels *ch) 2362 { 2363 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 2364 2365 ch->max_combined = 0; 2366 ch->max_rx = CPSW_MAX_QUEUES; 2367 ch->max_tx = CPSW_MAX_QUEUES; 2368 ch->max_other = 0; 2369 ch->other_count = 0; 2370 ch->rx_count = cpsw->rx_ch_num; 2371 ch->tx_count = cpsw->tx_ch_num; 2372 ch->combined_count = 0; 2373 } 2374 2375 static int cpsw_check_ch_settings(struct cpsw_common *cpsw, 2376 struct ethtool_channels *ch) 2377 { 2378 if (ch->combined_count) 2379 return -EINVAL; 2380 2381 /* verify we have at least one channel in each direction */ 2382 if (!ch->rx_count || !ch->tx_count) 2383 return -EINVAL; 2384 2385 if (ch->rx_count > cpsw->data.channels || 2386 ch->tx_count > cpsw->data.channels) 2387 return -EINVAL; 2388 2389 return 0; 2390 } 2391 2392 static int cpsw_update_channels_res(struct cpsw_priv *priv, int ch_num, int rx) 2393 { 2394 struct cpsw_common *cpsw = priv->cpsw; 2395 void (*handler)(void *, int, int); 2396 struct netdev_queue *queue; 2397 struct cpsw_vector *vec; 2398 int ret, *ch; 2399 2400 if (rx) { 2401 ch = &cpsw->rx_ch_num; 2402 vec = cpsw->rxv; 2403 handler = cpsw_rx_handler; 2404 } else { 2405 ch = &cpsw->tx_ch_num; 2406 vec = cpsw->txv; 2407 handler = cpsw_tx_handler; 2408 } 2409 2410 while (*ch < ch_num) { 2411 vec[*ch].ch = cpdma_chan_create(cpsw->dma, *ch, handler, rx); 2412 queue = netdev_get_tx_queue(priv->ndev, *ch); 2413 queue->tx_maxrate = 0; 2414 2415 if (IS_ERR(vec[*ch].ch)) 2416 return PTR_ERR(vec[*ch].ch); 2417 2418 if (!vec[*ch].ch) 2419 return -EINVAL; 2420 2421 cpsw_info(priv, ifup, "created new %d %s channel\n", *ch, 2422 (rx ? "rx" : "tx")); 2423 (*ch)++; 2424 } 2425 2426 while (*ch > ch_num) { 2427 (*ch)--; 2428 2429 ret = cpdma_chan_destroy(vec[*ch].ch); 2430 if (ret) 2431 return ret; 2432 2433 cpsw_info(priv, ifup, "destroyed %d %s channel\n", *ch, 2434 (rx ? "rx" : "tx")); 2435 } 2436 2437 return 0; 2438 } 2439 2440 static int cpsw_update_channels(struct cpsw_priv *priv, 2441 struct ethtool_channels *ch) 2442 { 2443 int ret; 2444 2445 ret = cpsw_update_channels_res(priv, ch->rx_count, 1); 2446 if (ret) 2447 return ret; 2448 2449 ret = cpsw_update_channels_res(priv, ch->tx_count, 0); 2450 if (ret) 2451 return ret; 2452 2453 return 0; 2454 } 2455 2456 static void cpsw_suspend_data_pass(struct net_device *ndev) 2457 { 2458 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 2459 struct cpsw_slave *slave; 2460 int i; 2461 2462 /* Disable NAPI scheduling */ 2463 cpsw_intr_disable(cpsw); 2464 2465 /* Stop all transmit queues for every network device. 2466 * Disable re-using rx descriptors with dormant_on. 2467 */ 2468 for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) { 2469 if (!(slave->ndev && netif_running(slave->ndev))) 2470 continue; 2471 2472 netif_tx_stop_all_queues(slave->ndev); 2473 netif_dormant_on(slave->ndev); 2474 } 2475 2476 /* Handle rest of tx packets and stop cpdma channels */ 2477 cpdma_ctlr_stop(cpsw->dma); 2478 } 2479 2480 static int cpsw_resume_data_pass(struct net_device *ndev) 2481 { 2482 struct cpsw_priv *priv = netdev_priv(ndev); 2483 struct cpsw_common *cpsw = priv->cpsw; 2484 struct cpsw_slave *slave; 2485 int i, ret; 2486 2487 /* Allow rx packets handling */ 2488 for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) 2489 if (slave->ndev && netif_running(slave->ndev)) 2490 netif_dormant_off(slave->ndev); 2491 2492 /* After this receive is started */ 2493 if (cpsw->usage_count) { 2494 ret = cpsw_fill_rx_channels(priv); 2495 if (ret) 2496 return ret; 2497 2498 cpdma_ctlr_start(cpsw->dma); 2499 cpsw_intr_enable(cpsw); 2500 } 2501 2502 /* Resume transmit for every affected interface */ 2503 for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) 2504 if (slave->ndev && netif_running(slave->ndev)) 2505 netif_tx_start_all_queues(slave->ndev); 2506 2507 return 0; 2508 } 2509 2510 static int cpsw_set_channels(struct net_device *ndev, 2511 struct ethtool_channels *chs) 2512 { 2513 struct cpsw_priv *priv = netdev_priv(ndev); 2514 struct cpsw_common *cpsw = priv->cpsw; 2515 struct cpsw_slave *slave; 2516 int i, ret; 2517 2518 ret = cpsw_check_ch_settings(cpsw, chs); 2519 if (ret < 0) 2520 return ret; 2521 2522 cpsw_suspend_data_pass(ndev); 2523 ret = cpsw_update_channels(priv, chs); 2524 if (ret) 2525 goto err; 2526 2527 for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) { 2528 if (!(slave->ndev && netif_running(slave->ndev))) 2529 continue; 2530 2531 /* Inform stack about new count of queues */ 2532 ret = netif_set_real_num_tx_queues(slave->ndev, 2533 cpsw->tx_ch_num); 2534 if (ret) { 2535 dev_err(priv->dev, "cannot set real number of tx queues\n"); 2536 goto err; 2537 } 2538 2539 ret = netif_set_real_num_rx_queues(slave->ndev, 2540 cpsw->rx_ch_num); 2541 if (ret) { 2542 dev_err(priv->dev, "cannot set real number of rx queues\n"); 2543 goto err; 2544 } 2545 } 2546 2547 if (cpsw->usage_count) 2548 cpsw_split_res(ndev); 2549 2550 ret = cpsw_resume_data_pass(ndev); 2551 if (!ret) 2552 return 0; 2553 err: 2554 dev_err(priv->dev, "cannot update channels number, closing device\n"); 2555 dev_close(ndev); 2556 return ret; 2557 } 2558 2559 static int cpsw_get_eee(struct net_device *ndev, struct ethtool_eee *edata) 2560 { 2561 struct cpsw_priv *priv = netdev_priv(ndev); 2562 struct cpsw_common *cpsw = priv->cpsw; 2563 int slave_no = cpsw_slave_index(cpsw, priv); 2564 2565 if (cpsw->slaves[slave_no].phy) 2566 return phy_ethtool_get_eee(cpsw->slaves[slave_no].phy, edata); 2567 else 2568 return -EOPNOTSUPP; 2569 } 2570 2571 static int cpsw_set_eee(struct net_device *ndev, struct ethtool_eee *edata) 2572 { 2573 struct cpsw_priv *priv = netdev_priv(ndev); 2574 struct cpsw_common *cpsw = priv->cpsw; 2575 int slave_no = cpsw_slave_index(cpsw, priv); 2576 2577 if (cpsw->slaves[slave_no].phy) 2578 return phy_ethtool_set_eee(cpsw->slaves[slave_no].phy, edata); 2579 else 2580 return -EOPNOTSUPP; 2581 } 2582 2583 static int cpsw_nway_reset(struct net_device *ndev) 2584 { 2585 struct cpsw_priv *priv = netdev_priv(ndev); 2586 struct cpsw_common *cpsw = priv->cpsw; 2587 int slave_no = cpsw_slave_index(cpsw, priv); 2588 2589 if (cpsw->slaves[slave_no].phy) 2590 return genphy_restart_aneg(cpsw->slaves[slave_no].phy); 2591 else 2592 return -EOPNOTSUPP; 2593 } 2594 2595 static void cpsw_get_ringparam(struct net_device *ndev, 2596 struct ethtool_ringparam *ering) 2597 { 2598 struct cpsw_priv *priv = netdev_priv(ndev); 2599 struct cpsw_common *cpsw = priv->cpsw; 2600 2601 /* not supported */ 2602 ering->tx_max_pending = 0; 2603 ering->tx_pending = cpdma_get_num_tx_descs(cpsw->dma); 2604 ering->rx_max_pending = descs_pool_size - CPSW_MAX_QUEUES; 2605 ering->rx_pending = cpdma_get_num_rx_descs(cpsw->dma); 2606 } 2607 2608 static int cpsw_set_ringparam(struct net_device *ndev, 2609 struct ethtool_ringparam *ering) 2610 { 2611 struct cpsw_priv *priv = netdev_priv(ndev); 2612 struct cpsw_common *cpsw = priv->cpsw; 2613 int ret; 2614 2615 /* ignore ering->tx_pending - only rx_pending adjustment is supported */ 2616 2617 if (ering->rx_mini_pending || ering->rx_jumbo_pending || 2618 ering->rx_pending < CPSW_MAX_QUEUES || 2619 ering->rx_pending > (descs_pool_size - CPSW_MAX_QUEUES)) 2620 return -EINVAL; 2621 2622 if (ering->rx_pending == cpdma_get_num_rx_descs(cpsw->dma)) 2623 return 0; 2624 2625 cpsw_suspend_data_pass(ndev); 2626 2627 cpdma_set_num_rx_descs(cpsw->dma, ering->rx_pending); 2628 2629 if (cpsw->usage_count) 2630 cpdma_chan_split_pool(cpsw->dma); 2631 2632 ret = cpsw_resume_data_pass(ndev); 2633 if (!ret) 2634 return 0; 2635 2636 dev_err(&ndev->dev, "cannot set ring params, closing device\n"); 2637 dev_close(ndev); 2638 return ret; 2639 } 2640 2641 static const struct ethtool_ops cpsw_ethtool_ops = { 2642 .get_drvinfo = cpsw_get_drvinfo, 2643 .get_msglevel = cpsw_get_msglevel, 2644 .set_msglevel = cpsw_set_msglevel, 2645 .get_link = ethtool_op_get_link, 2646 .get_ts_info = cpsw_get_ts_info, 2647 .get_coalesce = cpsw_get_coalesce, 2648 .set_coalesce = cpsw_set_coalesce, 2649 .get_sset_count = cpsw_get_sset_count, 2650 .get_strings = cpsw_get_strings, 2651 .get_ethtool_stats = cpsw_get_ethtool_stats, 2652 .get_pauseparam = cpsw_get_pauseparam, 2653 .set_pauseparam = cpsw_set_pauseparam, 2654 .get_wol = cpsw_get_wol, 2655 .set_wol = cpsw_set_wol, 2656 .get_regs_len = cpsw_get_regs_len, 2657 .get_regs = cpsw_get_regs, 2658 .begin = cpsw_ethtool_op_begin, 2659 .complete = cpsw_ethtool_op_complete, 2660 .get_channels = cpsw_get_channels, 2661 .set_channels = cpsw_set_channels, 2662 .get_link_ksettings = cpsw_get_link_ksettings, 2663 .set_link_ksettings = cpsw_set_link_ksettings, 2664 .get_eee = cpsw_get_eee, 2665 .set_eee = cpsw_set_eee, 2666 .nway_reset = cpsw_nway_reset, 2667 .get_ringparam = cpsw_get_ringparam, 2668 .set_ringparam = cpsw_set_ringparam, 2669 }; 2670 2671 static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_common *cpsw, 2672 u32 slave_reg_ofs, u32 sliver_reg_ofs) 2673 { 2674 void __iomem *regs = cpsw->regs; 2675 int slave_num = slave->slave_num; 2676 struct cpsw_slave_data *data = cpsw->data.slave_data + slave_num; 2677 2678 slave->data = data; 2679 slave->regs = regs + slave_reg_ofs; 2680 slave->sliver = regs + sliver_reg_ofs; 2681 slave->port_vlan = data->dual_emac_res_vlan; 2682 } 2683 2684 static int cpsw_probe_dt(struct cpsw_platform_data *data, 2685 struct platform_device *pdev) 2686 { 2687 struct device_node *node = pdev->dev.of_node; 2688 struct device_node *slave_node; 2689 int i = 0, ret; 2690 u32 prop; 2691 2692 if (!node) 2693 return -EINVAL; 2694 2695 if (of_property_read_u32(node, "slaves", &prop)) { 2696 dev_err(&pdev->dev, "Missing slaves property in the DT.\n"); 2697 return -EINVAL; 2698 } 2699 data->slaves = prop; 2700 2701 if (of_property_read_u32(node, "active_slave", &prop)) { 2702 dev_err(&pdev->dev, "Missing active_slave property in the DT.\n"); 2703 return -EINVAL; 2704 } 2705 data->active_slave = prop; 2706 2707 data->slave_data = devm_kzalloc(&pdev->dev, data->slaves 2708 * sizeof(struct cpsw_slave_data), 2709 GFP_KERNEL); 2710 if (!data->slave_data) 2711 return -ENOMEM; 2712 2713 if (of_property_read_u32(node, "cpdma_channels", &prop)) { 2714 dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n"); 2715 return -EINVAL; 2716 } 2717 data->channels = prop; 2718 2719 if (of_property_read_u32(node, "ale_entries", &prop)) { 2720 dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n"); 2721 return -EINVAL; 2722 } 2723 data->ale_entries = prop; 2724 2725 if (of_property_read_u32(node, "bd_ram_size", &prop)) { 2726 dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n"); 2727 return -EINVAL; 2728 } 2729 data->bd_ram_size = prop; 2730 2731 if (of_property_read_u32(node, "mac_control", &prop)) { 2732 dev_err(&pdev->dev, "Missing mac_control property in the DT.\n"); 2733 return -EINVAL; 2734 } 2735 data->mac_control = prop; 2736 2737 if (of_property_read_bool(node, "dual_emac")) 2738 data->dual_emac = 1; 2739 2740 /* 2741 * Populate all the child nodes here... 2742 */ 2743 ret = of_platform_populate(node, NULL, NULL, &pdev->dev); 2744 /* We do not want to force this, as in some cases may not have child */ 2745 if (ret) 2746 dev_warn(&pdev->dev, "Doesn't have any child node\n"); 2747 2748 for_each_available_child_of_node(node, slave_node) { 2749 struct cpsw_slave_data *slave_data = data->slave_data + i; 2750 const void *mac_addr = NULL; 2751 int lenp; 2752 const __be32 *parp; 2753 2754 /* This is no slave child node, continue */ 2755 if (strcmp(slave_node->name, "slave")) 2756 continue; 2757 2758 slave_data->phy_node = of_parse_phandle(slave_node, 2759 "phy-handle", 0); 2760 parp = of_get_property(slave_node, "phy_id", &lenp); 2761 if (slave_data->phy_node) { 2762 dev_dbg(&pdev->dev, 2763 "slave[%d] using phy-handle=\"%pOF\"\n", 2764 i, slave_data->phy_node); 2765 } else if (of_phy_is_fixed_link(slave_node)) { 2766 /* In the case of a fixed PHY, the DT node associated 2767 * to the PHY is the Ethernet MAC DT node. 2768 */ 2769 ret = of_phy_register_fixed_link(slave_node); 2770 if (ret) { 2771 if (ret != -EPROBE_DEFER) 2772 dev_err(&pdev->dev, "failed to register fixed-link phy: %d\n", ret); 2773 return ret; 2774 } 2775 slave_data->phy_node = of_node_get(slave_node); 2776 } else if (parp) { 2777 u32 phyid; 2778 struct device_node *mdio_node; 2779 struct platform_device *mdio; 2780 2781 if (lenp != (sizeof(__be32) * 2)) { 2782 dev_err(&pdev->dev, "Invalid slave[%d] phy_id property\n", i); 2783 goto no_phy_slave; 2784 } 2785 mdio_node = of_find_node_by_phandle(be32_to_cpup(parp)); 2786 phyid = be32_to_cpup(parp+1); 2787 mdio = of_find_device_by_node(mdio_node); 2788 of_node_put(mdio_node); 2789 if (!mdio) { 2790 dev_err(&pdev->dev, "Missing mdio platform device\n"); 2791 return -EINVAL; 2792 } 2793 snprintf(slave_data->phy_id, sizeof(slave_data->phy_id), 2794 PHY_ID_FMT, mdio->name, phyid); 2795 put_device(&mdio->dev); 2796 } else { 2797 dev_err(&pdev->dev, 2798 "No slave[%d] phy_id, phy-handle, or fixed-link property\n", 2799 i); 2800 goto no_phy_slave; 2801 } 2802 slave_data->phy_if = of_get_phy_mode(slave_node); 2803 if (slave_data->phy_if < 0) { 2804 dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n", 2805 i); 2806 return slave_data->phy_if; 2807 } 2808 2809 no_phy_slave: 2810 mac_addr = of_get_mac_address(slave_node); 2811 if (mac_addr) { 2812 memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN); 2813 } else { 2814 ret = ti_cm_get_macid(&pdev->dev, i, 2815 slave_data->mac_addr); 2816 if (ret) 2817 return ret; 2818 } 2819 if (data->dual_emac) { 2820 if (of_property_read_u32(slave_node, "dual_emac_res_vlan", 2821 &prop)) { 2822 dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n"); 2823 slave_data->dual_emac_res_vlan = i+1; 2824 dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n", 2825 slave_data->dual_emac_res_vlan, i); 2826 } else { 2827 slave_data->dual_emac_res_vlan = prop; 2828 } 2829 } 2830 2831 i++; 2832 if (i == data->slaves) 2833 break; 2834 } 2835 2836 return 0; 2837 } 2838 2839 static void cpsw_remove_dt(struct platform_device *pdev) 2840 { 2841 struct net_device *ndev = platform_get_drvdata(pdev); 2842 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 2843 struct cpsw_platform_data *data = &cpsw->data; 2844 struct device_node *node = pdev->dev.of_node; 2845 struct device_node *slave_node; 2846 int i = 0; 2847 2848 for_each_available_child_of_node(node, slave_node) { 2849 struct cpsw_slave_data *slave_data = &data->slave_data[i]; 2850 2851 if (strcmp(slave_node->name, "slave")) 2852 continue; 2853 2854 if (of_phy_is_fixed_link(slave_node)) 2855 of_phy_deregister_fixed_link(slave_node); 2856 2857 of_node_put(slave_data->phy_node); 2858 2859 i++; 2860 if (i == data->slaves) 2861 break; 2862 } 2863 2864 of_platform_depopulate(&pdev->dev); 2865 } 2866 2867 static int cpsw_probe_dual_emac(struct cpsw_priv *priv) 2868 { 2869 struct cpsw_common *cpsw = priv->cpsw; 2870 struct cpsw_platform_data *data = &cpsw->data; 2871 struct net_device *ndev; 2872 struct cpsw_priv *priv_sl2; 2873 int ret = 0; 2874 2875 ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES); 2876 if (!ndev) { 2877 dev_err(cpsw->dev, "cpsw: error allocating net_device\n"); 2878 return -ENOMEM; 2879 } 2880 2881 priv_sl2 = netdev_priv(ndev); 2882 priv_sl2->cpsw = cpsw; 2883 priv_sl2->ndev = ndev; 2884 priv_sl2->dev = &ndev->dev; 2885 priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG); 2886 2887 if (is_valid_ether_addr(data->slave_data[1].mac_addr)) { 2888 memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr, 2889 ETH_ALEN); 2890 dev_info(cpsw->dev, "cpsw: Detected MACID = %pM\n", 2891 priv_sl2->mac_addr); 2892 } else { 2893 random_ether_addr(priv_sl2->mac_addr); 2894 dev_info(cpsw->dev, "cpsw: Random MACID = %pM\n", 2895 priv_sl2->mac_addr); 2896 } 2897 memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN); 2898 2899 priv_sl2->emac_port = 1; 2900 cpsw->slaves[1].ndev = ndev; 2901 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 2902 2903 ndev->netdev_ops = &cpsw_netdev_ops; 2904 ndev->ethtool_ops = &cpsw_ethtool_ops; 2905 2906 /* register the network device */ 2907 SET_NETDEV_DEV(ndev, cpsw->dev); 2908 ret = register_netdev(ndev); 2909 if (ret) { 2910 dev_err(cpsw->dev, "cpsw: error registering net device\n"); 2911 free_netdev(ndev); 2912 ret = -ENODEV; 2913 } 2914 2915 return ret; 2916 } 2917 2918 #define CPSW_QUIRK_IRQ BIT(0) 2919 2920 static const struct platform_device_id cpsw_devtype[] = { 2921 { 2922 /* keep it for existing comaptibles */ 2923 .name = "cpsw", 2924 .driver_data = CPSW_QUIRK_IRQ, 2925 }, { 2926 .name = "am335x-cpsw", 2927 .driver_data = CPSW_QUIRK_IRQ, 2928 }, { 2929 .name = "am4372-cpsw", 2930 .driver_data = 0, 2931 }, { 2932 .name = "dra7-cpsw", 2933 .driver_data = 0, 2934 }, { 2935 /* sentinel */ 2936 } 2937 }; 2938 MODULE_DEVICE_TABLE(platform, cpsw_devtype); 2939 2940 enum ti_cpsw_type { 2941 CPSW = 0, 2942 AM335X_CPSW, 2943 AM4372_CPSW, 2944 DRA7_CPSW, 2945 }; 2946 2947 static const struct of_device_id cpsw_of_mtable[] = { 2948 { .compatible = "ti,cpsw", .data = &cpsw_devtype[CPSW], }, 2949 { .compatible = "ti,am335x-cpsw", .data = &cpsw_devtype[AM335X_CPSW], }, 2950 { .compatible = "ti,am4372-cpsw", .data = &cpsw_devtype[AM4372_CPSW], }, 2951 { .compatible = "ti,dra7-cpsw", .data = &cpsw_devtype[DRA7_CPSW], }, 2952 { /* sentinel */ }, 2953 }; 2954 MODULE_DEVICE_TABLE(of, cpsw_of_mtable); 2955 2956 static int cpsw_probe(struct platform_device *pdev) 2957 { 2958 struct clk *clk; 2959 struct cpsw_platform_data *data; 2960 struct net_device *ndev; 2961 struct cpsw_priv *priv; 2962 struct cpdma_params dma_params; 2963 struct cpsw_ale_params ale_params; 2964 void __iomem *ss_regs; 2965 void __iomem *cpts_regs; 2966 struct resource *res, *ss_res; 2967 const struct of_device_id *of_id; 2968 struct gpio_descs *mode; 2969 u32 slave_offset, sliver_offset, slave_size; 2970 struct cpsw_common *cpsw; 2971 int ret = 0, i; 2972 int irq; 2973 2974 cpsw = devm_kzalloc(&pdev->dev, sizeof(struct cpsw_common), GFP_KERNEL); 2975 if (!cpsw) 2976 return -ENOMEM; 2977 2978 cpsw->dev = &pdev->dev; 2979 2980 ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES); 2981 if (!ndev) { 2982 dev_err(&pdev->dev, "error allocating net_device\n"); 2983 return -ENOMEM; 2984 } 2985 2986 platform_set_drvdata(pdev, ndev); 2987 priv = netdev_priv(ndev); 2988 priv->cpsw = cpsw; 2989 priv->ndev = ndev; 2990 priv->dev = &ndev->dev; 2991 priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG); 2992 cpsw->rx_packet_max = max(rx_packet_max, 128); 2993 2994 mode = devm_gpiod_get_array_optional(&pdev->dev, "mode", GPIOD_OUT_LOW); 2995 if (IS_ERR(mode)) { 2996 ret = PTR_ERR(mode); 2997 dev_err(&pdev->dev, "gpio request failed, ret %d\n", ret); 2998 goto clean_ndev_ret; 2999 } 3000 3001 /* 3002 * This may be required here for child devices. 3003 */ 3004 pm_runtime_enable(&pdev->dev); 3005 3006 /* Select default pin state */ 3007 pinctrl_pm_select_default_state(&pdev->dev); 3008 3009 /* Need to enable clocks with runtime PM api to access module 3010 * registers 3011 */ 3012 ret = pm_runtime_get_sync(&pdev->dev); 3013 if (ret < 0) { 3014 pm_runtime_put_noidle(&pdev->dev); 3015 goto clean_runtime_disable_ret; 3016 } 3017 3018 ret = cpsw_probe_dt(&cpsw->data, pdev); 3019 if (ret) 3020 goto clean_dt_ret; 3021 3022 data = &cpsw->data; 3023 cpsw->rx_ch_num = 1; 3024 cpsw->tx_ch_num = 1; 3025 3026 if (is_valid_ether_addr(data->slave_data[0].mac_addr)) { 3027 memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN); 3028 dev_info(&pdev->dev, "Detected MACID = %pM\n", priv->mac_addr); 3029 } else { 3030 eth_random_addr(priv->mac_addr); 3031 dev_info(&pdev->dev, "Random MACID = %pM\n", priv->mac_addr); 3032 } 3033 3034 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN); 3035 3036 cpsw->slaves = devm_kzalloc(&pdev->dev, 3037 sizeof(struct cpsw_slave) * data->slaves, 3038 GFP_KERNEL); 3039 if (!cpsw->slaves) { 3040 ret = -ENOMEM; 3041 goto clean_dt_ret; 3042 } 3043 for (i = 0; i < data->slaves; i++) 3044 cpsw->slaves[i].slave_num = i; 3045 3046 cpsw->slaves[0].ndev = ndev; 3047 priv->emac_port = 0; 3048 3049 clk = devm_clk_get(&pdev->dev, "fck"); 3050 if (IS_ERR(clk)) { 3051 dev_err(priv->dev, "fck is not found\n"); 3052 ret = -ENODEV; 3053 goto clean_dt_ret; 3054 } 3055 cpsw->bus_freq_mhz = clk_get_rate(clk) / 1000000; 3056 3057 ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 3058 ss_regs = devm_ioremap_resource(&pdev->dev, ss_res); 3059 if (IS_ERR(ss_regs)) { 3060 ret = PTR_ERR(ss_regs); 3061 goto clean_dt_ret; 3062 } 3063 cpsw->regs = ss_regs; 3064 3065 cpsw->version = readl(&cpsw->regs->id_ver); 3066 3067 res = platform_get_resource(pdev, IORESOURCE_MEM, 1); 3068 cpsw->wr_regs = devm_ioremap_resource(&pdev->dev, res); 3069 if (IS_ERR(cpsw->wr_regs)) { 3070 ret = PTR_ERR(cpsw->wr_regs); 3071 goto clean_dt_ret; 3072 } 3073 3074 memset(&dma_params, 0, sizeof(dma_params)); 3075 memset(&ale_params, 0, sizeof(ale_params)); 3076 3077 switch (cpsw->version) { 3078 case CPSW_VERSION_1: 3079 cpsw->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET; 3080 cpts_regs = ss_regs + CPSW1_CPTS_OFFSET; 3081 cpsw->hw_stats = ss_regs + CPSW1_HW_STATS; 3082 dma_params.dmaregs = ss_regs + CPSW1_CPDMA_OFFSET; 3083 dma_params.txhdp = ss_regs + CPSW1_STATERAM_OFFSET; 3084 ale_params.ale_regs = ss_regs + CPSW1_ALE_OFFSET; 3085 slave_offset = CPSW1_SLAVE_OFFSET; 3086 slave_size = CPSW1_SLAVE_SIZE; 3087 sliver_offset = CPSW1_SLIVER_OFFSET; 3088 dma_params.desc_mem_phys = 0; 3089 break; 3090 case CPSW_VERSION_2: 3091 case CPSW_VERSION_3: 3092 case CPSW_VERSION_4: 3093 cpsw->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET; 3094 cpts_regs = ss_regs + CPSW2_CPTS_OFFSET; 3095 cpsw->hw_stats = ss_regs + CPSW2_HW_STATS; 3096 dma_params.dmaregs = ss_regs + CPSW2_CPDMA_OFFSET; 3097 dma_params.txhdp = ss_regs + CPSW2_STATERAM_OFFSET; 3098 ale_params.ale_regs = ss_regs + CPSW2_ALE_OFFSET; 3099 slave_offset = CPSW2_SLAVE_OFFSET; 3100 slave_size = CPSW2_SLAVE_SIZE; 3101 sliver_offset = CPSW2_SLIVER_OFFSET; 3102 dma_params.desc_mem_phys = 3103 (u32 __force) ss_res->start + CPSW2_BD_OFFSET; 3104 break; 3105 default: 3106 dev_err(priv->dev, "unknown version 0x%08x\n", cpsw->version); 3107 ret = -ENODEV; 3108 goto clean_dt_ret; 3109 } 3110 for (i = 0; i < cpsw->data.slaves; i++) { 3111 struct cpsw_slave *slave = &cpsw->slaves[i]; 3112 3113 cpsw_slave_init(slave, cpsw, slave_offset, sliver_offset); 3114 slave_offset += slave_size; 3115 sliver_offset += SLIVER_SIZE; 3116 } 3117 3118 dma_params.dev = &pdev->dev; 3119 dma_params.rxthresh = dma_params.dmaregs + CPDMA_RXTHRESH; 3120 dma_params.rxfree = dma_params.dmaregs + CPDMA_RXFREE; 3121 dma_params.rxhdp = dma_params.txhdp + CPDMA_RXHDP; 3122 dma_params.txcp = dma_params.txhdp + CPDMA_TXCP; 3123 dma_params.rxcp = dma_params.txhdp + CPDMA_RXCP; 3124 3125 dma_params.num_chan = data->channels; 3126 dma_params.has_soft_reset = true; 3127 dma_params.min_packet_size = CPSW_MIN_PACKET_SIZE; 3128 dma_params.desc_mem_size = data->bd_ram_size; 3129 dma_params.desc_align = 16; 3130 dma_params.has_ext_regs = true; 3131 dma_params.desc_hw_addr = dma_params.desc_mem_phys; 3132 dma_params.bus_freq_mhz = cpsw->bus_freq_mhz; 3133 dma_params.descs_pool_size = descs_pool_size; 3134 3135 cpsw->dma = cpdma_ctlr_create(&dma_params); 3136 if (!cpsw->dma) { 3137 dev_err(priv->dev, "error initializing dma\n"); 3138 ret = -ENOMEM; 3139 goto clean_dt_ret; 3140 } 3141 3142 cpsw->txv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_tx_handler, 0); 3143 if (IS_ERR(cpsw->txv[0].ch)) { 3144 dev_err(priv->dev, "error initializing tx dma channel\n"); 3145 ret = PTR_ERR(cpsw->txv[0].ch); 3146 goto clean_dma_ret; 3147 } 3148 3149 cpsw->rxv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_rx_handler, 1); 3150 if (IS_ERR(cpsw->rxv[0].ch)) { 3151 dev_err(priv->dev, "error initializing rx dma channel\n"); 3152 ret = PTR_ERR(cpsw->rxv[0].ch); 3153 goto clean_dma_ret; 3154 } 3155 3156 ale_params.dev = &pdev->dev; 3157 ale_params.ale_ageout = ale_ageout; 3158 ale_params.ale_entries = data->ale_entries; 3159 ale_params.ale_ports = CPSW_ALE_PORTS_NUM; 3160 3161 cpsw->ale = cpsw_ale_create(&ale_params); 3162 if (!cpsw->ale) { 3163 dev_err(priv->dev, "error initializing ale engine\n"); 3164 ret = -ENODEV; 3165 goto clean_dma_ret; 3166 } 3167 3168 cpsw->cpts = cpts_create(cpsw->dev, cpts_regs, cpsw->dev->of_node); 3169 if (IS_ERR(cpsw->cpts)) { 3170 ret = PTR_ERR(cpsw->cpts); 3171 goto clean_dma_ret; 3172 } 3173 3174 ndev->irq = platform_get_irq(pdev, 1); 3175 if (ndev->irq < 0) { 3176 dev_err(priv->dev, "error getting irq resource\n"); 3177 ret = ndev->irq; 3178 goto clean_dma_ret; 3179 } 3180 3181 of_id = of_match_device(cpsw_of_mtable, &pdev->dev); 3182 if (of_id) { 3183 pdev->id_entry = of_id->data; 3184 if (pdev->id_entry->driver_data) 3185 cpsw->quirk_irq = true; 3186 } 3187 3188 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX; 3189 3190 ndev->netdev_ops = &cpsw_netdev_ops; 3191 ndev->ethtool_ops = &cpsw_ethtool_ops; 3192 netif_napi_add(ndev, &cpsw->napi_rx, cpsw_rx_poll, CPSW_POLL_WEIGHT); 3193 netif_tx_napi_add(ndev, &cpsw->napi_tx, cpsw_tx_poll, CPSW_POLL_WEIGHT); 3194 cpsw_split_res(ndev); 3195 3196 /* register the network device */ 3197 SET_NETDEV_DEV(ndev, &pdev->dev); 3198 ret = register_netdev(ndev); 3199 if (ret) { 3200 dev_err(priv->dev, "error registering net device\n"); 3201 ret = -ENODEV; 3202 goto clean_dma_ret; 3203 } 3204 3205 if (cpsw->data.dual_emac) { 3206 ret = cpsw_probe_dual_emac(priv); 3207 if (ret) { 3208 cpsw_err(priv, probe, "error probe slave 2 emac interface\n"); 3209 goto clean_unregister_netdev_ret; 3210 } 3211 } 3212 3213 /* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and 3214 * MISC IRQs which are always kept disabled with this driver so 3215 * we will not request them. 3216 * 3217 * If anyone wants to implement support for those, make sure to 3218 * first request and append them to irqs_table array. 3219 */ 3220 3221 /* RX IRQ */ 3222 irq = platform_get_irq(pdev, 1); 3223 if (irq < 0) { 3224 ret = irq; 3225 goto clean_dma_ret; 3226 } 3227 3228 cpsw->irqs_table[0] = irq; 3229 ret = devm_request_irq(&pdev->dev, irq, cpsw_rx_interrupt, 3230 0, dev_name(&pdev->dev), cpsw); 3231 if (ret < 0) { 3232 dev_err(priv->dev, "error attaching irq (%d)\n", ret); 3233 goto clean_dma_ret; 3234 } 3235 3236 /* TX IRQ */ 3237 irq = platform_get_irq(pdev, 2); 3238 if (irq < 0) { 3239 ret = irq; 3240 goto clean_dma_ret; 3241 } 3242 3243 cpsw->irqs_table[1] = irq; 3244 ret = devm_request_irq(&pdev->dev, irq, cpsw_tx_interrupt, 3245 0, dev_name(&pdev->dev), cpsw); 3246 if (ret < 0) { 3247 dev_err(priv->dev, "error attaching irq (%d)\n", ret); 3248 goto clean_dma_ret; 3249 } 3250 3251 cpsw_notice(priv, probe, 3252 "initialized device (regs %pa, irq %d, pool size %d)\n", 3253 &ss_res->start, ndev->irq, dma_params.descs_pool_size); 3254 3255 pm_runtime_put(&pdev->dev); 3256 3257 return 0; 3258 3259 clean_unregister_netdev_ret: 3260 unregister_netdev(ndev); 3261 clean_dma_ret: 3262 cpdma_ctlr_destroy(cpsw->dma); 3263 clean_dt_ret: 3264 cpsw_remove_dt(pdev); 3265 pm_runtime_put_sync(&pdev->dev); 3266 clean_runtime_disable_ret: 3267 pm_runtime_disable(&pdev->dev); 3268 clean_ndev_ret: 3269 free_netdev(priv->ndev); 3270 return ret; 3271 } 3272 3273 static int cpsw_remove(struct platform_device *pdev) 3274 { 3275 struct net_device *ndev = platform_get_drvdata(pdev); 3276 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 3277 int ret; 3278 3279 ret = pm_runtime_get_sync(&pdev->dev); 3280 if (ret < 0) { 3281 pm_runtime_put_noidle(&pdev->dev); 3282 return ret; 3283 } 3284 3285 if (cpsw->data.dual_emac) 3286 unregister_netdev(cpsw->slaves[1].ndev); 3287 unregister_netdev(ndev); 3288 3289 cpts_release(cpsw->cpts); 3290 cpdma_ctlr_destroy(cpsw->dma); 3291 cpsw_remove_dt(pdev); 3292 pm_runtime_put_sync(&pdev->dev); 3293 pm_runtime_disable(&pdev->dev); 3294 if (cpsw->data.dual_emac) 3295 free_netdev(cpsw->slaves[1].ndev); 3296 free_netdev(ndev); 3297 return 0; 3298 } 3299 3300 #ifdef CONFIG_PM_SLEEP 3301 static int cpsw_suspend(struct device *dev) 3302 { 3303 struct platform_device *pdev = to_platform_device(dev); 3304 struct net_device *ndev = platform_get_drvdata(pdev); 3305 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 3306 3307 if (cpsw->data.dual_emac) { 3308 int i; 3309 3310 for (i = 0; i < cpsw->data.slaves; i++) { 3311 if (netif_running(cpsw->slaves[i].ndev)) 3312 cpsw_ndo_stop(cpsw->slaves[i].ndev); 3313 } 3314 } else { 3315 if (netif_running(ndev)) 3316 cpsw_ndo_stop(ndev); 3317 } 3318 3319 /* Select sleep pin state */ 3320 pinctrl_pm_select_sleep_state(dev); 3321 3322 return 0; 3323 } 3324 3325 static int cpsw_resume(struct device *dev) 3326 { 3327 struct platform_device *pdev = to_platform_device(dev); 3328 struct net_device *ndev = platform_get_drvdata(pdev); 3329 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 3330 3331 /* Select default pin state */ 3332 pinctrl_pm_select_default_state(dev); 3333 3334 /* shut up ASSERT_RTNL() warning in netif_set_real_num_tx/rx_queues */ 3335 rtnl_lock(); 3336 if (cpsw->data.dual_emac) { 3337 int i; 3338 3339 for (i = 0; i < cpsw->data.slaves; i++) { 3340 if (netif_running(cpsw->slaves[i].ndev)) 3341 cpsw_ndo_open(cpsw->slaves[i].ndev); 3342 } 3343 } else { 3344 if (netif_running(ndev)) 3345 cpsw_ndo_open(ndev); 3346 } 3347 rtnl_unlock(); 3348 3349 return 0; 3350 } 3351 #endif 3352 3353 static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume); 3354 3355 static struct platform_driver cpsw_driver = { 3356 .driver = { 3357 .name = "cpsw", 3358 .pm = &cpsw_pm_ops, 3359 .of_match_table = cpsw_of_mtable, 3360 }, 3361 .probe = cpsw_probe, 3362 .remove = cpsw_remove, 3363 }; 3364 3365 module_platform_driver(cpsw_driver); 3366 3367 MODULE_LICENSE("GPL"); 3368 MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>"); 3369 MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>"); 3370 MODULE_DESCRIPTION("TI CPSW Ethernet driver"); 3371