1 /* 2 * Texas Instruments Ethernet Switch Driver 3 * 4 * Copyright (C) 2012 Texas Instruments 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License as 8 * published by the Free Software Foundation version 2. 9 * 10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any 11 * kind, whether express or implied; without even the implied warranty 12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/io.h> 18 #include <linux/clk.h> 19 #include <linux/timer.h> 20 #include <linux/module.h> 21 #include <linux/platform_device.h> 22 #include <linux/irqreturn.h> 23 #include <linux/interrupt.h> 24 #include <linux/if_ether.h> 25 #include <linux/etherdevice.h> 26 #include <linux/netdevice.h> 27 #include <linux/net_tstamp.h> 28 #include <linux/phy.h> 29 #include <linux/workqueue.h> 30 #include <linux/delay.h> 31 #include <linux/pm_runtime.h> 32 #include <linux/of.h> 33 #include <linux/of_net.h> 34 #include <linux/of_device.h> 35 #include <linux/if_vlan.h> 36 37 #include <linux/pinctrl/consumer.h> 38 39 #include "cpsw.h" 40 #include "cpsw_ale.h" 41 #include "cpts.h" 42 #include "davinci_cpdma.h" 43 44 #define CPSW_DEBUG (NETIF_MSG_HW | NETIF_MSG_WOL | \ 45 NETIF_MSG_DRV | NETIF_MSG_LINK | \ 46 NETIF_MSG_IFUP | NETIF_MSG_INTR | \ 47 NETIF_MSG_PROBE | NETIF_MSG_TIMER | \ 48 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | \ 49 NETIF_MSG_TX_ERR | NETIF_MSG_TX_DONE | \ 50 NETIF_MSG_PKTDATA | NETIF_MSG_TX_QUEUED | \ 51 NETIF_MSG_RX_STATUS) 52 53 #define cpsw_info(priv, type, format, ...) \ 54 do { \ 55 if (netif_msg_##type(priv) && net_ratelimit()) \ 56 dev_info(priv->dev, format, ## __VA_ARGS__); \ 57 } while (0) 58 59 #define cpsw_err(priv, type, format, ...) \ 60 do { \ 61 if (netif_msg_##type(priv) && net_ratelimit()) \ 62 dev_err(priv->dev, format, ## __VA_ARGS__); \ 63 } while (0) 64 65 #define cpsw_dbg(priv, type, format, ...) \ 66 do { \ 67 if (netif_msg_##type(priv) && net_ratelimit()) \ 68 dev_dbg(priv->dev, format, ## __VA_ARGS__); \ 69 } while (0) 70 71 #define cpsw_notice(priv, type, format, ...) \ 72 do { \ 73 if (netif_msg_##type(priv) && net_ratelimit()) \ 74 dev_notice(priv->dev, format, ## __VA_ARGS__); \ 75 } while (0) 76 77 #define ALE_ALL_PORTS 0x7 78 79 #define CPSW_MAJOR_VERSION(reg) (reg >> 8 & 0x7) 80 #define CPSW_MINOR_VERSION(reg) (reg & 0xff) 81 #define CPSW_RTL_VERSION(reg) ((reg >> 11) & 0x1f) 82 83 #define CPSW_VERSION_1 0x19010a 84 #define CPSW_VERSION_2 0x19010c 85 #define CPSW_VERSION_3 0x19010f 86 #define CPSW_VERSION_4 0x190112 87 88 #define HOST_PORT_NUM 0 89 #define SLIVER_SIZE 0x40 90 91 #define CPSW1_HOST_PORT_OFFSET 0x028 92 #define CPSW1_SLAVE_OFFSET 0x050 93 #define CPSW1_SLAVE_SIZE 0x040 94 #define CPSW1_CPDMA_OFFSET 0x100 95 #define CPSW1_STATERAM_OFFSET 0x200 96 #define CPSW1_HW_STATS 0x400 97 #define CPSW1_CPTS_OFFSET 0x500 98 #define CPSW1_ALE_OFFSET 0x600 99 #define CPSW1_SLIVER_OFFSET 0x700 100 101 #define CPSW2_HOST_PORT_OFFSET 0x108 102 #define CPSW2_SLAVE_OFFSET 0x200 103 #define CPSW2_SLAVE_SIZE 0x100 104 #define CPSW2_CPDMA_OFFSET 0x800 105 #define CPSW2_HW_STATS 0x900 106 #define CPSW2_STATERAM_OFFSET 0xa00 107 #define CPSW2_CPTS_OFFSET 0xc00 108 #define CPSW2_ALE_OFFSET 0xd00 109 #define CPSW2_SLIVER_OFFSET 0xd80 110 #define CPSW2_BD_OFFSET 0x2000 111 112 #define CPDMA_RXTHRESH 0x0c0 113 #define CPDMA_RXFREE 0x0e0 114 #define CPDMA_TXHDP 0x00 115 #define CPDMA_RXHDP 0x20 116 #define CPDMA_TXCP 0x40 117 #define CPDMA_RXCP 0x60 118 119 #define CPSW_POLL_WEIGHT 64 120 #define CPSW_MIN_PACKET_SIZE 60 121 #define CPSW_MAX_PACKET_SIZE (1500 + 14 + 4 + 4) 122 123 #define RX_PRIORITY_MAPPING 0x76543210 124 #define TX_PRIORITY_MAPPING 0x33221100 125 #define CPDMA_TX_PRIORITY_MAP 0x76543210 126 127 #define CPSW_VLAN_AWARE BIT(1) 128 #define CPSW_ALE_VLAN_AWARE 1 129 130 #define CPSW_FIFO_NORMAL_MODE (0 << 16) 131 #define CPSW_FIFO_DUAL_MAC_MODE (1 << 16) 132 #define CPSW_FIFO_RATE_LIMIT_MODE (2 << 16) 133 134 #define CPSW_INTPACEEN (0x3f << 16) 135 #define CPSW_INTPRESCALE_MASK (0x7FF << 0) 136 #define CPSW_CMINTMAX_CNT 63 137 #define CPSW_CMINTMIN_CNT 2 138 #define CPSW_CMINTMAX_INTVL (1000 / CPSW_CMINTMIN_CNT) 139 #define CPSW_CMINTMIN_INTVL ((1000 / CPSW_CMINTMAX_CNT) + 1) 140 141 #define cpsw_slave_index(priv) \ 142 ((priv->data.dual_emac) ? priv->emac_port : \ 143 priv->data.active_slave) 144 145 static int debug_level; 146 module_param(debug_level, int, 0); 147 MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)"); 148 149 static int ale_ageout = 10; 150 module_param(ale_ageout, int, 0); 151 MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)"); 152 153 static int rx_packet_max = CPSW_MAX_PACKET_SIZE; 154 module_param(rx_packet_max, int, 0); 155 MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)"); 156 157 struct cpsw_wr_regs { 158 u32 id_ver; 159 u32 soft_reset; 160 u32 control; 161 u32 int_control; 162 u32 rx_thresh_en; 163 u32 rx_en; 164 u32 tx_en; 165 u32 misc_en; 166 u32 mem_allign1[8]; 167 u32 rx_thresh_stat; 168 u32 rx_stat; 169 u32 tx_stat; 170 u32 misc_stat; 171 u32 mem_allign2[8]; 172 u32 rx_imax; 173 u32 tx_imax; 174 175 }; 176 177 struct cpsw_ss_regs { 178 u32 id_ver; 179 u32 control; 180 u32 soft_reset; 181 u32 stat_port_en; 182 u32 ptype; 183 u32 soft_idle; 184 u32 thru_rate; 185 u32 gap_thresh; 186 u32 tx_start_wds; 187 u32 flow_control; 188 u32 vlan_ltype; 189 u32 ts_ltype; 190 u32 dlr_ltype; 191 }; 192 193 /* CPSW_PORT_V1 */ 194 #define CPSW1_MAX_BLKS 0x00 /* Maximum FIFO Blocks */ 195 #define CPSW1_BLK_CNT 0x04 /* FIFO Block Usage Count (Read Only) */ 196 #define CPSW1_TX_IN_CTL 0x08 /* Transmit FIFO Control */ 197 #define CPSW1_PORT_VLAN 0x0c /* VLAN Register */ 198 #define CPSW1_TX_PRI_MAP 0x10 /* Tx Header Priority to Switch Pri Mapping */ 199 #define CPSW1_TS_CTL 0x14 /* Time Sync Control */ 200 #define CPSW1_TS_SEQ_LTYPE 0x18 /* Time Sync Sequence ID Offset and Msg Type */ 201 #define CPSW1_TS_VLAN 0x1c /* Time Sync VLAN1 and VLAN2 */ 202 203 /* CPSW_PORT_V2 */ 204 #define CPSW2_CONTROL 0x00 /* Control Register */ 205 #define CPSW2_MAX_BLKS 0x08 /* Maximum FIFO Blocks */ 206 #define CPSW2_BLK_CNT 0x0c /* FIFO Block Usage Count (Read Only) */ 207 #define CPSW2_TX_IN_CTL 0x10 /* Transmit FIFO Control */ 208 #define CPSW2_PORT_VLAN 0x14 /* VLAN Register */ 209 #define CPSW2_TX_PRI_MAP 0x18 /* Tx Header Priority to Switch Pri Mapping */ 210 #define CPSW2_TS_SEQ_MTYPE 0x1c /* Time Sync Sequence ID Offset and Msg Type */ 211 212 /* CPSW_PORT_V1 and V2 */ 213 #define SA_LO 0x20 /* CPGMAC_SL Source Address Low */ 214 #define SA_HI 0x24 /* CPGMAC_SL Source Address High */ 215 #define SEND_PERCENT 0x28 /* Transmit Queue Send Percentages */ 216 217 /* CPSW_PORT_V2 only */ 218 #define RX_DSCP_PRI_MAP0 0x30 /* Rx DSCP Priority to Rx Packet Mapping */ 219 #define RX_DSCP_PRI_MAP1 0x34 /* Rx DSCP Priority to Rx Packet Mapping */ 220 #define RX_DSCP_PRI_MAP2 0x38 /* Rx DSCP Priority to Rx Packet Mapping */ 221 #define RX_DSCP_PRI_MAP3 0x3c /* Rx DSCP Priority to Rx Packet Mapping */ 222 #define RX_DSCP_PRI_MAP4 0x40 /* Rx DSCP Priority to Rx Packet Mapping */ 223 #define RX_DSCP_PRI_MAP5 0x44 /* Rx DSCP Priority to Rx Packet Mapping */ 224 #define RX_DSCP_PRI_MAP6 0x48 /* Rx DSCP Priority to Rx Packet Mapping */ 225 #define RX_DSCP_PRI_MAP7 0x4c /* Rx DSCP Priority to Rx Packet Mapping */ 226 227 /* Bit definitions for the CPSW2_CONTROL register */ 228 #define PASS_PRI_TAGGED (1<<24) /* Pass Priority Tagged */ 229 #define VLAN_LTYPE2_EN (1<<21) /* VLAN LTYPE 2 enable */ 230 #define VLAN_LTYPE1_EN (1<<20) /* VLAN LTYPE 1 enable */ 231 #define DSCP_PRI_EN (1<<16) /* DSCP Priority Enable */ 232 #define TS_320 (1<<14) /* Time Sync Dest Port 320 enable */ 233 #define TS_319 (1<<13) /* Time Sync Dest Port 319 enable */ 234 #define TS_132 (1<<12) /* Time Sync Dest IP Addr 132 enable */ 235 #define TS_131 (1<<11) /* Time Sync Dest IP Addr 131 enable */ 236 #define TS_130 (1<<10) /* Time Sync Dest IP Addr 130 enable */ 237 #define TS_129 (1<<9) /* Time Sync Dest IP Addr 129 enable */ 238 #define TS_TTL_NONZERO (1<<8) /* Time Sync Time To Live Non-zero enable */ 239 #define TS_ANNEX_F_EN (1<<6) /* Time Sync Annex F enable */ 240 #define TS_ANNEX_D_EN (1<<4) /* Time Sync Annex D enable */ 241 #define TS_LTYPE2_EN (1<<3) /* Time Sync LTYPE 2 enable */ 242 #define TS_LTYPE1_EN (1<<2) /* Time Sync LTYPE 1 enable */ 243 #define TS_TX_EN (1<<1) /* Time Sync Transmit Enable */ 244 #define TS_RX_EN (1<<0) /* Time Sync Receive Enable */ 245 246 #define CTRL_V2_TS_BITS \ 247 (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\ 248 TS_TTL_NONZERO | TS_ANNEX_D_EN | TS_LTYPE1_EN) 249 250 #define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN) 251 #define CTRL_V2_TX_TS_BITS (CTRL_V2_TS_BITS | TS_TX_EN) 252 #define CTRL_V2_RX_TS_BITS (CTRL_V2_TS_BITS | TS_RX_EN) 253 254 255 #define CTRL_V3_TS_BITS \ 256 (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\ 257 TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\ 258 TS_LTYPE1_EN) 259 260 #define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN) 261 #define CTRL_V3_TX_TS_BITS (CTRL_V3_TS_BITS | TS_TX_EN) 262 #define CTRL_V3_RX_TS_BITS (CTRL_V3_TS_BITS | TS_RX_EN) 263 264 /* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */ 265 #define TS_SEQ_ID_OFFSET_SHIFT (16) /* Time Sync Sequence ID Offset */ 266 #define TS_SEQ_ID_OFFSET_MASK (0x3f) 267 #define TS_MSG_TYPE_EN_SHIFT (0) /* Time Sync Message Type Enable */ 268 #define TS_MSG_TYPE_EN_MASK (0xffff) 269 270 /* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */ 271 #define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3)) 272 273 /* Bit definitions for the CPSW1_TS_CTL register */ 274 #define CPSW_V1_TS_RX_EN BIT(0) 275 #define CPSW_V1_TS_TX_EN BIT(4) 276 #define CPSW_V1_MSG_TYPE_OFS 16 277 278 /* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */ 279 #define CPSW_V1_SEQ_ID_OFS_SHIFT 16 280 281 struct cpsw_host_regs { 282 u32 max_blks; 283 u32 blk_cnt; 284 u32 tx_in_ctl; 285 u32 port_vlan; 286 u32 tx_pri_map; 287 u32 cpdma_tx_pri_map; 288 u32 cpdma_rx_chan_map; 289 }; 290 291 struct cpsw_sliver_regs { 292 u32 id_ver; 293 u32 mac_control; 294 u32 mac_status; 295 u32 soft_reset; 296 u32 rx_maxlen; 297 u32 __reserved_0; 298 u32 rx_pause; 299 u32 tx_pause; 300 u32 __reserved_1; 301 u32 rx_pri_map; 302 }; 303 304 struct cpsw_hw_stats { 305 u32 rxgoodframes; 306 u32 rxbroadcastframes; 307 u32 rxmulticastframes; 308 u32 rxpauseframes; 309 u32 rxcrcerrors; 310 u32 rxaligncodeerrors; 311 u32 rxoversizedframes; 312 u32 rxjabberframes; 313 u32 rxundersizedframes; 314 u32 rxfragments; 315 u32 __pad_0[2]; 316 u32 rxoctets; 317 u32 txgoodframes; 318 u32 txbroadcastframes; 319 u32 txmulticastframes; 320 u32 txpauseframes; 321 u32 txdeferredframes; 322 u32 txcollisionframes; 323 u32 txsinglecollframes; 324 u32 txmultcollframes; 325 u32 txexcessivecollisions; 326 u32 txlatecollisions; 327 u32 txunderrun; 328 u32 txcarriersenseerrors; 329 u32 txoctets; 330 u32 octetframes64; 331 u32 octetframes65t127; 332 u32 octetframes128t255; 333 u32 octetframes256t511; 334 u32 octetframes512t1023; 335 u32 octetframes1024tup; 336 u32 netoctets; 337 u32 rxsofoverruns; 338 u32 rxmofoverruns; 339 u32 rxdmaoverruns; 340 }; 341 342 struct cpsw_slave { 343 void __iomem *regs; 344 struct cpsw_sliver_regs __iomem *sliver; 345 int slave_num; 346 u32 mac_control; 347 struct cpsw_slave_data *data; 348 struct phy_device *phy; 349 struct net_device *ndev; 350 u32 port_vlan; 351 u32 open_stat; 352 }; 353 354 static inline u32 slave_read(struct cpsw_slave *slave, u32 offset) 355 { 356 return __raw_readl(slave->regs + offset); 357 } 358 359 static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset) 360 { 361 __raw_writel(val, slave->regs + offset); 362 } 363 364 struct cpsw_priv { 365 spinlock_t lock; 366 struct platform_device *pdev; 367 struct net_device *ndev; 368 struct napi_struct napi_rx; 369 struct napi_struct napi_tx; 370 struct device *dev; 371 struct cpsw_platform_data data; 372 struct cpsw_ss_regs __iomem *regs; 373 struct cpsw_wr_regs __iomem *wr_regs; 374 u8 __iomem *hw_stats; 375 struct cpsw_host_regs __iomem *host_port_regs; 376 u32 msg_enable; 377 u32 version; 378 u32 coal_intvl; 379 u32 bus_freq_mhz; 380 int rx_packet_max; 381 int host_port; 382 struct clk *clk; 383 u8 mac_addr[ETH_ALEN]; 384 struct cpsw_slave *slaves; 385 struct cpdma_ctlr *dma; 386 struct cpdma_chan *txch, *rxch; 387 struct cpsw_ale *ale; 388 bool rx_pause; 389 bool tx_pause; 390 /* snapshot of IRQ numbers */ 391 u32 irqs_table[4]; 392 u32 num_irqs; 393 struct cpts *cpts; 394 u32 emac_port; 395 }; 396 397 struct cpsw_stats { 398 char stat_string[ETH_GSTRING_LEN]; 399 int type; 400 int sizeof_stat; 401 int stat_offset; 402 }; 403 404 enum { 405 CPSW_STATS, 406 CPDMA_RX_STATS, 407 CPDMA_TX_STATS, 408 }; 409 410 #define CPSW_STAT(m) CPSW_STATS, \ 411 sizeof(((struct cpsw_hw_stats *)0)->m), \ 412 offsetof(struct cpsw_hw_stats, m) 413 #define CPDMA_RX_STAT(m) CPDMA_RX_STATS, \ 414 sizeof(((struct cpdma_chan_stats *)0)->m), \ 415 offsetof(struct cpdma_chan_stats, m) 416 #define CPDMA_TX_STAT(m) CPDMA_TX_STATS, \ 417 sizeof(((struct cpdma_chan_stats *)0)->m), \ 418 offsetof(struct cpdma_chan_stats, m) 419 420 static const struct cpsw_stats cpsw_gstrings_stats[] = { 421 { "Good Rx Frames", CPSW_STAT(rxgoodframes) }, 422 { "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) }, 423 { "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) }, 424 { "Pause Rx Frames", CPSW_STAT(rxpauseframes) }, 425 { "Rx CRC Errors", CPSW_STAT(rxcrcerrors) }, 426 { "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) }, 427 { "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) }, 428 { "Rx Jabbers", CPSW_STAT(rxjabberframes) }, 429 { "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) }, 430 { "Rx Fragments", CPSW_STAT(rxfragments) }, 431 { "Rx Octets", CPSW_STAT(rxoctets) }, 432 { "Good Tx Frames", CPSW_STAT(txgoodframes) }, 433 { "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) }, 434 { "Multicast Tx Frames", CPSW_STAT(txmulticastframes) }, 435 { "Pause Tx Frames", CPSW_STAT(txpauseframes) }, 436 { "Deferred Tx Frames", CPSW_STAT(txdeferredframes) }, 437 { "Collisions", CPSW_STAT(txcollisionframes) }, 438 { "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) }, 439 { "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) }, 440 { "Excessive Collisions", CPSW_STAT(txexcessivecollisions) }, 441 { "Late Collisions", CPSW_STAT(txlatecollisions) }, 442 { "Tx Underrun", CPSW_STAT(txunderrun) }, 443 { "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) }, 444 { "Tx Octets", CPSW_STAT(txoctets) }, 445 { "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) }, 446 { "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) }, 447 { "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) }, 448 { "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) }, 449 { "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) }, 450 { "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) }, 451 { "Net Octets", CPSW_STAT(netoctets) }, 452 { "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) }, 453 { "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) }, 454 { "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) }, 455 { "Rx DMA chan: head_enqueue", CPDMA_RX_STAT(head_enqueue) }, 456 { "Rx DMA chan: tail_enqueue", CPDMA_RX_STAT(tail_enqueue) }, 457 { "Rx DMA chan: pad_enqueue", CPDMA_RX_STAT(pad_enqueue) }, 458 { "Rx DMA chan: misqueued", CPDMA_RX_STAT(misqueued) }, 459 { "Rx DMA chan: desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) }, 460 { "Rx DMA chan: pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) }, 461 { "Rx DMA chan: runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) }, 462 { "Rx DMA chan: runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) }, 463 { "Rx DMA chan: empty_dequeue", CPDMA_RX_STAT(empty_dequeue) }, 464 { "Rx DMA chan: busy_dequeue", CPDMA_RX_STAT(busy_dequeue) }, 465 { "Rx DMA chan: good_dequeue", CPDMA_RX_STAT(good_dequeue) }, 466 { "Rx DMA chan: requeue", CPDMA_RX_STAT(requeue) }, 467 { "Rx DMA chan: teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) }, 468 { "Tx DMA chan: head_enqueue", CPDMA_TX_STAT(head_enqueue) }, 469 { "Tx DMA chan: tail_enqueue", CPDMA_TX_STAT(tail_enqueue) }, 470 { "Tx DMA chan: pad_enqueue", CPDMA_TX_STAT(pad_enqueue) }, 471 { "Tx DMA chan: misqueued", CPDMA_TX_STAT(misqueued) }, 472 { "Tx DMA chan: desc_alloc_fail", CPDMA_TX_STAT(desc_alloc_fail) }, 473 { "Tx DMA chan: pad_alloc_fail", CPDMA_TX_STAT(pad_alloc_fail) }, 474 { "Tx DMA chan: runt_receive_buf", CPDMA_TX_STAT(runt_receive_buff) }, 475 { "Tx DMA chan: runt_transmit_buf", CPDMA_TX_STAT(runt_transmit_buff) }, 476 { "Tx DMA chan: empty_dequeue", CPDMA_TX_STAT(empty_dequeue) }, 477 { "Tx DMA chan: busy_dequeue", CPDMA_TX_STAT(busy_dequeue) }, 478 { "Tx DMA chan: good_dequeue", CPDMA_TX_STAT(good_dequeue) }, 479 { "Tx DMA chan: requeue", CPDMA_TX_STAT(requeue) }, 480 { "Tx DMA chan: teardown_dequeue", CPDMA_TX_STAT(teardown_dequeue) }, 481 }; 482 483 #define CPSW_STATS_LEN ARRAY_SIZE(cpsw_gstrings_stats) 484 485 #define napi_to_priv(napi) container_of(napi, struct cpsw_priv, napi) 486 #define for_each_slave(priv, func, arg...) \ 487 do { \ 488 struct cpsw_slave *slave; \ 489 int n; \ 490 if (priv->data.dual_emac) \ 491 (func)((priv)->slaves + priv->emac_port, ##arg);\ 492 else \ 493 for (n = (priv)->data.slaves, \ 494 slave = (priv)->slaves; \ 495 n; n--) \ 496 (func)(slave++, ##arg); \ 497 } while (0) 498 #define cpsw_get_slave_ndev(priv, __slave_no__) \ 499 ((__slave_no__ < priv->data.slaves) ? \ 500 priv->slaves[__slave_no__].ndev : NULL) 501 #define cpsw_get_slave_priv(priv, __slave_no__) \ 502 (((__slave_no__ < priv->data.slaves) && \ 503 (priv->slaves[__slave_no__].ndev)) ? \ 504 netdev_priv(priv->slaves[__slave_no__].ndev) : NULL) \ 505 506 #define cpsw_dual_emac_src_port_detect(status, priv, ndev, skb) \ 507 do { \ 508 if (!priv->data.dual_emac) \ 509 break; \ 510 if (CPDMA_RX_SOURCE_PORT(status) == 1) { \ 511 ndev = cpsw_get_slave_ndev(priv, 0); \ 512 priv = netdev_priv(ndev); \ 513 skb->dev = ndev; \ 514 } else if (CPDMA_RX_SOURCE_PORT(status) == 2) { \ 515 ndev = cpsw_get_slave_ndev(priv, 1); \ 516 priv = netdev_priv(ndev); \ 517 skb->dev = ndev; \ 518 } \ 519 } while (0) 520 #define cpsw_add_mcast(priv, addr) \ 521 do { \ 522 if (priv->data.dual_emac) { \ 523 struct cpsw_slave *slave = priv->slaves + \ 524 priv->emac_port; \ 525 int slave_port = cpsw_get_slave_port(priv, \ 526 slave->slave_num); \ 527 cpsw_ale_add_mcast(priv->ale, addr, \ 528 1 << slave_port | 1 << priv->host_port, \ 529 ALE_VLAN, slave->port_vlan, 0); \ 530 } else { \ 531 cpsw_ale_add_mcast(priv->ale, addr, \ 532 ALE_ALL_PORTS << priv->host_port, \ 533 0, 0, 0); \ 534 } \ 535 } while (0) 536 537 static inline int cpsw_get_slave_port(struct cpsw_priv *priv, u32 slave_num) 538 { 539 if (priv->host_port == 0) 540 return slave_num + 1; 541 else 542 return slave_num; 543 } 544 545 static void cpsw_set_promiscious(struct net_device *ndev, bool enable) 546 { 547 struct cpsw_priv *priv = netdev_priv(ndev); 548 struct cpsw_ale *ale = priv->ale; 549 int i; 550 551 if (priv->data.dual_emac) { 552 bool flag = false; 553 554 /* Enabling promiscuous mode for one interface will be 555 * common for both the interface as the interface shares 556 * the same hardware resource. 557 */ 558 for (i = 0; i < priv->data.slaves; i++) 559 if (priv->slaves[i].ndev->flags & IFF_PROMISC) 560 flag = true; 561 562 if (!enable && flag) { 563 enable = true; 564 dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n"); 565 } 566 567 if (enable) { 568 /* Enable Bypass */ 569 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1); 570 571 dev_dbg(&ndev->dev, "promiscuity enabled\n"); 572 } else { 573 /* Disable Bypass */ 574 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0); 575 dev_dbg(&ndev->dev, "promiscuity disabled\n"); 576 } 577 } else { 578 if (enable) { 579 unsigned long timeout = jiffies + HZ; 580 581 /* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */ 582 for (i = 0; i <= priv->data.slaves; i++) { 583 cpsw_ale_control_set(ale, i, 584 ALE_PORT_NOLEARN, 1); 585 cpsw_ale_control_set(ale, i, 586 ALE_PORT_NO_SA_UPDATE, 1); 587 } 588 589 /* Clear All Untouched entries */ 590 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1); 591 do { 592 cpu_relax(); 593 if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT)) 594 break; 595 } while (time_after(timeout, jiffies)); 596 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1); 597 598 /* Clear all mcast from ALE */ 599 cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS << 600 priv->host_port, -1); 601 602 /* Flood All Unicast Packets to Host port */ 603 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1); 604 dev_dbg(&ndev->dev, "promiscuity enabled\n"); 605 } else { 606 /* Don't Flood All Unicast Packets to Host port */ 607 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0); 608 609 /* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */ 610 for (i = 0; i <= priv->data.slaves; i++) { 611 cpsw_ale_control_set(ale, i, 612 ALE_PORT_NOLEARN, 0); 613 cpsw_ale_control_set(ale, i, 614 ALE_PORT_NO_SA_UPDATE, 0); 615 } 616 dev_dbg(&ndev->dev, "promiscuity disabled\n"); 617 } 618 } 619 } 620 621 static void cpsw_ndo_set_rx_mode(struct net_device *ndev) 622 { 623 struct cpsw_priv *priv = netdev_priv(ndev); 624 int vid; 625 626 if (priv->data.dual_emac) 627 vid = priv->slaves[priv->emac_port].port_vlan; 628 else 629 vid = priv->data.default_vlan; 630 631 if (ndev->flags & IFF_PROMISC) { 632 /* Enable promiscuous mode */ 633 cpsw_set_promiscious(ndev, true); 634 cpsw_ale_set_allmulti(priv->ale, IFF_ALLMULTI); 635 return; 636 } else { 637 /* Disable promiscuous mode */ 638 cpsw_set_promiscious(ndev, false); 639 } 640 641 /* Restore allmulti on vlans if necessary */ 642 cpsw_ale_set_allmulti(priv->ale, priv->ndev->flags & IFF_ALLMULTI); 643 644 /* Clear all mcast from ALE */ 645 cpsw_ale_flush_multicast(priv->ale, ALE_ALL_PORTS << priv->host_port, 646 vid); 647 648 if (!netdev_mc_empty(ndev)) { 649 struct netdev_hw_addr *ha; 650 651 /* program multicast address list into ALE register */ 652 netdev_for_each_mc_addr(ha, ndev) { 653 cpsw_add_mcast(priv, (u8 *)ha->addr); 654 } 655 } 656 } 657 658 static void cpsw_intr_enable(struct cpsw_priv *priv) 659 { 660 __raw_writel(0xFF, &priv->wr_regs->tx_en); 661 __raw_writel(0xFF, &priv->wr_regs->rx_en); 662 663 cpdma_ctlr_int_ctrl(priv->dma, true); 664 return; 665 } 666 667 static void cpsw_intr_disable(struct cpsw_priv *priv) 668 { 669 __raw_writel(0, &priv->wr_regs->tx_en); 670 __raw_writel(0, &priv->wr_regs->rx_en); 671 672 cpdma_ctlr_int_ctrl(priv->dma, false); 673 return; 674 } 675 676 static void cpsw_tx_handler(void *token, int len, int status) 677 { 678 struct sk_buff *skb = token; 679 struct net_device *ndev = skb->dev; 680 struct cpsw_priv *priv = netdev_priv(ndev); 681 682 /* Check whether the queue is stopped due to stalled tx dma, if the 683 * queue is stopped then start the queue as we have free desc for tx 684 */ 685 if (unlikely(netif_queue_stopped(ndev))) 686 netif_wake_queue(ndev); 687 cpts_tx_timestamp(priv->cpts, skb); 688 ndev->stats.tx_packets++; 689 ndev->stats.tx_bytes += len; 690 dev_kfree_skb_any(skb); 691 } 692 693 static void cpsw_rx_handler(void *token, int len, int status) 694 { 695 struct sk_buff *skb = token; 696 struct sk_buff *new_skb; 697 struct net_device *ndev = skb->dev; 698 struct cpsw_priv *priv = netdev_priv(ndev); 699 int ret = 0; 700 701 cpsw_dual_emac_src_port_detect(status, priv, ndev, skb); 702 703 if (unlikely(status < 0) || unlikely(!netif_running(ndev))) { 704 bool ndev_status = false; 705 struct cpsw_slave *slave = priv->slaves; 706 int n; 707 708 if (priv->data.dual_emac) { 709 /* In dual emac mode check for all interfaces */ 710 for (n = priv->data.slaves; n; n--, slave++) 711 if (netif_running(slave->ndev)) 712 ndev_status = true; 713 } 714 715 if (ndev_status && (status >= 0)) { 716 /* The packet received is for the interface which 717 * is already down and the other interface is up 718 * and running, instead of freeing which results 719 * in reducing of the number of rx descriptor in 720 * DMA engine, requeue skb back to cpdma. 721 */ 722 new_skb = skb; 723 goto requeue; 724 } 725 726 /* the interface is going down, skbs are purged */ 727 dev_kfree_skb_any(skb); 728 return; 729 } 730 731 new_skb = netdev_alloc_skb_ip_align(ndev, priv->rx_packet_max); 732 if (new_skb) { 733 skb_put(skb, len); 734 cpts_rx_timestamp(priv->cpts, skb); 735 skb->protocol = eth_type_trans(skb, ndev); 736 netif_receive_skb(skb); 737 ndev->stats.rx_bytes += len; 738 ndev->stats.rx_packets++; 739 } else { 740 ndev->stats.rx_dropped++; 741 new_skb = skb; 742 } 743 744 requeue: 745 ret = cpdma_chan_submit(priv->rxch, new_skb, new_skb->data, 746 skb_tailroom(new_skb), 0); 747 if (WARN_ON(ret < 0)) 748 dev_kfree_skb_any(new_skb); 749 } 750 751 static irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id) 752 { 753 struct cpsw_priv *priv = dev_id; 754 755 writel(0, &priv->wr_regs->tx_en); 756 cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_TX); 757 758 napi_schedule(&priv->napi_tx); 759 return IRQ_HANDLED; 760 } 761 762 static irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id) 763 { 764 struct cpsw_priv *priv = dev_id; 765 766 cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_RX); 767 writel(0, &priv->wr_regs->rx_en); 768 769 napi_schedule(&priv->napi_rx); 770 return IRQ_HANDLED; 771 } 772 773 static int cpsw_tx_poll(struct napi_struct *napi_tx, int budget) 774 { 775 struct cpsw_priv *priv = napi_to_priv(napi_tx); 776 int num_tx; 777 778 num_tx = cpdma_chan_process(priv->txch, budget); 779 if (num_tx < budget) { 780 napi_complete(napi_tx); 781 writel(0xff, &priv->wr_regs->tx_en); 782 } 783 784 if (num_tx) 785 cpsw_dbg(priv, intr, "poll %d tx pkts\n", num_tx); 786 787 return num_tx; 788 } 789 790 static int cpsw_rx_poll(struct napi_struct *napi_rx, int budget) 791 { 792 struct cpsw_priv *priv = napi_to_priv(napi_rx); 793 int num_rx; 794 795 num_rx = cpdma_chan_process(priv->rxch, budget); 796 if (num_rx < budget) { 797 napi_complete(napi_rx); 798 writel(0xff, &priv->wr_regs->rx_en); 799 } 800 801 if (num_rx) 802 cpsw_dbg(priv, intr, "poll %d rx pkts\n", num_rx); 803 804 return num_rx; 805 } 806 807 static inline void soft_reset(const char *module, void __iomem *reg) 808 { 809 unsigned long timeout = jiffies + HZ; 810 811 __raw_writel(1, reg); 812 do { 813 cpu_relax(); 814 } while ((__raw_readl(reg) & 1) && time_after(timeout, jiffies)); 815 816 WARN(__raw_readl(reg) & 1, "failed to soft-reset %s\n", module); 817 } 818 819 #define mac_hi(mac) (((mac)[0] << 0) | ((mac)[1] << 8) | \ 820 ((mac)[2] << 16) | ((mac)[3] << 24)) 821 #define mac_lo(mac) (((mac)[4] << 0) | ((mac)[5] << 8)) 822 823 static void cpsw_set_slave_mac(struct cpsw_slave *slave, 824 struct cpsw_priv *priv) 825 { 826 slave_write(slave, mac_hi(priv->mac_addr), SA_HI); 827 slave_write(slave, mac_lo(priv->mac_addr), SA_LO); 828 } 829 830 static void _cpsw_adjust_link(struct cpsw_slave *slave, 831 struct cpsw_priv *priv, bool *link) 832 { 833 struct phy_device *phy = slave->phy; 834 u32 mac_control = 0; 835 u32 slave_port; 836 837 if (!phy) 838 return; 839 840 slave_port = cpsw_get_slave_port(priv, slave->slave_num); 841 842 if (phy->link) { 843 mac_control = priv->data.mac_control; 844 845 /* enable forwarding */ 846 cpsw_ale_control_set(priv->ale, slave_port, 847 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD); 848 849 if (phy->speed == 1000) 850 mac_control |= BIT(7); /* GIGABITEN */ 851 if (phy->duplex) 852 mac_control |= BIT(0); /* FULLDUPLEXEN */ 853 854 /* set speed_in input in case RMII mode is used in 100Mbps */ 855 if (phy->speed == 100) 856 mac_control |= BIT(15); 857 else if (phy->speed == 10) 858 mac_control |= BIT(18); /* In Band mode */ 859 860 if (priv->rx_pause) 861 mac_control |= BIT(3); 862 863 if (priv->tx_pause) 864 mac_control |= BIT(4); 865 866 *link = true; 867 } else { 868 mac_control = 0; 869 /* disable forwarding */ 870 cpsw_ale_control_set(priv->ale, slave_port, 871 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE); 872 } 873 874 if (mac_control != slave->mac_control) { 875 phy_print_status(phy); 876 __raw_writel(mac_control, &slave->sliver->mac_control); 877 } 878 879 slave->mac_control = mac_control; 880 } 881 882 static void cpsw_adjust_link(struct net_device *ndev) 883 { 884 struct cpsw_priv *priv = netdev_priv(ndev); 885 bool link = false; 886 887 for_each_slave(priv, _cpsw_adjust_link, priv, &link); 888 889 if (link) { 890 netif_carrier_on(ndev); 891 if (netif_running(ndev)) 892 netif_wake_queue(ndev); 893 } else { 894 netif_carrier_off(ndev); 895 netif_stop_queue(ndev); 896 } 897 } 898 899 static int cpsw_get_coalesce(struct net_device *ndev, 900 struct ethtool_coalesce *coal) 901 { 902 struct cpsw_priv *priv = netdev_priv(ndev); 903 904 coal->rx_coalesce_usecs = priv->coal_intvl; 905 return 0; 906 } 907 908 static int cpsw_set_coalesce(struct net_device *ndev, 909 struct ethtool_coalesce *coal) 910 { 911 struct cpsw_priv *priv = netdev_priv(ndev); 912 u32 int_ctrl; 913 u32 num_interrupts = 0; 914 u32 prescale = 0; 915 u32 addnl_dvdr = 1; 916 u32 coal_intvl = 0; 917 918 coal_intvl = coal->rx_coalesce_usecs; 919 920 int_ctrl = readl(&priv->wr_regs->int_control); 921 prescale = priv->bus_freq_mhz * 4; 922 923 if (!coal->rx_coalesce_usecs) { 924 int_ctrl &= ~(CPSW_INTPRESCALE_MASK | CPSW_INTPACEEN); 925 goto update_return; 926 } 927 928 if (coal_intvl < CPSW_CMINTMIN_INTVL) 929 coal_intvl = CPSW_CMINTMIN_INTVL; 930 931 if (coal_intvl > CPSW_CMINTMAX_INTVL) { 932 /* Interrupt pacer works with 4us Pulse, we can 933 * throttle further by dilating the 4us pulse. 934 */ 935 addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale; 936 937 if (addnl_dvdr > 1) { 938 prescale *= addnl_dvdr; 939 if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr)) 940 coal_intvl = (CPSW_CMINTMAX_INTVL 941 * addnl_dvdr); 942 } else { 943 addnl_dvdr = 1; 944 coal_intvl = CPSW_CMINTMAX_INTVL; 945 } 946 } 947 948 num_interrupts = (1000 * addnl_dvdr) / coal_intvl; 949 writel(num_interrupts, &priv->wr_regs->rx_imax); 950 writel(num_interrupts, &priv->wr_regs->tx_imax); 951 952 int_ctrl |= CPSW_INTPACEEN; 953 int_ctrl &= (~CPSW_INTPRESCALE_MASK); 954 int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK); 955 956 update_return: 957 writel(int_ctrl, &priv->wr_regs->int_control); 958 959 cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl); 960 if (priv->data.dual_emac) { 961 int i; 962 963 for (i = 0; i < priv->data.slaves; i++) { 964 priv = netdev_priv(priv->slaves[i].ndev); 965 priv->coal_intvl = coal_intvl; 966 } 967 } else { 968 priv->coal_intvl = coal_intvl; 969 } 970 971 return 0; 972 } 973 974 static int cpsw_get_sset_count(struct net_device *ndev, int sset) 975 { 976 switch (sset) { 977 case ETH_SS_STATS: 978 return CPSW_STATS_LEN; 979 default: 980 return -EOPNOTSUPP; 981 } 982 } 983 984 static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data) 985 { 986 u8 *p = data; 987 int i; 988 989 switch (stringset) { 990 case ETH_SS_STATS: 991 for (i = 0; i < CPSW_STATS_LEN; i++) { 992 memcpy(p, cpsw_gstrings_stats[i].stat_string, 993 ETH_GSTRING_LEN); 994 p += ETH_GSTRING_LEN; 995 } 996 break; 997 } 998 } 999 1000 static void cpsw_get_ethtool_stats(struct net_device *ndev, 1001 struct ethtool_stats *stats, u64 *data) 1002 { 1003 struct cpsw_priv *priv = netdev_priv(ndev); 1004 struct cpdma_chan_stats rx_stats; 1005 struct cpdma_chan_stats tx_stats; 1006 u32 val; 1007 u8 *p; 1008 int i; 1009 1010 /* Collect Davinci CPDMA stats for Rx and Tx Channel */ 1011 cpdma_chan_get_stats(priv->rxch, &rx_stats); 1012 cpdma_chan_get_stats(priv->txch, &tx_stats); 1013 1014 for (i = 0; i < CPSW_STATS_LEN; i++) { 1015 switch (cpsw_gstrings_stats[i].type) { 1016 case CPSW_STATS: 1017 val = readl(priv->hw_stats + 1018 cpsw_gstrings_stats[i].stat_offset); 1019 data[i] = val; 1020 break; 1021 1022 case CPDMA_RX_STATS: 1023 p = (u8 *)&rx_stats + 1024 cpsw_gstrings_stats[i].stat_offset; 1025 data[i] = *(u32 *)p; 1026 break; 1027 1028 case CPDMA_TX_STATS: 1029 p = (u8 *)&tx_stats + 1030 cpsw_gstrings_stats[i].stat_offset; 1031 data[i] = *(u32 *)p; 1032 break; 1033 } 1034 } 1035 } 1036 1037 static int cpsw_common_res_usage_state(struct cpsw_priv *priv) 1038 { 1039 u32 i; 1040 u32 usage_count = 0; 1041 1042 if (!priv->data.dual_emac) 1043 return 0; 1044 1045 for (i = 0; i < priv->data.slaves; i++) 1046 if (priv->slaves[i].open_stat) 1047 usage_count++; 1048 1049 return usage_count; 1050 } 1051 1052 static inline int cpsw_tx_packet_submit(struct net_device *ndev, 1053 struct cpsw_priv *priv, struct sk_buff *skb) 1054 { 1055 if (!priv->data.dual_emac) 1056 return cpdma_chan_submit(priv->txch, skb, skb->data, 1057 skb->len, 0); 1058 1059 if (ndev == cpsw_get_slave_ndev(priv, 0)) 1060 return cpdma_chan_submit(priv->txch, skb, skb->data, 1061 skb->len, 1); 1062 else 1063 return cpdma_chan_submit(priv->txch, skb, skb->data, 1064 skb->len, 2); 1065 } 1066 1067 static inline void cpsw_add_dual_emac_def_ale_entries( 1068 struct cpsw_priv *priv, struct cpsw_slave *slave, 1069 u32 slave_port) 1070 { 1071 u32 port_mask = 1 << slave_port | 1 << priv->host_port; 1072 1073 if (priv->version == CPSW_VERSION_1) 1074 slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN); 1075 else 1076 slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN); 1077 cpsw_ale_add_vlan(priv->ale, slave->port_vlan, port_mask, 1078 port_mask, port_mask, 0); 1079 cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast, 1080 port_mask, ALE_VLAN, slave->port_vlan, 0); 1081 cpsw_ale_add_ucast(priv->ale, priv->mac_addr, 1082 priv->host_port, ALE_VLAN | ALE_SECURE, slave->port_vlan); 1083 } 1084 1085 static void soft_reset_slave(struct cpsw_slave *slave) 1086 { 1087 char name[32]; 1088 1089 snprintf(name, sizeof(name), "slave-%d", slave->slave_num); 1090 soft_reset(name, &slave->sliver->soft_reset); 1091 } 1092 1093 static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv) 1094 { 1095 u32 slave_port; 1096 1097 soft_reset_slave(slave); 1098 1099 /* setup priority mapping */ 1100 __raw_writel(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map); 1101 1102 switch (priv->version) { 1103 case CPSW_VERSION_1: 1104 slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP); 1105 break; 1106 case CPSW_VERSION_2: 1107 case CPSW_VERSION_3: 1108 case CPSW_VERSION_4: 1109 slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP); 1110 break; 1111 } 1112 1113 /* setup max packet size, and mac address */ 1114 __raw_writel(priv->rx_packet_max, &slave->sliver->rx_maxlen); 1115 cpsw_set_slave_mac(slave, priv); 1116 1117 slave->mac_control = 0; /* no link yet */ 1118 1119 slave_port = cpsw_get_slave_port(priv, slave->slave_num); 1120 1121 if (priv->data.dual_emac) 1122 cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port); 1123 else 1124 cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast, 1125 1 << slave_port, 0, 0, ALE_MCAST_FWD_2); 1126 1127 slave->phy = phy_connect(priv->ndev, slave->data->phy_id, 1128 &cpsw_adjust_link, slave->data->phy_if); 1129 if (IS_ERR(slave->phy)) { 1130 dev_err(priv->dev, "phy %s not found on slave %d\n", 1131 slave->data->phy_id, slave->slave_num); 1132 slave->phy = NULL; 1133 } else { 1134 dev_info(priv->dev, "phy found : id is : 0x%x\n", 1135 slave->phy->phy_id); 1136 phy_start(slave->phy); 1137 1138 /* Configure GMII_SEL register */ 1139 cpsw_phy_sel(&priv->pdev->dev, slave->phy->interface, 1140 slave->slave_num); 1141 } 1142 } 1143 1144 static inline void cpsw_add_default_vlan(struct cpsw_priv *priv) 1145 { 1146 const int vlan = priv->data.default_vlan; 1147 const int port = priv->host_port; 1148 u32 reg; 1149 int i; 1150 int unreg_mcast_mask; 1151 1152 reg = (priv->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN : 1153 CPSW2_PORT_VLAN; 1154 1155 writel(vlan, &priv->host_port_regs->port_vlan); 1156 1157 for (i = 0; i < priv->data.slaves; i++) 1158 slave_write(priv->slaves + i, vlan, reg); 1159 1160 if (priv->ndev->flags & IFF_ALLMULTI) 1161 unreg_mcast_mask = ALE_ALL_PORTS; 1162 else 1163 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2; 1164 1165 cpsw_ale_add_vlan(priv->ale, vlan, ALE_ALL_PORTS << port, 1166 ALE_ALL_PORTS << port, ALE_ALL_PORTS << port, 1167 unreg_mcast_mask << port); 1168 } 1169 1170 static void cpsw_init_host_port(struct cpsw_priv *priv) 1171 { 1172 u32 control_reg; 1173 u32 fifo_mode; 1174 1175 /* soft reset the controller and initialize ale */ 1176 soft_reset("cpsw", &priv->regs->soft_reset); 1177 cpsw_ale_start(priv->ale); 1178 1179 /* switch to vlan unaware mode */ 1180 cpsw_ale_control_set(priv->ale, priv->host_port, ALE_VLAN_AWARE, 1181 CPSW_ALE_VLAN_AWARE); 1182 control_reg = readl(&priv->regs->control); 1183 control_reg |= CPSW_VLAN_AWARE; 1184 writel(control_reg, &priv->regs->control); 1185 fifo_mode = (priv->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE : 1186 CPSW_FIFO_NORMAL_MODE; 1187 writel(fifo_mode, &priv->host_port_regs->tx_in_ctl); 1188 1189 /* setup host port priority mapping */ 1190 __raw_writel(CPDMA_TX_PRIORITY_MAP, 1191 &priv->host_port_regs->cpdma_tx_pri_map); 1192 __raw_writel(0, &priv->host_port_regs->cpdma_rx_chan_map); 1193 1194 cpsw_ale_control_set(priv->ale, priv->host_port, 1195 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD); 1196 1197 if (!priv->data.dual_emac) { 1198 cpsw_ale_add_ucast(priv->ale, priv->mac_addr, priv->host_port, 1199 0, 0); 1200 cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast, 1201 1 << priv->host_port, 0, 0, ALE_MCAST_FWD_2); 1202 } 1203 } 1204 1205 static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_priv *priv) 1206 { 1207 u32 slave_port; 1208 1209 slave_port = cpsw_get_slave_port(priv, slave->slave_num); 1210 1211 if (!slave->phy) 1212 return; 1213 phy_stop(slave->phy); 1214 phy_disconnect(slave->phy); 1215 slave->phy = NULL; 1216 cpsw_ale_control_set(priv->ale, slave_port, 1217 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE); 1218 } 1219 1220 static int cpsw_ndo_open(struct net_device *ndev) 1221 { 1222 struct cpsw_priv *priv = netdev_priv(ndev); 1223 int i, ret; 1224 u32 reg; 1225 1226 if (!cpsw_common_res_usage_state(priv)) 1227 cpsw_intr_disable(priv); 1228 netif_carrier_off(ndev); 1229 1230 pm_runtime_get_sync(&priv->pdev->dev); 1231 1232 reg = priv->version; 1233 1234 dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n", 1235 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg), 1236 CPSW_RTL_VERSION(reg)); 1237 1238 /* initialize host and slave ports */ 1239 if (!cpsw_common_res_usage_state(priv)) 1240 cpsw_init_host_port(priv); 1241 for_each_slave(priv, cpsw_slave_open, priv); 1242 1243 /* Add default VLAN */ 1244 if (!priv->data.dual_emac) 1245 cpsw_add_default_vlan(priv); 1246 else 1247 cpsw_ale_add_vlan(priv->ale, priv->data.default_vlan, 1248 ALE_ALL_PORTS << priv->host_port, 1249 ALE_ALL_PORTS << priv->host_port, 0, 0); 1250 1251 if (!cpsw_common_res_usage_state(priv)) { 1252 struct cpsw_priv *priv_sl0 = cpsw_get_slave_priv(priv, 0); 1253 1254 /* setup tx dma to fixed prio and zero offset */ 1255 cpdma_control_set(priv->dma, CPDMA_TX_PRIO_FIXED, 1); 1256 cpdma_control_set(priv->dma, CPDMA_RX_BUFFER_OFFSET, 0); 1257 1258 /* disable priority elevation */ 1259 __raw_writel(0, &priv->regs->ptype); 1260 1261 /* enable statistics collection only on all ports */ 1262 __raw_writel(0x7, &priv->regs->stat_port_en); 1263 1264 /* Enable internal fifo flow control */ 1265 writel(0x7, &priv->regs->flow_control); 1266 1267 napi_enable(&priv_sl0->napi_rx); 1268 napi_enable(&priv_sl0->napi_tx); 1269 1270 if (WARN_ON(!priv->data.rx_descs)) 1271 priv->data.rx_descs = 128; 1272 1273 for (i = 0; i < priv->data.rx_descs; i++) { 1274 struct sk_buff *skb; 1275 1276 ret = -ENOMEM; 1277 skb = __netdev_alloc_skb_ip_align(priv->ndev, 1278 priv->rx_packet_max, GFP_KERNEL); 1279 if (!skb) 1280 goto err_cleanup; 1281 ret = cpdma_chan_submit(priv->rxch, skb, skb->data, 1282 skb_tailroom(skb), 0); 1283 if (ret < 0) { 1284 kfree_skb(skb); 1285 goto err_cleanup; 1286 } 1287 } 1288 /* continue even if we didn't manage to submit all 1289 * receive descs 1290 */ 1291 cpsw_info(priv, ifup, "submitted %d rx descriptors\n", i); 1292 1293 if (cpts_register(&priv->pdev->dev, priv->cpts, 1294 priv->data.cpts_clock_mult, 1295 priv->data.cpts_clock_shift)) 1296 dev_err(priv->dev, "error registering cpts device\n"); 1297 1298 } 1299 1300 /* Enable Interrupt pacing if configured */ 1301 if (priv->coal_intvl != 0) { 1302 struct ethtool_coalesce coal; 1303 1304 coal.rx_coalesce_usecs = (priv->coal_intvl << 4); 1305 cpsw_set_coalesce(ndev, &coal); 1306 } 1307 1308 cpdma_ctlr_start(priv->dma); 1309 cpsw_intr_enable(priv); 1310 1311 if (priv->data.dual_emac) 1312 priv->slaves[priv->emac_port].open_stat = true; 1313 return 0; 1314 1315 err_cleanup: 1316 cpdma_ctlr_stop(priv->dma); 1317 for_each_slave(priv, cpsw_slave_stop, priv); 1318 pm_runtime_put_sync(&priv->pdev->dev); 1319 netif_carrier_off(priv->ndev); 1320 return ret; 1321 } 1322 1323 static int cpsw_ndo_stop(struct net_device *ndev) 1324 { 1325 struct cpsw_priv *priv = netdev_priv(ndev); 1326 1327 cpsw_info(priv, ifdown, "shutting down cpsw device\n"); 1328 netif_stop_queue(priv->ndev); 1329 netif_carrier_off(priv->ndev); 1330 1331 if (cpsw_common_res_usage_state(priv) <= 1) { 1332 struct cpsw_priv *priv_sl0 = cpsw_get_slave_priv(priv, 0); 1333 1334 napi_disable(&priv_sl0->napi_rx); 1335 napi_disable(&priv_sl0->napi_tx); 1336 cpts_unregister(priv->cpts); 1337 cpsw_intr_disable(priv); 1338 cpdma_ctlr_stop(priv->dma); 1339 cpsw_ale_stop(priv->ale); 1340 } 1341 for_each_slave(priv, cpsw_slave_stop, priv); 1342 pm_runtime_put_sync(&priv->pdev->dev); 1343 if (priv->data.dual_emac) 1344 priv->slaves[priv->emac_port].open_stat = false; 1345 return 0; 1346 } 1347 1348 static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb, 1349 struct net_device *ndev) 1350 { 1351 struct cpsw_priv *priv = netdev_priv(ndev); 1352 int ret; 1353 1354 ndev->trans_start = jiffies; 1355 1356 if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) { 1357 cpsw_err(priv, tx_err, "packet pad failed\n"); 1358 ndev->stats.tx_dropped++; 1359 return NETDEV_TX_OK; 1360 } 1361 1362 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && 1363 priv->cpts->tx_enable) 1364 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1365 1366 skb_tx_timestamp(skb); 1367 1368 ret = cpsw_tx_packet_submit(ndev, priv, skb); 1369 if (unlikely(ret != 0)) { 1370 cpsw_err(priv, tx_err, "desc submit failed\n"); 1371 goto fail; 1372 } 1373 1374 /* If there is no more tx desc left free then we need to 1375 * tell the kernel to stop sending us tx frames. 1376 */ 1377 if (unlikely(!cpdma_check_free_tx_desc(priv->txch))) 1378 netif_stop_queue(ndev); 1379 1380 return NETDEV_TX_OK; 1381 fail: 1382 ndev->stats.tx_dropped++; 1383 netif_stop_queue(ndev); 1384 return NETDEV_TX_BUSY; 1385 } 1386 1387 #ifdef CONFIG_TI_CPTS 1388 1389 static void cpsw_hwtstamp_v1(struct cpsw_priv *priv) 1390 { 1391 struct cpsw_slave *slave = &priv->slaves[priv->data.active_slave]; 1392 u32 ts_en, seq_id; 1393 1394 if (!priv->cpts->tx_enable && !priv->cpts->rx_enable) { 1395 slave_write(slave, 0, CPSW1_TS_CTL); 1396 return; 1397 } 1398 1399 seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588; 1400 ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS; 1401 1402 if (priv->cpts->tx_enable) 1403 ts_en |= CPSW_V1_TS_TX_EN; 1404 1405 if (priv->cpts->rx_enable) 1406 ts_en |= CPSW_V1_TS_RX_EN; 1407 1408 slave_write(slave, ts_en, CPSW1_TS_CTL); 1409 slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE); 1410 } 1411 1412 static void cpsw_hwtstamp_v2(struct cpsw_priv *priv) 1413 { 1414 struct cpsw_slave *slave; 1415 u32 ctrl, mtype; 1416 1417 if (priv->data.dual_emac) 1418 slave = &priv->slaves[priv->emac_port]; 1419 else 1420 slave = &priv->slaves[priv->data.active_slave]; 1421 1422 ctrl = slave_read(slave, CPSW2_CONTROL); 1423 switch (priv->version) { 1424 case CPSW_VERSION_2: 1425 ctrl &= ~CTRL_V2_ALL_TS_MASK; 1426 1427 if (priv->cpts->tx_enable) 1428 ctrl |= CTRL_V2_TX_TS_BITS; 1429 1430 if (priv->cpts->rx_enable) 1431 ctrl |= CTRL_V2_RX_TS_BITS; 1432 break; 1433 case CPSW_VERSION_3: 1434 default: 1435 ctrl &= ~CTRL_V3_ALL_TS_MASK; 1436 1437 if (priv->cpts->tx_enable) 1438 ctrl |= CTRL_V3_TX_TS_BITS; 1439 1440 if (priv->cpts->rx_enable) 1441 ctrl |= CTRL_V3_RX_TS_BITS; 1442 break; 1443 } 1444 1445 mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS; 1446 1447 slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE); 1448 slave_write(slave, ctrl, CPSW2_CONTROL); 1449 __raw_writel(ETH_P_1588, &priv->regs->ts_ltype); 1450 } 1451 1452 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr) 1453 { 1454 struct cpsw_priv *priv = netdev_priv(dev); 1455 struct cpts *cpts = priv->cpts; 1456 struct hwtstamp_config cfg; 1457 1458 if (priv->version != CPSW_VERSION_1 && 1459 priv->version != CPSW_VERSION_2 && 1460 priv->version != CPSW_VERSION_3) 1461 return -EOPNOTSUPP; 1462 1463 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg))) 1464 return -EFAULT; 1465 1466 /* reserved for future extensions */ 1467 if (cfg.flags) 1468 return -EINVAL; 1469 1470 if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON) 1471 return -ERANGE; 1472 1473 switch (cfg.rx_filter) { 1474 case HWTSTAMP_FILTER_NONE: 1475 cpts->rx_enable = 0; 1476 break; 1477 case HWTSTAMP_FILTER_ALL: 1478 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 1479 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 1480 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 1481 return -ERANGE; 1482 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 1483 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 1484 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 1485 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 1486 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 1487 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 1488 case HWTSTAMP_FILTER_PTP_V2_EVENT: 1489 case HWTSTAMP_FILTER_PTP_V2_SYNC: 1490 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 1491 cpts->rx_enable = 1; 1492 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 1493 break; 1494 default: 1495 return -ERANGE; 1496 } 1497 1498 cpts->tx_enable = cfg.tx_type == HWTSTAMP_TX_ON; 1499 1500 switch (priv->version) { 1501 case CPSW_VERSION_1: 1502 cpsw_hwtstamp_v1(priv); 1503 break; 1504 case CPSW_VERSION_2: 1505 case CPSW_VERSION_3: 1506 cpsw_hwtstamp_v2(priv); 1507 break; 1508 default: 1509 WARN_ON(1); 1510 } 1511 1512 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; 1513 } 1514 1515 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr) 1516 { 1517 struct cpsw_priv *priv = netdev_priv(dev); 1518 struct cpts *cpts = priv->cpts; 1519 struct hwtstamp_config cfg; 1520 1521 if (priv->version != CPSW_VERSION_1 && 1522 priv->version != CPSW_VERSION_2 && 1523 priv->version != CPSW_VERSION_3) 1524 return -EOPNOTSUPP; 1525 1526 cfg.flags = 0; 1527 cfg.tx_type = cpts->tx_enable ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF; 1528 cfg.rx_filter = (cpts->rx_enable ? 1529 HWTSTAMP_FILTER_PTP_V2_EVENT : HWTSTAMP_FILTER_NONE); 1530 1531 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; 1532 } 1533 1534 #endif /*CONFIG_TI_CPTS*/ 1535 1536 static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 1537 { 1538 struct cpsw_priv *priv = netdev_priv(dev); 1539 int slave_no = cpsw_slave_index(priv); 1540 1541 if (!netif_running(dev)) 1542 return -EINVAL; 1543 1544 switch (cmd) { 1545 #ifdef CONFIG_TI_CPTS 1546 case SIOCSHWTSTAMP: 1547 return cpsw_hwtstamp_set(dev, req); 1548 case SIOCGHWTSTAMP: 1549 return cpsw_hwtstamp_get(dev, req); 1550 #endif 1551 } 1552 1553 if (!priv->slaves[slave_no].phy) 1554 return -EOPNOTSUPP; 1555 return phy_mii_ioctl(priv->slaves[slave_no].phy, req, cmd); 1556 } 1557 1558 static void cpsw_ndo_tx_timeout(struct net_device *ndev) 1559 { 1560 struct cpsw_priv *priv = netdev_priv(ndev); 1561 1562 cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n"); 1563 ndev->stats.tx_errors++; 1564 cpsw_intr_disable(priv); 1565 cpdma_chan_stop(priv->txch); 1566 cpdma_chan_start(priv->txch); 1567 cpsw_intr_enable(priv); 1568 } 1569 1570 static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p) 1571 { 1572 struct cpsw_priv *priv = netdev_priv(ndev); 1573 struct sockaddr *addr = (struct sockaddr *)p; 1574 int flags = 0; 1575 u16 vid = 0; 1576 1577 if (!is_valid_ether_addr(addr->sa_data)) 1578 return -EADDRNOTAVAIL; 1579 1580 if (priv->data.dual_emac) { 1581 vid = priv->slaves[priv->emac_port].port_vlan; 1582 flags = ALE_VLAN; 1583 } 1584 1585 cpsw_ale_del_ucast(priv->ale, priv->mac_addr, priv->host_port, 1586 flags, vid); 1587 cpsw_ale_add_ucast(priv->ale, addr->sa_data, priv->host_port, 1588 flags, vid); 1589 1590 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN); 1591 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN); 1592 for_each_slave(priv, cpsw_set_slave_mac, priv); 1593 1594 return 0; 1595 } 1596 1597 #ifdef CONFIG_NET_POLL_CONTROLLER 1598 static void cpsw_ndo_poll_controller(struct net_device *ndev) 1599 { 1600 struct cpsw_priv *priv = netdev_priv(ndev); 1601 1602 cpsw_intr_disable(priv); 1603 cpsw_rx_interrupt(priv->irqs_table[0], priv); 1604 cpsw_tx_interrupt(priv->irqs_table[1], priv); 1605 cpsw_intr_enable(priv); 1606 } 1607 #endif 1608 1609 static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv, 1610 unsigned short vid) 1611 { 1612 int ret; 1613 int unreg_mcast_mask = 0; 1614 u32 port_mask; 1615 1616 if (priv->data.dual_emac) { 1617 port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST; 1618 1619 if (priv->ndev->flags & IFF_ALLMULTI) 1620 unreg_mcast_mask = port_mask; 1621 } else { 1622 port_mask = ALE_ALL_PORTS; 1623 1624 if (priv->ndev->flags & IFF_ALLMULTI) 1625 unreg_mcast_mask = ALE_ALL_PORTS; 1626 else 1627 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2; 1628 } 1629 1630 ret = cpsw_ale_add_vlan(priv->ale, vid, port_mask, 0, port_mask, 1631 unreg_mcast_mask << priv->host_port); 1632 if (ret != 0) 1633 return ret; 1634 1635 ret = cpsw_ale_add_ucast(priv->ale, priv->mac_addr, 1636 priv->host_port, ALE_VLAN, vid); 1637 if (ret != 0) 1638 goto clean_vid; 1639 1640 ret = cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast, 1641 port_mask, ALE_VLAN, vid, 0); 1642 if (ret != 0) 1643 goto clean_vlan_ucast; 1644 return 0; 1645 1646 clean_vlan_ucast: 1647 cpsw_ale_del_ucast(priv->ale, priv->mac_addr, 1648 priv->host_port, ALE_VLAN, vid); 1649 clean_vid: 1650 cpsw_ale_del_vlan(priv->ale, vid, 0); 1651 return ret; 1652 } 1653 1654 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev, 1655 __be16 proto, u16 vid) 1656 { 1657 struct cpsw_priv *priv = netdev_priv(ndev); 1658 1659 if (vid == priv->data.default_vlan) 1660 return 0; 1661 1662 if (priv->data.dual_emac) { 1663 /* In dual EMAC, reserved VLAN id should not be used for 1664 * creating VLAN interfaces as this can break the dual 1665 * EMAC port separation 1666 */ 1667 int i; 1668 1669 for (i = 0; i < priv->data.slaves; i++) { 1670 if (vid == priv->slaves[i].port_vlan) 1671 return -EINVAL; 1672 } 1673 } 1674 1675 dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid); 1676 return cpsw_add_vlan_ale_entry(priv, vid); 1677 } 1678 1679 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev, 1680 __be16 proto, u16 vid) 1681 { 1682 struct cpsw_priv *priv = netdev_priv(ndev); 1683 int ret; 1684 1685 if (vid == priv->data.default_vlan) 1686 return 0; 1687 1688 if (priv->data.dual_emac) { 1689 int i; 1690 1691 for (i = 0; i < priv->data.slaves; i++) { 1692 if (vid == priv->slaves[i].port_vlan) 1693 return -EINVAL; 1694 } 1695 } 1696 1697 dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid); 1698 ret = cpsw_ale_del_vlan(priv->ale, vid, 0); 1699 if (ret != 0) 1700 return ret; 1701 1702 ret = cpsw_ale_del_ucast(priv->ale, priv->mac_addr, 1703 priv->host_port, ALE_VLAN, vid); 1704 if (ret != 0) 1705 return ret; 1706 1707 return cpsw_ale_del_mcast(priv->ale, priv->ndev->broadcast, 1708 0, ALE_VLAN, vid); 1709 } 1710 1711 static const struct net_device_ops cpsw_netdev_ops = { 1712 .ndo_open = cpsw_ndo_open, 1713 .ndo_stop = cpsw_ndo_stop, 1714 .ndo_start_xmit = cpsw_ndo_start_xmit, 1715 .ndo_set_mac_address = cpsw_ndo_set_mac_address, 1716 .ndo_do_ioctl = cpsw_ndo_ioctl, 1717 .ndo_validate_addr = eth_validate_addr, 1718 .ndo_change_mtu = eth_change_mtu, 1719 .ndo_tx_timeout = cpsw_ndo_tx_timeout, 1720 .ndo_set_rx_mode = cpsw_ndo_set_rx_mode, 1721 #ifdef CONFIG_NET_POLL_CONTROLLER 1722 .ndo_poll_controller = cpsw_ndo_poll_controller, 1723 #endif 1724 .ndo_vlan_rx_add_vid = cpsw_ndo_vlan_rx_add_vid, 1725 .ndo_vlan_rx_kill_vid = cpsw_ndo_vlan_rx_kill_vid, 1726 }; 1727 1728 static int cpsw_get_regs_len(struct net_device *ndev) 1729 { 1730 struct cpsw_priv *priv = netdev_priv(ndev); 1731 1732 return priv->data.ale_entries * ALE_ENTRY_WORDS * sizeof(u32); 1733 } 1734 1735 static void cpsw_get_regs(struct net_device *ndev, 1736 struct ethtool_regs *regs, void *p) 1737 { 1738 struct cpsw_priv *priv = netdev_priv(ndev); 1739 u32 *reg = p; 1740 1741 /* update CPSW IP version */ 1742 regs->version = priv->version; 1743 1744 cpsw_ale_dump(priv->ale, reg); 1745 } 1746 1747 static void cpsw_get_drvinfo(struct net_device *ndev, 1748 struct ethtool_drvinfo *info) 1749 { 1750 struct cpsw_priv *priv = netdev_priv(ndev); 1751 1752 strlcpy(info->driver, "cpsw", sizeof(info->driver)); 1753 strlcpy(info->version, "1.0", sizeof(info->version)); 1754 strlcpy(info->bus_info, priv->pdev->name, sizeof(info->bus_info)); 1755 info->regdump_len = cpsw_get_regs_len(ndev); 1756 } 1757 1758 static u32 cpsw_get_msglevel(struct net_device *ndev) 1759 { 1760 struct cpsw_priv *priv = netdev_priv(ndev); 1761 return priv->msg_enable; 1762 } 1763 1764 static void cpsw_set_msglevel(struct net_device *ndev, u32 value) 1765 { 1766 struct cpsw_priv *priv = netdev_priv(ndev); 1767 priv->msg_enable = value; 1768 } 1769 1770 static int cpsw_get_ts_info(struct net_device *ndev, 1771 struct ethtool_ts_info *info) 1772 { 1773 #ifdef CONFIG_TI_CPTS 1774 struct cpsw_priv *priv = netdev_priv(ndev); 1775 1776 info->so_timestamping = 1777 SOF_TIMESTAMPING_TX_HARDWARE | 1778 SOF_TIMESTAMPING_TX_SOFTWARE | 1779 SOF_TIMESTAMPING_RX_HARDWARE | 1780 SOF_TIMESTAMPING_RX_SOFTWARE | 1781 SOF_TIMESTAMPING_SOFTWARE | 1782 SOF_TIMESTAMPING_RAW_HARDWARE; 1783 info->phc_index = priv->cpts->phc_index; 1784 info->tx_types = 1785 (1 << HWTSTAMP_TX_OFF) | 1786 (1 << HWTSTAMP_TX_ON); 1787 info->rx_filters = 1788 (1 << HWTSTAMP_FILTER_NONE) | 1789 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 1790 #else 1791 info->so_timestamping = 1792 SOF_TIMESTAMPING_TX_SOFTWARE | 1793 SOF_TIMESTAMPING_RX_SOFTWARE | 1794 SOF_TIMESTAMPING_SOFTWARE; 1795 info->phc_index = -1; 1796 info->tx_types = 0; 1797 info->rx_filters = 0; 1798 #endif 1799 return 0; 1800 } 1801 1802 static int cpsw_get_settings(struct net_device *ndev, 1803 struct ethtool_cmd *ecmd) 1804 { 1805 struct cpsw_priv *priv = netdev_priv(ndev); 1806 int slave_no = cpsw_slave_index(priv); 1807 1808 if (priv->slaves[slave_no].phy) 1809 return phy_ethtool_gset(priv->slaves[slave_no].phy, ecmd); 1810 else 1811 return -EOPNOTSUPP; 1812 } 1813 1814 static int cpsw_set_settings(struct net_device *ndev, struct ethtool_cmd *ecmd) 1815 { 1816 struct cpsw_priv *priv = netdev_priv(ndev); 1817 int slave_no = cpsw_slave_index(priv); 1818 1819 if (priv->slaves[slave_no].phy) 1820 return phy_ethtool_sset(priv->slaves[slave_no].phy, ecmd); 1821 else 1822 return -EOPNOTSUPP; 1823 } 1824 1825 static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 1826 { 1827 struct cpsw_priv *priv = netdev_priv(ndev); 1828 int slave_no = cpsw_slave_index(priv); 1829 1830 wol->supported = 0; 1831 wol->wolopts = 0; 1832 1833 if (priv->slaves[slave_no].phy) 1834 phy_ethtool_get_wol(priv->slaves[slave_no].phy, wol); 1835 } 1836 1837 static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 1838 { 1839 struct cpsw_priv *priv = netdev_priv(ndev); 1840 int slave_no = cpsw_slave_index(priv); 1841 1842 if (priv->slaves[slave_no].phy) 1843 return phy_ethtool_set_wol(priv->slaves[slave_no].phy, wol); 1844 else 1845 return -EOPNOTSUPP; 1846 } 1847 1848 static void cpsw_get_pauseparam(struct net_device *ndev, 1849 struct ethtool_pauseparam *pause) 1850 { 1851 struct cpsw_priv *priv = netdev_priv(ndev); 1852 1853 pause->autoneg = AUTONEG_DISABLE; 1854 pause->rx_pause = priv->rx_pause ? true : false; 1855 pause->tx_pause = priv->tx_pause ? true : false; 1856 } 1857 1858 static int cpsw_set_pauseparam(struct net_device *ndev, 1859 struct ethtool_pauseparam *pause) 1860 { 1861 struct cpsw_priv *priv = netdev_priv(ndev); 1862 bool link; 1863 1864 priv->rx_pause = pause->rx_pause ? true : false; 1865 priv->tx_pause = pause->tx_pause ? true : false; 1866 1867 for_each_slave(priv, _cpsw_adjust_link, priv, &link); 1868 1869 return 0; 1870 } 1871 1872 static const struct ethtool_ops cpsw_ethtool_ops = { 1873 .get_drvinfo = cpsw_get_drvinfo, 1874 .get_msglevel = cpsw_get_msglevel, 1875 .set_msglevel = cpsw_set_msglevel, 1876 .get_link = ethtool_op_get_link, 1877 .get_ts_info = cpsw_get_ts_info, 1878 .get_settings = cpsw_get_settings, 1879 .set_settings = cpsw_set_settings, 1880 .get_coalesce = cpsw_get_coalesce, 1881 .set_coalesce = cpsw_set_coalesce, 1882 .get_sset_count = cpsw_get_sset_count, 1883 .get_strings = cpsw_get_strings, 1884 .get_ethtool_stats = cpsw_get_ethtool_stats, 1885 .get_pauseparam = cpsw_get_pauseparam, 1886 .set_pauseparam = cpsw_set_pauseparam, 1887 .get_wol = cpsw_get_wol, 1888 .set_wol = cpsw_set_wol, 1889 .get_regs_len = cpsw_get_regs_len, 1890 .get_regs = cpsw_get_regs, 1891 }; 1892 1893 static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_priv *priv, 1894 u32 slave_reg_ofs, u32 sliver_reg_ofs) 1895 { 1896 void __iomem *regs = priv->regs; 1897 int slave_num = slave->slave_num; 1898 struct cpsw_slave_data *data = priv->data.slave_data + slave_num; 1899 1900 slave->data = data; 1901 slave->regs = regs + slave_reg_ofs; 1902 slave->sliver = regs + sliver_reg_ofs; 1903 slave->port_vlan = data->dual_emac_res_vlan; 1904 } 1905 1906 static int cpsw_probe_dt(struct cpsw_platform_data *data, 1907 struct platform_device *pdev) 1908 { 1909 struct device_node *node = pdev->dev.of_node; 1910 struct device_node *slave_node; 1911 int i = 0, ret; 1912 u32 prop; 1913 1914 if (!node) 1915 return -EINVAL; 1916 1917 if (of_property_read_u32(node, "slaves", &prop)) { 1918 dev_err(&pdev->dev, "Missing slaves property in the DT.\n"); 1919 return -EINVAL; 1920 } 1921 data->slaves = prop; 1922 1923 if (of_property_read_u32(node, "active_slave", &prop)) { 1924 dev_err(&pdev->dev, "Missing active_slave property in the DT.\n"); 1925 return -EINVAL; 1926 } 1927 data->active_slave = prop; 1928 1929 if (of_property_read_u32(node, "cpts_clock_mult", &prop)) { 1930 dev_err(&pdev->dev, "Missing cpts_clock_mult property in the DT.\n"); 1931 return -EINVAL; 1932 } 1933 data->cpts_clock_mult = prop; 1934 1935 if (of_property_read_u32(node, "cpts_clock_shift", &prop)) { 1936 dev_err(&pdev->dev, "Missing cpts_clock_shift property in the DT.\n"); 1937 return -EINVAL; 1938 } 1939 data->cpts_clock_shift = prop; 1940 1941 data->slave_data = devm_kzalloc(&pdev->dev, data->slaves 1942 * sizeof(struct cpsw_slave_data), 1943 GFP_KERNEL); 1944 if (!data->slave_data) 1945 return -ENOMEM; 1946 1947 if (of_property_read_u32(node, "cpdma_channels", &prop)) { 1948 dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n"); 1949 return -EINVAL; 1950 } 1951 data->channels = prop; 1952 1953 if (of_property_read_u32(node, "ale_entries", &prop)) { 1954 dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n"); 1955 return -EINVAL; 1956 } 1957 data->ale_entries = prop; 1958 1959 if (of_property_read_u32(node, "bd_ram_size", &prop)) { 1960 dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n"); 1961 return -EINVAL; 1962 } 1963 data->bd_ram_size = prop; 1964 1965 if (of_property_read_u32(node, "rx_descs", &prop)) { 1966 dev_err(&pdev->dev, "Missing rx_descs property in the DT.\n"); 1967 return -EINVAL; 1968 } 1969 data->rx_descs = prop; 1970 1971 if (of_property_read_u32(node, "mac_control", &prop)) { 1972 dev_err(&pdev->dev, "Missing mac_control property in the DT.\n"); 1973 return -EINVAL; 1974 } 1975 data->mac_control = prop; 1976 1977 if (of_property_read_bool(node, "dual_emac")) 1978 data->dual_emac = 1; 1979 1980 /* 1981 * Populate all the child nodes here... 1982 */ 1983 ret = of_platform_populate(node, NULL, NULL, &pdev->dev); 1984 /* We do not want to force this, as in some cases may not have child */ 1985 if (ret) 1986 dev_warn(&pdev->dev, "Doesn't have any child node\n"); 1987 1988 for_each_child_of_node(node, slave_node) { 1989 struct cpsw_slave_data *slave_data = data->slave_data + i; 1990 const void *mac_addr = NULL; 1991 u32 phyid; 1992 int lenp; 1993 const __be32 *parp; 1994 struct device_node *mdio_node; 1995 struct platform_device *mdio; 1996 1997 /* This is no slave child node, continue */ 1998 if (strcmp(slave_node->name, "slave")) 1999 continue; 2000 2001 parp = of_get_property(slave_node, "phy_id", &lenp); 2002 if ((parp == NULL) || (lenp != (sizeof(void *) * 2))) { 2003 dev_err(&pdev->dev, "Missing slave[%d] phy_id property\n", i); 2004 goto no_phy_slave; 2005 } 2006 mdio_node = of_find_node_by_phandle(be32_to_cpup(parp)); 2007 phyid = be32_to_cpup(parp+1); 2008 mdio = of_find_device_by_node(mdio_node); 2009 of_node_put(mdio_node); 2010 if (!mdio) { 2011 dev_err(&pdev->dev, "Missing mdio platform device\n"); 2012 return -EINVAL; 2013 } 2014 snprintf(slave_data->phy_id, sizeof(slave_data->phy_id), 2015 PHY_ID_FMT, mdio->name, phyid); 2016 2017 slave_data->phy_if = of_get_phy_mode(slave_node); 2018 if (slave_data->phy_if < 0) { 2019 dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n", 2020 i); 2021 return slave_data->phy_if; 2022 } 2023 2024 no_phy_slave: 2025 mac_addr = of_get_mac_address(slave_node); 2026 if (mac_addr) { 2027 memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN); 2028 } else { 2029 if (of_machine_is_compatible("ti,am33xx")) { 2030 ret = cpsw_am33xx_cm_get_macid(&pdev->dev, 2031 0x630, i, 2032 slave_data->mac_addr); 2033 if (ret) 2034 return ret; 2035 } 2036 } 2037 if (data->dual_emac) { 2038 if (of_property_read_u32(slave_node, "dual_emac_res_vlan", 2039 &prop)) { 2040 dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n"); 2041 slave_data->dual_emac_res_vlan = i+1; 2042 dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n", 2043 slave_data->dual_emac_res_vlan, i); 2044 } else { 2045 slave_data->dual_emac_res_vlan = prop; 2046 } 2047 } 2048 2049 i++; 2050 if (i == data->slaves) 2051 break; 2052 } 2053 2054 return 0; 2055 } 2056 2057 static int cpsw_probe_dual_emac(struct platform_device *pdev, 2058 struct cpsw_priv *priv) 2059 { 2060 struct cpsw_platform_data *data = &priv->data; 2061 struct net_device *ndev; 2062 struct cpsw_priv *priv_sl2; 2063 int ret = 0, i; 2064 2065 ndev = alloc_etherdev(sizeof(struct cpsw_priv)); 2066 if (!ndev) { 2067 dev_err(&pdev->dev, "cpsw: error allocating net_device\n"); 2068 return -ENOMEM; 2069 } 2070 2071 priv_sl2 = netdev_priv(ndev); 2072 spin_lock_init(&priv_sl2->lock); 2073 priv_sl2->data = *data; 2074 priv_sl2->pdev = pdev; 2075 priv_sl2->ndev = ndev; 2076 priv_sl2->dev = &ndev->dev; 2077 priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG); 2078 priv_sl2->rx_packet_max = max(rx_packet_max, 128); 2079 2080 if (is_valid_ether_addr(data->slave_data[1].mac_addr)) { 2081 memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr, 2082 ETH_ALEN); 2083 dev_info(&pdev->dev, "cpsw: Detected MACID = %pM\n", priv_sl2->mac_addr); 2084 } else { 2085 random_ether_addr(priv_sl2->mac_addr); 2086 dev_info(&pdev->dev, "cpsw: Random MACID = %pM\n", priv_sl2->mac_addr); 2087 } 2088 memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN); 2089 2090 priv_sl2->slaves = priv->slaves; 2091 priv_sl2->clk = priv->clk; 2092 2093 priv_sl2->coal_intvl = 0; 2094 priv_sl2->bus_freq_mhz = priv->bus_freq_mhz; 2095 2096 priv_sl2->regs = priv->regs; 2097 priv_sl2->host_port = priv->host_port; 2098 priv_sl2->host_port_regs = priv->host_port_regs; 2099 priv_sl2->wr_regs = priv->wr_regs; 2100 priv_sl2->hw_stats = priv->hw_stats; 2101 priv_sl2->dma = priv->dma; 2102 priv_sl2->txch = priv->txch; 2103 priv_sl2->rxch = priv->rxch; 2104 priv_sl2->ale = priv->ale; 2105 priv_sl2->emac_port = 1; 2106 priv->slaves[1].ndev = ndev; 2107 priv_sl2->cpts = priv->cpts; 2108 priv_sl2->version = priv->version; 2109 2110 for (i = 0; i < priv->num_irqs; i++) { 2111 priv_sl2->irqs_table[i] = priv->irqs_table[i]; 2112 priv_sl2->num_irqs = priv->num_irqs; 2113 } 2114 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 2115 2116 ndev->netdev_ops = &cpsw_netdev_ops; 2117 ndev->ethtool_ops = &cpsw_ethtool_ops; 2118 2119 /* register the network device */ 2120 SET_NETDEV_DEV(ndev, &pdev->dev); 2121 ret = register_netdev(ndev); 2122 if (ret) { 2123 dev_err(&pdev->dev, "cpsw: error registering net device\n"); 2124 free_netdev(ndev); 2125 ret = -ENODEV; 2126 } 2127 2128 return ret; 2129 } 2130 2131 static int cpsw_probe(struct platform_device *pdev) 2132 { 2133 struct cpsw_platform_data *data; 2134 struct net_device *ndev; 2135 struct cpsw_priv *priv; 2136 struct cpdma_params dma_params; 2137 struct cpsw_ale_params ale_params; 2138 void __iomem *ss_regs; 2139 struct resource *res, *ss_res; 2140 u32 slave_offset, sliver_offset, slave_size; 2141 int ret = 0, i; 2142 int irq; 2143 2144 ndev = alloc_etherdev(sizeof(struct cpsw_priv)); 2145 if (!ndev) { 2146 dev_err(&pdev->dev, "error allocating net_device\n"); 2147 return -ENOMEM; 2148 } 2149 2150 platform_set_drvdata(pdev, ndev); 2151 priv = netdev_priv(ndev); 2152 spin_lock_init(&priv->lock); 2153 priv->pdev = pdev; 2154 priv->ndev = ndev; 2155 priv->dev = &ndev->dev; 2156 priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG); 2157 priv->rx_packet_max = max(rx_packet_max, 128); 2158 priv->cpts = devm_kzalloc(&pdev->dev, sizeof(struct cpts), GFP_KERNEL); 2159 if (!priv->cpts) { 2160 dev_err(&pdev->dev, "error allocating cpts\n"); 2161 ret = -ENOMEM; 2162 goto clean_ndev_ret; 2163 } 2164 2165 /* 2166 * This may be required here for child devices. 2167 */ 2168 pm_runtime_enable(&pdev->dev); 2169 2170 /* Select default pin state */ 2171 pinctrl_pm_select_default_state(&pdev->dev); 2172 2173 if (cpsw_probe_dt(&priv->data, pdev)) { 2174 dev_err(&pdev->dev, "cpsw: platform data missing\n"); 2175 ret = -ENODEV; 2176 goto clean_runtime_disable_ret; 2177 } 2178 data = &priv->data; 2179 2180 if (is_valid_ether_addr(data->slave_data[0].mac_addr)) { 2181 memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN); 2182 dev_info(&pdev->dev, "Detected MACID = %pM\n", priv->mac_addr); 2183 } else { 2184 eth_random_addr(priv->mac_addr); 2185 dev_info(&pdev->dev, "Random MACID = %pM\n", priv->mac_addr); 2186 } 2187 2188 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN); 2189 2190 priv->slaves = devm_kzalloc(&pdev->dev, 2191 sizeof(struct cpsw_slave) * data->slaves, 2192 GFP_KERNEL); 2193 if (!priv->slaves) { 2194 ret = -ENOMEM; 2195 goto clean_runtime_disable_ret; 2196 } 2197 for (i = 0; i < data->slaves; i++) 2198 priv->slaves[i].slave_num = i; 2199 2200 priv->slaves[0].ndev = ndev; 2201 priv->emac_port = 0; 2202 2203 priv->clk = devm_clk_get(&pdev->dev, "fck"); 2204 if (IS_ERR(priv->clk)) { 2205 dev_err(priv->dev, "fck is not found\n"); 2206 ret = -ENODEV; 2207 goto clean_runtime_disable_ret; 2208 } 2209 priv->coal_intvl = 0; 2210 priv->bus_freq_mhz = clk_get_rate(priv->clk) / 1000000; 2211 2212 ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2213 ss_regs = devm_ioremap_resource(&pdev->dev, ss_res); 2214 if (IS_ERR(ss_regs)) { 2215 ret = PTR_ERR(ss_regs); 2216 goto clean_runtime_disable_ret; 2217 } 2218 priv->regs = ss_regs; 2219 priv->host_port = HOST_PORT_NUM; 2220 2221 /* Need to enable clocks with runtime PM api to access module 2222 * registers 2223 */ 2224 pm_runtime_get_sync(&pdev->dev); 2225 priv->version = readl(&priv->regs->id_ver); 2226 pm_runtime_put_sync(&pdev->dev); 2227 2228 res = platform_get_resource(pdev, IORESOURCE_MEM, 1); 2229 priv->wr_regs = devm_ioremap_resource(&pdev->dev, res); 2230 if (IS_ERR(priv->wr_regs)) { 2231 ret = PTR_ERR(priv->wr_regs); 2232 goto clean_runtime_disable_ret; 2233 } 2234 2235 memset(&dma_params, 0, sizeof(dma_params)); 2236 memset(&ale_params, 0, sizeof(ale_params)); 2237 2238 switch (priv->version) { 2239 case CPSW_VERSION_1: 2240 priv->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET; 2241 priv->cpts->reg = ss_regs + CPSW1_CPTS_OFFSET; 2242 priv->hw_stats = ss_regs + CPSW1_HW_STATS; 2243 dma_params.dmaregs = ss_regs + CPSW1_CPDMA_OFFSET; 2244 dma_params.txhdp = ss_regs + CPSW1_STATERAM_OFFSET; 2245 ale_params.ale_regs = ss_regs + CPSW1_ALE_OFFSET; 2246 slave_offset = CPSW1_SLAVE_OFFSET; 2247 slave_size = CPSW1_SLAVE_SIZE; 2248 sliver_offset = CPSW1_SLIVER_OFFSET; 2249 dma_params.desc_mem_phys = 0; 2250 break; 2251 case CPSW_VERSION_2: 2252 case CPSW_VERSION_3: 2253 case CPSW_VERSION_4: 2254 priv->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET; 2255 priv->cpts->reg = ss_regs + CPSW2_CPTS_OFFSET; 2256 priv->hw_stats = ss_regs + CPSW2_HW_STATS; 2257 dma_params.dmaregs = ss_regs + CPSW2_CPDMA_OFFSET; 2258 dma_params.txhdp = ss_regs + CPSW2_STATERAM_OFFSET; 2259 ale_params.ale_regs = ss_regs + CPSW2_ALE_OFFSET; 2260 slave_offset = CPSW2_SLAVE_OFFSET; 2261 slave_size = CPSW2_SLAVE_SIZE; 2262 sliver_offset = CPSW2_SLIVER_OFFSET; 2263 dma_params.desc_mem_phys = 2264 (u32 __force) ss_res->start + CPSW2_BD_OFFSET; 2265 break; 2266 default: 2267 dev_err(priv->dev, "unknown version 0x%08x\n", priv->version); 2268 ret = -ENODEV; 2269 goto clean_runtime_disable_ret; 2270 } 2271 for (i = 0; i < priv->data.slaves; i++) { 2272 struct cpsw_slave *slave = &priv->slaves[i]; 2273 cpsw_slave_init(slave, priv, slave_offset, sliver_offset); 2274 slave_offset += slave_size; 2275 sliver_offset += SLIVER_SIZE; 2276 } 2277 2278 dma_params.dev = &pdev->dev; 2279 dma_params.rxthresh = dma_params.dmaregs + CPDMA_RXTHRESH; 2280 dma_params.rxfree = dma_params.dmaregs + CPDMA_RXFREE; 2281 dma_params.rxhdp = dma_params.txhdp + CPDMA_RXHDP; 2282 dma_params.txcp = dma_params.txhdp + CPDMA_TXCP; 2283 dma_params.rxcp = dma_params.txhdp + CPDMA_RXCP; 2284 2285 dma_params.num_chan = data->channels; 2286 dma_params.has_soft_reset = true; 2287 dma_params.min_packet_size = CPSW_MIN_PACKET_SIZE; 2288 dma_params.desc_mem_size = data->bd_ram_size; 2289 dma_params.desc_align = 16; 2290 dma_params.has_ext_regs = true; 2291 dma_params.desc_hw_addr = dma_params.desc_mem_phys; 2292 2293 priv->dma = cpdma_ctlr_create(&dma_params); 2294 if (!priv->dma) { 2295 dev_err(priv->dev, "error initializing dma\n"); 2296 ret = -ENOMEM; 2297 goto clean_runtime_disable_ret; 2298 } 2299 2300 priv->txch = cpdma_chan_create(priv->dma, tx_chan_num(0), 2301 cpsw_tx_handler); 2302 priv->rxch = cpdma_chan_create(priv->dma, rx_chan_num(0), 2303 cpsw_rx_handler); 2304 2305 if (WARN_ON(!priv->txch || !priv->rxch)) { 2306 dev_err(priv->dev, "error initializing dma channels\n"); 2307 ret = -ENOMEM; 2308 goto clean_dma_ret; 2309 } 2310 2311 ale_params.dev = &ndev->dev; 2312 ale_params.ale_ageout = ale_ageout; 2313 ale_params.ale_entries = data->ale_entries; 2314 ale_params.ale_ports = data->slaves; 2315 2316 priv->ale = cpsw_ale_create(&ale_params); 2317 if (!priv->ale) { 2318 dev_err(priv->dev, "error initializing ale engine\n"); 2319 ret = -ENODEV; 2320 goto clean_dma_ret; 2321 } 2322 2323 ndev->irq = platform_get_irq(pdev, 1); 2324 if (ndev->irq < 0) { 2325 dev_err(priv->dev, "error getting irq resource\n"); 2326 ret = -ENOENT; 2327 goto clean_ale_ret; 2328 } 2329 2330 /* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and 2331 * MISC IRQs which are always kept disabled with this driver so 2332 * we will not request them. 2333 * 2334 * If anyone wants to implement support for those, make sure to 2335 * first request and append them to irqs_table array. 2336 */ 2337 2338 /* RX IRQ */ 2339 irq = platform_get_irq(pdev, 1); 2340 if (irq < 0) 2341 goto clean_ale_ret; 2342 2343 priv->irqs_table[0] = irq; 2344 ret = devm_request_irq(&pdev->dev, irq, cpsw_rx_interrupt, 2345 0, dev_name(&pdev->dev), priv); 2346 if (ret < 0) { 2347 dev_err(priv->dev, "error attaching irq (%d)\n", ret); 2348 goto clean_ale_ret; 2349 } 2350 2351 /* TX IRQ */ 2352 irq = platform_get_irq(pdev, 2); 2353 if (irq < 0) 2354 goto clean_ale_ret; 2355 2356 priv->irqs_table[1] = irq; 2357 ret = devm_request_irq(&pdev->dev, irq, cpsw_tx_interrupt, 2358 0, dev_name(&pdev->dev), priv); 2359 if (ret < 0) { 2360 dev_err(priv->dev, "error attaching irq (%d)\n", ret); 2361 goto clean_ale_ret; 2362 } 2363 priv->num_irqs = 2; 2364 2365 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 2366 2367 ndev->netdev_ops = &cpsw_netdev_ops; 2368 ndev->ethtool_ops = &cpsw_ethtool_ops; 2369 netif_napi_add(ndev, &priv->napi_rx, cpsw_rx_poll, CPSW_POLL_WEIGHT); 2370 netif_napi_add(ndev, &priv->napi_tx, cpsw_tx_poll, CPSW_POLL_WEIGHT); 2371 2372 /* register the network device */ 2373 SET_NETDEV_DEV(ndev, &pdev->dev); 2374 ret = register_netdev(ndev); 2375 if (ret) { 2376 dev_err(priv->dev, "error registering net device\n"); 2377 ret = -ENODEV; 2378 goto clean_ale_ret; 2379 } 2380 2381 cpsw_notice(priv, probe, "initialized device (regs %pa, irq %d)\n", 2382 &ss_res->start, ndev->irq); 2383 2384 if (priv->data.dual_emac) { 2385 ret = cpsw_probe_dual_emac(pdev, priv); 2386 if (ret) { 2387 cpsw_err(priv, probe, "error probe slave 2 emac interface\n"); 2388 goto clean_ale_ret; 2389 } 2390 } 2391 2392 return 0; 2393 2394 clean_ale_ret: 2395 cpsw_ale_destroy(priv->ale); 2396 clean_dma_ret: 2397 cpdma_chan_destroy(priv->txch); 2398 cpdma_chan_destroy(priv->rxch); 2399 cpdma_ctlr_destroy(priv->dma); 2400 clean_runtime_disable_ret: 2401 pm_runtime_disable(&pdev->dev); 2402 clean_ndev_ret: 2403 free_netdev(priv->ndev); 2404 return ret; 2405 } 2406 2407 static int cpsw_remove_child_device(struct device *dev, void *c) 2408 { 2409 struct platform_device *pdev = to_platform_device(dev); 2410 2411 of_device_unregister(pdev); 2412 2413 return 0; 2414 } 2415 2416 static int cpsw_remove(struct platform_device *pdev) 2417 { 2418 struct net_device *ndev = platform_get_drvdata(pdev); 2419 struct cpsw_priv *priv = netdev_priv(ndev); 2420 2421 if (priv->data.dual_emac) 2422 unregister_netdev(cpsw_get_slave_ndev(priv, 1)); 2423 unregister_netdev(ndev); 2424 2425 cpsw_ale_destroy(priv->ale); 2426 cpdma_chan_destroy(priv->txch); 2427 cpdma_chan_destroy(priv->rxch); 2428 cpdma_ctlr_destroy(priv->dma); 2429 pm_runtime_disable(&pdev->dev); 2430 device_for_each_child(&pdev->dev, NULL, cpsw_remove_child_device); 2431 if (priv->data.dual_emac) 2432 free_netdev(cpsw_get_slave_ndev(priv, 1)); 2433 free_netdev(ndev); 2434 return 0; 2435 } 2436 2437 #ifdef CONFIG_PM_SLEEP 2438 static int cpsw_suspend(struct device *dev) 2439 { 2440 struct platform_device *pdev = to_platform_device(dev); 2441 struct net_device *ndev = platform_get_drvdata(pdev); 2442 struct cpsw_priv *priv = netdev_priv(ndev); 2443 2444 if (priv->data.dual_emac) { 2445 int i; 2446 2447 for (i = 0; i < priv->data.slaves; i++) { 2448 if (netif_running(priv->slaves[i].ndev)) 2449 cpsw_ndo_stop(priv->slaves[i].ndev); 2450 soft_reset_slave(priv->slaves + i); 2451 } 2452 } else { 2453 if (netif_running(ndev)) 2454 cpsw_ndo_stop(ndev); 2455 for_each_slave(priv, soft_reset_slave); 2456 } 2457 2458 pm_runtime_put_sync(&pdev->dev); 2459 2460 /* Select sleep pin state */ 2461 pinctrl_pm_select_sleep_state(&pdev->dev); 2462 2463 return 0; 2464 } 2465 2466 static int cpsw_resume(struct device *dev) 2467 { 2468 struct platform_device *pdev = to_platform_device(dev); 2469 struct net_device *ndev = platform_get_drvdata(pdev); 2470 struct cpsw_priv *priv = netdev_priv(ndev); 2471 2472 pm_runtime_get_sync(&pdev->dev); 2473 2474 /* Select default pin state */ 2475 pinctrl_pm_select_default_state(&pdev->dev); 2476 2477 if (priv->data.dual_emac) { 2478 int i; 2479 2480 for (i = 0; i < priv->data.slaves; i++) { 2481 if (netif_running(priv->slaves[i].ndev)) 2482 cpsw_ndo_open(priv->slaves[i].ndev); 2483 } 2484 } else { 2485 if (netif_running(ndev)) 2486 cpsw_ndo_open(ndev); 2487 } 2488 return 0; 2489 } 2490 #endif 2491 2492 static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume); 2493 2494 static const struct of_device_id cpsw_of_mtable[] = { 2495 { .compatible = "ti,cpsw", }, 2496 { /* sentinel */ }, 2497 }; 2498 MODULE_DEVICE_TABLE(of, cpsw_of_mtable); 2499 2500 static struct platform_driver cpsw_driver = { 2501 .driver = { 2502 .name = "cpsw", 2503 .pm = &cpsw_pm_ops, 2504 .of_match_table = cpsw_of_mtable, 2505 }, 2506 .probe = cpsw_probe, 2507 .remove = cpsw_remove, 2508 }; 2509 2510 static int __init cpsw_init(void) 2511 { 2512 return platform_driver_register(&cpsw_driver); 2513 } 2514 late_initcall(cpsw_init); 2515 2516 static void __exit cpsw_exit(void) 2517 { 2518 platform_driver_unregister(&cpsw_driver); 2519 } 2520 module_exit(cpsw_exit); 2521 2522 MODULE_LICENSE("GPL"); 2523 MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>"); 2524 MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>"); 2525 MODULE_DESCRIPTION("TI CPSW Ethernet driver"); 2526