1 /* 2 * Texas Instruments Ethernet Switch Driver 3 * 4 * Copyright (C) 2012 Texas Instruments 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License as 8 * published by the Free Software Foundation version 2. 9 * 10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any 11 * kind, whether express or implied; without even the implied warranty 12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/io.h> 18 #include <linux/clk.h> 19 #include <linux/timer.h> 20 #include <linux/module.h> 21 #include <linux/platform_device.h> 22 #include <linux/irqreturn.h> 23 #include <linux/interrupt.h> 24 #include <linux/if_ether.h> 25 #include <linux/etherdevice.h> 26 #include <linux/netdevice.h> 27 #include <linux/net_tstamp.h> 28 #include <linux/phy.h> 29 #include <linux/workqueue.h> 30 #include <linux/delay.h> 31 #include <linux/pm_runtime.h> 32 #include <linux/gpio/consumer.h> 33 #include <linux/of.h> 34 #include <linux/of_mdio.h> 35 #include <linux/of_net.h> 36 #include <linux/of_device.h> 37 #include <linux/if_vlan.h> 38 #include <linux/kmemleak.h> 39 #include <linux/sys_soc.h> 40 41 #include <linux/pinctrl/consumer.h> 42 43 #include "cpsw.h" 44 #include "cpsw_ale.h" 45 #include "cpts.h" 46 #include "davinci_cpdma.h" 47 48 #define CPSW_DEBUG (NETIF_MSG_HW | NETIF_MSG_WOL | \ 49 NETIF_MSG_DRV | NETIF_MSG_LINK | \ 50 NETIF_MSG_IFUP | NETIF_MSG_INTR | \ 51 NETIF_MSG_PROBE | NETIF_MSG_TIMER | \ 52 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | \ 53 NETIF_MSG_TX_ERR | NETIF_MSG_TX_DONE | \ 54 NETIF_MSG_PKTDATA | NETIF_MSG_TX_QUEUED | \ 55 NETIF_MSG_RX_STATUS) 56 57 #define cpsw_info(priv, type, format, ...) \ 58 do { \ 59 if (netif_msg_##type(priv) && net_ratelimit()) \ 60 dev_info(priv->dev, format, ## __VA_ARGS__); \ 61 } while (0) 62 63 #define cpsw_err(priv, type, format, ...) \ 64 do { \ 65 if (netif_msg_##type(priv) && net_ratelimit()) \ 66 dev_err(priv->dev, format, ## __VA_ARGS__); \ 67 } while (0) 68 69 #define cpsw_dbg(priv, type, format, ...) \ 70 do { \ 71 if (netif_msg_##type(priv) && net_ratelimit()) \ 72 dev_dbg(priv->dev, format, ## __VA_ARGS__); \ 73 } while (0) 74 75 #define cpsw_notice(priv, type, format, ...) \ 76 do { \ 77 if (netif_msg_##type(priv) && net_ratelimit()) \ 78 dev_notice(priv->dev, format, ## __VA_ARGS__); \ 79 } while (0) 80 81 #define ALE_ALL_PORTS 0x7 82 83 #define CPSW_MAJOR_VERSION(reg) (reg >> 8 & 0x7) 84 #define CPSW_MINOR_VERSION(reg) (reg & 0xff) 85 #define CPSW_RTL_VERSION(reg) ((reg >> 11) & 0x1f) 86 87 #define CPSW_VERSION_1 0x19010a 88 #define CPSW_VERSION_2 0x19010c 89 #define CPSW_VERSION_3 0x19010f 90 #define CPSW_VERSION_4 0x190112 91 92 #define HOST_PORT_NUM 0 93 #define CPSW_ALE_PORTS_NUM 3 94 #define SLIVER_SIZE 0x40 95 96 #define CPSW1_HOST_PORT_OFFSET 0x028 97 #define CPSW1_SLAVE_OFFSET 0x050 98 #define CPSW1_SLAVE_SIZE 0x040 99 #define CPSW1_CPDMA_OFFSET 0x100 100 #define CPSW1_STATERAM_OFFSET 0x200 101 #define CPSW1_HW_STATS 0x400 102 #define CPSW1_CPTS_OFFSET 0x500 103 #define CPSW1_ALE_OFFSET 0x600 104 #define CPSW1_SLIVER_OFFSET 0x700 105 106 #define CPSW2_HOST_PORT_OFFSET 0x108 107 #define CPSW2_SLAVE_OFFSET 0x200 108 #define CPSW2_SLAVE_SIZE 0x100 109 #define CPSW2_CPDMA_OFFSET 0x800 110 #define CPSW2_HW_STATS 0x900 111 #define CPSW2_STATERAM_OFFSET 0xa00 112 #define CPSW2_CPTS_OFFSET 0xc00 113 #define CPSW2_ALE_OFFSET 0xd00 114 #define CPSW2_SLIVER_OFFSET 0xd80 115 #define CPSW2_BD_OFFSET 0x2000 116 117 #define CPDMA_RXTHRESH 0x0c0 118 #define CPDMA_RXFREE 0x0e0 119 #define CPDMA_TXHDP 0x00 120 #define CPDMA_RXHDP 0x20 121 #define CPDMA_TXCP 0x40 122 #define CPDMA_RXCP 0x60 123 124 #define CPSW_POLL_WEIGHT 64 125 #define CPSW_RX_VLAN_ENCAP_HDR_SIZE 4 126 #define CPSW_MIN_PACKET_SIZE (VLAN_ETH_ZLEN) 127 #define CPSW_MAX_PACKET_SIZE (VLAN_ETH_FRAME_LEN +\ 128 ETH_FCS_LEN +\ 129 CPSW_RX_VLAN_ENCAP_HDR_SIZE) 130 131 #define RX_PRIORITY_MAPPING 0x76543210 132 #define TX_PRIORITY_MAPPING 0x33221100 133 #define CPDMA_TX_PRIORITY_MAP 0x76543210 134 135 #define CPSW_VLAN_AWARE BIT(1) 136 #define CPSW_RX_VLAN_ENCAP BIT(2) 137 #define CPSW_ALE_VLAN_AWARE 1 138 139 #define CPSW_FIFO_NORMAL_MODE (0 << 16) 140 #define CPSW_FIFO_DUAL_MAC_MODE (1 << 16) 141 #define CPSW_FIFO_RATE_LIMIT_MODE (2 << 16) 142 143 #define CPSW_INTPACEEN (0x3f << 16) 144 #define CPSW_INTPRESCALE_MASK (0x7FF << 0) 145 #define CPSW_CMINTMAX_CNT 63 146 #define CPSW_CMINTMIN_CNT 2 147 #define CPSW_CMINTMAX_INTVL (1000 / CPSW_CMINTMIN_CNT) 148 #define CPSW_CMINTMIN_INTVL ((1000 / CPSW_CMINTMAX_CNT) + 1) 149 150 #define cpsw_slave_index(cpsw, priv) \ 151 ((cpsw->data.dual_emac) ? priv->emac_port : \ 152 cpsw->data.active_slave) 153 #define IRQ_NUM 2 154 #define CPSW_MAX_QUEUES 8 155 #define CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT 256 156 157 #define CPSW_RX_VLAN_ENCAP_HDR_PRIO_SHIFT 29 158 #define CPSW_RX_VLAN_ENCAP_HDR_PRIO_MSK GENMASK(2, 0) 159 #define CPSW_RX_VLAN_ENCAP_HDR_VID_SHIFT 16 160 #define CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_SHIFT 8 161 #define CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_MSK GENMASK(1, 0) 162 enum { 163 CPSW_RX_VLAN_ENCAP_HDR_PKT_VLAN_TAG = 0, 164 CPSW_RX_VLAN_ENCAP_HDR_PKT_RESERV, 165 CPSW_RX_VLAN_ENCAP_HDR_PKT_PRIO_TAG, 166 CPSW_RX_VLAN_ENCAP_HDR_PKT_UNTAG, 167 }; 168 169 static int debug_level; 170 module_param(debug_level, int, 0); 171 MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)"); 172 173 static int ale_ageout = 10; 174 module_param(ale_ageout, int, 0); 175 MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)"); 176 177 static int rx_packet_max = CPSW_MAX_PACKET_SIZE; 178 module_param(rx_packet_max, int, 0); 179 MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)"); 180 181 static int descs_pool_size = CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT; 182 module_param(descs_pool_size, int, 0444); 183 MODULE_PARM_DESC(descs_pool_size, "Number of CPDMA CPPI descriptors in pool"); 184 185 struct cpsw_wr_regs { 186 u32 id_ver; 187 u32 soft_reset; 188 u32 control; 189 u32 int_control; 190 u32 rx_thresh_en; 191 u32 rx_en; 192 u32 tx_en; 193 u32 misc_en; 194 u32 mem_allign1[8]; 195 u32 rx_thresh_stat; 196 u32 rx_stat; 197 u32 tx_stat; 198 u32 misc_stat; 199 u32 mem_allign2[8]; 200 u32 rx_imax; 201 u32 tx_imax; 202 203 }; 204 205 struct cpsw_ss_regs { 206 u32 id_ver; 207 u32 control; 208 u32 soft_reset; 209 u32 stat_port_en; 210 u32 ptype; 211 u32 soft_idle; 212 u32 thru_rate; 213 u32 gap_thresh; 214 u32 tx_start_wds; 215 u32 flow_control; 216 u32 vlan_ltype; 217 u32 ts_ltype; 218 u32 dlr_ltype; 219 }; 220 221 /* CPSW_PORT_V1 */ 222 #define CPSW1_MAX_BLKS 0x00 /* Maximum FIFO Blocks */ 223 #define CPSW1_BLK_CNT 0x04 /* FIFO Block Usage Count (Read Only) */ 224 #define CPSW1_TX_IN_CTL 0x08 /* Transmit FIFO Control */ 225 #define CPSW1_PORT_VLAN 0x0c /* VLAN Register */ 226 #define CPSW1_TX_PRI_MAP 0x10 /* Tx Header Priority to Switch Pri Mapping */ 227 #define CPSW1_TS_CTL 0x14 /* Time Sync Control */ 228 #define CPSW1_TS_SEQ_LTYPE 0x18 /* Time Sync Sequence ID Offset and Msg Type */ 229 #define CPSW1_TS_VLAN 0x1c /* Time Sync VLAN1 and VLAN2 */ 230 231 /* CPSW_PORT_V2 */ 232 #define CPSW2_CONTROL 0x00 /* Control Register */ 233 #define CPSW2_MAX_BLKS 0x08 /* Maximum FIFO Blocks */ 234 #define CPSW2_BLK_CNT 0x0c /* FIFO Block Usage Count (Read Only) */ 235 #define CPSW2_TX_IN_CTL 0x10 /* Transmit FIFO Control */ 236 #define CPSW2_PORT_VLAN 0x14 /* VLAN Register */ 237 #define CPSW2_TX_PRI_MAP 0x18 /* Tx Header Priority to Switch Pri Mapping */ 238 #define CPSW2_TS_SEQ_MTYPE 0x1c /* Time Sync Sequence ID Offset and Msg Type */ 239 240 /* CPSW_PORT_V1 and V2 */ 241 #define SA_LO 0x20 /* CPGMAC_SL Source Address Low */ 242 #define SA_HI 0x24 /* CPGMAC_SL Source Address High */ 243 #define SEND_PERCENT 0x28 /* Transmit Queue Send Percentages */ 244 245 /* CPSW_PORT_V2 only */ 246 #define RX_DSCP_PRI_MAP0 0x30 /* Rx DSCP Priority to Rx Packet Mapping */ 247 #define RX_DSCP_PRI_MAP1 0x34 /* Rx DSCP Priority to Rx Packet Mapping */ 248 #define RX_DSCP_PRI_MAP2 0x38 /* Rx DSCP Priority to Rx Packet Mapping */ 249 #define RX_DSCP_PRI_MAP3 0x3c /* Rx DSCP Priority to Rx Packet Mapping */ 250 #define RX_DSCP_PRI_MAP4 0x40 /* Rx DSCP Priority to Rx Packet Mapping */ 251 #define RX_DSCP_PRI_MAP5 0x44 /* Rx DSCP Priority to Rx Packet Mapping */ 252 #define RX_DSCP_PRI_MAP6 0x48 /* Rx DSCP Priority to Rx Packet Mapping */ 253 #define RX_DSCP_PRI_MAP7 0x4c /* Rx DSCP Priority to Rx Packet Mapping */ 254 255 /* Bit definitions for the CPSW2_CONTROL register */ 256 #define PASS_PRI_TAGGED (1<<24) /* Pass Priority Tagged */ 257 #define VLAN_LTYPE2_EN (1<<21) /* VLAN LTYPE 2 enable */ 258 #define VLAN_LTYPE1_EN (1<<20) /* VLAN LTYPE 1 enable */ 259 #define DSCP_PRI_EN (1<<16) /* DSCP Priority Enable */ 260 #define TS_320 (1<<14) /* Time Sync Dest Port 320 enable */ 261 #define TS_319 (1<<13) /* Time Sync Dest Port 319 enable */ 262 #define TS_132 (1<<12) /* Time Sync Dest IP Addr 132 enable */ 263 #define TS_131 (1<<11) /* Time Sync Dest IP Addr 131 enable */ 264 #define TS_130 (1<<10) /* Time Sync Dest IP Addr 130 enable */ 265 #define TS_129 (1<<9) /* Time Sync Dest IP Addr 129 enable */ 266 #define TS_TTL_NONZERO (1<<8) /* Time Sync Time To Live Non-zero enable */ 267 #define TS_ANNEX_F_EN (1<<6) /* Time Sync Annex F enable */ 268 #define TS_ANNEX_D_EN (1<<4) /* Time Sync Annex D enable */ 269 #define TS_LTYPE2_EN (1<<3) /* Time Sync LTYPE 2 enable */ 270 #define TS_LTYPE1_EN (1<<2) /* Time Sync LTYPE 1 enable */ 271 #define TS_TX_EN (1<<1) /* Time Sync Transmit Enable */ 272 #define TS_RX_EN (1<<0) /* Time Sync Receive Enable */ 273 274 #define CTRL_V2_TS_BITS \ 275 (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\ 276 TS_TTL_NONZERO | TS_ANNEX_D_EN | TS_LTYPE1_EN) 277 278 #define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN) 279 #define CTRL_V2_TX_TS_BITS (CTRL_V2_TS_BITS | TS_TX_EN) 280 #define CTRL_V2_RX_TS_BITS (CTRL_V2_TS_BITS | TS_RX_EN) 281 282 283 #define CTRL_V3_TS_BITS \ 284 (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\ 285 TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\ 286 TS_LTYPE1_EN) 287 288 #define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN) 289 #define CTRL_V3_TX_TS_BITS (CTRL_V3_TS_BITS | TS_TX_EN) 290 #define CTRL_V3_RX_TS_BITS (CTRL_V3_TS_BITS | TS_RX_EN) 291 292 /* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */ 293 #define TS_SEQ_ID_OFFSET_SHIFT (16) /* Time Sync Sequence ID Offset */ 294 #define TS_SEQ_ID_OFFSET_MASK (0x3f) 295 #define TS_MSG_TYPE_EN_SHIFT (0) /* Time Sync Message Type Enable */ 296 #define TS_MSG_TYPE_EN_MASK (0xffff) 297 298 /* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */ 299 #define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3)) 300 301 /* Bit definitions for the CPSW1_TS_CTL register */ 302 #define CPSW_V1_TS_RX_EN BIT(0) 303 #define CPSW_V1_TS_TX_EN BIT(4) 304 #define CPSW_V1_MSG_TYPE_OFS 16 305 306 /* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */ 307 #define CPSW_V1_SEQ_ID_OFS_SHIFT 16 308 309 #define CPSW_MAX_BLKS_TX 15 310 #define CPSW_MAX_BLKS_TX_SHIFT 4 311 #define CPSW_MAX_BLKS_RX 5 312 313 struct cpsw_host_regs { 314 u32 max_blks; 315 u32 blk_cnt; 316 u32 tx_in_ctl; 317 u32 port_vlan; 318 u32 tx_pri_map; 319 u32 cpdma_tx_pri_map; 320 u32 cpdma_rx_chan_map; 321 }; 322 323 struct cpsw_sliver_regs { 324 u32 id_ver; 325 u32 mac_control; 326 u32 mac_status; 327 u32 soft_reset; 328 u32 rx_maxlen; 329 u32 __reserved_0; 330 u32 rx_pause; 331 u32 tx_pause; 332 u32 __reserved_1; 333 u32 rx_pri_map; 334 }; 335 336 struct cpsw_hw_stats { 337 u32 rxgoodframes; 338 u32 rxbroadcastframes; 339 u32 rxmulticastframes; 340 u32 rxpauseframes; 341 u32 rxcrcerrors; 342 u32 rxaligncodeerrors; 343 u32 rxoversizedframes; 344 u32 rxjabberframes; 345 u32 rxundersizedframes; 346 u32 rxfragments; 347 u32 __pad_0[2]; 348 u32 rxoctets; 349 u32 txgoodframes; 350 u32 txbroadcastframes; 351 u32 txmulticastframes; 352 u32 txpauseframes; 353 u32 txdeferredframes; 354 u32 txcollisionframes; 355 u32 txsinglecollframes; 356 u32 txmultcollframes; 357 u32 txexcessivecollisions; 358 u32 txlatecollisions; 359 u32 txunderrun; 360 u32 txcarriersenseerrors; 361 u32 txoctets; 362 u32 octetframes64; 363 u32 octetframes65t127; 364 u32 octetframes128t255; 365 u32 octetframes256t511; 366 u32 octetframes512t1023; 367 u32 octetframes1024tup; 368 u32 netoctets; 369 u32 rxsofoverruns; 370 u32 rxmofoverruns; 371 u32 rxdmaoverruns; 372 }; 373 374 struct cpsw_slave_data { 375 struct device_node *phy_node; 376 char phy_id[MII_BUS_ID_SIZE]; 377 int phy_if; 378 u8 mac_addr[ETH_ALEN]; 379 u16 dual_emac_res_vlan; /* Reserved VLAN for DualEMAC */ 380 }; 381 382 struct cpsw_platform_data { 383 struct cpsw_slave_data *slave_data; 384 u32 ss_reg_ofs; /* Subsystem control register offset */ 385 u32 channels; /* number of cpdma channels (symmetric) */ 386 u32 slaves; /* number of slave cpgmac ports */ 387 u32 active_slave; /* time stamping, ethtool and SIOCGMIIPHY slave */ 388 u32 ale_entries; /* ale table size */ 389 u32 bd_ram_size; /*buffer descriptor ram size */ 390 u32 mac_control; /* Mac control register */ 391 u16 default_vlan; /* Def VLAN for ALE lookup in VLAN aware mode*/ 392 bool dual_emac; /* Enable Dual EMAC mode */ 393 }; 394 395 struct cpsw_slave { 396 void __iomem *regs; 397 struct cpsw_sliver_regs __iomem *sliver; 398 int slave_num; 399 u32 mac_control; 400 struct cpsw_slave_data *data; 401 struct phy_device *phy; 402 struct net_device *ndev; 403 u32 port_vlan; 404 }; 405 406 static inline u32 slave_read(struct cpsw_slave *slave, u32 offset) 407 { 408 return readl_relaxed(slave->regs + offset); 409 } 410 411 static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset) 412 { 413 writel_relaxed(val, slave->regs + offset); 414 } 415 416 struct cpsw_vector { 417 struct cpdma_chan *ch; 418 int budget; 419 }; 420 421 struct cpsw_common { 422 struct device *dev; 423 struct cpsw_platform_data data; 424 struct napi_struct napi_rx; 425 struct napi_struct napi_tx; 426 struct cpsw_ss_regs __iomem *regs; 427 struct cpsw_wr_regs __iomem *wr_regs; 428 u8 __iomem *hw_stats; 429 struct cpsw_host_regs __iomem *host_port_regs; 430 u32 version; 431 u32 coal_intvl; 432 u32 bus_freq_mhz; 433 int rx_packet_max; 434 struct cpsw_slave *slaves; 435 struct cpdma_ctlr *dma; 436 struct cpsw_vector txv[CPSW_MAX_QUEUES]; 437 struct cpsw_vector rxv[CPSW_MAX_QUEUES]; 438 struct cpsw_ale *ale; 439 bool quirk_irq; 440 bool rx_irq_disabled; 441 bool tx_irq_disabled; 442 u32 irqs_table[IRQ_NUM]; 443 struct cpts *cpts; 444 int rx_ch_num, tx_ch_num; 445 int speed; 446 int usage_count; 447 }; 448 449 struct cpsw_priv { 450 struct net_device *ndev; 451 struct device *dev; 452 u32 msg_enable; 453 u8 mac_addr[ETH_ALEN]; 454 bool rx_pause; 455 bool tx_pause; 456 u32 emac_port; 457 struct cpsw_common *cpsw; 458 }; 459 460 struct cpsw_stats { 461 char stat_string[ETH_GSTRING_LEN]; 462 int type; 463 int sizeof_stat; 464 int stat_offset; 465 }; 466 467 enum { 468 CPSW_STATS, 469 CPDMA_RX_STATS, 470 CPDMA_TX_STATS, 471 }; 472 473 #define CPSW_STAT(m) CPSW_STATS, \ 474 sizeof(((struct cpsw_hw_stats *)0)->m), \ 475 offsetof(struct cpsw_hw_stats, m) 476 #define CPDMA_RX_STAT(m) CPDMA_RX_STATS, \ 477 sizeof(((struct cpdma_chan_stats *)0)->m), \ 478 offsetof(struct cpdma_chan_stats, m) 479 #define CPDMA_TX_STAT(m) CPDMA_TX_STATS, \ 480 sizeof(((struct cpdma_chan_stats *)0)->m), \ 481 offsetof(struct cpdma_chan_stats, m) 482 483 static const struct cpsw_stats cpsw_gstrings_stats[] = { 484 { "Good Rx Frames", CPSW_STAT(rxgoodframes) }, 485 { "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) }, 486 { "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) }, 487 { "Pause Rx Frames", CPSW_STAT(rxpauseframes) }, 488 { "Rx CRC Errors", CPSW_STAT(rxcrcerrors) }, 489 { "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) }, 490 { "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) }, 491 { "Rx Jabbers", CPSW_STAT(rxjabberframes) }, 492 { "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) }, 493 { "Rx Fragments", CPSW_STAT(rxfragments) }, 494 { "Rx Octets", CPSW_STAT(rxoctets) }, 495 { "Good Tx Frames", CPSW_STAT(txgoodframes) }, 496 { "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) }, 497 { "Multicast Tx Frames", CPSW_STAT(txmulticastframes) }, 498 { "Pause Tx Frames", CPSW_STAT(txpauseframes) }, 499 { "Deferred Tx Frames", CPSW_STAT(txdeferredframes) }, 500 { "Collisions", CPSW_STAT(txcollisionframes) }, 501 { "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) }, 502 { "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) }, 503 { "Excessive Collisions", CPSW_STAT(txexcessivecollisions) }, 504 { "Late Collisions", CPSW_STAT(txlatecollisions) }, 505 { "Tx Underrun", CPSW_STAT(txunderrun) }, 506 { "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) }, 507 { "Tx Octets", CPSW_STAT(txoctets) }, 508 { "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) }, 509 { "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) }, 510 { "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) }, 511 { "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) }, 512 { "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) }, 513 { "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) }, 514 { "Net Octets", CPSW_STAT(netoctets) }, 515 { "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) }, 516 { "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) }, 517 { "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) }, 518 }; 519 520 static const struct cpsw_stats cpsw_gstrings_ch_stats[] = { 521 { "head_enqueue", CPDMA_RX_STAT(head_enqueue) }, 522 { "tail_enqueue", CPDMA_RX_STAT(tail_enqueue) }, 523 { "pad_enqueue", CPDMA_RX_STAT(pad_enqueue) }, 524 { "misqueued", CPDMA_RX_STAT(misqueued) }, 525 { "desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) }, 526 { "pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) }, 527 { "runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) }, 528 { "runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) }, 529 { "empty_dequeue", CPDMA_RX_STAT(empty_dequeue) }, 530 { "busy_dequeue", CPDMA_RX_STAT(busy_dequeue) }, 531 { "good_dequeue", CPDMA_RX_STAT(good_dequeue) }, 532 { "requeue", CPDMA_RX_STAT(requeue) }, 533 { "teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) }, 534 }; 535 536 #define CPSW_STATS_COMMON_LEN ARRAY_SIZE(cpsw_gstrings_stats) 537 #define CPSW_STATS_CH_LEN ARRAY_SIZE(cpsw_gstrings_ch_stats) 538 539 #define ndev_to_cpsw(ndev) (((struct cpsw_priv *)netdev_priv(ndev))->cpsw) 540 #define napi_to_cpsw(napi) container_of(napi, struct cpsw_common, napi) 541 #define for_each_slave(priv, func, arg...) \ 542 do { \ 543 struct cpsw_slave *slave; \ 544 struct cpsw_common *cpsw = (priv)->cpsw; \ 545 int n; \ 546 if (cpsw->data.dual_emac) \ 547 (func)((cpsw)->slaves + priv->emac_port, ##arg);\ 548 else \ 549 for (n = cpsw->data.slaves, \ 550 slave = cpsw->slaves; \ 551 n; n--) \ 552 (func)(slave++, ##arg); \ 553 } while (0) 554 555 #define cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb) \ 556 do { \ 557 if (!cpsw->data.dual_emac) \ 558 break; \ 559 if (CPDMA_RX_SOURCE_PORT(status) == 1) { \ 560 ndev = cpsw->slaves[0].ndev; \ 561 skb->dev = ndev; \ 562 } else if (CPDMA_RX_SOURCE_PORT(status) == 2) { \ 563 ndev = cpsw->slaves[1].ndev; \ 564 skb->dev = ndev; \ 565 } \ 566 } while (0) 567 #define cpsw_add_mcast(cpsw, priv, addr) \ 568 do { \ 569 if (cpsw->data.dual_emac) { \ 570 struct cpsw_slave *slave = cpsw->slaves + \ 571 priv->emac_port; \ 572 int slave_port = cpsw_get_slave_port( \ 573 slave->slave_num); \ 574 cpsw_ale_add_mcast(cpsw->ale, addr, \ 575 1 << slave_port | ALE_PORT_HOST, \ 576 ALE_VLAN, slave->port_vlan, 0); \ 577 } else { \ 578 cpsw_ale_add_mcast(cpsw->ale, addr, \ 579 ALE_ALL_PORTS, \ 580 0, 0, 0); \ 581 } \ 582 } while (0) 583 584 static inline int cpsw_get_slave_port(u32 slave_num) 585 { 586 return slave_num + 1; 587 } 588 589 static void cpsw_set_promiscious(struct net_device *ndev, bool enable) 590 { 591 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 592 struct cpsw_ale *ale = cpsw->ale; 593 int i; 594 595 if (cpsw->data.dual_emac) { 596 bool flag = false; 597 598 /* Enabling promiscuous mode for one interface will be 599 * common for both the interface as the interface shares 600 * the same hardware resource. 601 */ 602 for (i = 0; i < cpsw->data.slaves; i++) 603 if (cpsw->slaves[i].ndev->flags & IFF_PROMISC) 604 flag = true; 605 606 if (!enable && flag) { 607 enable = true; 608 dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n"); 609 } 610 611 if (enable) { 612 /* Enable Bypass */ 613 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1); 614 615 dev_dbg(&ndev->dev, "promiscuity enabled\n"); 616 } else { 617 /* Disable Bypass */ 618 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0); 619 dev_dbg(&ndev->dev, "promiscuity disabled\n"); 620 } 621 } else { 622 if (enable) { 623 unsigned long timeout = jiffies + HZ; 624 625 /* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */ 626 for (i = 0; i <= cpsw->data.slaves; i++) { 627 cpsw_ale_control_set(ale, i, 628 ALE_PORT_NOLEARN, 1); 629 cpsw_ale_control_set(ale, i, 630 ALE_PORT_NO_SA_UPDATE, 1); 631 } 632 633 /* Clear All Untouched entries */ 634 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1); 635 do { 636 cpu_relax(); 637 if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT)) 638 break; 639 } while (time_after(timeout, jiffies)); 640 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1); 641 642 /* Clear all mcast from ALE */ 643 cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS, -1); 644 645 /* Flood All Unicast Packets to Host port */ 646 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1); 647 dev_dbg(&ndev->dev, "promiscuity enabled\n"); 648 } else { 649 /* Don't Flood All Unicast Packets to Host port */ 650 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0); 651 652 /* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */ 653 for (i = 0; i <= cpsw->data.slaves; i++) { 654 cpsw_ale_control_set(ale, i, 655 ALE_PORT_NOLEARN, 0); 656 cpsw_ale_control_set(ale, i, 657 ALE_PORT_NO_SA_UPDATE, 0); 658 } 659 dev_dbg(&ndev->dev, "promiscuity disabled\n"); 660 } 661 } 662 } 663 664 static void cpsw_ndo_set_rx_mode(struct net_device *ndev) 665 { 666 struct cpsw_priv *priv = netdev_priv(ndev); 667 struct cpsw_common *cpsw = priv->cpsw; 668 int vid; 669 670 if (cpsw->data.dual_emac) 671 vid = cpsw->slaves[priv->emac_port].port_vlan; 672 else 673 vid = cpsw->data.default_vlan; 674 675 if (ndev->flags & IFF_PROMISC) { 676 /* Enable promiscuous mode */ 677 cpsw_set_promiscious(ndev, true); 678 cpsw_ale_set_allmulti(cpsw->ale, IFF_ALLMULTI); 679 return; 680 } else { 681 /* Disable promiscuous mode */ 682 cpsw_set_promiscious(ndev, false); 683 } 684 685 /* Restore allmulti on vlans if necessary */ 686 cpsw_ale_set_allmulti(cpsw->ale, priv->ndev->flags & IFF_ALLMULTI); 687 688 /* Clear all mcast from ALE */ 689 cpsw_ale_flush_multicast(cpsw->ale, ALE_ALL_PORTS, vid); 690 691 if (!netdev_mc_empty(ndev)) { 692 struct netdev_hw_addr *ha; 693 694 /* program multicast address list into ALE register */ 695 netdev_for_each_mc_addr(ha, ndev) { 696 cpsw_add_mcast(cpsw, priv, (u8 *)ha->addr); 697 } 698 } 699 } 700 701 static void cpsw_intr_enable(struct cpsw_common *cpsw) 702 { 703 writel_relaxed(0xFF, &cpsw->wr_regs->tx_en); 704 writel_relaxed(0xFF, &cpsw->wr_regs->rx_en); 705 706 cpdma_ctlr_int_ctrl(cpsw->dma, true); 707 return; 708 } 709 710 static void cpsw_intr_disable(struct cpsw_common *cpsw) 711 { 712 writel_relaxed(0, &cpsw->wr_regs->tx_en); 713 writel_relaxed(0, &cpsw->wr_regs->rx_en); 714 715 cpdma_ctlr_int_ctrl(cpsw->dma, false); 716 return; 717 } 718 719 static void cpsw_tx_handler(void *token, int len, int status) 720 { 721 struct netdev_queue *txq; 722 struct sk_buff *skb = token; 723 struct net_device *ndev = skb->dev; 724 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 725 726 /* Check whether the queue is stopped due to stalled tx dma, if the 727 * queue is stopped then start the queue as we have free desc for tx 728 */ 729 txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb)); 730 if (unlikely(netif_tx_queue_stopped(txq))) 731 netif_tx_wake_queue(txq); 732 733 cpts_tx_timestamp(cpsw->cpts, skb); 734 ndev->stats.tx_packets++; 735 ndev->stats.tx_bytes += len; 736 dev_kfree_skb_any(skb); 737 } 738 739 static void cpsw_rx_vlan_encap(struct sk_buff *skb) 740 { 741 struct cpsw_priv *priv = netdev_priv(skb->dev); 742 struct cpsw_common *cpsw = priv->cpsw; 743 u32 rx_vlan_encap_hdr = *((u32 *)skb->data); 744 u16 vtag, vid, prio, pkt_type; 745 746 /* Remove VLAN header encapsulation word */ 747 skb_pull(skb, CPSW_RX_VLAN_ENCAP_HDR_SIZE); 748 749 pkt_type = (rx_vlan_encap_hdr >> 750 CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_SHIFT) & 751 CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_MSK; 752 /* Ignore unknown & Priority-tagged packets*/ 753 if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_RESERV || 754 pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_PRIO_TAG) 755 return; 756 757 vid = (rx_vlan_encap_hdr >> 758 CPSW_RX_VLAN_ENCAP_HDR_VID_SHIFT) & 759 VLAN_VID_MASK; 760 /* Ignore vid 0 and pass packet as is */ 761 if (!vid) 762 return; 763 /* Ignore default vlans in dual mac mode */ 764 if (cpsw->data.dual_emac && 765 vid == cpsw->slaves[priv->emac_port].port_vlan) 766 return; 767 768 prio = (rx_vlan_encap_hdr >> 769 CPSW_RX_VLAN_ENCAP_HDR_PRIO_SHIFT) & 770 CPSW_RX_VLAN_ENCAP_HDR_PRIO_MSK; 771 772 vtag = (prio << VLAN_PRIO_SHIFT) | vid; 773 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vtag); 774 775 /* strip vlan tag for VLAN-tagged packet */ 776 if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_VLAN_TAG) { 777 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); 778 skb_pull(skb, VLAN_HLEN); 779 } 780 } 781 782 static void cpsw_rx_handler(void *token, int len, int status) 783 { 784 struct cpdma_chan *ch; 785 struct sk_buff *skb = token; 786 struct sk_buff *new_skb; 787 struct net_device *ndev = skb->dev; 788 int ret = 0; 789 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 790 791 cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb); 792 793 if (unlikely(status < 0) || unlikely(!netif_running(ndev))) { 794 /* In dual emac mode check for all interfaces */ 795 if (cpsw->data.dual_emac && cpsw->usage_count && 796 (status >= 0)) { 797 /* The packet received is for the interface which 798 * is already down and the other interface is up 799 * and running, instead of freeing which results 800 * in reducing of the number of rx descriptor in 801 * DMA engine, requeue skb back to cpdma. 802 */ 803 new_skb = skb; 804 goto requeue; 805 } 806 807 /* the interface is going down, skbs are purged */ 808 dev_kfree_skb_any(skb); 809 return; 810 } 811 812 new_skb = netdev_alloc_skb_ip_align(ndev, cpsw->rx_packet_max); 813 if (new_skb) { 814 skb_copy_queue_mapping(new_skb, skb); 815 skb_put(skb, len); 816 if (status & CPDMA_RX_VLAN_ENCAP) 817 cpsw_rx_vlan_encap(skb); 818 cpts_rx_timestamp(cpsw->cpts, skb); 819 skb->protocol = eth_type_trans(skb, ndev); 820 netif_receive_skb(skb); 821 ndev->stats.rx_bytes += len; 822 ndev->stats.rx_packets++; 823 kmemleak_not_leak(new_skb); 824 } else { 825 ndev->stats.rx_dropped++; 826 new_skb = skb; 827 } 828 829 requeue: 830 if (netif_dormant(ndev)) { 831 dev_kfree_skb_any(new_skb); 832 return; 833 } 834 835 ch = cpsw->rxv[skb_get_queue_mapping(new_skb)].ch; 836 ret = cpdma_chan_submit(ch, new_skb, new_skb->data, 837 skb_tailroom(new_skb), 0); 838 if (WARN_ON(ret < 0)) 839 dev_kfree_skb_any(new_skb); 840 } 841 842 static void cpsw_split_res(struct net_device *ndev) 843 { 844 struct cpsw_priv *priv = netdev_priv(ndev); 845 u32 consumed_rate = 0, bigest_rate = 0; 846 struct cpsw_common *cpsw = priv->cpsw; 847 struct cpsw_vector *txv = cpsw->txv; 848 int i, ch_weight, rlim_ch_num = 0; 849 int budget, bigest_rate_ch = 0; 850 u32 ch_rate, max_rate; 851 int ch_budget = 0; 852 853 for (i = 0; i < cpsw->tx_ch_num; i++) { 854 ch_rate = cpdma_chan_get_rate(txv[i].ch); 855 if (!ch_rate) 856 continue; 857 858 rlim_ch_num++; 859 consumed_rate += ch_rate; 860 } 861 862 if (cpsw->tx_ch_num == rlim_ch_num) { 863 max_rate = consumed_rate; 864 } else if (!rlim_ch_num) { 865 ch_budget = CPSW_POLL_WEIGHT / cpsw->tx_ch_num; 866 bigest_rate = 0; 867 max_rate = consumed_rate; 868 } else { 869 max_rate = cpsw->speed * 1000; 870 871 /* if max_rate is less then expected due to reduced link speed, 872 * split proportionally according next potential max speed 873 */ 874 if (max_rate < consumed_rate) 875 max_rate *= 10; 876 877 if (max_rate < consumed_rate) 878 max_rate *= 10; 879 880 ch_budget = (consumed_rate * CPSW_POLL_WEIGHT) / max_rate; 881 ch_budget = (CPSW_POLL_WEIGHT - ch_budget) / 882 (cpsw->tx_ch_num - rlim_ch_num); 883 bigest_rate = (max_rate - consumed_rate) / 884 (cpsw->tx_ch_num - rlim_ch_num); 885 } 886 887 /* split tx weight/budget */ 888 budget = CPSW_POLL_WEIGHT; 889 for (i = 0; i < cpsw->tx_ch_num; i++) { 890 ch_rate = cpdma_chan_get_rate(txv[i].ch); 891 if (ch_rate) { 892 txv[i].budget = (ch_rate * CPSW_POLL_WEIGHT) / max_rate; 893 if (!txv[i].budget) 894 txv[i].budget++; 895 if (ch_rate > bigest_rate) { 896 bigest_rate_ch = i; 897 bigest_rate = ch_rate; 898 } 899 900 ch_weight = (ch_rate * 100) / max_rate; 901 if (!ch_weight) 902 ch_weight++; 903 cpdma_chan_set_weight(cpsw->txv[i].ch, ch_weight); 904 } else { 905 txv[i].budget = ch_budget; 906 if (!bigest_rate_ch) 907 bigest_rate_ch = i; 908 cpdma_chan_set_weight(cpsw->txv[i].ch, 0); 909 } 910 911 budget -= txv[i].budget; 912 } 913 914 if (budget) 915 txv[bigest_rate_ch].budget += budget; 916 917 /* split rx budget */ 918 budget = CPSW_POLL_WEIGHT; 919 ch_budget = budget / cpsw->rx_ch_num; 920 for (i = 0; i < cpsw->rx_ch_num; i++) { 921 cpsw->rxv[i].budget = ch_budget; 922 budget -= ch_budget; 923 } 924 925 if (budget) 926 cpsw->rxv[0].budget += budget; 927 } 928 929 static irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id) 930 { 931 struct cpsw_common *cpsw = dev_id; 932 933 writel(0, &cpsw->wr_regs->tx_en); 934 cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_TX); 935 936 if (cpsw->quirk_irq) { 937 disable_irq_nosync(cpsw->irqs_table[1]); 938 cpsw->tx_irq_disabled = true; 939 } 940 941 napi_schedule(&cpsw->napi_tx); 942 return IRQ_HANDLED; 943 } 944 945 static irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id) 946 { 947 struct cpsw_common *cpsw = dev_id; 948 949 cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_RX); 950 writel(0, &cpsw->wr_regs->rx_en); 951 952 if (cpsw->quirk_irq) { 953 disable_irq_nosync(cpsw->irqs_table[0]); 954 cpsw->rx_irq_disabled = true; 955 } 956 957 napi_schedule(&cpsw->napi_rx); 958 return IRQ_HANDLED; 959 } 960 961 static int cpsw_tx_mq_poll(struct napi_struct *napi_tx, int budget) 962 { 963 u32 ch_map; 964 int num_tx, cur_budget, ch; 965 struct cpsw_common *cpsw = napi_to_cpsw(napi_tx); 966 struct cpsw_vector *txv; 967 968 /* process every unprocessed channel */ 969 ch_map = cpdma_ctrl_txchs_state(cpsw->dma); 970 for (ch = 0, num_tx = 0; ch_map; ch_map >>= 1, ch++) { 971 if (!(ch_map & 0x01)) 972 continue; 973 974 txv = &cpsw->txv[ch]; 975 if (unlikely(txv->budget > budget - num_tx)) 976 cur_budget = budget - num_tx; 977 else 978 cur_budget = txv->budget; 979 980 num_tx += cpdma_chan_process(txv->ch, cur_budget); 981 if (num_tx >= budget) 982 break; 983 } 984 985 if (num_tx < budget) { 986 napi_complete(napi_tx); 987 writel(0xff, &cpsw->wr_regs->tx_en); 988 } 989 990 return num_tx; 991 } 992 993 static int cpsw_tx_poll(struct napi_struct *napi_tx, int budget) 994 { 995 struct cpsw_common *cpsw = napi_to_cpsw(napi_tx); 996 int num_tx; 997 998 num_tx = cpdma_chan_process(cpsw->txv[0].ch, budget); 999 if (num_tx < budget) { 1000 napi_complete(napi_tx); 1001 writel(0xff, &cpsw->wr_regs->tx_en); 1002 if (cpsw->tx_irq_disabled) { 1003 cpsw->tx_irq_disabled = false; 1004 enable_irq(cpsw->irqs_table[1]); 1005 } 1006 } 1007 1008 return num_tx; 1009 } 1010 1011 static int cpsw_rx_mq_poll(struct napi_struct *napi_rx, int budget) 1012 { 1013 u32 ch_map; 1014 int num_rx, cur_budget, ch; 1015 struct cpsw_common *cpsw = napi_to_cpsw(napi_rx); 1016 struct cpsw_vector *rxv; 1017 1018 /* process every unprocessed channel */ 1019 ch_map = cpdma_ctrl_rxchs_state(cpsw->dma); 1020 for (ch = 0, num_rx = 0; ch_map; ch_map >>= 1, ch++) { 1021 if (!(ch_map & 0x01)) 1022 continue; 1023 1024 rxv = &cpsw->rxv[ch]; 1025 if (unlikely(rxv->budget > budget - num_rx)) 1026 cur_budget = budget - num_rx; 1027 else 1028 cur_budget = rxv->budget; 1029 1030 num_rx += cpdma_chan_process(rxv->ch, cur_budget); 1031 if (num_rx >= budget) 1032 break; 1033 } 1034 1035 if (num_rx < budget) { 1036 napi_complete_done(napi_rx, num_rx); 1037 writel(0xff, &cpsw->wr_regs->rx_en); 1038 } 1039 1040 return num_rx; 1041 } 1042 1043 static int cpsw_rx_poll(struct napi_struct *napi_rx, int budget) 1044 { 1045 struct cpsw_common *cpsw = napi_to_cpsw(napi_rx); 1046 int num_rx; 1047 1048 num_rx = cpdma_chan_process(cpsw->rxv[0].ch, budget); 1049 if (num_rx < budget) { 1050 napi_complete_done(napi_rx, num_rx); 1051 writel(0xff, &cpsw->wr_regs->rx_en); 1052 if (cpsw->rx_irq_disabled) { 1053 cpsw->rx_irq_disabled = false; 1054 enable_irq(cpsw->irqs_table[0]); 1055 } 1056 } 1057 1058 return num_rx; 1059 } 1060 1061 static inline void soft_reset(const char *module, void __iomem *reg) 1062 { 1063 unsigned long timeout = jiffies + HZ; 1064 1065 writel_relaxed(1, reg); 1066 do { 1067 cpu_relax(); 1068 } while ((readl_relaxed(reg) & 1) && time_after(timeout, jiffies)); 1069 1070 WARN(readl_relaxed(reg) & 1, "failed to soft-reset %s\n", module); 1071 } 1072 1073 static void cpsw_set_slave_mac(struct cpsw_slave *slave, 1074 struct cpsw_priv *priv) 1075 { 1076 slave_write(slave, mac_hi(priv->mac_addr), SA_HI); 1077 slave_write(slave, mac_lo(priv->mac_addr), SA_LO); 1078 } 1079 1080 static void _cpsw_adjust_link(struct cpsw_slave *slave, 1081 struct cpsw_priv *priv, bool *link) 1082 { 1083 struct phy_device *phy = slave->phy; 1084 u32 mac_control = 0; 1085 u32 slave_port; 1086 struct cpsw_common *cpsw = priv->cpsw; 1087 1088 if (!phy) 1089 return; 1090 1091 slave_port = cpsw_get_slave_port(slave->slave_num); 1092 1093 if (phy->link) { 1094 mac_control = cpsw->data.mac_control; 1095 1096 /* enable forwarding */ 1097 cpsw_ale_control_set(cpsw->ale, slave_port, 1098 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD); 1099 1100 if (phy->speed == 1000) 1101 mac_control |= BIT(7); /* GIGABITEN */ 1102 if (phy->duplex) 1103 mac_control |= BIT(0); /* FULLDUPLEXEN */ 1104 1105 /* set speed_in input in case RMII mode is used in 100Mbps */ 1106 if (phy->speed == 100) 1107 mac_control |= BIT(15); 1108 /* in band mode only works in 10Mbps RGMII mode */ 1109 else if ((phy->speed == 10) && phy_interface_is_rgmii(phy)) 1110 mac_control |= BIT(18); /* In Band mode */ 1111 1112 if (priv->rx_pause) 1113 mac_control |= BIT(3); 1114 1115 if (priv->tx_pause) 1116 mac_control |= BIT(4); 1117 1118 *link = true; 1119 } else { 1120 mac_control = 0; 1121 /* disable forwarding */ 1122 cpsw_ale_control_set(cpsw->ale, slave_port, 1123 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE); 1124 } 1125 1126 if (mac_control != slave->mac_control) { 1127 phy_print_status(phy); 1128 writel_relaxed(mac_control, &slave->sliver->mac_control); 1129 } 1130 1131 slave->mac_control = mac_control; 1132 } 1133 1134 static int cpsw_get_common_speed(struct cpsw_common *cpsw) 1135 { 1136 int i, speed; 1137 1138 for (i = 0, speed = 0; i < cpsw->data.slaves; i++) 1139 if (cpsw->slaves[i].phy && cpsw->slaves[i].phy->link) 1140 speed += cpsw->slaves[i].phy->speed; 1141 1142 return speed; 1143 } 1144 1145 static int cpsw_need_resplit(struct cpsw_common *cpsw) 1146 { 1147 int i, rlim_ch_num; 1148 int speed, ch_rate; 1149 1150 /* re-split resources only in case speed was changed */ 1151 speed = cpsw_get_common_speed(cpsw); 1152 if (speed == cpsw->speed || !speed) 1153 return 0; 1154 1155 cpsw->speed = speed; 1156 1157 for (i = 0, rlim_ch_num = 0; i < cpsw->tx_ch_num; i++) { 1158 ch_rate = cpdma_chan_get_rate(cpsw->txv[i].ch); 1159 if (!ch_rate) 1160 break; 1161 1162 rlim_ch_num++; 1163 } 1164 1165 /* cases not dependent on speed */ 1166 if (!rlim_ch_num || rlim_ch_num == cpsw->tx_ch_num) 1167 return 0; 1168 1169 return 1; 1170 } 1171 1172 static void cpsw_adjust_link(struct net_device *ndev) 1173 { 1174 struct cpsw_priv *priv = netdev_priv(ndev); 1175 struct cpsw_common *cpsw = priv->cpsw; 1176 bool link = false; 1177 1178 for_each_slave(priv, _cpsw_adjust_link, priv, &link); 1179 1180 if (link) { 1181 if (cpsw_need_resplit(cpsw)) 1182 cpsw_split_res(ndev); 1183 1184 netif_carrier_on(ndev); 1185 if (netif_running(ndev)) 1186 netif_tx_wake_all_queues(ndev); 1187 } else { 1188 netif_carrier_off(ndev); 1189 netif_tx_stop_all_queues(ndev); 1190 } 1191 } 1192 1193 static int cpsw_get_coalesce(struct net_device *ndev, 1194 struct ethtool_coalesce *coal) 1195 { 1196 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1197 1198 coal->rx_coalesce_usecs = cpsw->coal_intvl; 1199 return 0; 1200 } 1201 1202 static int cpsw_set_coalesce(struct net_device *ndev, 1203 struct ethtool_coalesce *coal) 1204 { 1205 struct cpsw_priv *priv = netdev_priv(ndev); 1206 u32 int_ctrl; 1207 u32 num_interrupts = 0; 1208 u32 prescale = 0; 1209 u32 addnl_dvdr = 1; 1210 u32 coal_intvl = 0; 1211 struct cpsw_common *cpsw = priv->cpsw; 1212 1213 coal_intvl = coal->rx_coalesce_usecs; 1214 1215 int_ctrl = readl(&cpsw->wr_regs->int_control); 1216 prescale = cpsw->bus_freq_mhz * 4; 1217 1218 if (!coal->rx_coalesce_usecs) { 1219 int_ctrl &= ~(CPSW_INTPRESCALE_MASK | CPSW_INTPACEEN); 1220 goto update_return; 1221 } 1222 1223 if (coal_intvl < CPSW_CMINTMIN_INTVL) 1224 coal_intvl = CPSW_CMINTMIN_INTVL; 1225 1226 if (coal_intvl > CPSW_CMINTMAX_INTVL) { 1227 /* Interrupt pacer works with 4us Pulse, we can 1228 * throttle further by dilating the 4us pulse. 1229 */ 1230 addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale; 1231 1232 if (addnl_dvdr > 1) { 1233 prescale *= addnl_dvdr; 1234 if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr)) 1235 coal_intvl = (CPSW_CMINTMAX_INTVL 1236 * addnl_dvdr); 1237 } else { 1238 addnl_dvdr = 1; 1239 coal_intvl = CPSW_CMINTMAX_INTVL; 1240 } 1241 } 1242 1243 num_interrupts = (1000 * addnl_dvdr) / coal_intvl; 1244 writel(num_interrupts, &cpsw->wr_regs->rx_imax); 1245 writel(num_interrupts, &cpsw->wr_regs->tx_imax); 1246 1247 int_ctrl |= CPSW_INTPACEEN; 1248 int_ctrl &= (~CPSW_INTPRESCALE_MASK); 1249 int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK); 1250 1251 update_return: 1252 writel(int_ctrl, &cpsw->wr_regs->int_control); 1253 1254 cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl); 1255 cpsw->coal_intvl = coal_intvl; 1256 1257 return 0; 1258 } 1259 1260 static int cpsw_get_sset_count(struct net_device *ndev, int sset) 1261 { 1262 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1263 1264 switch (sset) { 1265 case ETH_SS_STATS: 1266 return (CPSW_STATS_COMMON_LEN + 1267 (cpsw->rx_ch_num + cpsw->tx_ch_num) * 1268 CPSW_STATS_CH_LEN); 1269 default: 1270 return -EOPNOTSUPP; 1271 } 1272 } 1273 1274 static void cpsw_add_ch_strings(u8 **p, int ch_num, int rx_dir) 1275 { 1276 int ch_stats_len; 1277 int line; 1278 int i; 1279 1280 ch_stats_len = CPSW_STATS_CH_LEN * ch_num; 1281 for (i = 0; i < ch_stats_len; i++) { 1282 line = i % CPSW_STATS_CH_LEN; 1283 snprintf(*p, ETH_GSTRING_LEN, 1284 "%s DMA chan %ld: %s", rx_dir ? "Rx" : "Tx", 1285 (long)(i / CPSW_STATS_CH_LEN), 1286 cpsw_gstrings_ch_stats[line].stat_string); 1287 *p += ETH_GSTRING_LEN; 1288 } 1289 } 1290 1291 static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data) 1292 { 1293 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1294 u8 *p = data; 1295 int i; 1296 1297 switch (stringset) { 1298 case ETH_SS_STATS: 1299 for (i = 0; i < CPSW_STATS_COMMON_LEN; i++) { 1300 memcpy(p, cpsw_gstrings_stats[i].stat_string, 1301 ETH_GSTRING_LEN); 1302 p += ETH_GSTRING_LEN; 1303 } 1304 1305 cpsw_add_ch_strings(&p, cpsw->rx_ch_num, 1); 1306 cpsw_add_ch_strings(&p, cpsw->tx_ch_num, 0); 1307 break; 1308 } 1309 } 1310 1311 static void cpsw_get_ethtool_stats(struct net_device *ndev, 1312 struct ethtool_stats *stats, u64 *data) 1313 { 1314 u8 *p; 1315 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1316 struct cpdma_chan_stats ch_stats; 1317 int i, l, ch; 1318 1319 /* Collect Davinci CPDMA stats for Rx and Tx Channel */ 1320 for (l = 0; l < CPSW_STATS_COMMON_LEN; l++) 1321 data[l] = readl(cpsw->hw_stats + 1322 cpsw_gstrings_stats[l].stat_offset); 1323 1324 for (ch = 0; ch < cpsw->rx_ch_num; ch++) { 1325 cpdma_chan_get_stats(cpsw->rxv[ch].ch, &ch_stats); 1326 for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) { 1327 p = (u8 *)&ch_stats + 1328 cpsw_gstrings_ch_stats[i].stat_offset; 1329 data[l] = *(u32 *)p; 1330 } 1331 } 1332 1333 for (ch = 0; ch < cpsw->tx_ch_num; ch++) { 1334 cpdma_chan_get_stats(cpsw->txv[ch].ch, &ch_stats); 1335 for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) { 1336 p = (u8 *)&ch_stats + 1337 cpsw_gstrings_ch_stats[i].stat_offset; 1338 data[l] = *(u32 *)p; 1339 } 1340 } 1341 } 1342 1343 static inline int cpsw_tx_packet_submit(struct cpsw_priv *priv, 1344 struct sk_buff *skb, 1345 struct cpdma_chan *txch) 1346 { 1347 struct cpsw_common *cpsw = priv->cpsw; 1348 1349 skb_tx_timestamp(skb); 1350 return cpdma_chan_submit(txch, skb, skb->data, skb->len, 1351 priv->emac_port + cpsw->data.dual_emac); 1352 } 1353 1354 static inline void cpsw_add_dual_emac_def_ale_entries( 1355 struct cpsw_priv *priv, struct cpsw_slave *slave, 1356 u32 slave_port) 1357 { 1358 struct cpsw_common *cpsw = priv->cpsw; 1359 u32 port_mask = 1 << slave_port | ALE_PORT_HOST; 1360 1361 if (cpsw->version == CPSW_VERSION_1) 1362 slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN); 1363 else 1364 slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN); 1365 cpsw_ale_add_vlan(cpsw->ale, slave->port_vlan, port_mask, 1366 port_mask, port_mask, 0); 1367 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, 1368 port_mask, ALE_VLAN, slave->port_vlan, 0); 1369 cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, 1370 HOST_PORT_NUM, ALE_VLAN | 1371 ALE_SECURE, slave->port_vlan); 1372 cpsw_ale_control_set(cpsw->ale, slave_port, 1373 ALE_PORT_DROP_UNKNOWN_VLAN, 1); 1374 } 1375 1376 static void soft_reset_slave(struct cpsw_slave *slave) 1377 { 1378 char name[32]; 1379 1380 snprintf(name, sizeof(name), "slave-%d", slave->slave_num); 1381 soft_reset(name, &slave->sliver->soft_reset); 1382 } 1383 1384 static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv) 1385 { 1386 u32 slave_port; 1387 struct phy_device *phy; 1388 struct cpsw_common *cpsw = priv->cpsw; 1389 1390 soft_reset_slave(slave); 1391 1392 /* setup priority mapping */ 1393 writel_relaxed(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map); 1394 1395 switch (cpsw->version) { 1396 case CPSW_VERSION_1: 1397 slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP); 1398 /* Increase RX FIFO size to 5 for supporting fullduplex 1399 * flow control mode 1400 */ 1401 slave_write(slave, 1402 (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) | 1403 CPSW_MAX_BLKS_RX, CPSW1_MAX_BLKS); 1404 break; 1405 case CPSW_VERSION_2: 1406 case CPSW_VERSION_3: 1407 case CPSW_VERSION_4: 1408 slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP); 1409 /* Increase RX FIFO size to 5 for supporting fullduplex 1410 * flow control mode 1411 */ 1412 slave_write(slave, 1413 (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) | 1414 CPSW_MAX_BLKS_RX, CPSW2_MAX_BLKS); 1415 break; 1416 } 1417 1418 /* setup max packet size, and mac address */ 1419 writel_relaxed(cpsw->rx_packet_max, &slave->sliver->rx_maxlen); 1420 cpsw_set_slave_mac(slave, priv); 1421 1422 slave->mac_control = 0; /* no link yet */ 1423 1424 slave_port = cpsw_get_slave_port(slave->slave_num); 1425 1426 if (cpsw->data.dual_emac) 1427 cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port); 1428 else 1429 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, 1430 1 << slave_port, 0, 0, ALE_MCAST_FWD_2); 1431 1432 if (slave->data->phy_node) { 1433 phy = of_phy_connect(priv->ndev, slave->data->phy_node, 1434 &cpsw_adjust_link, 0, slave->data->phy_if); 1435 if (!phy) { 1436 dev_err(priv->dev, "phy \"%pOF\" not found on slave %d\n", 1437 slave->data->phy_node, 1438 slave->slave_num); 1439 return; 1440 } 1441 } else { 1442 phy = phy_connect(priv->ndev, slave->data->phy_id, 1443 &cpsw_adjust_link, slave->data->phy_if); 1444 if (IS_ERR(phy)) { 1445 dev_err(priv->dev, 1446 "phy \"%s\" not found on slave %d, err %ld\n", 1447 slave->data->phy_id, slave->slave_num, 1448 PTR_ERR(phy)); 1449 return; 1450 } 1451 } 1452 1453 slave->phy = phy; 1454 1455 phy_attached_info(slave->phy); 1456 1457 phy_start(slave->phy); 1458 1459 /* Configure GMII_SEL register */ 1460 cpsw_phy_sel(cpsw->dev, slave->phy->interface, slave->slave_num); 1461 } 1462 1463 static inline void cpsw_add_default_vlan(struct cpsw_priv *priv) 1464 { 1465 struct cpsw_common *cpsw = priv->cpsw; 1466 const int vlan = cpsw->data.default_vlan; 1467 u32 reg; 1468 int i; 1469 int unreg_mcast_mask; 1470 1471 reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN : 1472 CPSW2_PORT_VLAN; 1473 1474 writel(vlan, &cpsw->host_port_regs->port_vlan); 1475 1476 for (i = 0; i < cpsw->data.slaves; i++) 1477 slave_write(cpsw->slaves + i, vlan, reg); 1478 1479 if (priv->ndev->flags & IFF_ALLMULTI) 1480 unreg_mcast_mask = ALE_ALL_PORTS; 1481 else 1482 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2; 1483 1484 cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS, 1485 ALE_ALL_PORTS, ALE_ALL_PORTS, 1486 unreg_mcast_mask); 1487 } 1488 1489 static void cpsw_init_host_port(struct cpsw_priv *priv) 1490 { 1491 u32 fifo_mode; 1492 u32 control_reg; 1493 struct cpsw_common *cpsw = priv->cpsw; 1494 1495 /* soft reset the controller and initialize ale */ 1496 soft_reset("cpsw", &cpsw->regs->soft_reset); 1497 cpsw_ale_start(cpsw->ale); 1498 1499 /* switch to vlan unaware mode */ 1500 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_VLAN_AWARE, 1501 CPSW_ALE_VLAN_AWARE); 1502 control_reg = readl(&cpsw->regs->control); 1503 control_reg |= CPSW_VLAN_AWARE | CPSW_RX_VLAN_ENCAP; 1504 writel(control_reg, &cpsw->regs->control); 1505 fifo_mode = (cpsw->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE : 1506 CPSW_FIFO_NORMAL_MODE; 1507 writel(fifo_mode, &cpsw->host_port_regs->tx_in_ctl); 1508 1509 /* setup host port priority mapping */ 1510 writel_relaxed(CPDMA_TX_PRIORITY_MAP, 1511 &cpsw->host_port_regs->cpdma_tx_pri_map); 1512 writel_relaxed(0, &cpsw->host_port_regs->cpdma_rx_chan_map); 1513 1514 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, 1515 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD); 1516 1517 if (!cpsw->data.dual_emac) { 1518 cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM, 1519 0, 0); 1520 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, 1521 ALE_PORT_HOST, 0, 0, ALE_MCAST_FWD_2); 1522 } 1523 } 1524 1525 static int cpsw_fill_rx_channels(struct cpsw_priv *priv) 1526 { 1527 struct cpsw_common *cpsw = priv->cpsw; 1528 struct sk_buff *skb; 1529 int ch_buf_num; 1530 int ch, i, ret; 1531 1532 for (ch = 0; ch < cpsw->rx_ch_num; ch++) { 1533 ch_buf_num = cpdma_chan_get_rx_buf_num(cpsw->rxv[ch].ch); 1534 for (i = 0; i < ch_buf_num; i++) { 1535 skb = __netdev_alloc_skb_ip_align(priv->ndev, 1536 cpsw->rx_packet_max, 1537 GFP_KERNEL); 1538 if (!skb) { 1539 cpsw_err(priv, ifup, "cannot allocate skb\n"); 1540 return -ENOMEM; 1541 } 1542 1543 skb_set_queue_mapping(skb, ch); 1544 ret = cpdma_chan_submit(cpsw->rxv[ch].ch, skb, 1545 skb->data, skb_tailroom(skb), 1546 0); 1547 if (ret < 0) { 1548 cpsw_err(priv, ifup, 1549 "cannot submit skb to channel %d rx, error %d\n", 1550 ch, ret); 1551 kfree_skb(skb); 1552 return ret; 1553 } 1554 kmemleak_not_leak(skb); 1555 } 1556 1557 cpsw_info(priv, ifup, "ch %d rx, submitted %d descriptors\n", 1558 ch, ch_buf_num); 1559 } 1560 1561 return 0; 1562 } 1563 1564 static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_common *cpsw) 1565 { 1566 u32 slave_port; 1567 1568 slave_port = cpsw_get_slave_port(slave->slave_num); 1569 1570 if (!slave->phy) 1571 return; 1572 phy_stop(slave->phy); 1573 phy_disconnect(slave->phy); 1574 slave->phy = NULL; 1575 cpsw_ale_control_set(cpsw->ale, slave_port, 1576 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE); 1577 soft_reset_slave(slave); 1578 } 1579 1580 static int cpsw_ndo_open(struct net_device *ndev) 1581 { 1582 struct cpsw_priv *priv = netdev_priv(ndev); 1583 struct cpsw_common *cpsw = priv->cpsw; 1584 int ret; 1585 u32 reg; 1586 1587 ret = pm_runtime_get_sync(cpsw->dev); 1588 if (ret < 0) { 1589 pm_runtime_put_noidle(cpsw->dev); 1590 return ret; 1591 } 1592 1593 netif_carrier_off(ndev); 1594 1595 /* Notify the stack of the actual queue counts. */ 1596 ret = netif_set_real_num_tx_queues(ndev, cpsw->tx_ch_num); 1597 if (ret) { 1598 dev_err(priv->dev, "cannot set real number of tx queues\n"); 1599 goto err_cleanup; 1600 } 1601 1602 ret = netif_set_real_num_rx_queues(ndev, cpsw->rx_ch_num); 1603 if (ret) { 1604 dev_err(priv->dev, "cannot set real number of rx queues\n"); 1605 goto err_cleanup; 1606 } 1607 1608 reg = cpsw->version; 1609 1610 dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n", 1611 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg), 1612 CPSW_RTL_VERSION(reg)); 1613 1614 /* Initialize host and slave ports */ 1615 if (!cpsw->usage_count) 1616 cpsw_init_host_port(priv); 1617 for_each_slave(priv, cpsw_slave_open, priv); 1618 1619 /* Add default VLAN */ 1620 if (!cpsw->data.dual_emac) 1621 cpsw_add_default_vlan(priv); 1622 else 1623 cpsw_ale_add_vlan(cpsw->ale, cpsw->data.default_vlan, 1624 ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0); 1625 1626 /* initialize shared resources for every ndev */ 1627 if (!cpsw->usage_count) { 1628 /* disable priority elevation */ 1629 writel_relaxed(0, &cpsw->regs->ptype); 1630 1631 /* enable statistics collection only on all ports */ 1632 writel_relaxed(0x7, &cpsw->regs->stat_port_en); 1633 1634 /* Enable internal fifo flow control */ 1635 writel(0x7, &cpsw->regs->flow_control); 1636 1637 napi_enable(&cpsw->napi_rx); 1638 napi_enable(&cpsw->napi_tx); 1639 1640 if (cpsw->tx_irq_disabled) { 1641 cpsw->tx_irq_disabled = false; 1642 enable_irq(cpsw->irqs_table[1]); 1643 } 1644 1645 if (cpsw->rx_irq_disabled) { 1646 cpsw->rx_irq_disabled = false; 1647 enable_irq(cpsw->irqs_table[0]); 1648 } 1649 1650 ret = cpsw_fill_rx_channels(priv); 1651 if (ret < 0) 1652 goto err_cleanup; 1653 1654 if (cpts_register(cpsw->cpts)) 1655 dev_err(priv->dev, "error registering cpts device\n"); 1656 1657 } 1658 1659 /* Enable Interrupt pacing if configured */ 1660 if (cpsw->coal_intvl != 0) { 1661 struct ethtool_coalesce coal; 1662 1663 coal.rx_coalesce_usecs = cpsw->coal_intvl; 1664 cpsw_set_coalesce(ndev, &coal); 1665 } 1666 1667 cpdma_ctlr_start(cpsw->dma); 1668 cpsw_intr_enable(cpsw); 1669 cpsw->usage_count++; 1670 1671 return 0; 1672 1673 err_cleanup: 1674 cpdma_ctlr_stop(cpsw->dma); 1675 for_each_slave(priv, cpsw_slave_stop, cpsw); 1676 pm_runtime_put_sync(cpsw->dev); 1677 netif_carrier_off(priv->ndev); 1678 return ret; 1679 } 1680 1681 static int cpsw_ndo_stop(struct net_device *ndev) 1682 { 1683 struct cpsw_priv *priv = netdev_priv(ndev); 1684 struct cpsw_common *cpsw = priv->cpsw; 1685 1686 cpsw_info(priv, ifdown, "shutting down cpsw device\n"); 1687 netif_tx_stop_all_queues(priv->ndev); 1688 netif_carrier_off(priv->ndev); 1689 1690 if (cpsw->usage_count <= 1) { 1691 napi_disable(&cpsw->napi_rx); 1692 napi_disable(&cpsw->napi_tx); 1693 cpts_unregister(cpsw->cpts); 1694 cpsw_intr_disable(cpsw); 1695 cpdma_ctlr_stop(cpsw->dma); 1696 cpsw_ale_stop(cpsw->ale); 1697 } 1698 for_each_slave(priv, cpsw_slave_stop, cpsw); 1699 1700 if (cpsw_need_resplit(cpsw)) 1701 cpsw_split_res(ndev); 1702 1703 cpsw->usage_count--; 1704 pm_runtime_put_sync(cpsw->dev); 1705 return 0; 1706 } 1707 1708 static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb, 1709 struct net_device *ndev) 1710 { 1711 struct cpsw_priv *priv = netdev_priv(ndev); 1712 struct cpsw_common *cpsw = priv->cpsw; 1713 struct cpts *cpts = cpsw->cpts; 1714 struct netdev_queue *txq; 1715 struct cpdma_chan *txch; 1716 int ret, q_idx; 1717 1718 if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) { 1719 cpsw_err(priv, tx_err, "packet pad failed\n"); 1720 ndev->stats.tx_dropped++; 1721 return NET_XMIT_DROP; 1722 } 1723 1724 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && 1725 cpts_is_tx_enabled(cpts) && cpts_can_timestamp(cpts, skb)) 1726 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1727 1728 q_idx = skb_get_queue_mapping(skb); 1729 if (q_idx >= cpsw->tx_ch_num) 1730 q_idx = q_idx % cpsw->tx_ch_num; 1731 1732 txch = cpsw->txv[q_idx].ch; 1733 txq = netdev_get_tx_queue(ndev, q_idx); 1734 ret = cpsw_tx_packet_submit(priv, skb, txch); 1735 if (unlikely(ret != 0)) { 1736 cpsw_err(priv, tx_err, "desc submit failed\n"); 1737 goto fail; 1738 } 1739 1740 /* If there is no more tx desc left free then we need to 1741 * tell the kernel to stop sending us tx frames. 1742 */ 1743 if (unlikely(!cpdma_check_free_tx_desc(txch))) { 1744 netif_tx_stop_queue(txq); 1745 1746 /* Barrier, so that stop_queue visible to other cpus */ 1747 smp_mb__after_atomic(); 1748 1749 if (cpdma_check_free_tx_desc(txch)) 1750 netif_tx_wake_queue(txq); 1751 } 1752 1753 return NETDEV_TX_OK; 1754 fail: 1755 ndev->stats.tx_dropped++; 1756 netif_tx_stop_queue(txq); 1757 1758 /* Barrier, so that stop_queue visible to other cpus */ 1759 smp_mb__after_atomic(); 1760 1761 if (cpdma_check_free_tx_desc(txch)) 1762 netif_tx_wake_queue(txq); 1763 1764 return NETDEV_TX_BUSY; 1765 } 1766 1767 #if IS_ENABLED(CONFIG_TI_CPTS) 1768 1769 static void cpsw_hwtstamp_v1(struct cpsw_common *cpsw) 1770 { 1771 struct cpsw_slave *slave = &cpsw->slaves[cpsw->data.active_slave]; 1772 u32 ts_en, seq_id; 1773 1774 if (!cpts_is_tx_enabled(cpsw->cpts) && 1775 !cpts_is_rx_enabled(cpsw->cpts)) { 1776 slave_write(slave, 0, CPSW1_TS_CTL); 1777 return; 1778 } 1779 1780 seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588; 1781 ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS; 1782 1783 if (cpts_is_tx_enabled(cpsw->cpts)) 1784 ts_en |= CPSW_V1_TS_TX_EN; 1785 1786 if (cpts_is_rx_enabled(cpsw->cpts)) 1787 ts_en |= CPSW_V1_TS_RX_EN; 1788 1789 slave_write(slave, ts_en, CPSW1_TS_CTL); 1790 slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE); 1791 } 1792 1793 static void cpsw_hwtstamp_v2(struct cpsw_priv *priv) 1794 { 1795 struct cpsw_slave *slave; 1796 struct cpsw_common *cpsw = priv->cpsw; 1797 u32 ctrl, mtype; 1798 1799 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; 1800 1801 ctrl = slave_read(slave, CPSW2_CONTROL); 1802 switch (cpsw->version) { 1803 case CPSW_VERSION_2: 1804 ctrl &= ~CTRL_V2_ALL_TS_MASK; 1805 1806 if (cpts_is_tx_enabled(cpsw->cpts)) 1807 ctrl |= CTRL_V2_TX_TS_BITS; 1808 1809 if (cpts_is_rx_enabled(cpsw->cpts)) 1810 ctrl |= CTRL_V2_RX_TS_BITS; 1811 break; 1812 case CPSW_VERSION_3: 1813 default: 1814 ctrl &= ~CTRL_V3_ALL_TS_MASK; 1815 1816 if (cpts_is_tx_enabled(cpsw->cpts)) 1817 ctrl |= CTRL_V3_TX_TS_BITS; 1818 1819 if (cpts_is_rx_enabled(cpsw->cpts)) 1820 ctrl |= CTRL_V3_RX_TS_BITS; 1821 break; 1822 } 1823 1824 mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS; 1825 1826 slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE); 1827 slave_write(slave, ctrl, CPSW2_CONTROL); 1828 writel_relaxed(ETH_P_1588, &cpsw->regs->ts_ltype); 1829 } 1830 1831 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr) 1832 { 1833 struct cpsw_priv *priv = netdev_priv(dev); 1834 struct hwtstamp_config cfg; 1835 struct cpsw_common *cpsw = priv->cpsw; 1836 struct cpts *cpts = cpsw->cpts; 1837 1838 if (cpsw->version != CPSW_VERSION_1 && 1839 cpsw->version != CPSW_VERSION_2 && 1840 cpsw->version != CPSW_VERSION_3) 1841 return -EOPNOTSUPP; 1842 1843 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg))) 1844 return -EFAULT; 1845 1846 /* reserved for future extensions */ 1847 if (cfg.flags) 1848 return -EINVAL; 1849 1850 if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON) 1851 return -ERANGE; 1852 1853 switch (cfg.rx_filter) { 1854 case HWTSTAMP_FILTER_NONE: 1855 cpts_rx_enable(cpts, 0); 1856 break; 1857 case HWTSTAMP_FILTER_ALL: 1858 case HWTSTAMP_FILTER_NTP_ALL: 1859 return -ERANGE; 1860 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 1861 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 1862 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 1863 cpts_rx_enable(cpts, HWTSTAMP_FILTER_PTP_V1_L4_EVENT); 1864 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 1865 break; 1866 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 1867 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 1868 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 1869 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 1870 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 1871 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 1872 case HWTSTAMP_FILTER_PTP_V2_EVENT: 1873 case HWTSTAMP_FILTER_PTP_V2_SYNC: 1874 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 1875 cpts_rx_enable(cpts, HWTSTAMP_FILTER_PTP_V2_EVENT); 1876 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 1877 break; 1878 default: 1879 return -ERANGE; 1880 } 1881 1882 cpts_tx_enable(cpts, cfg.tx_type == HWTSTAMP_TX_ON); 1883 1884 switch (cpsw->version) { 1885 case CPSW_VERSION_1: 1886 cpsw_hwtstamp_v1(cpsw); 1887 break; 1888 case CPSW_VERSION_2: 1889 case CPSW_VERSION_3: 1890 cpsw_hwtstamp_v2(priv); 1891 break; 1892 default: 1893 WARN_ON(1); 1894 } 1895 1896 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; 1897 } 1898 1899 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr) 1900 { 1901 struct cpsw_common *cpsw = ndev_to_cpsw(dev); 1902 struct cpts *cpts = cpsw->cpts; 1903 struct hwtstamp_config cfg; 1904 1905 if (cpsw->version != CPSW_VERSION_1 && 1906 cpsw->version != CPSW_VERSION_2 && 1907 cpsw->version != CPSW_VERSION_3) 1908 return -EOPNOTSUPP; 1909 1910 cfg.flags = 0; 1911 cfg.tx_type = cpts_is_tx_enabled(cpts) ? 1912 HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF; 1913 cfg.rx_filter = (cpts_is_rx_enabled(cpts) ? 1914 cpts->rx_enable : HWTSTAMP_FILTER_NONE); 1915 1916 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; 1917 } 1918 #else 1919 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr) 1920 { 1921 return -EOPNOTSUPP; 1922 } 1923 1924 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr) 1925 { 1926 return -EOPNOTSUPP; 1927 } 1928 #endif /*CONFIG_TI_CPTS*/ 1929 1930 static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 1931 { 1932 struct cpsw_priv *priv = netdev_priv(dev); 1933 struct cpsw_common *cpsw = priv->cpsw; 1934 int slave_no = cpsw_slave_index(cpsw, priv); 1935 1936 if (!netif_running(dev)) 1937 return -EINVAL; 1938 1939 switch (cmd) { 1940 case SIOCSHWTSTAMP: 1941 return cpsw_hwtstamp_set(dev, req); 1942 case SIOCGHWTSTAMP: 1943 return cpsw_hwtstamp_get(dev, req); 1944 } 1945 1946 if (!cpsw->slaves[slave_no].phy) 1947 return -EOPNOTSUPP; 1948 return phy_mii_ioctl(cpsw->slaves[slave_no].phy, req, cmd); 1949 } 1950 1951 static void cpsw_ndo_tx_timeout(struct net_device *ndev) 1952 { 1953 struct cpsw_priv *priv = netdev_priv(ndev); 1954 struct cpsw_common *cpsw = priv->cpsw; 1955 int ch; 1956 1957 cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n"); 1958 ndev->stats.tx_errors++; 1959 cpsw_intr_disable(cpsw); 1960 for (ch = 0; ch < cpsw->tx_ch_num; ch++) { 1961 cpdma_chan_stop(cpsw->txv[ch].ch); 1962 cpdma_chan_start(cpsw->txv[ch].ch); 1963 } 1964 1965 cpsw_intr_enable(cpsw); 1966 netif_trans_update(ndev); 1967 netif_tx_wake_all_queues(ndev); 1968 } 1969 1970 static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p) 1971 { 1972 struct cpsw_priv *priv = netdev_priv(ndev); 1973 struct sockaddr *addr = (struct sockaddr *)p; 1974 struct cpsw_common *cpsw = priv->cpsw; 1975 int flags = 0; 1976 u16 vid = 0; 1977 int ret; 1978 1979 if (!is_valid_ether_addr(addr->sa_data)) 1980 return -EADDRNOTAVAIL; 1981 1982 ret = pm_runtime_get_sync(cpsw->dev); 1983 if (ret < 0) { 1984 pm_runtime_put_noidle(cpsw->dev); 1985 return ret; 1986 } 1987 1988 if (cpsw->data.dual_emac) { 1989 vid = cpsw->slaves[priv->emac_port].port_vlan; 1990 flags = ALE_VLAN; 1991 } 1992 1993 cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM, 1994 flags, vid); 1995 cpsw_ale_add_ucast(cpsw->ale, addr->sa_data, HOST_PORT_NUM, 1996 flags, vid); 1997 1998 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN); 1999 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN); 2000 for_each_slave(priv, cpsw_set_slave_mac, priv); 2001 2002 pm_runtime_put(cpsw->dev); 2003 2004 return 0; 2005 } 2006 2007 #ifdef CONFIG_NET_POLL_CONTROLLER 2008 static void cpsw_ndo_poll_controller(struct net_device *ndev) 2009 { 2010 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 2011 2012 cpsw_intr_disable(cpsw); 2013 cpsw_rx_interrupt(cpsw->irqs_table[0], cpsw); 2014 cpsw_tx_interrupt(cpsw->irqs_table[1], cpsw); 2015 cpsw_intr_enable(cpsw); 2016 } 2017 #endif 2018 2019 static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv, 2020 unsigned short vid) 2021 { 2022 int ret; 2023 int unreg_mcast_mask = 0; 2024 u32 port_mask; 2025 struct cpsw_common *cpsw = priv->cpsw; 2026 2027 if (cpsw->data.dual_emac) { 2028 port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST; 2029 2030 if (priv->ndev->flags & IFF_ALLMULTI) 2031 unreg_mcast_mask = port_mask; 2032 } else { 2033 port_mask = ALE_ALL_PORTS; 2034 2035 if (priv->ndev->flags & IFF_ALLMULTI) 2036 unreg_mcast_mask = ALE_ALL_PORTS; 2037 else 2038 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2; 2039 } 2040 2041 ret = cpsw_ale_add_vlan(cpsw->ale, vid, port_mask, 0, port_mask, 2042 unreg_mcast_mask); 2043 if (ret != 0) 2044 return ret; 2045 2046 ret = cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, 2047 HOST_PORT_NUM, ALE_VLAN, vid); 2048 if (ret != 0) 2049 goto clean_vid; 2050 2051 ret = cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, 2052 port_mask, ALE_VLAN, vid, 0); 2053 if (ret != 0) 2054 goto clean_vlan_ucast; 2055 return 0; 2056 2057 clean_vlan_ucast: 2058 cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, 2059 HOST_PORT_NUM, ALE_VLAN, vid); 2060 clean_vid: 2061 cpsw_ale_del_vlan(cpsw->ale, vid, 0); 2062 return ret; 2063 } 2064 2065 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev, 2066 __be16 proto, u16 vid) 2067 { 2068 struct cpsw_priv *priv = netdev_priv(ndev); 2069 struct cpsw_common *cpsw = priv->cpsw; 2070 int ret; 2071 2072 if (vid == cpsw->data.default_vlan) 2073 return 0; 2074 2075 ret = pm_runtime_get_sync(cpsw->dev); 2076 if (ret < 0) { 2077 pm_runtime_put_noidle(cpsw->dev); 2078 return ret; 2079 } 2080 2081 if (cpsw->data.dual_emac) { 2082 /* In dual EMAC, reserved VLAN id should not be used for 2083 * creating VLAN interfaces as this can break the dual 2084 * EMAC port separation 2085 */ 2086 int i; 2087 2088 for (i = 0; i < cpsw->data.slaves; i++) { 2089 if (vid == cpsw->slaves[i].port_vlan) 2090 return -EINVAL; 2091 } 2092 } 2093 2094 dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid); 2095 ret = cpsw_add_vlan_ale_entry(priv, vid); 2096 2097 pm_runtime_put(cpsw->dev); 2098 return ret; 2099 } 2100 2101 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev, 2102 __be16 proto, u16 vid) 2103 { 2104 struct cpsw_priv *priv = netdev_priv(ndev); 2105 struct cpsw_common *cpsw = priv->cpsw; 2106 int ret; 2107 2108 if (vid == cpsw->data.default_vlan) 2109 return 0; 2110 2111 ret = pm_runtime_get_sync(cpsw->dev); 2112 if (ret < 0) { 2113 pm_runtime_put_noidle(cpsw->dev); 2114 return ret; 2115 } 2116 2117 if (cpsw->data.dual_emac) { 2118 int i; 2119 2120 for (i = 0; i < cpsw->data.slaves; i++) { 2121 if (vid == cpsw->slaves[i].port_vlan) 2122 return -EINVAL; 2123 } 2124 } 2125 2126 dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid); 2127 ret = cpsw_ale_del_vlan(cpsw->ale, vid, 0); 2128 if (ret != 0) 2129 return ret; 2130 2131 ret = cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, 2132 HOST_PORT_NUM, ALE_VLAN, vid); 2133 if (ret != 0) 2134 return ret; 2135 2136 ret = cpsw_ale_del_mcast(cpsw->ale, priv->ndev->broadcast, 2137 0, ALE_VLAN, vid); 2138 pm_runtime_put(cpsw->dev); 2139 return ret; 2140 } 2141 2142 static int cpsw_ndo_set_tx_maxrate(struct net_device *ndev, int queue, u32 rate) 2143 { 2144 struct cpsw_priv *priv = netdev_priv(ndev); 2145 struct cpsw_common *cpsw = priv->cpsw; 2146 struct cpsw_slave *slave; 2147 u32 min_rate; 2148 u32 ch_rate; 2149 int i, ret; 2150 2151 ch_rate = netdev_get_tx_queue(ndev, queue)->tx_maxrate; 2152 if (ch_rate == rate) 2153 return 0; 2154 2155 ch_rate = rate * 1000; 2156 min_rate = cpdma_chan_get_min_rate(cpsw->dma); 2157 if ((ch_rate < min_rate && ch_rate)) { 2158 dev_err(priv->dev, "The channel rate cannot be less than %dMbps", 2159 min_rate); 2160 return -EINVAL; 2161 } 2162 2163 if (rate > cpsw->speed) { 2164 dev_err(priv->dev, "The channel rate cannot be more than 2Gbps"); 2165 return -EINVAL; 2166 } 2167 2168 ret = pm_runtime_get_sync(cpsw->dev); 2169 if (ret < 0) { 2170 pm_runtime_put_noidle(cpsw->dev); 2171 return ret; 2172 } 2173 2174 ret = cpdma_chan_set_rate(cpsw->txv[queue].ch, ch_rate); 2175 pm_runtime_put(cpsw->dev); 2176 2177 if (ret) 2178 return ret; 2179 2180 /* update rates for slaves tx queues */ 2181 for (i = 0; i < cpsw->data.slaves; i++) { 2182 slave = &cpsw->slaves[i]; 2183 if (!slave->ndev) 2184 continue; 2185 2186 netdev_get_tx_queue(slave->ndev, queue)->tx_maxrate = rate; 2187 } 2188 2189 cpsw_split_res(ndev); 2190 return ret; 2191 } 2192 2193 static const struct net_device_ops cpsw_netdev_ops = { 2194 .ndo_open = cpsw_ndo_open, 2195 .ndo_stop = cpsw_ndo_stop, 2196 .ndo_start_xmit = cpsw_ndo_start_xmit, 2197 .ndo_set_mac_address = cpsw_ndo_set_mac_address, 2198 .ndo_do_ioctl = cpsw_ndo_ioctl, 2199 .ndo_validate_addr = eth_validate_addr, 2200 .ndo_tx_timeout = cpsw_ndo_tx_timeout, 2201 .ndo_set_rx_mode = cpsw_ndo_set_rx_mode, 2202 .ndo_set_tx_maxrate = cpsw_ndo_set_tx_maxrate, 2203 #ifdef CONFIG_NET_POLL_CONTROLLER 2204 .ndo_poll_controller = cpsw_ndo_poll_controller, 2205 #endif 2206 .ndo_vlan_rx_add_vid = cpsw_ndo_vlan_rx_add_vid, 2207 .ndo_vlan_rx_kill_vid = cpsw_ndo_vlan_rx_kill_vid, 2208 }; 2209 2210 static int cpsw_get_regs_len(struct net_device *ndev) 2211 { 2212 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 2213 2214 return cpsw->data.ale_entries * ALE_ENTRY_WORDS * sizeof(u32); 2215 } 2216 2217 static void cpsw_get_regs(struct net_device *ndev, 2218 struct ethtool_regs *regs, void *p) 2219 { 2220 u32 *reg = p; 2221 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 2222 2223 /* update CPSW IP version */ 2224 regs->version = cpsw->version; 2225 2226 cpsw_ale_dump(cpsw->ale, reg); 2227 } 2228 2229 static void cpsw_get_drvinfo(struct net_device *ndev, 2230 struct ethtool_drvinfo *info) 2231 { 2232 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 2233 struct platform_device *pdev = to_platform_device(cpsw->dev); 2234 2235 strlcpy(info->driver, "cpsw", sizeof(info->driver)); 2236 strlcpy(info->version, "1.0", sizeof(info->version)); 2237 strlcpy(info->bus_info, pdev->name, sizeof(info->bus_info)); 2238 } 2239 2240 static u32 cpsw_get_msglevel(struct net_device *ndev) 2241 { 2242 struct cpsw_priv *priv = netdev_priv(ndev); 2243 return priv->msg_enable; 2244 } 2245 2246 static void cpsw_set_msglevel(struct net_device *ndev, u32 value) 2247 { 2248 struct cpsw_priv *priv = netdev_priv(ndev); 2249 priv->msg_enable = value; 2250 } 2251 2252 #if IS_ENABLED(CONFIG_TI_CPTS) 2253 static int cpsw_get_ts_info(struct net_device *ndev, 2254 struct ethtool_ts_info *info) 2255 { 2256 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 2257 2258 info->so_timestamping = 2259 SOF_TIMESTAMPING_TX_HARDWARE | 2260 SOF_TIMESTAMPING_TX_SOFTWARE | 2261 SOF_TIMESTAMPING_RX_HARDWARE | 2262 SOF_TIMESTAMPING_RX_SOFTWARE | 2263 SOF_TIMESTAMPING_SOFTWARE | 2264 SOF_TIMESTAMPING_RAW_HARDWARE; 2265 info->phc_index = cpsw->cpts->phc_index; 2266 info->tx_types = 2267 (1 << HWTSTAMP_TX_OFF) | 2268 (1 << HWTSTAMP_TX_ON); 2269 info->rx_filters = 2270 (1 << HWTSTAMP_FILTER_NONE) | 2271 (1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) | 2272 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 2273 return 0; 2274 } 2275 #else 2276 static int cpsw_get_ts_info(struct net_device *ndev, 2277 struct ethtool_ts_info *info) 2278 { 2279 info->so_timestamping = 2280 SOF_TIMESTAMPING_TX_SOFTWARE | 2281 SOF_TIMESTAMPING_RX_SOFTWARE | 2282 SOF_TIMESTAMPING_SOFTWARE; 2283 info->phc_index = -1; 2284 info->tx_types = 0; 2285 info->rx_filters = 0; 2286 return 0; 2287 } 2288 #endif 2289 2290 static int cpsw_get_link_ksettings(struct net_device *ndev, 2291 struct ethtool_link_ksettings *ecmd) 2292 { 2293 struct cpsw_priv *priv = netdev_priv(ndev); 2294 struct cpsw_common *cpsw = priv->cpsw; 2295 int slave_no = cpsw_slave_index(cpsw, priv); 2296 2297 if (!cpsw->slaves[slave_no].phy) 2298 return -EOPNOTSUPP; 2299 2300 phy_ethtool_ksettings_get(cpsw->slaves[slave_no].phy, ecmd); 2301 return 0; 2302 } 2303 2304 static int cpsw_set_link_ksettings(struct net_device *ndev, 2305 const struct ethtool_link_ksettings *ecmd) 2306 { 2307 struct cpsw_priv *priv = netdev_priv(ndev); 2308 struct cpsw_common *cpsw = priv->cpsw; 2309 int slave_no = cpsw_slave_index(cpsw, priv); 2310 2311 if (cpsw->slaves[slave_no].phy) 2312 return phy_ethtool_ksettings_set(cpsw->slaves[slave_no].phy, 2313 ecmd); 2314 else 2315 return -EOPNOTSUPP; 2316 } 2317 2318 static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 2319 { 2320 struct cpsw_priv *priv = netdev_priv(ndev); 2321 struct cpsw_common *cpsw = priv->cpsw; 2322 int slave_no = cpsw_slave_index(cpsw, priv); 2323 2324 wol->supported = 0; 2325 wol->wolopts = 0; 2326 2327 if (cpsw->slaves[slave_no].phy) 2328 phy_ethtool_get_wol(cpsw->slaves[slave_no].phy, wol); 2329 } 2330 2331 static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 2332 { 2333 struct cpsw_priv *priv = netdev_priv(ndev); 2334 struct cpsw_common *cpsw = priv->cpsw; 2335 int slave_no = cpsw_slave_index(cpsw, priv); 2336 2337 if (cpsw->slaves[slave_no].phy) 2338 return phy_ethtool_set_wol(cpsw->slaves[slave_no].phy, wol); 2339 else 2340 return -EOPNOTSUPP; 2341 } 2342 2343 static void cpsw_get_pauseparam(struct net_device *ndev, 2344 struct ethtool_pauseparam *pause) 2345 { 2346 struct cpsw_priv *priv = netdev_priv(ndev); 2347 2348 pause->autoneg = AUTONEG_DISABLE; 2349 pause->rx_pause = priv->rx_pause ? true : false; 2350 pause->tx_pause = priv->tx_pause ? true : false; 2351 } 2352 2353 static int cpsw_set_pauseparam(struct net_device *ndev, 2354 struct ethtool_pauseparam *pause) 2355 { 2356 struct cpsw_priv *priv = netdev_priv(ndev); 2357 bool link; 2358 2359 priv->rx_pause = pause->rx_pause ? true : false; 2360 priv->tx_pause = pause->tx_pause ? true : false; 2361 2362 for_each_slave(priv, _cpsw_adjust_link, priv, &link); 2363 return 0; 2364 } 2365 2366 static int cpsw_ethtool_op_begin(struct net_device *ndev) 2367 { 2368 struct cpsw_priv *priv = netdev_priv(ndev); 2369 struct cpsw_common *cpsw = priv->cpsw; 2370 int ret; 2371 2372 ret = pm_runtime_get_sync(cpsw->dev); 2373 if (ret < 0) { 2374 cpsw_err(priv, drv, "ethtool begin failed %d\n", ret); 2375 pm_runtime_put_noidle(cpsw->dev); 2376 } 2377 2378 return ret; 2379 } 2380 2381 static void cpsw_ethtool_op_complete(struct net_device *ndev) 2382 { 2383 struct cpsw_priv *priv = netdev_priv(ndev); 2384 int ret; 2385 2386 ret = pm_runtime_put(priv->cpsw->dev); 2387 if (ret < 0) 2388 cpsw_err(priv, drv, "ethtool complete failed %d\n", ret); 2389 } 2390 2391 static void cpsw_get_channels(struct net_device *ndev, 2392 struct ethtool_channels *ch) 2393 { 2394 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 2395 2396 ch->max_rx = cpsw->quirk_irq ? 1 : CPSW_MAX_QUEUES; 2397 ch->max_tx = cpsw->quirk_irq ? 1 : CPSW_MAX_QUEUES; 2398 ch->max_combined = 0; 2399 ch->max_other = 0; 2400 ch->other_count = 0; 2401 ch->rx_count = cpsw->rx_ch_num; 2402 ch->tx_count = cpsw->tx_ch_num; 2403 ch->combined_count = 0; 2404 } 2405 2406 static int cpsw_check_ch_settings(struct cpsw_common *cpsw, 2407 struct ethtool_channels *ch) 2408 { 2409 if (cpsw->quirk_irq) { 2410 dev_err(cpsw->dev, "Maximum one tx/rx queue is allowed"); 2411 return -EOPNOTSUPP; 2412 } 2413 2414 if (ch->combined_count) 2415 return -EINVAL; 2416 2417 /* verify we have at least one channel in each direction */ 2418 if (!ch->rx_count || !ch->tx_count) 2419 return -EINVAL; 2420 2421 if (ch->rx_count > cpsw->data.channels || 2422 ch->tx_count > cpsw->data.channels) 2423 return -EINVAL; 2424 2425 return 0; 2426 } 2427 2428 static int cpsw_update_channels_res(struct cpsw_priv *priv, int ch_num, int rx) 2429 { 2430 struct cpsw_common *cpsw = priv->cpsw; 2431 void (*handler)(void *, int, int); 2432 struct netdev_queue *queue; 2433 struct cpsw_vector *vec; 2434 int ret, *ch; 2435 2436 if (rx) { 2437 ch = &cpsw->rx_ch_num; 2438 vec = cpsw->rxv; 2439 handler = cpsw_rx_handler; 2440 } else { 2441 ch = &cpsw->tx_ch_num; 2442 vec = cpsw->txv; 2443 handler = cpsw_tx_handler; 2444 } 2445 2446 while (*ch < ch_num) { 2447 vec[*ch].ch = cpdma_chan_create(cpsw->dma, *ch, handler, rx); 2448 queue = netdev_get_tx_queue(priv->ndev, *ch); 2449 queue->tx_maxrate = 0; 2450 2451 if (IS_ERR(vec[*ch].ch)) 2452 return PTR_ERR(vec[*ch].ch); 2453 2454 if (!vec[*ch].ch) 2455 return -EINVAL; 2456 2457 cpsw_info(priv, ifup, "created new %d %s channel\n", *ch, 2458 (rx ? "rx" : "tx")); 2459 (*ch)++; 2460 } 2461 2462 while (*ch > ch_num) { 2463 (*ch)--; 2464 2465 ret = cpdma_chan_destroy(vec[*ch].ch); 2466 if (ret) 2467 return ret; 2468 2469 cpsw_info(priv, ifup, "destroyed %d %s channel\n", *ch, 2470 (rx ? "rx" : "tx")); 2471 } 2472 2473 return 0; 2474 } 2475 2476 static int cpsw_update_channels(struct cpsw_priv *priv, 2477 struct ethtool_channels *ch) 2478 { 2479 int ret; 2480 2481 ret = cpsw_update_channels_res(priv, ch->rx_count, 1); 2482 if (ret) 2483 return ret; 2484 2485 ret = cpsw_update_channels_res(priv, ch->tx_count, 0); 2486 if (ret) 2487 return ret; 2488 2489 return 0; 2490 } 2491 2492 static void cpsw_suspend_data_pass(struct net_device *ndev) 2493 { 2494 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 2495 struct cpsw_slave *slave; 2496 int i; 2497 2498 /* Disable NAPI scheduling */ 2499 cpsw_intr_disable(cpsw); 2500 2501 /* Stop all transmit queues for every network device. 2502 * Disable re-using rx descriptors with dormant_on. 2503 */ 2504 for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) { 2505 if (!(slave->ndev && netif_running(slave->ndev))) 2506 continue; 2507 2508 netif_tx_stop_all_queues(slave->ndev); 2509 netif_dormant_on(slave->ndev); 2510 } 2511 2512 /* Handle rest of tx packets and stop cpdma channels */ 2513 cpdma_ctlr_stop(cpsw->dma); 2514 } 2515 2516 static int cpsw_resume_data_pass(struct net_device *ndev) 2517 { 2518 struct cpsw_priv *priv = netdev_priv(ndev); 2519 struct cpsw_common *cpsw = priv->cpsw; 2520 struct cpsw_slave *slave; 2521 int i, ret; 2522 2523 /* Allow rx packets handling */ 2524 for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) 2525 if (slave->ndev && netif_running(slave->ndev)) 2526 netif_dormant_off(slave->ndev); 2527 2528 /* After this receive is started */ 2529 if (cpsw->usage_count) { 2530 ret = cpsw_fill_rx_channels(priv); 2531 if (ret) 2532 return ret; 2533 2534 cpdma_ctlr_start(cpsw->dma); 2535 cpsw_intr_enable(cpsw); 2536 } 2537 2538 /* Resume transmit for every affected interface */ 2539 for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) 2540 if (slave->ndev && netif_running(slave->ndev)) 2541 netif_tx_start_all_queues(slave->ndev); 2542 2543 return 0; 2544 } 2545 2546 static int cpsw_set_channels(struct net_device *ndev, 2547 struct ethtool_channels *chs) 2548 { 2549 struct cpsw_priv *priv = netdev_priv(ndev); 2550 struct cpsw_common *cpsw = priv->cpsw; 2551 struct cpsw_slave *slave; 2552 int i, ret; 2553 2554 ret = cpsw_check_ch_settings(cpsw, chs); 2555 if (ret < 0) 2556 return ret; 2557 2558 cpsw_suspend_data_pass(ndev); 2559 ret = cpsw_update_channels(priv, chs); 2560 if (ret) 2561 goto err; 2562 2563 for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) { 2564 if (!(slave->ndev && netif_running(slave->ndev))) 2565 continue; 2566 2567 /* Inform stack about new count of queues */ 2568 ret = netif_set_real_num_tx_queues(slave->ndev, 2569 cpsw->tx_ch_num); 2570 if (ret) { 2571 dev_err(priv->dev, "cannot set real number of tx queues\n"); 2572 goto err; 2573 } 2574 2575 ret = netif_set_real_num_rx_queues(slave->ndev, 2576 cpsw->rx_ch_num); 2577 if (ret) { 2578 dev_err(priv->dev, "cannot set real number of rx queues\n"); 2579 goto err; 2580 } 2581 } 2582 2583 if (cpsw->usage_count) 2584 cpsw_split_res(ndev); 2585 2586 ret = cpsw_resume_data_pass(ndev); 2587 if (!ret) 2588 return 0; 2589 err: 2590 dev_err(priv->dev, "cannot update channels number, closing device\n"); 2591 dev_close(ndev); 2592 return ret; 2593 } 2594 2595 static int cpsw_get_eee(struct net_device *ndev, struct ethtool_eee *edata) 2596 { 2597 struct cpsw_priv *priv = netdev_priv(ndev); 2598 struct cpsw_common *cpsw = priv->cpsw; 2599 int slave_no = cpsw_slave_index(cpsw, priv); 2600 2601 if (cpsw->slaves[slave_no].phy) 2602 return phy_ethtool_get_eee(cpsw->slaves[slave_no].phy, edata); 2603 else 2604 return -EOPNOTSUPP; 2605 } 2606 2607 static int cpsw_set_eee(struct net_device *ndev, struct ethtool_eee *edata) 2608 { 2609 struct cpsw_priv *priv = netdev_priv(ndev); 2610 struct cpsw_common *cpsw = priv->cpsw; 2611 int slave_no = cpsw_slave_index(cpsw, priv); 2612 2613 if (cpsw->slaves[slave_no].phy) 2614 return phy_ethtool_set_eee(cpsw->slaves[slave_no].phy, edata); 2615 else 2616 return -EOPNOTSUPP; 2617 } 2618 2619 static int cpsw_nway_reset(struct net_device *ndev) 2620 { 2621 struct cpsw_priv *priv = netdev_priv(ndev); 2622 struct cpsw_common *cpsw = priv->cpsw; 2623 int slave_no = cpsw_slave_index(cpsw, priv); 2624 2625 if (cpsw->slaves[slave_no].phy) 2626 return genphy_restart_aneg(cpsw->slaves[slave_no].phy); 2627 else 2628 return -EOPNOTSUPP; 2629 } 2630 2631 static void cpsw_get_ringparam(struct net_device *ndev, 2632 struct ethtool_ringparam *ering) 2633 { 2634 struct cpsw_priv *priv = netdev_priv(ndev); 2635 struct cpsw_common *cpsw = priv->cpsw; 2636 2637 /* not supported */ 2638 ering->tx_max_pending = 0; 2639 ering->tx_pending = cpdma_get_num_tx_descs(cpsw->dma); 2640 ering->rx_max_pending = descs_pool_size - CPSW_MAX_QUEUES; 2641 ering->rx_pending = cpdma_get_num_rx_descs(cpsw->dma); 2642 } 2643 2644 static int cpsw_set_ringparam(struct net_device *ndev, 2645 struct ethtool_ringparam *ering) 2646 { 2647 struct cpsw_priv *priv = netdev_priv(ndev); 2648 struct cpsw_common *cpsw = priv->cpsw; 2649 int ret; 2650 2651 /* ignore ering->tx_pending - only rx_pending adjustment is supported */ 2652 2653 if (ering->rx_mini_pending || ering->rx_jumbo_pending || 2654 ering->rx_pending < CPSW_MAX_QUEUES || 2655 ering->rx_pending > (descs_pool_size - CPSW_MAX_QUEUES)) 2656 return -EINVAL; 2657 2658 if (ering->rx_pending == cpdma_get_num_rx_descs(cpsw->dma)) 2659 return 0; 2660 2661 cpsw_suspend_data_pass(ndev); 2662 2663 cpdma_set_num_rx_descs(cpsw->dma, ering->rx_pending); 2664 2665 if (cpsw->usage_count) 2666 cpdma_chan_split_pool(cpsw->dma); 2667 2668 ret = cpsw_resume_data_pass(ndev); 2669 if (!ret) 2670 return 0; 2671 2672 dev_err(&ndev->dev, "cannot set ring params, closing device\n"); 2673 dev_close(ndev); 2674 return ret; 2675 } 2676 2677 static const struct ethtool_ops cpsw_ethtool_ops = { 2678 .get_drvinfo = cpsw_get_drvinfo, 2679 .get_msglevel = cpsw_get_msglevel, 2680 .set_msglevel = cpsw_set_msglevel, 2681 .get_link = ethtool_op_get_link, 2682 .get_ts_info = cpsw_get_ts_info, 2683 .get_coalesce = cpsw_get_coalesce, 2684 .set_coalesce = cpsw_set_coalesce, 2685 .get_sset_count = cpsw_get_sset_count, 2686 .get_strings = cpsw_get_strings, 2687 .get_ethtool_stats = cpsw_get_ethtool_stats, 2688 .get_pauseparam = cpsw_get_pauseparam, 2689 .set_pauseparam = cpsw_set_pauseparam, 2690 .get_wol = cpsw_get_wol, 2691 .set_wol = cpsw_set_wol, 2692 .get_regs_len = cpsw_get_regs_len, 2693 .get_regs = cpsw_get_regs, 2694 .begin = cpsw_ethtool_op_begin, 2695 .complete = cpsw_ethtool_op_complete, 2696 .get_channels = cpsw_get_channels, 2697 .set_channels = cpsw_set_channels, 2698 .get_link_ksettings = cpsw_get_link_ksettings, 2699 .set_link_ksettings = cpsw_set_link_ksettings, 2700 .get_eee = cpsw_get_eee, 2701 .set_eee = cpsw_set_eee, 2702 .nway_reset = cpsw_nway_reset, 2703 .get_ringparam = cpsw_get_ringparam, 2704 .set_ringparam = cpsw_set_ringparam, 2705 }; 2706 2707 static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_common *cpsw, 2708 u32 slave_reg_ofs, u32 sliver_reg_ofs) 2709 { 2710 void __iomem *regs = cpsw->regs; 2711 int slave_num = slave->slave_num; 2712 struct cpsw_slave_data *data = cpsw->data.slave_data + slave_num; 2713 2714 slave->data = data; 2715 slave->regs = regs + slave_reg_ofs; 2716 slave->sliver = regs + sliver_reg_ofs; 2717 slave->port_vlan = data->dual_emac_res_vlan; 2718 } 2719 2720 static int cpsw_probe_dt(struct cpsw_platform_data *data, 2721 struct platform_device *pdev) 2722 { 2723 struct device_node *node = pdev->dev.of_node; 2724 struct device_node *slave_node; 2725 int i = 0, ret; 2726 u32 prop; 2727 2728 if (!node) 2729 return -EINVAL; 2730 2731 if (of_property_read_u32(node, "slaves", &prop)) { 2732 dev_err(&pdev->dev, "Missing slaves property in the DT.\n"); 2733 return -EINVAL; 2734 } 2735 data->slaves = prop; 2736 2737 if (of_property_read_u32(node, "active_slave", &prop)) { 2738 dev_err(&pdev->dev, "Missing active_slave property in the DT.\n"); 2739 return -EINVAL; 2740 } 2741 data->active_slave = prop; 2742 2743 data->slave_data = devm_kcalloc(&pdev->dev, 2744 data->slaves, 2745 sizeof(struct cpsw_slave_data), 2746 GFP_KERNEL); 2747 if (!data->slave_data) 2748 return -ENOMEM; 2749 2750 if (of_property_read_u32(node, "cpdma_channels", &prop)) { 2751 dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n"); 2752 return -EINVAL; 2753 } 2754 data->channels = prop; 2755 2756 if (of_property_read_u32(node, "ale_entries", &prop)) { 2757 dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n"); 2758 return -EINVAL; 2759 } 2760 data->ale_entries = prop; 2761 2762 if (of_property_read_u32(node, "bd_ram_size", &prop)) { 2763 dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n"); 2764 return -EINVAL; 2765 } 2766 data->bd_ram_size = prop; 2767 2768 if (of_property_read_u32(node, "mac_control", &prop)) { 2769 dev_err(&pdev->dev, "Missing mac_control property in the DT.\n"); 2770 return -EINVAL; 2771 } 2772 data->mac_control = prop; 2773 2774 if (of_property_read_bool(node, "dual_emac")) 2775 data->dual_emac = 1; 2776 2777 /* 2778 * Populate all the child nodes here... 2779 */ 2780 ret = of_platform_populate(node, NULL, NULL, &pdev->dev); 2781 /* We do not want to force this, as in some cases may not have child */ 2782 if (ret) 2783 dev_warn(&pdev->dev, "Doesn't have any child node\n"); 2784 2785 for_each_available_child_of_node(node, slave_node) { 2786 struct cpsw_slave_data *slave_data = data->slave_data + i; 2787 const void *mac_addr = NULL; 2788 int lenp; 2789 const __be32 *parp; 2790 2791 /* This is no slave child node, continue */ 2792 if (strcmp(slave_node->name, "slave")) 2793 continue; 2794 2795 slave_data->phy_node = of_parse_phandle(slave_node, 2796 "phy-handle", 0); 2797 parp = of_get_property(slave_node, "phy_id", &lenp); 2798 if (slave_data->phy_node) { 2799 dev_dbg(&pdev->dev, 2800 "slave[%d] using phy-handle=\"%pOF\"\n", 2801 i, slave_data->phy_node); 2802 } else if (of_phy_is_fixed_link(slave_node)) { 2803 /* In the case of a fixed PHY, the DT node associated 2804 * to the PHY is the Ethernet MAC DT node. 2805 */ 2806 ret = of_phy_register_fixed_link(slave_node); 2807 if (ret) { 2808 if (ret != -EPROBE_DEFER) 2809 dev_err(&pdev->dev, "failed to register fixed-link phy: %d\n", ret); 2810 return ret; 2811 } 2812 slave_data->phy_node = of_node_get(slave_node); 2813 } else if (parp) { 2814 u32 phyid; 2815 struct device_node *mdio_node; 2816 struct platform_device *mdio; 2817 2818 if (lenp != (sizeof(__be32) * 2)) { 2819 dev_err(&pdev->dev, "Invalid slave[%d] phy_id property\n", i); 2820 goto no_phy_slave; 2821 } 2822 mdio_node = of_find_node_by_phandle(be32_to_cpup(parp)); 2823 phyid = be32_to_cpup(parp+1); 2824 mdio = of_find_device_by_node(mdio_node); 2825 of_node_put(mdio_node); 2826 if (!mdio) { 2827 dev_err(&pdev->dev, "Missing mdio platform device\n"); 2828 return -EINVAL; 2829 } 2830 snprintf(slave_data->phy_id, sizeof(slave_data->phy_id), 2831 PHY_ID_FMT, mdio->name, phyid); 2832 put_device(&mdio->dev); 2833 } else { 2834 dev_err(&pdev->dev, 2835 "No slave[%d] phy_id, phy-handle, or fixed-link property\n", 2836 i); 2837 goto no_phy_slave; 2838 } 2839 slave_data->phy_if = of_get_phy_mode(slave_node); 2840 if (slave_data->phy_if < 0) { 2841 dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n", 2842 i); 2843 return slave_data->phy_if; 2844 } 2845 2846 no_phy_slave: 2847 mac_addr = of_get_mac_address(slave_node); 2848 if (mac_addr) { 2849 memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN); 2850 } else { 2851 ret = ti_cm_get_macid(&pdev->dev, i, 2852 slave_data->mac_addr); 2853 if (ret) 2854 return ret; 2855 } 2856 if (data->dual_emac) { 2857 if (of_property_read_u32(slave_node, "dual_emac_res_vlan", 2858 &prop)) { 2859 dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n"); 2860 slave_data->dual_emac_res_vlan = i+1; 2861 dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n", 2862 slave_data->dual_emac_res_vlan, i); 2863 } else { 2864 slave_data->dual_emac_res_vlan = prop; 2865 } 2866 } 2867 2868 i++; 2869 if (i == data->slaves) 2870 break; 2871 } 2872 2873 return 0; 2874 } 2875 2876 static void cpsw_remove_dt(struct platform_device *pdev) 2877 { 2878 struct net_device *ndev = platform_get_drvdata(pdev); 2879 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 2880 struct cpsw_platform_data *data = &cpsw->data; 2881 struct device_node *node = pdev->dev.of_node; 2882 struct device_node *slave_node; 2883 int i = 0; 2884 2885 for_each_available_child_of_node(node, slave_node) { 2886 struct cpsw_slave_data *slave_data = &data->slave_data[i]; 2887 2888 if (strcmp(slave_node->name, "slave")) 2889 continue; 2890 2891 if (of_phy_is_fixed_link(slave_node)) 2892 of_phy_deregister_fixed_link(slave_node); 2893 2894 of_node_put(slave_data->phy_node); 2895 2896 i++; 2897 if (i == data->slaves) 2898 break; 2899 } 2900 2901 of_platform_depopulate(&pdev->dev); 2902 } 2903 2904 static int cpsw_probe_dual_emac(struct cpsw_priv *priv) 2905 { 2906 struct cpsw_common *cpsw = priv->cpsw; 2907 struct cpsw_platform_data *data = &cpsw->data; 2908 struct net_device *ndev; 2909 struct cpsw_priv *priv_sl2; 2910 int ret = 0; 2911 2912 ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES); 2913 if (!ndev) { 2914 dev_err(cpsw->dev, "cpsw: error allocating net_device\n"); 2915 return -ENOMEM; 2916 } 2917 2918 priv_sl2 = netdev_priv(ndev); 2919 priv_sl2->cpsw = cpsw; 2920 priv_sl2->ndev = ndev; 2921 priv_sl2->dev = &ndev->dev; 2922 priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG); 2923 2924 if (is_valid_ether_addr(data->slave_data[1].mac_addr)) { 2925 memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr, 2926 ETH_ALEN); 2927 dev_info(cpsw->dev, "cpsw: Detected MACID = %pM\n", 2928 priv_sl2->mac_addr); 2929 } else { 2930 random_ether_addr(priv_sl2->mac_addr); 2931 dev_info(cpsw->dev, "cpsw: Random MACID = %pM\n", 2932 priv_sl2->mac_addr); 2933 } 2934 memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN); 2935 2936 priv_sl2->emac_port = 1; 2937 cpsw->slaves[1].ndev = ndev; 2938 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 2939 2940 ndev->netdev_ops = &cpsw_netdev_ops; 2941 ndev->ethtool_ops = &cpsw_ethtool_ops; 2942 2943 /* register the network device */ 2944 SET_NETDEV_DEV(ndev, cpsw->dev); 2945 ret = register_netdev(ndev); 2946 if (ret) { 2947 dev_err(cpsw->dev, "cpsw: error registering net device\n"); 2948 free_netdev(ndev); 2949 ret = -ENODEV; 2950 } 2951 2952 return ret; 2953 } 2954 2955 static const struct of_device_id cpsw_of_mtable[] = { 2956 { .compatible = "ti,cpsw"}, 2957 { .compatible = "ti,am335x-cpsw"}, 2958 { .compatible = "ti,am4372-cpsw"}, 2959 { .compatible = "ti,dra7-cpsw"}, 2960 { /* sentinel */ }, 2961 }; 2962 MODULE_DEVICE_TABLE(of, cpsw_of_mtable); 2963 2964 static const struct soc_device_attribute cpsw_soc_devices[] = { 2965 { .family = "AM33xx", .revision = "ES1.0"}, 2966 { /* sentinel */ } 2967 }; 2968 2969 static int cpsw_probe(struct platform_device *pdev) 2970 { 2971 struct clk *clk; 2972 struct cpsw_platform_data *data; 2973 struct net_device *ndev; 2974 struct cpsw_priv *priv; 2975 struct cpdma_params dma_params; 2976 struct cpsw_ale_params ale_params; 2977 void __iomem *ss_regs; 2978 void __iomem *cpts_regs; 2979 struct resource *res, *ss_res; 2980 struct gpio_descs *mode; 2981 u32 slave_offset, sliver_offset, slave_size; 2982 const struct soc_device_attribute *soc; 2983 struct cpsw_common *cpsw; 2984 int ret = 0, i; 2985 int irq; 2986 2987 cpsw = devm_kzalloc(&pdev->dev, sizeof(struct cpsw_common), GFP_KERNEL); 2988 if (!cpsw) 2989 return -ENOMEM; 2990 2991 cpsw->dev = &pdev->dev; 2992 2993 ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES); 2994 if (!ndev) { 2995 dev_err(&pdev->dev, "error allocating net_device\n"); 2996 return -ENOMEM; 2997 } 2998 2999 platform_set_drvdata(pdev, ndev); 3000 priv = netdev_priv(ndev); 3001 priv->cpsw = cpsw; 3002 priv->ndev = ndev; 3003 priv->dev = &ndev->dev; 3004 priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG); 3005 cpsw->rx_packet_max = max(rx_packet_max, 128); 3006 3007 mode = devm_gpiod_get_array_optional(&pdev->dev, "mode", GPIOD_OUT_LOW); 3008 if (IS_ERR(mode)) { 3009 ret = PTR_ERR(mode); 3010 dev_err(&pdev->dev, "gpio request failed, ret %d\n", ret); 3011 goto clean_ndev_ret; 3012 } 3013 3014 /* 3015 * This may be required here for child devices. 3016 */ 3017 pm_runtime_enable(&pdev->dev); 3018 3019 /* Select default pin state */ 3020 pinctrl_pm_select_default_state(&pdev->dev); 3021 3022 /* Need to enable clocks with runtime PM api to access module 3023 * registers 3024 */ 3025 ret = pm_runtime_get_sync(&pdev->dev); 3026 if (ret < 0) { 3027 pm_runtime_put_noidle(&pdev->dev); 3028 goto clean_runtime_disable_ret; 3029 } 3030 3031 ret = cpsw_probe_dt(&cpsw->data, pdev); 3032 if (ret) 3033 goto clean_dt_ret; 3034 3035 data = &cpsw->data; 3036 cpsw->rx_ch_num = 1; 3037 cpsw->tx_ch_num = 1; 3038 3039 if (is_valid_ether_addr(data->slave_data[0].mac_addr)) { 3040 memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN); 3041 dev_info(&pdev->dev, "Detected MACID = %pM\n", priv->mac_addr); 3042 } else { 3043 eth_random_addr(priv->mac_addr); 3044 dev_info(&pdev->dev, "Random MACID = %pM\n", priv->mac_addr); 3045 } 3046 3047 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN); 3048 3049 cpsw->slaves = devm_kcalloc(&pdev->dev, 3050 data->slaves, sizeof(struct cpsw_slave), 3051 GFP_KERNEL); 3052 if (!cpsw->slaves) { 3053 ret = -ENOMEM; 3054 goto clean_dt_ret; 3055 } 3056 for (i = 0; i < data->slaves; i++) 3057 cpsw->slaves[i].slave_num = i; 3058 3059 cpsw->slaves[0].ndev = ndev; 3060 priv->emac_port = 0; 3061 3062 clk = devm_clk_get(&pdev->dev, "fck"); 3063 if (IS_ERR(clk)) { 3064 dev_err(priv->dev, "fck is not found\n"); 3065 ret = -ENODEV; 3066 goto clean_dt_ret; 3067 } 3068 cpsw->bus_freq_mhz = clk_get_rate(clk) / 1000000; 3069 3070 ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 3071 ss_regs = devm_ioremap_resource(&pdev->dev, ss_res); 3072 if (IS_ERR(ss_regs)) { 3073 ret = PTR_ERR(ss_regs); 3074 goto clean_dt_ret; 3075 } 3076 cpsw->regs = ss_regs; 3077 3078 cpsw->version = readl(&cpsw->regs->id_ver); 3079 3080 res = platform_get_resource(pdev, IORESOURCE_MEM, 1); 3081 cpsw->wr_regs = devm_ioremap_resource(&pdev->dev, res); 3082 if (IS_ERR(cpsw->wr_regs)) { 3083 ret = PTR_ERR(cpsw->wr_regs); 3084 goto clean_dt_ret; 3085 } 3086 3087 memset(&dma_params, 0, sizeof(dma_params)); 3088 memset(&ale_params, 0, sizeof(ale_params)); 3089 3090 switch (cpsw->version) { 3091 case CPSW_VERSION_1: 3092 cpsw->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET; 3093 cpts_regs = ss_regs + CPSW1_CPTS_OFFSET; 3094 cpsw->hw_stats = ss_regs + CPSW1_HW_STATS; 3095 dma_params.dmaregs = ss_regs + CPSW1_CPDMA_OFFSET; 3096 dma_params.txhdp = ss_regs + CPSW1_STATERAM_OFFSET; 3097 ale_params.ale_regs = ss_regs + CPSW1_ALE_OFFSET; 3098 slave_offset = CPSW1_SLAVE_OFFSET; 3099 slave_size = CPSW1_SLAVE_SIZE; 3100 sliver_offset = CPSW1_SLIVER_OFFSET; 3101 dma_params.desc_mem_phys = 0; 3102 break; 3103 case CPSW_VERSION_2: 3104 case CPSW_VERSION_3: 3105 case CPSW_VERSION_4: 3106 cpsw->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET; 3107 cpts_regs = ss_regs + CPSW2_CPTS_OFFSET; 3108 cpsw->hw_stats = ss_regs + CPSW2_HW_STATS; 3109 dma_params.dmaregs = ss_regs + CPSW2_CPDMA_OFFSET; 3110 dma_params.txhdp = ss_regs + CPSW2_STATERAM_OFFSET; 3111 ale_params.ale_regs = ss_regs + CPSW2_ALE_OFFSET; 3112 slave_offset = CPSW2_SLAVE_OFFSET; 3113 slave_size = CPSW2_SLAVE_SIZE; 3114 sliver_offset = CPSW2_SLIVER_OFFSET; 3115 dma_params.desc_mem_phys = 3116 (u32 __force) ss_res->start + CPSW2_BD_OFFSET; 3117 break; 3118 default: 3119 dev_err(priv->dev, "unknown version 0x%08x\n", cpsw->version); 3120 ret = -ENODEV; 3121 goto clean_dt_ret; 3122 } 3123 for (i = 0; i < cpsw->data.slaves; i++) { 3124 struct cpsw_slave *slave = &cpsw->slaves[i]; 3125 3126 cpsw_slave_init(slave, cpsw, slave_offset, sliver_offset); 3127 slave_offset += slave_size; 3128 sliver_offset += SLIVER_SIZE; 3129 } 3130 3131 dma_params.dev = &pdev->dev; 3132 dma_params.rxthresh = dma_params.dmaregs + CPDMA_RXTHRESH; 3133 dma_params.rxfree = dma_params.dmaregs + CPDMA_RXFREE; 3134 dma_params.rxhdp = dma_params.txhdp + CPDMA_RXHDP; 3135 dma_params.txcp = dma_params.txhdp + CPDMA_TXCP; 3136 dma_params.rxcp = dma_params.txhdp + CPDMA_RXCP; 3137 3138 dma_params.num_chan = data->channels; 3139 dma_params.has_soft_reset = true; 3140 dma_params.min_packet_size = CPSW_MIN_PACKET_SIZE; 3141 dma_params.desc_mem_size = data->bd_ram_size; 3142 dma_params.desc_align = 16; 3143 dma_params.has_ext_regs = true; 3144 dma_params.desc_hw_addr = dma_params.desc_mem_phys; 3145 dma_params.bus_freq_mhz = cpsw->bus_freq_mhz; 3146 dma_params.descs_pool_size = descs_pool_size; 3147 3148 cpsw->dma = cpdma_ctlr_create(&dma_params); 3149 if (!cpsw->dma) { 3150 dev_err(priv->dev, "error initializing dma\n"); 3151 ret = -ENOMEM; 3152 goto clean_dt_ret; 3153 } 3154 3155 soc = soc_device_match(cpsw_soc_devices); 3156 if (soc) 3157 cpsw->quirk_irq = 1; 3158 3159 cpsw->txv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_tx_handler, 0); 3160 if (IS_ERR(cpsw->txv[0].ch)) { 3161 dev_err(priv->dev, "error initializing tx dma channel\n"); 3162 ret = PTR_ERR(cpsw->txv[0].ch); 3163 goto clean_dma_ret; 3164 } 3165 3166 cpsw->rxv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_rx_handler, 1); 3167 if (IS_ERR(cpsw->rxv[0].ch)) { 3168 dev_err(priv->dev, "error initializing rx dma channel\n"); 3169 ret = PTR_ERR(cpsw->rxv[0].ch); 3170 goto clean_dma_ret; 3171 } 3172 3173 ale_params.dev = &pdev->dev; 3174 ale_params.ale_ageout = ale_ageout; 3175 ale_params.ale_entries = data->ale_entries; 3176 ale_params.ale_ports = CPSW_ALE_PORTS_NUM; 3177 3178 cpsw->ale = cpsw_ale_create(&ale_params); 3179 if (!cpsw->ale) { 3180 dev_err(priv->dev, "error initializing ale engine\n"); 3181 ret = -ENODEV; 3182 goto clean_dma_ret; 3183 } 3184 3185 cpsw->cpts = cpts_create(cpsw->dev, cpts_regs, cpsw->dev->of_node); 3186 if (IS_ERR(cpsw->cpts)) { 3187 ret = PTR_ERR(cpsw->cpts); 3188 goto clean_dma_ret; 3189 } 3190 3191 ndev->irq = platform_get_irq(pdev, 1); 3192 if (ndev->irq < 0) { 3193 dev_err(priv->dev, "error getting irq resource\n"); 3194 ret = ndev->irq; 3195 goto clean_dma_ret; 3196 } 3197 3198 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX; 3199 3200 ndev->netdev_ops = &cpsw_netdev_ops; 3201 ndev->ethtool_ops = &cpsw_ethtool_ops; 3202 netif_napi_add(ndev, &cpsw->napi_rx, 3203 cpsw->quirk_irq ? cpsw_rx_poll : cpsw_rx_mq_poll, 3204 CPSW_POLL_WEIGHT); 3205 netif_tx_napi_add(ndev, &cpsw->napi_tx, 3206 cpsw->quirk_irq ? cpsw_tx_poll : cpsw_tx_mq_poll, 3207 CPSW_POLL_WEIGHT); 3208 cpsw_split_res(ndev); 3209 3210 /* register the network device */ 3211 SET_NETDEV_DEV(ndev, &pdev->dev); 3212 ret = register_netdev(ndev); 3213 if (ret) { 3214 dev_err(priv->dev, "error registering net device\n"); 3215 ret = -ENODEV; 3216 goto clean_dma_ret; 3217 } 3218 3219 if (cpsw->data.dual_emac) { 3220 ret = cpsw_probe_dual_emac(priv); 3221 if (ret) { 3222 cpsw_err(priv, probe, "error probe slave 2 emac interface\n"); 3223 goto clean_unregister_netdev_ret; 3224 } 3225 } 3226 3227 /* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and 3228 * MISC IRQs which are always kept disabled with this driver so 3229 * we will not request them. 3230 * 3231 * If anyone wants to implement support for those, make sure to 3232 * first request and append them to irqs_table array. 3233 */ 3234 3235 /* RX IRQ */ 3236 irq = platform_get_irq(pdev, 1); 3237 if (irq < 0) { 3238 ret = irq; 3239 goto clean_dma_ret; 3240 } 3241 3242 cpsw->irqs_table[0] = irq; 3243 ret = devm_request_irq(&pdev->dev, irq, cpsw_rx_interrupt, 3244 0, dev_name(&pdev->dev), cpsw); 3245 if (ret < 0) { 3246 dev_err(priv->dev, "error attaching irq (%d)\n", ret); 3247 goto clean_dma_ret; 3248 } 3249 3250 /* TX IRQ */ 3251 irq = platform_get_irq(pdev, 2); 3252 if (irq < 0) { 3253 ret = irq; 3254 goto clean_dma_ret; 3255 } 3256 3257 cpsw->irqs_table[1] = irq; 3258 ret = devm_request_irq(&pdev->dev, irq, cpsw_tx_interrupt, 3259 0, dev_name(&pdev->dev), cpsw); 3260 if (ret < 0) { 3261 dev_err(priv->dev, "error attaching irq (%d)\n", ret); 3262 goto clean_dma_ret; 3263 } 3264 3265 cpsw_notice(priv, probe, 3266 "initialized device (regs %pa, irq %d, pool size %d)\n", 3267 &ss_res->start, ndev->irq, dma_params.descs_pool_size); 3268 3269 pm_runtime_put(&pdev->dev); 3270 3271 return 0; 3272 3273 clean_unregister_netdev_ret: 3274 unregister_netdev(ndev); 3275 clean_dma_ret: 3276 cpdma_ctlr_destroy(cpsw->dma); 3277 clean_dt_ret: 3278 cpsw_remove_dt(pdev); 3279 pm_runtime_put_sync(&pdev->dev); 3280 clean_runtime_disable_ret: 3281 pm_runtime_disable(&pdev->dev); 3282 clean_ndev_ret: 3283 free_netdev(priv->ndev); 3284 return ret; 3285 } 3286 3287 static int cpsw_remove(struct platform_device *pdev) 3288 { 3289 struct net_device *ndev = platform_get_drvdata(pdev); 3290 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 3291 int ret; 3292 3293 ret = pm_runtime_get_sync(&pdev->dev); 3294 if (ret < 0) { 3295 pm_runtime_put_noidle(&pdev->dev); 3296 return ret; 3297 } 3298 3299 if (cpsw->data.dual_emac) 3300 unregister_netdev(cpsw->slaves[1].ndev); 3301 unregister_netdev(ndev); 3302 3303 cpts_release(cpsw->cpts); 3304 cpdma_ctlr_destroy(cpsw->dma); 3305 cpsw_remove_dt(pdev); 3306 pm_runtime_put_sync(&pdev->dev); 3307 pm_runtime_disable(&pdev->dev); 3308 if (cpsw->data.dual_emac) 3309 free_netdev(cpsw->slaves[1].ndev); 3310 free_netdev(ndev); 3311 return 0; 3312 } 3313 3314 #ifdef CONFIG_PM_SLEEP 3315 static int cpsw_suspend(struct device *dev) 3316 { 3317 struct platform_device *pdev = to_platform_device(dev); 3318 struct net_device *ndev = platform_get_drvdata(pdev); 3319 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 3320 3321 if (cpsw->data.dual_emac) { 3322 int i; 3323 3324 for (i = 0; i < cpsw->data.slaves; i++) { 3325 if (netif_running(cpsw->slaves[i].ndev)) 3326 cpsw_ndo_stop(cpsw->slaves[i].ndev); 3327 } 3328 } else { 3329 if (netif_running(ndev)) 3330 cpsw_ndo_stop(ndev); 3331 } 3332 3333 /* Select sleep pin state */ 3334 pinctrl_pm_select_sleep_state(dev); 3335 3336 return 0; 3337 } 3338 3339 static int cpsw_resume(struct device *dev) 3340 { 3341 struct platform_device *pdev = to_platform_device(dev); 3342 struct net_device *ndev = platform_get_drvdata(pdev); 3343 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 3344 3345 /* Select default pin state */ 3346 pinctrl_pm_select_default_state(dev); 3347 3348 /* shut up ASSERT_RTNL() warning in netif_set_real_num_tx/rx_queues */ 3349 rtnl_lock(); 3350 if (cpsw->data.dual_emac) { 3351 int i; 3352 3353 for (i = 0; i < cpsw->data.slaves; i++) { 3354 if (netif_running(cpsw->slaves[i].ndev)) 3355 cpsw_ndo_open(cpsw->slaves[i].ndev); 3356 } 3357 } else { 3358 if (netif_running(ndev)) 3359 cpsw_ndo_open(ndev); 3360 } 3361 rtnl_unlock(); 3362 3363 return 0; 3364 } 3365 #endif 3366 3367 static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume); 3368 3369 static struct platform_driver cpsw_driver = { 3370 .driver = { 3371 .name = "cpsw", 3372 .pm = &cpsw_pm_ops, 3373 .of_match_table = cpsw_of_mtable, 3374 }, 3375 .probe = cpsw_probe, 3376 .remove = cpsw_remove, 3377 }; 3378 3379 module_platform_driver(cpsw_driver); 3380 3381 MODULE_LICENSE("GPL"); 3382 MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>"); 3383 MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>"); 3384 MODULE_DESCRIPTION("TI CPSW Ethernet driver"); 3385