xref: /openbmc/linux/drivers/net/ethernet/ti/cpsw.c (revision b78412b8)
1 /*
2  * Texas Instruments Ethernet Switch Driver
3  *
4  * Copyright (C) 2012 Texas Instruments
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation version 2.
9  *
10  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11  * kind, whether express or implied; without even the implied warranty
12  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/io.h>
18 #include <linux/clk.h>
19 #include <linux/timer.h>
20 #include <linux/module.h>
21 #include <linux/platform_device.h>
22 #include <linux/irqreturn.h>
23 #include <linux/interrupt.h>
24 #include <linux/if_ether.h>
25 #include <linux/etherdevice.h>
26 #include <linux/netdevice.h>
27 #include <linux/net_tstamp.h>
28 #include <linux/phy.h>
29 #include <linux/workqueue.h>
30 #include <linux/delay.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/gpio.h>
33 #include <linux/of.h>
34 #include <linux/of_mdio.h>
35 #include <linux/of_net.h>
36 #include <linux/of_device.h>
37 #include <linux/if_vlan.h>
38 
39 #include <linux/pinctrl/consumer.h>
40 
41 #include "cpsw.h"
42 #include "cpsw_ale.h"
43 #include "cpts.h"
44 #include "davinci_cpdma.h"
45 
46 #define CPSW_DEBUG	(NETIF_MSG_HW		| NETIF_MSG_WOL		| \
47 			 NETIF_MSG_DRV		| NETIF_MSG_LINK	| \
48 			 NETIF_MSG_IFUP		| NETIF_MSG_INTR	| \
49 			 NETIF_MSG_PROBE	| NETIF_MSG_TIMER	| \
50 			 NETIF_MSG_IFDOWN	| NETIF_MSG_RX_ERR	| \
51 			 NETIF_MSG_TX_ERR	| NETIF_MSG_TX_DONE	| \
52 			 NETIF_MSG_PKTDATA	| NETIF_MSG_TX_QUEUED	| \
53 			 NETIF_MSG_RX_STATUS)
54 
55 #define cpsw_info(priv, type, format, ...)		\
56 do {								\
57 	if (netif_msg_##type(priv) && net_ratelimit())		\
58 		dev_info(priv->dev, format, ## __VA_ARGS__);	\
59 } while (0)
60 
61 #define cpsw_err(priv, type, format, ...)		\
62 do {								\
63 	if (netif_msg_##type(priv) && net_ratelimit())		\
64 		dev_err(priv->dev, format, ## __VA_ARGS__);	\
65 } while (0)
66 
67 #define cpsw_dbg(priv, type, format, ...)		\
68 do {								\
69 	if (netif_msg_##type(priv) && net_ratelimit())		\
70 		dev_dbg(priv->dev, format, ## __VA_ARGS__);	\
71 } while (0)
72 
73 #define cpsw_notice(priv, type, format, ...)		\
74 do {								\
75 	if (netif_msg_##type(priv) && net_ratelimit())		\
76 		dev_notice(priv->dev, format, ## __VA_ARGS__);	\
77 } while (0)
78 
79 #define ALE_ALL_PORTS		0x7
80 
81 #define CPSW_MAJOR_VERSION(reg)		(reg >> 8 & 0x7)
82 #define CPSW_MINOR_VERSION(reg)		(reg & 0xff)
83 #define CPSW_RTL_VERSION(reg)		((reg >> 11) & 0x1f)
84 
85 #define CPSW_VERSION_1		0x19010a
86 #define CPSW_VERSION_2		0x19010c
87 #define CPSW_VERSION_3		0x19010f
88 #define CPSW_VERSION_4		0x190112
89 
90 #define HOST_PORT_NUM		0
91 #define SLIVER_SIZE		0x40
92 
93 #define CPSW1_HOST_PORT_OFFSET	0x028
94 #define CPSW1_SLAVE_OFFSET	0x050
95 #define CPSW1_SLAVE_SIZE	0x040
96 #define CPSW1_CPDMA_OFFSET	0x100
97 #define CPSW1_STATERAM_OFFSET	0x200
98 #define CPSW1_HW_STATS		0x400
99 #define CPSW1_CPTS_OFFSET	0x500
100 #define CPSW1_ALE_OFFSET	0x600
101 #define CPSW1_SLIVER_OFFSET	0x700
102 
103 #define CPSW2_HOST_PORT_OFFSET	0x108
104 #define CPSW2_SLAVE_OFFSET	0x200
105 #define CPSW2_SLAVE_SIZE	0x100
106 #define CPSW2_CPDMA_OFFSET	0x800
107 #define CPSW2_HW_STATS		0x900
108 #define CPSW2_STATERAM_OFFSET	0xa00
109 #define CPSW2_CPTS_OFFSET	0xc00
110 #define CPSW2_ALE_OFFSET	0xd00
111 #define CPSW2_SLIVER_OFFSET	0xd80
112 #define CPSW2_BD_OFFSET		0x2000
113 
114 #define CPDMA_RXTHRESH		0x0c0
115 #define CPDMA_RXFREE		0x0e0
116 #define CPDMA_TXHDP		0x00
117 #define CPDMA_RXHDP		0x20
118 #define CPDMA_TXCP		0x40
119 #define CPDMA_RXCP		0x60
120 
121 #define CPSW_POLL_WEIGHT	64
122 #define CPSW_MIN_PACKET_SIZE	60
123 #define CPSW_MAX_PACKET_SIZE	(1500 + 14 + 4 + 4)
124 
125 #define RX_PRIORITY_MAPPING	0x76543210
126 #define TX_PRIORITY_MAPPING	0x33221100
127 #define CPDMA_TX_PRIORITY_MAP	0x01234567
128 
129 #define CPSW_VLAN_AWARE		BIT(1)
130 #define CPSW_ALE_VLAN_AWARE	1
131 
132 #define CPSW_FIFO_NORMAL_MODE		(0 << 16)
133 #define CPSW_FIFO_DUAL_MAC_MODE		(1 << 16)
134 #define CPSW_FIFO_RATE_LIMIT_MODE	(2 << 16)
135 
136 #define CPSW_INTPACEEN		(0x3f << 16)
137 #define CPSW_INTPRESCALE_MASK	(0x7FF << 0)
138 #define CPSW_CMINTMAX_CNT	63
139 #define CPSW_CMINTMIN_CNT	2
140 #define CPSW_CMINTMAX_INTVL	(1000 / CPSW_CMINTMIN_CNT)
141 #define CPSW_CMINTMIN_INTVL	((1000 / CPSW_CMINTMAX_CNT) + 1)
142 
143 #define cpsw_slave_index(cpsw, priv)				\
144 		((cpsw->data.dual_emac) ? priv->emac_port :	\
145 		cpsw->data.active_slave)
146 #define IRQ_NUM			2
147 #define CPSW_MAX_QUEUES		8
148 #define CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT 256
149 
150 static int debug_level;
151 module_param(debug_level, int, 0);
152 MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)");
153 
154 static int ale_ageout = 10;
155 module_param(ale_ageout, int, 0);
156 MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)");
157 
158 static int rx_packet_max = CPSW_MAX_PACKET_SIZE;
159 module_param(rx_packet_max, int, 0);
160 MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)");
161 
162 static int descs_pool_size = CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT;
163 module_param(descs_pool_size, int, 0444);
164 MODULE_PARM_DESC(descs_pool_size, "Number of CPDMA CPPI descriptors in pool");
165 
166 struct cpsw_wr_regs {
167 	u32	id_ver;
168 	u32	soft_reset;
169 	u32	control;
170 	u32	int_control;
171 	u32	rx_thresh_en;
172 	u32	rx_en;
173 	u32	tx_en;
174 	u32	misc_en;
175 	u32	mem_allign1[8];
176 	u32	rx_thresh_stat;
177 	u32	rx_stat;
178 	u32	tx_stat;
179 	u32	misc_stat;
180 	u32	mem_allign2[8];
181 	u32	rx_imax;
182 	u32	tx_imax;
183 
184 };
185 
186 struct cpsw_ss_regs {
187 	u32	id_ver;
188 	u32	control;
189 	u32	soft_reset;
190 	u32	stat_port_en;
191 	u32	ptype;
192 	u32	soft_idle;
193 	u32	thru_rate;
194 	u32	gap_thresh;
195 	u32	tx_start_wds;
196 	u32	flow_control;
197 	u32	vlan_ltype;
198 	u32	ts_ltype;
199 	u32	dlr_ltype;
200 };
201 
202 /* CPSW_PORT_V1 */
203 #define CPSW1_MAX_BLKS      0x00 /* Maximum FIFO Blocks */
204 #define CPSW1_BLK_CNT       0x04 /* FIFO Block Usage Count (Read Only) */
205 #define CPSW1_TX_IN_CTL     0x08 /* Transmit FIFO Control */
206 #define CPSW1_PORT_VLAN     0x0c /* VLAN Register */
207 #define CPSW1_TX_PRI_MAP    0x10 /* Tx Header Priority to Switch Pri Mapping */
208 #define CPSW1_TS_CTL        0x14 /* Time Sync Control */
209 #define CPSW1_TS_SEQ_LTYPE  0x18 /* Time Sync Sequence ID Offset and Msg Type */
210 #define CPSW1_TS_VLAN       0x1c /* Time Sync VLAN1 and VLAN2 */
211 
212 /* CPSW_PORT_V2 */
213 #define CPSW2_CONTROL       0x00 /* Control Register */
214 #define CPSW2_MAX_BLKS      0x08 /* Maximum FIFO Blocks */
215 #define CPSW2_BLK_CNT       0x0c /* FIFO Block Usage Count (Read Only) */
216 #define CPSW2_TX_IN_CTL     0x10 /* Transmit FIFO Control */
217 #define CPSW2_PORT_VLAN     0x14 /* VLAN Register */
218 #define CPSW2_TX_PRI_MAP    0x18 /* Tx Header Priority to Switch Pri Mapping */
219 #define CPSW2_TS_SEQ_MTYPE  0x1c /* Time Sync Sequence ID Offset and Msg Type */
220 
221 /* CPSW_PORT_V1 and V2 */
222 #define SA_LO               0x20 /* CPGMAC_SL Source Address Low */
223 #define SA_HI               0x24 /* CPGMAC_SL Source Address High */
224 #define SEND_PERCENT        0x28 /* Transmit Queue Send Percentages */
225 
226 /* CPSW_PORT_V2 only */
227 #define RX_DSCP_PRI_MAP0    0x30 /* Rx DSCP Priority to Rx Packet Mapping */
228 #define RX_DSCP_PRI_MAP1    0x34 /* Rx DSCP Priority to Rx Packet Mapping */
229 #define RX_DSCP_PRI_MAP2    0x38 /* Rx DSCP Priority to Rx Packet Mapping */
230 #define RX_DSCP_PRI_MAP3    0x3c /* Rx DSCP Priority to Rx Packet Mapping */
231 #define RX_DSCP_PRI_MAP4    0x40 /* Rx DSCP Priority to Rx Packet Mapping */
232 #define RX_DSCP_PRI_MAP5    0x44 /* Rx DSCP Priority to Rx Packet Mapping */
233 #define RX_DSCP_PRI_MAP6    0x48 /* Rx DSCP Priority to Rx Packet Mapping */
234 #define RX_DSCP_PRI_MAP7    0x4c /* Rx DSCP Priority to Rx Packet Mapping */
235 
236 /* Bit definitions for the CPSW2_CONTROL register */
237 #define PASS_PRI_TAGGED     (1<<24) /* Pass Priority Tagged */
238 #define VLAN_LTYPE2_EN      (1<<21) /* VLAN LTYPE 2 enable */
239 #define VLAN_LTYPE1_EN      (1<<20) /* VLAN LTYPE 1 enable */
240 #define DSCP_PRI_EN         (1<<16) /* DSCP Priority Enable */
241 #define TS_320              (1<<14) /* Time Sync Dest Port 320 enable */
242 #define TS_319              (1<<13) /* Time Sync Dest Port 319 enable */
243 #define TS_132              (1<<12) /* Time Sync Dest IP Addr 132 enable */
244 #define TS_131              (1<<11) /* Time Sync Dest IP Addr 131 enable */
245 #define TS_130              (1<<10) /* Time Sync Dest IP Addr 130 enable */
246 #define TS_129              (1<<9)  /* Time Sync Dest IP Addr 129 enable */
247 #define TS_TTL_NONZERO      (1<<8)  /* Time Sync Time To Live Non-zero enable */
248 #define TS_ANNEX_F_EN       (1<<6)  /* Time Sync Annex F enable */
249 #define TS_ANNEX_D_EN       (1<<4)  /* Time Sync Annex D enable */
250 #define TS_LTYPE2_EN        (1<<3)  /* Time Sync LTYPE 2 enable */
251 #define TS_LTYPE1_EN        (1<<2)  /* Time Sync LTYPE 1 enable */
252 #define TS_TX_EN            (1<<1)  /* Time Sync Transmit Enable */
253 #define TS_RX_EN            (1<<0)  /* Time Sync Receive Enable */
254 
255 #define CTRL_V2_TS_BITS \
256 	(TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
257 	 TS_TTL_NONZERO  | TS_ANNEX_D_EN | TS_LTYPE1_EN)
258 
259 #define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN)
260 #define CTRL_V2_TX_TS_BITS  (CTRL_V2_TS_BITS | TS_TX_EN)
261 #define CTRL_V2_RX_TS_BITS  (CTRL_V2_TS_BITS | TS_RX_EN)
262 
263 
264 #define CTRL_V3_TS_BITS \
265 	(TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
266 	 TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\
267 	 TS_LTYPE1_EN)
268 
269 #define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN)
270 #define CTRL_V3_TX_TS_BITS  (CTRL_V3_TS_BITS | TS_TX_EN)
271 #define CTRL_V3_RX_TS_BITS  (CTRL_V3_TS_BITS | TS_RX_EN)
272 
273 /* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */
274 #define TS_SEQ_ID_OFFSET_SHIFT   (16)    /* Time Sync Sequence ID Offset */
275 #define TS_SEQ_ID_OFFSET_MASK    (0x3f)
276 #define TS_MSG_TYPE_EN_SHIFT     (0)     /* Time Sync Message Type Enable */
277 #define TS_MSG_TYPE_EN_MASK      (0xffff)
278 
279 /* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */
280 #define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3))
281 
282 /* Bit definitions for the CPSW1_TS_CTL register */
283 #define CPSW_V1_TS_RX_EN		BIT(0)
284 #define CPSW_V1_TS_TX_EN		BIT(4)
285 #define CPSW_V1_MSG_TYPE_OFS		16
286 
287 /* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */
288 #define CPSW_V1_SEQ_ID_OFS_SHIFT	16
289 
290 #define CPSW_MAX_BLKS_TX		15
291 #define CPSW_MAX_BLKS_TX_SHIFT		4
292 #define CPSW_MAX_BLKS_RX		5
293 
294 struct cpsw_host_regs {
295 	u32	max_blks;
296 	u32	blk_cnt;
297 	u32	tx_in_ctl;
298 	u32	port_vlan;
299 	u32	tx_pri_map;
300 	u32	cpdma_tx_pri_map;
301 	u32	cpdma_rx_chan_map;
302 };
303 
304 struct cpsw_sliver_regs {
305 	u32	id_ver;
306 	u32	mac_control;
307 	u32	mac_status;
308 	u32	soft_reset;
309 	u32	rx_maxlen;
310 	u32	__reserved_0;
311 	u32	rx_pause;
312 	u32	tx_pause;
313 	u32	__reserved_1;
314 	u32	rx_pri_map;
315 };
316 
317 struct cpsw_hw_stats {
318 	u32	rxgoodframes;
319 	u32	rxbroadcastframes;
320 	u32	rxmulticastframes;
321 	u32	rxpauseframes;
322 	u32	rxcrcerrors;
323 	u32	rxaligncodeerrors;
324 	u32	rxoversizedframes;
325 	u32	rxjabberframes;
326 	u32	rxundersizedframes;
327 	u32	rxfragments;
328 	u32	__pad_0[2];
329 	u32	rxoctets;
330 	u32	txgoodframes;
331 	u32	txbroadcastframes;
332 	u32	txmulticastframes;
333 	u32	txpauseframes;
334 	u32	txdeferredframes;
335 	u32	txcollisionframes;
336 	u32	txsinglecollframes;
337 	u32	txmultcollframes;
338 	u32	txexcessivecollisions;
339 	u32	txlatecollisions;
340 	u32	txunderrun;
341 	u32	txcarriersenseerrors;
342 	u32	txoctets;
343 	u32	octetframes64;
344 	u32	octetframes65t127;
345 	u32	octetframes128t255;
346 	u32	octetframes256t511;
347 	u32	octetframes512t1023;
348 	u32	octetframes1024tup;
349 	u32	netoctets;
350 	u32	rxsofoverruns;
351 	u32	rxmofoverruns;
352 	u32	rxdmaoverruns;
353 };
354 
355 struct cpsw_slave {
356 	void __iomem			*regs;
357 	struct cpsw_sliver_regs __iomem	*sliver;
358 	int				slave_num;
359 	u32				mac_control;
360 	struct cpsw_slave_data		*data;
361 	struct phy_device		*phy;
362 	struct net_device		*ndev;
363 	u32				port_vlan;
364 };
365 
366 static inline u32 slave_read(struct cpsw_slave *slave, u32 offset)
367 {
368 	return __raw_readl(slave->regs + offset);
369 }
370 
371 static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset)
372 {
373 	__raw_writel(val, slave->regs + offset);
374 }
375 
376 struct cpsw_vector {
377 	struct cpdma_chan *ch;
378 	int budget;
379 };
380 
381 struct cpsw_common {
382 	struct device			*dev;
383 	struct cpsw_platform_data	data;
384 	struct napi_struct		napi_rx;
385 	struct napi_struct		napi_tx;
386 	struct cpsw_ss_regs __iomem	*regs;
387 	struct cpsw_wr_regs __iomem	*wr_regs;
388 	u8 __iomem			*hw_stats;
389 	struct cpsw_host_regs __iomem	*host_port_regs;
390 	u32				version;
391 	u32				coal_intvl;
392 	u32				bus_freq_mhz;
393 	int				rx_packet_max;
394 	struct cpsw_slave		*slaves;
395 	struct cpdma_ctlr		*dma;
396 	struct cpsw_vector		txv[CPSW_MAX_QUEUES];
397 	struct cpsw_vector		rxv[CPSW_MAX_QUEUES];
398 	struct cpsw_ale			*ale;
399 	bool				quirk_irq;
400 	bool				rx_irq_disabled;
401 	bool				tx_irq_disabled;
402 	u32 irqs_table[IRQ_NUM];
403 	struct cpts			*cpts;
404 	int				rx_ch_num, tx_ch_num;
405 	int				speed;
406 	int				usage_count;
407 };
408 
409 struct cpsw_priv {
410 	struct net_device		*ndev;
411 	struct device			*dev;
412 	u32				msg_enable;
413 	u8				mac_addr[ETH_ALEN];
414 	bool				rx_pause;
415 	bool				tx_pause;
416 	u32 emac_port;
417 	struct cpsw_common *cpsw;
418 };
419 
420 struct cpsw_stats {
421 	char stat_string[ETH_GSTRING_LEN];
422 	int type;
423 	int sizeof_stat;
424 	int stat_offset;
425 };
426 
427 enum {
428 	CPSW_STATS,
429 	CPDMA_RX_STATS,
430 	CPDMA_TX_STATS,
431 };
432 
433 #define CPSW_STAT(m)		CPSW_STATS,				\
434 				sizeof(((struct cpsw_hw_stats *)0)->m), \
435 				offsetof(struct cpsw_hw_stats, m)
436 #define CPDMA_RX_STAT(m)	CPDMA_RX_STATS,				   \
437 				sizeof(((struct cpdma_chan_stats *)0)->m), \
438 				offsetof(struct cpdma_chan_stats, m)
439 #define CPDMA_TX_STAT(m)	CPDMA_TX_STATS,				   \
440 				sizeof(((struct cpdma_chan_stats *)0)->m), \
441 				offsetof(struct cpdma_chan_stats, m)
442 
443 static const struct cpsw_stats cpsw_gstrings_stats[] = {
444 	{ "Good Rx Frames", CPSW_STAT(rxgoodframes) },
445 	{ "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) },
446 	{ "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) },
447 	{ "Pause Rx Frames", CPSW_STAT(rxpauseframes) },
448 	{ "Rx CRC Errors", CPSW_STAT(rxcrcerrors) },
449 	{ "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) },
450 	{ "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) },
451 	{ "Rx Jabbers", CPSW_STAT(rxjabberframes) },
452 	{ "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) },
453 	{ "Rx Fragments", CPSW_STAT(rxfragments) },
454 	{ "Rx Octets", CPSW_STAT(rxoctets) },
455 	{ "Good Tx Frames", CPSW_STAT(txgoodframes) },
456 	{ "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) },
457 	{ "Multicast Tx Frames", CPSW_STAT(txmulticastframes) },
458 	{ "Pause Tx Frames", CPSW_STAT(txpauseframes) },
459 	{ "Deferred Tx Frames", CPSW_STAT(txdeferredframes) },
460 	{ "Collisions", CPSW_STAT(txcollisionframes) },
461 	{ "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) },
462 	{ "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) },
463 	{ "Excessive Collisions", CPSW_STAT(txexcessivecollisions) },
464 	{ "Late Collisions", CPSW_STAT(txlatecollisions) },
465 	{ "Tx Underrun", CPSW_STAT(txunderrun) },
466 	{ "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) },
467 	{ "Tx Octets", CPSW_STAT(txoctets) },
468 	{ "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) },
469 	{ "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) },
470 	{ "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) },
471 	{ "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) },
472 	{ "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) },
473 	{ "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) },
474 	{ "Net Octets", CPSW_STAT(netoctets) },
475 	{ "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) },
476 	{ "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) },
477 	{ "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) },
478 };
479 
480 static const struct cpsw_stats cpsw_gstrings_ch_stats[] = {
481 	{ "head_enqueue", CPDMA_RX_STAT(head_enqueue) },
482 	{ "tail_enqueue", CPDMA_RX_STAT(tail_enqueue) },
483 	{ "pad_enqueue", CPDMA_RX_STAT(pad_enqueue) },
484 	{ "misqueued", CPDMA_RX_STAT(misqueued) },
485 	{ "desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) },
486 	{ "pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) },
487 	{ "runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) },
488 	{ "runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) },
489 	{ "empty_dequeue", CPDMA_RX_STAT(empty_dequeue) },
490 	{ "busy_dequeue", CPDMA_RX_STAT(busy_dequeue) },
491 	{ "good_dequeue", CPDMA_RX_STAT(good_dequeue) },
492 	{ "requeue", CPDMA_RX_STAT(requeue) },
493 	{ "teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) },
494 };
495 
496 #define CPSW_STATS_COMMON_LEN	ARRAY_SIZE(cpsw_gstrings_stats)
497 #define CPSW_STATS_CH_LEN	ARRAY_SIZE(cpsw_gstrings_ch_stats)
498 
499 #define ndev_to_cpsw(ndev) (((struct cpsw_priv *)netdev_priv(ndev))->cpsw)
500 #define napi_to_cpsw(napi)	container_of(napi, struct cpsw_common, napi)
501 #define for_each_slave(priv, func, arg...)				\
502 	do {								\
503 		struct cpsw_slave *slave;				\
504 		struct cpsw_common *cpsw = (priv)->cpsw;		\
505 		int n;							\
506 		if (cpsw->data.dual_emac)				\
507 			(func)((cpsw)->slaves + priv->emac_port, ##arg);\
508 		else							\
509 			for (n = cpsw->data.slaves,			\
510 					slave = cpsw->slaves;		\
511 					n; n--)				\
512 				(func)(slave++, ##arg);			\
513 	} while (0)
514 
515 #define cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb)		\
516 	do {								\
517 		if (!cpsw->data.dual_emac)				\
518 			break;						\
519 		if (CPDMA_RX_SOURCE_PORT(status) == 1) {		\
520 			ndev = cpsw->slaves[0].ndev;			\
521 			skb->dev = ndev;				\
522 		} else if (CPDMA_RX_SOURCE_PORT(status) == 2) {		\
523 			ndev = cpsw->slaves[1].ndev;			\
524 			skb->dev = ndev;				\
525 		}							\
526 	} while (0)
527 #define cpsw_add_mcast(cpsw, priv, addr)				\
528 	do {								\
529 		if (cpsw->data.dual_emac) {				\
530 			struct cpsw_slave *slave = cpsw->slaves +	\
531 						priv->emac_port;	\
532 			int slave_port = cpsw_get_slave_port(		\
533 						slave->slave_num);	\
534 			cpsw_ale_add_mcast(cpsw->ale, addr,		\
535 				1 << slave_port | ALE_PORT_HOST,	\
536 				ALE_VLAN, slave->port_vlan, 0);		\
537 		} else {						\
538 			cpsw_ale_add_mcast(cpsw->ale, addr,		\
539 				ALE_ALL_PORTS,				\
540 				0, 0, 0);				\
541 		}							\
542 	} while (0)
543 
544 static inline int cpsw_get_slave_port(u32 slave_num)
545 {
546 	return slave_num + 1;
547 }
548 
549 static void cpsw_set_promiscious(struct net_device *ndev, bool enable)
550 {
551 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
552 	struct cpsw_ale *ale = cpsw->ale;
553 	int i;
554 
555 	if (cpsw->data.dual_emac) {
556 		bool flag = false;
557 
558 		/* Enabling promiscuous mode for one interface will be
559 		 * common for both the interface as the interface shares
560 		 * the same hardware resource.
561 		 */
562 		for (i = 0; i < cpsw->data.slaves; i++)
563 			if (cpsw->slaves[i].ndev->flags & IFF_PROMISC)
564 				flag = true;
565 
566 		if (!enable && flag) {
567 			enable = true;
568 			dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n");
569 		}
570 
571 		if (enable) {
572 			/* Enable Bypass */
573 			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1);
574 
575 			dev_dbg(&ndev->dev, "promiscuity enabled\n");
576 		} else {
577 			/* Disable Bypass */
578 			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0);
579 			dev_dbg(&ndev->dev, "promiscuity disabled\n");
580 		}
581 	} else {
582 		if (enable) {
583 			unsigned long timeout = jiffies + HZ;
584 
585 			/* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */
586 			for (i = 0; i <= cpsw->data.slaves; i++) {
587 				cpsw_ale_control_set(ale, i,
588 						     ALE_PORT_NOLEARN, 1);
589 				cpsw_ale_control_set(ale, i,
590 						     ALE_PORT_NO_SA_UPDATE, 1);
591 			}
592 
593 			/* Clear All Untouched entries */
594 			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
595 			do {
596 				cpu_relax();
597 				if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT))
598 					break;
599 			} while (time_after(timeout, jiffies));
600 			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
601 
602 			/* Clear all mcast from ALE */
603 			cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS, -1);
604 
605 			/* Flood All Unicast Packets to Host port */
606 			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1);
607 			dev_dbg(&ndev->dev, "promiscuity enabled\n");
608 		} else {
609 			/* Don't Flood All Unicast Packets to Host port */
610 			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0);
611 
612 			/* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */
613 			for (i = 0; i <= cpsw->data.slaves; i++) {
614 				cpsw_ale_control_set(ale, i,
615 						     ALE_PORT_NOLEARN, 0);
616 				cpsw_ale_control_set(ale, i,
617 						     ALE_PORT_NO_SA_UPDATE, 0);
618 			}
619 			dev_dbg(&ndev->dev, "promiscuity disabled\n");
620 		}
621 	}
622 }
623 
624 static void cpsw_ndo_set_rx_mode(struct net_device *ndev)
625 {
626 	struct cpsw_priv *priv = netdev_priv(ndev);
627 	struct cpsw_common *cpsw = priv->cpsw;
628 	int vid;
629 
630 	if (cpsw->data.dual_emac)
631 		vid = cpsw->slaves[priv->emac_port].port_vlan;
632 	else
633 		vid = cpsw->data.default_vlan;
634 
635 	if (ndev->flags & IFF_PROMISC) {
636 		/* Enable promiscuous mode */
637 		cpsw_set_promiscious(ndev, true);
638 		cpsw_ale_set_allmulti(cpsw->ale, IFF_ALLMULTI);
639 		return;
640 	} else {
641 		/* Disable promiscuous mode */
642 		cpsw_set_promiscious(ndev, false);
643 	}
644 
645 	/* Restore allmulti on vlans if necessary */
646 	cpsw_ale_set_allmulti(cpsw->ale, priv->ndev->flags & IFF_ALLMULTI);
647 
648 	/* Clear all mcast from ALE */
649 	cpsw_ale_flush_multicast(cpsw->ale, ALE_ALL_PORTS, vid);
650 
651 	if (!netdev_mc_empty(ndev)) {
652 		struct netdev_hw_addr *ha;
653 
654 		/* program multicast address list into ALE register */
655 		netdev_for_each_mc_addr(ha, ndev) {
656 			cpsw_add_mcast(cpsw, priv, (u8 *)ha->addr);
657 		}
658 	}
659 }
660 
661 static void cpsw_intr_enable(struct cpsw_common *cpsw)
662 {
663 	__raw_writel(0xFF, &cpsw->wr_regs->tx_en);
664 	__raw_writel(0xFF, &cpsw->wr_regs->rx_en);
665 
666 	cpdma_ctlr_int_ctrl(cpsw->dma, true);
667 	return;
668 }
669 
670 static void cpsw_intr_disable(struct cpsw_common *cpsw)
671 {
672 	__raw_writel(0, &cpsw->wr_regs->tx_en);
673 	__raw_writel(0, &cpsw->wr_regs->rx_en);
674 
675 	cpdma_ctlr_int_ctrl(cpsw->dma, false);
676 	return;
677 }
678 
679 static void cpsw_tx_handler(void *token, int len, int status)
680 {
681 	struct netdev_queue	*txq;
682 	struct sk_buff		*skb = token;
683 	struct net_device	*ndev = skb->dev;
684 	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
685 
686 	/* Check whether the queue is stopped due to stalled tx dma, if the
687 	 * queue is stopped then start the queue as we have free desc for tx
688 	 */
689 	txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb));
690 	if (unlikely(netif_tx_queue_stopped(txq)))
691 		netif_tx_wake_queue(txq);
692 
693 	cpts_tx_timestamp(cpsw->cpts, skb);
694 	ndev->stats.tx_packets++;
695 	ndev->stats.tx_bytes += len;
696 	dev_kfree_skb_any(skb);
697 }
698 
699 static void cpsw_rx_handler(void *token, int len, int status)
700 {
701 	struct cpdma_chan	*ch;
702 	struct sk_buff		*skb = token;
703 	struct sk_buff		*new_skb;
704 	struct net_device	*ndev = skb->dev;
705 	int			ret = 0;
706 	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
707 
708 	cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb);
709 
710 	if (unlikely(status < 0) || unlikely(!netif_running(ndev))) {
711 		/* In dual emac mode check for all interfaces */
712 		if (cpsw->data.dual_emac && cpsw->usage_count &&
713 		    (status >= 0)) {
714 			/* The packet received is for the interface which
715 			 * is already down and the other interface is up
716 			 * and running, instead of freeing which results
717 			 * in reducing of the number of rx descriptor in
718 			 * DMA engine, requeue skb back to cpdma.
719 			 */
720 			new_skb = skb;
721 			goto requeue;
722 		}
723 
724 		/* the interface is going down, skbs are purged */
725 		dev_kfree_skb_any(skb);
726 		return;
727 	}
728 
729 	new_skb = netdev_alloc_skb_ip_align(ndev, cpsw->rx_packet_max);
730 	if (new_skb) {
731 		skb_copy_queue_mapping(new_skb, skb);
732 		skb_put(skb, len);
733 		cpts_rx_timestamp(cpsw->cpts, skb);
734 		skb->protocol = eth_type_trans(skb, ndev);
735 		netif_receive_skb(skb);
736 		ndev->stats.rx_bytes += len;
737 		ndev->stats.rx_packets++;
738 		kmemleak_not_leak(new_skb);
739 	} else {
740 		ndev->stats.rx_dropped++;
741 		new_skb = skb;
742 	}
743 
744 requeue:
745 	if (netif_dormant(ndev)) {
746 		dev_kfree_skb_any(new_skb);
747 		return;
748 	}
749 
750 	ch = cpsw->rxv[skb_get_queue_mapping(new_skb)].ch;
751 	ret = cpdma_chan_submit(ch, new_skb, new_skb->data,
752 				skb_tailroom(new_skb), 0);
753 	if (WARN_ON(ret < 0))
754 		dev_kfree_skb_any(new_skb);
755 }
756 
757 static void cpsw_split_res(struct net_device *ndev)
758 {
759 	struct cpsw_priv *priv = netdev_priv(ndev);
760 	u32 consumed_rate = 0, bigest_rate = 0;
761 	struct cpsw_common *cpsw = priv->cpsw;
762 	struct cpsw_vector *txv = cpsw->txv;
763 	int i, ch_weight, rlim_ch_num = 0;
764 	int budget, bigest_rate_ch = 0;
765 	u32 ch_rate, max_rate;
766 	int ch_budget = 0;
767 
768 	for (i = 0; i < cpsw->tx_ch_num; i++) {
769 		ch_rate = cpdma_chan_get_rate(txv[i].ch);
770 		if (!ch_rate)
771 			continue;
772 
773 		rlim_ch_num++;
774 		consumed_rate += ch_rate;
775 	}
776 
777 	if (cpsw->tx_ch_num == rlim_ch_num) {
778 		max_rate = consumed_rate;
779 	} else if (!rlim_ch_num) {
780 		ch_budget = CPSW_POLL_WEIGHT / cpsw->tx_ch_num;
781 		bigest_rate = 0;
782 		max_rate = consumed_rate;
783 	} else {
784 		max_rate = cpsw->speed * 1000;
785 
786 		/* if max_rate is less then expected due to reduced link speed,
787 		 * split proportionally according next potential max speed
788 		 */
789 		if (max_rate < consumed_rate)
790 			max_rate *= 10;
791 
792 		if (max_rate < consumed_rate)
793 			max_rate *= 10;
794 
795 		ch_budget = (consumed_rate * CPSW_POLL_WEIGHT) / max_rate;
796 		ch_budget = (CPSW_POLL_WEIGHT - ch_budget) /
797 			    (cpsw->tx_ch_num - rlim_ch_num);
798 		bigest_rate = (max_rate - consumed_rate) /
799 			      (cpsw->tx_ch_num - rlim_ch_num);
800 	}
801 
802 	/* split tx weight/budget */
803 	budget = CPSW_POLL_WEIGHT;
804 	for (i = 0; i < cpsw->tx_ch_num; i++) {
805 		ch_rate = cpdma_chan_get_rate(txv[i].ch);
806 		if (ch_rate) {
807 			txv[i].budget = (ch_rate * CPSW_POLL_WEIGHT) / max_rate;
808 			if (!txv[i].budget)
809 				txv[i].budget++;
810 			if (ch_rate > bigest_rate) {
811 				bigest_rate_ch = i;
812 				bigest_rate = ch_rate;
813 			}
814 
815 			ch_weight = (ch_rate * 100) / max_rate;
816 			if (!ch_weight)
817 				ch_weight++;
818 			cpdma_chan_set_weight(cpsw->txv[i].ch, ch_weight);
819 		} else {
820 			txv[i].budget = ch_budget;
821 			if (!bigest_rate_ch)
822 				bigest_rate_ch = i;
823 			cpdma_chan_set_weight(cpsw->txv[i].ch, 0);
824 		}
825 
826 		budget -= txv[i].budget;
827 	}
828 
829 	if (budget)
830 		txv[bigest_rate_ch].budget += budget;
831 
832 	/* split rx budget */
833 	budget = CPSW_POLL_WEIGHT;
834 	ch_budget = budget / cpsw->rx_ch_num;
835 	for (i = 0; i < cpsw->rx_ch_num; i++) {
836 		cpsw->rxv[i].budget = ch_budget;
837 		budget -= ch_budget;
838 	}
839 
840 	if (budget)
841 		cpsw->rxv[0].budget += budget;
842 }
843 
844 static irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id)
845 {
846 	struct cpsw_common *cpsw = dev_id;
847 
848 	writel(0, &cpsw->wr_regs->tx_en);
849 	cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_TX);
850 
851 	if (cpsw->quirk_irq) {
852 		disable_irq_nosync(cpsw->irqs_table[1]);
853 		cpsw->tx_irq_disabled = true;
854 	}
855 
856 	napi_schedule(&cpsw->napi_tx);
857 	return IRQ_HANDLED;
858 }
859 
860 static irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id)
861 {
862 	struct cpsw_common *cpsw = dev_id;
863 
864 	cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_RX);
865 	writel(0, &cpsw->wr_regs->rx_en);
866 
867 	if (cpsw->quirk_irq) {
868 		disable_irq_nosync(cpsw->irqs_table[0]);
869 		cpsw->rx_irq_disabled = true;
870 	}
871 
872 	napi_schedule(&cpsw->napi_rx);
873 	return IRQ_HANDLED;
874 }
875 
876 static int cpsw_tx_poll(struct napi_struct *napi_tx, int budget)
877 {
878 	u32			ch_map;
879 	int			num_tx, cur_budget, ch;
880 	struct cpsw_common	*cpsw = napi_to_cpsw(napi_tx);
881 	struct cpsw_vector	*txv;
882 
883 	/* process every unprocessed channel */
884 	ch_map = cpdma_ctrl_txchs_state(cpsw->dma);
885 	for (ch = 0, num_tx = 0; ch_map; ch_map >>= 1, ch++) {
886 		if (!(ch_map & 0x01))
887 			continue;
888 
889 		txv = &cpsw->txv[ch];
890 		if (unlikely(txv->budget > budget - num_tx))
891 			cur_budget = budget - num_tx;
892 		else
893 			cur_budget = txv->budget;
894 
895 		num_tx += cpdma_chan_process(txv->ch, cur_budget);
896 		if (num_tx >= budget)
897 			break;
898 	}
899 
900 	if (num_tx < budget) {
901 		napi_complete(napi_tx);
902 		writel(0xff, &cpsw->wr_regs->tx_en);
903 		if (cpsw->quirk_irq && cpsw->tx_irq_disabled) {
904 			cpsw->tx_irq_disabled = false;
905 			enable_irq(cpsw->irqs_table[1]);
906 		}
907 	}
908 
909 	return num_tx;
910 }
911 
912 static int cpsw_rx_poll(struct napi_struct *napi_rx, int budget)
913 {
914 	u32			ch_map;
915 	int			num_rx, cur_budget, ch;
916 	struct cpsw_common	*cpsw = napi_to_cpsw(napi_rx);
917 	struct cpsw_vector	*rxv;
918 
919 	/* process every unprocessed channel */
920 	ch_map = cpdma_ctrl_rxchs_state(cpsw->dma);
921 	for (ch = 0, num_rx = 0; ch_map; ch_map >>= 1, ch++) {
922 		if (!(ch_map & 0x01))
923 			continue;
924 
925 		rxv = &cpsw->rxv[ch];
926 		if (unlikely(rxv->budget > budget - num_rx))
927 			cur_budget = budget - num_rx;
928 		else
929 			cur_budget = rxv->budget;
930 
931 		num_rx += cpdma_chan_process(rxv->ch, cur_budget);
932 		if (num_rx >= budget)
933 			break;
934 	}
935 
936 	if (num_rx < budget) {
937 		napi_complete_done(napi_rx, num_rx);
938 		writel(0xff, &cpsw->wr_regs->rx_en);
939 		if (cpsw->quirk_irq && cpsw->rx_irq_disabled) {
940 			cpsw->rx_irq_disabled = false;
941 			enable_irq(cpsw->irqs_table[0]);
942 		}
943 	}
944 
945 	return num_rx;
946 }
947 
948 static inline void soft_reset(const char *module, void __iomem *reg)
949 {
950 	unsigned long timeout = jiffies + HZ;
951 
952 	__raw_writel(1, reg);
953 	do {
954 		cpu_relax();
955 	} while ((__raw_readl(reg) & 1) && time_after(timeout, jiffies));
956 
957 	WARN(__raw_readl(reg) & 1, "failed to soft-reset %s\n", module);
958 }
959 
960 #define mac_hi(mac)	(((mac)[0] << 0) | ((mac)[1] << 8) |	\
961 			 ((mac)[2] << 16) | ((mac)[3] << 24))
962 #define mac_lo(mac)	(((mac)[4] << 0) | ((mac)[5] << 8))
963 
964 static void cpsw_set_slave_mac(struct cpsw_slave *slave,
965 			       struct cpsw_priv *priv)
966 {
967 	slave_write(slave, mac_hi(priv->mac_addr), SA_HI);
968 	slave_write(slave, mac_lo(priv->mac_addr), SA_LO);
969 }
970 
971 static void _cpsw_adjust_link(struct cpsw_slave *slave,
972 			      struct cpsw_priv *priv, bool *link)
973 {
974 	struct phy_device	*phy = slave->phy;
975 	u32			mac_control = 0;
976 	u32			slave_port;
977 	struct cpsw_common *cpsw = priv->cpsw;
978 
979 	if (!phy)
980 		return;
981 
982 	slave_port = cpsw_get_slave_port(slave->slave_num);
983 
984 	if (phy->link) {
985 		mac_control = cpsw->data.mac_control;
986 
987 		/* enable forwarding */
988 		cpsw_ale_control_set(cpsw->ale, slave_port,
989 				     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
990 
991 		if (phy->speed == 1000)
992 			mac_control |= BIT(7);	/* GIGABITEN	*/
993 		if (phy->duplex)
994 			mac_control |= BIT(0);	/* FULLDUPLEXEN	*/
995 
996 		/* set speed_in input in case RMII mode is used in 100Mbps */
997 		if (phy->speed == 100)
998 			mac_control |= BIT(15);
999 		else if (phy->speed == 10)
1000 			mac_control |= BIT(18); /* In Band mode */
1001 
1002 		if (priv->rx_pause)
1003 			mac_control |= BIT(3);
1004 
1005 		if (priv->tx_pause)
1006 			mac_control |= BIT(4);
1007 
1008 		*link = true;
1009 	} else {
1010 		mac_control = 0;
1011 		/* disable forwarding */
1012 		cpsw_ale_control_set(cpsw->ale, slave_port,
1013 				     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1014 	}
1015 
1016 	if (mac_control != slave->mac_control) {
1017 		phy_print_status(phy);
1018 		__raw_writel(mac_control, &slave->sliver->mac_control);
1019 	}
1020 
1021 	slave->mac_control = mac_control;
1022 }
1023 
1024 static int cpsw_get_common_speed(struct cpsw_common *cpsw)
1025 {
1026 	int i, speed;
1027 
1028 	for (i = 0, speed = 0; i < cpsw->data.slaves; i++)
1029 		if (cpsw->slaves[i].phy && cpsw->slaves[i].phy->link)
1030 			speed += cpsw->slaves[i].phy->speed;
1031 
1032 	return speed;
1033 }
1034 
1035 static int cpsw_need_resplit(struct cpsw_common *cpsw)
1036 {
1037 	int i, rlim_ch_num;
1038 	int speed, ch_rate;
1039 
1040 	/* re-split resources only in case speed was changed */
1041 	speed = cpsw_get_common_speed(cpsw);
1042 	if (speed == cpsw->speed || !speed)
1043 		return 0;
1044 
1045 	cpsw->speed = speed;
1046 
1047 	for (i = 0, rlim_ch_num = 0; i < cpsw->tx_ch_num; i++) {
1048 		ch_rate = cpdma_chan_get_rate(cpsw->txv[i].ch);
1049 		if (!ch_rate)
1050 			break;
1051 
1052 		rlim_ch_num++;
1053 	}
1054 
1055 	/* cases not dependent on speed */
1056 	if (!rlim_ch_num || rlim_ch_num == cpsw->tx_ch_num)
1057 		return 0;
1058 
1059 	return 1;
1060 }
1061 
1062 static void cpsw_adjust_link(struct net_device *ndev)
1063 {
1064 	struct cpsw_priv	*priv = netdev_priv(ndev);
1065 	struct cpsw_common	*cpsw = priv->cpsw;
1066 	bool			link = false;
1067 
1068 	for_each_slave(priv, _cpsw_adjust_link, priv, &link);
1069 
1070 	if (link) {
1071 		if (cpsw_need_resplit(cpsw))
1072 			cpsw_split_res(ndev);
1073 
1074 		netif_carrier_on(ndev);
1075 		if (netif_running(ndev))
1076 			netif_tx_wake_all_queues(ndev);
1077 	} else {
1078 		netif_carrier_off(ndev);
1079 		netif_tx_stop_all_queues(ndev);
1080 	}
1081 }
1082 
1083 static int cpsw_get_coalesce(struct net_device *ndev,
1084 				struct ethtool_coalesce *coal)
1085 {
1086 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1087 
1088 	coal->rx_coalesce_usecs = cpsw->coal_intvl;
1089 	return 0;
1090 }
1091 
1092 static int cpsw_set_coalesce(struct net_device *ndev,
1093 				struct ethtool_coalesce *coal)
1094 {
1095 	struct cpsw_priv *priv = netdev_priv(ndev);
1096 	u32 int_ctrl;
1097 	u32 num_interrupts = 0;
1098 	u32 prescale = 0;
1099 	u32 addnl_dvdr = 1;
1100 	u32 coal_intvl = 0;
1101 	struct cpsw_common *cpsw = priv->cpsw;
1102 
1103 	coal_intvl = coal->rx_coalesce_usecs;
1104 
1105 	int_ctrl =  readl(&cpsw->wr_regs->int_control);
1106 	prescale = cpsw->bus_freq_mhz * 4;
1107 
1108 	if (!coal->rx_coalesce_usecs) {
1109 		int_ctrl &= ~(CPSW_INTPRESCALE_MASK | CPSW_INTPACEEN);
1110 		goto update_return;
1111 	}
1112 
1113 	if (coal_intvl < CPSW_CMINTMIN_INTVL)
1114 		coal_intvl = CPSW_CMINTMIN_INTVL;
1115 
1116 	if (coal_intvl > CPSW_CMINTMAX_INTVL) {
1117 		/* Interrupt pacer works with 4us Pulse, we can
1118 		 * throttle further by dilating the 4us pulse.
1119 		 */
1120 		addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale;
1121 
1122 		if (addnl_dvdr > 1) {
1123 			prescale *= addnl_dvdr;
1124 			if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr))
1125 				coal_intvl = (CPSW_CMINTMAX_INTVL
1126 						* addnl_dvdr);
1127 		} else {
1128 			addnl_dvdr = 1;
1129 			coal_intvl = CPSW_CMINTMAX_INTVL;
1130 		}
1131 	}
1132 
1133 	num_interrupts = (1000 * addnl_dvdr) / coal_intvl;
1134 	writel(num_interrupts, &cpsw->wr_regs->rx_imax);
1135 	writel(num_interrupts, &cpsw->wr_regs->tx_imax);
1136 
1137 	int_ctrl |= CPSW_INTPACEEN;
1138 	int_ctrl &= (~CPSW_INTPRESCALE_MASK);
1139 	int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK);
1140 
1141 update_return:
1142 	writel(int_ctrl, &cpsw->wr_regs->int_control);
1143 
1144 	cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl);
1145 	cpsw->coal_intvl = coal_intvl;
1146 
1147 	return 0;
1148 }
1149 
1150 static int cpsw_get_sset_count(struct net_device *ndev, int sset)
1151 {
1152 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1153 
1154 	switch (sset) {
1155 	case ETH_SS_STATS:
1156 		return (CPSW_STATS_COMMON_LEN +
1157 		       (cpsw->rx_ch_num + cpsw->tx_ch_num) *
1158 		       CPSW_STATS_CH_LEN);
1159 	default:
1160 		return -EOPNOTSUPP;
1161 	}
1162 }
1163 
1164 static void cpsw_add_ch_strings(u8 **p, int ch_num, int rx_dir)
1165 {
1166 	int ch_stats_len;
1167 	int line;
1168 	int i;
1169 
1170 	ch_stats_len = CPSW_STATS_CH_LEN * ch_num;
1171 	for (i = 0; i < ch_stats_len; i++) {
1172 		line = i % CPSW_STATS_CH_LEN;
1173 		snprintf(*p, ETH_GSTRING_LEN,
1174 			 "%s DMA chan %d: %s", rx_dir ? "Rx" : "Tx",
1175 			 i / CPSW_STATS_CH_LEN,
1176 			 cpsw_gstrings_ch_stats[line].stat_string);
1177 		*p += ETH_GSTRING_LEN;
1178 	}
1179 }
1180 
1181 static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1182 {
1183 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1184 	u8 *p = data;
1185 	int i;
1186 
1187 	switch (stringset) {
1188 	case ETH_SS_STATS:
1189 		for (i = 0; i < CPSW_STATS_COMMON_LEN; i++) {
1190 			memcpy(p, cpsw_gstrings_stats[i].stat_string,
1191 			       ETH_GSTRING_LEN);
1192 			p += ETH_GSTRING_LEN;
1193 		}
1194 
1195 		cpsw_add_ch_strings(&p, cpsw->rx_ch_num, 1);
1196 		cpsw_add_ch_strings(&p, cpsw->tx_ch_num, 0);
1197 		break;
1198 	}
1199 }
1200 
1201 static void cpsw_get_ethtool_stats(struct net_device *ndev,
1202 				    struct ethtool_stats *stats, u64 *data)
1203 {
1204 	u8 *p;
1205 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1206 	struct cpdma_chan_stats ch_stats;
1207 	int i, l, ch;
1208 
1209 	/* Collect Davinci CPDMA stats for Rx and Tx Channel */
1210 	for (l = 0; l < CPSW_STATS_COMMON_LEN; l++)
1211 		data[l] = readl(cpsw->hw_stats +
1212 				cpsw_gstrings_stats[l].stat_offset);
1213 
1214 	for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1215 		cpdma_chan_get_stats(cpsw->rxv[ch].ch, &ch_stats);
1216 		for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
1217 			p = (u8 *)&ch_stats +
1218 				cpsw_gstrings_ch_stats[i].stat_offset;
1219 			data[l] = *(u32 *)p;
1220 		}
1221 	}
1222 
1223 	for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
1224 		cpdma_chan_get_stats(cpsw->txv[ch].ch, &ch_stats);
1225 		for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
1226 			p = (u8 *)&ch_stats +
1227 				cpsw_gstrings_ch_stats[i].stat_offset;
1228 			data[l] = *(u32 *)p;
1229 		}
1230 	}
1231 }
1232 
1233 static inline int cpsw_tx_packet_submit(struct cpsw_priv *priv,
1234 					struct sk_buff *skb,
1235 					struct cpdma_chan *txch)
1236 {
1237 	struct cpsw_common *cpsw = priv->cpsw;
1238 
1239 	skb_tx_timestamp(skb);
1240 	return cpdma_chan_submit(txch, skb, skb->data, skb->len,
1241 				 priv->emac_port + cpsw->data.dual_emac);
1242 }
1243 
1244 static inline void cpsw_add_dual_emac_def_ale_entries(
1245 		struct cpsw_priv *priv, struct cpsw_slave *slave,
1246 		u32 slave_port)
1247 {
1248 	struct cpsw_common *cpsw = priv->cpsw;
1249 	u32 port_mask = 1 << slave_port | ALE_PORT_HOST;
1250 
1251 	if (cpsw->version == CPSW_VERSION_1)
1252 		slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN);
1253 	else
1254 		slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN);
1255 	cpsw_ale_add_vlan(cpsw->ale, slave->port_vlan, port_mask,
1256 			  port_mask, port_mask, 0);
1257 	cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1258 			   port_mask, ALE_VLAN, slave->port_vlan, 0);
1259 	cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
1260 			   HOST_PORT_NUM, ALE_VLAN |
1261 			   ALE_SECURE, slave->port_vlan);
1262 }
1263 
1264 static void soft_reset_slave(struct cpsw_slave *slave)
1265 {
1266 	char name[32];
1267 
1268 	snprintf(name, sizeof(name), "slave-%d", slave->slave_num);
1269 	soft_reset(name, &slave->sliver->soft_reset);
1270 }
1271 
1272 static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv)
1273 {
1274 	u32 slave_port;
1275 	struct phy_device *phy;
1276 	struct cpsw_common *cpsw = priv->cpsw;
1277 
1278 	soft_reset_slave(slave);
1279 
1280 	/* setup priority mapping */
1281 	__raw_writel(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map);
1282 
1283 	switch (cpsw->version) {
1284 	case CPSW_VERSION_1:
1285 		slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP);
1286 		/* Increase RX FIFO size to 5 for supporting fullduplex
1287 		 * flow control mode
1288 		 */
1289 		slave_write(slave,
1290 			    (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
1291 			    CPSW_MAX_BLKS_RX, CPSW1_MAX_BLKS);
1292 		break;
1293 	case CPSW_VERSION_2:
1294 	case CPSW_VERSION_3:
1295 	case CPSW_VERSION_4:
1296 		slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP);
1297 		/* Increase RX FIFO size to 5 for supporting fullduplex
1298 		 * flow control mode
1299 		 */
1300 		slave_write(slave,
1301 			    (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
1302 			    CPSW_MAX_BLKS_RX, CPSW2_MAX_BLKS);
1303 		break;
1304 	}
1305 
1306 	/* setup max packet size, and mac address */
1307 	__raw_writel(cpsw->rx_packet_max, &slave->sliver->rx_maxlen);
1308 	cpsw_set_slave_mac(slave, priv);
1309 
1310 	slave->mac_control = 0;	/* no link yet */
1311 
1312 	slave_port = cpsw_get_slave_port(slave->slave_num);
1313 
1314 	if (cpsw->data.dual_emac)
1315 		cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port);
1316 	else
1317 		cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1318 				   1 << slave_port, 0, 0, ALE_MCAST_FWD_2);
1319 
1320 	if (slave->data->phy_node) {
1321 		phy = of_phy_connect(priv->ndev, slave->data->phy_node,
1322 				 &cpsw_adjust_link, 0, slave->data->phy_if);
1323 		if (!phy) {
1324 			dev_err(priv->dev, "phy \"%pOF\" not found on slave %d\n",
1325 				slave->data->phy_node,
1326 				slave->slave_num);
1327 			return;
1328 		}
1329 	} else {
1330 		phy = phy_connect(priv->ndev, slave->data->phy_id,
1331 				 &cpsw_adjust_link, slave->data->phy_if);
1332 		if (IS_ERR(phy)) {
1333 			dev_err(priv->dev,
1334 				"phy \"%s\" not found on slave %d, err %ld\n",
1335 				slave->data->phy_id, slave->slave_num,
1336 				PTR_ERR(phy));
1337 			return;
1338 		}
1339 	}
1340 
1341 	slave->phy = phy;
1342 
1343 	phy_attached_info(slave->phy);
1344 
1345 	phy_start(slave->phy);
1346 
1347 	/* Configure GMII_SEL register */
1348 	cpsw_phy_sel(cpsw->dev, slave->phy->interface, slave->slave_num);
1349 }
1350 
1351 static inline void cpsw_add_default_vlan(struct cpsw_priv *priv)
1352 {
1353 	struct cpsw_common *cpsw = priv->cpsw;
1354 	const int vlan = cpsw->data.default_vlan;
1355 	u32 reg;
1356 	int i;
1357 	int unreg_mcast_mask;
1358 
1359 	reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN :
1360 	       CPSW2_PORT_VLAN;
1361 
1362 	writel(vlan, &cpsw->host_port_regs->port_vlan);
1363 
1364 	for (i = 0; i < cpsw->data.slaves; i++)
1365 		slave_write(cpsw->slaves + i, vlan, reg);
1366 
1367 	if (priv->ndev->flags & IFF_ALLMULTI)
1368 		unreg_mcast_mask = ALE_ALL_PORTS;
1369 	else
1370 		unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
1371 
1372 	cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS,
1373 			  ALE_ALL_PORTS, ALE_ALL_PORTS,
1374 			  unreg_mcast_mask);
1375 }
1376 
1377 static void cpsw_init_host_port(struct cpsw_priv *priv)
1378 {
1379 	u32 fifo_mode;
1380 	u32 control_reg;
1381 	struct cpsw_common *cpsw = priv->cpsw;
1382 
1383 	/* soft reset the controller and initialize ale */
1384 	soft_reset("cpsw", &cpsw->regs->soft_reset);
1385 	cpsw_ale_start(cpsw->ale);
1386 
1387 	/* switch to vlan unaware mode */
1388 	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_VLAN_AWARE,
1389 			     CPSW_ALE_VLAN_AWARE);
1390 	control_reg = readl(&cpsw->regs->control);
1391 	control_reg |= CPSW_VLAN_AWARE;
1392 	writel(control_reg, &cpsw->regs->control);
1393 	fifo_mode = (cpsw->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE :
1394 		     CPSW_FIFO_NORMAL_MODE;
1395 	writel(fifo_mode, &cpsw->host_port_regs->tx_in_ctl);
1396 
1397 	/* setup host port priority mapping */
1398 	__raw_writel(CPDMA_TX_PRIORITY_MAP,
1399 		     &cpsw->host_port_regs->cpdma_tx_pri_map);
1400 	__raw_writel(0, &cpsw->host_port_regs->cpdma_rx_chan_map);
1401 
1402 	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM,
1403 			     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
1404 
1405 	if (!cpsw->data.dual_emac) {
1406 		cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1407 				   0, 0);
1408 		cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1409 				   ALE_PORT_HOST, 0, 0, ALE_MCAST_FWD_2);
1410 	}
1411 }
1412 
1413 static int cpsw_fill_rx_channels(struct cpsw_priv *priv)
1414 {
1415 	struct cpsw_common *cpsw = priv->cpsw;
1416 	struct sk_buff *skb;
1417 	int ch_buf_num;
1418 	int ch, i, ret;
1419 
1420 	for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1421 		ch_buf_num = cpdma_chan_get_rx_buf_num(cpsw->rxv[ch].ch);
1422 		for (i = 0; i < ch_buf_num; i++) {
1423 			skb = __netdev_alloc_skb_ip_align(priv->ndev,
1424 							  cpsw->rx_packet_max,
1425 							  GFP_KERNEL);
1426 			if (!skb) {
1427 				cpsw_err(priv, ifup, "cannot allocate skb\n");
1428 				return -ENOMEM;
1429 			}
1430 
1431 			skb_set_queue_mapping(skb, ch);
1432 			ret = cpdma_chan_submit(cpsw->rxv[ch].ch, skb,
1433 						skb->data, skb_tailroom(skb),
1434 						0);
1435 			if (ret < 0) {
1436 				cpsw_err(priv, ifup,
1437 					 "cannot submit skb to channel %d rx, error %d\n",
1438 					 ch, ret);
1439 				kfree_skb(skb);
1440 				return ret;
1441 			}
1442 			kmemleak_not_leak(skb);
1443 		}
1444 
1445 		cpsw_info(priv, ifup, "ch %d rx, submitted %d descriptors\n",
1446 			  ch, ch_buf_num);
1447 	}
1448 
1449 	return 0;
1450 }
1451 
1452 static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_common *cpsw)
1453 {
1454 	u32 slave_port;
1455 
1456 	slave_port = cpsw_get_slave_port(slave->slave_num);
1457 
1458 	if (!slave->phy)
1459 		return;
1460 	phy_stop(slave->phy);
1461 	phy_disconnect(slave->phy);
1462 	slave->phy = NULL;
1463 	cpsw_ale_control_set(cpsw->ale, slave_port,
1464 			     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1465 	soft_reset_slave(slave);
1466 }
1467 
1468 static int cpsw_ndo_open(struct net_device *ndev)
1469 {
1470 	struct cpsw_priv *priv = netdev_priv(ndev);
1471 	struct cpsw_common *cpsw = priv->cpsw;
1472 	int ret;
1473 	u32 reg;
1474 
1475 	ret = pm_runtime_get_sync(cpsw->dev);
1476 	if (ret < 0) {
1477 		pm_runtime_put_noidle(cpsw->dev);
1478 		return ret;
1479 	}
1480 
1481 	netif_carrier_off(ndev);
1482 
1483 	/* Notify the stack of the actual queue counts. */
1484 	ret = netif_set_real_num_tx_queues(ndev, cpsw->tx_ch_num);
1485 	if (ret) {
1486 		dev_err(priv->dev, "cannot set real number of tx queues\n");
1487 		goto err_cleanup;
1488 	}
1489 
1490 	ret = netif_set_real_num_rx_queues(ndev, cpsw->rx_ch_num);
1491 	if (ret) {
1492 		dev_err(priv->dev, "cannot set real number of rx queues\n");
1493 		goto err_cleanup;
1494 	}
1495 
1496 	reg = cpsw->version;
1497 
1498 	dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n",
1499 		 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg),
1500 		 CPSW_RTL_VERSION(reg));
1501 
1502 	/* Initialize host and slave ports */
1503 	if (!cpsw->usage_count)
1504 		cpsw_init_host_port(priv);
1505 	for_each_slave(priv, cpsw_slave_open, priv);
1506 
1507 	/* Add default VLAN */
1508 	if (!cpsw->data.dual_emac)
1509 		cpsw_add_default_vlan(priv);
1510 	else
1511 		cpsw_ale_add_vlan(cpsw->ale, cpsw->data.default_vlan,
1512 				  ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0);
1513 
1514 	/* initialize shared resources for every ndev */
1515 	if (!cpsw->usage_count) {
1516 		/* disable priority elevation */
1517 		__raw_writel(0, &cpsw->regs->ptype);
1518 
1519 		/* enable statistics collection only on all ports */
1520 		__raw_writel(0x7, &cpsw->regs->stat_port_en);
1521 
1522 		/* Enable internal fifo flow control */
1523 		writel(0x7, &cpsw->regs->flow_control);
1524 
1525 		napi_enable(&cpsw->napi_rx);
1526 		napi_enable(&cpsw->napi_tx);
1527 
1528 		if (cpsw->tx_irq_disabled) {
1529 			cpsw->tx_irq_disabled = false;
1530 			enable_irq(cpsw->irqs_table[1]);
1531 		}
1532 
1533 		if (cpsw->rx_irq_disabled) {
1534 			cpsw->rx_irq_disabled = false;
1535 			enable_irq(cpsw->irqs_table[0]);
1536 		}
1537 
1538 		ret = cpsw_fill_rx_channels(priv);
1539 		if (ret < 0)
1540 			goto err_cleanup;
1541 
1542 		if (cpts_register(cpsw->cpts))
1543 			dev_err(priv->dev, "error registering cpts device\n");
1544 
1545 	}
1546 
1547 	/* Enable Interrupt pacing if configured */
1548 	if (cpsw->coal_intvl != 0) {
1549 		struct ethtool_coalesce coal;
1550 
1551 		coal.rx_coalesce_usecs = cpsw->coal_intvl;
1552 		cpsw_set_coalesce(ndev, &coal);
1553 	}
1554 
1555 	cpdma_ctlr_start(cpsw->dma);
1556 	cpsw_intr_enable(cpsw);
1557 	cpsw->usage_count++;
1558 
1559 	return 0;
1560 
1561 err_cleanup:
1562 	cpdma_ctlr_stop(cpsw->dma);
1563 	for_each_slave(priv, cpsw_slave_stop, cpsw);
1564 	pm_runtime_put_sync(cpsw->dev);
1565 	netif_carrier_off(priv->ndev);
1566 	return ret;
1567 }
1568 
1569 static int cpsw_ndo_stop(struct net_device *ndev)
1570 {
1571 	struct cpsw_priv *priv = netdev_priv(ndev);
1572 	struct cpsw_common *cpsw = priv->cpsw;
1573 
1574 	cpsw_info(priv, ifdown, "shutting down cpsw device\n");
1575 	netif_tx_stop_all_queues(priv->ndev);
1576 	netif_carrier_off(priv->ndev);
1577 
1578 	if (cpsw->usage_count <= 1) {
1579 		napi_disable(&cpsw->napi_rx);
1580 		napi_disable(&cpsw->napi_tx);
1581 		cpts_unregister(cpsw->cpts);
1582 		cpsw_intr_disable(cpsw);
1583 		cpdma_ctlr_stop(cpsw->dma);
1584 		cpsw_ale_stop(cpsw->ale);
1585 	}
1586 	for_each_slave(priv, cpsw_slave_stop, cpsw);
1587 
1588 	if (cpsw_need_resplit(cpsw))
1589 		cpsw_split_res(ndev);
1590 
1591 	cpsw->usage_count--;
1592 	pm_runtime_put_sync(cpsw->dev);
1593 	return 0;
1594 }
1595 
1596 static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb,
1597 				       struct net_device *ndev)
1598 {
1599 	struct cpsw_priv *priv = netdev_priv(ndev);
1600 	struct cpsw_common *cpsw = priv->cpsw;
1601 	struct cpts *cpts = cpsw->cpts;
1602 	struct netdev_queue *txq;
1603 	struct cpdma_chan *txch;
1604 	int ret, q_idx;
1605 
1606 	if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) {
1607 		cpsw_err(priv, tx_err, "packet pad failed\n");
1608 		ndev->stats.tx_dropped++;
1609 		return NET_XMIT_DROP;
1610 	}
1611 
1612 	if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
1613 	    cpts_is_tx_enabled(cpts) && cpts_can_timestamp(cpts, skb))
1614 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1615 
1616 	q_idx = skb_get_queue_mapping(skb);
1617 	if (q_idx >= cpsw->tx_ch_num)
1618 		q_idx = q_idx % cpsw->tx_ch_num;
1619 
1620 	txch = cpsw->txv[q_idx].ch;
1621 	ret = cpsw_tx_packet_submit(priv, skb, txch);
1622 	if (unlikely(ret != 0)) {
1623 		cpsw_err(priv, tx_err, "desc submit failed\n");
1624 		goto fail;
1625 	}
1626 
1627 	/* If there is no more tx desc left free then we need to
1628 	 * tell the kernel to stop sending us tx frames.
1629 	 */
1630 	if (unlikely(!cpdma_check_free_tx_desc(txch))) {
1631 		txq = netdev_get_tx_queue(ndev, q_idx);
1632 		netif_tx_stop_queue(txq);
1633 	}
1634 
1635 	return NETDEV_TX_OK;
1636 fail:
1637 	ndev->stats.tx_dropped++;
1638 	txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb));
1639 	netif_tx_stop_queue(txq);
1640 	return NETDEV_TX_BUSY;
1641 }
1642 
1643 #if IS_ENABLED(CONFIG_TI_CPTS)
1644 
1645 static void cpsw_hwtstamp_v1(struct cpsw_common *cpsw)
1646 {
1647 	struct cpsw_slave *slave = &cpsw->slaves[cpsw->data.active_slave];
1648 	u32 ts_en, seq_id;
1649 
1650 	if (!cpts_is_tx_enabled(cpsw->cpts) &&
1651 	    !cpts_is_rx_enabled(cpsw->cpts)) {
1652 		slave_write(slave, 0, CPSW1_TS_CTL);
1653 		return;
1654 	}
1655 
1656 	seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588;
1657 	ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS;
1658 
1659 	if (cpts_is_tx_enabled(cpsw->cpts))
1660 		ts_en |= CPSW_V1_TS_TX_EN;
1661 
1662 	if (cpts_is_rx_enabled(cpsw->cpts))
1663 		ts_en |= CPSW_V1_TS_RX_EN;
1664 
1665 	slave_write(slave, ts_en, CPSW1_TS_CTL);
1666 	slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE);
1667 }
1668 
1669 static void cpsw_hwtstamp_v2(struct cpsw_priv *priv)
1670 {
1671 	struct cpsw_slave *slave;
1672 	struct cpsw_common *cpsw = priv->cpsw;
1673 	u32 ctrl, mtype;
1674 
1675 	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
1676 
1677 	ctrl = slave_read(slave, CPSW2_CONTROL);
1678 	switch (cpsw->version) {
1679 	case CPSW_VERSION_2:
1680 		ctrl &= ~CTRL_V2_ALL_TS_MASK;
1681 
1682 		if (cpts_is_tx_enabled(cpsw->cpts))
1683 			ctrl |= CTRL_V2_TX_TS_BITS;
1684 
1685 		if (cpts_is_rx_enabled(cpsw->cpts))
1686 			ctrl |= CTRL_V2_RX_TS_BITS;
1687 		break;
1688 	case CPSW_VERSION_3:
1689 	default:
1690 		ctrl &= ~CTRL_V3_ALL_TS_MASK;
1691 
1692 		if (cpts_is_tx_enabled(cpsw->cpts))
1693 			ctrl |= CTRL_V3_TX_TS_BITS;
1694 
1695 		if (cpts_is_rx_enabled(cpsw->cpts))
1696 			ctrl |= CTRL_V3_RX_TS_BITS;
1697 		break;
1698 	}
1699 
1700 	mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS;
1701 
1702 	slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE);
1703 	slave_write(slave, ctrl, CPSW2_CONTROL);
1704 	__raw_writel(ETH_P_1588, &cpsw->regs->ts_ltype);
1705 }
1706 
1707 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
1708 {
1709 	struct cpsw_priv *priv = netdev_priv(dev);
1710 	struct hwtstamp_config cfg;
1711 	struct cpsw_common *cpsw = priv->cpsw;
1712 	struct cpts *cpts = cpsw->cpts;
1713 
1714 	if (cpsw->version != CPSW_VERSION_1 &&
1715 	    cpsw->version != CPSW_VERSION_2 &&
1716 	    cpsw->version != CPSW_VERSION_3)
1717 		return -EOPNOTSUPP;
1718 
1719 	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1720 		return -EFAULT;
1721 
1722 	/* reserved for future extensions */
1723 	if (cfg.flags)
1724 		return -EINVAL;
1725 
1726 	if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON)
1727 		return -ERANGE;
1728 
1729 	switch (cfg.rx_filter) {
1730 	case HWTSTAMP_FILTER_NONE:
1731 		cpts_rx_enable(cpts, 0);
1732 		break;
1733 	case HWTSTAMP_FILTER_ALL:
1734 	case HWTSTAMP_FILTER_NTP_ALL:
1735 		return -ERANGE;
1736 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1737 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1738 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1739 		cpts_rx_enable(cpts, HWTSTAMP_FILTER_PTP_V1_L4_EVENT);
1740 		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
1741 		break;
1742 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1743 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1744 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1745 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1746 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1747 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1748 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1749 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1750 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1751 		cpts_rx_enable(cpts, HWTSTAMP_FILTER_PTP_V2_EVENT);
1752 		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1753 		break;
1754 	default:
1755 		return -ERANGE;
1756 	}
1757 
1758 	cpts_tx_enable(cpts, cfg.tx_type == HWTSTAMP_TX_ON);
1759 
1760 	switch (cpsw->version) {
1761 	case CPSW_VERSION_1:
1762 		cpsw_hwtstamp_v1(cpsw);
1763 		break;
1764 	case CPSW_VERSION_2:
1765 	case CPSW_VERSION_3:
1766 		cpsw_hwtstamp_v2(priv);
1767 		break;
1768 	default:
1769 		WARN_ON(1);
1770 	}
1771 
1772 	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1773 }
1774 
1775 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
1776 {
1777 	struct cpsw_common *cpsw = ndev_to_cpsw(dev);
1778 	struct cpts *cpts = cpsw->cpts;
1779 	struct hwtstamp_config cfg;
1780 
1781 	if (cpsw->version != CPSW_VERSION_1 &&
1782 	    cpsw->version != CPSW_VERSION_2 &&
1783 	    cpsw->version != CPSW_VERSION_3)
1784 		return -EOPNOTSUPP;
1785 
1786 	cfg.flags = 0;
1787 	cfg.tx_type = cpts_is_tx_enabled(cpts) ?
1788 		      HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
1789 	cfg.rx_filter = (cpts_is_rx_enabled(cpts) ?
1790 			 cpts->rx_enable : HWTSTAMP_FILTER_NONE);
1791 
1792 	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1793 }
1794 #else
1795 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
1796 {
1797 	return -EOPNOTSUPP;
1798 }
1799 
1800 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
1801 {
1802 	return -EOPNOTSUPP;
1803 }
1804 #endif /*CONFIG_TI_CPTS*/
1805 
1806 static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
1807 {
1808 	struct cpsw_priv *priv = netdev_priv(dev);
1809 	struct cpsw_common *cpsw = priv->cpsw;
1810 	int slave_no = cpsw_slave_index(cpsw, priv);
1811 
1812 	if (!netif_running(dev))
1813 		return -EINVAL;
1814 
1815 	switch (cmd) {
1816 	case SIOCSHWTSTAMP:
1817 		return cpsw_hwtstamp_set(dev, req);
1818 	case SIOCGHWTSTAMP:
1819 		return cpsw_hwtstamp_get(dev, req);
1820 	}
1821 
1822 	if (!cpsw->slaves[slave_no].phy)
1823 		return -EOPNOTSUPP;
1824 	return phy_mii_ioctl(cpsw->slaves[slave_no].phy, req, cmd);
1825 }
1826 
1827 static void cpsw_ndo_tx_timeout(struct net_device *ndev)
1828 {
1829 	struct cpsw_priv *priv = netdev_priv(ndev);
1830 	struct cpsw_common *cpsw = priv->cpsw;
1831 	int ch;
1832 
1833 	cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n");
1834 	ndev->stats.tx_errors++;
1835 	cpsw_intr_disable(cpsw);
1836 	for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
1837 		cpdma_chan_stop(cpsw->txv[ch].ch);
1838 		cpdma_chan_start(cpsw->txv[ch].ch);
1839 	}
1840 
1841 	cpsw_intr_enable(cpsw);
1842 	netif_trans_update(ndev);
1843 	netif_tx_wake_all_queues(ndev);
1844 }
1845 
1846 static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p)
1847 {
1848 	struct cpsw_priv *priv = netdev_priv(ndev);
1849 	struct sockaddr *addr = (struct sockaddr *)p;
1850 	struct cpsw_common *cpsw = priv->cpsw;
1851 	int flags = 0;
1852 	u16 vid = 0;
1853 	int ret;
1854 
1855 	if (!is_valid_ether_addr(addr->sa_data))
1856 		return -EADDRNOTAVAIL;
1857 
1858 	ret = pm_runtime_get_sync(cpsw->dev);
1859 	if (ret < 0) {
1860 		pm_runtime_put_noidle(cpsw->dev);
1861 		return ret;
1862 	}
1863 
1864 	if (cpsw->data.dual_emac) {
1865 		vid = cpsw->slaves[priv->emac_port].port_vlan;
1866 		flags = ALE_VLAN;
1867 	}
1868 
1869 	cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1870 			   flags, vid);
1871 	cpsw_ale_add_ucast(cpsw->ale, addr->sa_data, HOST_PORT_NUM,
1872 			   flags, vid);
1873 
1874 	memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
1875 	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
1876 	for_each_slave(priv, cpsw_set_slave_mac, priv);
1877 
1878 	pm_runtime_put(cpsw->dev);
1879 
1880 	return 0;
1881 }
1882 
1883 #ifdef CONFIG_NET_POLL_CONTROLLER
1884 static void cpsw_ndo_poll_controller(struct net_device *ndev)
1885 {
1886 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1887 
1888 	cpsw_intr_disable(cpsw);
1889 	cpsw_rx_interrupt(cpsw->irqs_table[0], cpsw);
1890 	cpsw_tx_interrupt(cpsw->irqs_table[1], cpsw);
1891 	cpsw_intr_enable(cpsw);
1892 }
1893 #endif
1894 
1895 static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv,
1896 				unsigned short vid)
1897 {
1898 	int ret;
1899 	int unreg_mcast_mask = 0;
1900 	u32 port_mask;
1901 	struct cpsw_common *cpsw = priv->cpsw;
1902 
1903 	if (cpsw->data.dual_emac) {
1904 		port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST;
1905 
1906 		if (priv->ndev->flags & IFF_ALLMULTI)
1907 			unreg_mcast_mask = port_mask;
1908 	} else {
1909 		port_mask = ALE_ALL_PORTS;
1910 
1911 		if (priv->ndev->flags & IFF_ALLMULTI)
1912 			unreg_mcast_mask = ALE_ALL_PORTS;
1913 		else
1914 			unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
1915 	}
1916 
1917 	ret = cpsw_ale_add_vlan(cpsw->ale, vid, port_mask, 0, port_mask,
1918 				unreg_mcast_mask);
1919 	if (ret != 0)
1920 		return ret;
1921 
1922 	ret = cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
1923 				 HOST_PORT_NUM, ALE_VLAN, vid);
1924 	if (ret != 0)
1925 		goto clean_vid;
1926 
1927 	ret = cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1928 				 port_mask, ALE_VLAN, vid, 0);
1929 	if (ret != 0)
1930 		goto clean_vlan_ucast;
1931 	return 0;
1932 
1933 clean_vlan_ucast:
1934 	cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
1935 			   HOST_PORT_NUM, ALE_VLAN, vid);
1936 clean_vid:
1937 	cpsw_ale_del_vlan(cpsw->ale, vid, 0);
1938 	return ret;
1939 }
1940 
1941 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
1942 				    __be16 proto, u16 vid)
1943 {
1944 	struct cpsw_priv *priv = netdev_priv(ndev);
1945 	struct cpsw_common *cpsw = priv->cpsw;
1946 	int ret;
1947 
1948 	if (vid == cpsw->data.default_vlan)
1949 		return 0;
1950 
1951 	ret = pm_runtime_get_sync(cpsw->dev);
1952 	if (ret < 0) {
1953 		pm_runtime_put_noidle(cpsw->dev);
1954 		return ret;
1955 	}
1956 
1957 	if (cpsw->data.dual_emac) {
1958 		/* In dual EMAC, reserved VLAN id should not be used for
1959 		 * creating VLAN interfaces as this can break the dual
1960 		 * EMAC port separation
1961 		 */
1962 		int i;
1963 
1964 		for (i = 0; i < cpsw->data.slaves; i++) {
1965 			if (vid == cpsw->slaves[i].port_vlan)
1966 				return -EINVAL;
1967 		}
1968 	}
1969 
1970 	dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid);
1971 	ret = cpsw_add_vlan_ale_entry(priv, vid);
1972 
1973 	pm_runtime_put(cpsw->dev);
1974 	return ret;
1975 }
1976 
1977 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev,
1978 				     __be16 proto, u16 vid)
1979 {
1980 	struct cpsw_priv *priv = netdev_priv(ndev);
1981 	struct cpsw_common *cpsw = priv->cpsw;
1982 	int ret;
1983 
1984 	if (vid == cpsw->data.default_vlan)
1985 		return 0;
1986 
1987 	ret = pm_runtime_get_sync(cpsw->dev);
1988 	if (ret < 0) {
1989 		pm_runtime_put_noidle(cpsw->dev);
1990 		return ret;
1991 	}
1992 
1993 	if (cpsw->data.dual_emac) {
1994 		int i;
1995 
1996 		for (i = 0; i < cpsw->data.slaves; i++) {
1997 			if (vid == cpsw->slaves[i].port_vlan)
1998 				return -EINVAL;
1999 		}
2000 	}
2001 
2002 	dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid);
2003 	ret = cpsw_ale_del_vlan(cpsw->ale, vid, 0);
2004 	if (ret != 0)
2005 		return ret;
2006 
2007 	ret = cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
2008 				 HOST_PORT_NUM, ALE_VLAN, vid);
2009 	if (ret != 0)
2010 		return ret;
2011 
2012 	ret = cpsw_ale_del_mcast(cpsw->ale, priv->ndev->broadcast,
2013 				 0, ALE_VLAN, vid);
2014 	pm_runtime_put(cpsw->dev);
2015 	return ret;
2016 }
2017 
2018 static int cpsw_ndo_set_tx_maxrate(struct net_device *ndev, int queue, u32 rate)
2019 {
2020 	struct cpsw_priv *priv = netdev_priv(ndev);
2021 	struct cpsw_common *cpsw = priv->cpsw;
2022 	struct cpsw_slave *slave;
2023 	u32 min_rate;
2024 	u32 ch_rate;
2025 	int i, ret;
2026 
2027 	ch_rate = netdev_get_tx_queue(ndev, queue)->tx_maxrate;
2028 	if (ch_rate == rate)
2029 		return 0;
2030 
2031 	ch_rate = rate * 1000;
2032 	min_rate = cpdma_chan_get_min_rate(cpsw->dma);
2033 	if ((ch_rate < min_rate && ch_rate)) {
2034 		dev_err(priv->dev, "The channel rate cannot be less than %dMbps",
2035 			min_rate);
2036 		return -EINVAL;
2037 	}
2038 
2039 	if (rate > cpsw->speed) {
2040 		dev_err(priv->dev, "The channel rate cannot be more than 2Gbps");
2041 		return -EINVAL;
2042 	}
2043 
2044 	ret = pm_runtime_get_sync(cpsw->dev);
2045 	if (ret < 0) {
2046 		pm_runtime_put_noidle(cpsw->dev);
2047 		return ret;
2048 	}
2049 
2050 	ret = cpdma_chan_set_rate(cpsw->txv[queue].ch, ch_rate);
2051 	pm_runtime_put(cpsw->dev);
2052 
2053 	if (ret)
2054 		return ret;
2055 
2056 	/* update rates for slaves tx queues */
2057 	for (i = 0; i < cpsw->data.slaves; i++) {
2058 		slave = &cpsw->slaves[i];
2059 		if (!slave->ndev)
2060 			continue;
2061 
2062 		netdev_get_tx_queue(slave->ndev, queue)->tx_maxrate = rate;
2063 	}
2064 
2065 	cpsw_split_res(ndev);
2066 	return ret;
2067 }
2068 
2069 static const struct net_device_ops cpsw_netdev_ops = {
2070 	.ndo_open		= cpsw_ndo_open,
2071 	.ndo_stop		= cpsw_ndo_stop,
2072 	.ndo_start_xmit		= cpsw_ndo_start_xmit,
2073 	.ndo_set_mac_address	= cpsw_ndo_set_mac_address,
2074 	.ndo_do_ioctl		= cpsw_ndo_ioctl,
2075 	.ndo_validate_addr	= eth_validate_addr,
2076 	.ndo_tx_timeout		= cpsw_ndo_tx_timeout,
2077 	.ndo_set_rx_mode	= cpsw_ndo_set_rx_mode,
2078 	.ndo_set_tx_maxrate	= cpsw_ndo_set_tx_maxrate,
2079 #ifdef CONFIG_NET_POLL_CONTROLLER
2080 	.ndo_poll_controller	= cpsw_ndo_poll_controller,
2081 #endif
2082 	.ndo_vlan_rx_add_vid	= cpsw_ndo_vlan_rx_add_vid,
2083 	.ndo_vlan_rx_kill_vid	= cpsw_ndo_vlan_rx_kill_vid,
2084 };
2085 
2086 static int cpsw_get_regs_len(struct net_device *ndev)
2087 {
2088 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2089 
2090 	return cpsw->data.ale_entries * ALE_ENTRY_WORDS * sizeof(u32);
2091 }
2092 
2093 static void cpsw_get_regs(struct net_device *ndev,
2094 			  struct ethtool_regs *regs, void *p)
2095 {
2096 	u32 *reg = p;
2097 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2098 
2099 	/* update CPSW IP version */
2100 	regs->version = cpsw->version;
2101 
2102 	cpsw_ale_dump(cpsw->ale, reg);
2103 }
2104 
2105 static void cpsw_get_drvinfo(struct net_device *ndev,
2106 			     struct ethtool_drvinfo *info)
2107 {
2108 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2109 	struct platform_device	*pdev = to_platform_device(cpsw->dev);
2110 
2111 	strlcpy(info->driver, "cpsw", sizeof(info->driver));
2112 	strlcpy(info->version, "1.0", sizeof(info->version));
2113 	strlcpy(info->bus_info, pdev->name, sizeof(info->bus_info));
2114 }
2115 
2116 static u32 cpsw_get_msglevel(struct net_device *ndev)
2117 {
2118 	struct cpsw_priv *priv = netdev_priv(ndev);
2119 	return priv->msg_enable;
2120 }
2121 
2122 static void cpsw_set_msglevel(struct net_device *ndev, u32 value)
2123 {
2124 	struct cpsw_priv *priv = netdev_priv(ndev);
2125 	priv->msg_enable = value;
2126 }
2127 
2128 #if IS_ENABLED(CONFIG_TI_CPTS)
2129 static int cpsw_get_ts_info(struct net_device *ndev,
2130 			    struct ethtool_ts_info *info)
2131 {
2132 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2133 
2134 	info->so_timestamping =
2135 		SOF_TIMESTAMPING_TX_HARDWARE |
2136 		SOF_TIMESTAMPING_TX_SOFTWARE |
2137 		SOF_TIMESTAMPING_RX_HARDWARE |
2138 		SOF_TIMESTAMPING_RX_SOFTWARE |
2139 		SOF_TIMESTAMPING_SOFTWARE |
2140 		SOF_TIMESTAMPING_RAW_HARDWARE;
2141 	info->phc_index = cpsw->cpts->phc_index;
2142 	info->tx_types =
2143 		(1 << HWTSTAMP_TX_OFF) |
2144 		(1 << HWTSTAMP_TX_ON);
2145 	info->rx_filters =
2146 		(1 << HWTSTAMP_FILTER_NONE) |
2147 		(1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
2148 		(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2149 	return 0;
2150 }
2151 #else
2152 static int cpsw_get_ts_info(struct net_device *ndev,
2153 			    struct ethtool_ts_info *info)
2154 {
2155 	info->so_timestamping =
2156 		SOF_TIMESTAMPING_TX_SOFTWARE |
2157 		SOF_TIMESTAMPING_RX_SOFTWARE |
2158 		SOF_TIMESTAMPING_SOFTWARE;
2159 	info->phc_index = -1;
2160 	info->tx_types = 0;
2161 	info->rx_filters = 0;
2162 	return 0;
2163 }
2164 #endif
2165 
2166 static int cpsw_get_link_ksettings(struct net_device *ndev,
2167 				   struct ethtool_link_ksettings *ecmd)
2168 {
2169 	struct cpsw_priv *priv = netdev_priv(ndev);
2170 	struct cpsw_common *cpsw = priv->cpsw;
2171 	int slave_no = cpsw_slave_index(cpsw, priv);
2172 
2173 	if (!cpsw->slaves[slave_no].phy)
2174 		return -EOPNOTSUPP;
2175 
2176 	phy_ethtool_ksettings_get(cpsw->slaves[slave_no].phy, ecmd);
2177 	return 0;
2178 }
2179 
2180 static int cpsw_set_link_ksettings(struct net_device *ndev,
2181 				   const struct ethtool_link_ksettings *ecmd)
2182 {
2183 	struct cpsw_priv *priv = netdev_priv(ndev);
2184 	struct cpsw_common *cpsw = priv->cpsw;
2185 	int slave_no = cpsw_slave_index(cpsw, priv);
2186 
2187 	if (cpsw->slaves[slave_no].phy)
2188 		return phy_ethtool_ksettings_set(cpsw->slaves[slave_no].phy,
2189 						 ecmd);
2190 	else
2191 		return -EOPNOTSUPP;
2192 }
2193 
2194 static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2195 {
2196 	struct cpsw_priv *priv = netdev_priv(ndev);
2197 	struct cpsw_common *cpsw = priv->cpsw;
2198 	int slave_no = cpsw_slave_index(cpsw, priv);
2199 
2200 	wol->supported = 0;
2201 	wol->wolopts = 0;
2202 
2203 	if (cpsw->slaves[slave_no].phy)
2204 		phy_ethtool_get_wol(cpsw->slaves[slave_no].phy, wol);
2205 }
2206 
2207 static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2208 {
2209 	struct cpsw_priv *priv = netdev_priv(ndev);
2210 	struct cpsw_common *cpsw = priv->cpsw;
2211 	int slave_no = cpsw_slave_index(cpsw, priv);
2212 
2213 	if (cpsw->slaves[slave_no].phy)
2214 		return phy_ethtool_set_wol(cpsw->slaves[slave_no].phy, wol);
2215 	else
2216 		return -EOPNOTSUPP;
2217 }
2218 
2219 static void cpsw_get_pauseparam(struct net_device *ndev,
2220 				struct ethtool_pauseparam *pause)
2221 {
2222 	struct cpsw_priv *priv = netdev_priv(ndev);
2223 
2224 	pause->autoneg = AUTONEG_DISABLE;
2225 	pause->rx_pause = priv->rx_pause ? true : false;
2226 	pause->tx_pause = priv->tx_pause ? true : false;
2227 }
2228 
2229 static int cpsw_set_pauseparam(struct net_device *ndev,
2230 			       struct ethtool_pauseparam *pause)
2231 {
2232 	struct cpsw_priv *priv = netdev_priv(ndev);
2233 	bool link;
2234 
2235 	priv->rx_pause = pause->rx_pause ? true : false;
2236 	priv->tx_pause = pause->tx_pause ? true : false;
2237 
2238 	for_each_slave(priv, _cpsw_adjust_link, priv, &link);
2239 	return 0;
2240 }
2241 
2242 static int cpsw_ethtool_op_begin(struct net_device *ndev)
2243 {
2244 	struct cpsw_priv *priv = netdev_priv(ndev);
2245 	struct cpsw_common *cpsw = priv->cpsw;
2246 	int ret;
2247 
2248 	ret = pm_runtime_get_sync(cpsw->dev);
2249 	if (ret < 0) {
2250 		cpsw_err(priv, drv, "ethtool begin failed %d\n", ret);
2251 		pm_runtime_put_noidle(cpsw->dev);
2252 	}
2253 
2254 	return ret;
2255 }
2256 
2257 static void cpsw_ethtool_op_complete(struct net_device *ndev)
2258 {
2259 	struct cpsw_priv *priv = netdev_priv(ndev);
2260 	int ret;
2261 
2262 	ret = pm_runtime_put(priv->cpsw->dev);
2263 	if (ret < 0)
2264 		cpsw_err(priv, drv, "ethtool complete failed %d\n", ret);
2265 }
2266 
2267 static void cpsw_get_channels(struct net_device *ndev,
2268 			      struct ethtool_channels *ch)
2269 {
2270 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2271 
2272 	ch->max_combined = 0;
2273 	ch->max_rx = CPSW_MAX_QUEUES;
2274 	ch->max_tx = CPSW_MAX_QUEUES;
2275 	ch->max_other = 0;
2276 	ch->other_count = 0;
2277 	ch->rx_count = cpsw->rx_ch_num;
2278 	ch->tx_count = cpsw->tx_ch_num;
2279 	ch->combined_count = 0;
2280 }
2281 
2282 static int cpsw_check_ch_settings(struct cpsw_common *cpsw,
2283 				  struct ethtool_channels *ch)
2284 {
2285 	if (ch->combined_count)
2286 		return -EINVAL;
2287 
2288 	/* verify we have at least one channel in each direction */
2289 	if (!ch->rx_count || !ch->tx_count)
2290 		return -EINVAL;
2291 
2292 	if (ch->rx_count > cpsw->data.channels ||
2293 	    ch->tx_count > cpsw->data.channels)
2294 		return -EINVAL;
2295 
2296 	return 0;
2297 }
2298 
2299 static int cpsw_update_channels_res(struct cpsw_priv *priv, int ch_num, int rx)
2300 {
2301 	int (*poll)(struct napi_struct *, int);
2302 	struct cpsw_common *cpsw = priv->cpsw;
2303 	void (*handler)(void *, int, int);
2304 	struct netdev_queue *queue;
2305 	struct cpsw_vector *vec;
2306 	int ret, *ch;
2307 
2308 	if (rx) {
2309 		ch = &cpsw->rx_ch_num;
2310 		vec = cpsw->rxv;
2311 		handler = cpsw_rx_handler;
2312 		poll = cpsw_rx_poll;
2313 	} else {
2314 		ch = &cpsw->tx_ch_num;
2315 		vec = cpsw->txv;
2316 		handler = cpsw_tx_handler;
2317 		poll = cpsw_tx_poll;
2318 	}
2319 
2320 	while (*ch < ch_num) {
2321 		vec[*ch].ch = cpdma_chan_create(cpsw->dma, *ch, handler, rx);
2322 		queue = netdev_get_tx_queue(priv->ndev, *ch);
2323 		queue->tx_maxrate = 0;
2324 
2325 		if (IS_ERR(vec[*ch].ch))
2326 			return PTR_ERR(vec[*ch].ch);
2327 
2328 		if (!vec[*ch].ch)
2329 			return -EINVAL;
2330 
2331 		cpsw_info(priv, ifup, "created new %d %s channel\n", *ch,
2332 			  (rx ? "rx" : "tx"));
2333 		(*ch)++;
2334 	}
2335 
2336 	while (*ch > ch_num) {
2337 		(*ch)--;
2338 
2339 		ret = cpdma_chan_destroy(vec[*ch].ch);
2340 		if (ret)
2341 			return ret;
2342 
2343 		cpsw_info(priv, ifup, "destroyed %d %s channel\n", *ch,
2344 			  (rx ? "rx" : "tx"));
2345 	}
2346 
2347 	return 0;
2348 }
2349 
2350 static int cpsw_update_channels(struct cpsw_priv *priv,
2351 				struct ethtool_channels *ch)
2352 {
2353 	int ret;
2354 
2355 	ret = cpsw_update_channels_res(priv, ch->rx_count, 1);
2356 	if (ret)
2357 		return ret;
2358 
2359 	ret = cpsw_update_channels_res(priv, ch->tx_count, 0);
2360 	if (ret)
2361 		return ret;
2362 
2363 	return 0;
2364 }
2365 
2366 static void cpsw_suspend_data_pass(struct net_device *ndev)
2367 {
2368 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2369 	struct cpsw_slave *slave;
2370 	int i;
2371 
2372 	/* Disable NAPI scheduling */
2373 	cpsw_intr_disable(cpsw);
2374 
2375 	/* Stop all transmit queues for every network device.
2376 	 * Disable re-using rx descriptors with dormant_on.
2377 	 */
2378 	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
2379 		if (!(slave->ndev && netif_running(slave->ndev)))
2380 			continue;
2381 
2382 		netif_tx_stop_all_queues(slave->ndev);
2383 		netif_dormant_on(slave->ndev);
2384 	}
2385 
2386 	/* Handle rest of tx packets and stop cpdma channels */
2387 	cpdma_ctlr_stop(cpsw->dma);
2388 }
2389 
2390 static int cpsw_resume_data_pass(struct net_device *ndev)
2391 {
2392 	struct cpsw_priv *priv = netdev_priv(ndev);
2393 	struct cpsw_common *cpsw = priv->cpsw;
2394 	struct cpsw_slave *slave;
2395 	int i, ret;
2396 
2397 	/* Allow rx packets handling */
2398 	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++)
2399 		if (slave->ndev && netif_running(slave->ndev))
2400 			netif_dormant_off(slave->ndev);
2401 
2402 	/* After this receive is started */
2403 	if (cpsw->usage_count) {
2404 		ret = cpsw_fill_rx_channels(priv);
2405 		if (ret)
2406 			return ret;
2407 
2408 		cpdma_ctlr_start(cpsw->dma);
2409 		cpsw_intr_enable(cpsw);
2410 	}
2411 
2412 	/* Resume transmit for every affected interface */
2413 	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++)
2414 		if (slave->ndev && netif_running(slave->ndev))
2415 			netif_tx_start_all_queues(slave->ndev);
2416 
2417 	return 0;
2418 }
2419 
2420 static int cpsw_set_channels(struct net_device *ndev,
2421 			     struct ethtool_channels *chs)
2422 {
2423 	struct cpsw_priv *priv = netdev_priv(ndev);
2424 	struct cpsw_common *cpsw = priv->cpsw;
2425 	struct cpsw_slave *slave;
2426 	int i, ret;
2427 
2428 	ret = cpsw_check_ch_settings(cpsw, chs);
2429 	if (ret < 0)
2430 		return ret;
2431 
2432 	cpsw_suspend_data_pass(ndev);
2433 	ret = cpsw_update_channels(priv, chs);
2434 	if (ret)
2435 		goto err;
2436 
2437 	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
2438 		if (!(slave->ndev && netif_running(slave->ndev)))
2439 			continue;
2440 
2441 		/* Inform stack about new count of queues */
2442 		ret = netif_set_real_num_tx_queues(slave->ndev,
2443 						   cpsw->tx_ch_num);
2444 		if (ret) {
2445 			dev_err(priv->dev, "cannot set real number of tx queues\n");
2446 			goto err;
2447 		}
2448 
2449 		ret = netif_set_real_num_rx_queues(slave->ndev,
2450 						   cpsw->rx_ch_num);
2451 		if (ret) {
2452 			dev_err(priv->dev, "cannot set real number of rx queues\n");
2453 			goto err;
2454 		}
2455 	}
2456 
2457 	if (cpsw->usage_count)
2458 		cpsw_split_res(ndev);
2459 
2460 	ret = cpsw_resume_data_pass(ndev);
2461 	if (!ret)
2462 		return 0;
2463 err:
2464 	dev_err(priv->dev, "cannot update channels number, closing device\n");
2465 	dev_close(ndev);
2466 	return ret;
2467 }
2468 
2469 static int cpsw_get_eee(struct net_device *ndev, struct ethtool_eee *edata)
2470 {
2471 	struct cpsw_priv *priv = netdev_priv(ndev);
2472 	struct cpsw_common *cpsw = priv->cpsw;
2473 	int slave_no = cpsw_slave_index(cpsw, priv);
2474 
2475 	if (cpsw->slaves[slave_no].phy)
2476 		return phy_ethtool_get_eee(cpsw->slaves[slave_no].phy, edata);
2477 	else
2478 		return -EOPNOTSUPP;
2479 }
2480 
2481 static int cpsw_set_eee(struct net_device *ndev, struct ethtool_eee *edata)
2482 {
2483 	struct cpsw_priv *priv = netdev_priv(ndev);
2484 	struct cpsw_common *cpsw = priv->cpsw;
2485 	int slave_no = cpsw_slave_index(cpsw, priv);
2486 
2487 	if (cpsw->slaves[slave_no].phy)
2488 		return phy_ethtool_set_eee(cpsw->slaves[slave_no].phy, edata);
2489 	else
2490 		return -EOPNOTSUPP;
2491 }
2492 
2493 static int cpsw_nway_reset(struct net_device *ndev)
2494 {
2495 	struct cpsw_priv *priv = netdev_priv(ndev);
2496 	struct cpsw_common *cpsw = priv->cpsw;
2497 	int slave_no = cpsw_slave_index(cpsw, priv);
2498 
2499 	if (cpsw->slaves[slave_no].phy)
2500 		return genphy_restart_aneg(cpsw->slaves[slave_no].phy);
2501 	else
2502 		return -EOPNOTSUPP;
2503 }
2504 
2505 static void cpsw_get_ringparam(struct net_device *ndev,
2506 			       struct ethtool_ringparam *ering)
2507 {
2508 	struct cpsw_priv *priv = netdev_priv(ndev);
2509 	struct cpsw_common *cpsw = priv->cpsw;
2510 
2511 	/* not supported */
2512 	ering->tx_max_pending = 0;
2513 	ering->tx_pending = cpdma_get_num_tx_descs(cpsw->dma);
2514 	ering->rx_max_pending = descs_pool_size - CPSW_MAX_QUEUES;
2515 	ering->rx_pending = cpdma_get_num_rx_descs(cpsw->dma);
2516 }
2517 
2518 static int cpsw_set_ringparam(struct net_device *ndev,
2519 			      struct ethtool_ringparam *ering)
2520 {
2521 	struct cpsw_priv *priv = netdev_priv(ndev);
2522 	struct cpsw_common *cpsw = priv->cpsw;
2523 	int ret;
2524 
2525 	/* ignore ering->tx_pending - only rx_pending adjustment is supported */
2526 
2527 	if (ering->rx_mini_pending || ering->rx_jumbo_pending ||
2528 	    ering->rx_pending < CPSW_MAX_QUEUES ||
2529 	    ering->rx_pending > (descs_pool_size - CPSW_MAX_QUEUES))
2530 		return -EINVAL;
2531 
2532 	if (ering->rx_pending == cpdma_get_num_rx_descs(cpsw->dma))
2533 		return 0;
2534 
2535 	cpsw_suspend_data_pass(ndev);
2536 
2537 	cpdma_set_num_rx_descs(cpsw->dma, ering->rx_pending);
2538 
2539 	if (cpsw->usage_count)
2540 		cpdma_chan_split_pool(cpsw->dma);
2541 
2542 	ret = cpsw_resume_data_pass(ndev);
2543 	if (!ret)
2544 		return 0;
2545 
2546 	dev_err(&ndev->dev, "cannot set ring params, closing device\n");
2547 	dev_close(ndev);
2548 	return ret;
2549 }
2550 
2551 static const struct ethtool_ops cpsw_ethtool_ops = {
2552 	.get_drvinfo	= cpsw_get_drvinfo,
2553 	.get_msglevel	= cpsw_get_msglevel,
2554 	.set_msglevel	= cpsw_set_msglevel,
2555 	.get_link	= ethtool_op_get_link,
2556 	.get_ts_info	= cpsw_get_ts_info,
2557 	.get_coalesce	= cpsw_get_coalesce,
2558 	.set_coalesce	= cpsw_set_coalesce,
2559 	.get_sset_count		= cpsw_get_sset_count,
2560 	.get_strings		= cpsw_get_strings,
2561 	.get_ethtool_stats	= cpsw_get_ethtool_stats,
2562 	.get_pauseparam		= cpsw_get_pauseparam,
2563 	.set_pauseparam		= cpsw_set_pauseparam,
2564 	.get_wol	= cpsw_get_wol,
2565 	.set_wol	= cpsw_set_wol,
2566 	.get_regs_len	= cpsw_get_regs_len,
2567 	.get_regs	= cpsw_get_regs,
2568 	.begin		= cpsw_ethtool_op_begin,
2569 	.complete	= cpsw_ethtool_op_complete,
2570 	.get_channels	= cpsw_get_channels,
2571 	.set_channels	= cpsw_set_channels,
2572 	.get_link_ksettings	= cpsw_get_link_ksettings,
2573 	.set_link_ksettings	= cpsw_set_link_ksettings,
2574 	.get_eee	= cpsw_get_eee,
2575 	.set_eee	= cpsw_set_eee,
2576 	.nway_reset	= cpsw_nway_reset,
2577 	.get_ringparam = cpsw_get_ringparam,
2578 	.set_ringparam = cpsw_set_ringparam,
2579 };
2580 
2581 static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_common *cpsw,
2582 			    u32 slave_reg_ofs, u32 sliver_reg_ofs)
2583 {
2584 	void __iomem		*regs = cpsw->regs;
2585 	int			slave_num = slave->slave_num;
2586 	struct cpsw_slave_data	*data = cpsw->data.slave_data + slave_num;
2587 
2588 	slave->data	= data;
2589 	slave->regs	= regs + slave_reg_ofs;
2590 	slave->sliver	= regs + sliver_reg_ofs;
2591 	slave->port_vlan = data->dual_emac_res_vlan;
2592 }
2593 
2594 static int cpsw_probe_dt(struct cpsw_platform_data *data,
2595 			 struct platform_device *pdev)
2596 {
2597 	struct device_node *node = pdev->dev.of_node;
2598 	struct device_node *slave_node;
2599 	int i = 0, ret;
2600 	u32 prop;
2601 
2602 	if (!node)
2603 		return -EINVAL;
2604 
2605 	if (of_property_read_u32(node, "slaves", &prop)) {
2606 		dev_err(&pdev->dev, "Missing slaves property in the DT.\n");
2607 		return -EINVAL;
2608 	}
2609 	data->slaves = prop;
2610 
2611 	if (of_property_read_u32(node, "active_slave", &prop)) {
2612 		dev_err(&pdev->dev, "Missing active_slave property in the DT.\n");
2613 		return -EINVAL;
2614 	}
2615 	data->active_slave = prop;
2616 
2617 	data->slave_data = devm_kzalloc(&pdev->dev, data->slaves
2618 					* sizeof(struct cpsw_slave_data),
2619 					GFP_KERNEL);
2620 	if (!data->slave_data)
2621 		return -ENOMEM;
2622 
2623 	if (of_property_read_u32(node, "cpdma_channels", &prop)) {
2624 		dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n");
2625 		return -EINVAL;
2626 	}
2627 	data->channels = prop;
2628 
2629 	if (of_property_read_u32(node, "ale_entries", &prop)) {
2630 		dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n");
2631 		return -EINVAL;
2632 	}
2633 	data->ale_entries = prop;
2634 
2635 	if (of_property_read_u32(node, "bd_ram_size", &prop)) {
2636 		dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n");
2637 		return -EINVAL;
2638 	}
2639 	data->bd_ram_size = prop;
2640 
2641 	if (of_property_read_u32(node, "mac_control", &prop)) {
2642 		dev_err(&pdev->dev, "Missing mac_control property in the DT.\n");
2643 		return -EINVAL;
2644 	}
2645 	data->mac_control = prop;
2646 
2647 	if (of_property_read_bool(node, "dual_emac"))
2648 		data->dual_emac = 1;
2649 
2650 	/*
2651 	 * Populate all the child nodes here...
2652 	 */
2653 	ret = of_platform_populate(node, NULL, NULL, &pdev->dev);
2654 	/* We do not want to force this, as in some cases may not have child */
2655 	if (ret)
2656 		dev_warn(&pdev->dev, "Doesn't have any child node\n");
2657 
2658 	for_each_available_child_of_node(node, slave_node) {
2659 		struct cpsw_slave_data *slave_data = data->slave_data + i;
2660 		const void *mac_addr = NULL;
2661 		int lenp;
2662 		const __be32 *parp;
2663 
2664 		/* This is no slave child node, continue */
2665 		if (strcmp(slave_node->name, "slave"))
2666 			continue;
2667 
2668 		slave_data->phy_node = of_parse_phandle(slave_node,
2669 							"phy-handle", 0);
2670 		parp = of_get_property(slave_node, "phy_id", &lenp);
2671 		if (slave_data->phy_node) {
2672 			dev_dbg(&pdev->dev,
2673 				"slave[%d] using phy-handle=\"%pOF\"\n",
2674 				i, slave_data->phy_node);
2675 		} else if (of_phy_is_fixed_link(slave_node)) {
2676 			/* In the case of a fixed PHY, the DT node associated
2677 			 * to the PHY is the Ethernet MAC DT node.
2678 			 */
2679 			ret = of_phy_register_fixed_link(slave_node);
2680 			if (ret) {
2681 				if (ret != -EPROBE_DEFER)
2682 					dev_err(&pdev->dev, "failed to register fixed-link phy: %d\n", ret);
2683 				return ret;
2684 			}
2685 			slave_data->phy_node = of_node_get(slave_node);
2686 		} else if (parp) {
2687 			u32 phyid;
2688 			struct device_node *mdio_node;
2689 			struct platform_device *mdio;
2690 
2691 			if (lenp != (sizeof(__be32) * 2)) {
2692 				dev_err(&pdev->dev, "Invalid slave[%d] phy_id property\n", i);
2693 				goto no_phy_slave;
2694 			}
2695 			mdio_node = of_find_node_by_phandle(be32_to_cpup(parp));
2696 			phyid = be32_to_cpup(parp+1);
2697 			mdio = of_find_device_by_node(mdio_node);
2698 			of_node_put(mdio_node);
2699 			if (!mdio) {
2700 				dev_err(&pdev->dev, "Missing mdio platform device\n");
2701 				return -EINVAL;
2702 			}
2703 			snprintf(slave_data->phy_id, sizeof(slave_data->phy_id),
2704 				 PHY_ID_FMT, mdio->name, phyid);
2705 			put_device(&mdio->dev);
2706 		} else {
2707 			dev_err(&pdev->dev,
2708 				"No slave[%d] phy_id, phy-handle, or fixed-link property\n",
2709 				i);
2710 			goto no_phy_slave;
2711 		}
2712 		slave_data->phy_if = of_get_phy_mode(slave_node);
2713 		if (slave_data->phy_if < 0) {
2714 			dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n",
2715 				i);
2716 			return slave_data->phy_if;
2717 		}
2718 
2719 no_phy_slave:
2720 		mac_addr = of_get_mac_address(slave_node);
2721 		if (mac_addr) {
2722 			memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN);
2723 		} else {
2724 			ret = ti_cm_get_macid(&pdev->dev, i,
2725 					      slave_data->mac_addr);
2726 			if (ret)
2727 				return ret;
2728 		}
2729 		if (data->dual_emac) {
2730 			if (of_property_read_u32(slave_node, "dual_emac_res_vlan",
2731 						 &prop)) {
2732 				dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n");
2733 				slave_data->dual_emac_res_vlan = i+1;
2734 				dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n",
2735 					slave_data->dual_emac_res_vlan, i);
2736 			} else {
2737 				slave_data->dual_emac_res_vlan = prop;
2738 			}
2739 		}
2740 
2741 		i++;
2742 		if (i == data->slaves)
2743 			break;
2744 	}
2745 
2746 	return 0;
2747 }
2748 
2749 static void cpsw_remove_dt(struct platform_device *pdev)
2750 {
2751 	struct net_device *ndev = platform_get_drvdata(pdev);
2752 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2753 	struct cpsw_platform_data *data = &cpsw->data;
2754 	struct device_node *node = pdev->dev.of_node;
2755 	struct device_node *slave_node;
2756 	int i = 0;
2757 
2758 	for_each_available_child_of_node(node, slave_node) {
2759 		struct cpsw_slave_data *slave_data = &data->slave_data[i];
2760 
2761 		if (strcmp(slave_node->name, "slave"))
2762 			continue;
2763 
2764 		if (of_phy_is_fixed_link(slave_node))
2765 			of_phy_deregister_fixed_link(slave_node);
2766 
2767 		of_node_put(slave_data->phy_node);
2768 
2769 		i++;
2770 		if (i == data->slaves)
2771 			break;
2772 	}
2773 
2774 	of_platform_depopulate(&pdev->dev);
2775 }
2776 
2777 static int cpsw_probe_dual_emac(struct cpsw_priv *priv)
2778 {
2779 	struct cpsw_common		*cpsw = priv->cpsw;
2780 	struct cpsw_platform_data	*data = &cpsw->data;
2781 	struct net_device		*ndev;
2782 	struct cpsw_priv		*priv_sl2;
2783 	int ret = 0;
2784 
2785 	ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
2786 	if (!ndev) {
2787 		dev_err(cpsw->dev, "cpsw: error allocating net_device\n");
2788 		return -ENOMEM;
2789 	}
2790 
2791 	priv_sl2 = netdev_priv(ndev);
2792 	priv_sl2->cpsw = cpsw;
2793 	priv_sl2->ndev = ndev;
2794 	priv_sl2->dev  = &ndev->dev;
2795 	priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
2796 
2797 	if (is_valid_ether_addr(data->slave_data[1].mac_addr)) {
2798 		memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr,
2799 			ETH_ALEN);
2800 		dev_info(cpsw->dev, "cpsw: Detected MACID = %pM\n",
2801 			 priv_sl2->mac_addr);
2802 	} else {
2803 		random_ether_addr(priv_sl2->mac_addr);
2804 		dev_info(cpsw->dev, "cpsw: Random MACID = %pM\n",
2805 			 priv_sl2->mac_addr);
2806 	}
2807 	memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN);
2808 
2809 	priv_sl2->emac_port = 1;
2810 	cpsw->slaves[1].ndev = ndev;
2811 	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2812 
2813 	ndev->netdev_ops = &cpsw_netdev_ops;
2814 	ndev->ethtool_ops = &cpsw_ethtool_ops;
2815 
2816 	/* register the network device */
2817 	SET_NETDEV_DEV(ndev, cpsw->dev);
2818 	ret = register_netdev(ndev);
2819 	if (ret) {
2820 		dev_err(cpsw->dev, "cpsw: error registering net device\n");
2821 		free_netdev(ndev);
2822 		ret = -ENODEV;
2823 	}
2824 
2825 	return ret;
2826 }
2827 
2828 #define CPSW_QUIRK_IRQ		BIT(0)
2829 
2830 static const struct platform_device_id cpsw_devtype[] = {
2831 	{
2832 		/* keep it for existing comaptibles */
2833 		.name = "cpsw",
2834 		.driver_data = CPSW_QUIRK_IRQ,
2835 	}, {
2836 		.name = "am335x-cpsw",
2837 		.driver_data = CPSW_QUIRK_IRQ,
2838 	}, {
2839 		.name = "am4372-cpsw",
2840 		.driver_data = 0,
2841 	}, {
2842 		.name = "dra7-cpsw",
2843 		.driver_data = 0,
2844 	}, {
2845 		/* sentinel */
2846 	}
2847 };
2848 MODULE_DEVICE_TABLE(platform, cpsw_devtype);
2849 
2850 enum ti_cpsw_type {
2851 	CPSW = 0,
2852 	AM335X_CPSW,
2853 	AM4372_CPSW,
2854 	DRA7_CPSW,
2855 };
2856 
2857 static const struct of_device_id cpsw_of_mtable[] = {
2858 	{ .compatible = "ti,cpsw", .data = &cpsw_devtype[CPSW], },
2859 	{ .compatible = "ti,am335x-cpsw", .data = &cpsw_devtype[AM335X_CPSW], },
2860 	{ .compatible = "ti,am4372-cpsw", .data = &cpsw_devtype[AM4372_CPSW], },
2861 	{ .compatible = "ti,dra7-cpsw", .data = &cpsw_devtype[DRA7_CPSW], },
2862 	{ /* sentinel */ },
2863 };
2864 MODULE_DEVICE_TABLE(of, cpsw_of_mtable);
2865 
2866 static int cpsw_probe(struct platform_device *pdev)
2867 {
2868 	struct clk			*clk;
2869 	struct cpsw_platform_data	*data;
2870 	struct net_device		*ndev;
2871 	struct cpsw_priv		*priv;
2872 	struct cpdma_params		dma_params;
2873 	struct cpsw_ale_params		ale_params;
2874 	void __iomem			*ss_regs;
2875 	void __iomem			*cpts_regs;
2876 	struct resource			*res, *ss_res;
2877 	const struct of_device_id	*of_id;
2878 	struct gpio_descs		*mode;
2879 	u32 slave_offset, sliver_offset, slave_size;
2880 	struct cpsw_common		*cpsw;
2881 	int ret = 0, i;
2882 	int irq;
2883 
2884 	cpsw = devm_kzalloc(&pdev->dev, sizeof(struct cpsw_common), GFP_KERNEL);
2885 	if (!cpsw)
2886 		return -ENOMEM;
2887 
2888 	cpsw->dev = &pdev->dev;
2889 
2890 	ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
2891 	if (!ndev) {
2892 		dev_err(&pdev->dev, "error allocating net_device\n");
2893 		return -ENOMEM;
2894 	}
2895 
2896 	platform_set_drvdata(pdev, ndev);
2897 	priv = netdev_priv(ndev);
2898 	priv->cpsw = cpsw;
2899 	priv->ndev = ndev;
2900 	priv->dev  = &ndev->dev;
2901 	priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
2902 	cpsw->rx_packet_max = max(rx_packet_max, 128);
2903 
2904 	mode = devm_gpiod_get_array_optional(&pdev->dev, "mode", GPIOD_OUT_LOW);
2905 	if (IS_ERR(mode)) {
2906 		ret = PTR_ERR(mode);
2907 		dev_err(&pdev->dev, "gpio request failed, ret %d\n", ret);
2908 		goto clean_ndev_ret;
2909 	}
2910 
2911 	/*
2912 	 * This may be required here for child devices.
2913 	 */
2914 	pm_runtime_enable(&pdev->dev);
2915 
2916 	/* Select default pin state */
2917 	pinctrl_pm_select_default_state(&pdev->dev);
2918 
2919 	/* Need to enable clocks with runtime PM api to access module
2920 	 * registers
2921 	 */
2922 	ret = pm_runtime_get_sync(&pdev->dev);
2923 	if (ret < 0) {
2924 		pm_runtime_put_noidle(&pdev->dev);
2925 		goto clean_runtime_disable_ret;
2926 	}
2927 
2928 	ret = cpsw_probe_dt(&cpsw->data, pdev);
2929 	if (ret)
2930 		goto clean_dt_ret;
2931 
2932 	data = &cpsw->data;
2933 	cpsw->rx_ch_num = 1;
2934 	cpsw->tx_ch_num = 1;
2935 
2936 	if (is_valid_ether_addr(data->slave_data[0].mac_addr)) {
2937 		memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN);
2938 		dev_info(&pdev->dev, "Detected MACID = %pM\n", priv->mac_addr);
2939 	} else {
2940 		eth_random_addr(priv->mac_addr);
2941 		dev_info(&pdev->dev, "Random MACID = %pM\n", priv->mac_addr);
2942 	}
2943 
2944 	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
2945 
2946 	cpsw->slaves = devm_kzalloc(&pdev->dev,
2947 				    sizeof(struct cpsw_slave) * data->slaves,
2948 				    GFP_KERNEL);
2949 	if (!cpsw->slaves) {
2950 		ret = -ENOMEM;
2951 		goto clean_dt_ret;
2952 	}
2953 	for (i = 0; i < data->slaves; i++)
2954 		cpsw->slaves[i].slave_num = i;
2955 
2956 	cpsw->slaves[0].ndev = ndev;
2957 	priv->emac_port = 0;
2958 
2959 	clk = devm_clk_get(&pdev->dev, "fck");
2960 	if (IS_ERR(clk)) {
2961 		dev_err(priv->dev, "fck is not found\n");
2962 		ret = -ENODEV;
2963 		goto clean_dt_ret;
2964 	}
2965 	cpsw->bus_freq_mhz = clk_get_rate(clk) / 1000000;
2966 
2967 	ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2968 	ss_regs = devm_ioremap_resource(&pdev->dev, ss_res);
2969 	if (IS_ERR(ss_regs)) {
2970 		ret = PTR_ERR(ss_regs);
2971 		goto clean_dt_ret;
2972 	}
2973 	cpsw->regs = ss_regs;
2974 
2975 	cpsw->version = readl(&cpsw->regs->id_ver);
2976 
2977 	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2978 	cpsw->wr_regs = devm_ioremap_resource(&pdev->dev, res);
2979 	if (IS_ERR(cpsw->wr_regs)) {
2980 		ret = PTR_ERR(cpsw->wr_regs);
2981 		goto clean_dt_ret;
2982 	}
2983 
2984 	memset(&dma_params, 0, sizeof(dma_params));
2985 	memset(&ale_params, 0, sizeof(ale_params));
2986 
2987 	switch (cpsw->version) {
2988 	case CPSW_VERSION_1:
2989 		cpsw->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET;
2990 		cpts_regs		= ss_regs + CPSW1_CPTS_OFFSET;
2991 		cpsw->hw_stats	     = ss_regs + CPSW1_HW_STATS;
2992 		dma_params.dmaregs   = ss_regs + CPSW1_CPDMA_OFFSET;
2993 		dma_params.txhdp     = ss_regs + CPSW1_STATERAM_OFFSET;
2994 		ale_params.ale_regs  = ss_regs + CPSW1_ALE_OFFSET;
2995 		slave_offset         = CPSW1_SLAVE_OFFSET;
2996 		slave_size           = CPSW1_SLAVE_SIZE;
2997 		sliver_offset        = CPSW1_SLIVER_OFFSET;
2998 		dma_params.desc_mem_phys = 0;
2999 		break;
3000 	case CPSW_VERSION_2:
3001 	case CPSW_VERSION_3:
3002 	case CPSW_VERSION_4:
3003 		cpsw->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET;
3004 		cpts_regs		= ss_regs + CPSW2_CPTS_OFFSET;
3005 		cpsw->hw_stats	     = ss_regs + CPSW2_HW_STATS;
3006 		dma_params.dmaregs   = ss_regs + CPSW2_CPDMA_OFFSET;
3007 		dma_params.txhdp     = ss_regs + CPSW2_STATERAM_OFFSET;
3008 		ale_params.ale_regs  = ss_regs + CPSW2_ALE_OFFSET;
3009 		slave_offset         = CPSW2_SLAVE_OFFSET;
3010 		slave_size           = CPSW2_SLAVE_SIZE;
3011 		sliver_offset        = CPSW2_SLIVER_OFFSET;
3012 		dma_params.desc_mem_phys =
3013 			(u32 __force) ss_res->start + CPSW2_BD_OFFSET;
3014 		break;
3015 	default:
3016 		dev_err(priv->dev, "unknown version 0x%08x\n", cpsw->version);
3017 		ret = -ENODEV;
3018 		goto clean_dt_ret;
3019 	}
3020 	for (i = 0; i < cpsw->data.slaves; i++) {
3021 		struct cpsw_slave *slave = &cpsw->slaves[i];
3022 
3023 		cpsw_slave_init(slave, cpsw, slave_offset, sliver_offset);
3024 		slave_offset  += slave_size;
3025 		sliver_offset += SLIVER_SIZE;
3026 	}
3027 
3028 	dma_params.dev		= &pdev->dev;
3029 	dma_params.rxthresh	= dma_params.dmaregs + CPDMA_RXTHRESH;
3030 	dma_params.rxfree	= dma_params.dmaregs + CPDMA_RXFREE;
3031 	dma_params.rxhdp	= dma_params.txhdp + CPDMA_RXHDP;
3032 	dma_params.txcp		= dma_params.txhdp + CPDMA_TXCP;
3033 	dma_params.rxcp		= dma_params.txhdp + CPDMA_RXCP;
3034 
3035 	dma_params.num_chan		= data->channels;
3036 	dma_params.has_soft_reset	= true;
3037 	dma_params.min_packet_size	= CPSW_MIN_PACKET_SIZE;
3038 	dma_params.desc_mem_size	= data->bd_ram_size;
3039 	dma_params.desc_align		= 16;
3040 	dma_params.has_ext_regs		= true;
3041 	dma_params.desc_hw_addr         = dma_params.desc_mem_phys;
3042 	dma_params.bus_freq_mhz		= cpsw->bus_freq_mhz;
3043 	dma_params.descs_pool_size	= descs_pool_size;
3044 
3045 	cpsw->dma = cpdma_ctlr_create(&dma_params);
3046 	if (!cpsw->dma) {
3047 		dev_err(priv->dev, "error initializing dma\n");
3048 		ret = -ENOMEM;
3049 		goto clean_dt_ret;
3050 	}
3051 
3052 	cpsw->txv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_tx_handler, 0);
3053 	cpsw->rxv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_rx_handler, 1);
3054 	if (WARN_ON(!cpsw->rxv[0].ch || !cpsw->txv[0].ch)) {
3055 		dev_err(priv->dev, "error initializing dma channels\n");
3056 		ret = -ENOMEM;
3057 		goto clean_dma_ret;
3058 	}
3059 
3060 	ale_params.dev			= &pdev->dev;
3061 	ale_params.ale_ageout		= ale_ageout;
3062 	ale_params.ale_entries		= data->ale_entries;
3063 	ale_params.ale_ports		= data->slaves;
3064 
3065 	cpsw->ale = cpsw_ale_create(&ale_params);
3066 	if (!cpsw->ale) {
3067 		dev_err(priv->dev, "error initializing ale engine\n");
3068 		ret = -ENODEV;
3069 		goto clean_dma_ret;
3070 	}
3071 
3072 	cpsw->cpts = cpts_create(cpsw->dev, cpts_regs, cpsw->dev->of_node);
3073 	if (IS_ERR(cpsw->cpts)) {
3074 		ret = PTR_ERR(cpsw->cpts);
3075 		goto clean_ale_ret;
3076 	}
3077 
3078 	ndev->irq = platform_get_irq(pdev, 1);
3079 	if (ndev->irq < 0) {
3080 		dev_err(priv->dev, "error getting irq resource\n");
3081 		ret = ndev->irq;
3082 		goto clean_ale_ret;
3083 	}
3084 
3085 	of_id = of_match_device(cpsw_of_mtable, &pdev->dev);
3086 	if (of_id) {
3087 		pdev->id_entry = of_id->data;
3088 		if (pdev->id_entry->driver_data)
3089 			cpsw->quirk_irq = true;
3090 	}
3091 
3092 	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
3093 
3094 	ndev->netdev_ops = &cpsw_netdev_ops;
3095 	ndev->ethtool_ops = &cpsw_ethtool_ops;
3096 	netif_napi_add(ndev, &cpsw->napi_rx, cpsw_rx_poll, CPSW_POLL_WEIGHT);
3097 	netif_tx_napi_add(ndev, &cpsw->napi_tx, cpsw_tx_poll, CPSW_POLL_WEIGHT);
3098 	cpsw_split_res(ndev);
3099 
3100 	/* register the network device */
3101 	SET_NETDEV_DEV(ndev, &pdev->dev);
3102 	ret = register_netdev(ndev);
3103 	if (ret) {
3104 		dev_err(priv->dev, "error registering net device\n");
3105 		ret = -ENODEV;
3106 		goto clean_ale_ret;
3107 	}
3108 
3109 	if (cpsw->data.dual_emac) {
3110 		ret = cpsw_probe_dual_emac(priv);
3111 		if (ret) {
3112 			cpsw_err(priv, probe, "error probe slave 2 emac interface\n");
3113 			goto clean_unregister_netdev_ret;
3114 		}
3115 	}
3116 
3117 	/* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and
3118 	 * MISC IRQs which are always kept disabled with this driver so
3119 	 * we will not request them.
3120 	 *
3121 	 * If anyone wants to implement support for those, make sure to
3122 	 * first request and append them to irqs_table array.
3123 	 */
3124 
3125 	/* RX IRQ */
3126 	irq = platform_get_irq(pdev, 1);
3127 	if (irq < 0) {
3128 		ret = irq;
3129 		goto clean_ale_ret;
3130 	}
3131 
3132 	cpsw->irqs_table[0] = irq;
3133 	ret = devm_request_irq(&pdev->dev, irq, cpsw_rx_interrupt,
3134 			       0, dev_name(&pdev->dev), cpsw);
3135 	if (ret < 0) {
3136 		dev_err(priv->dev, "error attaching irq (%d)\n", ret);
3137 		goto clean_ale_ret;
3138 	}
3139 
3140 	/* TX IRQ */
3141 	irq = platform_get_irq(pdev, 2);
3142 	if (irq < 0) {
3143 		ret = irq;
3144 		goto clean_ale_ret;
3145 	}
3146 
3147 	cpsw->irqs_table[1] = irq;
3148 	ret = devm_request_irq(&pdev->dev, irq, cpsw_tx_interrupt,
3149 			       0, dev_name(&pdev->dev), cpsw);
3150 	if (ret < 0) {
3151 		dev_err(priv->dev, "error attaching irq (%d)\n", ret);
3152 		goto clean_ale_ret;
3153 	}
3154 
3155 	cpsw_notice(priv, probe,
3156 		    "initialized device (regs %pa, irq %d, pool size %d)\n",
3157 		    &ss_res->start, ndev->irq, dma_params.descs_pool_size);
3158 
3159 	pm_runtime_put(&pdev->dev);
3160 
3161 	return 0;
3162 
3163 clean_unregister_netdev_ret:
3164 	unregister_netdev(ndev);
3165 clean_ale_ret:
3166 	cpsw_ale_destroy(cpsw->ale);
3167 clean_dma_ret:
3168 	cpdma_ctlr_destroy(cpsw->dma);
3169 clean_dt_ret:
3170 	cpsw_remove_dt(pdev);
3171 	pm_runtime_put_sync(&pdev->dev);
3172 clean_runtime_disable_ret:
3173 	pm_runtime_disable(&pdev->dev);
3174 clean_ndev_ret:
3175 	free_netdev(priv->ndev);
3176 	return ret;
3177 }
3178 
3179 static int cpsw_remove(struct platform_device *pdev)
3180 {
3181 	struct net_device *ndev = platform_get_drvdata(pdev);
3182 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
3183 	int ret;
3184 
3185 	ret = pm_runtime_get_sync(&pdev->dev);
3186 	if (ret < 0) {
3187 		pm_runtime_put_noidle(&pdev->dev);
3188 		return ret;
3189 	}
3190 
3191 	if (cpsw->data.dual_emac)
3192 		unregister_netdev(cpsw->slaves[1].ndev);
3193 	unregister_netdev(ndev);
3194 
3195 	cpts_release(cpsw->cpts);
3196 	cpsw_ale_destroy(cpsw->ale);
3197 	cpdma_ctlr_destroy(cpsw->dma);
3198 	cpsw_remove_dt(pdev);
3199 	pm_runtime_put_sync(&pdev->dev);
3200 	pm_runtime_disable(&pdev->dev);
3201 	if (cpsw->data.dual_emac)
3202 		free_netdev(cpsw->slaves[1].ndev);
3203 	free_netdev(ndev);
3204 	return 0;
3205 }
3206 
3207 #ifdef CONFIG_PM_SLEEP
3208 static int cpsw_suspend(struct device *dev)
3209 {
3210 	struct platform_device	*pdev = to_platform_device(dev);
3211 	struct net_device	*ndev = platform_get_drvdata(pdev);
3212 	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
3213 
3214 	if (cpsw->data.dual_emac) {
3215 		int i;
3216 
3217 		for (i = 0; i < cpsw->data.slaves; i++) {
3218 			if (netif_running(cpsw->slaves[i].ndev))
3219 				cpsw_ndo_stop(cpsw->slaves[i].ndev);
3220 		}
3221 	} else {
3222 		if (netif_running(ndev))
3223 			cpsw_ndo_stop(ndev);
3224 	}
3225 
3226 	/* Select sleep pin state */
3227 	pinctrl_pm_select_sleep_state(dev);
3228 
3229 	return 0;
3230 }
3231 
3232 static int cpsw_resume(struct device *dev)
3233 {
3234 	struct platform_device	*pdev = to_platform_device(dev);
3235 	struct net_device	*ndev = platform_get_drvdata(pdev);
3236 	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
3237 
3238 	/* Select default pin state */
3239 	pinctrl_pm_select_default_state(dev);
3240 
3241 	/* shut up ASSERT_RTNL() warning in netif_set_real_num_tx/rx_queues */
3242 	rtnl_lock();
3243 	if (cpsw->data.dual_emac) {
3244 		int i;
3245 
3246 		for (i = 0; i < cpsw->data.slaves; i++) {
3247 			if (netif_running(cpsw->slaves[i].ndev))
3248 				cpsw_ndo_open(cpsw->slaves[i].ndev);
3249 		}
3250 	} else {
3251 		if (netif_running(ndev))
3252 			cpsw_ndo_open(ndev);
3253 	}
3254 	rtnl_unlock();
3255 
3256 	return 0;
3257 }
3258 #endif
3259 
3260 static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume);
3261 
3262 static struct platform_driver cpsw_driver = {
3263 	.driver = {
3264 		.name	 = "cpsw",
3265 		.pm	 = &cpsw_pm_ops,
3266 		.of_match_table = cpsw_of_mtable,
3267 	},
3268 	.probe = cpsw_probe,
3269 	.remove = cpsw_remove,
3270 };
3271 
3272 module_platform_driver(cpsw_driver);
3273 
3274 MODULE_LICENSE("GPL");
3275 MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>");
3276 MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>");
3277 MODULE_DESCRIPTION("TI CPSW Ethernet driver");
3278