1 /* 2 * Texas Instruments Ethernet Switch Driver 3 * 4 * Copyright (C) 2012 Texas Instruments 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License as 8 * published by the Free Software Foundation version 2. 9 * 10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any 11 * kind, whether express or implied; without even the implied warranty 12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/io.h> 18 #include <linux/clk.h> 19 #include <linux/timer.h> 20 #include <linux/module.h> 21 #include <linux/platform_device.h> 22 #include <linux/irqreturn.h> 23 #include <linux/interrupt.h> 24 #include <linux/if_ether.h> 25 #include <linux/etherdevice.h> 26 #include <linux/netdevice.h> 27 #include <linux/net_tstamp.h> 28 #include <linux/phy.h> 29 #include <linux/workqueue.h> 30 #include <linux/delay.h> 31 #include <linux/pm_runtime.h> 32 #include <linux/gpio.h> 33 #include <linux/of.h> 34 #include <linux/of_mdio.h> 35 #include <linux/of_net.h> 36 #include <linux/of_device.h> 37 #include <linux/if_vlan.h> 38 39 #include <linux/pinctrl/consumer.h> 40 41 #include "cpsw.h" 42 #include "cpsw_ale.h" 43 #include "cpts.h" 44 #include "davinci_cpdma.h" 45 46 #define CPSW_DEBUG (NETIF_MSG_HW | NETIF_MSG_WOL | \ 47 NETIF_MSG_DRV | NETIF_MSG_LINK | \ 48 NETIF_MSG_IFUP | NETIF_MSG_INTR | \ 49 NETIF_MSG_PROBE | NETIF_MSG_TIMER | \ 50 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | \ 51 NETIF_MSG_TX_ERR | NETIF_MSG_TX_DONE | \ 52 NETIF_MSG_PKTDATA | NETIF_MSG_TX_QUEUED | \ 53 NETIF_MSG_RX_STATUS) 54 55 #define cpsw_info(priv, type, format, ...) \ 56 do { \ 57 if (netif_msg_##type(priv) && net_ratelimit()) \ 58 dev_info(priv->dev, format, ## __VA_ARGS__); \ 59 } while (0) 60 61 #define cpsw_err(priv, type, format, ...) \ 62 do { \ 63 if (netif_msg_##type(priv) && net_ratelimit()) \ 64 dev_err(priv->dev, format, ## __VA_ARGS__); \ 65 } while (0) 66 67 #define cpsw_dbg(priv, type, format, ...) \ 68 do { \ 69 if (netif_msg_##type(priv) && net_ratelimit()) \ 70 dev_dbg(priv->dev, format, ## __VA_ARGS__); \ 71 } while (0) 72 73 #define cpsw_notice(priv, type, format, ...) \ 74 do { \ 75 if (netif_msg_##type(priv) && net_ratelimit()) \ 76 dev_notice(priv->dev, format, ## __VA_ARGS__); \ 77 } while (0) 78 79 #define ALE_ALL_PORTS 0x7 80 81 #define CPSW_MAJOR_VERSION(reg) (reg >> 8 & 0x7) 82 #define CPSW_MINOR_VERSION(reg) (reg & 0xff) 83 #define CPSW_RTL_VERSION(reg) ((reg >> 11) & 0x1f) 84 85 #define CPSW_VERSION_1 0x19010a 86 #define CPSW_VERSION_2 0x19010c 87 #define CPSW_VERSION_3 0x19010f 88 #define CPSW_VERSION_4 0x190112 89 90 #define HOST_PORT_NUM 0 91 #define SLIVER_SIZE 0x40 92 93 #define CPSW1_HOST_PORT_OFFSET 0x028 94 #define CPSW1_SLAVE_OFFSET 0x050 95 #define CPSW1_SLAVE_SIZE 0x040 96 #define CPSW1_CPDMA_OFFSET 0x100 97 #define CPSW1_STATERAM_OFFSET 0x200 98 #define CPSW1_HW_STATS 0x400 99 #define CPSW1_CPTS_OFFSET 0x500 100 #define CPSW1_ALE_OFFSET 0x600 101 #define CPSW1_SLIVER_OFFSET 0x700 102 103 #define CPSW2_HOST_PORT_OFFSET 0x108 104 #define CPSW2_SLAVE_OFFSET 0x200 105 #define CPSW2_SLAVE_SIZE 0x100 106 #define CPSW2_CPDMA_OFFSET 0x800 107 #define CPSW2_HW_STATS 0x900 108 #define CPSW2_STATERAM_OFFSET 0xa00 109 #define CPSW2_CPTS_OFFSET 0xc00 110 #define CPSW2_ALE_OFFSET 0xd00 111 #define CPSW2_SLIVER_OFFSET 0xd80 112 #define CPSW2_BD_OFFSET 0x2000 113 114 #define CPDMA_RXTHRESH 0x0c0 115 #define CPDMA_RXFREE 0x0e0 116 #define CPDMA_TXHDP 0x00 117 #define CPDMA_RXHDP 0x20 118 #define CPDMA_TXCP 0x40 119 #define CPDMA_RXCP 0x60 120 121 #define CPSW_POLL_WEIGHT 64 122 #define CPSW_MIN_PACKET_SIZE 60 123 #define CPSW_MAX_PACKET_SIZE (1500 + 14 + 4 + 4) 124 125 #define RX_PRIORITY_MAPPING 0x76543210 126 #define TX_PRIORITY_MAPPING 0x33221100 127 #define CPDMA_TX_PRIORITY_MAP 0x01234567 128 129 #define CPSW_VLAN_AWARE BIT(1) 130 #define CPSW_ALE_VLAN_AWARE 1 131 132 #define CPSW_FIFO_NORMAL_MODE (0 << 16) 133 #define CPSW_FIFO_DUAL_MAC_MODE (1 << 16) 134 #define CPSW_FIFO_RATE_LIMIT_MODE (2 << 16) 135 136 #define CPSW_INTPACEEN (0x3f << 16) 137 #define CPSW_INTPRESCALE_MASK (0x7FF << 0) 138 #define CPSW_CMINTMAX_CNT 63 139 #define CPSW_CMINTMIN_CNT 2 140 #define CPSW_CMINTMAX_INTVL (1000 / CPSW_CMINTMIN_CNT) 141 #define CPSW_CMINTMIN_INTVL ((1000 / CPSW_CMINTMAX_CNT) + 1) 142 143 #define cpsw_slave_index(cpsw, priv) \ 144 ((cpsw->data.dual_emac) ? priv->emac_port : \ 145 cpsw->data.active_slave) 146 #define IRQ_NUM 2 147 #define CPSW_MAX_QUEUES 8 148 #define CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT 256 149 150 static int debug_level; 151 module_param(debug_level, int, 0); 152 MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)"); 153 154 static int ale_ageout = 10; 155 module_param(ale_ageout, int, 0); 156 MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)"); 157 158 static int rx_packet_max = CPSW_MAX_PACKET_SIZE; 159 module_param(rx_packet_max, int, 0); 160 MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)"); 161 162 static int descs_pool_size = CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT; 163 module_param(descs_pool_size, int, 0444); 164 MODULE_PARM_DESC(descs_pool_size, "Number of CPDMA CPPI descriptors in pool"); 165 166 struct cpsw_wr_regs { 167 u32 id_ver; 168 u32 soft_reset; 169 u32 control; 170 u32 int_control; 171 u32 rx_thresh_en; 172 u32 rx_en; 173 u32 tx_en; 174 u32 misc_en; 175 u32 mem_allign1[8]; 176 u32 rx_thresh_stat; 177 u32 rx_stat; 178 u32 tx_stat; 179 u32 misc_stat; 180 u32 mem_allign2[8]; 181 u32 rx_imax; 182 u32 tx_imax; 183 184 }; 185 186 struct cpsw_ss_regs { 187 u32 id_ver; 188 u32 control; 189 u32 soft_reset; 190 u32 stat_port_en; 191 u32 ptype; 192 u32 soft_idle; 193 u32 thru_rate; 194 u32 gap_thresh; 195 u32 tx_start_wds; 196 u32 flow_control; 197 u32 vlan_ltype; 198 u32 ts_ltype; 199 u32 dlr_ltype; 200 }; 201 202 /* CPSW_PORT_V1 */ 203 #define CPSW1_MAX_BLKS 0x00 /* Maximum FIFO Blocks */ 204 #define CPSW1_BLK_CNT 0x04 /* FIFO Block Usage Count (Read Only) */ 205 #define CPSW1_TX_IN_CTL 0x08 /* Transmit FIFO Control */ 206 #define CPSW1_PORT_VLAN 0x0c /* VLAN Register */ 207 #define CPSW1_TX_PRI_MAP 0x10 /* Tx Header Priority to Switch Pri Mapping */ 208 #define CPSW1_TS_CTL 0x14 /* Time Sync Control */ 209 #define CPSW1_TS_SEQ_LTYPE 0x18 /* Time Sync Sequence ID Offset and Msg Type */ 210 #define CPSW1_TS_VLAN 0x1c /* Time Sync VLAN1 and VLAN2 */ 211 212 /* CPSW_PORT_V2 */ 213 #define CPSW2_CONTROL 0x00 /* Control Register */ 214 #define CPSW2_MAX_BLKS 0x08 /* Maximum FIFO Blocks */ 215 #define CPSW2_BLK_CNT 0x0c /* FIFO Block Usage Count (Read Only) */ 216 #define CPSW2_TX_IN_CTL 0x10 /* Transmit FIFO Control */ 217 #define CPSW2_PORT_VLAN 0x14 /* VLAN Register */ 218 #define CPSW2_TX_PRI_MAP 0x18 /* Tx Header Priority to Switch Pri Mapping */ 219 #define CPSW2_TS_SEQ_MTYPE 0x1c /* Time Sync Sequence ID Offset and Msg Type */ 220 221 /* CPSW_PORT_V1 and V2 */ 222 #define SA_LO 0x20 /* CPGMAC_SL Source Address Low */ 223 #define SA_HI 0x24 /* CPGMAC_SL Source Address High */ 224 #define SEND_PERCENT 0x28 /* Transmit Queue Send Percentages */ 225 226 /* CPSW_PORT_V2 only */ 227 #define RX_DSCP_PRI_MAP0 0x30 /* Rx DSCP Priority to Rx Packet Mapping */ 228 #define RX_DSCP_PRI_MAP1 0x34 /* Rx DSCP Priority to Rx Packet Mapping */ 229 #define RX_DSCP_PRI_MAP2 0x38 /* Rx DSCP Priority to Rx Packet Mapping */ 230 #define RX_DSCP_PRI_MAP3 0x3c /* Rx DSCP Priority to Rx Packet Mapping */ 231 #define RX_DSCP_PRI_MAP4 0x40 /* Rx DSCP Priority to Rx Packet Mapping */ 232 #define RX_DSCP_PRI_MAP5 0x44 /* Rx DSCP Priority to Rx Packet Mapping */ 233 #define RX_DSCP_PRI_MAP6 0x48 /* Rx DSCP Priority to Rx Packet Mapping */ 234 #define RX_DSCP_PRI_MAP7 0x4c /* Rx DSCP Priority to Rx Packet Mapping */ 235 236 /* Bit definitions for the CPSW2_CONTROL register */ 237 #define PASS_PRI_TAGGED (1<<24) /* Pass Priority Tagged */ 238 #define VLAN_LTYPE2_EN (1<<21) /* VLAN LTYPE 2 enable */ 239 #define VLAN_LTYPE1_EN (1<<20) /* VLAN LTYPE 1 enable */ 240 #define DSCP_PRI_EN (1<<16) /* DSCP Priority Enable */ 241 #define TS_320 (1<<14) /* Time Sync Dest Port 320 enable */ 242 #define TS_319 (1<<13) /* Time Sync Dest Port 319 enable */ 243 #define TS_132 (1<<12) /* Time Sync Dest IP Addr 132 enable */ 244 #define TS_131 (1<<11) /* Time Sync Dest IP Addr 131 enable */ 245 #define TS_130 (1<<10) /* Time Sync Dest IP Addr 130 enable */ 246 #define TS_129 (1<<9) /* Time Sync Dest IP Addr 129 enable */ 247 #define TS_TTL_NONZERO (1<<8) /* Time Sync Time To Live Non-zero enable */ 248 #define TS_ANNEX_F_EN (1<<6) /* Time Sync Annex F enable */ 249 #define TS_ANNEX_D_EN (1<<4) /* Time Sync Annex D enable */ 250 #define TS_LTYPE2_EN (1<<3) /* Time Sync LTYPE 2 enable */ 251 #define TS_LTYPE1_EN (1<<2) /* Time Sync LTYPE 1 enable */ 252 #define TS_TX_EN (1<<1) /* Time Sync Transmit Enable */ 253 #define TS_RX_EN (1<<0) /* Time Sync Receive Enable */ 254 255 #define CTRL_V2_TS_BITS \ 256 (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\ 257 TS_TTL_NONZERO | TS_ANNEX_D_EN | TS_LTYPE1_EN) 258 259 #define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN) 260 #define CTRL_V2_TX_TS_BITS (CTRL_V2_TS_BITS | TS_TX_EN) 261 #define CTRL_V2_RX_TS_BITS (CTRL_V2_TS_BITS | TS_RX_EN) 262 263 264 #define CTRL_V3_TS_BITS \ 265 (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\ 266 TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\ 267 TS_LTYPE1_EN) 268 269 #define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN) 270 #define CTRL_V3_TX_TS_BITS (CTRL_V3_TS_BITS | TS_TX_EN) 271 #define CTRL_V3_RX_TS_BITS (CTRL_V3_TS_BITS | TS_RX_EN) 272 273 /* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */ 274 #define TS_SEQ_ID_OFFSET_SHIFT (16) /* Time Sync Sequence ID Offset */ 275 #define TS_SEQ_ID_OFFSET_MASK (0x3f) 276 #define TS_MSG_TYPE_EN_SHIFT (0) /* Time Sync Message Type Enable */ 277 #define TS_MSG_TYPE_EN_MASK (0xffff) 278 279 /* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */ 280 #define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3)) 281 282 /* Bit definitions for the CPSW1_TS_CTL register */ 283 #define CPSW_V1_TS_RX_EN BIT(0) 284 #define CPSW_V1_TS_TX_EN BIT(4) 285 #define CPSW_V1_MSG_TYPE_OFS 16 286 287 /* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */ 288 #define CPSW_V1_SEQ_ID_OFS_SHIFT 16 289 290 #define CPSW_MAX_BLKS_TX 15 291 #define CPSW_MAX_BLKS_TX_SHIFT 4 292 #define CPSW_MAX_BLKS_RX 5 293 294 struct cpsw_host_regs { 295 u32 max_blks; 296 u32 blk_cnt; 297 u32 tx_in_ctl; 298 u32 port_vlan; 299 u32 tx_pri_map; 300 u32 cpdma_tx_pri_map; 301 u32 cpdma_rx_chan_map; 302 }; 303 304 struct cpsw_sliver_regs { 305 u32 id_ver; 306 u32 mac_control; 307 u32 mac_status; 308 u32 soft_reset; 309 u32 rx_maxlen; 310 u32 __reserved_0; 311 u32 rx_pause; 312 u32 tx_pause; 313 u32 __reserved_1; 314 u32 rx_pri_map; 315 }; 316 317 struct cpsw_hw_stats { 318 u32 rxgoodframes; 319 u32 rxbroadcastframes; 320 u32 rxmulticastframes; 321 u32 rxpauseframes; 322 u32 rxcrcerrors; 323 u32 rxaligncodeerrors; 324 u32 rxoversizedframes; 325 u32 rxjabberframes; 326 u32 rxundersizedframes; 327 u32 rxfragments; 328 u32 __pad_0[2]; 329 u32 rxoctets; 330 u32 txgoodframes; 331 u32 txbroadcastframes; 332 u32 txmulticastframes; 333 u32 txpauseframes; 334 u32 txdeferredframes; 335 u32 txcollisionframes; 336 u32 txsinglecollframes; 337 u32 txmultcollframes; 338 u32 txexcessivecollisions; 339 u32 txlatecollisions; 340 u32 txunderrun; 341 u32 txcarriersenseerrors; 342 u32 txoctets; 343 u32 octetframes64; 344 u32 octetframes65t127; 345 u32 octetframes128t255; 346 u32 octetframes256t511; 347 u32 octetframes512t1023; 348 u32 octetframes1024tup; 349 u32 netoctets; 350 u32 rxsofoverruns; 351 u32 rxmofoverruns; 352 u32 rxdmaoverruns; 353 }; 354 355 struct cpsw_slave { 356 void __iomem *regs; 357 struct cpsw_sliver_regs __iomem *sliver; 358 int slave_num; 359 u32 mac_control; 360 struct cpsw_slave_data *data; 361 struct phy_device *phy; 362 struct net_device *ndev; 363 u32 port_vlan; 364 }; 365 366 static inline u32 slave_read(struct cpsw_slave *slave, u32 offset) 367 { 368 return __raw_readl(slave->regs + offset); 369 } 370 371 static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset) 372 { 373 __raw_writel(val, slave->regs + offset); 374 } 375 376 struct cpsw_vector { 377 struct cpdma_chan *ch; 378 int budget; 379 }; 380 381 struct cpsw_common { 382 struct device *dev; 383 struct cpsw_platform_data data; 384 struct napi_struct napi_rx; 385 struct napi_struct napi_tx; 386 struct cpsw_ss_regs __iomem *regs; 387 struct cpsw_wr_regs __iomem *wr_regs; 388 u8 __iomem *hw_stats; 389 struct cpsw_host_regs __iomem *host_port_regs; 390 u32 version; 391 u32 coal_intvl; 392 u32 bus_freq_mhz; 393 int rx_packet_max; 394 struct cpsw_slave *slaves; 395 struct cpdma_ctlr *dma; 396 struct cpsw_vector txv[CPSW_MAX_QUEUES]; 397 struct cpsw_vector rxv[CPSW_MAX_QUEUES]; 398 struct cpsw_ale *ale; 399 bool quirk_irq; 400 bool rx_irq_disabled; 401 bool tx_irq_disabled; 402 u32 irqs_table[IRQ_NUM]; 403 struct cpts *cpts; 404 int rx_ch_num, tx_ch_num; 405 int speed; 406 int usage_count; 407 }; 408 409 struct cpsw_priv { 410 struct net_device *ndev; 411 struct device *dev; 412 u32 msg_enable; 413 u8 mac_addr[ETH_ALEN]; 414 bool rx_pause; 415 bool tx_pause; 416 u32 emac_port; 417 struct cpsw_common *cpsw; 418 }; 419 420 struct cpsw_stats { 421 char stat_string[ETH_GSTRING_LEN]; 422 int type; 423 int sizeof_stat; 424 int stat_offset; 425 }; 426 427 enum { 428 CPSW_STATS, 429 CPDMA_RX_STATS, 430 CPDMA_TX_STATS, 431 }; 432 433 #define CPSW_STAT(m) CPSW_STATS, \ 434 sizeof(((struct cpsw_hw_stats *)0)->m), \ 435 offsetof(struct cpsw_hw_stats, m) 436 #define CPDMA_RX_STAT(m) CPDMA_RX_STATS, \ 437 sizeof(((struct cpdma_chan_stats *)0)->m), \ 438 offsetof(struct cpdma_chan_stats, m) 439 #define CPDMA_TX_STAT(m) CPDMA_TX_STATS, \ 440 sizeof(((struct cpdma_chan_stats *)0)->m), \ 441 offsetof(struct cpdma_chan_stats, m) 442 443 static const struct cpsw_stats cpsw_gstrings_stats[] = { 444 { "Good Rx Frames", CPSW_STAT(rxgoodframes) }, 445 { "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) }, 446 { "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) }, 447 { "Pause Rx Frames", CPSW_STAT(rxpauseframes) }, 448 { "Rx CRC Errors", CPSW_STAT(rxcrcerrors) }, 449 { "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) }, 450 { "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) }, 451 { "Rx Jabbers", CPSW_STAT(rxjabberframes) }, 452 { "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) }, 453 { "Rx Fragments", CPSW_STAT(rxfragments) }, 454 { "Rx Octets", CPSW_STAT(rxoctets) }, 455 { "Good Tx Frames", CPSW_STAT(txgoodframes) }, 456 { "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) }, 457 { "Multicast Tx Frames", CPSW_STAT(txmulticastframes) }, 458 { "Pause Tx Frames", CPSW_STAT(txpauseframes) }, 459 { "Deferred Tx Frames", CPSW_STAT(txdeferredframes) }, 460 { "Collisions", CPSW_STAT(txcollisionframes) }, 461 { "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) }, 462 { "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) }, 463 { "Excessive Collisions", CPSW_STAT(txexcessivecollisions) }, 464 { "Late Collisions", CPSW_STAT(txlatecollisions) }, 465 { "Tx Underrun", CPSW_STAT(txunderrun) }, 466 { "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) }, 467 { "Tx Octets", CPSW_STAT(txoctets) }, 468 { "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) }, 469 { "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) }, 470 { "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) }, 471 { "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) }, 472 { "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) }, 473 { "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) }, 474 { "Net Octets", CPSW_STAT(netoctets) }, 475 { "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) }, 476 { "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) }, 477 { "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) }, 478 }; 479 480 static const struct cpsw_stats cpsw_gstrings_ch_stats[] = { 481 { "head_enqueue", CPDMA_RX_STAT(head_enqueue) }, 482 { "tail_enqueue", CPDMA_RX_STAT(tail_enqueue) }, 483 { "pad_enqueue", CPDMA_RX_STAT(pad_enqueue) }, 484 { "misqueued", CPDMA_RX_STAT(misqueued) }, 485 { "desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) }, 486 { "pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) }, 487 { "runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) }, 488 { "runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) }, 489 { "empty_dequeue", CPDMA_RX_STAT(empty_dequeue) }, 490 { "busy_dequeue", CPDMA_RX_STAT(busy_dequeue) }, 491 { "good_dequeue", CPDMA_RX_STAT(good_dequeue) }, 492 { "requeue", CPDMA_RX_STAT(requeue) }, 493 { "teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) }, 494 }; 495 496 #define CPSW_STATS_COMMON_LEN ARRAY_SIZE(cpsw_gstrings_stats) 497 #define CPSW_STATS_CH_LEN ARRAY_SIZE(cpsw_gstrings_ch_stats) 498 499 #define ndev_to_cpsw(ndev) (((struct cpsw_priv *)netdev_priv(ndev))->cpsw) 500 #define napi_to_cpsw(napi) container_of(napi, struct cpsw_common, napi) 501 #define for_each_slave(priv, func, arg...) \ 502 do { \ 503 struct cpsw_slave *slave; \ 504 struct cpsw_common *cpsw = (priv)->cpsw; \ 505 int n; \ 506 if (cpsw->data.dual_emac) \ 507 (func)((cpsw)->slaves + priv->emac_port, ##arg);\ 508 else \ 509 for (n = cpsw->data.slaves, \ 510 slave = cpsw->slaves; \ 511 n; n--) \ 512 (func)(slave++, ##arg); \ 513 } while (0) 514 515 #define cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb) \ 516 do { \ 517 if (!cpsw->data.dual_emac) \ 518 break; \ 519 if (CPDMA_RX_SOURCE_PORT(status) == 1) { \ 520 ndev = cpsw->slaves[0].ndev; \ 521 skb->dev = ndev; \ 522 } else if (CPDMA_RX_SOURCE_PORT(status) == 2) { \ 523 ndev = cpsw->slaves[1].ndev; \ 524 skb->dev = ndev; \ 525 } \ 526 } while (0) 527 #define cpsw_add_mcast(cpsw, priv, addr) \ 528 do { \ 529 if (cpsw->data.dual_emac) { \ 530 struct cpsw_slave *slave = cpsw->slaves + \ 531 priv->emac_port; \ 532 int slave_port = cpsw_get_slave_port( \ 533 slave->slave_num); \ 534 cpsw_ale_add_mcast(cpsw->ale, addr, \ 535 1 << slave_port | ALE_PORT_HOST, \ 536 ALE_VLAN, slave->port_vlan, 0); \ 537 } else { \ 538 cpsw_ale_add_mcast(cpsw->ale, addr, \ 539 ALE_ALL_PORTS, \ 540 0, 0, 0); \ 541 } \ 542 } while (0) 543 544 static inline int cpsw_get_slave_port(u32 slave_num) 545 { 546 return slave_num + 1; 547 } 548 549 static void cpsw_set_promiscious(struct net_device *ndev, bool enable) 550 { 551 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 552 struct cpsw_ale *ale = cpsw->ale; 553 int i; 554 555 if (cpsw->data.dual_emac) { 556 bool flag = false; 557 558 /* Enabling promiscuous mode for one interface will be 559 * common for both the interface as the interface shares 560 * the same hardware resource. 561 */ 562 for (i = 0; i < cpsw->data.slaves; i++) 563 if (cpsw->slaves[i].ndev->flags & IFF_PROMISC) 564 flag = true; 565 566 if (!enable && flag) { 567 enable = true; 568 dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n"); 569 } 570 571 if (enable) { 572 /* Enable Bypass */ 573 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1); 574 575 dev_dbg(&ndev->dev, "promiscuity enabled\n"); 576 } else { 577 /* Disable Bypass */ 578 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0); 579 dev_dbg(&ndev->dev, "promiscuity disabled\n"); 580 } 581 } else { 582 if (enable) { 583 unsigned long timeout = jiffies + HZ; 584 585 /* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */ 586 for (i = 0; i <= cpsw->data.slaves; i++) { 587 cpsw_ale_control_set(ale, i, 588 ALE_PORT_NOLEARN, 1); 589 cpsw_ale_control_set(ale, i, 590 ALE_PORT_NO_SA_UPDATE, 1); 591 } 592 593 /* Clear All Untouched entries */ 594 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1); 595 do { 596 cpu_relax(); 597 if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT)) 598 break; 599 } while (time_after(timeout, jiffies)); 600 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1); 601 602 /* Clear all mcast from ALE */ 603 cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS, -1); 604 605 /* Flood All Unicast Packets to Host port */ 606 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1); 607 dev_dbg(&ndev->dev, "promiscuity enabled\n"); 608 } else { 609 /* Don't Flood All Unicast Packets to Host port */ 610 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0); 611 612 /* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */ 613 for (i = 0; i <= cpsw->data.slaves; i++) { 614 cpsw_ale_control_set(ale, i, 615 ALE_PORT_NOLEARN, 0); 616 cpsw_ale_control_set(ale, i, 617 ALE_PORT_NO_SA_UPDATE, 0); 618 } 619 dev_dbg(&ndev->dev, "promiscuity disabled\n"); 620 } 621 } 622 } 623 624 static void cpsw_ndo_set_rx_mode(struct net_device *ndev) 625 { 626 struct cpsw_priv *priv = netdev_priv(ndev); 627 struct cpsw_common *cpsw = priv->cpsw; 628 int vid; 629 630 if (cpsw->data.dual_emac) 631 vid = cpsw->slaves[priv->emac_port].port_vlan; 632 else 633 vid = cpsw->data.default_vlan; 634 635 if (ndev->flags & IFF_PROMISC) { 636 /* Enable promiscuous mode */ 637 cpsw_set_promiscious(ndev, true); 638 cpsw_ale_set_allmulti(cpsw->ale, IFF_ALLMULTI); 639 return; 640 } else { 641 /* Disable promiscuous mode */ 642 cpsw_set_promiscious(ndev, false); 643 } 644 645 /* Restore allmulti on vlans if necessary */ 646 cpsw_ale_set_allmulti(cpsw->ale, priv->ndev->flags & IFF_ALLMULTI); 647 648 /* Clear all mcast from ALE */ 649 cpsw_ale_flush_multicast(cpsw->ale, ALE_ALL_PORTS, vid); 650 651 if (!netdev_mc_empty(ndev)) { 652 struct netdev_hw_addr *ha; 653 654 /* program multicast address list into ALE register */ 655 netdev_for_each_mc_addr(ha, ndev) { 656 cpsw_add_mcast(cpsw, priv, (u8 *)ha->addr); 657 } 658 } 659 } 660 661 static void cpsw_intr_enable(struct cpsw_common *cpsw) 662 { 663 __raw_writel(0xFF, &cpsw->wr_regs->tx_en); 664 __raw_writel(0xFF, &cpsw->wr_regs->rx_en); 665 666 cpdma_ctlr_int_ctrl(cpsw->dma, true); 667 return; 668 } 669 670 static void cpsw_intr_disable(struct cpsw_common *cpsw) 671 { 672 __raw_writel(0, &cpsw->wr_regs->tx_en); 673 __raw_writel(0, &cpsw->wr_regs->rx_en); 674 675 cpdma_ctlr_int_ctrl(cpsw->dma, false); 676 return; 677 } 678 679 static void cpsw_tx_handler(void *token, int len, int status) 680 { 681 struct netdev_queue *txq; 682 struct sk_buff *skb = token; 683 struct net_device *ndev = skb->dev; 684 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 685 686 /* Check whether the queue is stopped due to stalled tx dma, if the 687 * queue is stopped then start the queue as we have free desc for tx 688 */ 689 txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb)); 690 if (unlikely(netif_tx_queue_stopped(txq))) 691 netif_tx_wake_queue(txq); 692 693 cpts_tx_timestamp(cpsw->cpts, skb); 694 ndev->stats.tx_packets++; 695 ndev->stats.tx_bytes += len; 696 dev_kfree_skb_any(skb); 697 } 698 699 static void cpsw_rx_handler(void *token, int len, int status) 700 { 701 struct cpdma_chan *ch; 702 struct sk_buff *skb = token; 703 struct sk_buff *new_skb; 704 struct net_device *ndev = skb->dev; 705 int ret = 0; 706 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 707 708 cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb); 709 710 if (unlikely(status < 0) || unlikely(!netif_running(ndev))) { 711 /* In dual emac mode check for all interfaces */ 712 if (cpsw->data.dual_emac && cpsw->usage_count && 713 (status >= 0)) { 714 /* The packet received is for the interface which 715 * is already down and the other interface is up 716 * and running, instead of freeing which results 717 * in reducing of the number of rx descriptor in 718 * DMA engine, requeue skb back to cpdma. 719 */ 720 new_skb = skb; 721 goto requeue; 722 } 723 724 /* the interface is going down, skbs are purged */ 725 dev_kfree_skb_any(skb); 726 return; 727 } 728 729 new_skb = netdev_alloc_skb_ip_align(ndev, cpsw->rx_packet_max); 730 if (new_skb) { 731 skb_copy_queue_mapping(new_skb, skb); 732 skb_put(skb, len); 733 cpts_rx_timestamp(cpsw->cpts, skb); 734 skb->protocol = eth_type_trans(skb, ndev); 735 netif_receive_skb(skb); 736 ndev->stats.rx_bytes += len; 737 ndev->stats.rx_packets++; 738 kmemleak_not_leak(new_skb); 739 } else { 740 ndev->stats.rx_dropped++; 741 new_skb = skb; 742 } 743 744 requeue: 745 if (netif_dormant(ndev)) { 746 dev_kfree_skb_any(new_skb); 747 return; 748 } 749 750 ch = cpsw->rxv[skb_get_queue_mapping(new_skb)].ch; 751 ret = cpdma_chan_submit(ch, new_skb, new_skb->data, 752 skb_tailroom(new_skb), 0); 753 if (WARN_ON(ret < 0)) 754 dev_kfree_skb_any(new_skb); 755 } 756 757 static void cpsw_split_res(struct net_device *ndev) 758 { 759 struct cpsw_priv *priv = netdev_priv(ndev); 760 u32 consumed_rate = 0, bigest_rate = 0; 761 struct cpsw_common *cpsw = priv->cpsw; 762 struct cpsw_vector *txv = cpsw->txv; 763 int i, ch_weight, rlim_ch_num = 0; 764 int budget, bigest_rate_ch = 0; 765 u32 ch_rate, max_rate; 766 int ch_budget = 0; 767 768 for (i = 0; i < cpsw->tx_ch_num; i++) { 769 ch_rate = cpdma_chan_get_rate(txv[i].ch); 770 if (!ch_rate) 771 continue; 772 773 rlim_ch_num++; 774 consumed_rate += ch_rate; 775 } 776 777 if (cpsw->tx_ch_num == rlim_ch_num) { 778 max_rate = consumed_rate; 779 } else if (!rlim_ch_num) { 780 ch_budget = CPSW_POLL_WEIGHT / cpsw->tx_ch_num; 781 bigest_rate = 0; 782 max_rate = consumed_rate; 783 } else { 784 max_rate = cpsw->speed * 1000; 785 786 /* if max_rate is less then expected due to reduced link speed, 787 * split proportionally according next potential max speed 788 */ 789 if (max_rate < consumed_rate) 790 max_rate *= 10; 791 792 if (max_rate < consumed_rate) 793 max_rate *= 10; 794 795 ch_budget = (consumed_rate * CPSW_POLL_WEIGHT) / max_rate; 796 ch_budget = (CPSW_POLL_WEIGHT - ch_budget) / 797 (cpsw->tx_ch_num - rlim_ch_num); 798 bigest_rate = (max_rate - consumed_rate) / 799 (cpsw->tx_ch_num - rlim_ch_num); 800 } 801 802 /* split tx weight/budget */ 803 budget = CPSW_POLL_WEIGHT; 804 for (i = 0; i < cpsw->tx_ch_num; i++) { 805 ch_rate = cpdma_chan_get_rate(txv[i].ch); 806 if (ch_rate) { 807 txv[i].budget = (ch_rate * CPSW_POLL_WEIGHT) / max_rate; 808 if (!txv[i].budget) 809 txv[i].budget++; 810 if (ch_rate > bigest_rate) { 811 bigest_rate_ch = i; 812 bigest_rate = ch_rate; 813 } 814 815 ch_weight = (ch_rate * 100) / max_rate; 816 if (!ch_weight) 817 ch_weight++; 818 cpdma_chan_set_weight(cpsw->txv[i].ch, ch_weight); 819 } else { 820 txv[i].budget = ch_budget; 821 if (!bigest_rate_ch) 822 bigest_rate_ch = i; 823 cpdma_chan_set_weight(cpsw->txv[i].ch, 0); 824 } 825 826 budget -= txv[i].budget; 827 } 828 829 if (budget) 830 txv[bigest_rate_ch].budget += budget; 831 832 /* split rx budget */ 833 budget = CPSW_POLL_WEIGHT; 834 ch_budget = budget / cpsw->rx_ch_num; 835 for (i = 0; i < cpsw->rx_ch_num; i++) { 836 cpsw->rxv[i].budget = ch_budget; 837 budget -= ch_budget; 838 } 839 840 if (budget) 841 cpsw->rxv[0].budget += budget; 842 } 843 844 static irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id) 845 { 846 struct cpsw_common *cpsw = dev_id; 847 848 writel(0, &cpsw->wr_regs->tx_en); 849 cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_TX); 850 851 if (cpsw->quirk_irq) { 852 disable_irq_nosync(cpsw->irqs_table[1]); 853 cpsw->tx_irq_disabled = true; 854 } 855 856 napi_schedule(&cpsw->napi_tx); 857 return IRQ_HANDLED; 858 } 859 860 static irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id) 861 { 862 struct cpsw_common *cpsw = dev_id; 863 864 cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_RX); 865 writel(0, &cpsw->wr_regs->rx_en); 866 867 if (cpsw->quirk_irq) { 868 disable_irq_nosync(cpsw->irqs_table[0]); 869 cpsw->rx_irq_disabled = true; 870 } 871 872 napi_schedule(&cpsw->napi_rx); 873 return IRQ_HANDLED; 874 } 875 876 static int cpsw_tx_poll(struct napi_struct *napi_tx, int budget) 877 { 878 u32 ch_map; 879 int num_tx, cur_budget, ch; 880 struct cpsw_common *cpsw = napi_to_cpsw(napi_tx); 881 struct cpsw_vector *txv; 882 883 /* process every unprocessed channel */ 884 ch_map = cpdma_ctrl_txchs_state(cpsw->dma); 885 for (ch = 0, num_tx = 0; ch_map; ch_map >>= 1, ch++) { 886 if (!(ch_map & 0x01)) 887 continue; 888 889 txv = &cpsw->txv[ch]; 890 if (unlikely(txv->budget > budget - num_tx)) 891 cur_budget = budget - num_tx; 892 else 893 cur_budget = txv->budget; 894 895 num_tx += cpdma_chan_process(txv->ch, cur_budget); 896 if (num_tx >= budget) 897 break; 898 } 899 900 if (num_tx < budget) { 901 napi_complete(napi_tx); 902 writel(0xff, &cpsw->wr_regs->tx_en); 903 if (cpsw->quirk_irq && cpsw->tx_irq_disabled) { 904 cpsw->tx_irq_disabled = false; 905 enable_irq(cpsw->irqs_table[1]); 906 } 907 } 908 909 return num_tx; 910 } 911 912 static int cpsw_rx_poll(struct napi_struct *napi_rx, int budget) 913 { 914 u32 ch_map; 915 int num_rx, cur_budget, ch; 916 struct cpsw_common *cpsw = napi_to_cpsw(napi_rx); 917 struct cpsw_vector *rxv; 918 919 /* process every unprocessed channel */ 920 ch_map = cpdma_ctrl_rxchs_state(cpsw->dma); 921 for (ch = 0, num_rx = 0; ch_map; ch_map >>= 1, ch++) { 922 if (!(ch_map & 0x01)) 923 continue; 924 925 rxv = &cpsw->rxv[ch]; 926 if (unlikely(rxv->budget > budget - num_rx)) 927 cur_budget = budget - num_rx; 928 else 929 cur_budget = rxv->budget; 930 931 num_rx += cpdma_chan_process(rxv->ch, cur_budget); 932 if (num_rx >= budget) 933 break; 934 } 935 936 if (num_rx < budget) { 937 napi_complete_done(napi_rx, num_rx); 938 writel(0xff, &cpsw->wr_regs->rx_en); 939 if (cpsw->quirk_irq && cpsw->rx_irq_disabled) { 940 cpsw->rx_irq_disabled = false; 941 enable_irq(cpsw->irqs_table[0]); 942 } 943 } 944 945 return num_rx; 946 } 947 948 static inline void soft_reset(const char *module, void __iomem *reg) 949 { 950 unsigned long timeout = jiffies + HZ; 951 952 __raw_writel(1, reg); 953 do { 954 cpu_relax(); 955 } while ((__raw_readl(reg) & 1) && time_after(timeout, jiffies)); 956 957 WARN(__raw_readl(reg) & 1, "failed to soft-reset %s\n", module); 958 } 959 960 #define mac_hi(mac) (((mac)[0] << 0) | ((mac)[1] << 8) | \ 961 ((mac)[2] << 16) | ((mac)[3] << 24)) 962 #define mac_lo(mac) (((mac)[4] << 0) | ((mac)[5] << 8)) 963 964 static void cpsw_set_slave_mac(struct cpsw_slave *slave, 965 struct cpsw_priv *priv) 966 { 967 slave_write(slave, mac_hi(priv->mac_addr), SA_HI); 968 slave_write(slave, mac_lo(priv->mac_addr), SA_LO); 969 } 970 971 static void _cpsw_adjust_link(struct cpsw_slave *slave, 972 struct cpsw_priv *priv, bool *link) 973 { 974 struct phy_device *phy = slave->phy; 975 u32 mac_control = 0; 976 u32 slave_port; 977 struct cpsw_common *cpsw = priv->cpsw; 978 979 if (!phy) 980 return; 981 982 slave_port = cpsw_get_slave_port(slave->slave_num); 983 984 if (phy->link) { 985 mac_control = cpsw->data.mac_control; 986 987 /* enable forwarding */ 988 cpsw_ale_control_set(cpsw->ale, slave_port, 989 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD); 990 991 if (phy->speed == 1000) 992 mac_control |= BIT(7); /* GIGABITEN */ 993 if (phy->duplex) 994 mac_control |= BIT(0); /* FULLDUPLEXEN */ 995 996 /* set speed_in input in case RMII mode is used in 100Mbps */ 997 if (phy->speed == 100) 998 mac_control |= BIT(15); 999 else if (phy->speed == 10) 1000 mac_control |= BIT(18); /* In Band mode */ 1001 1002 if (priv->rx_pause) 1003 mac_control |= BIT(3); 1004 1005 if (priv->tx_pause) 1006 mac_control |= BIT(4); 1007 1008 *link = true; 1009 } else { 1010 mac_control = 0; 1011 /* disable forwarding */ 1012 cpsw_ale_control_set(cpsw->ale, slave_port, 1013 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE); 1014 } 1015 1016 if (mac_control != slave->mac_control) { 1017 phy_print_status(phy); 1018 __raw_writel(mac_control, &slave->sliver->mac_control); 1019 } 1020 1021 slave->mac_control = mac_control; 1022 } 1023 1024 static int cpsw_get_common_speed(struct cpsw_common *cpsw) 1025 { 1026 int i, speed; 1027 1028 for (i = 0, speed = 0; i < cpsw->data.slaves; i++) 1029 if (cpsw->slaves[i].phy && cpsw->slaves[i].phy->link) 1030 speed += cpsw->slaves[i].phy->speed; 1031 1032 return speed; 1033 } 1034 1035 static int cpsw_need_resplit(struct cpsw_common *cpsw) 1036 { 1037 int i, rlim_ch_num; 1038 int speed, ch_rate; 1039 1040 /* re-split resources only in case speed was changed */ 1041 speed = cpsw_get_common_speed(cpsw); 1042 if (speed == cpsw->speed || !speed) 1043 return 0; 1044 1045 cpsw->speed = speed; 1046 1047 for (i = 0, rlim_ch_num = 0; i < cpsw->tx_ch_num; i++) { 1048 ch_rate = cpdma_chan_get_rate(cpsw->txv[i].ch); 1049 if (!ch_rate) 1050 break; 1051 1052 rlim_ch_num++; 1053 } 1054 1055 /* cases not dependent on speed */ 1056 if (!rlim_ch_num || rlim_ch_num == cpsw->tx_ch_num) 1057 return 0; 1058 1059 return 1; 1060 } 1061 1062 static void cpsw_adjust_link(struct net_device *ndev) 1063 { 1064 struct cpsw_priv *priv = netdev_priv(ndev); 1065 struct cpsw_common *cpsw = priv->cpsw; 1066 bool link = false; 1067 1068 for_each_slave(priv, _cpsw_adjust_link, priv, &link); 1069 1070 if (link) { 1071 if (cpsw_need_resplit(cpsw)) 1072 cpsw_split_res(ndev); 1073 1074 netif_carrier_on(ndev); 1075 if (netif_running(ndev)) 1076 netif_tx_wake_all_queues(ndev); 1077 } else { 1078 netif_carrier_off(ndev); 1079 netif_tx_stop_all_queues(ndev); 1080 } 1081 } 1082 1083 static int cpsw_get_coalesce(struct net_device *ndev, 1084 struct ethtool_coalesce *coal) 1085 { 1086 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1087 1088 coal->rx_coalesce_usecs = cpsw->coal_intvl; 1089 return 0; 1090 } 1091 1092 static int cpsw_set_coalesce(struct net_device *ndev, 1093 struct ethtool_coalesce *coal) 1094 { 1095 struct cpsw_priv *priv = netdev_priv(ndev); 1096 u32 int_ctrl; 1097 u32 num_interrupts = 0; 1098 u32 prescale = 0; 1099 u32 addnl_dvdr = 1; 1100 u32 coal_intvl = 0; 1101 struct cpsw_common *cpsw = priv->cpsw; 1102 1103 coal_intvl = coal->rx_coalesce_usecs; 1104 1105 int_ctrl = readl(&cpsw->wr_regs->int_control); 1106 prescale = cpsw->bus_freq_mhz * 4; 1107 1108 if (!coal->rx_coalesce_usecs) { 1109 int_ctrl &= ~(CPSW_INTPRESCALE_MASK | CPSW_INTPACEEN); 1110 goto update_return; 1111 } 1112 1113 if (coal_intvl < CPSW_CMINTMIN_INTVL) 1114 coal_intvl = CPSW_CMINTMIN_INTVL; 1115 1116 if (coal_intvl > CPSW_CMINTMAX_INTVL) { 1117 /* Interrupt pacer works with 4us Pulse, we can 1118 * throttle further by dilating the 4us pulse. 1119 */ 1120 addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale; 1121 1122 if (addnl_dvdr > 1) { 1123 prescale *= addnl_dvdr; 1124 if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr)) 1125 coal_intvl = (CPSW_CMINTMAX_INTVL 1126 * addnl_dvdr); 1127 } else { 1128 addnl_dvdr = 1; 1129 coal_intvl = CPSW_CMINTMAX_INTVL; 1130 } 1131 } 1132 1133 num_interrupts = (1000 * addnl_dvdr) / coal_intvl; 1134 writel(num_interrupts, &cpsw->wr_regs->rx_imax); 1135 writel(num_interrupts, &cpsw->wr_regs->tx_imax); 1136 1137 int_ctrl |= CPSW_INTPACEEN; 1138 int_ctrl &= (~CPSW_INTPRESCALE_MASK); 1139 int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK); 1140 1141 update_return: 1142 writel(int_ctrl, &cpsw->wr_regs->int_control); 1143 1144 cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl); 1145 cpsw->coal_intvl = coal_intvl; 1146 1147 return 0; 1148 } 1149 1150 static int cpsw_get_sset_count(struct net_device *ndev, int sset) 1151 { 1152 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1153 1154 switch (sset) { 1155 case ETH_SS_STATS: 1156 return (CPSW_STATS_COMMON_LEN + 1157 (cpsw->rx_ch_num + cpsw->tx_ch_num) * 1158 CPSW_STATS_CH_LEN); 1159 default: 1160 return -EOPNOTSUPP; 1161 } 1162 } 1163 1164 static void cpsw_add_ch_strings(u8 **p, int ch_num, int rx_dir) 1165 { 1166 int ch_stats_len; 1167 int line; 1168 int i; 1169 1170 ch_stats_len = CPSW_STATS_CH_LEN * ch_num; 1171 for (i = 0; i < ch_stats_len; i++) { 1172 line = i % CPSW_STATS_CH_LEN; 1173 snprintf(*p, ETH_GSTRING_LEN, 1174 "%s DMA chan %d: %s", rx_dir ? "Rx" : "Tx", 1175 i / CPSW_STATS_CH_LEN, 1176 cpsw_gstrings_ch_stats[line].stat_string); 1177 *p += ETH_GSTRING_LEN; 1178 } 1179 } 1180 1181 static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data) 1182 { 1183 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1184 u8 *p = data; 1185 int i; 1186 1187 switch (stringset) { 1188 case ETH_SS_STATS: 1189 for (i = 0; i < CPSW_STATS_COMMON_LEN; i++) { 1190 memcpy(p, cpsw_gstrings_stats[i].stat_string, 1191 ETH_GSTRING_LEN); 1192 p += ETH_GSTRING_LEN; 1193 } 1194 1195 cpsw_add_ch_strings(&p, cpsw->rx_ch_num, 1); 1196 cpsw_add_ch_strings(&p, cpsw->tx_ch_num, 0); 1197 break; 1198 } 1199 } 1200 1201 static void cpsw_get_ethtool_stats(struct net_device *ndev, 1202 struct ethtool_stats *stats, u64 *data) 1203 { 1204 u8 *p; 1205 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1206 struct cpdma_chan_stats ch_stats; 1207 int i, l, ch; 1208 1209 /* Collect Davinci CPDMA stats for Rx and Tx Channel */ 1210 for (l = 0; l < CPSW_STATS_COMMON_LEN; l++) 1211 data[l] = readl(cpsw->hw_stats + 1212 cpsw_gstrings_stats[l].stat_offset); 1213 1214 for (ch = 0; ch < cpsw->rx_ch_num; ch++) { 1215 cpdma_chan_get_stats(cpsw->rxv[ch].ch, &ch_stats); 1216 for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) { 1217 p = (u8 *)&ch_stats + 1218 cpsw_gstrings_ch_stats[i].stat_offset; 1219 data[l] = *(u32 *)p; 1220 } 1221 } 1222 1223 for (ch = 0; ch < cpsw->tx_ch_num; ch++) { 1224 cpdma_chan_get_stats(cpsw->txv[ch].ch, &ch_stats); 1225 for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) { 1226 p = (u8 *)&ch_stats + 1227 cpsw_gstrings_ch_stats[i].stat_offset; 1228 data[l] = *(u32 *)p; 1229 } 1230 } 1231 } 1232 1233 static inline int cpsw_tx_packet_submit(struct cpsw_priv *priv, 1234 struct sk_buff *skb, 1235 struct cpdma_chan *txch) 1236 { 1237 struct cpsw_common *cpsw = priv->cpsw; 1238 1239 skb_tx_timestamp(skb); 1240 return cpdma_chan_submit(txch, skb, skb->data, skb->len, 1241 priv->emac_port + cpsw->data.dual_emac); 1242 } 1243 1244 static inline void cpsw_add_dual_emac_def_ale_entries( 1245 struct cpsw_priv *priv, struct cpsw_slave *slave, 1246 u32 slave_port) 1247 { 1248 struct cpsw_common *cpsw = priv->cpsw; 1249 u32 port_mask = 1 << slave_port | ALE_PORT_HOST; 1250 1251 if (cpsw->version == CPSW_VERSION_1) 1252 slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN); 1253 else 1254 slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN); 1255 cpsw_ale_add_vlan(cpsw->ale, slave->port_vlan, port_mask, 1256 port_mask, port_mask, 0); 1257 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, 1258 port_mask, ALE_VLAN, slave->port_vlan, 0); 1259 cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, 1260 HOST_PORT_NUM, ALE_VLAN | 1261 ALE_SECURE, slave->port_vlan); 1262 } 1263 1264 static void soft_reset_slave(struct cpsw_slave *slave) 1265 { 1266 char name[32]; 1267 1268 snprintf(name, sizeof(name), "slave-%d", slave->slave_num); 1269 soft_reset(name, &slave->sliver->soft_reset); 1270 } 1271 1272 static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv) 1273 { 1274 u32 slave_port; 1275 struct phy_device *phy; 1276 struct cpsw_common *cpsw = priv->cpsw; 1277 1278 soft_reset_slave(slave); 1279 1280 /* setup priority mapping */ 1281 __raw_writel(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map); 1282 1283 switch (cpsw->version) { 1284 case CPSW_VERSION_1: 1285 slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP); 1286 /* Increase RX FIFO size to 5 for supporting fullduplex 1287 * flow control mode 1288 */ 1289 slave_write(slave, 1290 (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) | 1291 CPSW_MAX_BLKS_RX, CPSW1_MAX_BLKS); 1292 break; 1293 case CPSW_VERSION_2: 1294 case CPSW_VERSION_3: 1295 case CPSW_VERSION_4: 1296 slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP); 1297 /* Increase RX FIFO size to 5 for supporting fullduplex 1298 * flow control mode 1299 */ 1300 slave_write(slave, 1301 (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) | 1302 CPSW_MAX_BLKS_RX, CPSW2_MAX_BLKS); 1303 break; 1304 } 1305 1306 /* setup max packet size, and mac address */ 1307 __raw_writel(cpsw->rx_packet_max, &slave->sliver->rx_maxlen); 1308 cpsw_set_slave_mac(slave, priv); 1309 1310 slave->mac_control = 0; /* no link yet */ 1311 1312 slave_port = cpsw_get_slave_port(slave->slave_num); 1313 1314 if (cpsw->data.dual_emac) 1315 cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port); 1316 else 1317 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, 1318 1 << slave_port, 0, 0, ALE_MCAST_FWD_2); 1319 1320 if (slave->data->phy_node) { 1321 phy = of_phy_connect(priv->ndev, slave->data->phy_node, 1322 &cpsw_adjust_link, 0, slave->data->phy_if); 1323 if (!phy) { 1324 dev_err(priv->dev, "phy \"%pOF\" not found on slave %d\n", 1325 slave->data->phy_node, 1326 slave->slave_num); 1327 return; 1328 } 1329 } else { 1330 phy = phy_connect(priv->ndev, slave->data->phy_id, 1331 &cpsw_adjust_link, slave->data->phy_if); 1332 if (IS_ERR(phy)) { 1333 dev_err(priv->dev, 1334 "phy \"%s\" not found on slave %d, err %ld\n", 1335 slave->data->phy_id, slave->slave_num, 1336 PTR_ERR(phy)); 1337 return; 1338 } 1339 } 1340 1341 slave->phy = phy; 1342 1343 phy_attached_info(slave->phy); 1344 1345 phy_start(slave->phy); 1346 1347 /* Configure GMII_SEL register */ 1348 cpsw_phy_sel(cpsw->dev, slave->phy->interface, slave->slave_num); 1349 } 1350 1351 static inline void cpsw_add_default_vlan(struct cpsw_priv *priv) 1352 { 1353 struct cpsw_common *cpsw = priv->cpsw; 1354 const int vlan = cpsw->data.default_vlan; 1355 u32 reg; 1356 int i; 1357 int unreg_mcast_mask; 1358 1359 reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN : 1360 CPSW2_PORT_VLAN; 1361 1362 writel(vlan, &cpsw->host_port_regs->port_vlan); 1363 1364 for (i = 0; i < cpsw->data.slaves; i++) 1365 slave_write(cpsw->slaves + i, vlan, reg); 1366 1367 if (priv->ndev->flags & IFF_ALLMULTI) 1368 unreg_mcast_mask = ALE_ALL_PORTS; 1369 else 1370 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2; 1371 1372 cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS, 1373 ALE_ALL_PORTS, ALE_ALL_PORTS, 1374 unreg_mcast_mask); 1375 } 1376 1377 static void cpsw_init_host_port(struct cpsw_priv *priv) 1378 { 1379 u32 fifo_mode; 1380 u32 control_reg; 1381 struct cpsw_common *cpsw = priv->cpsw; 1382 1383 /* soft reset the controller and initialize ale */ 1384 soft_reset("cpsw", &cpsw->regs->soft_reset); 1385 cpsw_ale_start(cpsw->ale); 1386 1387 /* switch to vlan unaware mode */ 1388 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_VLAN_AWARE, 1389 CPSW_ALE_VLAN_AWARE); 1390 control_reg = readl(&cpsw->regs->control); 1391 control_reg |= CPSW_VLAN_AWARE; 1392 writel(control_reg, &cpsw->regs->control); 1393 fifo_mode = (cpsw->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE : 1394 CPSW_FIFO_NORMAL_MODE; 1395 writel(fifo_mode, &cpsw->host_port_regs->tx_in_ctl); 1396 1397 /* setup host port priority mapping */ 1398 __raw_writel(CPDMA_TX_PRIORITY_MAP, 1399 &cpsw->host_port_regs->cpdma_tx_pri_map); 1400 __raw_writel(0, &cpsw->host_port_regs->cpdma_rx_chan_map); 1401 1402 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, 1403 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD); 1404 1405 if (!cpsw->data.dual_emac) { 1406 cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM, 1407 0, 0); 1408 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, 1409 ALE_PORT_HOST, 0, 0, ALE_MCAST_FWD_2); 1410 } 1411 } 1412 1413 static int cpsw_fill_rx_channels(struct cpsw_priv *priv) 1414 { 1415 struct cpsw_common *cpsw = priv->cpsw; 1416 struct sk_buff *skb; 1417 int ch_buf_num; 1418 int ch, i, ret; 1419 1420 for (ch = 0; ch < cpsw->rx_ch_num; ch++) { 1421 ch_buf_num = cpdma_chan_get_rx_buf_num(cpsw->rxv[ch].ch); 1422 for (i = 0; i < ch_buf_num; i++) { 1423 skb = __netdev_alloc_skb_ip_align(priv->ndev, 1424 cpsw->rx_packet_max, 1425 GFP_KERNEL); 1426 if (!skb) { 1427 cpsw_err(priv, ifup, "cannot allocate skb\n"); 1428 return -ENOMEM; 1429 } 1430 1431 skb_set_queue_mapping(skb, ch); 1432 ret = cpdma_chan_submit(cpsw->rxv[ch].ch, skb, 1433 skb->data, skb_tailroom(skb), 1434 0); 1435 if (ret < 0) { 1436 cpsw_err(priv, ifup, 1437 "cannot submit skb to channel %d rx, error %d\n", 1438 ch, ret); 1439 kfree_skb(skb); 1440 return ret; 1441 } 1442 kmemleak_not_leak(skb); 1443 } 1444 1445 cpsw_info(priv, ifup, "ch %d rx, submitted %d descriptors\n", 1446 ch, ch_buf_num); 1447 } 1448 1449 return 0; 1450 } 1451 1452 static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_common *cpsw) 1453 { 1454 u32 slave_port; 1455 1456 slave_port = cpsw_get_slave_port(slave->slave_num); 1457 1458 if (!slave->phy) 1459 return; 1460 phy_stop(slave->phy); 1461 phy_disconnect(slave->phy); 1462 slave->phy = NULL; 1463 cpsw_ale_control_set(cpsw->ale, slave_port, 1464 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE); 1465 soft_reset_slave(slave); 1466 } 1467 1468 static int cpsw_ndo_open(struct net_device *ndev) 1469 { 1470 struct cpsw_priv *priv = netdev_priv(ndev); 1471 struct cpsw_common *cpsw = priv->cpsw; 1472 int ret; 1473 u32 reg; 1474 1475 ret = pm_runtime_get_sync(cpsw->dev); 1476 if (ret < 0) { 1477 pm_runtime_put_noidle(cpsw->dev); 1478 return ret; 1479 } 1480 1481 netif_carrier_off(ndev); 1482 1483 /* Notify the stack of the actual queue counts. */ 1484 ret = netif_set_real_num_tx_queues(ndev, cpsw->tx_ch_num); 1485 if (ret) { 1486 dev_err(priv->dev, "cannot set real number of tx queues\n"); 1487 goto err_cleanup; 1488 } 1489 1490 ret = netif_set_real_num_rx_queues(ndev, cpsw->rx_ch_num); 1491 if (ret) { 1492 dev_err(priv->dev, "cannot set real number of rx queues\n"); 1493 goto err_cleanup; 1494 } 1495 1496 reg = cpsw->version; 1497 1498 dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n", 1499 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg), 1500 CPSW_RTL_VERSION(reg)); 1501 1502 /* Initialize host and slave ports */ 1503 if (!cpsw->usage_count) 1504 cpsw_init_host_port(priv); 1505 for_each_slave(priv, cpsw_slave_open, priv); 1506 1507 /* Add default VLAN */ 1508 if (!cpsw->data.dual_emac) 1509 cpsw_add_default_vlan(priv); 1510 else 1511 cpsw_ale_add_vlan(cpsw->ale, cpsw->data.default_vlan, 1512 ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0); 1513 1514 /* initialize shared resources for every ndev */ 1515 if (!cpsw->usage_count) { 1516 /* disable priority elevation */ 1517 __raw_writel(0, &cpsw->regs->ptype); 1518 1519 /* enable statistics collection only on all ports */ 1520 __raw_writel(0x7, &cpsw->regs->stat_port_en); 1521 1522 /* Enable internal fifo flow control */ 1523 writel(0x7, &cpsw->regs->flow_control); 1524 1525 napi_enable(&cpsw->napi_rx); 1526 napi_enable(&cpsw->napi_tx); 1527 1528 if (cpsw->tx_irq_disabled) { 1529 cpsw->tx_irq_disabled = false; 1530 enable_irq(cpsw->irqs_table[1]); 1531 } 1532 1533 if (cpsw->rx_irq_disabled) { 1534 cpsw->rx_irq_disabled = false; 1535 enable_irq(cpsw->irqs_table[0]); 1536 } 1537 1538 ret = cpsw_fill_rx_channels(priv); 1539 if (ret < 0) 1540 goto err_cleanup; 1541 1542 if (cpts_register(cpsw->cpts)) 1543 dev_err(priv->dev, "error registering cpts device\n"); 1544 1545 } 1546 1547 /* Enable Interrupt pacing if configured */ 1548 if (cpsw->coal_intvl != 0) { 1549 struct ethtool_coalesce coal; 1550 1551 coal.rx_coalesce_usecs = cpsw->coal_intvl; 1552 cpsw_set_coalesce(ndev, &coal); 1553 } 1554 1555 cpdma_ctlr_start(cpsw->dma); 1556 cpsw_intr_enable(cpsw); 1557 cpsw->usage_count++; 1558 1559 return 0; 1560 1561 err_cleanup: 1562 cpdma_ctlr_stop(cpsw->dma); 1563 for_each_slave(priv, cpsw_slave_stop, cpsw); 1564 pm_runtime_put_sync(cpsw->dev); 1565 netif_carrier_off(priv->ndev); 1566 return ret; 1567 } 1568 1569 static int cpsw_ndo_stop(struct net_device *ndev) 1570 { 1571 struct cpsw_priv *priv = netdev_priv(ndev); 1572 struct cpsw_common *cpsw = priv->cpsw; 1573 1574 cpsw_info(priv, ifdown, "shutting down cpsw device\n"); 1575 netif_tx_stop_all_queues(priv->ndev); 1576 netif_carrier_off(priv->ndev); 1577 1578 if (cpsw->usage_count <= 1) { 1579 napi_disable(&cpsw->napi_rx); 1580 napi_disable(&cpsw->napi_tx); 1581 cpts_unregister(cpsw->cpts); 1582 cpsw_intr_disable(cpsw); 1583 cpdma_ctlr_stop(cpsw->dma); 1584 cpsw_ale_stop(cpsw->ale); 1585 } 1586 for_each_slave(priv, cpsw_slave_stop, cpsw); 1587 1588 if (cpsw_need_resplit(cpsw)) 1589 cpsw_split_res(ndev); 1590 1591 cpsw->usage_count--; 1592 pm_runtime_put_sync(cpsw->dev); 1593 return 0; 1594 } 1595 1596 static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb, 1597 struct net_device *ndev) 1598 { 1599 struct cpsw_priv *priv = netdev_priv(ndev); 1600 struct cpsw_common *cpsw = priv->cpsw; 1601 struct cpts *cpts = cpsw->cpts; 1602 struct netdev_queue *txq; 1603 struct cpdma_chan *txch; 1604 int ret, q_idx; 1605 1606 if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) { 1607 cpsw_err(priv, tx_err, "packet pad failed\n"); 1608 ndev->stats.tx_dropped++; 1609 return NET_XMIT_DROP; 1610 } 1611 1612 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && 1613 cpts_is_tx_enabled(cpts) && cpts_can_timestamp(cpts, skb)) 1614 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1615 1616 q_idx = skb_get_queue_mapping(skb); 1617 if (q_idx >= cpsw->tx_ch_num) 1618 q_idx = q_idx % cpsw->tx_ch_num; 1619 1620 txch = cpsw->txv[q_idx].ch; 1621 ret = cpsw_tx_packet_submit(priv, skb, txch); 1622 if (unlikely(ret != 0)) { 1623 cpsw_err(priv, tx_err, "desc submit failed\n"); 1624 goto fail; 1625 } 1626 1627 /* If there is no more tx desc left free then we need to 1628 * tell the kernel to stop sending us tx frames. 1629 */ 1630 if (unlikely(!cpdma_check_free_tx_desc(txch))) { 1631 txq = netdev_get_tx_queue(ndev, q_idx); 1632 netif_tx_stop_queue(txq); 1633 } 1634 1635 return NETDEV_TX_OK; 1636 fail: 1637 ndev->stats.tx_dropped++; 1638 txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb)); 1639 netif_tx_stop_queue(txq); 1640 return NETDEV_TX_BUSY; 1641 } 1642 1643 #if IS_ENABLED(CONFIG_TI_CPTS) 1644 1645 static void cpsw_hwtstamp_v1(struct cpsw_common *cpsw) 1646 { 1647 struct cpsw_slave *slave = &cpsw->slaves[cpsw->data.active_slave]; 1648 u32 ts_en, seq_id; 1649 1650 if (!cpts_is_tx_enabled(cpsw->cpts) && 1651 !cpts_is_rx_enabled(cpsw->cpts)) { 1652 slave_write(slave, 0, CPSW1_TS_CTL); 1653 return; 1654 } 1655 1656 seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588; 1657 ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS; 1658 1659 if (cpts_is_tx_enabled(cpsw->cpts)) 1660 ts_en |= CPSW_V1_TS_TX_EN; 1661 1662 if (cpts_is_rx_enabled(cpsw->cpts)) 1663 ts_en |= CPSW_V1_TS_RX_EN; 1664 1665 slave_write(slave, ts_en, CPSW1_TS_CTL); 1666 slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE); 1667 } 1668 1669 static void cpsw_hwtstamp_v2(struct cpsw_priv *priv) 1670 { 1671 struct cpsw_slave *slave; 1672 struct cpsw_common *cpsw = priv->cpsw; 1673 u32 ctrl, mtype; 1674 1675 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; 1676 1677 ctrl = slave_read(slave, CPSW2_CONTROL); 1678 switch (cpsw->version) { 1679 case CPSW_VERSION_2: 1680 ctrl &= ~CTRL_V2_ALL_TS_MASK; 1681 1682 if (cpts_is_tx_enabled(cpsw->cpts)) 1683 ctrl |= CTRL_V2_TX_TS_BITS; 1684 1685 if (cpts_is_rx_enabled(cpsw->cpts)) 1686 ctrl |= CTRL_V2_RX_TS_BITS; 1687 break; 1688 case CPSW_VERSION_3: 1689 default: 1690 ctrl &= ~CTRL_V3_ALL_TS_MASK; 1691 1692 if (cpts_is_tx_enabled(cpsw->cpts)) 1693 ctrl |= CTRL_V3_TX_TS_BITS; 1694 1695 if (cpts_is_rx_enabled(cpsw->cpts)) 1696 ctrl |= CTRL_V3_RX_TS_BITS; 1697 break; 1698 } 1699 1700 mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS; 1701 1702 slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE); 1703 slave_write(slave, ctrl, CPSW2_CONTROL); 1704 __raw_writel(ETH_P_1588, &cpsw->regs->ts_ltype); 1705 } 1706 1707 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr) 1708 { 1709 struct cpsw_priv *priv = netdev_priv(dev); 1710 struct hwtstamp_config cfg; 1711 struct cpsw_common *cpsw = priv->cpsw; 1712 struct cpts *cpts = cpsw->cpts; 1713 1714 if (cpsw->version != CPSW_VERSION_1 && 1715 cpsw->version != CPSW_VERSION_2 && 1716 cpsw->version != CPSW_VERSION_3) 1717 return -EOPNOTSUPP; 1718 1719 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg))) 1720 return -EFAULT; 1721 1722 /* reserved for future extensions */ 1723 if (cfg.flags) 1724 return -EINVAL; 1725 1726 if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON) 1727 return -ERANGE; 1728 1729 switch (cfg.rx_filter) { 1730 case HWTSTAMP_FILTER_NONE: 1731 cpts_rx_enable(cpts, 0); 1732 break; 1733 case HWTSTAMP_FILTER_ALL: 1734 case HWTSTAMP_FILTER_NTP_ALL: 1735 return -ERANGE; 1736 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 1737 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 1738 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 1739 cpts_rx_enable(cpts, HWTSTAMP_FILTER_PTP_V1_L4_EVENT); 1740 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 1741 break; 1742 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 1743 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 1744 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 1745 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 1746 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 1747 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 1748 case HWTSTAMP_FILTER_PTP_V2_EVENT: 1749 case HWTSTAMP_FILTER_PTP_V2_SYNC: 1750 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 1751 cpts_rx_enable(cpts, HWTSTAMP_FILTER_PTP_V2_EVENT); 1752 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 1753 break; 1754 default: 1755 return -ERANGE; 1756 } 1757 1758 cpts_tx_enable(cpts, cfg.tx_type == HWTSTAMP_TX_ON); 1759 1760 switch (cpsw->version) { 1761 case CPSW_VERSION_1: 1762 cpsw_hwtstamp_v1(cpsw); 1763 break; 1764 case CPSW_VERSION_2: 1765 case CPSW_VERSION_3: 1766 cpsw_hwtstamp_v2(priv); 1767 break; 1768 default: 1769 WARN_ON(1); 1770 } 1771 1772 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; 1773 } 1774 1775 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr) 1776 { 1777 struct cpsw_common *cpsw = ndev_to_cpsw(dev); 1778 struct cpts *cpts = cpsw->cpts; 1779 struct hwtstamp_config cfg; 1780 1781 if (cpsw->version != CPSW_VERSION_1 && 1782 cpsw->version != CPSW_VERSION_2 && 1783 cpsw->version != CPSW_VERSION_3) 1784 return -EOPNOTSUPP; 1785 1786 cfg.flags = 0; 1787 cfg.tx_type = cpts_is_tx_enabled(cpts) ? 1788 HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF; 1789 cfg.rx_filter = (cpts_is_rx_enabled(cpts) ? 1790 cpts->rx_enable : HWTSTAMP_FILTER_NONE); 1791 1792 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; 1793 } 1794 #else 1795 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr) 1796 { 1797 return -EOPNOTSUPP; 1798 } 1799 1800 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr) 1801 { 1802 return -EOPNOTSUPP; 1803 } 1804 #endif /*CONFIG_TI_CPTS*/ 1805 1806 static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 1807 { 1808 struct cpsw_priv *priv = netdev_priv(dev); 1809 struct cpsw_common *cpsw = priv->cpsw; 1810 int slave_no = cpsw_slave_index(cpsw, priv); 1811 1812 if (!netif_running(dev)) 1813 return -EINVAL; 1814 1815 switch (cmd) { 1816 case SIOCSHWTSTAMP: 1817 return cpsw_hwtstamp_set(dev, req); 1818 case SIOCGHWTSTAMP: 1819 return cpsw_hwtstamp_get(dev, req); 1820 } 1821 1822 if (!cpsw->slaves[slave_no].phy) 1823 return -EOPNOTSUPP; 1824 return phy_mii_ioctl(cpsw->slaves[slave_no].phy, req, cmd); 1825 } 1826 1827 static void cpsw_ndo_tx_timeout(struct net_device *ndev) 1828 { 1829 struct cpsw_priv *priv = netdev_priv(ndev); 1830 struct cpsw_common *cpsw = priv->cpsw; 1831 int ch; 1832 1833 cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n"); 1834 ndev->stats.tx_errors++; 1835 cpsw_intr_disable(cpsw); 1836 for (ch = 0; ch < cpsw->tx_ch_num; ch++) { 1837 cpdma_chan_stop(cpsw->txv[ch].ch); 1838 cpdma_chan_start(cpsw->txv[ch].ch); 1839 } 1840 1841 cpsw_intr_enable(cpsw); 1842 netif_trans_update(ndev); 1843 netif_tx_wake_all_queues(ndev); 1844 } 1845 1846 static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p) 1847 { 1848 struct cpsw_priv *priv = netdev_priv(ndev); 1849 struct sockaddr *addr = (struct sockaddr *)p; 1850 struct cpsw_common *cpsw = priv->cpsw; 1851 int flags = 0; 1852 u16 vid = 0; 1853 int ret; 1854 1855 if (!is_valid_ether_addr(addr->sa_data)) 1856 return -EADDRNOTAVAIL; 1857 1858 ret = pm_runtime_get_sync(cpsw->dev); 1859 if (ret < 0) { 1860 pm_runtime_put_noidle(cpsw->dev); 1861 return ret; 1862 } 1863 1864 if (cpsw->data.dual_emac) { 1865 vid = cpsw->slaves[priv->emac_port].port_vlan; 1866 flags = ALE_VLAN; 1867 } 1868 1869 cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM, 1870 flags, vid); 1871 cpsw_ale_add_ucast(cpsw->ale, addr->sa_data, HOST_PORT_NUM, 1872 flags, vid); 1873 1874 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN); 1875 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN); 1876 for_each_slave(priv, cpsw_set_slave_mac, priv); 1877 1878 pm_runtime_put(cpsw->dev); 1879 1880 return 0; 1881 } 1882 1883 #ifdef CONFIG_NET_POLL_CONTROLLER 1884 static void cpsw_ndo_poll_controller(struct net_device *ndev) 1885 { 1886 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1887 1888 cpsw_intr_disable(cpsw); 1889 cpsw_rx_interrupt(cpsw->irqs_table[0], cpsw); 1890 cpsw_tx_interrupt(cpsw->irqs_table[1], cpsw); 1891 cpsw_intr_enable(cpsw); 1892 } 1893 #endif 1894 1895 static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv, 1896 unsigned short vid) 1897 { 1898 int ret; 1899 int unreg_mcast_mask = 0; 1900 u32 port_mask; 1901 struct cpsw_common *cpsw = priv->cpsw; 1902 1903 if (cpsw->data.dual_emac) { 1904 port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST; 1905 1906 if (priv->ndev->flags & IFF_ALLMULTI) 1907 unreg_mcast_mask = port_mask; 1908 } else { 1909 port_mask = ALE_ALL_PORTS; 1910 1911 if (priv->ndev->flags & IFF_ALLMULTI) 1912 unreg_mcast_mask = ALE_ALL_PORTS; 1913 else 1914 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2; 1915 } 1916 1917 ret = cpsw_ale_add_vlan(cpsw->ale, vid, port_mask, 0, port_mask, 1918 unreg_mcast_mask); 1919 if (ret != 0) 1920 return ret; 1921 1922 ret = cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, 1923 HOST_PORT_NUM, ALE_VLAN, vid); 1924 if (ret != 0) 1925 goto clean_vid; 1926 1927 ret = cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, 1928 port_mask, ALE_VLAN, vid, 0); 1929 if (ret != 0) 1930 goto clean_vlan_ucast; 1931 return 0; 1932 1933 clean_vlan_ucast: 1934 cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, 1935 HOST_PORT_NUM, ALE_VLAN, vid); 1936 clean_vid: 1937 cpsw_ale_del_vlan(cpsw->ale, vid, 0); 1938 return ret; 1939 } 1940 1941 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev, 1942 __be16 proto, u16 vid) 1943 { 1944 struct cpsw_priv *priv = netdev_priv(ndev); 1945 struct cpsw_common *cpsw = priv->cpsw; 1946 int ret; 1947 1948 if (vid == cpsw->data.default_vlan) 1949 return 0; 1950 1951 ret = pm_runtime_get_sync(cpsw->dev); 1952 if (ret < 0) { 1953 pm_runtime_put_noidle(cpsw->dev); 1954 return ret; 1955 } 1956 1957 if (cpsw->data.dual_emac) { 1958 /* In dual EMAC, reserved VLAN id should not be used for 1959 * creating VLAN interfaces as this can break the dual 1960 * EMAC port separation 1961 */ 1962 int i; 1963 1964 for (i = 0; i < cpsw->data.slaves; i++) { 1965 if (vid == cpsw->slaves[i].port_vlan) 1966 return -EINVAL; 1967 } 1968 } 1969 1970 dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid); 1971 ret = cpsw_add_vlan_ale_entry(priv, vid); 1972 1973 pm_runtime_put(cpsw->dev); 1974 return ret; 1975 } 1976 1977 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev, 1978 __be16 proto, u16 vid) 1979 { 1980 struct cpsw_priv *priv = netdev_priv(ndev); 1981 struct cpsw_common *cpsw = priv->cpsw; 1982 int ret; 1983 1984 if (vid == cpsw->data.default_vlan) 1985 return 0; 1986 1987 ret = pm_runtime_get_sync(cpsw->dev); 1988 if (ret < 0) { 1989 pm_runtime_put_noidle(cpsw->dev); 1990 return ret; 1991 } 1992 1993 if (cpsw->data.dual_emac) { 1994 int i; 1995 1996 for (i = 0; i < cpsw->data.slaves; i++) { 1997 if (vid == cpsw->slaves[i].port_vlan) 1998 return -EINVAL; 1999 } 2000 } 2001 2002 dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid); 2003 ret = cpsw_ale_del_vlan(cpsw->ale, vid, 0); 2004 if (ret != 0) 2005 return ret; 2006 2007 ret = cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, 2008 HOST_PORT_NUM, ALE_VLAN, vid); 2009 if (ret != 0) 2010 return ret; 2011 2012 ret = cpsw_ale_del_mcast(cpsw->ale, priv->ndev->broadcast, 2013 0, ALE_VLAN, vid); 2014 pm_runtime_put(cpsw->dev); 2015 return ret; 2016 } 2017 2018 static int cpsw_ndo_set_tx_maxrate(struct net_device *ndev, int queue, u32 rate) 2019 { 2020 struct cpsw_priv *priv = netdev_priv(ndev); 2021 struct cpsw_common *cpsw = priv->cpsw; 2022 struct cpsw_slave *slave; 2023 u32 min_rate; 2024 u32 ch_rate; 2025 int i, ret; 2026 2027 ch_rate = netdev_get_tx_queue(ndev, queue)->tx_maxrate; 2028 if (ch_rate == rate) 2029 return 0; 2030 2031 ch_rate = rate * 1000; 2032 min_rate = cpdma_chan_get_min_rate(cpsw->dma); 2033 if ((ch_rate < min_rate && ch_rate)) { 2034 dev_err(priv->dev, "The channel rate cannot be less than %dMbps", 2035 min_rate); 2036 return -EINVAL; 2037 } 2038 2039 if (rate > cpsw->speed) { 2040 dev_err(priv->dev, "The channel rate cannot be more than 2Gbps"); 2041 return -EINVAL; 2042 } 2043 2044 ret = pm_runtime_get_sync(cpsw->dev); 2045 if (ret < 0) { 2046 pm_runtime_put_noidle(cpsw->dev); 2047 return ret; 2048 } 2049 2050 ret = cpdma_chan_set_rate(cpsw->txv[queue].ch, ch_rate); 2051 pm_runtime_put(cpsw->dev); 2052 2053 if (ret) 2054 return ret; 2055 2056 /* update rates for slaves tx queues */ 2057 for (i = 0; i < cpsw->data.slaves; i++) { 2058 slave = &cpsw->slaves[i]; 2059 if (!slave->ndev) 2060 continue; 2061 2062 netdev_get_tx_queue(slave->ndev, queue)->tx_maxrate = rate; 2063 } 2064 2065 cpsw_split_res(ndev); 2066 return ret; 2067 } 2068 2069 static const struct net_device_ops cpsw_netdev_ops = { 2070 .ndo_open = cpsw_ndo_open, 2071 .ndo_stop = cpsw_ndo_stop, 2072 .ndo_start_xmit = cpsw_ndo_start_xmit, 2073 .ndo_set_mac_address = cpsw_ndo_set_mac_address, 2074 .ndo_do_ioctl = cpsw_ndo_ioctl, 2075 .ndo_validate_addr = eth_validate_addr, 2076 .ndo_tx_timeout = cpsw_ndo_tx_timeout, 2077 .ndo_set_rx_mode = cpsw_ndo_set_rx_mode, 2078 .ndo_set_tx_maxrate = cpsw_ndo_set_tx_maxrate, 2079 #ifdef CONFIG_NET_POLL_CONTROLLER 2080 .ndo_poll_controller = cpsw_ndo_poll_controller, 2081 #endif 2082 .ndo_vlan_rx_add_vid = cpsw_ndo_vlan_rx_add_vid, 2083 .ndo_vlan_rx_kill_vid = cpsw_ndo_vlan_rx_kill_vid, 2084 }; 2085 2086 static int cpsw_get_regs_len(struct net_device *ndev) 2087 { 2088 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 2089 2090 return cpsw->data.ale_entries * ALE_ENTRY_WORDS * sizeof(u32); 2091 } 2092 2093 static void cpsw_get_regs(struct net_device *ndev, 2094 struct ethtool_regs *regs, void *p) 2095 { 2096 u32 *reg = p; 2097 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 2098 2099 /* update CPSW IP version */ 2100 regs->version = cpsw->version; 2101 2102 cpsw_ale_dump(cpsw->ale, reg); 2103 } 2104 2105 static void cpsw_get_drvinfo(struct net_device *ndev, 2106 struct ethtool_drvinfo *info) 2107 { 2108 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 2109 struct platform_device *pdev = to_platform_device(cpsw->dev); 2110 2111 strlcpy(info->driver, "cpsw", sizeof(info->driver)); 2112 strlcpy(info->version, "1.0", sizeof(info->version)); 2113 strlcpy(info->bus_info, pdev->name, sizeof(info->bus_info)); 2114 } 2115 2116 static u32 cpsw_get_msglevel(struct net_device *ndev) 2117 { 2118 struct cpsw_priv *priv = netdev_priv(ndev); 2119 return priv->msg_enable; 2120 } 2121 2122 static void cpsw_set_msglevel(struct net_device *ndev, u32 value) 2123 { 2124 struct cpsw_priv *priv = netdev_priv(ndev); 2125 priv->msg_enable = value; 2126 } 2127 2128 #if IS_ENABLED(CONFIG_TI_CPTS) 2129 static int cpsw_get_ts_info(struct net_device *ndev, 2130 struct ethtool_ts_info *info) 2131 { 2132 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 2133 2134 info->so_timestamping = 2135 SOF_TIMESTAMPING_TX_HARDWARE | 2136 SOF_TIMESTAMPING_TX_SOFTWARE | 2137 SOF_TIMESTAMPING_RX_HARDWARE | 2138 SOF_TIMESTAMPING_RX_SOFTWARE | 2139 SOF_TIMESTAMPING_SOFTWARE | 2140 SOF_TIMESTAMPING_RAW_HARDWARE; 2141 info->phc_index = cpsw->cpts->phc_index; 2142 info->tx_types = 2143 (1 << HWTSTAMP_TX_OFF) | 2144 (1 << HWTSTAMP_TX_ON); 2145 info->rx_filters = 2146 (1 << HWTSTAMP_FILTER_NONE) | 2147 (1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) | 2148 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 2149 return 0; 2150 } 2151 #else 2152 static int cpsw_get_ts_info(struct net_device *ndev, 2153 struct ethtool_ts_info *info) 2154 { 2155 info->so_timestamping = 2156 SOF_TIMESTAMPING_TX_SOFTWARE | 2157 SOF_TIMESTAMPING_RX_SOFTWARE | 2158 SOF_TIMESTAMPING_SOFTWARE; 2159 info->phc_index = -1; 2160 info->tx_types = 0; 2161 info->rx_filters = 0; 2162 return 0; 2163 } 2164 #endif 2165 2166 static int cpsw_get_link_ksettings(struct net_device *ndev, 2167 struct ethtool_link_ksettings *ecmd) 2168 { 2169 struct cpsw_priv *priv = netdev_priv(ndev); 2170 struct cpsw_common *cpsw = priv->cpsw; 2171 int slave_no = cpsw_slave_index(cpsw, priv); 2172 2173 if (!cpsw->slaves[slave_no].phy) 2174 return -EOPNOTSUPP; 2175 2176 phy_ethtool_ksettings_get(cpsw->slaves[slave_no].phy, ecmd); 2177 return 0; 2178 } 2179 2180 static int cpsw_set_link_ksettings(struct net_device *ndev, 2181 const struct ethtool_link_ksettings *ecmd) 2182 { 2183 struct cpsw_priv *priv = netdev_priv(ndev); 2184 struct cpsw_common *cpsw = priv->cpsw; 2185 int slave_no = cpsw_slave_index(cpsw, priv); 2186 2187 if (cpsw->slaves[slave_no].phy) 2188 return phy_ethtool_ksettings_set(cpsw->slaves[slave_no].phy, 2189 ecmd); 2190 else 2191 return -EOPNOTSUPP; 2192 } 2193 2194 static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 2195 { 2196 struct cpsw_priv *priv = netdev_priv(ndev); 2197 struct cpsw_common *cpsw = priv->cpsw; 2198 int slave_no = cpsw_slave_index(cpsw, priv); 2199 2200 wol->supported = 0; 2201 wol->wolopts = 0; 2202 2203 if (cpsw->slaves[slave_no].phy) 2204 phy_ethtool_get_wol(cpsw->slaves[slave_no].phy, wol); 2205 } 2206 2207 static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 2208 { 2209 struct cpsw_priv *priv = netdev_priv(ndev); 2210 struct cpsw_common *cpsw = priv->cpsw; 2211 int slave_no = cpsw_slave_index(cpsw, priv); 2212 2213 if (cpsw->slaves[slave_no].phy) 2214 return phy_ethtool_set_wol(cpsw->slaves[slave_no].phy, wol); 2215 else 2216 return -EOPNOTSUPP; 2217 } 2218 2219 static void cpsw_get_pauseparam(struct net_device *ndev, 2220 struct ethtool_pauseparam *pause) 2221 { 2222 struct cpsw_priv *priv = netdev_priv(ndev); 2223 2224 pause->autoneg = AUTONEG_DISABLE; 2225 pause->rx_pause = priv->rx_pause ? true : false; 2226 pause->tx_pause = priv->tx_pause ? true : false; 2227 } 2228 2229 static int cpsw_set_pauseparam(struct net_device *ndev, 2230 struct ethtool_pauseparam *pause) 2231 { 2232 struct cpsw_priv *priv = netdev_priv(ndev); 2233 bool link; 2234 2235 priv->rx_pause = pause->rx_pause ? true : false; 2236 priv->tx_pause = pause->tx_pause ? true : false; 2237 2238 for_each_slave(priv, _cpsw_adjust_link, priv, &link); 2239 return 0; 2240 } 2241 2242 static int cpsw_ethtool_op_begin(struct net_device *ndev) 2243 { 2244 struct cpsw_priv *priv = netdev_priv(ndev); 2245 struct cpsw_common *cpsw = priv->cpsw; 2246 int ret; 2247 2248 ret = pm_runtime_get_sync(cpsw->dev); 2249 if (ret < 0) { 2250 cpsw_err(priv, drv, "ethtool begin failed %d\n", ret); 2251 pm_runtime_put_noidle(cpsw->dev); 2252 } 2253 2254 return ret; 2255 } 2256 2257 static void cpsw_ethtool_op_complete(struct net_device *ndev) 2258 { 2259 struct cpsw_priv *priv = netdev_priv(ndev); 2260 int ret; 2261 2262 ret = pm_runtime_put(priv->cpsw->dev); 2263 if (ret < 0) 2264 cpsw_err(priv, drv, "ethtool complete failed %d\n", ret); 2265 } 2266 2267 static void cpsw_get_channels(struct net_device *ndev, 2268 struct ethtool_channels *ch) 2269 { 2270 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 2271 2272 ch->max_combined = 0; 2273 ch->max_rx = CPSW_MAX_QUEUES; 2274 ch->max_tx = CPSW_MAX_QUEUES; 2275 ch->max_other = 0; 2276 ch->other_count = 0; 2277 ch->rx_count = cpsw->rx_ch_num; 2278 ch->tx_count = cpsw->tx_ch_num; 2279 ch->combined_count = 0; 2280 } 2281 2282 static int cpsw_check_ch_settings(struct cpsw_common *cpsw, 2283 struct ethtool_channels *ch) 2284 { 2285 if (ch->combined_count) 2286 return -EINVAL; 2287 2288 /* verify we have at least one channel in each direction */ 2289 if (!ch->rx_count || !ch->tx_count) 2290 return -EINVAL; 2291 2292 if (ch->rx_count > cpsw->data.channels || 2293 ch->tx_count > cpsw->data.channels) 2294 return -EINVAL; 2295 2296 return 0; 2297 } 2298 2299 static int cpsw_update_channels_res(struct cpsw_priv *priv, int ch_num, int rx) 2300 { 2301 int (*poll)(struct napi_struct *, int); 2302 struct cpsw_common *cpsw = priv->cpsw; 2303 void (*handler)(void *, int, int); 2304 struct netdev_queue *queue; 2305 struct cpsw_vector *vec; 2306 int ret, *ch; 2307 2308 if (rx) { 2309 ch = &cpsw->rx_ch_num; 2310 vec = cpsw->rxv; 2311 handler = cpsw_rx_handler; 2312 poll = cpsw_rx_poll; 2313 } else { 2314 ch = &cpsw->tx_ch_num; 2315 vec = cpsw->txv; 2316 handler = cpsw_tx_handler; 2317 poll = cpsw_tx_poll; 2318 } 2319 2320 while (*ch < ch_num) { 2321 vec[*ch].ch = cpdma_chan_create(cpsw->dma, *ch, handler, rx); 2322 queue = netdev_get_tx_queue(priv->ndev, *ch); 2323 queue->tx_maxrate = 0; 2324 2325 if (IS_ERR(vec[*ch].ch)) 2326 return PTR_ERR(vec[*ch].ch); 2327 2328 if (!vec[*ch].ch) 2329 return -EINVAL; 2330 2331 cpsw_info(priv, ifup, "created new %d %s channel\n", *ch, 2332 (rx ? "rx" : "tx")); 2333 (*ch)++; 2334 } 2335 2336 while (*ch > ch_num) { 2337 (*ch)--; 2338 2339 ret = cpdma_chan_destroy(vec[*ch].ch); 2340 if (ret) 2341 return ret; 2342 2343 cpsw_info(priv, ifup, "destroyed %d %s channel\n", *ch, 2344 (rx ? "rx" : "tx")); 2345 } 2346 2347 return 0; 2348 } 2349 2350 static int cpsw_update_channels(struct cpsw_priv *priv, 2351 struct ethtool_channels *ch) 2352 { 2353 int ret; 2354 2355 ret = cpsw_update_channels_res(priv, ch->rx_count, 1); 2356 if (ret) 2357 return ret; 2358 2359 ret = cpsw_update_channels_res(priv, ch->tx_count, 0); 2360 if (ret) 2361 return ret; 2362 2363 return 0; 2364 } 2365 2366 static void cpsw_suspend_data_pass(struct net_device *ndev) 2367 { 2368 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 2369 struct cpsw_slave *slave; 2370 int i; 2371 2372 /* Disable NAPI scheduling */ 2373 cpsw_intr_disable(cpsw); 2374 2375 /* Stop all transmit queues for every network device. 2376 * Disable re-using rx descriptors with dormant_on. 2377 */ 2378 for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) { 2379 if (!(slave->ndev && netif_running(slave->ndev))) 2380 continue; 2381 2382 netif_tx_stop_all_queues(slave->ndev); 2383 netif_dormant_on(slave->ndev); 2384 } 2385 2386 /* Handle rest of tx packets and stop cpdma channels */ 2387 cpdma_ctlr_stop(cpsw->dma); 2388 } 2389 2390 static int cpsw_resume_data_pass(struct net_device *ndev) 2391 { 2392 struct cpsw_priv *priv = netdev_priv(ndev); 2393 struct cpsw_common *cpsw = priv->cpsw; 2394 struct cpsw_slave *slave; 2395 int i, ret; 2396 2397 /* Allow rx packets handling */ 2398 for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) 2399 if (slave->ndev && netif_running(slave->ndev)) 2400 netif_dormant_off(slave->ndev); 2401 2402 /* After this receive is started */ 2403 if (cpsw->usage_count) { 2404 ret = cpsw_fill_rx_channels(priv); 2405 if (ret) 2406 return ret; 2407 2408 cpdma_ctlr_start(cpsw->dma); 2409 cpsw_intr_enable(cpsw); 2410 } 2411 2412 /* Resume transmit for every affected interface */ 2413 for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) 2414 if (slave->ndev && netif_running(slave->ndev)) 2415 netif_tx_start_all_queues(slave->ndev); 2416 2417 return 0; 2418 } 2419 2420 static int cpsw_set_channels(struct net_device *ndev, 2421 struct ethtool_channels *chs) 2422 { 2423 struct cpsw_priv *priv = netdev_priv(ndev); 2424 struct cpsw_common *cpsw = priv->cpsw; 2425 struct cpsw_slave *slave; 2426 int i, ret; 2427 2428 ret = cpsw_check_ch_settings(cpsw, chs); 2429 if (ret < 0) 2430 return ret; 2431 2432 cpsw_suspend_data_pass(ndev); 2433 ret = cpsw_update_channels(priv, chs); 2434 if (ret) 2435 goto err; 2436 2437 for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) { 2438 if (!(slave->ndev && netif_running(slave->ndev))) 2439 continue; 2440 2441 /* Inform stack about new count of queues */ 2442 ret = netif_set_real_num_tx_queues(slave->ndev, 2443 cpsw->tx_ch_num); 2444 if (ret) { 2445 dev_err(priv->dev, "cannot set real number of tx queues\n"); 2446 goto err; 2447 } 2448 2449 ret = netif_set_real_num_rx_queues(slave->ndev, 2450 cpsw->rx_ch_num); 2451 if (ret) { 2452 dev_err(priv->dev, "cannot set real number of rx queues\n"); 2453 goto err; 2454 } 2455 } 2456 2457 if (cpsw->usage_count) 2458 cpsw_split_res(ndev); 2459 2460 ret = cpsw_resume_data_pass(ndev); 2461 if (!ret) 2462 return 0; 2463 err: 2464 dev_err(priv->dev, "cannot update channels number, closing device\n"); 2465 dev_close(ndev); 2466 return ret; 2467 } 2468 2469 static int cpsw_get_eee(struct net_device *ndev, struct ethtool_eee *edata) 2470 { 2471 struct cpsw_priv *priv = netdev_priv(ndev); 2472 struct cpsw_common *cpsw = priv->cpsw; 2473 int slave_no = cpsw_slave_index(cpsw, priv); 2474 2475 if (cpsw->slaves[slave_no].phy) 2476 return phy_ethtool_get_eee(cpsw->slaves[slave_no].phy, edata); 2477 else 2478 return -EOPNOTSUPP; 2479 } 2480 2481 static int cpsw_set_eee(struct net_device *ndev, struct ethtool_eee *edata) 2482 { 2483 struct cpsw_priv *priv = netdev_priv(ndev); 2484 struct cpsw_common *cpsw = priv->cpsw; 2485 int slave_no = cpsw_slave_index(cpsw, priv); 2486 2487 if (cpsw->slaves[slave_no].phy) 2488 return phy_ethtool_set_eee(cpsw->slaves[slave_no].phy, edata); 2489 else 2490 return -EOPNOTSUPP; 2491 } 2492 2493 static int cpsw_nway_reset(struct net_device *ndev) 2494 { 2495 struct cpsw_priv *priv = netdev_priv(ndev); 2496 struct cpsw_common *cpsw = priv->cpsw; 2497 int slave_no = cpsw_slave_index(cpsw, priv); 2498 2499 if (cpsw->slaves[slave_no].phy) 2500 return genphy_restart_aneg(cpsw->slaves[slave_no].phy); 2501 else 2502 return -EOPNOTSUPP; 2503 } 2504 2505 static void cpsw_get_ringparam(struct net_device *ndev, 2506 struct ethtool_ringparam *ering) 2507 { 2508 struct cpsw_priv *priv = netdev_priv(ndev); 2509 struct cpsw_common *cpsw = priv->cpsw; 2510 2511 /* not supported */ 2512 ering->tx_max_pending = 0; 2513 ering->tx_pending = cpdma_get_num_tx_descs(cpsw->dma); 2514 ering->rx_max_pending = descs_pool_size - CPSW_MAX_QUEUES; 2515 ering->rx_pending = cpdma_get_num_rx_descs(cpsw->dma); 2516 } 2517 2518 static int cpsw_set_ringparam(struct net_device *ndev, 2519 struct ethtool_ringparam *ering) 2520 { 2521 struct cpsw_priv *priv = netdev_priv(ndev); 2522 struct cpsw_common *cpsw = priv->cpsw; 2523 int ret; 2524 2525 /* ignore ering->tx_pending - only rx_pending adjustment is supported */ 2526 2527 if (ering->rx_mini_pending || ering->rx_jumbo_pending || 2528 ering->rx_pending < CPSW_MAX_QUEUES || 2529 ering->rx_pending > (descs_pool_size - CPSW_MAX_QUEUES)) 2530 return -EINVAL; 2531 2532 if (ering->rx_pending == cpdma_get_num_rx_descs(cpsw->dma)) 2533 return 0; 2534 2535 cpsw_suspend_data_pass(ndev); 2536 2537 cpdma_set_num_rx_descs(cpsw->dma, ering->rx_pending); 2538 2539 if (cpsw->usage_count) 2540 cpdma_chan_split_pool(cpsw->dma); 2541 2542 ret = cpsw_resume_data_pass(ndev); 2543 if (!ret) 2544 return 0; 2545 2546 dev_err(&ndev->dev, "cannot set ring params, closing device\n"); 2547 dev_close(ndev); 2548 return ret; 2549 } 2550 2551 static const struct ethtool_ops cpsw_ethtool_ops = { 2552 .get_drvinfo = cpsw_get_drvinfo, 2553 .get_msglevel = cpsw_get_msglevel, 2554 .set_msglevel = cpsw_set_msglevel, 2555 .get_link = ethtool_op_get_link, 2556 .get_ts_info = cpsw_get_ts_info, 2557 .get_coalesce = cpsw_get_coalesce, 2558 .set_coalesce = cpsw_set_coalesce, 2559 .get_sset_count = cpsw_get_sset_count, 2560 .get_strings = cpsw_get_strings, 2561 .get_ethtool_stats = cpsw_get_ethtool_stats, 2562 .get_pauseparam = cpsw_get_pauseparam, 2563 .set_pauseparam = cpsw_set_pauseparam, 2564 .get_wol = cpsw_get_wol, 2565 .set_wol = cpsw_set_wol, 2566 .get_regs_len = cpsw_get_regs_len, 2567 .get_regs = cpsw_get_regs, 2568 .begin = cpsw_ethtool_op_begin, 2569 .complete = cpsw_ethtool_op_complete, 2570 .get_channels = cpsw_get_channels, 2571 .set_channels = cpsw_set_channels, 2572 .get_link_ksettings = cpsw_get_link_ksettings, 2573 .set_link_ksettings = cpsw_set_link_ksettings, 2574 .get_eee = cpsw_get_eee, 2575 .set_eee = cpsw_set_eee, 2576 .nway_reset = cpsw_nway_reset, 2577 .get_ringparam = cpsw_get_ringparam, 2578 .set_ringparam = cpsw_set_ringparam, 2579 }; 2580 2581 static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_common *cpsw, 2582 u32 slave_reg_ofs, u32 sliver_reg_ofs) 2583 { 2584 void __iomem *regs = cpsw->regs; 2585 int slave_num = slave->slave_num; 2586 struct cpsw_slave_data *data = cpsw->data.slave_data + slave_num; 2587 2588 slave->data = data; 2589 slave->regs = regs + slave_reg_ofs; 2590 slave->sliver = regs + sliver_reg_ofs; 2591 slave->port_vlan = data->dual_emac_res_vlan; 2592 } 2593 2594 static int cpsw_probe_dt(struct cpsw_platform_data *data, 2595 struct platform_device *pdev) 2596 { 2597 struct device_node *node = pdev->dev.of_node; 2598 struct device_node *slave_node; 2599 int i = 0, ret; 2600 u32 prop; 2601 2602 if (!node) 2603 return -EINVAL; 2604 2605 if (of_property_read_u32(node, "slaves", &prop)) { 2606 dev_err(&pdev->dev, "Missing slaves property in the DT.\n"); 2607 return -EINVAL; 2608 } 2609 data->slaves = prop; 2610 2611 if (of_property_read_u32(node, "active_slave", &prop)) { 2612 dev_err(&pdev->dev, "Missing active_slave property in the DT.\n"); 2613 return -EINVAL; 2614 } 2615 data->active_slave = prop; 2616 2617 data->slave_data = devm_kzalloc(&pdev->dev, data->slaves 2618 * sizeof(struct cpsw_slave_data), 2619 GFP_KERNEL); 2620 if (!data->slave_data) 2621 return -ENOMEM; 2622 2623 if (of_property_read_u32(node, "cpdma_channels", &prop)) { 2624 dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n"); 2625 return -EINVAL; 2626 } 2627 data->channels = prop; 2628 2629 if (of_property_read_u32(node, "ale_entries", &prop)) { 2630 dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n"); 2631 return -EINVAL; 2632 } 2633 data->ale_entries = prop; 2634 2635 if (of_property_read_u32(node, "bd_ram_size", &prop)) { 2636 dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n"); 2637 return -EINVAL; 2638 } 2639 data->bd_ram_size = prop; 2640 2641 if (of_property_read_u32(node, "mac_control", &prop)) { 2642 dev_err(&pdev->dev, "Missing mac_control property in the DT.\n"); 2643 return -EINVAL; 2644 } 2645 data->mac_control = prop; 2646 2647 if (of_property_read_bool(node, "dual_emac")) 2648 data->dual_emac = 1; 2649 2650 /* 2651 * Populate all the child nodes here... 2652 */ 2653 ret = of_platform_populate(node, NULL, NULL, &pdev->dev); 2654 /* We do not want to force this, as in some cases may not have child */ 2655 if (ret) 2656 dev_warn(&pdev->dev, "Doesn't have any child node\n"); 2657 2658 for_each_available_child_of_node(node, slave_node) { 2659 struct cpsw_slave_data *slave_data = data->slave_data + i; 2660 const void *mac_addr = NULL; 2661 int lenp; 2662 const __be32 *parp; 2663 2664 /* This is no slave child node, continue */ 2665 if (strcmp(slave_node->name, "slave")) 2666 continue; 2667 2668 slave_data->phy_node = of_parse_phandle(slave_node, 2669 "phy-handle", 0); 2670 parp = of_get_property(slave_node, "phy_id", &lenp); 2671 if (slave_data->phy_node) { 2672 dev_dbg(&pdev->dev, 2673 "slave[%d] using phy-handle=\"%pOF\"\n", 2674 i, slave_data->phy_node); 2675 } else if (of_phy_is_fixed_link(slave_node)) { 2676 /* In the case of a fixed PHY, the DT node associated 2677 * to the PHY is the Ethernet MAC DT node. 2678 */ 2679 ret = of_phy_register_fixed_link(slave_node); 2680 if (ret) { 2681 if (ret != -EPROBE_DEFER) 2682 dev_err(&pdev->dev, "failed to register fixed-link phy: %d\n", ret); 2683 return ret; 2684 } 2685 slave_data->phy_node = of_node_get(slave_node); 2686 } else if (parp) { 2687 u32 phyid; 2688 struct device_node *mdio_node; 2689 struct platform_device *mdio; 2690 2691 if (lenp != (sizeof(__be32) * 2)) { 2692 dev_err(&pdev->dev, "Invalid slave[%d] phy_id property\n", i); 2693 goto no_phy_slave; 2694 } 2695 mdio_node = of_find_node_by_phandle(be32_to_cpup(parp)); 2696 phyid = be32_to_cpup(parp+1); 2697 mdio = of_find_device_by_node(mdio_node); 2698 of_node_put(mdio_node); 2699 if (!mdio) { 2700 dev_err(&pdev->dev, "Missing mdio platform device\n"); 2701 return -EINVAL; 2702 } 2703 snprintf(slave_data->phy_id, sizeof(slave_data->phy_id), 2704 PHY_ID_FMT, mdio->name, phyid); 2705 put_device(&mdio->dev); 2706 } else { 2707 dev_err(&pdev->dev, 2708 "No slave[%d] phy_id, phy-handle, or fixed-link property\n", 2709 i); 2710 goto no_phy_slave; 2711 } 2712 slave_data->phy_if = of_get_phy_mode(slave_node); 2713 if (slave_data->phy_if < 0) { 2714 dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n", 2715 i); 2716 return slave_data->phy_if; 2717 } 2718 2719 no_phy_slave: 2720 mac_addr = of_get_mac_address(slave_node); 2721 if (mac_addr) { 2722 memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN); 2723 } else { 2724 ret = ti_cm_get_macid(&pdev->dev, i, 2725 slave_data->mac_addr); 2726 if (ret) 2727 return ret; 2728 } 2729 if (data->dual_emac) { 2730 if (of_property_read_u32(slave_node, "dual_emac_res_vlan", 2731 &prop)) { 2732 dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n"); 2733 slave_data->dual_emac_res_vlan = i+1; 2734 dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n", 2735 slave_data->dual_emac_res_vlan, i); 2736 } else { 2737 slave_data->dual_emac_res_vlan = prop; 2738 } 2739 } 2740 2741 i++; 2742 if (i == data->slaves) 2743 break; 2744 } 2745 2746 return 0; 2747 } 2748 2749 static void cpsw_remove_dt(struct platform_device *pdev) 2750 { 2751 struct net_device *ndev = platform_get_drvdata(pdev); 2752 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 2753 struct cpsw_platform_data *data = &cpsw->data; 2754 struct device_node *node = pdev->dev.of_node; 2755 struct device_node *slave_node; 2756 int i = 0; 2757 2758 for_each_available_child_of_node(node, slave_node) { 2759 struct cpsw_slave_data *slave_data = &data->slave_data[i]; 2760 2761 if (strcmp(slave_node->name, "slave")) 2762 continue; 2763 2764 if (of_phy_is_fixed_link(slave_node)) 2765 of_phy_deregister_fixed_link(slave_node); 2766 2767 of_node_put(slave_data->phy_node); 2768 2769 i++; 2770 if (i == data->slaves) 2771 break; 2772 } 2773 2774 of_platform_depopulate(&pdev->dev); 2775 } 2776 2777 static int cpsw_probe_dual_emac(struct cpsw_priv *priv) 2778 { 2779 struct cpsw_common *cpsw = priv->cpsw; 2780 struct cpsw_platform_data *data = &cpsw->data; 2781 struct net_device *ndev; 2782 struct cpsw_priv *priv_sl2; 2783 int ret = 0; 2784 2785 ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES); 2786 if (!ndev) { 2787 dev_err(cpsw->dev, "cpsw: error allocating net_device\n"); 2788 return -ENOMEM; 2789 } 2790 2791 priv_sl2 = netdev_priv(ndev); 2792 priv_sl2->cpsw = cpsw; 2793 priv_sl2->ndev = ndev; 2794 priv_sl2->dev = &ndev->dev; 2795 priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG); 2796 2797 if (is_valid_ether_addr(data->slave_data[1].mac_addr)) { 2798 memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr, 2799 ETH_ALEN); 2800 dev_info(cpsw->dev, "cpsw: Detected MACID = %pM\n", 2801 priv_sl2->mac_addr); 2802 } else { 2803 random_ether_addr(priv_sl2->mac_addr); 2804 dev_info(cpsw->dev, "cpsw: Random MACID = %pM\n", 2805 priv_sl2->mac_addr); 2806 } 2807 memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN); 2808 2809 priv_sl2->emac_port = 1; 2810 cpsw->slaves[1].ndev = ndev; 2811 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 2812 2813 ndev->netdev_ops = &cpsw_netdev_ops; 2814 ndev->ethtool_ops = &cpsw_ethtool_ops; 2815 2816 /* register the network device */ 2817 SET_NETDEV_DEV(ndev, cpsw->dev); 2818 ret = register_netdev(ndev); 2819 if (ret) { 2820 dev_err(cpsw->dev, "cpsw: error registering net device\n"); 2821 free_netdev(ndev); 2822 ret = -ENODEV; 2823 } 2824 2825 return ret; 2826 } 2827 2828 #define CPSW_QUIRK_IRQ BIT(0) 2829 2830 static const struct platform_device_id cpsw_devtype[] = { 2831 { 2832 /* keep it for existing comaptibles */ 2833 .name = "cpsw", 2834 .driver_data = CPSW_QUIRK_IRQ, 2835 }, { 2836 .name = "am335x-cpsw", 2837 .driver_data = CPSW_QUIRK_IRQ, 2838 }, { 2839 .name = "am4372-cpsw", 2840 .driver_data = 0, 2841 }, { 2842 .name = "dra7-cpsw", 2843 .driver_data = 0, 2844 }, { 2845 /* sentinel */ 2846 } 2847 }; 2848 MODULE_DEVICE_TABLE(platform, cpsw_devtype); 2849 2850 enum ti_cpsw_type { 2851 CPSW = 0, 2852 AM335X_CPSW, 2853 AM4372_CPSW, 2854 DRA7_CPSW, 2855 }; 2856 2857 static const struct of_device_id cpsw_of_mtable[] = { 2858 { .compatible = "ti,cpsw", .data = &cpsw_devtype[CPSW], }, 2859 { .compatible = "ti,am335x-cpsw", .data = &cpsw_devtype[AM335X_CPSW], }, 2860 { .compatible = "ti,am4372-cpsw", .data = &cpsw_devtype[AM4372_CPSW], }, 2861 { .compatible = "ti,dra7-cpsw", .data = &cpsw_devtype[DRA7_CPSW], }, 2862 { /* sentinel */ }, 2863 }; 2864 MODULE_DEVICE_TABLE(of, cpsw_of_mtable); 2865 2866 static int cpsw_probe(struct platform_device *pdev) 2867 { 2868 struct clk *clk; 2869 struct cpsw_platform_data *data; 2870 struct net_device *ndev; 2871 struct cpsw_priv *priv; 2872 struct cpdma_params dma_params; 2873 struct cpsw_ale_params ale_params; 2874 void __iomem *ss_regs; 2875 void __iomem *cpts_regs; 2876 struct resource *res, *ss_res; 2877 const struct of_device_id *of_id; 2878 struct gpio_descs *mode; 2879 u32 slave_offset, sliver_offset, slave_size; 2880 struct cpsw_common *cpsw; 2881 int ret = 0, i; 2882 int irq; 2883 2884 cpsw = devm_kzalloc(&pdev->dev, sizeof(struct cpsw_common), GFP_KERNEL); 2885 if (!cpsw) 2886 return -ENOMEM; 2887 2888 cpsw->dev = &pdev->dev; 2889 2890 ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES); 2891 if (!ndev) { 2892 dev_err(&pdev->dev, "error allocating net_device\n"); 2893 return -ENOMEM; 2894 } 2895 2896 platform_set_drvdata(pdev, ndev); 2897 priv = netdev_priv(ndev); 2898 priv->cpsw = cpsw; 2899 priv->ndev = ndev; 2900 priv->dev = &ndev->dev; 2901 priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG); 2902 cpsw->rx_packet_max = max(rx_packet_max, 128); 2903 2904 mode = devm_gpiod_get_array_optional(&pdev->dev, "mode", GPIOD_OUT_LOW); 2905 if (IS_ERR(mode)) { 2906 ret = PTR_ERR(mode); 2907 dev_err(&pdev->dev, "gpio request failed, ret %d\n", ret); 2908 goto clean_ndev_ret; 2909 } 2910 2911 /* 2912 * This may be required here for child devices. 2913 */ 2914 pm_runtime_enable(&pdev->dev); 2915 2916 /* Select default pin state */ 2917 pinctrl_pm_select_default_state(&pdev->dev); 2918 2919 /* Need to enable clocks with runtime PM api to access module 2920 * registers 2921 */ 2922 ret = pm_runtime_get_sync(&pdev->dev); 2923 if (ret < 0) { 2924 pm_runtime_put_noidle(&pdev->dev); 2925 goto clean_runtime_disable_ret; 2926 } 2927 2928 ret = cpsw_probe_dt(&cpsw->data, pdev); 2929 if (ret) 2930 goto clean_dt_ret; 2931 2932 data = &cpsw->data; 2933 cpsw->rx_ch_num = 1; 2934 cpsw->tx_ch_num = 1; 2935 2936 if (is_valid_ether_addr(data->slave_data[0].mac_addr)) { 2937 memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN); 2938 dev_info(&pdev->dev, "Detected MACID = %pM\n", priv->mac_addr); 2939 } else { 2940 eth_random_addr(priv->mac_addr); 2941 dev_info(&pdev->dev, "Random MACID = %pM\n", priv->mac_addr); 2942 } 2943 2944 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN); 2945 2946 cpsw->slaves = devm_kzalloc(&pdev->dev, 2947 sizeof(struct cpsw_slave) * data->slaves, 2948 GFP_KERNEL); 2949 if (!cpsw->slaves) { 2950 ret = -ENOMEM; 2951 goto clean_dt_ret; 2952 } 2953 for (i = 0; i < data->slaves; i++) 2954 cpsw->slaves[i].slave_num = i; 2955 2956 cpsw->slaves[0].ndev = ndev; 2957 priv->emac_port = 0; 2958 2959 clk = devm_clk_get(&pdev->dev, "fck"); 2960 if (IS_ERR(clk)) { 2961 dev_err(priv->dev, "fck is not found\n"); 2962 ret = -ENODEV; 2963 goto clean_dt_ret; 2964 } 2965 cpsw->bus_freq_mhz = clk_get_rate(clk) / 1000000; 2966 2967 ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2968 ss_regs = devm_ioremap_resource(&pdev->dev, ss_res); 2969 if (IS_ERR(ss_regs)) { 2970 ret = PTR_ERR(ss_regs); 2971 goto clean_dt_ret; 2972 } 2973 cpsw->regs = ss_regs; 2974 2975 cpsw->version = readl(&cpsw->regs->id_ver); 2976 2977 res = platform_get_resource(pdev, IORESOURCE_MEM, 1); 2978 cpsw->wr_regs = devm_ioremap_resource(&pdev->dev, res); 2979 if (IS_ERR(cpsw->wr_regs)) { 2980 ret = PTR_ERR(cpsw->wr_regs); 2981 goto clean_dt_ret; 2982 } 2983 2984 memset(&dma_params, 0, sizeof(dma_params)); 2985 memset(&ale_params, 0, sizeof(ale_params)); 2986 2987 switch (cpsw->version) { 2988 case CPSW_VERSION_1: 2989 cpsw->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET; 2990 cpts_regs = ss_regs + CPSW1_CPTS_OFFSET; 2991 cpsw->hw_stats = ss_regs + CPSW1_HW_STATS; 2992 dma_params.dmaregs = ss_regs + CPSW1_CPDMA_OFFSET; 2993 dma_params.txhdp = ss_regs + CPSW1_STATERAM_OFFSET; 2994 ale_params.ale_regs = ss_regs + CPSW1_ALE_OFFSET; 2995 slave_offset = CPSW1_SLAVE_OFFSET; 2996 slave_size = CPSW1_SLAVE_SIZE; 2997 sliver_offset = CPSW1_SLIVER_OFFSET; 2998 dma_params.desc_mem_phys = 0; 2999 break; 3000 case CPSW_VERSION_2: 3001 case CPSW_VERSION_3: 3002 case CPSW_VERSION_4: 3003 cpsw->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET; 3004 cpts_regs = ss_regs + CPSW2_CPTS_OFFSET; 3005 cpsw->hw_stats = ss_regs + CPSW2_HW_STATS; 3006 dma_params.dmaregs = ss_regs + CPSW2_CPDMA_OFFSET; 3007 dma_params.txhdp = ss_regs + CPSW2_STATERAM_OFFSET; 3008 ale_params.ale_regs = ss_regs + CPSW2_ALE_OFFSET; 3009 slave_offset = CPSW2_SLAVE_OFFSET; 3010 slave_size = CPSW2_SLAVE_SIZE; 3011 sliver_offset = CPSW2_SLIVER_OFFSET; 3012 dma_params.desc_mem_phys = 3013 (u32 __force) ss_res->start + CPSW2_BD_OFFSET; 3014 break; 3015 default: 3016 dev_err(priv->dev, "unknown version 0x%08x\n", cpsw->version); 3017 ret = -ENODEV; 3018 goto clean_dt_ret; 3019 } 3020 for (i = 0; i < cpsw->data.slaves; i++) { 3021 struct cpsw_slave *slave = &cpsw->slaves[i]; 3022 3023 cpsw_slave_init(slave, cpsw, slave_offset, sliver_offset); 3024 slave_offset += slave_size; 3025 sliver_offset += SLIVER_SIZE; 3026 } 3027 3028 dma_params.dev = &pdev->dev; 3029 dma_params.rxthresh = dma_params.dmaregs + CPDMA_RXTHRESH; 3030 dma_params.rxfree = dma_params.dmaregs + CPDMA_RXFREE; 3031 dma_params.rxhdp = dma_params.txhdp + CPDMA_RXHDP; 3032 dma_params.txcp = dma_params.txhdp + CPDMA_TXCP; 3033 dma_params.rxcp = dma_params.txhdp + CPDMA_RXCP; 3034 3035 dma_params.num_chan = data->channels; 3036 dma_params.has_soft_reset = true; 3037 dma_params.min_packet_size = CPSW_MIN_PACKET_SIZE; 3038 dma_params.desc_mem_size = data->bd_ram_size; 3039 dma_params.desc_align = 16; 3040 dma_params.has_ext_regs = true; 3041 dma_params.desc_hw_addr = dma_params.desc_mem_phys; 3042 dma_params.bus_freq_mhz = cpsw->bus_freq_mhz; 3043 dma_params.descs_pool_size = descs_pool_size; 3044 3045 cpsw->dma = cpdma_ctlr_create(&dma_params); 3046 if (!cpsw->dma) { 3047 dev_err(priv->dev, "error initializing dma\n"); 3048 ret = -ENOMEM; 3049 goto clean_dt_ret; 3050 } 3051 3052 cpsw->txv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_tx_handler, 0); 3053 cpsw->rxv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_rx_handler, 1); 3054 if (WARN_ON(!cpsw->rxv[0].ch || !cpsw->txv[0].ch)) { 3055 dev_err(priv->dev, "error initializing dma channels\n"); 3056 ret = -ENOMEM; 3057 goto clean_dma_ret; 3058 } 3059 3060 ale_params.dev = &pdev->dev; 3061 ale_params.ale_ageout = ale_ageout; 3062 ale_params.ale_entries = data->ale_entries; 3063 ale_params.ale_ports = data->slaves; 3064 3065 cpsw->ale = cpsw_ale_create(&ale_params); 3066 if (!cpsw->ale) { 3067 dev_err(priv->dev, "error initializing ale engine\n"); 3068 ret = -ENODEV; 3069 goto clean_dma_ret; 3070 } 3071 3072 cpsw->cpts = cpts_create(cpsw->dev, cpts_regs, cpsw->dev->of_node); 3073 if (IS_ERR(cpsw->cpts)) { 3074 ret = PTR_ERR(cpsw->cpts); 3075 goto clean_ale_ret; 3076 } 3077 3078 ndev->irq = platform_get_irq(pdev, 1); 3079 if (ndev->irq < 0) { 3080 dev_err(priv->dev, "error getting irq resource\n"); 3081 ret = ndev->irq; 3082 goto clean_ale_ret; 3083 } 3084 3085 of_id = of_match_device(cpsw_of_mtable, &pdev->dev); 3086 if (of_id) { 3087 pdev->id_entry = of_id->data; 3088 if (pdev->id_entry->driver_data) 3089 cpsw->quirk_irq = true; 3090 } 3091 3092 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 3093 3094 ndev->netdev_ops = &cpsw_netdev_ops; 3095 ndev->ethtool_ops = &cpsw_ethtool_ops; 3096 netif_napi_add(ndev, &cpsw->napi_rx, cpsw_rx_poll, CPSW_POLL_WEIGHT); 3097 netif_tx_napi_add(ndev, &cpsw->napi_tx, cpsw_tx_poll, CPSW_POLL_WEIGHT); 3098 cpsw_split_res(ndev); 3099 3100 /* register the network device */ 3101 SET_NETDEV_DEV(ndev, &pdev->dev); 3102 ret = register_netdev(ndev); 3103 if (ret) { 3104 dev_err(priv->dev, "error registering net device\n"); 3105 ret = -ENODEV; 3106 goto clean_ale_ret; 3107 } 3108 3109 if (cpsw->data.dual_emac) { 3110 ret = cpsw_probe_dual_emac(priv); 3111 if (ret) { 3112 cpsw_err(priv, probe, "error probe slave 2 emac interface\n"); 3113 goto clean_unregister_netdev_ret; 3114 } 3115 } 3116 3117 /* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and 3118 * MISC IRQs which are always kept disabled with this driver so 3119 * we will not request them. 3120 * 3121 * If anyone wants to implement support for those, make sure to 3122 * first request and append them to irqs_table array. 3123 */ 3124 3125 /* RX IRQ */ 3126 irq = platform_get_irq(pdev, 1); 3127 if (irq < 0) { 3128 ret = irq; 3129 goto clean_ale_ret; 3130 } 3131 3132 cpsw->irqs_table[0] = irq; 3133 ret = devm_request_irq(&pdev->dev, irq, cpsw_rx_interrupt, 3134 0, dev_name(&pdev->dev), cpsw); 3135 if (ret < 0) { 3136 dev_err(priv->dev, "error attaching irq (%d)\n", ret); 3137 goto clean_ale_ret; 3138 } 3139 3140 /* TX IRQ */ 3141 irq = platform_get_irq(pdev, 2); 3142 if (irq < 0) { 3143 ret = irq; 3144 goto clean_ale_ret; 3145 } 3146 3147 cpsw->irqs_table[1] = irq; 3148 ret = devm_request_irq(&pdev->dev, irq, cpsw_tx_interrupt, 3149 0, dev_name(&pdev->dev), cpsw); 3150 if (ret < 0) { 3151 dev_err(priv->dev, "error attaching irq (%d)\n", ret); 3152 goto clean_ale_ret; 3153 } 3154 3155 cpsw_notice(priv, probe, 3156 "initialized device (regs %pa, irq %d, pool size %d)\n", 3157 &ss_res->start, ndev->irq, dma_params.descs_pool_size); 3158 3159 pm_runtime_put(&pdev->dev); 3160 3161 return 0; 3162 3163 clean_unregister_netdev_ret: 3164 unregister_netdev(ndev); 3165 clean_ale_ret: 3166 cpsw_ale_destroy(cpsw->ale); 3167 clean_dma_ret: 3168 cpdma_ctlr_destroy(cpsw->dma); 3169 clean_dt_ret: 3170 cpsw_remove_dt(pdev); 3171 pm_runtime_put_sync(&pdev->dev); 3172 clean_runtime_disable_ret: 3173 pm_runtime_disable(&pdev->dev); 3174 clean_ndev_ret: 3175 free_netdev(priv->ndev); 3176 return ret; 3177 } 3178 3179 static int cpsw_remove(struct platform_device *pdev) 3180 { 3181 struct net_device *ndev = platform_get_drvdata(pdev); 3182 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 3183 int ret; 3184 3185 ret = pm_runtime_get_sync(&pdev->dev); 3186 if (ret < 0) { 3187 pm_runtime_put_noidle(&pdev->dev); 3188 return ret; 3189 } 3190 3191 if (cpsw->data.dual_emac) 3192 unregister_netdev(cpsw->slaves[1].ndev); 3193 unregister_netdev(ndev); 3194 3195 cpts_release(cpsw->cpts); 3196 cpsw_ale_destroy(cpsw->ale); 3197 cpdma_ctlr_destroy(cpsw->dma); 3198 cpsw_remove_dt(pdev); 3199 pm_runtime_put_sync(&pdev->dev); 3200 pm_runtime_disable(&pdev->dev); 3201 if (cpsw->data.dual_emac) 3202 free_netdev(cpsw->slaves[1].ndev); 3203 free_netdev(ndev); 3204 return 0; 3205 } 3206 3207 #ifdef CONFIG_PM_SLEEP 3208 static int cpsw_suspend(struct device *dev) 3209 { 3210 struct platform_device *pdev = to_platform_device(dev); 3211 struct net_device *ndev = platform_get_drvdata(pdev); 3212 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 3213 3214 if (cpsw->data.dual_emac) { 3215 int i; 3216 3217 for (i = 0; i < cpsw->data.slaves; i++) { 3218 if (netif_running(cpsw->slaves[i].ndev)) 3219 cpsw_ndo_stop(cpsw->slaves[i].ndev); 3220 } 3221 } else { 3222 if (netif_running(ndev)) 3223 cpsw_ndo_stop(ndev); 3224 } 3225 3226 /* Select sleep pin state */ 3227 pinctrl_pm_select_sleep_state(dev); 3228 3229 return 0; 3230 } 3231 3232 static int cpsw_resume(struct device *dev) 3233 { 3234 struct platform_device *pdev = to_platform_device(dev); 3235 struct net_device *ndev = platform_get_drvdata(pdev); 3236 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 3237 3238 /* Select default pin state */ 3239 pinctrl_pm_select_default_state(dev); 3240 3241 /* shut up ASSERT_RTNL() warning in netif_set_real_num_tx/rx_queues */ 3242 rtnl_lock(); 3243 if (cpsw->data.dual_emac) { 3244 int i; 3245 3246 for (i = 0; i < cpsw->data.slaves; i++) { 3247 if (netif_running(cpsw->slaves[i].ndev)) 3248 cpsw_ndo_open(cpsw->slaves[i].ndev); 3249 } 3250 } else { 3251 if (netif_running(ndev)) 3252 cpsw_ndo_open(ndev); 3253 } 3254 rtnl_unlock(); 3255 3256 return 0; 3257 } 3258 #endif 3259 3260 static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume); 3261 3262 static struct platform_driver cpsw_driver = { 3263 .driver = { 3264 .name = "cpsw", 3265 .pm = &cpsw_pm_ops, 3266 .of_match_table = cpsw_of_mtable, 3267 }, 3268 .probe = cpsw_probe, 3269 .remove = cpsw_remove, 3270 }; 3271 3272 module_platform_driver(cpsw_driver); 3273 3274 MODULE_LICENSE("GPL"); 3275 MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>"); 3276 MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>"); 3277 MODULE_DESCRIPTION("TI CPSW Ethernet driver"); 3278