1 /* 2 * Texas Instruments Ethernet Switch Driver 3 * 4 * Copyright (C) 2012 Texas Instruments 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License as 8 * published by the Free Software Foundation version 2. 9 * 10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any 11 * kind, whether express or implied; without even the implied warranty 12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/io.h> 18 #include <linux/clk.h> 19 #include <linux/timer.h> 20 #include <linux/module.h> 21 #include <linux/platform_device.h> 22 #include <linux/irqreturn.h> 23 #include <linux/interrupt.h> 24 #include <linux/if_ether.h> 25 #include <linux/etherdevice.h> 26 #include <linux/netdevice.h> 27 #include <linux/net_tstamp.h> 28 #include <linux/phy.h> 29 #include <linux/workqueue.h> 30 #include <linux/delay.h> 31 #include <linux/pm_runtime.h> 32 #include <linux/gpio.h> 33 #include <linux/of.h> 34 #include <linux/of_mdio.h> 35 #include <linux/of_net.h> 36 #include <linux/of_device.h> 37 #include <linux/if_vlan.h> 38 39 #include <linux/pinctrl/consumer.h> 40 41 #include "cpsw.h" 42 #include "cpsw_ale.h" 43 #include "cpts.h" 44 #include "davinci_cpdma.h" 45 46 #define CPSW_DEBUG (NETIF_MSG_HW | NETIF_MSG_WOL | \ 47 NETIF_MSG_DRV | NETIF_MSG_LINK | \ 48 NETIF_MSG_IFUP | NETIF_MSG_INTR | \ 49 NETIF_MSG_PROBE | NETIF_MSG_TIMER | \ 50 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | \ 51 NETIF_MSG_TX_ERR | NETIF_MSG_TX_DONE | \ 52 NETIF_MSG_PKTDATA | NETIF_MSG_TX_QUEUED | \ 53 NETIF_MSG_RX_STATUS) 54 55 #define cpsw_info(priv, type, format, ...) \ 56 do { \ 57 if (netif_msg_##type(priv) && net_ratelimit()) \ 58 dev_info(priv->dev, format, ## __VA_ARGS__); \ 59 } while (0) 60 61 #define cpsw_err(priv, type, format, ...) \ 62 do { \ 63 if (netif_msg_##type(priv) && net_ratelimit()) \ 64 dev_err(priv->dev, format, ## __VA_ARGS__); \ 65 } while (0) 66 67 #define cpsw_dbg(priv, type, format, ...) \ 68 do { \ 69 if (netif_msg_##type(priv) && net_ratelimit()) \ 70 dev_dbg(priv->dev, format, ## __VA_ARGS__); \ 71 } while (0) 72 73 #define cpsw_notice(priv, type, format, ...) \ 74 do { \ 75 if (netif_msg_##type(priv) && net_ratelimit()) \ 76 dev_notice(priv->dev, format, ## __VA_ARGS__); \ 77 } while (0) 78 79 #define ALE_ALL_PORTS 0x7 80 81 #define CPSW_MAJOR_VERSION(reg) (reg >> 8 & 0x7) 82 #define CPSW_MINOR_VERSION(reg) (reg & 0xff) 83 #define CPSW_RTL_VERSION(reg) ((reg >> 11) & 0x1f) 84 85 #define CPSW_VERSION_1 0x19010a 86 #define CPSW_VERSION_2 0x19010c 87 #define CPSW_VERSION_3 0x19010f 88 #define CPSW_VERSION_4 0x190112 89 90 #define HOST_PORT_NUM 0 91 #define CPSW_ALE_PORTS_NUM 3 92 #define SLIVER_SIZE 0x40 93 94 #define CPSW1_HOST_PORT_OFFSET 0x028 95 #define CPSW1_SLAVE_OFFSET 0x050 96 #define CPSW1_SLAVE_SIZE 0x040 97 #define CPSW1_CPDMA_OFFSET 0x100 98 #define CPSW1_STATERAM_OFFSET 0x200 99 #define CPSW1_HW_STATS 0x400 100 #define CPSW1_CPTS_OFFSET 0x500 101 #define CPSW1_ALE_OFFSET 0x600 102 #define CPSW1_SLIVER_OFFSET 0x700 103 104 #define CPSW2_HOST_PORT_OFFSET 0x108 105 #define CPSW2_SLAVE_OFFSET 0x200 106 #define CPSW2_SLAVE_SIZE 0x100 107 #define CPSW2_CPDMA_OFFSET 0x800 108 #define CPSW2_HW_STATS 0x900 109 #define CPSW2_STATERAM_OFFSET 0xa00 110 #define CPSW2_CPTS_OFFSET 0xc00 111 #define CPSW2_ALE_OFFSET 0xd00 112 #define CPSW2_SLIVER_OFFSET 0xd80 113 #define CPSW2_BD_OFFSET 0x2000 114 115 #define CPDMA_RXTHRESH 0x0c0 116 #define CPDMA_RXFREE 0x0e0 117 #define CPDMA_TXHDP 0x00 118 #define CPDMA_RXHDP 0x20 119 #define CPDMA_TXCP 0x40 120 #define CPDMA_RXCP 0x60 121 122 #define CPSW_POLL_WEIGHT 64 123 #define CPSW_RX_VLAN_ENCAP_HDR_SIZE 4 124 #define CPSW_MIN_PACKET_SIZE (VLAN_ETH_ZLEN) 125 #define CPSW_MAX_PACKET_SIZE (VLAN_ETH_FRAME_LEN +\ 126 ETH_FCS_LEN +\ 127 CPSW_RX_VLAN_ENCAP_HDR_SIZE) 128 129 #define RX_PRIORITY_MAPPING 0x76543210 130 #define TX_PRIORITY_MAPPING 0x33221100 131 #define CPDMA_TX_PRIORITY_MAP 0x01234567 132 133 #define CPSW_VLAN_AWARE BIT(1) 134 #define CPSW_RX_VLAN_ENCAP BIT(2) 135 #define CPSW_ALE_VLAN_AWARE 1 136 137 #define CPSW_FIFO_NORMAL_MODE (0 << 16) 138 #define CPSW_FIFO_DUAL_MAC_MODE (1 << 16) 139 #define CPSW_FIFO_RATE_LIMIT_MODE (2 << 16) 140 141 #define CPSW_INTPACEEN (0x3f << 16) 142 #define CPSW_INTPRESCALE_MASK (0x7FF << 0) 143 #define CPSW_CMINTMAX_CNT 63 144 #define CPSW_CMINTMIN_CNT 2 145 #define CPSW_CMINTMAX_INTVL (1000 / CPSW_CMINTMIN_CNT) 146 #define CPSW_CMINTMIN_INTVL ((1000 / CPSW_CMINTMAX_CNT) + 1) 147 148 #define cpsw_slave_index(cpsw, priv) \ 149 ((cpsw->data.dual_emac) ? priv->emac_port : \ 150 cpsw->data.active_slave) 151 #define IRQ_NUM 2 152 #define CPSW_MAX_QUEUES 8 153 #define CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT 256 154 155 #define CPSW_RX_VLAN_ENCAP_HDR_PRIO_SHIFT 29 156 #define CPSW_RX_VLAN_ENCAP_HDR_PRIO_MSK GENMASK(2, 0) 157 #define CPSW_RX_VLAN_ENCAP_HDR_VID_SHIFT 16 158 #define CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_SHIFT 8 159 #define CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_MSK GENMASK(1, 0) 160 enum { 161 CPSW_RX_VLAN_ENCAP_HDR_PKT_VLAN_TAG = 0, 162 CPSW_RX_VLAN_ENCAP_HDR_PKT_RESERV, 163 CPSW_RX_VLAN_ENCAP_HDR_PKT_PRIO_TAG, 164 CPSW_RX_VLAN_ENCAP_HDR_PKT_UNTAG, 165 }; 166 167 static int debug_level; 168 module_param(debug_level, int, 0); 169 MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)"); 170 171 static int ale_ageout = 10; 172 module_param(ale_ageout, int, 0); 173 MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)"); 174 175 static int rx_packet_max = CPSW_MAX_PACKET_SIZE; 176 module_param(rx_packet_max, int, 0); 177 MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)"); 178 179 static int descs_pool_size = CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT; 180 module_param(descs_pool_size, int, 0444); 181 MODULE_PARM_DESC(descs_pool_size, "Number of CPDMA CPPI descriptors in pool"); 182 183 struct cpsw_wr_regs { 184 u32 id_ver; 185 u32 soft_reset; 186 u32 control; 187 u32 int_control; 188 u32 rx_thresh_en; 189 u32 rx_en; 190 u32 tx_en; 191 u32 misc_en; 192 u32 mem_allign1[8]; 193 u32 rx_thresh_stat; 194 u32 rx_stat; 195 u32 tx_stat; 196 u32 misc_stat; 197 u32 mem_allign2[8]; 198 u32 rx_imax; 199 u32 tx_imax; 200 201 }; 202 203 struct cpsw_ss_regs { 204 u32 id_ver; 205 u32 control; 206 u32 soft_reset; 207 u32 stat_port_en; 208 u32 ptype; 209 u32 soft_idle; 210 u32 thru_rate; 211 u32 gap_thresh; 212 u32 tx_start_wds; 213 u32 flow_control; 214 u32 vlan_ltype; 215 u32 ts_ltype; 216 u32 dlr_ltype; 217 }; 218 219 /* CPSW_PORT_V1 */ 220 #define CPSW1_MAX_BLKS 0x00 /* Maximum FIFO Blocks */ 221 #define CPSW1_BLK_CNT 0x04 /* FIFO Block Usage Count (Read Only) */ 222 #define CPSW1_TX_IN_CTL 0x08 /* Transmit FIFO Control */ 223 #define CPSW1_PORT_VLAN 0x0c /* VLAN Register */ 224 #define CPSW1_TX_PRI_MAP 0x10 /* Tx Header Priority to Switch Pri Mapping */ 225 #define CPSW1_TS_CTL 0x14 /* Time Sync Control */ 226 #define CPSW1_TS_SEQ_LTYPE 0x18 /* Time Sync Sequence ID Offset and Msg Type */ 227 #define CPSW1_TS_VLAN 0x1c /* Time Sync VLAN1 and VLAN2 */ 228 229 /* CPSW_PORT_V2 */ 230 #define CPSW2_CONTROL 0x00 /* Control Register */ 231 #define CPSW2_MAX_BLKS 0x08 /* Maximum FIFO Blocks */ 232 #define CPSW2_BLK_CNT 0x0c /* FIFO Block Usage Count (Read Only) */ 233 #define CPSW2_TX_IN_CTL 0x10 /* Transmit FIFO Control */ 234 #define CPSW2_PORT_VLAN 0x14 /* VLAN Register */ 235 #define CPSW2_TX_PRI_MAP 0x18 /* Tx Header Priority to Switch Pri Mapping */ 236 #define CPSW2_TS_SEQ_MTYPE 0x1c /* Time Sync Sequence ID Offset and Msg Type */ 237 238 /* CPSW_PORT_V1 and V2 */ 239 #define SA_LO 0x20 /* CPGMAC_SL Source Address Low */ 240 #define SA_HI 0x24 /* CPGMAC_SL Source Address High */ 241 #define SEND_PERCENT 0x28 /* Transmit Queue Send Percentages */ 242 243 /* CPSW_PORT_V2 only */ 244 #define RX_DSCP_PRI_MAP0 0x30 /* Rx DSCP Priority to Rx Packet Mapping */ 245 #define RX_DSCP_PRI_MAP1 0x34 /* Rx DSCP Priority to Rx Packet Mapping */ 246 #define RX_DSCP_PRI_MAP2 0x38 /* Rx DSCP Priority to Rx Packet Mapping */ 247 #define RX_DSCP_PRI_MAP3 0x3c /* Rx DSCP Priority to Rx Packet Mapping */ 248 #define RX_DSCP_PRI_MAP4 0x40 /* Rx DSCP Priority to Rx Packet Mapping */ 249 #define RX_DSCP_PRI_MAP5 0x44 /* Rx DSCP Priority to Rx Packet Mapping */ 250 #define RX_DSCP_PRI_MAP6 0x48 /* Rx DSCP Priority to Rx Packet Mapping */ 251 #define RX_DSCP_PRI_MAP7 0x4c /* Rx DSCP Priority to Rx Packet Mapping */ 252 253 /* Bit definitions for the CPSW2_CONTROL register */ 254 #define PASS_PRI_TAGGED (1<<24) /* Pass Priority Tagged */ 255 #define VLAN_LTYPE2_EN (1<<21) /* VLAN LTYPE 2 enable */ 256 #define VLAN_LTYPE1_EN (1<<20) /* VLAN LTYPE 1 enable */ 257 #define DSCP_PRI_EN (1<<16) /* DSCP Priority Enable */ 258 #define TS_320 (1<<14) /* Time Sync Dest Port 320 enable */ 259 #define TS_319 (1<<13) /* Time Sync Dest Port 319 enable */ 260 #define TS_132 (1<<12) /* Time Sync Dest IP Addr 132 enable */ 261 #define TS_131 (1<<11) /* Time Sync Dest IP Addr 131 enable */ 262 #define TS_130 (1<<10) /* Time Sync Dest IP Addr 130 enable */ 263 #define TS_129 (1<<9) /* Time Sync Dest IP Addr 129 enable */ 264 #define TS_TTL_NONZERO (1<<8) /* Time Sync Time To Live Non-zero enable */ 265 #define TS_ANNEX_F_EN (1<<6) /* Time Sync Annex F enable */ 266 #define TS_ANNEX_D_EN (1<<4) /* Time Sync Annex D enable */ 267 #define TS_LTYPE2_EN (1<<3) /* Time Sync LTYPE 2 enable */ 268 #define TS_LTYPE1_EN (1<<2) /* Time Sync LTYPE 1 enable */ 269 #define TS_TX_EN (1<<1) /* Time Sync Transmit Enable */ 270 #define TS_RX_EN (1<<0) /* Time Sync Receive Enable */ 271 272 #define CTRL_V2_TS_BITS \ 273 (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\ 274 TS_TTL_NONZERO | TS_ANNEX_D_EN | TS_LTYPE1_EN) 275 276 #define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN) 277 #define CTRL_V2_TX_TS_BITS (CTRL_V2_TS_BITS | TS_TX_EN) 278 #define CTRL_V2_RX_TS_BITS (CTRL_V2_TS_BITS | TS_RX_EN) 279 280 281 #define CTRL_V3_TS_BITS \ 282 (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\ 283 TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\ 284 TS_LTYPE1_EN) 285 286 #define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN) 287 #define CTRL_V3_TX_TS_BITS (CTRL_V3_TS_BITS | TS_TX_EN) 288 #define CTRL_V3_RX_TS_BITS (CTRL_V3_TS_BITS | TS_RX_EN) 289 290 /* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */ 291 #define TS_SEQ_ID_OFFSET_SHIFT (16) /* Time Sync Sequence ID Offset */ 292 #define TS_SEQ_ID_OFFSET_MASK (0x3f) 293 #define TS_MSG_TYPE_EN_SHIFT (0) /* Time Sync Message Type Enable */ 294 #define TS_MSG_TYPE_EN_MASK (0xffff) 295 296 /* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */ 297 #define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3)) 298 299 /* Bit definitions for the CPSW1_TS_CTL register */ 300 #define CPSW_V1_TS_RX_EN BIT(0) 301 #define CPSW_V1_TS_TX_EN BIT(4) 302 #define CPSW_V1_MSG_TYPE_OFS 16 303 304 /* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */ 305 #define CPSW_V1_SEQ_ID_OFS_SHIFT 16 306 307 #define CPSW_MAX_BLKS_TX 15 308 #define CPSW_MAX_BLKS_TX_SHIFT 4 309 #define CPSW_MAX_BLKS_RX 5 310 311 struct cpsw_host_regs { 312 u32 max_blks; 313 u32 blk_cnt; 314 u32 tx_in_ctl; 315 u32 port_vlan; 316 u32 tx_pri_map; 317 u32 cpdma_tx_pri_map; 318 u32 cpdma_rx_chan_map; 319 }; 320 321 struct cpsw_sliver_regs { 322 u32 id_ver; 323 u32 mac_control; 324 u32 mac_status; 325 u32 soft_reset; 326 u32 rx_maxlen; 327 u32 __reserved_0; 328 u32 rx_pause; 329 u32 tx_pause; 330 u32 __reserved_1; 331 u32 rx_pri_map; 332 }; 333 334 struct cpsw_hw_stats { 335 u32 rxgoodframes; 336 u32 rxbroadcastframes; 337 u32 rxmulticastframes; 338 u32 rxpauseframes; 339 u32 rxcrcerrors; 340 u32 rxaligncodeerrors; 341 u32 rxoversizedframes; 342 u32 rxjabberframes; 343 u32 rxundersizedframes; 344 u32 rxfragments; 345 u32 __pad_0[2]; 346 u32 rxoctets; 347 u32 txgoodframes; 348 u32 txbroadcastframes; 349 u32 txmulticastframes; 350 u32 txpauseframes; 351 u32 txdeferredframes; 352 u32 txcollisionframes; 353 u32 txsinglecollframes; 354 u32 txmultcollframes; 355 u32 txexcessivecollisions; 356 u32 txlatecollisions; 357 u32 txunderrun; 358 u32 txcarriersenseerrors; 359 u32 txoctets; 360 u32 octetframes64; 361 u32 octetframes65t127; 362 u32 octetframes128t255; 363 u32 octetframes256t511; 364 u32 octetframes512t1023; 365 u32 octetframes1024tup; 366 u32 netoctets; 367 u32 rxsofoverruns; 368 u32 rxmofoverruns; 369 u32 rxdmaoverruns; 370 }; 371 372 struct cpsw_slave_data { 373 struct device_node *phy_node; 374 char phy_id[MII_BUS_ID_SIZE]; 375 int phy_if; 376 u8 mac_addr[ETH_ALEN]; 377 u16 dual_emac_res_vlan; /* Reserved VLAN for DualEMAC */ 378 }; 379 380 struct cpsw_platform_data { 381 struct cpsw_slave_data *slave_data; 382 u32 ss_reg_ofs; /* Subsystem control register offset */ 383 u32 channels; /* number of cpdma channels (symmetric) */ 384 u32 slaves; /* number of slave cpgmac ports */ 385 u32 active_slave; /* time stamping, ethtool and SIOCGMIIPHY slave */ 386 u32 ale_entries; /* ale table size */ 387 u32 bd_ram_size; /*buffer descriptor ram size */ 388 u32 mac_control; /* Mac control register */ 389 u16 default_vlan; /* Def VLAN for ALE lookup in VLAN aware mode*/ 390 bool dual_emac; /* Enable Dual EMAC mode */ 391 }; 392 393 struct cpsw_slave { 394 void __iomem *regs; 395 struct cpsw_sliver_regs __iomem *sliver; 396 int slave_num; 397 u32 mac_control; 398 struct cpsw_slave_data *data; 399 struct phy_device *phy; 400 struct net_device *ndev; 401 u32 port_vlan; 402 }; 403 404 static inline u32 slave_read(struct cpsw_slave *slave, u32 offset) 405 { 406 return readl_relaxed(slave->regs + offset); 407 } 408 409 static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset) 410 { 411 writel_relaxed(val, slave->regs + offset); 412 } 413 414 struct cpsw_vector { 415 struct cpdma_chan *ch; 416 int budget; 417 }; 418 419 struct cpsw_common { 420 struct device *dev; 421 struct cpsw_platform_data data; 422 struct napi_struct napi_rx; 423 struct napi_struct napi_tx; 424 struct cpsw_ss_regs __iomem *regs; 425 struct cpsw_wr_regs __iomem *wr_regs; 426 u8 __iomem *hw_stats; 427 struct cpsw_host_regs __iomem *host_port_regs; 428 u32 version; 429 u32 coal_intvl; 430 u32 bus_freq_mhz; 431 int rx_packet_max; 432 struct cpsw_slave *slaves; 433 struct cpdma_ctlr *dma; 434 struct cpsw_vector txv[CPSW_MAX_QUEUES]; 435 struct cpsw_vector rxv[CPSW_MAX_QUEUES]; 436 struct cpsw_ale *ale; 437 bool quirk_irq; 438 bool rx_irq_disabled; 439 bool tx_irq_disabled; 440 u32 irqs_table[IRQ_NUM]; 441 struct cpts *cpts; 442 int rx_ch_num, tx_ch_num; 443 int speed; 444 int usage_count; 445 }; 446 447 struct cpsw_priv { 448 struct net_device *ndev; 449 struct device *dev; 450 u32 msg_enable; 451 u8 mac_addr[ETH_ALEN]; 452 bool rx_pause; 453 bool tx_pause; 454 u32 emac_port; 455 struct cpsw_common *cpsw; 456 }; 457 458 struct cpsw_stats { 459 char stat_string[ETH_GSTRING_LEN]; 460 int type; 461 int sizeof_stat; 462 int stat_offset; 463 }; 464 465 enum { 466 CPSW_STATS, 467 CPDMA_RX_STATS, 468 CPDMA_TX_STATS, 469 }; 470 471 #define CPSW_STAT(m) CPSW_STATS, \ 472 sizeof(((struct cpsw_hw_stats *)0)->m), \ 473 offsetof(struct cpsw_hw_stats, m) 474 #define CPDMA_RX_STAT(m) CPDMA_RX_STATS, \ 475 sizeof(((struct cpdma_chan_stats *)0)->m), \ 476 offsetof(struct cpdma_chan_stats, m) 477 #define CPDMA_TX_STAT(m) CPDMA_TX_STATS, \ 478 sizeof(((struct cpdma_chan_stats *)0)->m), \ 479 offsetof(struct cpdma_chan_stats, m) 480 481 static const struct cpsw_stats cpsw_gstrings_stats[] = { 482 { "Good Rx Frames", CPSW_STAT(rxgoodframes) }, 483 { "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) }, 484 { "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) }, 485 { "Pause Rx Frames", CPSW_STAT(rxpauseframes) }, 486 { "Rx CRC Errors", CPSW_STAT(rxcrcerrors) }, 487 { "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) }, 488 { "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) }, 489 { "Rx Jabbers", CPSW_STAT(rxjabberframes) }, 490 { "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) }, 491 { "Rx Fragments", CPSW_STAT(rxfragments) }, 492 { "Rx Octets", CPSW_STAT(rxoctets) }, 493 { "Good Tx Frames", CPSW_STAT(txgoodframes) }, 494 { "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) }, 495 { "Multicast Tx Frames", CPSW_STAT(txmulticastframes) }, 496 { "Pause Tx Frames", CPSW_STAT(txpauseframes) }, 497 { "Deferred Tx Frames", CPSW_STAT(txdeferredframes) }, 498 { "Collisions", CPSW_STAT(txcollisionframes) }, 499 { "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) }, 500 { "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) }, 501 { "Excessive Collisions", CPSW_STAT(txexcessivecollisions) }, 502 { "Late Collisions", CPSW_STAT(txlatecollisions) }, 503 { "Tx Underrun", CPSW_STAT(txunderrun) }, 504 { "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) }, 505 { "Tx Octets", CPSW_STAT(txoctets) }, 506 { "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) }, 507 { "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) }, 508 { "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) }, 509 { "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) }, 510 { "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) }, 511 { "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) }, 512 { "Net Octets", CPSW_STAT(netoctets) }, 513 { "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) }, 514 { "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) }, 515 { "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) }, 516 }; 517 518 static const struct cpsw_stats cpsw_gstrings_ch_stats[] = { 519 { "head_enqueue", CPDMA_RX_STAT(head_enqueue) }, 520 { "tail_enqueue", CPDMA_RX_STAT(tail_enqueue) }, 521 { "pad_enqueue", CPDMA_RX_STAT(pad_enqueue) }, 522 { "misqueued", CPDMA_RX_STAT(misqueued) }, 523 { "desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) }, 524 { "pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) }, 525 { "runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) }, 526 { "runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) }, 527 { "empty_dequeue", CPDMA_RX_STAT(empty_dequeue) }, 528 { "busy_dequeue", CPDMA_RX_STAT(busy_dequeue) }, 529 { "good_dequeue", CPDMA_RX_STAT(good_dequeue) }, 530 { "requeue", CPDMA_RX_STAT(requeue) }, 531 { "teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) }, 532 }; 533 534 #define CPSW_STATS_COMMON_LEN ARRAY_SIZE(cpsw_gstrings_stats) 535 #define CPSW_STATS_CH_LEN ARRAY_SIZE(cpsw_gstrings_ch_stats) 536 537 #define ndev_to_cpsw(ndev) (((struct cpsw_priv *)netdev_priv(ndev))->cpsw) 538 #define napi_to_cpsw(napi) container_of(napi, struct cpsw_common, napi) 539 #define for_each_slave(priv, func, arg...) \ 540 do { \ 541 struct cpsw_slave *slave; \ 542 struct cpsw_common *cpsw = (priv)->cpsw; \ 543 int n; \ 544 if (cpsw->data.dual_emac) \ 545 (func)((cpsw)->slaves + priv->emac_port, ##arg);\ 546 else \ 547 for (n = cpsw->data.slaves, \ 548 slave = cpsw->slaves; \ 549 n; n--) \ 550 (func)(slave++, ##arg); \ 551 } while (0) 552 553 #define cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb) \ 554 do { \ 555 if (!cpsw->data.dual_emac) \ 556 break; \ 557 if (CPDMA_RX_SOURCE_PORT(status) == 1) { \ 558 ndev = cpsw->slaves[0].ndev; \ 559 skb->dev = ndev; \ 560 } else if (CPDMA_RX_SOURCE_PORT(status) == 2) { \ 561 ndev = cpsw->slaves[1].ndev; \ 562 skb->dev = ndev; \ 563 } \ 564 } while (0) 565 #define cpsw_add_mcast(cpsw, priv, addr) \ 566 do { \ 567 if (cpsw->data.dual_emac) { \ 568 struct cpsw_slave *slave = cpsw->slaves + \ 569 priv->emac_port; \ 570 int slave_port = cpsw_get_slave_port( \ 571 slave->slave_num); \ 572 cpsw_ale_add_mcast(cpsw->ale, addr, \ 573 1 << slave_port | ALE_PORT_HOST, \ 574 ALE_VLAN, slave->port_vlan, 0); \ 575 } else { \ 576 cpsw_ale_add_mcast(cpsw->ale, addr, \ 577 ALE_ALL_PORTS, \ 578 0, 0, 0); \ 579 } \ 580 } while (0) 581 582 static inline int cpsw_get_slave_port(u32 slave_num) 583 { 584 return slave_num + 1; 585 } 586 587 static void cpsw_set_promiscious(struct net_device *ndev, bool enable) 588 { 589 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 590 struct cpsw_ale *ale = cpsw->ale; 591 int i; 592 593 if (cpsw->data.dual_emac) { 594 bool flag = false; 595 596 /* Enabling promiscuous mode for one interface will be 597 * common for both the interface as the interface shares 598 * the same hardware resource. 599 */ 600 for (i = 0; i < cpsw->data.slaves; i++) 601 if (cpsw->slaves[i].ndev->flags & IFF_PROMISC) 602 flag = true; 603 604 if (!enable && flag) { 605 enable = true; 606 dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n"); 607 } 608 609 if (enable) { 610 /* Enable Bypass */ 611 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1); 612 613 dev_dbg(&ndev->dev, "promiscuity enabled\n"); 614 } else { 615 /* Disable Bypass */ 616 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0); 617 dev_dbg(&ndev->dev, "promiscuity disabled\n"); 618 } 619 } else { 620 if (enable) { 621 unsigned long timeout = jiffies + HZ; 622 623 /* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */ 624 for (i = 0; i <= cpsw->data.slaves; i++) { 625 cpsw_ale_control_set(ale, i, 626 ALE_PORT_NOLEARN, 1); 627 cpsw_ale_control_set(ale, i, 628 ALE_PORT_NO_SA_UPDATE, 1); 629 } 630 631 /* Clear All Untouched entries */ 632 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1); 633 do { 634 cpu_relax(); 635 if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT)) 636 break; 637 } while (time_after(timeout, jiffies)); 638 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1); 639 640 /* Clear all mcast from ALE */ 641 cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS, -1); 642 643 /* Flood All Unicast Packets to Host port */ 644 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1); 645 dev_dbg(&ndev->dev, "promiscuity enabled\n"); 646 } else { 647 /* Don't Flood All Unicast Packets to Host port */ 648 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0); 649 650 /* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */ 651 for (i = 0; i <= cpsw->data.slaves; i++) { 652 cpsw_ale_control_set(ale, i, 653 ALE_PORT_NOLEARN, 0); 654 cpsw_ale_control_set(ale, i, 655 ALE_PORT_NO_SA_UPDATE, 0); 656 } 657 dev_dbg(&ndev->dev, "promiscuity disabled\n"); 658 } 659 } 660 } 661 662 static void cpsw_ndo_set_rx_mode(struct net_device *ndev) 663 { 664 struct cpsw_priv *priv = netdev_priv(ndev); 665 struct cpsw_common *cpsw = priv->cpsw; 666 int vid; 667 668 if (cpsw->data.dual_emac) 669 vid = cpsw->slaves[priv->emac_port].port_vlan; 670 else 671 vid = cpsw->data.default_vlan; 672 673 if (ndev->flags & IFF_PROMISC) { 674 /* Enable promiscuous mode */ 675 cpsw_set_promiscious(ndev, true); 676 cpsw_ale_set_allmulti(cpsw->ale, IFF_ALLMULTI); 677 return; 678 } else { 679 /* Disable promiscuous mode */ 680 cpsw_set_promiscious(ndev, false); 681 } 682 683 /* Restore allmulti on vlans if necessary */ 684 cpsw_ale_set_allmulti(cpsw->ale, priv->ndev->flags & IFF_ALLMULTI); 685 686 /* Clear all mcast from ALE */ 687 cpsw_ale_flush_multicast(cpsw->ale, ALE_ALL_PORTS, vid); 688 689 if (!netdev_mc_empty(ndev)) { 690 struct netdev_hw_addr *ha; 691 692 /* program multicast address list into ALE register */ 693 netdev_for_each_mc_addr(ha, ndev) { 694 cpsw_add_mcast(cpsw, priv, (u8 *)ha->addr); 695 } 696 } 697 } 698 699 static void cpsw_intr_enable(struct cpsw_common *cpsw) 700 { 701 writel_relaxed(0xFF, &cpsw->wr_regs->tx_en); 702 writel_relaxed(0xFF, &cpsw->wr_regs->rx_en); 703 704 cpdma_ctlr_int_ctrl(cpsw->dma, true); 705 return; 706 } 707 708 static void cpsw_intr_disable(struct cpsw_common *cpsw) 709 { 710 writel_relaxed(0, &cpsw->wr_regs->tx_en); 711 writel_relaxed(0, &cpsw->wr_regs->rx_en); 712 713 cpdma_ctlr_int_ctrl(cpsw->dma, false); 714 return; 715 } 716 717 static void cpsw_tx_handler(void *token, int len, int status) 718 { 719 struct netdev_queue *txq; 720 struct sk_buff *skb = token; 721 struct net_device *ndev = skb->dev; 722 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 723 724 /* Check whether the queue is stopped due to stalled tx dma, if the 725 * queue is stopped then start the queue as we have free desc for tx 726 */ 727 txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb)); 728 if (unlikely(netif_tx_queue_stopped(txq))) 729 netif_tx_wake_queue(txq); 730 731 cpts_tx_timestamp(cpsw->cpts, skb); 732 ndev->stats.tx_packets++; 733 ndev->stats.tx_bytes += len; 734 dev_kfree_skb_any(skb); 735 } 736 737 static void cpsw_rx_vlan_encap(struct sk_buff *skb) 738 { 739 struct cpsw_priv *priv = netdev_priv(skb->dev); 740 struct cpsw_common *cpsw = priv->cpsw; 741 u32 rx_vlan_encap_hdr = *((u32 *)skb->data); 742 u16 vtag, vid, prio, pkt_type; 743 744 /* Remove VLAN header encapsulation word */ 745 skb_pull(skb, CPSW_RX_VLAN_ENCAP_HDR_SIZE); 746 747 pkt_type = (rx_vlan_encap_hdr >> 748 CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_SHIFT) & 749 CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_MSK; 750 /* Ignore unknown & Priority-tagged packets*/ 751 if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_RESERV || 752 pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_PRIO_TAG) 753 return; 754 755 vid = (rx_vlan_encap_hdr >> 756 CPSW_RX_VLAN_ENCAP_HDR_VID_SHIFT) & 757 VLAN_VID_MASK; 758 /* Ignore vid 0 and pass packet as is */ 759 if (!vid) 760 return; 761 /* Ignore default vlans in dual mac mode */ 762 if (cpsw->data.dual_emac && 763 vid == cpsw->slaves[priv->emac_port].port_vlan) 764 return; 765 766 prio = (rx_vlan_encap_hdr >> 767 CPSW_RX_VLAN_ENCAP_HDR_PRIO_SHIFT) & 768 CPSW_RX_VLAN_ENCAP_HDR_PRIO_MSK; 769 770 vtag = (prio << VLAN_PRIO_SHIFT) | vid; 771 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vtag); 772 773 /* strip vlan tag for VLAN-tagged packet */ 774 if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_VLAN_TAG) { 775 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); 776 skb_pull(skb, VLAN_HLEN); 777 } 778 } 779 780 static void cpsw_rx_handler(void *token, int len, int status) 781 { 782 struct cpdma_chan *ch; 783 struct sk_buff *skb = token; 784 struct sk_buff *new_skb; 785 struct net_device *ndev = skb->dev; 786 int ret = 0; 787 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 788 789 cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb); 790 791 if (unlikely(status < 0) || unlikely(!netif_running(ndev))) { 792 /* In dual emac mode check for all interfaces */ 793 if (cpsw->data.dual_emac && cpsw->usage_count && 794 (status >= 0)) { 795 /* The packet received is for the interface which 796 * is already down and the other interface is up 797 * and running, instead of freeing which results 798 * in reducing of the number of rx descriptor in 799 * DMA engine, requeue skb back to cpdma. 800 */ 801 new_skb = skb; 802 goto requeue; 803 } 804 805 /* the interface is going down, skbs are purged */ 806 dev_kfree_skb_any(skb); 807 return; 808 } 809 810 new_skb = netdev_alloc_skb_ip_align(ndev, cpsw->rx_packet_max); 811 if (new_skb) { 812 skb_copy_queue_mapping(new_skb, skb); 813 skb_put(skb, len); 814 if (status & CPDMA_RX_VLAN_ENCAP) 815 cpsw_rx_vlan_encap(skb); 816 cpts_rx_timestamp(cpsw->cpts, skb); 817 skb->protocol = eth_type_trans(skb, ndev); 818 netif_receive_skb(skb); 819 ndev->stats.rx_bytes += len; 820 ndev->stats.rx_packets++; 821 kmemleak_not_leak(new_skb); 822 } else { 823 ndev->stats.rx_dropped++; 824 new_skb = skb; 825 } 826 827 requeue: 828 if (netif_dormant(ndev)) { 829 dev_kfree_skb_any(new_skb); 830 return; 831 } 832 833 ch = cpsw->rxv[skb_get_queue_mapping(new_skb)].ch; 834 ret = cpdma_chan_submit(ch, new_skb, new_skb->data, 835 skb_tailroom(new_skb), 0); 836 if (WARN_ON(ret < 0)) 837 dev_kfree_skb_any(new_skb); 838 } 839 840 static void cpsw_split_res(struct net_device *ndev) 841 { 842 struct cpsw_priv *priv = netdev_priv(ndev); 843 u32 consumed_rate = 0, bigest_rate = 0; 844 struct cpsw_common *cpsw = priv->cpsw; 845 struct cpsw_vector *txv = cpsw->txv; 846 int i, ch_weight, rlim_ch_num = 0; 847 int budget, bigest_rate_ch = 0; 848 u32 ch_rate, max_rate; 849 int ch_budget = 0; 850 851 for (i = 0; i < cpsw->tx_ch_num; i++) { 852 ch_rate = cpdma_chan_get_rate(txv[i].ch); 853 if (!ch_rate) 854 continue; 855 856 rlim_ch_num++; 857 consumed_rate += ch_rate; 858 } 859 860 if (cpsw->tx_ch_num == rlim_ch_num) { 861 max_rate = consumed_rate; 862 } else if (!rlim_ch_num) { 863 ch_budget = CPSW_POLL_WEIGHT / cpsw->tx_ch_num; 864 bigest_rate = 0; 865 max_rate = consumed_rate; 866 } else { 867 max_rate = cpsw->speed * 1000; 868 869 /* if max_rate is less then expected due to reduced link speed, 870 * split proportionally according next potential max speed 871 */ 872 if (max_rate < consumed_rate) 873 max_rate *= 10; 874 875 if (max_rate < consumed_rate) 876 max_rate *= 10; 877 878 ch_budget = (consumed_rate * CPSW_POLL_WEIGHT) / max_rate; 879 ch_budget = (CPSW_POLL_WEIGHT - ch_budget) / 880 (cpsw->tx_ch_num - rlim_ch_num); 881 bigest_rate = (max_rate - consumed_rate) / 882 (cpsw->tx_ch_num - rlim_ch_num); 883 } 884 885 /* split tx weight/budget */ 886 budget = CPSW_POLL_WEIGHT; 887 for (i = 0; i < cpsw->tx_ch_num; i++) { 888 ch_rate = cpdma_chan_get_rate(txv[i].ch); 889 if (ch_rate) { 890 txv[i].budget = (ch_rate * CPSW_POLL_WEIGHT) / max_rate; 891 if (!txv[i].budget) 892 txv[i].budget++; 893 if (ch_rate > bigest_rate) { 894 bigest_rate_ch = i; 895 bigest_rate = ch_rate; 896 } 897 898 ch_weight = (ch_rate * 100) / max_rate; 899 if (!ch_weight) 900 ch_weight++; 901 cpdma_chan_set_weight(cpsw->txv[i].ch, ch_weight); 902 } else { 903 txv[i].budget = ch_budget; 904 if (!bigest_rate_ch) 905 bigest_rate_ch = i; 906 cpdma_chan_set_weight(cpsw->txv[i].ch, 0); 907 } 908 909 budget -= txv[i].budget; 910 } 911 912 if (budget) 913 txv[bigest_rate_ch].budget += budget; 914 915 /* split rx budget */ 916 budget = CPSW_POLL_WEIGHT; 917 ch_budget = budget / cpsw->rx_ch_num; 918 for (i = 0; i < cpsw->rx_ch_num; i++) { 919 cpsw->rxv[i].budget = ch_budget; 920 budget -= ch_budget; 921 } 922 923 if (budget) 924 cpsw->rxv[0].budget += budget; 925 } 926 927 static irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id) 928 { 929 struct cpsw_common *cpsw = dev_id; 930 931 writel(0, &cpsw->wr_regs->tx_en); 932 cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_TX); 933 934 if (cpsw->quirk_irq) { 935 disable_irq_nosync(cpsw->irqs_table[1]); 936 cpsw->tx_irq_disabled = true; 937 } 938 939 napi_schedule(&cpsw->napi_tx); 940 return IRQ_HANDLED; 941 } 942 943 static irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id) 944 { 945 struct cpsw_common *cpsw = dev_id; 946 947 cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_RX); 948 writel(0, &cpsw->wr_regs->rx_en); 949 950 if (cpsw->quirk_irq) { 951 disable_irq_nosync(cpsw->irqs_table[0]); 952 cpsw->rx_irq_disabled = true; 953 } 954 955 napi_schedule(&cpsw->napi_rx); 956 return IRQ_HANDLED; 957 } 958 959 static int cpsw_tx_poll(struct napi_struct *napi_tx, int budget) 960 { 961 u32 ch_map; 962 int num_tx, cur_budget, ch; 963 struct cpsw_common *cpsw = napi_to_cpsw(napi_tx); 964 struct cpsw_vector *txv; 965 966 /* process every unprocessed channel */ 967 ch_map = cpdma_ctrl_txchs_state(cpsw->dma); 968 for (ch = 0, num_tx = 0; ch_map; ch_map >>= 1, ch++) { 969 if (!(ch_map & 0x01)) 970 continue; 971 972 txv = &cpsw->txv[ch]; 973 if (unlikely(txv->budget > budget - num_tx)) 974 cur_budget = budget - num_tx; 975 else 976 cur_budget = txv->budget; 977 978 num_tx += cpdma_chan_process(txv->ch, cur_budget); 979 if (num_tx >= budget) 980 break; 981 } 982 983 if (num_tx < budget) { 984 napi_complete(napi_tx); 985 writel(0xff, &cpsw->wr_regs->tx_en); 986 if (cpsw->quirk_irq && cpsw->tx_irq_disabled) { 987 cpsw->tx_irq_disabled = false; 988 enable_irq(cpsw->irqs_table[1]); 989 } 990 } 991 992 return num_tx; 993 } 994 995 static int cpsw_rx_poll(struct napi_struct *napi_rx, int budget) 996 { 997 u32 ch_map; 998 int num_rx, cur_budget, ch; 999 struct cpsw_common *cpsw = napi_to_cpsw(napi_rx); 1000 struct cpsw_vector *rxv; 1001 1002 /* process every unprocessed channel */ 1003 ch_map = cpdma_ctrl_rxchs_state(cpsw->dma); 1004 for (ch = 0, num_rx = 0; ch_map; ch_map >>= 1, ch++) { 1005 if (!(ch_map & 0x01)) 1006 continue; 1007 1008 rxv = &cpsw->rxv[ch]; 1009 if (unlikely(rxv->budget > budget - num_rx)) 1010 cur_budget = budget - num_rx; 1011 else 1012 cur_budget = rxv->budget; 1013 1014 num_rx += cpdma_chan_process(rxv->ch, cur_budget); 1015 if (num_rx >= budget) 1016 break; 1017 } 1018 1019 if (num_rx < budget) { 1020 napi_complete_done(napi_rx, num_rx); 1021 writel(0xff, &cpsw->wr_regs->rx_en); 1022 if (cpsw->quirk_irq && cpsw->rx_irq_disabled) { 1023 cpsw->rx_irq_disabled = false; 1024 enable_irq(cpsw->irqs_table[0]); 1025 } 1026 } 1027 1028 return num_rx; 1029 } 1030 1031 static inline void soft_reset(const char *module, void __iomem *reg) 1032 { 1033 unsigned long timeout = jiffies + HZ; 1034 1035 writel_relaxed(1, reg); 1036 do { 1037 cpu_relax(); 1038 } while ((readl_relaxed(reg) & 1) && time_after(timeout, jiffies)); 1039 1040 WARN(readl_relaxed(reg) & 1, "failed to soft-reset %s\n", module); 1041 } 1042 1043 static void cpsw_set_slave_mac(struct cpsw_slave *slave, 1044 struct cpsw_priv *priv) 1045 { 1046 slave_write(slave, mac_hi(priv->mac_addr), SA_HI); 1047 slave_write(slave, mac_lo(priv->mac_addr), SA_LO); 1048 } 1049 1050 static void _cpsw_adjust_link(struct cpsw_slave *slave, 1051 struct cpsw_priv *priv, bool *link) 1052 { 1053 struct phy_device *phy = slave->phy; 1054 u32 mac_control = 0; 1055 u32 slave_port; 1056 struct cpsw_common *cpsw = priv->cpsw; 1057 1058 if (!phy) 1059 return; 1060 1061 slave_port = cpsw_get_slave_port(slave->slave_num); 1062 1063 if (phy->link) { 1064 mac_control = cpsw->data.mac_control; 1065 1066 /* enable forwarding */ 1067 cpsw_ale_control_set(cpsw->ale, slave_port, 1068 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD); 1069 1070 if (phy->speed == 1000) 1071 mac_control |= BIT(7); /* GIGABITEN */ 1072 if (phy->duplex) 1073 mac_control |= BIT(0); /* FULLDUPLEXEN */ 1074 1075 /* set speed_in input in case RMII mode is used in 100Mbps */ 1076 if (phy->speed == 100) 1077 mac_control |= BIT(15); 1078 /* in band mode only works in 10Mbps RGMII mode */ 1079 else if ((phy->speed == 10) && phy_interface_is_rgmii(phy)) 1080 mac_control |= BIT(18); /* In Band mode */ 1081 1082 if (priv->rx_pause) 1083 mac_control |= BIT(3); 1084 1085 if (priv->tx_pause) 1086 mac_control |= BIT(4); 1087 1088 *link = true; 1089 } else { 1090 mac_control = 0; 1091 /* disable forwarding */ 1092 cpsw_ale_control_set(cpsw->ale, slave_port, 1093 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE); 1094 } 1095 1096 if (mac_control != slave->mac_control) { 1097 phy_print_status(phy); 1098 writel_relaxed(mac_control, &slave->sliver->mac_control); 1099 } 1100 1101 slave->mac_control = mac_control; 1102 } 1103 1104 static int cpsw_get_common_speed(struct cpsw_common *cpsw) 1105 { 1106 int i, speed; 1107 1108 for (i = 0, speed = 0; i < cpsw->data.slaves; i++) 1109 if (cpsw->slaves[i].phy && cpsw->slaves[i].phy->link) 1110 speed += cpsw->slaves[i].phy->speed; 1111 1112 return speed; 1113 } 1114 1115 static int cpsw_need_resplit(struct cpsw_common *cpsw) 1116 { 1117 int i, rlim_ch_num; 1118 int speed, ch_rate; 1119 1120 /* re-split resources only in case speed was changed */ 1121 speed = cpsw_get_common_speed(cpsw); 1122 if (speed == cpsw->speed || !speed) 1123 return 0; 1124 1125 cpsw->speed = speed; 1126 1127 for (i = 0, rlim_ch_num = 0; i < cpsw->tx_ch_num; i++) { 1128 ch_rate = cpdma_chan_get_rate(cpsw->txv[i].ch); 1129 if (!ch_rate) 1130 break; 1131 1132 rlim_ch_num++; 1133 } 1134 1135 /* cases not dependent on speed */ 1136 if (!rlim_ch_num || rlim_ch_num == cpsw->tx_ch_num) 1137 return 0; 1138 1139 return 1; 1140 } 1141 1142 static void cpsw_adjust_link(struct net_device *ndev) 1143 { 1144 struct cpsw_priv *priv = netdev_priv(ndev); 1145 struct cpsw_common *cpsw = priv->cpsw; 1146 bool link = false; 1147 1148 for_each_slave(priv, _cpsw_adjust_link, priv, &link); 1149 1150 if (link) { 1151 if (cpsw_need_resplit(cpsw)) 1152 cpsw_split_res(ndev); 1153 1154 netif_carrier_on(ndev); 1155 if (netif_running(ndev)) 1156 netif_tx_wake_all_queues(ndev); 1157 } else { 1158 netif_carrier_off(ndev); 1159 netif_tx_stop_all_queues(ndev); 1160 } 1161 } 1162 1163 static int cpsw_get_coalesce(struct net_device *ndev, 1164 struct ethtool_coalesce *coal) 1165 { 1166 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1167 1168 coal->rx_coalesce_usecs = cpsw->coal_intvl; 1169 return 0; 1170 } 1171 1172 static int cpsw_set_coalesce(struct net_device *ndev, 1173 struct ethtool_coalesce *coal) 1174 { 1175 struct cpsw_priv *priv = netdev_priv(ndev); 1176 u32 int_ctrl; 1177 u32 num_interrupts = 0; 1178 u32 prescale = 0; 1179 u32 addnl_dvdr = 1; 1180 u32 coal_intvl = 0; 1181 struct cpsw_common *cpsw = priv->cpsw; 1182 1183 coal_intvl = coal->rx_coalesce_usecs; 1184 1185 int_ctrl = readl(&cpsw->wr_regs->int_control); 1186 prescale = cpsw->bus_freq_mhz * 4; 1187 1188 if (!coal->rx_coalesce_usecs) { 1189 int_ctrl &= ~(CPSW_INTPRESCALE_MASK | CPSW_INTPACEEN); 1190 goto update_return; 1191 } 1192 1193 if (coal_intvl < CPSW_CMINTMIN_INTVL) 1194 coal_intvl = CPSW_CMINTMIN_INTVL; 1195 1196 if (coal_intvl > CPSW_CMINTMAX_INTVL) { 1197 /* Interrupt pacer works with 4us Pulse, we can 1198 * throttle further by dilating the 4us pulse. 1199 */ 1200 addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale; 1201 1202 if (addnl_dvdr > 1) { 1203 prescale *= addnl_dvdr; 1204 if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr)) 1205 coal_intvl = (CPSW_CMINTMAX_INTVL 1206 * addnl_dvdr); 1207 } else { 1208 addnl_dvdr = 1; 1209 coal_intvl = CPSW_CMINTMAX_INTVL; 1210 } 1211 } 1212 1213 num_interrupts = (1000 * addnl_dvdr) / coal_intvl; 1214 writel(num_interrupts, &cpsw->wr_regs->rx_imax); 1215 writel(num_interrupts, &cpsw->wr_regs->tx_imax); 1216 1217 int_ctrl |= CPSW_INTPACEEN; 1218 int_ctrl &= (~CPSW_INTPRESCALE_MASK); 1219 int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK); 1220 1221 update_return: 1222 writel(int_ctrl, &cpsw->wr_regs->int_control); 1223 1224 cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl); 1225 cpsw->coal_intvl = coal_intvl; 1226 1227 return 0; 1228 } 1229 1230 static int cpsw_get_sset_count(struct net_device *ndev, int sset) 1231 { 1232 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1233 1234 switch (sset) { 1235 case ETH_SS_STATS: 1236 return (CPSW_STATS_COMMON_LEN + 1237 (cpsw->rx_ch_num + cpsw->tx_ch_num) * 1238 CPSW_STATS_CH_LEN); 1239 default: 1240 return -EOPNOTSUPP; 1241 } 1242 } 1243 1244 static void cpsw_add_ch_strings(u8 **p, int ch_num, int rx_dir) 1245 { 1246 int ch_stats_len; 1247 int line; 1248 int i; 1249 1250 ch_stats_len = CPSW_STATS_CH_LEN * ch_num; 1251 for (i = 0; i < ch_stats_len; i++) { 1252 line = i % CPSW_STATS_CH_LEN; 1253 snprintf(*p, ETH_GSTRING_LEN, 1254 "%s DMA chan %d: %s", rx_dir ? "Rx" : "Tx", 1255 i / CPSW_STATS_CH_LEN, 1256 cpsw_gstrings_ch_stats[line].stat_string); 1257 *p += ETH_GSTRING_LEN; 1258 } 1259 } 1260 1261 static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data) 1262 { 1263 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1264 u8 *p = data; 1265 int i; 1266 1267 switch (stringset) { 1268 case ETH_SS_STATS: 1269 for (i = 0; i < CPSW_STATS_COMMON_LEN; i++) { 1270 memcpy(p, cpsw_gstrings_stats[i].stat_string, 1271 ETH_GSTRING_LEN); 1272 p += ETH_GSTRING_LEN; 1273 } 1274 1275 cpsw_add_ch_strings(&p, cpsw->rx_ch_num, 1); 1276 cpsw_add_ch_strings(&p, cpsw->tx_ch_num, 0); 1277 break; 1278 } 1279 } 1280 1281 static void cpsw_get_ethtool_stats(struct net_device *ndev, 1282 struct ethtool_stats *stats, u64 *data) 1283 { 1284 u8 *p; 1285 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1286 struct cpdma_chan_stats ch_stats; 1287 int i, l, ch; 1288 1289 /* Collect Davinci CPDMA stats for Rx and Tx Channel */ 1290 for (l = 0; l < CPSW_STATS_COMMON_LEN; l++) 1291 data[l] = readl(cpsw->hw_stats + 1292 cpsw_gstrings_stats[l].stat_offset); 1293 1294 for (ch = 0; ch < cpsw->rx_ch_num; ch++) { 1295 cpdma_chan_get_stats(cpsw->rxv[ch].ch, &ch_stats); 1296 for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) { 1297 p = (u8 *)&ch_stats + 1298 cpsw_gstrings_ch_stats[i].stat_offset; 1299 data[l] = *(u32 *)p; 1300 } 1301 } 1302 1303 for (ch = 0; ch < cpsw->tx_ch_num; ch++) { 1304 cpdma_chan_get_stats(cpsw->txv[ch].ch, &ch_stats); 1305 for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) { 1306 p = (u8 *)&ch_stats + 1307 cpsw_gstrings_ch_stats[i].stat_offset; 1308 data[l] = *(u32 *)p; 1309 } 1310 } 1311 } 1312 1313 static inline int cpsw_tx_packet_submit(struct cpsw_priv *priv, 1314 struct sk_buff *skb, 1315 struct cpdma_chan *txch) 1316 { 1317 struct cpsw_common *cpsw = priv->cpsw; 1318 1319 skb_tx_timestamp(skb); 1320 return cpdma_chan_submit(txch, skb, skb->data, skb->len, 1321 priv->emac_port + cpsw->data.dual_emac); 1322 } 1323 1324 static inline void cpsw_add_dual_emac_def_ale_entries( 1325 struct cpsw_priv *priv, struct cpsw_slave *slave, 1326 u32 slave_port) 1327 { 1328 struct cpsw_common *cpsw = priv->cpsw; 1329 u32 port_mask = 1 << slave_port | ALE_PORT_HOST; 1330 1331 if (cpsw->version == CPSW_VERSION_1) 1332 slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN); 1333 else 1334 slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN); 1335 cpsw_ale_add_vlan(cpsw->ale, slave->port_vlan, port_mask, 1336 port_mask, port_mask, 0); 1337 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, 1338 port_mask, ALE_VLAN, slave->port_vlan, 0); 1339 cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, 1340 HOST_PORT_NUM, ALE_VLAN | 1341 ALE_SECURE, slave->port_vlan); 1342 } 1343 1344 static void soft_reset_slave(struct cpsw_slave *slave) 1345 { 1346 char name[32]; 1347 1348 snprintf(name, sizeof(name), "slave-%d", slave->slave_num); 1349 soft_reset(name, &slave->sliver->soft_reset); 1350 } 1351 1352 static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv) 1353 { 1354 u32 slave_port; 1355 struct phy_device *phy; 1356 struct cpsw_common *cpsw = priv->cpsw; 1357 1358 soft_reset_slave(slave); 1359 1360 /* setup priority mapping */ 1361 writel_relaxed(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map); 1362 1363 switch (cpsw->version) { 1364 case CPSW_VERSION_1: 1365 slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP); 1366 /* Increase RX FIFO size to 5 for supporting fullduplex 1367 * flow control mode 1368 */ 1369 slave_write(slave, 1370 (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) | 1371 CPSW_MAX_BLKS_RX, CPSW1_MAX_BLKS); 1372 break; 1373 case CPSW_VERSION_2: 1374 case CPSW_VERSION_3: 1375 case CPSW_VERSION_4: 1376 slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP); 1377 /* Increase RX FIFO size to 5 for supporting fullduplex 1378 * flow control mode 1379 */ 1380 slave_write(slave, 1381 (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) | 1382 CPSW_MAX_BLKS_RX, CPSW2_MAX_BLKS); 1383 break; 1384 } 1385 1386 /* setup max packet size, and mac address */ 1387 writel_relaxed(cpsw->rx_packet_max, &slave->sliver->rx_maxlen); 1388 cpsw_set_slave_mac(slave, priv); 1389 1390 slave->mac_control = 0; /* no link yet */ 1391 1392 slave_port = cpsw_get_slave_port(slave->slave_num); 1393 1394 if (cpsw->data.dual_emac) 1395 cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port); 1396 else 1397 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, 1398 1 << slave_port, 0, 0, ALE_MCAST_FWD_2); 1399 1400 if (slave->data->phy_node) { 1401 phy = of_phy_connect(priv->ndev, slave->data->phy_node, 1402 &cpsw_adjust_link, 0, slave->data->phy_if); 1403 if (!phy) { 1404 dev_err(priv->dev, "phy \"%pOF\" not found on slave %d\n", 1405 slave->data->phy_node, 1406 slave->slave_num); 1407 return; 1408 } 1409 } else { 1410 phy = phy_connect(priv->ndev, slave->data->phy_id, 1411 &cpsw_adjust_link, slave->data->phy_if); 1412 if (IS_ERR(phy)) { 1413 dev_err(priv->dev, 1414 "phy \"%s\" not found on slave %d, err %ld\n", 1415 slave->data->phy_id, slave->slave_num, 1416 PTR_ERR(phy)); 1417 return; 1418 } 1419 } 1420 1421 slave->phy = phy; 1422 1423 phy_attached_info(slave->phy); 1424 1425 phy_start(slave->phy); 1426 1427 /* Configure GMII_SEL register */ 1428 cpsw_phy_sel(cpsw->dev, slave->phy->interface, slave->slave_num); 1429 } 1430 1431 static inline void cpsw_add_default_vlan(struct cpsw_priv *priv) 1432 { 1433 struct cpsw_common *cpsw = priv->cpsw; 1434 const int vlan = cpsw->data.default_vlan; 1435 u32 reg; 1436 int i; 1437 int unreg_mcast_mask; 1438 1439 reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN : 1440 CPSW2_PORT_VLAN; 1441 1442 writel(vlan, &cpsw->host_port_regs->port_vlan); 1443 1444 for (i = 0; i < cpsw->data.slaves; i++) 1445 slave_write(cpsw->slaves + i, vlan, reg); 1446 1447 if (priv->ndev->flags & IFF_ALLMULTI) 1448 unreg_mcast_mask = ALE_ALL_PORTS; 1449 else 1450 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2; 1451 1452 cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS, 1453 ALE_ALL_PORTS, ALE_ALL_PORTS, 1454 unreg_mcast_mask); 1455 } 1456 1457 static void cpsw_init_host_port(struct cpsw_priv *priv) 1458 { 1459 u32 fifo_mode; 1460 u32 control_reg; 1461 struct cpsw_common *cpsw = priv->cpsw; 1462 1463 /* soft reset the controller and initialize ale */ 1464 soft_reset("cpsw", &cpsw->regs->soft_reset); 1465 cpsw_ale_start(cpsw->ale); 1466 1467 /* switch to vlan unaware mode */ 1468 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_VLAN_AWARE, 1469 CPSW_ALE_VLAN_AWARE); 1470 control_reg = readl(&cpsw->regs->control); 1471 control_reg |= CPSW_VLAN_AWARE | CPSW_RX_VLAN_ENCAP; 1472 writel(control_reg, &cpsw->regs->control); 1473 fifo_mode = (cpsw->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE : 1474 CPSW_FIFO_NORMAL_MODE; 1475 writel(fifo_mode, &cpsw->host_port_regs->tx_in_ctl); 1476 1477 /* setup host port priority mapping */ 1478 writel_relaxed(CPDMA_TX_PRIORITY_MAP, 1479 &cpsw->host_port_regs->cpdma_tx_pri_map); 1480 writel_relaxed(0, &cpsw->host_port_regs->cpdma_rx_chan_map); 1481 1482 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, 1483 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD); 1484 1485 if (!cpsw->data.dual_emac) { 1486 cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM, 1487 0, 0); 1488 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, 1489 ALE_PORT_HOST, 0, 0, ALE_MCAST_FWD_2); 1490 } 1491 } 1492 1493 static int cpsw_fill_rx_channels(struct cpsw_priv *priv) 1494 { 1495 struct cpsw_common *cpsw = priv->cpsw; 1496 struct sk_buff *skb; 1497 int ch_buf_num; 1498 int ch, i, ret; 1499 1500 for (ch = 0; ch < cpsw->rx_ch_num; ch++) { 1501 ch_buf_num = cpdma_chan_get_rx_buf_num(cpsw->rxv[ch].ch); 1502 for (i = 0; i < ch_buf_num; i++) { 1503 skb = __netdev_alloc_skb_ip_align(priv->ndev, 1504 cpsw->rx_packet_max, 1505 GFP_KERNEL); 1506 if (!skb) { 1507 cpsw_err(priv, ifup, "cannot allocate skb\n"); 1508 return -ENOMEM; 1509 } 1510 1511 skb_set_queue_mapping(skb, ch); 1512 ret = cpdma_chan_submit(cpsw->rxv[ch].ch, skb, 1513 skb->data, skb_tailroom(skb), 1514 0); 1515 if (ret < 0) { 1516 cpsw_err(priv, ifup, 1517 "cannot submit skb to channel %d rx, error %d\n", 1518 ch, ret); 1519 kfree_skb(skb); 1520 return ret; 1521 } 1522 kmemleak_not_leak(skb); 1523 } 1524 1525 cpsw_info(priv, ifup, "ch %d rx, submitted %d descriptors\n", 1526 ch, ch_buf_num); 1527 } 1528 1529 return 0; 1530 } 1531 1532 static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_common *cpsw) 1533 { 1534 u32 slave_port; 1535 1536 slave_port = cpsw_get_slave_port(slave->slave_num); 1537 1538 if (!slave->phy) 1539 return; 1540 phy_stop(slave->phy); 1541 phy_disconnect(slave->phy); 1542 slave->phy = NULL; 1543 cpsw_ale_control_set(cpsw->ale, slave_port, 1544 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE); 1545 soft_reset_slave(slave); 1546 } 1547 1548 static int cpsw_ndo_open(struct net_device *ndev) 1549 { 1550 struct cpsw_priv *priv = netdev_priv(ndev); 1551 struct cpsw_common *cpsw = priv->cpsw; 1552 int ret; 1553 u32 reg; 1554 1555 ret = pm_runtime_get_sync(cpsw->dev); 1556 if (ret < 0) { 1557 pm_runtime_put_noidle(cpsw->dev); 1558 return ret; 1559 } 1560 1561 netif_carrier_off(ndev); 1562 1563 /* Notify the stack of the actual queue counts. */ 1564 ret = netif_set_real_num_tx_queues(ndev, cpsw->tx_ch_num); 1565 if (ret) { 1566 dev_err(priv->dev, "cannot set real number of tx queues\n"); 1567 goto err_cleanup; 1568 } 1569 1570 ret = netif_set_real_num_rx_queues(ndev, cpsw->rx_ch_num); 1571 if (ret) { 1572 dev_err(priv->dev, "cannot set real number of rx queues\n"); 1573 goto err_cleanup; 1574 } 1575 1576 reg = cpsw->version; 1577 1578 dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n", 1579 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg), 1580 CPSW_RTL_VERSION(reg)); 1581 1582 /* Initialize host and slave ports */ 1583 if (!cpsw->usage_count) 1584 cpsw_init_host_port(priv); 1585 for_each_slave(priv, cpsw_slave_open, priv); 1586 1587 /* Add default VLAN */ 1588 if (!cpsw->data.dual_emac) 1589 cpsw_add_default_vlan(priv); 1590 else 1591 cpsw_ale_add_vlan(cpsw->ale, cpsw->data.default_vlan, 1592 ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0); 1593 1594 /* initialize shared resources for every ndev */ 1595 if (!cpsw->usage_count) { 1596 /* disable priority elevation */ 1597 writel_relaxed(0, &cpsw->regs->ptype); 1598 1599 /* enable statistics collection only on all ports */ 1600 writel_relaxed(0x7, &cpsw->regs->stat_port_en); 1601 1602 /* Enable internal fifo flow control */ 1603 writel(0x7, &cpsw->regs->flow_control); 1604 1605 napi_enable(&cpsw->napi_rx); 1606 napi_enable(&cpsw->napi_tx); 1607 1608 if (cpsw->tx_irq_disabled) { 1609 cpsw->tx_irq_disabled = false; 1610 enable_irq(cpsw->irqs_table[1]); 1611 } 1612 1613 if (cpsw->rx_irq_disabled) { 1614 cpsw->rx_irq_disabled = false; 1615 enable_irq(cpsw->irqs_table[0]); 1616 } 1617 1618 ret = cpsw_fill_rx_channels(priv); 1619 if (ret < 0) 1620 goto err_cleanup; 1621 1622 if (cpts_register(cpsw->cpts)) 1623 dev_err(priv->dev, "error registering cpts device\n"); 1624 1625 } 1626 1627 /* Enable Interrupt pacing if configured */ 1628 if (cpsw->coal_intvl != 0) { 1629 struct ethtool_coalesce coal; 1630 1631 coal.rx_coalesce_usecs = cpsw->coal_intvl; 1632 cpsw_set_coalesce(ndev, &coal); 1633 } 1634 1635 cpdma_ctlr_start(cpsw->dma); 1636 cpsw_intr_enable(cpsw); 1637 cpsw->usage_count++; 1638 1639 return 0; 1640 1641 err_cleanup: 1642 cpdma_ctlr_stop(cpsw->dma); 1643 for_each_slave(priv, cpsw_slave_stop, cpsw); 1644 pm_runtime_put_sync(cpsw->dev); 1645 netif_carrier_off(priv->ndev); 1646 return ret; 1647 } 1648 1649 static int cpsw_ndo_stop(struct net_device *ndev) 1650 { 1651 struct cpsw_priv *priv = netdev_priv(ndev); 1652 struct cpsw_common *cpsw = priv->cpsw; 1653 1654 cpsw_info(priv, ifdown, "shutting down cpsw device\n"); 1655 netif_tx_stop_all_queues(priv->ndev); 1656 netif_carrier_off(priv->ndev); 1657 1658 if (cpsw->usage_count <= 1) { 1659 napi_disable(&cpsw->napi_rx); 1660 napi_disable(&cpsw->napi_tx); 1661 cpts_unregister(cpsw->cpts); 1662 cpsw_intr_disable(cpsw); 1663 cpdma_ctlr_stop(cpsw->dma); 1664 cpsw_ale_stop(cpsw->ale); 1665 } 1666 for_each_slave(priv, cpsw_slave_stop, cpsw); 1667 1668 if (cpsw_need_resplit(cpsw)) 1669 cpsw_split_res(ndev); 1670 1671 cpsw->usage_count--; 1672 pm_runtime_put_sync(cpsw->dev); 1673 return 0; 1674 } 1675 1676 static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb, 1677 struct net_device *ndev) 1678 { 1679 struct cpsw_priv *priv = netdev_priv(ndev); 1680 struct cpsw_common *cpsw = priv->cpsw; 1681 struct cpts *cpts = cpsw->cpts; 1682 struct netdev_queue *txq; 1683 struct cpdma_chan *txch; 1684 int ret, q_idx; 1685 1686 if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) { 1687 cpsw_err(priv, tx_err, "packet pad failed\n"); 1688 ndev->stats.tx_dropped++; 1689 return NET_XMIT_DROP; 1690 } 1691 1692 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && 1693 cpts_is_tx_enabled(cpts) && cpts_can_timestamp(cpts, skb)) 1694 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1695 1696 q_idx = skb_get_queue_mapping(skb); 1697 if (q_idx >= cpsw->tx_ch_num) 1698 q_idx = q_idx % cpsw->tx_ch_num; 1699 1700 txch = cpsw->txv[q_idx].ch; 1701 txq = netdev_get_tx_queue(ndev, q_idx); 1702 ret = cpsw_tx_packet_submit(priv, skb, txch); 1703 if (unlikely(ret != 0)) { 1704 cpsw_err(priv, tx_err, "desc submit failed\n"); 1705 goto fail; 1706 } 1707 1708 /* If there is no more tx desc left free then we need to 1709 * tell the kernel to stop sending us tx frames. 1710 */ 1711 if (unlikely(!cpdma_check_free_tx_desc(txch))) { 1712 netif_tx_stop_queue(txq); 1713 1714 /* Barrier, so that stop_queue visible to other cpus */ 1715 smp_mb__after_atomic(); 1716 1717 if (cpdma_check_free_tx_desc(txch)) 1718 netif_tx_wake_queue(txq); 1719 } 1720 1721 return NETDEV_TX_OK; 1722 fail: 1723 ndev->stats.tx_dropped++; 1724 netif_tx_stop_queue(txq); 1725 1726 /* Barrier, so that stop_queue visible to other cpus */ 1727 smp_mb__after_atomic(); 1728 1729 if (cpdma_check_free_tx_desc(txch)) 1730 netif_tx_wake_queue(txq); 1731 1732 return NETDEV_TX_BUSY; 1733 } 1734 1735 #if IS_ENABLED(CONFIG_TI_CPTS) 1736 1737 static void cpsw_hwtstamp_v1(struct cpsw_common *cpsw) 1738 { 1739 struct cpsw_slave *slave = &cpsw->slaves[cpsw->data.active_slave]; 1740 u32 ts_en, seq_id; 1741 1742 if (!cpts_is_tx_enabled(cpsw->cpts) && 1743 !cpts_is_rx_enabled(cpsw->cpts)) { 1744 slave_write(slave, 0, CPSW1_TS_CTL); 1745 return; 1746 } 1747 1748 seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588; 1749 ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS; 1750 1751 if (cpts_is_tx_enabled(cpsw->cpts)) 1752 ts_en |= CPSW_V1_TS_TX_EN; 1753 1754 if (cpts_is_rx_enabled(cpsw->cpts)) 1755 ts_en |= CPSW_V1_TS_RX_EN; 1756 1757 slave_write(slave, ts_en, CPSW1_TS_CTL); 1758 slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE); 1759 } 1760 1761 static void cpsw_hwtstamp_v2(struct cpsw_priv *priv) 1762 { 1763 struct cpsw_slave *slave; 1764 struct cpsw_common *cpsw = priv->cpsw; 1765 u32 ctrl, mtype; 1766 1767 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; 1768 1769 ctrl = slave_read(slave, CPSW2_CONTROL); 1770 switch (cpsw->version) { 1771 case CPSW_VERSION_2: 1772 ctrl &= ~CTRL_V2_ALL_TS_MASK; 1773 1774 if (cpts_is_tx_enabled(cpsw->cpts)) 1775 ctrl |= CTRL_V2_TX_TS_BITS; 1776 1777 if (cpts_is_rx_enabled(cpsw->cpts)) 1778 ctrl |= CTRL_V2_RX_TS_BITS; 1779 break; 1780 case CPSW_VERSION_3: 1781 default: 1782 ctrl &= ~CTRL_V3_ALL_TS_MASK; 1783 1784 if (cpts_is_tx_enabled(cpsw->cpts)) 1785 ctrl |= CTRL_V3_TX_TS_BITS; 1786 1787 if (cpts_is_rx_enabled(cpsw->cpts)) 1788 ctrl |= CTRL_V3_RX_TS_BITS; 1789 break; 1790 } 1791 1792 mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS; 1793 1794 slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE); 1795 slave_write(slave, ctrl, CPSW2_CONTROL); 1796 writel_relaxed(ETH_P_1588, &cpsw->regs->ts_ltype); 1797 } 1798 1799 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr) 1800 { 1801 struct cpsw_priv *priv = netdev_priv(dev); 1802 struct hwtstamp_config cfg; 1803 struct cpsw_common *cpsw = priv->cpsw; 1804 struct cpts *cpts = cpsw->cpts; 1805 1806 if (cpsw->version != CPSW_VERSION_1 && 1807 cpsw->version != CPSW_VERSION_2 && 1808 cpsw->version != CPSW_VERSION_3) 1809 return -EOPNOTSUPP; 1810 1811 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg))) 1812 return -EFAULT; 1813 1814 /* reserved for future extensions */ 1815 if (cfg.flags) 1816 return -EINVAL; 1817 1818 if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON) 1819 return -ERANGE; 1820 1821 switch (cfg.rx_filter) { 1822 case HWTSTAMP_FILTER_NONE: 1823 cpts_rx_enable(cpts, 0); 1824 break; 1825 case HWTSTAMP_FILTER_ALL: 1826 case HWTSTAMP_FILTER_NTP_ALL: 1827 return -ERANGE; 1828 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 1829 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 1830 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 1831 cpts_rx_enable(cpts, HWTSTAMP_FILTER_PTP_V1_L4_EVENT); 1832 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 1833 break; 1834 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 1835 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 1836 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 1837 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 1838 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 1839 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 1840 case HWTSTAMP_FILTER_PTP_V2_EVENT: 1841 case HWTSTAMP_FILTER_PTP_V2_SYNC: 1842 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 1843 cpts_rx_enable(cpts, HWTSTAMP_FILTER_PTP_V2_EVENT); 1844 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 1845 break; 1846 default: 1847 return -ERANGE; 1848 } 1849 1850 cpts_tx_enable(cpts, cfg.tx_type == HWTSTAMP_TX_ON); 1851 1852 switch (cpsw->version) { 1853 case CPSW_VERSION_1: 1854 cpsw_hwtstamp_v1(cpsw); 1855 break; 1856 case CPSW_VERSION_2: 1857 case CPSW_VERSION_3: 1858 cpsw_hwtstamp_v2(priv); 1859 break; 1860 default: 1861 WARN_ON(1); 1862 } 1863 1864 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; 1865 } 1866 1867 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr) 1868 { 1869 struct cpsw_common *cpsw = ndev_to_cpsw(dev); 1870 struct cpts *cpts = cpsw->cpts; 1871 struct hwtstamp_config cfg; 1872 1873 if (cpsw->version != CPSW_VERSION_1 && 1874 cpsw->version != CPSW_VERSION_2 && 1875 cpsw->version != CPSW_VERSION_3) 1876 return -EOPNOTSUPP; 1877 1878 cfg.flags = 0; 1879 cfg.tx_type = cpts_is_tx_enabled(cpts) ? 1880 HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF; 1881 cfg.rx_filter = (cpts_is_rx_enabled(cpts) ? 1882 cpts->rx_enable : HWTSTAMP_FILTER_NONE); 1883 1884 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; 1885 } 1886 #else 1887 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr) 1888 { 1889 return -EOPNOTSUPP; 1890 } 1891 1892 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr) 1893 { 1894 return -EOPNOTSUPP; 1895 } 1896 #endif /*CONFIG_TI_CPTS*/ 1897 1898 static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 1899 { 1900 struct cpsw_priv *priv = netdev_priv(dev); 1901 struct cpsw_common *cpsw = priv->cpsw; 1902 int slave_no = cpsw_slave_index(cpsw, priv); 1903 1904 if (!netif_running(dev)) 1905 return -EINVAL; 1906 1907 switch (cmd) { 1908 case SIOCSHWTSTAMP: 1909 return cpsw_hwtstamp_set(dev, req); 1910 case SIOCGHWTSTAMP: 1911 return cpsw_hwtstamp_get(dev, req); 1912 } 1913 1914 if (!cpsw->slaves[slave_no].phy) 1915 return -EOPNOTSUPP; 1916 return phy_mii_ioctl(cpsw->slaves[slave_no].phy, req, cmd); 1917 } 1918 1919 static void cpsw_ndo_tx_timeout(struct net_device *ndev) 1920 { 1921 struct cpsw_priv *priv = netdev_priv(ndev); 1922 struct cpsw_common *cpsw = priv->cpsw; 1923 int ch; 1924 1925 cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n"); 1926 ndev->stats.tx_errors++; 1927 cpsw_intr_disable(cpsw); 1928 for (ch = 0; ch < cpsw->tx_ch_num; ch++) { 1929 cpdma_chan_stop(cpsw->txv[ch].ch); 1930 cpdma_chan_start(cpsw->txv[ch].ch); 1931 } 1932 1933 cpsw_intr_enable(cpsw); 1934 netif_trans_update(ndev); 1935 netif_tx_wake_all_queues(ndev); 1936 } 1937 1938 static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p) 1939 { 1940 struct cpsw_priv *priv = netdev_priv(ndev); 1941 struct sockaddr *addr = (struct sockaddr *)p; 1942 struct cpsw_common *cpsw = priv->cpsw; 1943 int flags = 0; 1944 u16 vid = 0; 1945 int ret; 1946 1947 if (!is_valid_ether_addr(addr->sa_data)) 1948 return -EADDRNOTAVAIL; 1949 1950 ret = pm_runtime_get_sync(cpsw->dev); 1951 if (ret < 0) { 1952 pm_runtime_put_noidle(cpsw->dev); 1953 return ret; 1954 } 1955 1956 if (cpsw->data.dual_emac) { 1957 vid = cpsw->slaves[priv->emac_port].port_vlan; 1958 flags = ALE_VLAN; 1959 } 1960 1961 cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM, 1962 flags, vid); 1963 cpsw_ale_add_ucast(cpsw->ale, addr->sa_data, HOST_PORT_NUM, 1964 flags, vid); 1965 1966 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN); 1967 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN); 1968 for_each_slave(priv, cpsw_set_slave_mac, priv); 1969 1970 pm_runtime_put(cpsw->dev); 1971 1972 return 0; 1973 } 1974 1975 #ifdef CONFIG_NET_POLL_CONTROLLER 1976 static void cpsw_ndo_poll_controller(struct net_device *ndev) 1977 { 1978 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1979 1980 cpsw_intr_disable(cpsw); 1981 cpsw_rx_interrupt(cpsw->irqs_table[0], cpsw); 1982 cpsw_tx_interrupt(cpsw->irqs_table[1], cpsw); 1983 cpsw_intr_enable(cpsw); 1984 } 1985 #endif 1986 1987 static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv, 1988 unsigned short vid) 1989 { 1990 int ret; 1991 int unreg_mcast_mask = 0; 1992 u32 port_mask; 1993 struct cpsw_common *cpsw = priv->cpsw; 1994 1995 if (cpsw->data.dual_emac) { 1996 port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST; 1997 1998 if (priv->ndev->flags & IFF_ALLMULTI) 1999 unreg_mcast_mask = port_mask; 2000 } else { 2001 port_mask = ALE_ALL_PORTS; 2002 2003 if (priv->ndev->flags & IFF_ALLMULTI) 2004 unreg_mcast_mask = ALE_ALL_PORTS; 2005 else 2006 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2; 2007 } 2008 2009 ret = cpsw_ale_add_vlan(cpsw->ale, vid, port_mask, 0, port_mask, 2010 unreg_mcast_mask); 2011 if (ret != 0) 2012 return ret; 2013 2014 ret = cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, 2015 HOST_PORT_NUM, ALE_VLAN, vid); 2016 if (ret != 0) 2017 goto clean_vid; 2018 2019 ret = cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, 2020 port_mask, ALE_VLAN, vid, 0); 2021 if (ret != 0) 2022 goto clean_vlan_ucast; 2023 return 0; 2024 2025 clean_vlan_ucast: 2026 cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, 2027 HOST_PORT_NUM, ALE_VLAN, vid); 2028 clean_vid: 2029 cpsw_ale_del_vlan(cpsw->ale, vid, 0); 2030 return ret; 2031 } 2032 2033 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev, 2034 __be16 proto, u16 vid) 2035 { 2036 struct cpsw_priv *priv = netdev_priv(ndev); 2037 struct cpsw_common *cpsw = priv->cpsw; 2038 int ret; 2039 2040 if (vid == cpsw->data.default_vlan) 2041 return 0; 2042 2043 ret = pm_runtime_get_sync(cpsw->dev); 2044 if (ret < 0) { 2045 pm_runtime_put_noidle(cpsw->dev); 2046 return ret; 2047 } 2048 2049 if (cpsw->data.dual_emac) { 2050 /* In dual EMAC, reserved VLAN id should not be used for 2051 * creating VLAN interfaces as this can break the dual 2052 * EMAC port separation 2053 */ 2054 int i; 2055 2056 for (i = 0; i < cpsw->data.slaves; i++) { 2057 if (vid == cpsw->slaves[i].port_vlan) 2058 return -EINVAL; 2059 } 2060 } 2061 2062 dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid); 2063 ret = cpsw_add_vlan_ale_entry(priv, vid); 2064 2065 pm_runtime_put(cpsw->dev); 2066 return ret; 2067 } 2068 2069 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev, 2070 __be16 proto, u16 vid) 2071 { 2072 struct cpsw_priv *priv = netdev_priv(ndev); 2073 struct cpsw_common *cpsw = priv->cpsw; 2074 int ret; 2075 2076 if (vid == cpsw->data.default_vlan) 2077 return 0; 2078 2079 ret = pm_runtime_get_sync(cpsw->dev); 2080 if (ret < 0) { 2081 pm_runtime_put_noidle(cpsw->dev); 2082 return ret; 2083 } 2084 2085 if (cpsw->data.dual_emac) { 2086 int i; 2087 2088 for (i = 0; i < cpsw->data.slaves; i++) { 2089 if (vid == cpsw->slaves[i].port_vlan) 2090 return -EINVAL; 2091 } 2092 } 2093 2094 dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid); 2095 ret = cpsw_ale_del_vlan(cpsw->ale, vid, 0); 2096 if (ret != 0) 2097 return ret; 2098 2099 ret = cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, 2100 HOST_PORT_NUM, ALE_VLAN, vid); 2101 if (ret != 0) 2102 return ret; 2103 2104 ret = cpsw_ale_del_mcast(cpsw->ale, priv->ndev->broadcast, 2105 0, ALE_VLAN, vid); 2106 pm_runtime_put(cpsw->dev); 2107 return ret; 2108 } 2109 2110 static int cpsw_ndo_set_tx_maxrate(struct net_device *ndev, int queue, u32 rate) 2111 { 2112 struct cpsw_priv *priv = netdev_priv(ndev); 2113 struct cpsw_common *cpsw = priv->cpsw; 2114 struct cpsw_slave *slave; 2115 u32 min_rate; 2116 u32 ch_rate; 2117 int i, ret; 2118 2119 ch_rate = netdev_get_tx_queue(ndev, queue)->tx_maxrate; 2120 if (ch_rate == rate) 2121 return 0; 2122 2123 ch_rate = rate * 1000; 2124 min_rate = cpdma_chan_get_min_rate(cpsw->dma); 2125 if ((ch_rate < min_rate && ch_rate)) { 2126 dev_err(priv->dev, "The channel rate cannot be less than %dMbps", 2127 min_rate); 2128 return -EINVAL; 2129 } 2130 2131 if (rate > cpsw->speed) { 2132 dev_err(priv->dev, "The channel rate cannot be more than 2Gbps"); 2133 return -EINVAL; 2134 } 2135 2136 ret = pm_runtime_get_sync(cpsw->dev); 2137 if (ret < 0) { 2138 pm_runtime_put_noidle(cpsw->dev); 2139 return ret; 2140 } 2141 2142 ret = cpdma_chan_set_rate(cpsw->txv[queue].ch, ch_rate); 2143 pm_runtime_put(cpsw->dev); 2144 2145 if (ret) 2146 return ret; 2147 2148 /* update rates for slaves tx queues */ 2149 for (i = 0; i < cpsw->data.slaves; i++) { 2150 slave = &cpsw->slaves[i]; 2151 if (!slave->ndev) 2152 continue; 2153 2154 netdev_get_tx_queue(slave->ndev, queue)->tx_maxrate = rate; 2155 } 2156 2157 cpsw_split_res(ndev); 2158 return ret; 2159 } 2160 2161 static const struct net_device_ops cpsw_netdev_ops = { 2162 .ndo_open = cpsw_ndo_open, 2163 .ndo_stop = cpsw_ndo_stop, 2164 .ndo_start_xmit = cpsw_ndo_start_xmit, 2165 .ndo_set_mac_address = cpsw_ndo_set_mac_address, 2166 .ndo_do_ioctl = cpsw_ndo_ioctl, 2167 .ndo_validate_addr = eth_validate_addr, 2168 .ndo_tx_timeout = cpsw_ndo_tx_timeout, 2169 .ndo_set_rx_mode = cpsw_ndo_set_rx_mode, 2170 .ndo_set_tx_maxrate = cpsw_ndo_set_tx_maxrate, 2171 #ifdef CONFIG_NET_POLL_CONTROLLER 2172 .ndo_poll_controller = cpsw_ndo_poll_controller, 2173 #endif 2174 .ndo_vlan_rx_add_vid = cpsw_ndo_vlan_rx_add_vid, 2175 .ndo_vlan_rx_kill_vid = cpsw_ndo_vlan_rx_kill_vid, 2176 }; 2177 2178 static int cpsw_get_regs_len(struct net_device *ndev) 2179 { 2180 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 2181 2182 return cpsw->data.ale_entries * ALE_ENTRY_WORDS * sizeof(u32); 2183 } 2184 2185 static void cpsw_get_regs(struct net_device *ndev, 2186 struct ethtool_regs *regs, void *p) 2187 { 2188 u32 *reg = p; 2189 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 2190 2191 /* update CPSW IP version */ 2192 regs->version = cpsw->version; 2193 2194 cpsw_ale_dump(cpsw->ale, reg); 2195 } 2196 2197 static void cpsw_get_drvinfo(struct net_device *ndev, 2198 struct ethtool_drvinfo *info) 2199 { 2200 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 2201 struct platform_device *pdev = to_platform_device(cpsw->dev); 2202 2203 strlcpy(info->driver, "cpsw", sizeof(info->driver)); 2204 strlcpy(info->version, "1.0", sizeof(info->version)); 2205 strlcpy(info->bus_info, pdev->name, sizeof(info->bus_info)); 2206 } 2207 2208 static u32 cpsw_get_msglevel(struct net_device *ndev) 2209 { 2210 struct cpsw_priv *priv = netdev_priv(ndev); 2211 return priv->msg_enable; 2212 } 2213 2214 static void cpsw_set_msglevel(struct net_device *ndev, u32 value) 2215 { 2216 struct cpsw_priv *priv = netdev_priv(ndev); 2217 priv->msg_enable = value; 2218 } 2219 2220 #if IS_ENABLED(CONFIG_TI_CPTS) 2221 static int cpsw_get_ts_info(struct net_device *ndev, 2222 struct ethtool_ts_info *info) 2223 { 2224 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 2225 2226 info->so_timestamping = 2227 SOF_TIMESTAMPING_TX_HARDWARE | 2228 SOF_TIMESTAMPING_TX_SOFTWARE | 2229 SOF_TIMESTAMPING_RX_HARDWARE | 2230 SOF_TIMESTAMPING_RX_SOFTWARE | 2231 SOF_TIMESTAMPING_SOFTWARE | 2232 SOF_TIMESTAMPING_RAW_HARDWARE; 2233 info->phc_index = cpsw->cpts->phc_index; 2234 info->tx_types = 2235 (1 << HWTSTAMP_TX_OFF) | 2236 (1 << HWTSTAMP_TX_ON); 2237 info->rx_filters = 2238 (1 << HWTSTAMP_FILTER_NONE) | 2239 (1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) | 2240 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 2241 return 0; 2242 } 2243 #else 2244 static int cpsw_get_ts_info(struct net_device *ndev, 2245 struct ethtool_ts_info *info) 2246 { 2247 info->so_timestamping = 2248 SOF_TIMESTAMPING_TX_SOFTWARE | 2249 SOF_TIMESTAMPING_RX_SOFTWARE | 2250 SOF_TIMESTAMPING_SOFTWARE; 2251 info->phc_index = -1; 2252 info->tx_types = 0; 2253 info->rx_filters = 0; 2254 return 0; 2255 } 2256 #endif 2257 2258 static int cpsw_get_link_ksettings(struct net_device *ndev, 2259 struct ethtool_link_ksettings *ecmd) 2260 { 2261 struct cpsw_priv *priv = netdev_priv(ndev); 2262 struct cpsw_common *cpsw = priv->cpsw; 2263 int slave_no = cpsw_slave_index(cpsw, priv); 2264 2265 if (!cpsw->slaves[slave_no].phy) 2266 return -EOPNOTSUPP; 2267 2268 phy_ethtool_ksettings_get(cpsw->slaves[slave_no].phy, ecmd); 2269 return 0; 2270 } 2271 2272 static int cpsw_set_link_ksettings(struct net_device *ndev, 2273 const struct ethtool_link_ksettings *ecmd) 2274 { 2275 struct cpsw_priv *priv = netdev_priv(ndev); 2276 struct cpsw_common *cpsw = priv->cpsw; 2277 int slave_no = cpsw_slave_index(cpsw, priv); 2278 2279 if (cpsw->slaves[slave_no].phy) 2280 return phy_ethtool_ksettings_set(cpsw->slaves[slave_no].phy, 2281 ecmd); 2282 else 2283 return -EOPNOTSUPP; 2284 } 2285 2286 static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 2287 { 2288 struct cpsw_priv *priv = netdev_priv(ndev); 2289 struct cpsw_common *cpsw = priv->cpsw; 2290 int slave_no = cpsw_slave_index(cpsw, priv); 2291 2292 wol->supported = 0; 2293 wol->wolopts = 0; 2294 2295 if (cpsw->slaves[slave_no].phy) 2296 phy_ethtool_get_wol(cpsw->slaves[slave_no].phy, wol); 2297 } 2298 2299 static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 2300 { 2301 struct cpsw_priv *priv = netdev_priv(ndev); 2302 struct cpsw_common *cpsw = priv->cpsw; 2303 int slave_no = cpsw_slave_index(cpsw, priv); 2304 2305 if (cpsw->slaves[slave_no].phy) 2306 return phy_ethtool_set_wol(cpsw->slaves[slave_no].phy, wol); 2307 else 2308 return -EOPNOTSUPP; 2309 } 2310 2311 static void cpsw_get_pauseparam(struct net_device *ndev, 2312 struct ethtool_pauseparam *pause) 2313 { 2314 struct cpsw_priv *priv = netdev_priv(ndev); 2315 2316 pause->autoneg = AUTONEG_DISABLE; 2317 pause->rx_pause = priv->rx_pause ? true : false; 2318 pause->tx_pause = priv->tx_pause ? true : false; 2319 } 2320 2321 static int cpsw_set_pauseparam(struct net_device *ndev, 2322 struct ethtool_pauseparam *pause) 2323 { 2324 struct cpsw_priv *priv = netdev_priv(ndev); 2325 bool link; 2326 2327 priv->rx_pause = pause->rx_pause ? true : false; 2328 priv->tx_pause = pause->tx_pause ? true : false; 2329 2330 for_each_slave(priv, _cpsw_adjust_link, priv, &link); 2331 return 0; 2332 } 2333 2334 static int cpsw_ethtool_op_begin(struct net_device *ndev) 2335 { 2336 struct cpsw_priv *priv = netdev_priv(ndev); 2337 struct cpsw_common *cpsw = priv->cpsw; 2338 int ret; 2339 2340 ret = pm_runtime_get_sync(cpsw->dev); 2341 if (ret < 0) { 2342 cpsw_err(priv, drv, "ethtool begin failed %d\n", ret); 2343 pm_runtime_put_noidle(cpsw->dev); 2344 } 2345 2346 return ret; 2347 } 2348 2349 static void cpsw_ethtool_op_complete(struct net_device *ndev) 2350 { 2351 struct cpsw_priv *priv = netdev_priv(ndev); 2352 int ret; 2353 2354 ret = pm_runtime_put(priv->cpsw->dev); 2355 if (ret < 0) 2356 cpsw_err(priv, drv, "ethtool complete failed %d\n", ret); 2357 } 2358 2359 static void cpsw_get_channels(struct net_device *ndev, 2360 struct ethtool_channels *ch) 2361 { 2362 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 2363 2364 ch->max_combined = 0; 2365 ch->max_rx = CPSW_MAX_QUEUES; 2366 ch->max_tx = CPSW_MAX_QUEUES; 2367 ch->max_other = 0; 2368 ch->other_count = 0; 2369 ch->rx_count = cpsw->rx_ch_num; 2370 ch->tx_count = cpsw->tx_ch_num; 2371 ch->combined_count = 0; 2372 } 2373 2374 static int cpsw_check_ch_settings(struct cpsw_common *cpsw, 2375 struct ethtool_channels *ch) 2376 { 2377 if (ch->combined_count) 2378 return -EINVAL; 2379 2380 /* verify we have at least one channel in each direction */ 2381 if (!ch->rx_count || !ch->tx_count) 2382 return -EINVAL; 2383 2384 if (ch->rx_count > cpsw->data.channels || 2385 ch->tx_count > cpsw->data.channels) 2386 return -EINVAL; 2387 2388 return 0; 2389 } 2390 2391 static int cpsw_update_channels_res(struct cpsw_priv *priv, int ch_num, int rx) 2392 { 2393 struct cpsw_common *cpsw = priv->cpsw; 2394 void (*handler)(void *, int, int); 2395 struct netdev_queue *queue; 2396 struct cpsw_vector *vec; 2397 int ret, *ch; 2398 2399 if (rx) { 2400 ch = &cpsw->rx_ch_num; 2401 vec = cpsw->rxv; 2402 handler = cpsw_rx_handler; 2403 } else { 2404 ch = &cpsw->tx_ch_num; 2405 vec = cpsw->txv; 2406 handler = cpsw_tx_handler; 2407 } 2408 2409 while (*ch < ch_num) { 2410 vec[*ch].ch = cpdma_chan_create(cpsw->dma, *ch, handler, rx); 2411 queue = netdev_get_tx_queue(priv->ndev, *ch); 2412 queue->tx_maxrate = 0; 2413 2414 if (IS_ERR(vec[*ch].ch)) 2415 return PTR_ERR(vec[*ch].ch); 2416 2417 if (!vec[*ch].ch) 2418 return -EINVAL; 2419 2420 cpsw_info(priv, ifup, "created new %d %s channel\n", *ch, 2421 (rx ? "rx" : "tx")); 2422 (*ch)++; 2423 } 2424 2425 while (*ch > ch_num) { 2426 (*ch)--; 2427 2428 ret = cpdma_chan_destroy(vec[*ch].ch); 2429 if (ret) 2430 return ret; 2431 2432 cpsw_info(priv, ifup, "destroyed %d %s channel\n", *ch, 2433 (rx ? "rx" : "tx")); 2434 } 2435 2436 return 0; 2437 } 2438 2439 static int cpsw_update_channels(struct cpsw_priv *priv, 2440 struct ethtool_channels *ch) 2441 { 2442 int ret; 2443 2444 ret = cpsw_update_channels_res(priv, ch->rx_count, 1); 2445 if (ret) 2446 return ret; 2447 2448 ret = cpsw_update_channels_res(priv, ch->tx_count, 0); 2449 if (ret) 2450 return ret; 2451 2452 return 0; 2453 } 2454 2455 static void cpsw_suspend_data_pass(struct net_device *ndev) 2456 { 2457 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 2458 struct cpsw_slave *slave; 2459 int i; 2460 2461 /* Disable NAPI scheduling */ 2462 cpsw_intr_disable(cpsw); 2463 2464 /* Stop all transmit queues for every network device. 2465 * Disable re-using rx descriptors with dormant_on. 2466 */ 2467 for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) { 2468 if (!(slave->ndev && netif_running(slave->ndev))) 2469 continue; 2470 2471 netif_tx_stop_all_queues(slave->ndev); 2472 netif_dormant_on(slave->ndev); 2473 } 2474 2475 /* Handle rest of tx packets and stop cpdma channels */ 2476 cpdma_ctlr_stop(cpsw->dma); 2477 } 2478 2479 static int cpsw_resume_data_pass(struct net_device *ndev) 2480 { 2481 struct cpsw_priv *priv = netdev_priv(ndev); 2482 struct cpsw_common *cpsw = priv->cpsw; 2483 struct cpsw_slave *slave; 2484 int i, ret; 2485 2486 /* Allow rx packets handling */ 2487 for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) 2488 if (slave->ndev && netif_running(slave->ndev)) 2489 netif_dormant_off(slave->ndev); 2490 2491 /* After this receive is started */ 2492 if (cpsw->usage_count) { 2493 ret = cpsw_fill_rx_channels(priv); 2494 if (ret) 2495 return ret; 2496 2497 cpdma_ctlr_start(cpsw->dma); 2498 cpsw_intr_enable(cpsw); 2499 } 2500 2501 /* Resume transmit for every affected interface */ 2502 for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) 2503 if (slave->ndev && netif_running(slave->ndev)) 2504 netif_tx_start_all_queues(slave->ndev); 2505 2506 return 0; 2507 } 2508 2509 static int cpsw_set_channels(struct net_device *ndev, 2510 struct ethtool_channels *chs) 2511 { 2512 struct cpsw_priv *priv = netdev_priv(ndev); 2513 struct cpsw_common *cpsw = priv->cpsw; 2514 struct cpsw_slave *slave; 2515 int i, ret; 2516 2517 ret = cpsw_check_ch_settings(cpsw, chs); 2518 if (ret < 0) 2519 return ret; 2520 2521 cpsw_suspend_data_pass(ndev); 2522 ret = cpsw_update_channels(priv, chs); 2523 if (ret) 2524 goto err; 2525 2526 for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) { 2527 if (!(slave->ndev && netif_running(slave->ndev))) 2528 continue; 2529 2530 /* Inform stack about new count of queues */ 2531 ret = netif_set_real_num_tx_queues(slave->ndev, 2532 cpsw->tx_ch_num); 2533 if (ret) { 2534 dev_err(priv->dev, "cannot set real number of tx queues\n"); 2535 goto err; 2536 } 2537 2538 ret = netif_set_real_num_rx_queues(slave->ndev, 2539 cpsw->rx_ch_num); 2540 if (ret) { 2541 dev_err(priv->dev, "cannot set real number of rx queues\n"); 2542 goto err; 2543 } 2544 } 2545 2546 if (cpsw->usage_count) 2547 cpsw_split_res(ndev); 2548 2549 ret = cpsw_resume_data_pass(ndev); 2550 if (!ret) 2551 return 0; 2552 err: 2553 dev_err(priv->dev, "cannot update channels number, closing device\n"); 2554 dev_close(ndev); 2555 return ret; 2556 } 2557 2558 static int cpsw_get_eee(struct net_device *ndev, struct ethtool_eee *edata) 2559 { 2560 struct cpsw_priv *priv = netdev_priv(ndev); 2561 struct cpsw_common *cpsw = priv->cpsw; 2562 int slave_no = cpsw_slave_index(cpsw, priv); 2563 2564 if (cpsw->slaves[slave_no].phy) 2565 return phy_ethtool_get_eee(cpsw->slaves[slave_no].phy, edata); 2566 else 2567 return -EOPNOTSUPP; 2568 } 2569 2570 static int cpsw_set_eee(struct net_device *ndev, struct ethtool_eee *edata) 2571 { 2572 struct cpsw_priv *priv = netdev_priv(ndev); 2573 struct cpsw_common *cpsw = priv->cpsw; 2574 int slave_no = cpsw_slave_index(cpsw, priv); 2575 2576 if (cpsw->slaves[slave_no].phy) 2577 return phy_ethtool_set_eee(cpsw->slaves[slave_no].phy, edata); 2578 else 2579 return -EOPNOTSUPP; 2580 } 2581 2582 static int cpsw_nway_reset(struct net_device *ndev) 2583 { 2584 struct cpsw_priv *priv = netdev_priv(ndev); 2585 struct cpsw_common *cpsw = priv->cpsw; 2586 int slave_no = cpsw_slave_index(cpsw, priv); 2587 2588 if (cpsw->slaves[slave_no].phy) 2589 return genphy_restart_aneg(cpsw->slaves[slave_no].phy); 2590 else 2591 return -EOPNOTSUPP; 2592 } 2593 2594 static void cpsw_get_ringparam(struct net_device *ndev, 2595 struct ethtool_ringparam *ering) 2596 { 2597 struct cpsw_priv *priv = netdev_priv(ndev); 2598 struct cpsw_common *cpsw = priv->cpsw; 2599 2600 /* not supported */ 2601 ering->tx_max_pending = 0; 2602 ering->tx_pending = cpdma_get_num_tx_descs(cpsw->dma); 2603 ering->rx_max_pending = descs_pool_size - CPSW_MAX_QUEUES; 2604 ering->rx_pending = cpdma_get_num_rx_descs(cpsw->dma); 2605 } 2606 2607 static int cpsw_set_ringparam(struct net_device *ndev, 2608 struct ethtool_ringparam *ering) 2609 { 2610 struct cpsw_priv *priv = netdev_priv(ndev); 2611 struct cpsw_common *cpsw = priv->cpsw; 2612 int ret; 2613 2614 /* ignore ering->tx_pending - only rx_pending adjustment is supported */ 2615 2616 if (ering->rx_mini_pending || ering->rx_jumbo_pending || 2617 ering->rx_pending < CPSW_MAX_QUEUES || 2618 ering->rx_pending > (descs_pool_size - CPSW_MAX_QUEUES)) 2619 return -EINVAL; 2620 2621 if (ering->rx_pending == cpdma_get_num_rx_descs(cpsw->dma)) 2622 return 0; 2623 2624 cpsw_suspend_data_pass(ndev); 2625 2626 cpdma_set_num_rx_descs(cpsw->dma, ering->rx_pending); 2627 2628 if (cpsw->usage_count) 2629 cpdma_chan_split_pool(cpsw->dma); 2630 2631 ret = cpsw_resume_data_pass(ndev); 2632 if (!ret) 2633 return 0; 2634 2635 dev_err(&ndev->dev, "cannot set ring params, closing device\n"); 2636 dev_close(ndev); 2637 return ret; 2638 } 2639 2640 static const struct ethtool_ops cpsw_ethtool_ops = { 2641 .get_drvinfo = cpsw_get_drvinfo, 2642 .get_msglevel = cpsw_get_msglevel, 2643 .set_msglevel = cpsw_set_msglevel, 2644 .get_link = ethtool_op_get_link, 2645 .get_ts_info = cpsw_get_ts_info, 2646 .get_coalesce = cpsw_get_coalesce, 2647 .set_coalesce = cpsw_set_coalesce, 2648 .get_sset_count = cpsw_get_sset_count, 2649 .get_strings = cpsw_get_strings, 2650 .get_ethtool_stats = cpsw_get_ethtool_stats, 2651 .get_pauseparam = cpsw_get_pauseparam, 2652 .set_pauseparam = cpsw_set_pauseparam, 2653 .get_wol = cpsw_get_wol, 2654 .set_wol = cpsw_set_wol, 2655 .get_regs_len = cpsw_get_regs_len, 2656 .get_regs = cpsw_get_regs, 2657 .begin = cpsw_ethtool_op_begin, 2658 .complete = cpsw_ethtool_op_complete, 2659 .get_channels = cpsw_get_channels, 2660 .set_channels = cpsw_set_channels, 2661 .get_link_ksettings = cpsw_get_link_ksettings, 2662 .set_link_ksettings = cpsw_set_link_ksettings, 2663 .get_eee = cpsw_get_eee, 2664 .set_eee = cpsw_set_eee, 2665 .nway_reset = cpsw_nway_reset, 2666 .get_ringparam = cpsw_get_ringparam, 2667 .set_ringparam = cpsw_set_ringparam, 2668 }; 2669 2670 static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_common *cpsw, 2671 u32 slave_reg_ofs, u32 sliver_reg_ofs) 2672 { 2673 void __iomem *regs = cpsw->regs; 2674 int slave_num = slave->slave_num; 2675 struct cpsw_slave_data *data = cpsw->data.slave_data + slave_num; 2676 2677 slave->data = data; 2678 slave->regs = regs + slave_reg_ofs; 2679 slave->sliver = regs + sliver_reg_ofs; 2680 slave->port_vlan = data->dual_emac_res_vlan; 2681 } 2682 2683 static int cpsw_probe_dt(struct cpsw_platform_data *data, 2684 struct platform_device *pdev) 2685 { 2686 struct device_node *node = pdev->dev.of_node; 2687 struct device_node *slave_node; 2688 int i = 0, ret; 2689 u32 prop; 2690 2691 if (!node) 2692 return -EINVAL; 2693 2694 if (of_property_read_u32(node, "slaves", &prop)) { 2695 dev_err(&pdev->dev, "Missing slaves property in the DT.\n"); 2696 return -EINVAL; 2697 } 2698 data->slaves = prop; 2699 2700 if (of_property_read_u32(node, "active_slave", &prop)) { 2701 dev_err(&pdev->dev, "Missing active_slave property in the DT.\n"); 2702 return -EINVAL; 2703 } 2704 data->active_slave = prop; 2705 2706 data->slave_data = devm_kzalloc(&pdev->dev, data->slaves 2707 * sizeof(struct cpsw_slave_data), 2708 GFP_KERNEL); 2709 if (!data->slave_data) 2710 return -ENOMEM; 2711 2712 if (of_property_read_u32(node, "cpdma_channels", &prop)) { 2713 dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n"); 2714 return -EINVAL; 2715 } 2716 data->channels = prop; 2717 2718 if (of_property_read_u32(node, "ale_entries", &prop)) { 2719 dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n"); 2720 return -EINVAL; 2721 } 2722 data->ale_entries = prop; 2723 2724 if (of_property_read_u32(node, "bd_ram_size", &prop)) { 2725 dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n"); 2726 return -EINVAL; 2727 } 2728 data->bd_ram_size = prop; 2729 2730 if (of_property_read_u32(node, "mac_control", &prop)) { 2731 dev_err(&pdev->dev, "Missing mac_control property in the DT.\n"); 2732 return -EINVAL; 2733 } 2734 data->mac_control = prop; 2735 2736 if (of_property_read_bool(node, "dual_emac")) 2737 data->dual_emac = 1; 2738 2739 /* 2740 * Populate all the child nodes here... 2741 */ 2742 ret = of_platform_populate(node, NULL, NULL, &pdev->dev); 2743 /* We do not want to force this, as in some cases may not have child */ 2744 if (ret) 2745 dev_warn(&pdev->dev, "Doesn't have any child node\n"); 2746 2747 for_each_available_child_of_node(node, slave_node) { 2748 struct cpsw_slave_data *slave_data = data->slave_data + i; 2749 const void *mac_addr = NULL; 2750 int lenp; 2751 const __be32 *parp; 2752 2753 /* This is no slave child node, continue */ 2754 if (strcmp(slave_node->name, "slave")) 2755 continue; 2756 2757 slave_data->phy_node = of_parse_phandle(slave_node, 2758 "phy-handle", 0); 2759 parp = of_get_property(slave_node, "phy_id", &lenp); 2760 if (slave_data->phy_node) { 2761 dev_dbg(&pdev->dev, 2762 "slave[%d] using phy-handle=\"%pOF\"\n", 2763 i, slave_data->phy_node); 2764 } else if (of_phy_is_fixed_link(slave_node)) { 2765 /* In the case of a fixed PHY, the DT node associated 2766 * to the PHY is the Ethernet MAC DT node. 2767 */ 2768 ret = of_phy_register_fixed_link(slave_node); 2769 if (ret) { 2770 if (ret != -EPROBE_DEFER) 2771 dev_err(&pdev->dev, "failed to register fixed-link phy: %d\n", ret); 2772 return ret; 2773 } 2774 slave_data->phy_node = of_node_get(slave_node); 2775 } else if (parp) { 2776 u32 phyid; 2777 struct device_node *mdio_node; 2778 struct platform_device *mdio; 2779 2780 if (lenp != (sizeof(__be32) * 2)) { 2781 dev_err(&pdev->dev, "Invalid slave[%d] phy_id property\n", i); 2782 goto no_phy_slave; 2783 } 2784 mdio_node = of_find_node_by_phandle(be32_to_cpup(parp)); 2785 phyid = be32_to_cpup(parp+1); 2786 mdio = of_find_device_by_node(mdio_node); 2787 of_node_put(mdio_node); 2788 if (!mdio) { 2789 dev_err(&pdev->dev, "Missing mdio platform device\n"); 2790 return -EINVAL; 2791 } 2792 snprintf(slave_data->phy_id, sizeof(slave_data->phy_id), 2793 PHY_ID_FMT, mdio->name, phyid); 2794 put_device(&mdio->dev); 2795 } else { 2796 dev_err(&pdev->dev, 2797 "No slave[%d] phy_id, phy-handle, or fixed-link property\n", 2798 i); 2799 goto no_phy_slave; 2800 } 2801 slave_data->phy_if = of_get_phy_mode(slave_node); 2802 if (slave_data->phy_if < 0) { 2803 dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n", 2804 i); 2805 return slave_data->phy_if; 2806 } 2807 2808 no_phy_slave: 2809 mac_addr = of_get_mac_address(slave_node); 2810 if (mac_addr) { 2811 memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN); 2812 } else { 2813 ret = ti_cm_get_macid(&pdev->dev, i, 2814 slave_data->mac_addr); 2815 if (ret) 2816 return ret; 2817 } 2818 if (data->dual_emac) { 2819 if (of_property_read_u32(slave_node, "dual_emac_res_vlan", 2820 &prop)) { 2821 dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n"); 2822 slave_data->dual_emac_res_vlan = i+1; 2823 dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n", 2824 slave_data->dual_emac_res_vlan, i); 2825 } else { 2826 slave_data->dual_emac_res_vlan = prop; 2827 } 2828 } 2829 2830 i++; 2831 if (i == data->slaves) 2832 break; 2833 } 2834 2835 return 0; 2836 } 2837 2838 static void cpsw_remove_dt(struct platform_device *pdev) 2839 { 2840 struct net_device *ndev = platform_get_drvdata(pdev); 2841 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 2842 struct cpsw_platform_data *data = &cpsw->data; 2843 struct device_node *node = pdev->dev.of_node; 2844 struct device_node *slave_node; 2845 int i = 0; 2846 2847 for_each_available_child_of_node(node, slave_node) { 2848 struct cpsw_slave_data *slave_data = &data->slave_data[i]; 2849 2850 if (strcmp(slave_node->name, "slave")) 2851 continue; 2852 2853 if (of_phy_is_fixed_link(slave_node)) 2854 of_phy_deregister_fixed_link(slave_node); 2855 2856 of_node_put(slave_data->phy_node); 2857 2858 i++; 2859 if (i == data->slaves) 2860 break; 2861 } 2862 2863 of_platform_depopulate(&pdev->dev); 2864 } 2865 2866 static int cpsw_probe_dual_emac(struct cpsw_priv *priv) 2867 { 2868 struct cpsw_common *cpsw = priv->cpsw; 2869 struct cpsw_platform_data *data = &cpsw->data; 2870 struct net_device *ndev; 2871 struct cpsw_priv *priv_sl2; 2872 int ret = 0; 2873 2874 ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES); 2875 if (!ndev) { 2876 dev_err(cpsw->dev, "cpsw: error allocating net_device\n"); 2877 return -ENOMEM; 2878 } 2879 2880 priv_sl2 = netdev_priv(ndev); 2881 priv_sl2->cpsw = cpsw; 2882 priv_sl2->ndev = ndev; 2883 priv_sl2->dev = &ndev->dev; 2884 priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG); 2885 2886 if (is_valid_ether_addr(data->slave_data[1].mac_addr)) { 2887 memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr, 2888 ETH_ALEN); 2889 dev_info(cpsw->dev, "cpsw: Detected MACID = %pM\n", 2890 priv_sl2->mac_addr); 2891 } else { 2892 random_ether_addr(priv_sl2->mac_addr); 2893 dev_info(cpsw->dev, "cpsw: Random MACID = %pM\n", 2894 priv_sl2->mac_addr); 2895 } 2896 memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN); 2897 2898 priv_sl2->emac_port = 1; 2899 cpsw->slaves[1].ndev = ndev; 2900 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 2901 2902 ndev->netdev_ops = &cpsw_netdev_ops; 2903 ndev->ethtool_ops = &cpsw_ethtool_ops; 2904 2905 /* register the network device */ 2906 SET_NETDEV_DEV(ndev, cpsw->dev); 2907 ret = register_netdev(ndev); 2908 if (ret) { 2909 dev_err(cpsw->dev, "cpsw: error registering net device\n"); 2910 free_netdev(ndev); 2911 ret = -ENODEV; 2912 } 2913 2914 return ret; 2915 } 2916 2917 #define CPSW_QUIRK_IRQ BIT(0) 2918 2919 static const struct platform_device_id cpsw_devtype[] = { 2920 { 2921 /* keep it for existing comaptibles */ 2922 .name = "cpsw", 2923 .driver_data = CPSW_QUIRK_IRQ, 2924 }, { 2925 .name = "am335x-cpsw", 2926 .driver_data = CPSW_QUIRK_IRQ, 2927 }, { 2928 .name = "am4372-cpsw", 2929 .driver_data = 0, 2930 }, { 2931 .name = "dra7-cpsw", 2932 .driver_data = 0, 2933 }, { 2934 /* sentinel */ 2935 } 2936 }; 2937 MODULE_DEVICE_TABLE(platform, cpsw_devtype); 2938 2939 enum ti_cpsw_type { 2940 CPSW = 0, 2941 AM335X_CPSW, 2942 AM4372_CPSW, 2943 DRA7_CPSW, 2944 }; 2945 2946 static const struct of_device_id cpsw_of_mtable[] = { 2947 { .compatible = "ti,cpsw", .data = &cpsw_devtype[CPSW], }, 2948 { .compatible = "ti,am335x-cpsw", .data = &cpsw_devtype[AM335X_CPSW], }, 2949 { .compatible = "ti,am4372-cpsw", .data = &cpsw_devtype[AM4372_CPSW], }, 2950 { .compatible = "ti,dra7-cpsw", .data = &cpsw_devtype[DRA7_CPSW], }, 2951 { /* sentinel */ }, 2952 }; 2953 MODULE_DEVICE_TABLE(of, cpsw_of_mtable); 2954 2955 static int cpsw_probe(struct platform_device *pdev) 2956 { 2957 struct clk *clk; 2958 struct cpsw_platform_data *data; 2959 struct net_device *ndev; 2960 struct cpsw_priv *priv; 2961 struct cpdma_params dma_params; 2962 struct cpsw_ale_params ale_params; 2963 void __iomem *ss_regs; 2964 void __iomem *cpts_regs; 2965 struct resource *res, *ss_res; 2966 const struct of_device_id *of_id; 2967 struct gpio_descs *mode; 2968 u32 slave_offset, sliver_offset, slave_size; 2969 struct cpsw_common *cpsw; 2970 int ret = 0, i; 2971 int irq; 2972 2973 cpsw = devm_kzalloc(&pdev->dev, sizeof(struct cpsw_common), GFP_KERNEL); 2974 if (!cpsw) 2975 return -ENOMEM; 2976 2977 cpsw->dev = &pdev->dev; 2978 2979 ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES); 2980 if (!ndev) { 2981 dev_err(&pdev->dev, "error allocating net_device\n"); 2982 return -ENOMEM; 2983 } 2984 2985 platform_set_drvdata(pdev, ndev); 2986 priv = netdev_priv(ndev); 2987 priv->cpsw = cpsw; 2988 priv->ndev = ndev; 2989 priv->dev = &ndev->dev; 2990 priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG); 2991 cpsw->rx_packet_max = max(rx_packet_max, 128); 2992 2993 mode = devm_gpiod_get_array_optional(&pdev->dev, "mode", GPIOD_OUT_LOW); 2994 if (IS_ERR(mode)) { 2995 ret = PTR_ERR(mode); 2996 dev_err(&pdev->dev, "gpio request failed, ret %d\n", ret); 2997 goto clean_ndev_ret; 2998 } 2999 3000 /* 3001 * This may be required here for child devices. 3002 */ 3003 pm_runtime_enable(&pdev->dev); 3004 3005 /* Select default pin state */ 3006 pinctrl_pm_select_default_state(&pdev->dev); 3007 3008 /* Need to enable clocks with runtime PM api to access module 3009 * registers 3010 */ 3011 ret = pm_runtime_get_sync(&pdev->dev); 3012 if (ret < 0) { 3013 pm_runtime_put_noidle(&pdev->dev); 3014 goto clean_runtime_disable_ret; 3015 } 3016 3017 ret = cpsw_probe_dt(&cpsw->data, pdev); 3018 if (ret) 3019 goto clean_dt_ret; 3020 3021 data = &cpsw->data; 3022 cpsw->rx_ch_num = 1; 3023 cpsw->tx_ch_num = 1; 3024 3025 if (is_valid_ether_addr(data->slave_data[0].mac_addr)) { 3026 memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN); 3027 dev_info(&pdev->dev, "Detected MACID = %pM\n", priv->mac_addr); 3028 } else { 3029 eth_random_addr(priv->mac_addr); 3030 dev_info(&pdev->dev, "Random MACID = %pM\n", priv->mac_addr); 3031 } 3032 3033 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN); 3034 3035 cpsw->slaves = devm_kzalloc(&pdev->dev, 3036 sizeof(struct cpsw_slave) * data->slaves, 3037 GFP_KERNEL); 3038 if (!cpsw->slaves) { 3039 ret = -ENOMEM; 3040 goto clean_dt_ret; 3041 } 3042 for (i = 0; i < data->slaves; i++) 3043 cpsw->slaves[i].slave_num = i; 3044 3045 cpsw->slaves[0].ndev = ndev; 3046 priv->emac_port = 0; 3047 3048 clk = devm_clk_get(&pdev->dev, "fck"); 3049 if (IS_ERR(clk)) { 3050 dev_err(priv->dev, "fck is not found\n"); 3051 ret = -ENODEV; 3052 goto clean_dt_ret; 3053 } 3054 cpsw->bus_freq_mhz = clk_get_rate(clk) / 1000000; 3055 3056 ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 3057 ss_regs = devm_ioremap_resource(&pdev->dev, ss_res); 3058 if (IS_ERR(ss_regs)) { 3059 ret = PTR_ERR(ss_regs); 3060 goto clean_dt_ret; 3061 } 3062 cpsw->regs = ss_regs; 3063 3064 cpsw->version = readl(&cpsw->regs->id_ver); 3065 3066 res = platform_get_resource(pdev, IORESOURCE_MEM, 1); 3067 cpsw->wr_regs = devm_ioremap_resource(&pdev->dev, res); 3068 if (IS_ERR(cpsw->wr_regs)) { 3069 ret = PTR_ERR(cpsw->wr_regs); 3070 goto clean_dt_ret; 3071 } 3072 3073 memset(&dma_params, 0, sizeof(dma_params)); 3074 memset(&ale_params, 0, sizeof(ale_params)); 3075 3076 switch (cpsw->version) { 3077 case CPSW_VERSION_1: 3078 cpsw->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET; 3079 cpts_regs = ss_regs + CPSW1_CPTS_OFFSET; 3080 cpsw->hw_stats = ss_regs + CPSW1_HW_STATS; 3081 dma_params.dmaregs = ss_regs + CPSW1_CPDMA_OFFSET; 3082 dma_params.txhdp = ss_regs + CPSW1_STATERAM_OFFSET; 3083 ale_params.ale_regs = ss_regs + CPSW1_ALE_OFFSET; 3084 slave_offset = CPSW1_SLAVE_OFFSET; 3085 slave_size = CPSW1_SLAVE_SIZE; 3086 sliver_offset = CPSW1_SLIVER_OFFSET; 3087 dma_params.desc_mem_phys = 0; 3088 break; 3089 case CPSW_VERSION_2: 3090 case CPSW_VERSION_3: 3091 case CPSW_VERSION_4: 3092 cpsw->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET; 3093 cpts_regs = ss_regs + CPSW2_CPTS_OFFSET; 3094 cpsw->hw_stats = ss_regs + CPSW2_HW_STATS; 3095 dma_params.dmaregs = ss_regs + CPSW2_CPDMA_OFFSET; 3096 dma_params.txhdp = ss_regs + CPSW2_STATERAM_OFFSET; 3097 ale_params.ale_regs = ss_regs + CPSW2_ALE_OFFSET; 3098 slave_offset = CPSW2_SLAVE_OFFSET; 3099 slave_size = CPSW2_SLAVE_SIZE; 3100 sliver_offset = CPSW2_SLIVER_OFFSET; 3101 dma_params.desc_mem_phys = 3102 (u32 __force) ss_res->start + CPSW2_BD_OFFSET; 3103 break; 3104 default: 3105 dev_err(priv->dev, "unknown version 0x%08x\n", cpsw->version); 3106 ret = -ENODEV; 3107 goto clean_dt_ret; 3108 } 3109 for (i = 0; i < cpsw->data.slaves; i++) { 3110 struct cpsw_slave *slave = &cpsw->slaves[i]; 3111 3112 cpsw_slave_init(slave, cpsw, slave_offset, sliver_offset); 3113 slave_offset += slave_size; 3114 sliver_offset += SLIVER_SIZE; 3115 } 3116 3117 dma_params.dev = &pdev->dev; 3118 dma_params.rxthresh = dma_params.dmaregs + CPDMA_RXTHRESH; 3119 dma_params.rxfree = dma_params.dmaregs + CPDMA_RXFREE; 3120 dma_params.rxhdp = dma_params.txhdp + CPDMA_RXHDP; 3121 dma_params.txcp = dma_params.txhdp + CPDMA_TXCP; 3122 dma_params.rxcp = dma_params.txhdp + CPDMA_RXCP; 3123 3124 dma_params.num_chan = data->channels; 3125 dma_params.has_soft_reset = true; 3126 dma_params.min_packet_size = CPSW_MIN_PACKET_SIZE; 3127 dma_params.desc_mem_size = data->bd_ram_size; 3128 dma_params.desc_align = 16; 3129 dma_params.has_ext_regs = true; 3130 dma_params.desc_hw_addr = dma_params.desc_mem_phys; 3131 dma_params.bus_freq_mhz = cpsw->bus_freq_mhz; 3132 dma_params.descs_pool_size = descs_pool_size; 3133 3134 cpsw->dma = cpdma_ctlr_create(&dma_params); 3135 if (!cpsw->dma) { 3136 dev_err(priv->dev, "error initializing dma\n"); 3137 ret = -ENOMEM; 3138 goto clean_dt_ret; 3139 } 3140 3141 cpsw->txv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_tx_handler, 0); 3142 if (IS_ERR(cpsw->txv[0].ch)) { 3143 dev_err(priv->dev, "error initializing tx dma channel\n"); 3144 ret = PTR_ERR(cpsw->txv[0].ch); 3145 goto clean_dma_ret; 3146 } 3147 3148 cpsw->rxv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_rx_handler, 1); 3149 if (IS_ERR(cpsw->rxv[0].ch)) { 3150 dev_err(priv->dev, "error initializing rx dma channel\n"); 3151 ret = PTR_ERR(cpsw->rxv[0].ch); 3152 goto clean_dma_ret; 3153 } 3154 3155 ale_params.dev = &pdev->dev; 3156 ale_params.ale_ageout = ale_ageout; 3157 ale_params.ale_entries = data->ale_entries; 3158 ale_params.ale_ports = CPSW_ALE_PORTS_NUM; 3159 3160 cpsw->ale = cpsw_ale_create(&ale_params); 3161 if (!cpsw->ale) { 3162 dev_err(priv->dev, "error initializing ale engine\n"); 3163 ret = -ENODEV; 3164 goto clean_dma_ret; 3165 } 3166 3167 cpsw->cpts = cpts_create(cpsw->dev, cpts_regs, cpsw->dev->of_node); 3168 if (IS_ERR(cpsw->cpts)) { 3169 ret = PTR_ERR(cpsw->cpts); 3170 goto clean_dma_ret; 3171 } 3172 3173 ndev->irq = platform_get_irq(pdev, 1); 3174 if (ndev->irq < 0) { 3175 dev_err(priv->dev, "error getting irq resource\n"); 3176 ret = ndev->irq; 3177 goto clean_dma_ret; 3178 } 3179 3180 of_id = of_match_device(cpsw_of_mtable, &pdev->dev); 3181 if (of_id) { 3182 pdev->id_entry = of_id->data; 3183 if (pdev->id_entry->driver_data) 3184 cpsw->quirk_irq = true; 3185 } 3186 3187 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX; 3188 3189 ndev->netdev_ops = &cpsw_netdev_ops; 3190 ndev->ethtool_ops = &cpsw_ethtool_ops; 3191 netif_napi_add(ndev, &cpsw->napi_rx, cpsw_rx_poll, CPSW_POLL_WEIGHT); 3192 netif_tx_napi_add(ndev, &cpsw->napi_tx, cpsw_tx_poll, CPSW_POLL_WEIGHT); 3193 cpsw_split_res(ndev); 3194 3195 /* register the network device */ 3196 SET_NETDEV_DEV(ndev, &pdev->dev); 3197 ret = register_netdev(ndev); 3198 if (ret) { 3199 dev_err(priv->dev, "error registering net device\n"); 3200 ret = -ENODEV; 3201 goto clean_dma_ret; 3202 } 3203 3204 if (cpsw->data.dual_emac) { 3205 ret = cpsw_probe_dual_emac(priv); 3206 if (ret) { 3207 cpsw_err(priv, probe, "error probe slave 2 emac interface\n"); 3208 goto clean_unregister_netdev_ret; 3209 } 3210 } 3211 3212 /* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and 3213 * MISC IRQs which are always kept disabled with this driver so 3214 * we will not request them. 3215 * 3216 * If anyone wants to implement support for those, make sure to 3217 * first request and append them to irqs_table array. 3218 */ 3219 3220 /* RX IRQ */ 3221 irq = platform_get_irq(pdev, 1); 3222 if (irq < 0) { 3223 ret = irq; 3224 goto clean_dma_ret; 3225 } 3226 3227 cpsw->irqs_table[0] = irq; 3228 ret = devm_request_irq(&pdev->dev, irq, cpsw_rx_interrupt, 3229 0, dev_name(&pdev->dev), cpsw); 3230 if (ret < 0) { 3231 dev_err(priv->dev, "error attaching irq (%d)\n", ret); 3232 goto clean_dma_ret; 3233 } 3234 3235 /* TX IRQ */ 3236 irq = platform_get_irq(pdev, 2); 3237 if (irq < 0) { 3238 ret = irq; 3239 goto clean_dma_ret; 3240 } 3241 3242 cpsw->irqs_table[1] = irq; 3243 ret = devm_request_irq(&pdev->dev, irq, cpsw_tx_interrupt, 3244 0, dev_name(&pdev->dev), cpsw); 3245 if (ret < 0) { 3246 dev_err(priv->dev, "error attaching irq (%d)\n", ret); 3247 goto clean_dma_ret; 3248 } 3249 3250 cpsw_notice(priv, probe, 3251 "initialized device (regs %pa, irq %d, pool size %d)\n", 3252 &ss_res->start, ndev->irq, dma_params.descs_pool_size); 3253 3254 pm_runtime_put(&pdev->dev); 3255 3256 return 0; 3257 3258 clean_unregister_netdev_ret: 3259 unregister_netdev(ndev); 3260 clean_dma_ret: 3261 cpdma_ctlr_destroy(cpsw->dma); 3262 clean_dt_ret: 3263 cpsw_remove_dt(pdev); 3264 pm_runtime_put_sync(&pdev->dev); 3265 clean_runtime_disable_ret: 3266 pm_runtime_disable(&pdev->dev); 3267 clean_ndev_ret: 3268 free_netdev(priv->ndev); 3269 return ret; 3270 } 3271 3272 static int cpsw_remove(struct platform_device *pdev) 3273 { 3274 struct net_device *ndev = platform_get_drvdata(pdev); 3275 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 3276 int ret; 3277 3278 ret = pm_runtime_get_sync(&pdev->dev); 3279 if (ret < 0) { 3280 pm_runtime_put_noidle(&pdev->dev); 3281 return ret; 3282 } 3283 3284 if (cpsw->data.dual_emac) 3285 unregister_netdev(cpsw->slaves[1].ndev); 3286 unregister_netdev(ndev); 3287 3288 cpts_release(cpsw->cpts); 3289 cpdma_ctlr_destroy(cpsw->dma); 3290 cpsw_remove_dt(pdev); 3291 pm_runtime_put_sync(&pdev->dev); 3292 pm_runtime_disable(&pdev->dev); 3293 if (cpsw->data.dual_emac) 3294 free_netdev(cpsw->slaves[1].ndev); 3295 free_netdev(ndev); 3296 return 0; 3297 } 3298 3299 #ifdef CONFIG_PM_SLEEP 3300 static int cpsw_suspend(struct device *dev) 3301 { 3302 struct platform_device *pdev = to_platform_device(dev); 3303 struct net_device *ndev = platform_get_drvdata(pdev); 3304 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 3305 3306 if (cpsw->data.dual_emac) { 3307 int i; 3308 3309 for (i = 0; i < cpsw->data.slaves; i++) { 3310 if (netif_running(cpsw->slaves[i].ndev)) 3311 cpsw_ndo_stop(cpsw->slaves[i].ndev); 3312 } 3313 } else { 3314 if (netif_running(ndev)) 3315 cpsw_ndo_stop(ndev); 3316 } 3317 3318 /* Select sleep pin state */ 3319 pinctrl_pm_select_sleep_state(dev); 3320 3321 return 0; 3322 } 3323 3324 static int cpsw_resume(struct device *dev) 3325 { 3326 struct platform_device *pdev = to_platform_device(dev); 3327 struct net_device *ndev = platform_get_drvdata(pdev); 3328 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 3329 3330 /* Select default pin state */ 3331 pinctrl_pm_select_default_state(dev); 3332 3333 /* shut up ASSERT_RTNL() warning in netif_set_real_num_tx/rx_queues */ 3334 rtnl_lock(); 3335 if (cpsw->data.dual_emac) { 3336 int i; 3337 3338 for (i = 0; i < cpsw->data.slaves; i++) { 3339 if (netif_running(cpsw->slaves[i].ndev)) 3340 cpsw_ndo_open(cpsw->slaves[i].ndev); 3341 } 3342 } else { 3343 if (netif_running(ndev)) 3344 cpsw_ndo_open(ndev); 3345 } 3346 rtnl_unlock(); 3347 3348 return 0; 3349 } 3350 #endif 3351 3352 static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume); 3353 3354 static struct platform_driver cpsw_driver = { 3355 .driver = { 3356 .name = "cpsw", 3357 .pm = &cpsw_pm_ops, 3358 .of_match_table = cpsw_of_mtable, 3359 }, 3360 .probe = cpsw_probe, 3361 .remove = cpsw_remove, 3362 }; 3363 3364 module_platform_driver(cpsw_driver); 3365 3366 MODULE_LICENSE("GPL"); 3367 MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>"); 3368 MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>"); 3369 MODULE_DESCRIPTION("TI CPSW Ethernet driver"); 3370