1 /* 2 * Texas Instruments Ethernet Switch Driver 3 * 4 * Copyright (C) 2012 Texas Instruments 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License as 8 * published by the Free Software Foundation version 2. 9 * 10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any 11 * kind, whether express or implied; without even the implied warranty 12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/io.h> 18 #include <linux/clk.h> 19 #include <linux/timer.h> 20 #include <linux/module.h> 21 #include <linux/platform_device.h> 22 #include <linux/irqreturn.h> 23 #include <linux/interrupt.h> 24 #include <linux/if_ether.h> 25 #include <linux/etherdevice.h> 26 #include <linux/netdevice.h> 27 #include <linux/net_tstamp.h> 28 #include <linux/phy.h> 29 #include <linux/workqueue.h> 30 #include <linux/delay.h> 31 #include <linux/pm_runtime.h> 32 #include <linux/gpio.h> 33 #include <linux/of.h> 34 #include <linux/of_mdio.h> 35 #include <linux/of_net.h> 36 #include <linux/of_device.h> 37 #include <linux/if_vlan.h> 38 39 #include <linux/pinctrl/consumer.h> 40 41 #include "cpsw.h" 42 #include "cpsw_ale.h" 43 #include "cpts.h" 44 #include "davinci_cpdma.h" 45 46 #define CPSW_DEBUG (NETIF_MSG_HW | NETIF_MSG_WOL | \ 47 NETIF_MSG_DRV | NETIF_MSG_LINK | \ 48 NETIF_MSG_IFUP | NETIF_MSG_INTR | \ 49 NETIF_MSG_PROBE | NETIF_MSG_TIMER | \ 50 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | \ 51 NETIF_MSG_TX_ERR | NETIF_MSG_TX_DONE | \ 52 NETIF_MSG_PKTDATA | NETIF_MSG_TX_QUEUED | \ 53 NETIF_MSG_RX_STATUS) 54 55 #define cpsw_info(priv, type, format, ...) \ 56 do { \ 57 if (netif_msg_##type(priv) && net_ratelimit()) \ 58 dev_info(priv->dev, format, ## __VA_ARGS__); \ 59 } while (0) 60 61 #define cpsw_err(priv, type, format, ...) \ 62 do { \ 63 if (netif_msg_##type(priv) && net_ratelimit()) \ 64 dev_err(priv->dev, format, ## __VA_ARGS__); \ 65 } while (0) 66 67 #define cpsw_dbg(priv, type, format, ...) \ 68 do { \ 69 if (netif_msg_##type(priv) && net_ratelimit()) \ 70 dev_dbg(priv->dev, format, ## __VA_ARGS__); \ 71 } while (0) 72 73 #define cpsw_notice(priv, type, format, ...) \ 74 do { \ 75 if (netif_msg_##type(priv) && net_ratelimit()) \ 76 dev_notice(priv->dev, format, ## __VA_ARGS__); \ 77 } while (0) 78 79 #define ALE_ALL_PORTS 0x7 80 81 #define CPSW_MAJOR_VERSION(reg) (reg >> 8 & 0x7) 82 #define CPSW_MINOR_VERSION(reg) (reg & 0xff) 83 #define CPSW_RTL_VERSION(reg) ((reg >> 11) & 0x1f) 84 85 #define CPSW_VERSION_1 0x19010a 86 #define CPSW_VERSION_2 0x19010c 87 #define CPSW_VERSION_3 0x19010f 88 #define CPSW_VERSION_4 0x190112 89 90 #define HOST_PORT_NUM 0 91 #define SLIVER_SIZE 0x40 92 93 #define CPSW1_HOST_PORT_OFFSET 0x028 94 #define CPSW1_SLAVE_OFFSET 0x050 95 #define CPSW1_SLAVE_SIZE 0x040 96 #define CPSW1_CPDMA_OFFSET 0x100 97 #define CPSW1_STATERAM_OFFSET 0x200 98 #define CPSW1_HW_STATS 0x400 99 #define CPSW1_CPTS_OFFSET 0x500 100 #define CPSW1_ALE_OFFSET 0x600 101 #define CPSW1_SLIVER_OFFSET 0x700 102 103 #define CPSW2_HOST_PORT_OFFSET 0x108 104 #define CPSW2_SLAVE_OFFSET 0x200 105 #define CPSW2_SLAVE_SIZE 0x100 106 #define CPSW2_CPDMA_OFFSET 0x800 107 #define CPSW2_HW_STATS 0x900 108 #define CPSW2_STATERAM_OFFSET 0xa00 109 #define CPSW2_CPTS_OFFSET 0xc00 110 #define CPSW2_ALE_OFFSET 0xd00 111 #define CPSW2_SLIVER_OFFSET 0xd80 112 #define CPSW2_BD_OFFSET 0x2000 113 114 #define CPDMA_RXTHRESH 0x0c0 115 #define CPDMA_RXFREE 0x0e0 116 #define CPDMA_TXHDP 0x00 117 #define CPDMA_RXHDP 0x20 118 #define CPDMA_TXCP 0x40 119 #define CPDMA_RXCP 0x60 120 121 #define CPSW_POLL_WEIGHT 64 122 #define CPSW_MIN_PACKET_SIZE 60 123 #define CPSW_MAX_PACKET_SIZE (1500 + 14 + 4 + 4) 124 125 #define RX_PRIORITY_MAPPING 0x76543210 126 #define TX_PRIORITY_MAPPING 0x33221100 127 #define CPDMA_TX_PRIORITY_MAP 0x76543210 128 129 #define CPSW_VLAN_AWARE BIT(1) 130 #define CPSW_ALE_VLAN_AWARE 1 131 132 #define CPSW_FIFO_NORMAL_MODE (0 << 16) 133 #define CPSW_FIFO_DUAL_MAC_MODE (1 << 16) 134 #define CPSW_FIFO_RATE_LIMIT_MODE (2 << 16) 135 136 #define CPSW_INTPACEEN (0x3f << 16) 137 #define CPSW_INTPRESCALE_MASK (0x7FF << 0) 138 #define CPSW_CMINTMAX_CNT 63 139 #define CPSW_CMINTMIN_CNT 2 140 #define CPSW_CMINTMAX_INTVL (1000 / CPSW_CMINTMIN_CNT) 141 #define CPSW_CMINTMIN_INTVL ((1000 / CPSW_CMINTMAX_CNT) + 1) 142 143 #define cpsw_slave_index(priv) \ 144 ((priv->data.dual_emac) ? priv->emac_port : \ 145 priv->data.active_slave) 146 147 static int debug_level; 148 module_param(debug_level, int, 0); 149 MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)"); 150 151 static int ale_ageout = 10; 152 module_param(ale_ageout, int, 0); 153 MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)"); 154 155 static int rx_packet_max = CPSW_MAX_PACKET_SIZE; 156 module_param(rx_packet_max, int, 0); 157 MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)"); 158 159 struct cpsw_wr_regs { 160 u32 id_ver; 161 u32 soft_reset; 162 u32 control; 163 u32 int_control; 164 u32 rx_thresh_en; 165 u32 rx_en; 166 u32 tx_en; 167 u32 misc_en; 168 u32 mem_allign1[8]; 169 u32 rx_thresh_stat; 170 u32 rx_stat; 171 u32 tx_stat; 172 u32 misc_stat; 173 u32 mem_allign2[8]; 174 u32 rx_imax; 175 u32 tx_imax; 176 177 }; 178 179 struct cpsw_ss_regs { 180 u32 id_ver; 181 u32 control; 182 u32 soft_reset; 183 u32 stat_port_en; 184 u32 ptype; 185 u32 soft_idle; 186 u32 thru_rate; 187 u32 gap_thresh; 188 u32 tx_start_wds; 189 u32 flow_control; 190 u32 vlan_ltype; 191 u32 ts_ltype; 192 u32 dlr_ltype; 193 }; 194 195 /* CPSW_PORT_V1 */ 196 #define CPSW1_MAX_BLKS 0x00 /* Maximum FIFO Blocks */ 197 #define CPSW1_BLK_CNT 0x04 /* FIFO Block Usage Count (Read Only) */ 198 #define CPSW1_TX_IN_CTL 0x08 /* Transmit FIFO Control */ 199 #define CPSW1_PORT_VLAN 0x0c /* VLAN Register */ 200 #define CPSW1_TX_PRI_MAP 0x10 /* Tx Header Priority to Switch Pri Mapping */ 201 #define CPSW1_TS_CTL 0x14 /* Time Sync Control */ 202 #define CPSW1_TS_SEQ_LTYPE 0x18 /* Time Sync Sequence ID Offset and Msg Type */ 203 #define CPSW1_TS_VLAN 0x1c /* Time Sync VLAN1 and VLAN2 */ 204 205 /* CPSW_PORT_V2 */ 206 #define CPSW2_CONTROL 0x00 /* Control Register */ 207 #define CPSW2_MAX_BLKS 0x08 /* Maximum FIFO Blocks */ 208 #define CPSW2_BLK_CNT 0x0c /* FIFO Block Usage Count (Read Only) */ 209 #define CPSW2_TX_IN_CTL 0x10 /* Transmit FIFO Control */ 210 #define CPSW2_PORT_VLAN 0x14 /* VLAN Register */ 211 #define CPSW2_TX_PRI_MAP 0x18 /* Tx Header Priority to Switch Pri Mapping */ 212 #define CPSW2_TS_SEQ_MTYPE 0x1c /* Time Sync Sequence ID Offset and Msg Type */ 213 214 /* CPSW_PORT_V1 and V2 */ 215 #define SA_LO 0x20 /* CPGMAC_SL Source Address Low */ 216 #define SA_HI 0x24 /* CPGMAC_SL Source Address High */ 217 #define SEND_PERCENT 0x28 /* Transmit Queue Send Percentages */ 218 219 /* CPSW_PORT_V2 only */ 220 #define RX_DSCP_PRI_MAP0 0x30 /* Rx DSCP Priority to Rx Packet Mapping */ 221 #define RX_DSCP_PRI_MAP1 0x34 /* Rx DSCP Priority to Rx Packet Mapping */ 222 #define RX_DSCP_PRI_MAP2 0x38 /* Rx DSCP Priority to Rx Packet Mapping */ 223 #define RX_DSCP_PRI_MAP3 0x3c /* Rx DSCP Priority to Rx Packet Mapping */ 224 #define RX_DSCP_PRI_MAP4 0x40 /* Rx DSCP Priority to Rx Packet Mapping */ 225 #define RX_DSCP_PRI_MAP5 0x44 /* Rx DSCP Priority to Rx Packet Mapping */ 226 #define RX_DSCP_PRI_MAP6 0x48 /* Rx DSCP Priority to Rx Packet Mapping */ 227 #define RX_DSCP_PRI_MAP7 0x4c /* Rx DSCP Priority to Rx Packet Mapping */ 228 229 /* Bit definitions for the CPSW2_CONTROL register */ 230 #define PASS_PRI_TAGGED (1<<24) /* Pass Priority Tagged */ 231 #define VLAN_LTYPE2_EN (1<<21) /* VLAN LTYPE 2 enable */ 232 #define VLAN_LTYPE1_EN (1<<20) /* VLAN LTYPE 1 enable */ 233 #define DSCP_PRI_EN (1<<16) /* DSCP Priority Enable */ 234 #define TS_320 (1<<14) /* Time Sync Dest Port 320 enable */ 235 #define TS_319 (1<<13) /* Time Sync Dest Port 319 enable */ 236 #define TS_132 (1<<12) /* Time Sync Dest IP Addr 132 enable */ 237 #define TS_131 (1<<11) /* Time Sync Dest IP Addr 131 enable */ 238 #define TS_130 (1<<10) /* Time Sync Dest IP Addr 130 enable */ 239 #define TS_129 (1<<9) /* Time Sync Dest IP Addr 129 enable */ 240 #define TS_TTL_NONZERO (1<<8) /* Time Sync Time To Live Non-zero enable */ 241 #define TS_ANNEX_F_EN (1<<6) /* Time Sync Annex F enable */ 242 #define TS_ANNEX_D_EN (1<<4) /* Time Sync Annex D enable */ 243 #define TS_LTYPE2_EN (1<<3) /* Time Sync LTYPE 2 enable */ 244 #define TS_LTYPE1_EN (1<<2) /* Time Sync LTYPE 1 enable */ 245 #define TS_TX_EN (1<<1) /* Time Sync Transmit Enable */ 246 #define TS_RX_EN (1<<0) /* Time Sync Receive Enable */ 247 248 #define CTRL_V2_TS_BITS \ 249 (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\ 250 TS_TTL_NONZERO | TS_ANNEX_D_EN | TS_LTYPE1_EN) 251 252 #define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN) 253 #define CTRL_V2_TX_TS_BITS (CTRL_V2_TS_BITS | TS_TX_EN) 254 #define CTRL_V2_RX_TS_BITS (CTRL_V2_TS_BITS | TS_RX_EN) 255 256 257 #define CTRL_V3_TS_BITS \ 258 (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\ 259 TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\ 260 TS_LTYPE1_EN) 261 262 #define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN) 263 #define CTRL_V3_TX_TS_BITS (CTRL_V3_TS_BITS | TS_TX_EN) 264 #define CTRL_V3_RX_TS_BITS (CTRL_V3_TS_BITS | TS_RX_EN) 265 266 /* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */ 267 #define TS_SEQ_ID_OFFSET_SHIFT (16) /* Time Sync Sequence ID Offset */ 268 #define TS_SEQ_ID_OFFSET_MASK (0x3f) 269 #define TS_MSG_TYPE_EN_SHIFT (0) /* Time Sync Message Type Enable */ 270 #define TS_MSG_TYPE_EN_MASK (0xffff) 271 272 /* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */ 273 #define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3)) 274 275 /* Bit definitions for the CPSW1_TS_CTL register */ 276 #define CPSW_V1_TS_RX_EN BIT(0) 277 #define CPSW_V1_TS_TX_EN BIT(4) 278 #define CPSW_V1_MSG_TYPE_OFS 16 279 280 /* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */ 281 #define CPSW_V1_SEQ_ID_OFS_SHIFT 16 282 283 struct cpsw_host_regs { 284 u32 max_blks; 285 u32 blk_cnt; 286 u32 tx_in_ctl; 287 u32 port_vlan; 288 u32 tx_pri_map; 289 u32 cpdma_tx_pri_map; 290 u32 cpdma_rx_chan_map; 291 }; 292 293 struct cpsw_sliver_regs { 294 u32 id_ver; 295 u32 mac_control; 296 u32 mac_status; 297 u32 soft_reset; 298 u32 rx_maxlen; 299 u32 __reserved_0; 300 u32 rx_pause; 301 u32 tx_pause; 302 u32 __reserved_1; 303 u32 rx_pri_map; 304 }; 305 306 struct cpsw_hw_stats { 307 u32 rxgoodframes; 308 u32 rxbroadcastframes; 309 u32 rxmulticastframes; 310 u32 rxpauseframes; 311 u32 rxcrcerrors; 312 u32 rxaligncodeerrors; 313 u32 rxoversizedframes; 314 u32 rxjabberframes; 315 u32 rxundersizedframes; 316 u32 rxfragments; 317 u32 __pad_0[2]; 318 u32 rxoctets; 319 u32 txgoodframes; 320 u32 txbroadcastframes; 321 u32 txmulticastframes; 322 u32 txpauseframes; 323 u32 txdeferredframes; 324 u32 txcollisionframes; 325 u32 txsinglecollframes; 326 u32 txmultcollframes; 327 u32 txexcessivecollisions; 328 u32 txlatecollisions; 329 u32 txunderrun; 330 u32 txcarriersenseerrors; 331 u32 txoctets; 332 u32 octetframes64; 333 u32 octetframes65t127; 334 u32 octetframes128t255; 335 u32 octetframes256t511; 336 u32 octetframes512t1023; 337 u32 octetframes1024tup; 338 u32 netoctets; 339 u32 rxsofoverruns; 340 u32 rxmofoverruns; 341 u32 rxdmaoverruns; 342 }; 343 344 struct cpsw_slave { 345 void __iomem *regs; 346 struct cpsw_sliver_regs __iomem *sliver; 347 int slave_num; 348 u32 mac_control; 349 struct cpsw_slave_data *data; 350 struct phy_device *phy; 351 struct net_device *ndev; 352 u32 port_vlan; 353 u32 open_stat; 354 }; 355 356 static inline u32 slave_read(struct cpsw_slave *slave, u32 offset) 357 { 358 return __raw_readl(slave->regs + offset); 359 } 360 361 static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset) 362 { 363 __raw_writel(val, slave->regs + offset); 364 } 365 366 struct cpsw_priv { 367 spinlock_t lock; 368 struct platform_device *pdev; 369 struct net_device *ndev; 370 struct device_node *phy_node; 371 struct napi_struct napi_rx; 372 struct napi_struct napi_tx; 373 struct device *dev; 374 struct cpsw_platform_data data; 375 struct cpsw_ss_regs __iomem *regs; 376 struct cpsw_wr_regs __iomem *wr_regs; 377 u8 __iomem *hw_stats; 378 struct cpsw_host_regs __iomem *host_port_regs; 379 u32 msg_enable; 380 u32 version; 381 u32 coal_intvl; 382 u32 bus_freq_mhz; 383 int rx_packet_max; 384 int host_port; 385 struct clk *clk; 386 u8 mac_addr[ETH_ALEN]; 387 struct cpsw_slave *slaves; 388 struct cpdma_ctlr *dma; 389 struct cpdma_chan *txch, *rxch; 390 struct cpsw_ale *ale; 391 bool rx_pause; 392 bool tx_pause; 393 bool quirk_irq; 394 bool rx_irq_disabled; 395 bool tx_irq_disabled; 396 /* snapshot of IRQ numbers */ 397 u32 irqs_table[4]; 398 u32 num_irqs; 399 struct cpts *cpts; 400 u32 emac_port; 401 }; 402 403 struct cpsw_stats { 404 char stat_string[ETH_GSTRING_LEN]; 405 int type; 406 int sizeof_stat; 407 int stat_offset; 408 }; 409 410 enum { 411 CPSW_STATS, 412 CPDMA_RX_STATS, 413 CPDMA_TX_STATS, 414 }; 415 416 #define CPSW_STAT(m) CPSW_STATS, \ 417 sizeof(((struct cpsw_hw_stats *)0)->m), \ 418 offsetof(struct cpsw_hw_stats, m) 419 #define CPDMA_RX_STAT(m) CPDMA_RX_STATS, \ 420 sizeof(((struct cpdma_chan_stats *)0)->m), \ 421 offsetof(struct cpdma_chan_stats, m) 422 #define CPDMA_TX_STAT(m) CPDMA_TX_STATS, \ 423 sizeof(((struct cpdma_chan_stats *)0)->m), \ 424 offsetof(struct cpdma_chan_stats, m) 425 426 static const struct cpsw_stats cpsw_gstrings_stats[] = { 427 { "Good Rx Frames", CPSW_STAT(rxgoodframes) }, 428 { "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) }, 429 { "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) }, 430 { "Pause Rx Frames", CPSW_STAT(rxpauseframes) }, 431 { "Rx CRC Errors", CPSW_STAT(rxcrcerrors) }, 432 { "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) }, 433 { "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) }, 434 { "Rx Jabbers", CPSW_STAT(rxjabberframes) }, 435 { "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) }, 436 { "Rx Fragments", CPSW_STAT(rxfragments) }, 437 { "Rx Octets", CPSW_STAT(rxoctets) }, 438 { "Good Tx Frames", CPSW_STAT(txgoodframes) }, 439 { "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) }, 440 { "Multicast Tx Frames", CPSW_STAT(txmulticastframes) }, 441 { "Pause Tx Frames", CPSW_STAT(txpauseframes) }, 442 { "Deferred Tx Frames", CPSW_STAT(txdeferredframes) }, 443 { "Collisions", CPSW_STAT(txcollisionframes) }, 444 { "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) }, 445 { "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) }, 446 { "Excessive Collisions", CPSW_STAT(txexcessivecollisions) }, 447 { "Late Collisions", CPSW_STAT(txlatecollisions) }, 448 { "Tx Underrun", CPSW_STAT(txunderrun) }, 449 { "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) }, 450 { "Tx Octets", CPSW_STAT(txoctets) }, 451 { "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) }, 452 { "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) }, 453 { "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) }, 454 { "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) }, 455 { "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) }, 456 { "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) }, 457 { "Net Octets", CPSW_STAT(netoctets) }, 458 { "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) }, 459 { "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) }, 460 { "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) }, 461 { "Rx DMA chan: head_enqueue", CPDMA_RX_STAT(head_enqueue) }, 462 { "Rx DMA chan: tail_enqueue", CPDMA_RX_STAT(tail_enqueue) }, 463 { "Rx DMA chan: pad_enqueue", CPDMA_RX_STAT(pad_enqueue) }, 464 { "Rx DMA chan: misqueued", CPDMA_RX_STAT(misqueued) }, 465 { "Rx DMA chan: desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) }, 466 { "Rx DMA chan: pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) }, 467 { "Rx DMA chan: runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) }, 468 { "Rx DMA chan: runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) }, 469 { "Rx DMA chan: empty_dequeue", CPDMA_RX_STAT(empty_dequeue) }, 470 { "Rx DMA chan: busy_dequeue", CPDMA_RX_STAT(busy_dequeue) }, 471 { "Rx DMA chan: good_dequeue", CPDMA_RX_STAT(good_dequeue) }, 472 { "Rx DMA chan: requeue", CPDMA_RX_STAT(requeue) }, 473 { "Rx DMA chan: teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) }, 474 { "Tx DMA chan: head_enqueue", CPDMA_TX_STAT(head_enqueue) }, 475 { "Tx DMA chan: tail_enqueue", CPDMA_TX_STAT(tail_enqueue) }, 476 { "Tx DMA chan: pad_enqueue", CPDMA_TX_STAT(pad_enqueue) }, 477 { "Tx DMA chan: misqueued", CPDMA_TX_STAT(misqueued) }, 478 { "Tx DMA chan: desc_alloc_fail", CPDMA_TX_STAT(desc_alloc_fail) }, 479 { "Tx DMA chan: pad_alloc_fail", CPDMA_TX_STAT(pad_alloc_fail) }, 480 { "Tx DMA chan: runt_receive_buf", CPDMA_TX_STAT(runt_receive_buff) }, 481 { "Tx DMA chan: runt_transmit_buf", CPDMA_TX_STAT(runt_transmit_buff) }, 482 { "Tx DMA chan: empty_dequeue", CPDMA_TX_STAT(empty_dequeue) }, 483 { "Tx DMA chan: busy_dequeue", CPDMA_TX_STAT(busy_dequeue) }, 484 { "Tx DMA chan: good_dequeue", CPDMA_TX_STAT(good_dequeue) }, 485 { "Tx DMA chan: requeue", CPDMA_TX_STAT(requeue) }, 486 { "Tx DMA chan: teardown_dequeue", CPDMA_TX_STAT(teardown_dequeue) }, 487 }; 488 489 #define CPSW_STATS_LEN ARRAY_SIZE(cpsw_gstrings_stats) 490 491 #define napi_to_priv(napi) container_of(napi, struct cpsw_priv, napi) 492 #define for_each_slave(priv, func, arg...) \ 493 do { \ 494 struct cpsw_slave *slave; \ 495 int n; \ 496 if (priv->data.dual_emac) \ 497 (func)((priv)->slaves + priv->emac_port, ##arg);\ 498 else \ 499 for (n = (priv)->data.slaves, \ 500 slave = (priv)->slaves; \ 501 n; n--) \ 502 (func)(slave++, ##arg); \ 503 } while (0) 504 #define cpsw_get_slave_ndev(priv, __slave_no__) \ 505 ((__slave_no__ < priv->data.slaves) ? \ 506 priv->slaves[__slave_no__].ndev : NULL) 507 #define cpsw_get_slave_priv(priv, __slave_no__) \ 508 (((__slave_no__ < priv->data.slaves) && \ 509 (priv->slaves[__slave_no__].ndev)) ? \ 510 netdev_priv(priv->slaves[__slave_no__].ndev) : NULL) \ 511 512 #define cpsw_dual_emac_src_port_detect(status, priv, ndev, skb) \ 513 do { \ 514 if (!priv->data.dual_emac) \ 515 break; \ 516 if (CPDMA_RX_SOURCE_PORT(status) == 1) { \ 517 ndev = cpsw_get_slave_ndev(priv, 0); \ 518 priv = netdev_priv(ndev); \ 519 skb->dev = ndev; \ 520 } else if (CPDMA_RX_SOURCE_PORT(status) == 2) { \ 521 ndev = cpsw_get_slave_ndev(priv, 1); \ 522 priv = netdev_priv(ndev); \ 523 skb->dev = ndev; \ 524 } \ 525 } while (0) 526 #define cpsw_add_mcast(priv, addr) \ 527 do { \ 528 if (priv->data.dual_emac) { \ 529 struct cpsw_slave *slave = priv->slaves + \ 530 priv->emac_port; \ 531 int slave_port = cpsw_get_slave_port(priv, \ 532 slave->slave_num); \ 533 cpsw_ale_add_mcast(priv->ale, addr, \ 534 1 << slave_port | 1 << priv->host_port, \ 535 ALE_VLAN, slave->port_vlan, 0); \ 536 } else { \ 537 cpsw_ale_add_mcast(priv->ale, addr, \ 538 ALE_ALL_PORTS << priv->host_port, \ 539 0, 0, 0); \ 540 } \ 541 } while (0) 542 543 static inline int cpsw_get_slave_port(struct cpsw_priv *priv, u32 slave_num) 544 { 545 if (priv->host_port == 0) 546 return slave_num + 1; 547 else 548 return slave_num; 549 } 550 551 static void cpsw_set_promiscious(struct net_device *ndev, bool enable) 552 { 553 struct cpsw_priv *priv = netdev_priv(ndev); 554 struct cpsw_ale *ale = priv->ale; 555 int i; 556 557 if (priv->data.dual_emac) { 558 bool flag = false; 559 560 /* Enabling promiscuous mode for one interface will be 561 * common for both the interface as the interface shares 562 * the same hardware resource. 563 */ 564 for (i = 0; i < priv->data.slaves; i++) 565 if (priv->slaves[i].ndev->flags & IFF_PROMISC) 566 flag = true; 567 568 if (!enable && flag) { 569 enable = true; 570 dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n"); 571 } 572 573 if (enable) { 574 /* Enable Bypass */ 575 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1); 576 577 dev_dbg(&ndev->dev, "promiscuity enabled\n"); 578 } else { 579 /* Disable Bypass */ 580 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0); 581 dev_dbg(&ndev->dev, "promiscuity disabled\n"); 582 } 583 } else { 584 if (enable) { 585 unsigned long timeout = jiffies + HZ; 586 587 /* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */ 588 for (i = 0; i <= priv->data.slaves; i++) { 589 cpsw_ale_control_set(ale, i, 590 ALE_PORT_NOLEARN, 1); 591 cpsw_ale_control_set(ale, i, 592 ALE_PORT_NO_SA_UPDATE, 1); 593 } 594 595 /* Clear All Untouched entries */ 596 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1); 597 do { 598 cpu_relax(); 599 if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT)) 600 break; 601 } while (time_after(timeout, jiffies)); 602 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1); 603 604 /* Clear all mcast from ALE */ 605 cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS << 606 priv->host_port, -1); 607 608 /* Flood All Unicast Packets to Host port */ 609 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1); 610 dev_dbg(&ndev->dev, "promiscuity enabled\n"); 611 } else { 612 /* Don't Flood All Unicast Packets to Host port */ 613 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0); 614 615 /* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */ 616 for (i = 0; i <= priv->data.slaves; i++) { 617 cpsw_ale_control_set(ale, i, 618 ALE_PORT_NOLEARN, 0); 619 cpsw_ale_control_set(ale, i, 620 ALE_PORT_NO_SA_UPDATE, 0); 621 } 622 dev_dbg(&ndev->dev, "promiscuity disabled\n"); 623 } 624 } 625 } 626 627 static void cpsw_ndo_set_rx_mode(struct net_device *ndev) 628 { 629 struct cpsw_priv *priv = netdev_priv(ndev); 630 int vid; 631 632 if (priv->data.dual_emac) 633 vid = priv->slaves[priv->emac_port].port_vlan; 634 else 635 vid = priv->data.default_vlan; 636 637 if (ndev->flags & IFF_PROMISC) { 638 /* Enable promiscuous mode */ 639 cpsw_set_promiscious(ndev, true); 640 cpsw_ale_set_allmulti(priv->ale, IFF_ALLMULTI); 641 return; 642 } else { 643 /* Disable promiscuous mode */ 644 cpsw_set_promiscious(ndev, false); 645 } 646 647 /* Restore allmulti on vlans if necessary */ 648 cpsw_ale_set_allmulti(priv->ale, priv->ndev->flags & IFF_ALLMULTI); 649 650 /* Clear all mcast from ALE */ 651 cpsw_ale_flush_multicast(priv->ale, ALE_ALL_PORTS << priv->host_port, 652 vid); 653 654 if (!netdev_mc_empty(ndev)) { 655 struct netdev_hw_addr *ha; 656 657 /* program multicast address list into ALE register */ 658 netdev_for_each_mc_addr(ha, ndev) { 659 cpsw_add_mcast(priv, (u8 *)ha->addr); 660 } 661 } 662 } 663 664 static void cpsw_intr_enable(struct cpsw_priv *priv) 665 { 666 __raw_writel(0xFF, &priv->wr_regs->tx_en); 667 __raw_writel(0xFF, &priv->wr_regs->rx_en); 668 669 cpdma_ctlr_int_ctrl(priv->dma, true); 670 return; 671 } 672 673 static void cpsw_intr_disable(struct cpsw_priv *priv) 674 { 675 __raw_writel(0, &priv->wr_regs->tx_en); 676 __raw_writel(0, &priv->wr_regs->rx_en); 677 678 cpdma_ctlr_int_ctrl(priv->dma, false); 679 return; 680 } 681 682 static void cpsw_tx_handler(void *token, int len, int status) 683 { 684 struct sk_buff *skb = token; 685 struct net_device *ndev = skb->dev; 686 struct cpsw_priv *priv = netdev_priv(ndev); 687 688 /* Check whether the queue is stopped due to stalled tx dma, if the 689 * queue is stopped then start the queue as we have free desc for tx 690 */ 691 if (unlikely(netif_queue_stopped(ndev))) 692 netif_wake_queue(ndev); 693 cpts_tx_timestamp(priv->cpts, skb); 694 ndev->stats.tx_packets++; 695 ndev->stats.tx_bytes += len; 696 dev_kfree_skb_any(skb); 697 } 698 699 static void cpsw_rx_handler(void *token, int len, int status) 700 { 701 struct sk_buff *skb = token; 702 struct sk_buff *new_skb; 703 struct net_device *ndev = skb->dev; 704 struct cpsw_priv *priv = netdev_priv(ndev); 705 int ret = 0; 706 707 cpsw_dual_emac_src_port_detect(status, priv, ndev, skb); 708 709 if (unlikely(status < 0) || unlikely(!netif_running(ndev))) { 710 bool ndev_status = false; 711 struct cpsw_slave *slave = priv->slaves; 712 int n; 713 714 if (priv->data.dual_emac) { 715 /* In dual emac mode check for all interfaces */ 716 for (n = priv->data.slaves; n; n--, slave++) 717 if (netif_running(slave->ndev)) 718 ndev_status = true; 719 } 720 721 if (ndev_status && (status >= 0)) { 722 /* The packet received is for the interface which 723 * is already down and the other interface is up 724 * and running, instead of freeing which results 725 * in reducing of the number of rx descriptor in 726 * DMA engine, requeue skb back to cpdma. 727 */ 728 new_skb = skb; 729 goto requeue; 730 } 731 732 /* the interface is going down, skbs are purged */ 733 dev_kfree_skb_any(skb); 734 return; 735 } 736 737 new_skb = netdev_alloc_skb_ip_align(ndev, priv->rx_packet_max); 738 if (new_skb) { 739 skb_put(skb, len); 740 cpts_rx_timestamp(priv->cpts, skb); 741 skb->protocol = eth_type_trans(skb, ndev); 742 netif_receive_skb(skb); 743 ndev->stats.rx_bytes += len; 744 ndev->stats.rx_packets++; 745 } else { 746 ndev->stats.rx_dropped++; 747 new_skb = skb; 748 } 749 750 requeue: 751 ret = cpdma_chan_submit(priv->rxch, new_skb, new_skb->data, 752 skb_tailroom(new_skb), 0); 753 if (WARN_ON(ret < 0)) 754 dev_kfree_skb_any(new_skb); 755 } 756 757 static irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id) 758 { 759 struct cpsw_priv *priv = dev_id; 760 761 writel(0, &priv->wr_regs->tx_en); 762 cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_TX); 763 764 if (priv->quirk_irq) { 765 disable_irq_nosync(priv->irqs_table[1]); 766 priv->tx_irq_disabled = true; 767 } 768 769 napi_schedule(&priv->napi_tx); 770 return IRQ_HANDLED; 771 } 772 773 static irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id) 774 { 775 struct cpsw_priv *priv = dev_id; 776 777 cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_RX); 778 writel(0, &priv->wr_regs->rx_en); 779 780 if (priv->quirk_irq) { 781 disable_irq_nosync(priv->irqs_table[0]); 782 priv->rx_irq_disabled = true; 783 } 784 785 napi_schedule(&priv->napi_rx); 786 return IRQ_HANDLED; 787 } 788 789 static int cpsw_tx_poll(struct napi_struct *napi_tx, int budget) 790 { 791 struct cpsw_priv *priv = napi_to_priv(napi_tx); 792 int num_tx; 793 794 num_tx = cpdma_chan_process(priv->txch, budget); 795 if (num_tx < budget) { 796 napi_complete(napi_tx); 797 writel(0xff, &priv->wr_regs->tx_en); 798 if (priv->quirk_irq && priv->tx_irq_disabled) { 799 priv->tx_irq_disabled = false; 800 enable_irq(priv->irqs_table[1]); 801 } 802 } 803 804 if (num_tx) 805 cpsw_dbg(priv, intr, "poll %d tx pkts\n", num_tx); 806 807 return num_tx; 808 } 809 810 static int cpsw_rx_poll(struct napi_struct *napi_rx, int budget) 811 { 812 struct cpsw_priv *priv = napi_to_priv(napi_rx); 813 int num_rx; 814 815 num_rx = cpdma_chan_process(priv->rxch, budget); 816 if (num_rx < budget) { 817 napi_complete(napi_rx); 818 writel(0xff, &priv->wr_regs->rx_en); 819 if (priv->quirk_irq && priv->rx_irq_disabled) { 820 priv->rx_irq_disabled = false; 821 enable_irq(priv->irqs_table[0]); 822 } 823 } 824 825 if (num_rx) 826 cpsw_dbg(priv, intr, "poll %d rx pkts\n", num_rx); 827 828 return num_rx; 829 } 830 831 static inline void soft_reset(const char *module, void __iomem *reg) 832 { 833 unsigned long timeout = jiffies + HZ; 834 835 __raw_writel(1, reg); 836 do { 837 cpu_relax(); 838 } while ((__raw_readl(reg) & 1) && time_after(timeout, jiffies)); 839 840 WARN(__raw_readl(reg) & 1, "failed to soft-reset %s\n", module); 841 } 842 843 #define mac_hi(mac) (((mac)[0] << 0) | ((mac)[1] << 8) | \ 844 ((mac)[2] << 16) | ((mac)[3] << 24)) 845 #define mac_lo(mac) (((mac)[4] << 0) | ((mac)[5] << 8)) 846 847 static void cpsw_set_slave_mac(struct cpsw_slave *slave, 848 struct cpsw_priv *priv) 849 { 850 slave_write(slave, mac_hi(priv->mac_addr), SA_HI); 851 slave_write(slave, mac_lo(priv->mac_addr), SA_LO); 852 } 853 854 static void _cpsw_adjust_link(struct cpsw_slave *slave, 855 struct cpsw_priv *priv, bool *link) 856 { 857 struct phy_device *phy = slave->phy; 858 u32 mac_control = 0; 859 u32 slave_port; 860 861 if (!phy) 862 return; 863 864 slave_port = cpsw_get_slave_port(priv, slave->slave_num); 865 866 if (phy->link) { 867 mac_control = priv->data.mac_control; 868 869 /* enable forwarding */ 870 cpsw_ale_control_set(priv->ale, slave_port, 871 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD); 872 873 if (phy->speed == 1000) 874 mac_control |= BIT(7); /* GIGABITEN */ 875 if (phy->duplex) 876 mac_control |= BIT(0); /* FULLDUPLEXEN */ 877 878 /* set speed_in input in case RMII mode is used in 100Mbps */ 879 if (phy->speed == 100) 880 mac_control |= BIT(15); 881 else if (phy->speed == 10) 882 mac_control |= BIT(18); /* In Band mode */ 883 884 if (priv->rx_pause) 885 mac_control |= BIT(3); 886 887 if (priv->tx_pause) 888 mac_control |= BIT(4); 889 890 *link = true; 891 } else { 892 mac_control = 0; 893 /* disable forwarding */ 894 cpsw_ale_control_set(priv->ale, slave_port, 895 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE); 896 } 897 898 if (mac_control != slave->mac_control) { 899 phy_print_status(phy); 900 __raw_writel(mac_control, &slave->sliver->mac_control); 901 } 902 903 slave->mac_control = mac_control; 904 } 905 906 static void cpsw_adjust_link(struct net_device *ndev) 907 { 908 struct cpsw_priv *priv = netdev_priv(ndev); 909 bool link = false; 910 911 for_each_slave(priv, _cpsw_adjust_link, priv, &link); 912 913 if (link) { 914 netif_carrier_on(ndev); 915 if (netif_running(ndev)) 916 netif_wake_queue(ndev); 917 } else { 918 netif_carrier_off(ndev); 919 netif_stop_queue(ndev); 920 } 921 } 922 923 static int cpsw_get_coalesce(struct net_device *ndev, 924 struct ethtool_coalesce *coal) 925 { 926 struct cpsw_priv *priv = netdev_priv(ndev); 927 928 coal->rx_coalesce_usecs = priv->coal_intvl; 929 return 0; 930 } 931 932 static int cpsw_set_coalesce(struct net_device *ndev, 933 struct ethtool_coalesce *coal) 934 { 935 struct cpsw_priv *priv = netdev_priv(ndev); 936 u32 int_ctrl; 937 u32 num_interrupts = 0; 938 u32 prescale = 0; 939 u32 addnl_dvdr = 1; 940 u32 coal_intvl = 0; 941 942 coal_intvl = coal->rx_coalesce_usecs; 943 944 int_ctrl = readl(&priv->wr_regs->int_control); 945 prescale = priv->bus_freq_mhz * 4; 946 947 if (!coal->rx_coalesce_usecs) { 948 int_ctrl &= ~(CPSW_INTPRESCALE_MASK | CPSW_INTPACEEN); 949 goto update_return; 950 } 951 952 if (coal_intvl < CPSW_CMINTMIN_INTVL) 953 coal_intvl = CPSW_CMINTMIN_INTVL; 954 955 if (coal_intvl > CPSW_CMINTMAX_INTVL) { 956 /* Interrupt pacer works with 4us Pulse, we can 957 * throttle further by dilating the 4us pulse. 958 */ 959 addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale; 960 961 if (addnl_dvdr > 1) { 962 prescale *= addnl_dvdr; 963 if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr)) 964 coal_intvl = (CPSW_CMINTMAX_INTVL 965 * addnl_dvdr); 966 } else { 967 addnl_dvdr = 1; 968 coal_intvl = CPSW_CMINTMAX_INTVL; 969 } 970 } 971 972 num_interrupts = (1000 * addnl_dvdr) / coal_intvl; 973 writel(num_interrupts, &priv->wr_regs->rx_imax); 974 writel(num_interrupts, &priv->wr_regs->tx_imax); 975 976 int_ctrl |= CPSW_INTPACEEN; 977 int_ctrl &= (~CPSW_INTPRESCALE_MASK); 978 int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK); 979 980 update_return: 981 writel(int_ctrl, &priv->wr_regs->int_control); 982 983 cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl); 984 if (priv->data.dual_emac) { 985 int i; 986 987 for (i = 0; i < priv->data.slaves; i++) { 988 priv = netdev_priv(priv->slaves[i].ndev); 989 priv->coal_intvl = coal_intvl; 990 } 991 } else { 992 priv->coal_intvl = coal_intvl; 993 } 994 995 return 0; 996 } 997 998 static int cpsw_get_sset_count(struct net_device *ndev, int sset) 999 { 1000 switch (sset) { 1001 case ETH_SS_STATS: 1002 return CPSW_STATS_LEN; 1003 default: 1004 return -EOPNOTSUPP; 1005 } 1006 } 1007 1008 static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data) 1009 { 1010 u8 *p = data; 1011 int i; 1012 1013 switch (stringset) { 1014 case ETH_SS_STATS: 1015 for (i = 0; i < CPSW_STATS_LEN; i++) { 1016 memcpy(p, cpsw_gstrings_stats[i].stat_string, 1017 ETH_GSTRING_LEN); 1018 p += ETH_GSTRING_LEN; 1019 } 1020 break; 1021 } 1022 } 1023 1024 static void cpsw_get_ethtool_stats(struct net_device *ndev, 1025 struct ethtool_stats *stats, u64 *data) 1026 { 1027 struct cpsw_priv *priv = netdev_priv(ndev); 1028 struct cpdma_chan_stats rx_stats; 1029 struct cpdma_chan_stats tx_stats; 1030 u32 val; 1031 u8 *p; 1032 int i; 1033 1034 /* Collect Davinci CPDMA stats for Rx and Tx Channel */ 1035 cpdma_chan_get_stats(priv->rxch, &rx_stats); 1036 cpdma_chan_get_stats(priv->txch, &tx_stats); 1037 1038 for (i = 0; i < CPSW_STATS_LEN; i++) { 1039 switch (cpsw_gstrings_stats[i].type) { 1040 case CPSW_STATS: 1041 val = readl(priv->hw_stats + 1042 cpsw_gstrings_stats[i].stat_offset); 1043 data[i] = val; 1044 break; 1045 1046 case CPDMA_RX_STATS: 1047 p = (u8 *)&rx_stats + 1048 cpsw_gstrings_stats[i].stat_offset; 1049 data[i] = *(u32 *)p; 1050 break; 1051 1052 case CPDMA_TX_STATS: 1053 p = (u8 *)&tx_stats + 1054 cpsw_gstrings_stats[i].stat_offset; 1055 data[i] = *(u32 *)p; 1056 break; 1057 } 1058 } 1059 } 1060 1061 static int cpsw_common_res_usage_state(struct cpsw_priv *priv) 1062 { 1063 u32 i; 1064 u32 usage_count = 0; 1065 1066 if (!priv->data.dual_emac) 1067 return 0; 1068 1069 for (i = 0; i < priv->data.slaves; i++) 1070 if (priv->slaves[i].open_stat) 1071 usage_count++; 1072 1073 return usage_count; 1074 } 1075 1076 static inline int cpsw_tx_packet_submit(struct net_device *ndev, 1077 struct cpsw_priv *priv, struct sk_buff *skb) 1078 { 1079 if (!priv->data.dual_emac) 1080 return cpdma_chan_submit(priv->txch, skb, skb->data, 1081 skb->len, 0); 1082 1083 if (ndev == cpsw_get_slave_ndev(priv, 0)) 1084 return cpdma_chan_submit(priv->txch, skb, skb->data, 1085 skb->len, 1); 1086 else 1087 return cpdma_chan_submit(priv->txch, skb, skb->data, 1088 skb->len, 2); 1089 } 1090 1091 static inline void cpsw_add_dual_emac_def_ale_entries( 1092 struct cpsw_priv *priv, struct cpsw_slave *slave, 1093 u32 slave_port) 1094 { 1095 u32 port_mask = 1 << slave_port | 1 << priv->host_port; 1096 1097 if (priv->version == CPSW_VERSION_1) 1098 slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN); 1099 else 1100 slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN); 1101 cpsw_ale_add_vlan(priv->ale, slave->port_vlan, port_mask, 1102 port_mask, port_mask, 0); 1103 cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast, 1104 port_mask, ALE_VLAN, slave->port_vlan, 0); 1105 cpsw_ale_add_ucast(priv->ale, priv->mac_addr, 1106 priv->host_port, ALE_VLAN | ALE_SECURE, slave->port_vlan); 1107 } 1108 1109 static void soft_reset_slave(struct cpsw_slave *slave) 1110 { 1111 char name[32]; 1112 1113 snprintf(name, sizeof(name), "slave-%d", slave->slave_num); 1114 soft_reset(name, &slave->sliver->soft_reset); 1115 } 1116 1117 static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv) 1118 { 1119 u32 slave_port; 1120 1121 soft_reset_slave(slave); 1122 1123 /* setup priority mapping */ 1124 __raw_writel(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map); 1125 1126 switch (priv->version) { 1127 case CPSW_VERSION_1: 1128 slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP); 1129 break; 1130 case CPSW_VERSION_2: 1131 case CPSW_VERSION_3: 1132 case CPSW_VERSION_4: 1133 slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP); 1134 break; 1135 } 1136 1137 /* setup max packet size, and mac address */ 1138 __raw_writel(priv->rx_packet_max, &slave->sliver->rx_maxlen); 1139 cpsw_set_slave_mac(slave, priv); 1140 1141 slave->mac_control = 0; /* no link yet */ 1142 1143 slave_port = cpsw_get_slave_port(priv, slave->slave_num); 1144 1145 if (priv->data.dual_emac) 1146 cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port); 1147 else 1148 cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast, 1149 1 << slave_port, 0, 0, ALE_MCAST_FWD_2); 1150 1151 if (priv->phy_node) 1152 slave->phy = of_phy_connect(priv->ndev, priv->phy_node, 1153 &cpsw_adjust_link, 0, slave->data->phy_if); 1154 else 1155 slave->phy = phy_connect(priv->ndev, slave->data->phy_id, 1156 &cpsw_adjust_link, slave->data->phy_if); 1157 if (IS_ERR(slave->phy)) { 1158 dev_err(priv->dev, "phy %s not found on slave %d\n", 1159 slave->data->phy_id, slave->slave_num); 1160 slave->phy = NULL; 1161 } else { 1162 dev_info(priv->dev, "phy found : id is : 0x%x\n", 1163 slave->phy->phy_id); 1164 phy_start(slave->phy); 1165 1166 /* Configure GMII_SEL register */ 1167 cpsw_phy_sel(&priv->pdev->dev, slave->phy->interface, 1168 slave->slave_num); 1169 } 1170 } 1171 1172 static inline void cpsw_add_default_vlan(struct cpsw_priv *priv) 1173 { 1174 const int vlan = priv->data.default_vlan; 1175 const int port = priv->host_port; 1176 u32 reg; 1177 int i; 1178 int unreg_mcast_mask; 1179 1180 reg = (priv->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN : 1181 CPSW2_PORT_VLAN; 1182 1183 writel(vlan, &priv->host_port_regs->port_vlan); 1184 1185 for (i = 0; i < priv->data.slaves; i++) 1186 slave_write(priv->slaves + i, vlan, reg); 1187 1188 if (priv->ndev->flags & IFF_ALLMULTI) 1189 unreg_mcast_mask = ALE_ALL_PORTS; 1190 else 1191 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2; 1192 1193 cpsw_ale_add_vlan(priv->ale, vlan, ALE_ALL_PORTS << port, 1194 ALE_ALL_PORTS << port, ALE_ALL_PORTS << port, 1195 unreg_mcast_mask << port); 1196 } 1197 1198 static void cpsw_init_host_port(struct cpsw_priv *priv) 1199 { 1200 u32 control_reg; 1201 u32 fifo_mode; 1202 1203 /* soft reset the controller and initialize ale */ 1204 soft_reset("cpsw", &priv->regs->soft_reset); 1205 cpsw_ale_start(priv->ale); 1206 1207 /* switch to vlan unaware mode */ 1208 cpsw_ale_control_set(priv->ale, priv->host_port, ALE_VLAN_AWARE, 1209 CPSW_ALE_VLAN_AWARE); 1210 control_reg = readl(&priv->regs->control); 1211 control_reg |= CPSW_VLAN_AWARE; 1212 writel(control_reg, &priv->regs->control); 1213 fifo_mode = (priv->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE : 1214 CPSW_FIFO_NORMAL_MODE; 1215 writel(fifo_mode, &priv->host_port_regs->tx_in_ctl); 1216 1217 /* setup host port priority mapping */ 1218 __raw_writel(CPDMA_TX_PRIORITY_MAP, 1219 &priv->host_port_regs->cpdma_tx_pri_map); 1220 __raw_writel(0, &priv->host_port_regs->cpdma_rx_chan_map); 1221 1222 cpsw_ale_control_set(priv->ale, priv->host_port, 1223 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD); 1224 1225 if (!priv->data.dual_emac) { 1226 cpsw_ale_add_ucast(priv->ale, priv->mac_addr, priv->host_port, 1227 0, 0); 1228 cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast, 1229 1 << priv->host_port, 0, 0, ALE_MCAST_FWD_2); 1230 } 1231 } 1232 1233 static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_priv *priv) 1234 { 1235 u32 slave_port; 1236 1237 slave_port = cpsw_get_slave_port(priv, slave->slave_num); 1238 1239 if (!slave->phy) 1240 return; 1241 phy_stop(slave->phy); 1242 phy_disconnect(slave->phy); 1243 slave->phy = NULL; 1244 cpsw_ale_control_set(priv->ale, slave_port, 1245 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE); 1246 } 1247 1248 static int cpsw_ndo_open(struct net_device *ndev) 1249 { 1250 struct cpsw_priv *priv = netdev_priv(ndev); 1251 int i, ret; 1252 u32 reg; 1253 1254 if (!cpsw_common_res_usage_state(priv)) 1255 cpsw_intr_disable(priv); 1256 netif_carrier_off(ndev); 1257 1258 pm_runtime_get_sync(&priv->pdev->dev); 1259 1260 reg = priv->version; 1261 1262 dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n", 1263 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg), 1264 CPSW_RTL_VERSION(reg)); 1265 1266 /* initialize host and slave ports */ 1267 if (!cpsw_common_res_usage_state(priv)) 1268 cpsw_init_host_port(priv); 1269 for_each_slave(priv, cpsw_slave_open, priv); 1270 1271 /* Add default VLAN */ 1272 if (!priv->data.dual_emac) 1273 cpsw_add_default_vlan(priv); 1274 else 1275 cpsw_ale_add_vlan(priv->ale, priv->data.default_vlan, 1276 ALE_ALL_PORTS << priv->host_port, 1277 ALE_ALL_PORTS << priv->host_port, 0, 0); 1278 1279 if (!cpsw_common_res_usage_state(priv)) { 1280 struct cpsw_priv *priv_sl0 = cpsw_get_slave_priv(priv, 0); 1281 1282 /* setup tx dma to fixed prio and zero offset */ 1283 cpdma_control_set(priv->dma, CPDMA_TX_PRIO_FIXED, 1); 1284 cpdma_control_set(priv->dma, CPDMA_RX_BUFFER_OFFSET, 0); 1285 1286 /* disable priority elevation */ 1287 __raw_writel(0, &priv->regs->ptype); 1288 1289 /* enable statistics collection only on all ports */ 1290 __raw_writel(0x7, &priv->regs->stat_port_en); 1291 1292 /* Enable internal fifo flow control */ 1293 writel(0x7, &priv->regs->flow_control); 1294 1295 napi_enable(&priv_sl0->napi_rx); 1296 napi_enable(&priv_sl0->napi_tx); 1297 1298 if (priv_sl0->tx_irq_disabled) { 1299 priv_sl0->tx_irq_disabled = false; 1300 enable_irq(priv->irqs_table[1]); 1301 } 1302 1303 if (priv_sl0->rx_irq_disabled) { 1304 priv_sl0->rx_irq_disabled = false; 1305 enable_irq(priv->irqs_table[0]); 1306 } 1307 1308 if (WARN_ON(!priv->data.rx_descs)) 1309 priv->data.rx_descs = 128; 1310 1311 for (i = 0; i < priv->data.rx_descs; i++) { 1312 struct sk_buff *skb; 1313 1314 ret = -ENOMEM; 1315 skb = __netdev_alloc_skb_ip_align(priv->ndev, 1316 priv->rx_packet_max, GFP_KERNEL); 1317 if (!skb) 1318 goto err_cleanup; 1319 ret = cpdma_chan_submit(priv->rxch, skb, skb->data, 1320 skb_tailroom(skb), 0); 1321 if (ret < 0) { 1322 kfree_skb(skb); 1323 goto err_cleanup; 1324 } 1325 } 1326 /* continue even if we didn't manage to submit all 1327 * receive descs 1328 */ 1329 cpsw_info(priv, ifup, "submitted %d rx descriptors\n", i); 1330 1331 if (cpts_register(&priv->pdev->dev, priv->cpts, 1332 priv->data.cpts_clock_mult, 1333 priv->data.cpts_clock_shift)) 1334 dev_err(priv->dev, "error registering cpts device\n"); 1335 1336 } 1337 1338 /* Enable Interrupt pacing if configured */ 1339 if (priv->coal_intvl != 0) { 1340 struct ethtool_coalesce coal; 1341 1342 coal.rx_coalesce_usecs = (priv->coal_intvl << 4); 1343 cpsw_set_coalesce(ndev, &coal); 1344 } 1345 1346 cpdma_ctlr_start(priv->dma); 1347 cpsw_intr_enable(priv); 1348 1349 if (priv->data.dual_emac) 1350 priv->slaves[priv->emac_port].open_stat = true; 1351 return 0; 1352 1353 err_cleanup: 1354 cpdma_ctlr_stop(priv->dma); 1355 for_each_slave(priv, cpsw_slave_stop, priv); 1356 pm_runtime_put_sync(&priv->pdev->dev); 1357 netif_carrier_off(priv->ndev); 1358 return ret; 1359 } 1360 1361 static int cpsw_ndo_stop(struct net_device *ndev) 1362 { 1363 struct cpsw_priv *priv = netdev_priv(ndev); 1364 1365 cpsw_info(priv, ifdown, "shutting down cpsw device\n"); 1366 netif_stop_queue(priv->ndev); 1367 netif_carrier_off(priv->ndev); 1368 1369 if (cpsw_common_res_usage_state(priv) <= 1) { 1370 struct cpsw_priv *priv_sl0 = cpsw_get_slave_priv(priv, 0); 1371 1372 napi_disable(&priv_sl0->napi_rx); 1373 napi_disable(&priv_sl0->napi_tx); 1374 cpts_unregister(priv->cpts); 1375 cpsw_intr_disable(priv); 1376 cpdma_ctlr_stop(priv->dma); 1377 cpsw_ale_stop(priv->ale); 1378 } 1379 for_each_slave(priv, cpsw_slave_stop, priv); 1380 pm_runtime_put_sync(&priv->pdev->dev); 1381 if (priv->data.dual_emac) 1382 priv->slaves[priv->emac_port].open_stat = false; 1383 return 0; 1384 } 1385 1386 static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb, 1387 struct net_device *ndev) 1388 { 1389 struct cpsw_priv *priv = netdev_priv(ndev); 1390 int ret; 1391 1392 ndev->trans_start = jiffies; 1393 1394 if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) { 1395 cpsw_err(priv, tx_err, "packet pad failed\n"); 1396 ndev->stats.tx_dropped++; 1397 return NETDEV_TX_OK; 1398 } 1399 1400 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && 1401 priv->cpts->tx_enable) 1402 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1403 1404 skb_tx_timestamp(skb); 1405 1406 ret = cpsw_tx_packet_submit(ndev, priv, skb); 1407 if (unlikely(ret != 0)) { 1408 cpsw_err(priv, tx_err, "desc submit failed\n"); 1409 goto fail; 1410 } 1411 1412 /* If there is no more tx desc left free then we need to 1413 * tell the kernel to stop sending us tx frames. 1414 */ 1415 if (unlikely(!cpdma_check_free_tx_desc(priv->txch))) 1416 netif_stop_queue(ndev); 1417 1418 return NETDEV_TX_OK; 1419 fail: 1420 ndev->stats.tx_dropped++; 1421 netif_stop_queue(ndev); 1422 return NETDEV_TX_BUSY; 1423 } 1424 1425 #ifdef CONFIG_TI_CPTS 1426 1427 static void cpsw_hwtstamp_v1(struct cpsw_priv *priv) 1428 { 1429 struct cpsw_slave *slave = &priv->slaves[priv->data.active_slave]; 1430 u32 ts_en, seq_id; 1431 1432 if (!priv->cpts->tx_enable && !priv->cpts->rx_enable) { 1433 slave_write(slave, 0, CPSW1_TS_CTL); 1434 return; 1435 } 1436 1437 seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588; 1438 ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS; 1439 1440 if (priv->cpts->tx_enable) 1441 ts_en |= CPSW_V1_TS_TX_EN; 1442 1443 if (priv->cpts->rx_enable) 1444 ts_en |= CPSW_V1_TS_RX_EN; 1445 1446 slave_write(slave, ts_en, CPSW1_TS_CTL); 1447 slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE); 1448 } 1449 1450 static void cpsw_hwtstamp_v2(struct cpsw_priv *priv) 1451 { 1452 struct cpsw_slave *slave; 1453 u32 ctrl, mtype; 1454 1455 if (priv->data.dual_emac) 1456 slave = &priv->slaves[priv->emac_port]; 1457 else 1458 slave = &priv->slaves[priv->data.active_slave]; 1459 1460 ctrl = slave_read(slave, CPSW2_CONTROL); 1461 switch (priv->version) { 1462 case CPSW_VERSION_2: 1463 ctrl &= ~CTRL_V2_ALL_TS_MASK; 1464 1465 if (priv->cpts->tx_enable) 1466 ctrl |= CTRL_V2_TX_TS_BITS; 1467 1468 if (priv->cpts->rx_enable) 1469 ctrl |= CTRL_V2_RX_TS_BITS; 1470 break; 1471 case CPSW_VERSION_3: 1472 default: 1473 ctrl &= ~CTRL_V3_ALL_TS_MASK; 1474 1475 if (priv->cpts->tx_enable) 1476 ctrl |= CTRL_V3_TX_TS_BITS; 1477 1478 if (priv->cpts->rx_enable) 1479 ctrl |= CTRL_V3_RX_TS_BITS; 1480 break; 1481 } 1482 1483 mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS; 1484 1485 slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE); 1486 slave_write(slave, ctrl, CPSW2_CONTROL); 1487 __raw_writel(ETH_P_1588, &priv->regs->ts_ltype); 1488 } 1489 1490 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr) 1491 { 1492 struct cpsw_priv *priv = netdev_priv(dev); 1493 struct cpts *cpts = priv->cpts; 1494 struct hwtstamp_config cfg; 1495 1496 if (priv->version != CPSW_VERSION_1 && 1497 priv->version != CPSW_VERSION_2 && 1498 priv->version != CPSW_VERSION_3) 1499 return -EOPNOTSUPP; 1500 1501 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg))) 1502 return -EFAULT; 1503 1504 /* reserved for future extensions */ 1505 if (cfg.flags) 1506 return -EINVAL; 1507 1508 if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON) 1509 return -ERANGE; 1510 1511 switch (cfg.rx_filter) { 1512 case HWTSTAMP_FILTER_NONE: 1513 cpts->rx_enable = 0; 1514 break; 1515 case HWTSTAMP_FILTER_ALL: 1516 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 1517 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 1518 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 1519 return -ERANGE; 1520 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 1521 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 1522 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 1523 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 1524 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 1525 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 1526 case HWTSTAMP_FILTER_PTP_V2_EVENT: 1527 case HWTSTAMP_FILTER_PTP_V2_SYNC: 1528 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 1529 cpts->rx_enable = 1; 1530 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 1531 break; 1532 default: 1533 return -ERANGE; 1534 } 1535 1536 cpts->tx_enable = cfg.tx_type == HWTSTAMP_TX_ON; 1537 1538 switch (priv->version) { 1539 case CPSW_VERSION_1: 1540 cpsw_hwtstamp_v1(priv); 1541 break; 1542 case CPSW_VERSION_2: 1543 case CPSW_VERSION_3: 1544 cpsw_hwtstamp_v2(priv); 1545 break; 1546 default: 1547 WARN_ON(1); 1548 } 1549 1550 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; 1551 } 1552 1553 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr) 1554 { 1555 struct cpsw_priv *priv = netdev_priv(dev); 1556 struct cpts *cpts = priv->cpts; 1557 struct hwtstamp_config cfg; 1558 1559 if (priv->version != CPSW_VERSION_1 && 1560 priv->version != CPSW_VERSION_2 && 1561 priv->version != CPSW_VERSION_3) 1562 return -EOPNOTSUPP; 1563 1564 cfg.flags = 0; 1565 cfg.tx_type = cpts->tx_enable ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF; 1566 cfg.rx_filter = (cpts->rx_enable ? 1567 HWTSTAMP_FILTER_PTP_V2_EVENT : HWTSTAMP_FILTER_NONE); 1568 1569 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; 1570 } 1571 1572 #endif /*CONFIG_TI_CPTS*/ 1573 1574 static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 1575 { 1576 struct cpsw_priv *priv = netdev_priv(dev); 1577 int slave_no = cpsw_slave_index(priv); 1578 1579 if (!netif_running(dev)) 1580 return -EINVAL; 1581 1582 switch (cmd) { 1583 #ifdef CONFIG_TI_CPTS 1584 case SIOCSHWTSTAMP: 1585 return cpsw_hwtstamp_set(dev, req); 1586 case SIOCGHWTSTAMP: 1587 return cpsw_hwtstamp_get(dev, req); 1588 #endif 1589 } 1590 1591 if (!priv->slaves[slave_no].phy) 1592 return -EOPNOTSUPP; 1593 return phy_mii_ioctl(priv->slaves[slave_no].phy, req, cmd); 1594 } 1595 1596 static void cpsw_ndo_tx_timeout(struct net_device *ndev) 1597 { 1598 struct cpsw_priv *priv = netdev_priv(ndev); 1599 1600 cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n"); 1601 ndev->stats.tx_errors++; 1602 cpsw_intr_disable(priv); 1603 cpdma_chan_stop(priv->txch); 1604 cpdma_chan_start(priv->txch); 1605 cpsw_intr_enable(priv); 1606 } 1607 1608 static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p) 1609 { 1610 struct cpsw_priv *priv = netdev_priv(ndev); 1611 struct sockaddr *addr = (struct sockaddr *)p; 1612 int flags = 0; 1613 u16 vid = 0; 1614 1615 if (!is_valid_ether_addr(addr->sa_data)) 1616 return -EADDRNOTAVAIL; 1617 1618 if (priv->data.dual_emac) { 1619 vid = priv->slaves[priv->emac_port].port_vlan; 1620 flags = ALE_VLAN; 1621 } 1622 1623 cpsw_ale_del_ucast(priv->ale, priv->mac_addr, priv->host_port, 1624 flags, vid); 1625 cpsw_ale_add_ucast(priv->ale, addr->sa_data, priv->host_port, 1626 flags, vid); 1627 1628 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN); 1629 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN); 1630 for_each_slave(priv, cpsw_set_slave_mac, priv); 1631 1632 return 0; 1633 } 1634 1635 #ifdef CONFIG_NET_POLL_CONTROLLER 1636 static void cpsw_ndo_poll_controller(struct net_device *ndev) 1637 { 1638 struct cpsw_priv *priv = netdev_priv(ndev); 1639 1640 cpsw_intr_disable(priv); 1641 cpsw_rx_interrupt(priv->irqs_table[0], priv); 1642 cpsw_tx_interrupt(priv->irqs_table[1], priv); 1643 cpsw_intr_enable(priv); 1644 } 1645 #endif 1646 1647 static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv, 1648 unsigned short vid) 1649 { 1650 int ret; 1651 int unreg_mcast_mask = 0; 1652 u32 port_mask; 1653 1654 if (priv->data.dual_emac) { 1655 port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST; 1656 1657 if (priv->ndev->flags & IFF_ALLMULTI) 1658 unreg_mcast_mask = port_mask; 1659 } else { 1660 port_mask = ALE_ALL_PORTS; 1661 1662 if (priv->ndev->flags & IFF_ALLMULTI) 1663 unreg_mcast_mask = ALE_ALL_PORTS; 1664 else 1665 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2; 1666 } 1667 1668 ret = cpsw_ale_add_vlan(priv->ale, vid, port_mask, 0, port_mask, 1669 unreg_mcast_mask << priv->host_port); 1670 if (ret != 0) 1671 return ret; 1672 1673 ret = cpsw_ale_add_ucast(priv->ale, priv->mac_addr, 1674 priv->host_port, ALE_VLAN, vid); 1675 if (ret != 0) 1676 goto clean_vid; 1677 1678 ret = cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast, 1679 port_mask, ALE_VLAN, vid, 0); 1680 if (ret != 0) 1681 goto clean_vlan_ucast; 1682 return 0; 1683 1684 clean_vlan_ucast: 1685 cpsw_ale_del_ucast(priv->ale, priv->mac_addr, 1686 priv->host_port, ALE_VLAN, vid); 1687 clean_vid: 1688 cpsw_ale_del_vlan(priv->ale, vid, 0); 1689 return ret; 1690 } 1691 1692 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev, 1693 __be16 proto, u16 vid) 1694 { 1695 struct cpsw_priv *priv = netdev_priv(ndev); 1696 1697 if (vid == priv->data.default_vlan) 1698 return 0; 1699 1700 if (priv->data.dual_emac) { 1701 /* In dual EMAC, reserved VLAN id should not be used for 1702 * creating VLAN interfaces as this can break the dual 1703 * EMAC port separation 1704 */ 1705 int i; 1706 1707 for (i = 0; i < priv->data.slaves; i++) { 1708 if (vid == priv->slaves[i].port_vlan) 1709 return -EINVAL; 1710 } 1711 } 1712 1713 dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid); 1714 return cpsw_add_vlan_ale_entry(priv, vid); 1715 } 1716 1717 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev, 1718 __be16 proto, u16 vid) 1719 { 1720 struct cpsw_priv *priv = netdev_priv(ndev); 1721 int ret; 1722 1723 if (vid == priv->data.default_vlan) 1724 return 0; 1725 1726 if (priv->data.dual_emac) { 1727 int i; 1728 1729 for (i = 0; i < priv->data.slaves; i++) { 1730 if (vid == priv->slaves[i].port_vlan) 1731 return -EINVAL; 1732 } 1733 } 1734 1735 dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid); 1736 ret = cpsw_ale_del_vlan(priv->ale, vid, 0); 1737 if (ret != 0) 1738 return ret; 1739 1740 ret = cpsw_ale_del_ucast(priv->ale, priv->mac_addr, 1741 priv->host_port, ALE_VLAN, vid); 1742 if (ret != 0) 1743 return ret; 1744 1745 return cpsw_ale_del_mcast(priv->ale, priv->ndev->broadcast, 1746 0, ALE_VLAN, vid); 1747 } 1748 1749 static const struct net_device_ops cpsw_netdev_ops = { 1750 .ndo_open = cpsw_ndo_open, 1751 .ndo_stop = cpsw_ndo_stop, 1752 .ndo_start_xmit = cpsw_ndo_start_xmit, 1753 .ndo_set_mac_address = cpsw_ndo_set_mac_address, 1754 .ndo_do_ioctl = cpsw_ndo_ioctl, 1755 .ndo_validate_addr = eth_validate_addr, 1756 .ndo_change_mtu = eth_change_mtu, 1757 .ndo_tx_timeout = cpsw_ndo_tx_timeout, 1758 .ndo_set_rx_mode = cpsw_ndo_set_rx_mode, 1759 #ifdef CONFIG_NET_POLL_CONTROLLER 1760 .ndo_poll_controller = cpsw_ndo_poll_controller, 1761 #endif 1762 .ndo_vlan_rx_add_vid = cpsw_ndo_vlan_rx_add_vid, 1763 .ndo_vlan_rx_kill_vid = cpsw_ndo_vlan_rx_kill_vid, 1764 }; 1765 1766 static int cpsw_get_regs_len(struct net_device *ndev) 1767 { 1768 struct cpsw_priv *priv = netdev_priv(ndev); 1769 1770 return priv->data.ale_entries * ALE_ENTRY_WORDS * sizeof(u32); 1771 } 1772 1773 static void cpsw_get_regs(struct net_device *ndev, 1774 struct ethtool_regs *regs, void *p) 1775 { 1776 struct cpsw_priv *priv = netdev_priv(ndev); 1777 u32 *reg = p; 1778 1779 /* update CPSW IP version */ 1780 regs->version = priv->version; 1781 1782 cpsw_ale_dump(priv->ale, reg); 1783 } 1784 1785 static void cpsw_get_drvinfo(struct net_device *ndev, 1786 struct ethtool_drvinfo *info) 1787 { 1788 struct cpsw_priv *priv = netdev_priv(ndev); 1789 1790 strlcpy(info->driver, "cpsw", sizeof(info->driver)); 1791 strlcpy(info->version, "1.0", sizeof(info->version)); 1792 strlcpy(info->bus_info, priv->pdev->name, sizeof(info->bus_info)); 1793 } 1794 1795 static u32 cpsw_get_msglevel(struct net_device *ndev) 1796 { 1797 struct cpsw_priv *priv = netdev_priv(ndev); 1798 return priv->msg_enable; 1799 } 1800 1801 static void cpsw_set_msglevel(struct net_device *ndev, u32 value) 1802 { 1803 struct cpsw_priv *priv = netdev_priv(ndev); 1804 priv->msg_enable = value; 1805 } 1806 1807 static int cpsw_get_ts_info(struct net_device *ndev, 1808 struct ethtool_ts_info *info) 1809 { 1810 #ifdef CONFIG_TI_CPTS 1811 struct cpsw_priv *priv = netdev_priv(ndev); 1812 1813 info->so_timestamping = 1814 SOF_TIMESTAMPING_TX_HARDWARE | 1815 SOF_TIMESTAMPING_TX_SOFTWARE | 1816 SOF_TIMESTAMPING_RX_HARDWARE | 1817 SOF_TIMESTAMPING_RX_SOFTWARE | 1818 SOF_TIMESTAMPING_SOFTWARE | 1819 SOF_TIMESTAMPING_RAW_HARDWARE; 1820 info->phc_index = priv->cpts->phc_index; 1821 info->tx_types = 1822 (1 << HWTSTAMP_TX_OFF) | 1823 (1 << HWTSTAMP_TX_ON); 1824 info->rx_filters = 1825 (1 << HWTSTAMP_FILTER_NONE) | 1826 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 1827 #else 1828 info->so_timestamping = 1829 SOF_TIMESTAMPING_TX_SOFTWARE | 1830 SOF_TIMESTAMPING_RX_SOFTWARE | 1831 SOF_TIMESTAMPING_SOFTWARE; 1832 info->phc_index = -1; 1833 info->tx_types = 0; 1834 info->rx_filters = 0; 1835 #endif 1836 return 0; 1837 } 1838 1839 static int cpsw_get_settings(struct net_device *ndev, 1840 struct ethtool_cmd *ecmd) 1841 { 1842 struct cpsw_priv *priv = netdev_priv(ndev); 1843 int slave_no = cpsw_slave_index(priv); 1844 1845 if (priv->slaves[slave_no].phy) 1846 return phy_ethtool_gset(priv->slaves[slave_no].phy, ecmd); 1847 else 1848 return -EOPNOTSUPP; 1849 } 1850 1851 static int cpsw_set_settings(struct net_device *ndev, struct ethtool_cmd *ecmd) 1852 { 1853 struct cpsw_priv *priv = netdev_priv(ndev); 1854 int slave_no = cpsw_slave_index(priv); 1855 1856 if (priv->slaves[slave_no].phy) 1857 return phy_ethtool_sset(priv->slaves[slave_no].phy, ecmd); 1858 else 1859 return -EOPNOTSUPP; 1860 } 1861 1862 static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 1863 { 1864 struct cpsw_priv *priv = netdev_priv(ndev); 1865 int slave_no = cpsw_slave_index(priv); 1866 1867 wol->supported = 0; 1868 wol->wolopts = 0; 1869 1870 if (priv->slaves[slave_no].phy) 1871 phy_ethtool_get_wol(priv->slaves[slave_no].phy, wol); 1872 } 1873 1874 static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 1875 { 1876 struct cpsw_priv *priv = netdev_priv(ndev); 1877 int slave_no = cpsw_slave_index(priv); 1878 1879 if (priv->slaves[slave_no].phy) 1880 return phy_ethtool_set_wol(priv->slaves[slave_no].phy, wol); 1881 else 1882 return -EOPNOTSUPP; 1883 } 1884 1885 static void cpsw_get_pauseparam(struct net_device *ndev, 1886 struct ethtool_pauseparam *pause) 1887 { 1888 struct cpsw_priv *priv = netdev_priv(ndev); 1889 1890 pause->autoneg = AUTONEG_DISABLE; 1891 pause->rx_pause = priv->rx_pause ? true : false; 1892 pause->tx_pause = priv->tx_pause ? true : false; 1893 } 1894 1895 static int cpsw_set_pauseparam(struct net_device *ndev, 1896 struct ethtool_pauseparam *pause) 1897 { 1898 struct cpsw_priv *priv = netdev_priv(ndev); 1899 bool link; 1900 1901 priv->rx_pause = pause->rx_pause ? true : false; 1902 priv->tx_pause = pause->tx_pause ? true : false; 1903 1904 for_each_slave(priv, _cpsw_adjust_link, priv, &link); 1905 1906 return 0; 1907 } 1908 1909 static const struct ethtool_ops cpsw_ethtool_ops = { 1910 .get_drvinfo = cpsw_get_drvinfo, 1911 .get_msglevel = cpsw_get_msglevel, 1912 .set_msglevel = cpsw_set_msglevel, 1913 .get_link = ethtool_op_get_link, 1914 .get_ts_info = cpsw_get_ts_info, 1915 .get_settings = cpsw_get_settings, 1916 .set_settings = cpsw_set_settings, 1917 .get_coalesce = cpsw_get_coalesce, 1918 .set_coalesce = cpsw_set_coalesce, 1919 .get_sset_count = cpsw_get_sset_count, 1920 .get_strings = cpsw_get_strings, 1921 .get_ethtool_stats = cpsw_get_ethtool_stats, 1922 .get_pauseparam = cpsw_get_pauseparam, 1923 .set_pauseparam = cpsw_set_pauseparam, 1924 .get_wol = cpsw_get_wol, 1925 .set_wol = cpsw_set_wol, 1926 .get_regs_len = cpsw_get_regs_len, 1927 .get_regs = cpsw_get_regs, 1928 }; 1929 1930 static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_priv *priv, 1931 u32 slave_reg_ofs, u32 sliver_reg_ofs) 1932 { 1933 void __iomem *regs = priv->regs; 1934 int slave_num = slave->slave_num; 1935 struct cpsw_slave_data *data = priv->data.slave_data + slave_num; 1936 1937 slave->data = data; 1938 slave->regs = regs + slave_reg_ofs; 1939 slave->sliver = regs + sliver_reg_ofs; 1940 slave->port_vlan = data->dual_emac_res_vlan; 1941 } 1942 1943 static int cpsw_probe_dt(struct cpsw_priv *priv, 1944 struct platform_device *pdev) 1945 { 1946 struct device_node *node = pdev->dev.of_node; 1947 struct device_node *slave_node; 1948 struct cpsw_platform_data *data = &priv->data; 1949 int i = 0, ret; 1950 u32 prop; 1951 1952 if (!node) 1953 return -EINVAL; 1954 1955 if (of_property_read_u32(node, "slaves", &prop)) { 1956 dev_err(&pdev->dev, "Missing slaves property in the DT.\n"); 1957 return -EINVAL; 1958 } 1959 data->slaves = prop; 1960 1961 if (of_property_read_u32(node, "active_slave", &prop)) { 1962 dev_err(&pdev->dev, "Missing active_slave property in the DT.\n"); 1963 return -EINVAL; 1964 } 1965 data->active_slave = prop; 1966 1967 if (of_property_read_u32(node, "cpts_clock_mult", &prop)) { 1968 dev_err(&pdev->dev, "Missing cpts_clock_mult property in the DT.\n"); 1969 return -EINVAL; 1970 } 1971 data->cpts_clock_mult = prop; 1972 1973 if (of_property_read_u32(node, "cpts_clock_shift", &prop)) { 1974 dev_err(&pdev->dev, "Missing cpts_clock_shift property in the DT.\n"); 1975 return -EINVAL; 1976 } 1977 data->cpts_clock_shift = prop; 1978 1979 data->slave_data = devm_kzalloc(&pdev->dev, data->slaves 1980 * sizeof(struct cpsw_slave_data), 1981 GFP_KERNEL); 1982 if (!data->slave_data) 1983 return -ENOMEM; 1984 1985 if (of_property_read_u32(node, "cpdma_channels", &prop)) { 1986 dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n"); 1987 return -EINVAL; 1988 } 1989 data->channels = prop; 1990 1991 if (of_property_read_u32(node, "ale_entries", &prop)) { 1992 dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n"); 1993 return -EINVAL; 1994 } 1995 data->ale_entries = prop; 1996 1997 if (of_property_read_u32(node, "bd_ram_size", &prop)) { 1998 dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n"); 1999 return -EINVAL; 2000 } 2001 data->bd_ram_size = prop; 2002 2003 if (of_property_read_u32(node, "rx_descs", &prop)) { 2004 dev_err(&pdev->dev, "Missing rx_descs property in the DT.\n"); 2005 return -EINVAL; 2006 } 2007 data->rx_descs = prop; 2008 2009 if (of_property_read_u32(node, "mac_control", &prop)) { 2010 dev_err(&pdev->dev, "Missing mac_control property in the DT.\n"); 2011 return -EINVAL; 2012 } 2013 data->mac_control = prop; 2014 2015 if (of_property_read_bool(node, "dual_emac")) 2016 data->dual_emac = 1; 2017 2018 /* 2019 * Populate all the child nodes here... 2020 */ 2021 ret = of_platform_populate(node, NULL, NULL, &pdev->dev); 2022 /* We do not want to force this, as in some cases may not have child */ 2023 if (ret) 2024 dev_warn(&pdev->dev, "Doesn't have any child node\n"); 2025 2026 for_each_child_of_node(node, slave_node) { 2027 struct cpsw_slave_data *slave_data = data->slave_data + i; 2028 const void *mac_addr = NULL; 2029 int lenp; 2030 const __be32 *parp; 2031 2032 /* This is no slave child node, continue */ 2033 if (strcmp(slave_node->name, "slave")) 2034 continue; 2035 2036 priv->phy_node = of_parse_phandle(slave_node, "phy-handle", 0); 2037 parp = of_get_property(slave_node, "phy_id", &lenp); 2038 if (of_phy_is_fixed_link(slave_node)) { 2039 struct device_node *phy_node; 2040 struct phy_device *phy_dev; 2041 2042 /* In the case of a fixed PHY, the DT node associated 2043 * to the PHY is the Ethernet MAC DT node. 2044 */ 2045 ret = of_phy_register_fixed_link(slave_node); 2046 if (ret) 2047 return ret; 2048 phy_node = of_node_get(slave_node); 2049 phy_dev = of_phy_find_device(phy_node); 2050 if (!phy_dev) 2051 return -ENODEV; 2052 snprintf(slave_data->phy_id, sizeof(slave_data->phy_id), 2053 PHY_ID_FMT, phy_dev->bus->id, phy_dev->addr); 2054 } else if (parp) { 2055 u32 phyid; 2056 struct device_node *mdio_node; 2057 struct platform_device *mdio; 2058 2059 if (lenp != (sizeof(__be32) * 2)) { 2060 dev_err(&pdev->dev, "Invalid slave[%d] phy_id property\n", i); 2061 goto no_phy_slave; 2062 } 2063 mdio_node = of_find_node_by_phandle(be32_to_cpup(parp)); 2064 phyid = be32_to_cpup(parp+1); 2065 mdio = of_find_device_by_node(mdio_node); 2066 of_node_put(mdio_node); 2067 if (!mdio) { 2068 dev_err(&pdev->dev, "Missing mdio platform device\n"); 2069 return -EINVAL; 2070 } 2071 snprintf(slave_data->phy_id, sizeof(slave_data->phy_id), 2072 PHY_ID_FMT, mdio->name, phyid); 2073 } else { 2074 dev_err(&pdev->dev, "No slave[%d] phy_id or fixed-link property\n", i); 2075 goto no_phy_slave; 2076 } 2077 slave_data->phy_if = of_get_phy_mode(slave_node); 2078 if (slave_data->phy_if < 0) { 2079 dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n", 2080 i); 2081 return slave_data->phy_if; 2082 } 2083 2084 no_phy_slave: 2085 mac_addr = of_get_mac_address(slave_node); 2086 if (mac_addr) { 2087 memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN); 2088 } else { 2089 ret = ti_cm_get_macid(&pdev->dev, i, 2090 slave_data->mac_addr); 2091 if (ret) 2092 return ret; 2093 } 2094 if (data->dual_emac) { 2095 if (of_property_read_u32(slave_node, "dual_emac_res_vlan", 2096 &prop)) { 2097 dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n"); 2098 slave_data->dual_emac_res_vlan = i+1; 2099 dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n", 2100 slave_data->dual_emac_res_vlan, i); 2101 } else { 2102 slave_data->dual_emac_res_vlan = prop; 2103 } 2104 } 2105 2106 i++; 2107 if (i == data->slaves) 2108 break; 2109 } 2110 2111 return 0; 2112 } 2113 2114 static int cpsw_probe_dual_emac(struct platform_device *pdev, 2115 struct cpsw_priv *priv) 2116 { 2117 struct cpsw_platform_data *data = &priv->data; 2118 struct net_device *ndev; 2119 struct cpsw_priv *priv_sl2; 2120 int ret = 0, i; 2121 2122 ndev = alloc_etherdev(sizeof(struct cpsw_priv)); 2123 if (!ndev) { 2124 dev_err(&pdev->dev, "cpsw: error allocating net_device\n"); 2125 return -ENOMEM; 2126 } 2127 2128 priv_sl2 = netdev_priv(ndev); 2129 spin_lock_init(&priv_sl2->lock); 2130 priv_sl2->data = *data; 2131 priv_sl2->pdev = pdev; 2132 priv_sl2->ndev = ndev; 2133 priv_sl2->dev = &ndev->dev; 2134 priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG); 2135 priv_sl2->rx_packet_max = max(rx_packet_max, 128); 2136 2137 if (is_valid_ether_addr(data->slave_data[1].mac_addr)) { 2138 memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr, 2139 ETH_ALEN); 2140 dev_info(&pdev->dev, "cpsw: Detected MACID = %pM\n", priv_sl2->mac_addr); 2141 } else { 2142 random_ether_addr(priv_sl2->mac_addr); 2143 dev_info(&pdev->dev, "cpsw: Random MACID = %pM\n", priv_sl2->mac_addr); 2144 } 2145 memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN); 2146 2147 priv_sl2->slaves = priv->slaves; 2148 priv_sl2->clk = priv->clk; 2149 2150 priv_sl2->coal_intvl = 0; 2151 priv_sl2->bus_freq_mhz = priv->bus_freq_mhz; 2152 2153 priv_sl2->regs = priv->regs; 2154 priv_sl2->host_port = priv->host_port; 2155 priv_sl2->host_port_regs = priv->host_port_regs; 2156 priv_sl2->wr_regs = priv->wr_regs; 2157 priv_sl2->hw_stats = priv->hw_stats; 2158 priv_sl2->dma = priv->dma; 2159 priv_sl2->txch = priv->txch; 2160 priv_sl2->rxch = priv->rxch; 2161 priv_sl2->ale = priv->ale; 2162 priv_sl2->emac_port = 1; 2163 priv->slaves[1].ndev = ndev; 2164 priv_sl2->cpts = priv->cpts; 2165 priv_sl2->version = priv->version; 2166 2167 for (i = 0; i < priv->num_irqs; i++) { 2168 priv_sl2->irqs_table[i] = priv->irqs_table[i]; 2169 priv_sl2->num_irqs = priv->num_irqs; 2170 } 2171 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 2172 2173 ndev->netdev_ops = &cpsw_netdev_ops; 2174 ndev->ethtool_ops = &cpsw_ethtool_ops; 2175 2176 /* register the network device */ 2177 SET_NETDEV_DEV(ndev, &pdev->dev); 2178 ret = register_netdev(ndev); 2179 if (ret) { 2180 dev_err(&pdev->dev, "cpsw: error registering net device\n"); 2181 free_netdev(ndev); 2182 ret = -ENODEV; 2183 } 2184 2185 return ret; 2186 } 2187 2188 #define CPSW_QUIRK_IRQ BIT(0) 2189 2190 static struct platform_device_id cpsw_devtype[] = { 2191 { 2192 /* keep it for existing comaptibles */ 2193 .name = "cpsw", 2194 .driver_data = CPSW_QUIRK_IRQ, 2195 }, { 2196 .name = "am335x-cpsw", 2197 .driver_data = CPSW_QUIRK_IRQ, 2198 }, { 2199 .name = "am4372-cpsw", 2200 .driver_data = 0, 2201 }, { 2202 .name = "dra7-cpsw", 2203 .driver_data = 0, 2204 }, { 2205 /* sentinel */ 2206 } 2207 }; 2208 MODULE_DEVICE_TABLE(platform, cpsw_devtype); 2209 2210 enum ti_cpsw_type { 2211 CPSW = 0, 2212 AM335X_CPSW, 2213 AM4372_CPSW, 2214 DRA7_CPSW, 2215 }; 2216 2217 static const struct of_device_id cpsw_of_mtable[] = { 2218 { .compatible = "ti,cpsw", .data = &cpsw_devtype[CPSW], }, 2219 { .compatible = "ti,am335x-cpsw", .data = &cpsw_devtype[AM335X_CPSW], }, 2220 { .compatible = "ti,am4372-cpsw", .data = &cpsw_devtype[AM4372_CPSW], }, 2221 { .compatible = "ti,dra7-cpsw", .data = &cpsw_devtype[DRA7_CPSW], }, 2222 { /* sentinel */ }, 2223 }; 2224 MODULE_DEVICE_TABLE(of, cpsw_of_mtable); 2225 2226 static int cpsw_probe(struct platform_device *pdev) 2227 { 2228 struct cpsw_platform_data *data; 2229 struct net_device *ndev; 2230 struct cpsw_priv *priv; 2231 struct cpdma_params dma_params; 2232 struct cpsw_ale_params ale_params; 2233 void __iomem *ss_regs; 2234 struct resource *res, *ss_res; 2235 const struct of_device_id *of_id; 2236 struct gpio_descs *mode; 2237 u32 slave_offset, sliver_offset, slave_size; 2238 int ret = 0, i; 2239 int irq; 2240 2241 ndev = alloc_etherdev(sizeof(struct cpsw_priv)); 2242 if (!ndev) { 2243 dev_err(&pdev->dev, "error allocating net_device\n"); 2244 return -ENOMEM; 2245 } 2246 2247 platform_set_drvdata(pdev, ndev); 2248 priv = netdev_priv(ndev); 2249 spin_lock_init(&priv->lock); 2250 priv->pdev = pdev; 2251 priv->ndev = ndev; 2252 priv->dev = &ndev->dev; 2253 priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG); 2254 priv->rx_packet_max = max(rx_packet_max, 128); 2255 priv->cpts = devm_kzalloc(&pdev->dev, sizeof(struct cpts), GFP_KERNEL); 2256 if (!priv->cpts) { 2257 dev_err(&pdev->dev, "error allocating cpts\n"); 2258 ret = -ENOMEM; 2259 goto clean_ndev_ret; 2260 } 2261 2262 mode = devm_gpiod_get_array_optional(&pdev->dev, "mode", GPIOD_OUT_LOW); 2263 if (IS_ERR(mode)) { 2264 ret = PTR_ERR(mode); 2265 dev_err(&pdev->dev, "gpio request failed, ret %d\n", ret); 2266 goto clean_ndev_ret; 2267 } 2268 2269 /* 2270 * This may be required here for child devices. 2271 */ 2272 pm_runtime_enable(&pdev->dev); 2273 2274 /* Select default pin state */ 2275 pinctrl_pm_select_default_state(&pdev->dev); 2276 2277 if (cpsw_probe_dt(priv, pdev)) { 2278 dev_err(&pdev->dev, "cpsw: platform data missing\n"); 2279 ret = -ENODEV; 2280 goto clean_runtime_disable_ret; 2281 } 2282 data = &priv->data; 2283 2284 if (is_valid_ether_addr(data->slave_data[0].mac_addr)) { 2285 memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN); 2286 dev_info(&pdev->dev, "Detected MACID = %pM\n", priv->mac_addr); 2287 } else { 2288 eth_random_addr(priv->mac_addr); 2289 dev_info(&pdev->dev, "Random MACID = %pM\n", priv->mac_addr); 2290 } 2291 2292 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN); 2293 2294 priv->slaves = devm_kzalloc(&pdev->dev, 2295 sizeof(struct cpsw_slave) * data->slaves, 2296 GFP_KERNEL); 2297 if (!priv->slaves) { 2298 ret = -ENOMEM; 2299 goto clean_runtime_disable_ret; 2300 } 2301 for (i = 0; i < data->slaves; i++) 2302 priv->slaves[i].slave_num = i; 2303 2304 priv->slaves[0].ndev = ndev; 2305 priv->emac_port = 0; 2306 2307 priv->clk = devm_clk_get(&pdev->dev, "fck"); 2308 if (IS_ERR(priv->clk)) { 2309 dev_err(priv->dev, "fck is not found\n"); 2310 ret = -ENODEV; 2311 goto clean_runtime_disable_ret; 2312 } 2313 priv->coal_intvl = 0; 2314 priv->bus_freq_mhz = clk_get_rate(priv->clk) / 1000000; 2315 2316 ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2317 ss_regs = devm_ioremap_resource(&pdev->dev, ss_res); 2318 if (IS_ERR(ss_regs)) { 2319 ret = PTR_ERR(ss_regs); 2320 goto clean_runtime_disable_ret; 2321 } 2322 priv->regs = ss_regs; 2323 priv->host_port = HOST_PORT_NUM; 2324 2325 /* Need to enable clocks with runtime PM api to access module 2326 * registers 2327 */ 2328 pm_runtime_get_sync(&pdev->dev); 2329 priv->version = readl(&priv->regs->id_ver); 2330 pm_runtime_put_sync(&pdev->dev); 2331 2332 res = platform_get_resource(pdev, IORESOURCE_MEM, 1); 2333 priv->wr_regs = devm_ioremap_resource(&pdev->dev, res); 2334 if (IS_ERR(priv->wr_regs)) { 2335 ret = PTR_ERR(priv->wr_regs); 2336 goto clean_runtime_disable_ret; 2337 } 2338 2339 memset(&dma_params, 0, sizeof(dma_params)); 2340 memset(&ale_params, 0, sizeof(ale_params)); 2341 2342 switch (priv->version) { 2343 case CPSW_VERSION_1: 2344 priv->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET; 2345 priv->cpts->reg = ss_regs + CPSW1_CPTS_OFFSET; 2346 priv->hw_stats = ss_regs + CPSW1_HW_STATS; 2347 dma_params.dmaregs = ss_regs + CPSW1_CPDMA_OFFSET; 2348 dma_params.txhdp = ss_regs + CPSW1_STATERAM_OFFSET; 2349 ale_params.ale_regs = ss_regs + CPSW1_ALE_OFFSET; 2350 slave_offset = CPSW1_SLAVE_OFFSET; 2351 slave_size = CPSW1_SLAVE_SIZE; 2352 sliver_offset = CPSW1_SLIVER_OFFSET; 2353 dma_params.desc_mem_phys = 0; 2354 break; 2355 case CPSW_VERSION_2: 2356 case CPSW_VERSION_3: 2357 case CPSW_VERSION_4: 2358 priv->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET; 2359 priv->cpts->reg = ss_regs + CPSW2_CPTS_OFFSET; 2360 priv->hw_stats = ss_regs + CPSW2_HW_STATS; 2361 dma_params.dmaregs = ss_regs + CPSW2_CPDMA_OFFSET; 2362 dma_params.txhdp = ss_regs + CPSW2_STATERAM_OFFSET; 2363 ale_params.ale_regs = ss_regs + CPSW2_ALE_OFFSET; 2364 slave_offset = CPSW2_SLAVE_OFFSET; 2365 slave_size = CPSW2_SLAVE_SIZE; 2366 sliver_offset = CPSW2_SLIVER_OFFSET; 2367 dma_params.desc_mem_phys = 2368 (u32 __force) ss_res->start + CPSW2_BD_OFFSET; 2369 break; 2370 default: 2371 dev_err(priv->dev, "unknown version 0x%08x\n", priv->version); 2372 ret = -ENODEV; 2373 goto clean_runtime_disable_ret; 2374 } 2375 for (i = 0; i < priv->data.slaves; i++) { 2376 struct cpsw_slave *slave = &priv->slaves[i]; 2377 cpsw_slave_init(slave, priv, slave_offset, sliver_offset); 2378 slave_offset += slave_size; 2379 sliver_offset += SLIVER_SIZE; 2380 } 2381 2382 dma_params.dev = &pdev->dev; 2383 dma_params.rxthresh = dma_params.dmaregs + CPDMA_RXTHRESH; 2384 dma_params.rxfree = dma_params.dmaregs + CPDMA_RXFREE; 2385 dma_params.rxhdp = dma_params.txhdp + CPDMA_RXHDP; 2386 dma_params.txcp = dma_params.txhdp + CPDMA_TXCP; 2387 dma_params.rxcp = dma_params.txhdp + CPDMA_RXCP; 2388 2389 dma_params.num_chan = data->channels; 2390 dma_params.has_soft_reset = true; 2391 dma_params.min_packet_size = CPSW_MIN_PACKET_SIZE; 2392 dma_params.desc_mem_size = data->bd_ram_size; 2393 dma_params.desc_align = 16; 2394 dma_params.has_ext_regs = true; 2395 dma_params.desc_hw_addr = dma_params.desc_mem_phys; 2396 2397 priv->dma = cpdma_ctlr_create(&dma_params); 2398 if (!priv->dma) { 2399 dev_err(priv->dev, "error initializing dma\n"); 2400 ret = -ENOMEM; 2401 goto clean_runtime_disable_ret; 2402 } 2403 2404 priv->txch = cpdma_chan_create(priv->dma, tx_chan_num(0), 2405 cpsw_tx_handler); 2406 priv->rxch = cpdma_chan_create(priv->dma, rx_chan_num(0), 2407 cpsw_rx_handler); 2408 2409 if (WARN_ON(!priv->txch || !priv->rxch)) { 2410 dev_err(priv->dev, "error initializing dma channels\n"); 2411 ret = -ENOMEM; 2412 goto clean_dma_ret; 2413 } 2414 2415 ale_params.dev = &ndev->dev; 2416 ale_params.ale_ageout = ale_ageout; 2417 ale_params.ale_entries = data->ale_entries; 2418 ale_params.ale_ports = data->slaves; 2419 2420 priv->ale = cpsw_ale_create(&ale_params); 2421 if (!priv->ale) { 2422 dev_err(priv->dev, "error initializing ale engine\n"); 2423 ret = -ENODEV; 2424 goto clean_dma_ret; 2425 } 2426 2427 ndev->irq = platform_get_irq(pdev, 1); 2428 if (ndev->irq < 0) { 2429 dev_err(priv->dev, "error getting irq resource\n"); 2430 ret = ndev->irq; 2431 goto clean_ale_ret; 2432 } 2433 2434 of_id = of_match_device(cpsw_of_mtable, &pdev->dev); 2435 if (of_id) { 2436 pdev->id_entry = of_id->data; 2437 if (pdev->id_entry->driver_data) 2438 priv->quirk_irq = true; 2439 } 2440 2441 /* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and 2442 * MISC IRQs which are always kept disabled with this driver so 2443 * we will not request them. 2444 * 2445 * If anyone wants to implement support for those, make sure to 2446 * first request and append them to irqs_table array. 2447 */ 2448 2449 /* RX IRQ */ 2450 irq = platform_get_irq(pdev, 1); 2451 if (irq < 0) { 2452 ret = irq; 2453 goto clean_ale_ret; 2454 } 2455 2456 priv->irqs_table[0] = irq; 2457 ret = devm_request_irq(&pdev->dev, irq, cpsw_rx_interrupt, 2458 0, dev_name(&pdev->dev), priv); 2459 if (ret < 0) { 2460 dev_err(priv->dev, "error attaching irq (%d)\n", ret); 2461 goto clean_ale_ret; 2462 } 2463 2464 /* TX IRQ */ 2465 irq = platform_get_irq(pdev, 2); 2466 if (irq < 0) { 2467 ret = irq; 2468 goto clean_ale_ret; 2469 } 2470 2471 priv->irqs_table[1] = irq; 2472 ret = devm_request_irq(&pdev->dev, irq, cpsw_tx_interrupt, 2473 0, dev_name(&pdev->dev), priv); 2474 if (ret < 0) { 2475 dev_err(priv->dev, "error attaching irq (%d)\n", ret); 2476 goto clean_ale_ret; 2477 } 2478 priv->num_irqs = 2; 2479 2480 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 2481 2482 ndev->netdev_ops = &cpsw_netdev_ops; 2483 ndev->ethtool_ops = &cpsw_ethtool_ops; 2484 netif_napi_add(ndev, &priv->napi_rx, cpsw_rx_poll, CPSW_POLL_WEIGHT); 2485 netif_napi_add(ndev, &priv->napi_tx, cpsw_tx_poll, CPSW_POLL_WEIGHT); 2486 2487 /* register the network device */ 2488 SET_NETDEV_DEV(ndev, &pdev->dev); 2489 ret = register_netdev(ndev); 2490 if (ret) { 2491 dev_err(priv->dev, "error registering net device\n"); 2492 ret = -ENODEV; 2493 goto clean_ale_ret; 2494 } 2495 2496 cpsw_notice(priv, probe, "initialized device (regs %pa, irq %d)\n", 2497 &ss_res->start, ndev->irq); 2498 2499 if (priv->data.dual_emac) { 2500 ret = cpsw_probe_dual_emac(pdev, priv); 2501 if (ret) { 2502 cpsw_err(priv, probe, "error probe slave 2 emac interface\n"); 2503 goto clean_ale_ret; 2504 } 2505 } 2506 2507 return 0; 2508 2509 clean_ale_ret: 2510 cpsw_ale_destroy(priv->ale); 2511 clean_dma_ret: 2512 cpdma_chan_destroy(priv->txch); 2513 cpdma_chan_destroy(priv->rxch); 2514 cpdma_ctlr_destroy(priv->dma); 2515 clean_runtime_disable_ret: 2516 pm_runtime_disable(&pdev->dev); 2517 clean_ndev_ret: 2518 free_netdev(priv->ndev); 2519 return ret; 2520 } 2521 2522 static int cpsw_remove_child_device(struct device *dev, void *c) 2523 { 2524 struct platform_device *pdev = to_platform_device(dev); 2525 2526 of_device_unregister(pdev); 2527 2528 return 0; 2529 } 2530 2531 static int cpsw_remove(struct platform_device *pdev) 2532 { 2533 struct net_device *ndev = platform_get_drvdata(pdev); 2534 struct cpsw_priv *priv = netdev_priv(ndev); 2535 2536 if (priv->data.dual_emac) 2537 unregister_netdev(cpsw_get_slave_ndev(priv, 1)); 2538 unregister_netdev(ndev); 2539 2540 cpsw_ale_destroy(priv->ale); 2541 cpdma_chan_destroy(priv->txch); 2542 cpdma_chan_destroy(priv->rxch); 2543 cpdma_ctlr_destroy(priv->dma); 2544 pm_runtime_disable(&pdev->dev); 2545 device_for_each_child(&pdev->dev, NULL, cpsw_remove_child_device); 2546 if (priv->data.dual_emac) 2547 free_netdev(cpsw_get_slave_ndev(priv, 1)); 2548 free_netdev(ndev); 2549 return 0; 2550 } 2551 2552 #ifdef CONFIG_PM_SLEEP 2553 static int cpsw_suspend(struct device *dev) 2554 { 2555 struct platform_device *pdev = to_platform_device(dev); 2556 struct net_device *ndev = platform_get_drvdata(pdev); 2557 struct cpsw_priv *priv = netdev_priv(ndev); 2558 2559 if (priv->data.dual_emac) { 2560 int i; 2561 2562 for (i = 0; i < priv->data.slaves; i++) { 2563 if (netif_running(priv->slaves[i].ndev)) 2564 cpsw_ndo_stop(priv->slaves[i].ndev); 2565 soft_reset_slave(priv->slaves + i); 2566 } 2567 } else { 2568 if (netif_running(ndev)) 2569 cpsw_ndo_stop(ndev); 2570 for_each_slave(priv, soft_reset_slave); 2571 } 2572 2573 pm_runtime_put_sync(&pdev->dev); 2574 2575 /* Select sleep pin state */ 2576 pinctrl_pm_select_sleep_state(&pdev->dev); 2577 2578 return 0; 2579 } 2580 2581 static int cpsw_resume(struct device *dev) 2582 { 2583 struct platform_device *pdev = to_platform_device(dev); 2584 struct net_device *ndev = platform_get_drvdata(pdev); 2585 struct cpsw_priv *priv = netdev_priv(ndev); 2586 2587 pm_runtime_get_sync(&pdev->dev); 2588 2589 /* Select default pin state */ 2590 pinctrl_pm_select_default_state(&pdev->dev); 2591 2592 if (priv->data.dual_emac) { 2593 int i; 2594 2595 for (i = 0; i < priv->data.slaves; i++) { 2596 if (netif_running(priv->slaves[i].ndev)) 2597 cpsw_ndo_open(priv->slaves[i].ndev); 2598 } 2599 } else { 2600 if (netif_running(ndev)) 2601 cpsw_ndo_open(ndev); 2602 } 2603 return 0; 2604 } 2605 #endif 2606 2607 static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume); 2608 2609 static struct platform_driver cpsw_driver = { 2610 .driver = { 2611 .name = "cpsw", 2612 .pm = &cpsw_pm_ops, 2613 .of_match_table = cpsw_of_mtable, 2614 }, 2615 .probe = cpsw_probe, 2616 .remove = cpsw_remove, 2617 }; 2618 2619 module_platform_driver(cpsw_driver); 2620 2621 MODULE_LICENSE("GPL"); 2622 MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>"); 2623 MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>"); 2624 MODULE_DESCRIPTION("TI CPSW Ethernet driver"); 2625