xref: /openbmc/linux/drivers/net/ethernet/ti/cpsw.c (revision abfbd895)
1 /*
2  * Texas Instruments Ethernet Switch Driver
3  *
4  * Copyright (C) 2012 Texas Instruments
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation version 2.
9  *
10  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11  * kind, whether express or implied; without even the implied warranty
12  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/io.h>
18 #include <linux/clk.h>
19 #include <linux/timer.h>
20 #include <linux/module.h>
21 #include <linux/platform_device.h>
22 #include <linux/irqreturn.h>
23 #include <linux/interrupt.h>
24 #include <linux/if_ether.h>
25 #include <linux/etherdevice.h>
26 #include <linux/netdevice.h>
27 #include <linux/net_tstamp.h>
28 #include <linux/phy.h>
29 #include <linux/workqueue.h>
30 #include <linux/delay.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/gpio.h>
33 #include <linux/of.h>
34 #include <linux/of_mdio.h>
35 #include <linux/of_net.h>
36 #include <linux/of_device.h>
37 #include <linux/if_vlan.h>
38 
39 #include <linux/pinctrl/consumer.h>
40 
41 #include "cpsw.h"
42 #include "cpsw_ale.h"
43 #include "cpts.h"
44 #include "davinci_cpdma.h"
45 
46 #define CPSW_DEBUG	(NETIF_MSG_HW		| NETIF_MSG_WOL		| \
47 			 NETIF_MSG_DRV		| NETIF_MSG_LINK	| \
48 			 NETIF_MSG_IFUP		| NETIF_MSG_INTR	| \
49 			 NETIF_MSG_PROBE	| NETIF_MSG_TIMER	| \
50 			 NETIF_MSG_IFDOWN	| NETIF_MSG_RX_ERR	| \
51 			 NETIF_MSG_TX_ERR	| NETIF_MSG_TX_DONE	| \
52 			 NETIF_MSG_PKTDATA	| NETIF_MSG_TX_QUEUED	| \
53 			 NETIF_MSG_RX_STATUS)
54 
55 #define cpsw_info(priv, type, format, ...)		\
56 do {								\
57 	if (netif_msg_##type(priv) && net_ratelimit())		\
58 		dev_info(priv->dev, format, ## __VA_ARGS__);	\
59 } while (0)
60 
61 #define cpsw_err(priv, type, format, ...)		\
62 do {								\
63 	if (netif_msg_##type(priv) && net_ratelimit())		\
64 		dev_err(priv->dev, format, ## __VA_ARGS__);	\
65 } while (0)
66 
67 #define cpsw_dbg(priv, type, format, ...)		\
68 do {								\
69 	if (netif_msg_##type(priv) && net_ratelimit())		\
70 		dev_dbg(priv->dev, format, ## __VA_ARGS__);	\
71 } while (0)
72 
73 #define cpsw_notice(priv, type, format, ...)		\
74 do {								\
75 	if (netif_msg_##type(priv) && net_ratelimit())		\
76 		dev_notice(priv->dev, format, ## __VA_ARGS__);	\
77 } while (0)
78 
79 #define ALE_ALL_PORTS		0x7
80 
81 #define CPSW_MAJOR_VERSION(reg)		(reg >> 8 & 0x7)
82 #define CPSW_MINOR_VERSION(reg)		(reg & 0xff)
83 #define CPSW_RTL_VERSION(reg)		((reg >> 11) & 0x1f)
84 
85 #define CPSW_VERSION_1		0x19010a
86 #define CPSW_VERSION_2		0x19010c
87 #define CPSW_VERSION_3		0x19010f
88 #define CPSW_VERSION_4		0x190112
89 
90 #define HOST_PORT_NUM		0
91 #define SLIVER_SIZE		0x40
92 
93 #define CPSW1_HOST_PORT_OFFSET	0x028
94 #define CPSW1_SLAVE_OFFSET	0x050
95 #define CPSW1_SLAVE_SIZE	0x040
96 #define CPSW1_CPDMA_OFFSET	0x100
97 #define CPSW1_STATERAM_OFFSET	0x200
98 #define CPSW1_HW_STATS		0x400
99 #define CPSW1_CPTS_OFFSET	0x500
100 #define CPSW1_ALE_OFFSET	0x600
101 #define CPSW1_SLIVER_OFFSET	0x700
102 
103 #define CPSW2_HOST_PORT_OFFSET	0x108
104 #define CPSW2_SLAVE_OFFSET	0x200
105 #define CPSW2_SLAVE_SIZE	0x100
106 #define CPSW2_CPDMA_OFFSET	0x800
107 #define CPSW2_HW_STATS		0x900
108 #define CPSW2_STATERAM_OFFSET	0xa00
109 #define CPSW2_CPTS_OFFSET	0xc00
110 #define CPSW2_ALE_OFFSET	0xd00
111 #define CPSW2_SLIVER_OFFSET	0xd80
112 #define CPSW2_BD_OFFSET		0x2000
113 
114 #define CPDMA_RXTHRESH		0x0c0
115 #define CPDMA_RXFREE		0x0e0
116 #define CPDMA_TXHDP		0x00
117 #define CPDMA_RXHDP		0x20
118 #define CPDMA_TXCP		0x40
119 #define CPDMA_RXCP		0x60
120 
121 #define CPSW_POLL_WEIGHT	64
122 #define CPSW_MIN_PACKET_SIZE	60
123 #define CPSW_MAX_PACKET_SIZE	(1500 + 14 + 4 + 4)
124 
125 #define RX_PRIORITY_MAPPING	0x76543210
126 #define TX_PRIORITY_MAPPING	0x33221100
127 #define CPDMA_TX_PRIORITY_MAP	0x76543210
128 
129 #define CPSW_VLAN_AWARE		BIT(1)
130 #define CPSW_ALE_VLAN_AWARE	1
131 
132 #define CPSW_FIFO_NORMAL_MODE		(0 << 16)
133 #define CPSW_FIFO_DUAL_MAC_MODE		(1 << 16)
134 #define CPSW_FIFO_RATE_LIMIT_MODE	(2 << 16)
135 
136 #define CPSW_INTPACEEN		(0x3f << 16)
137 #define CPSW_INTPRESCALE_MASK	(0x7FF << 0)
138 #define CPSW_CMINTMAX_CNT	63
139 #define CPSW_CMINTMIN_CNT	2
140 #define CPSW_CMINTMAX_INTVL	(1000 / CPSW_CMINTMIN_CNT)
141 #define CPSW_CMINTMIN_INTVL	((1000 / CPSW_CMINTMAX_CNT) + 1)
142 
143 #define cpsw_slave_index(priv)				\
144 		((priv->data.dual_emac) ? priv->emac_port :	\
145 		priv->data.active_slave)
146 
147 static int debug_level;
148 module_param(debug_level, int, 0);
149 MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)");
150 
151 static int ale_ageout = 10;
152 module_param(ale_ageout, int, 0);
153 MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)");
154 
155 static int rx_packet_max = CPSW_MAX_PACKET_SIZE;
156 module_param(rx_packet_max, int, 0);
157 MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)");
158 
159 struct cpsw_wr_regs {
160 	u32	id_ver;
161 	u32	soft_reset;
162 	u32	control;
163 	u32	int_control;
164 	u32	rx_thresh_en;
165 	u32	rx_en;
166 	u32	tx_en;
167 	u32	misc_en;
168 	u32	mem_allign1[8];
169 	u32	rx_thresh_stat;
170 	u32	rx_stat;
171 	u32	tx_stat;
172 	u32	misc_stat;
173 	u32	mem_allign2[8];
174 	u32	rx_imax;
175 	u32	tx_imax;
176 
177 };
178 
179 struct cpsw_ss_regs {
180 	u32	id_ver;
181 	u32	control;
182 	u32	soft_reset;
183 	u32	stat_port_en;
184 	u32	ptype;
185 	u32	soft_idle;
186 	u32	thru_rate;
187 	u32	gap_thresh;
188 	u32	tx_start_wds;
189 	u32	flow_control;
190 	u32	vlan_ltype;
191 	u32	ts_ltype;
192 	u32	dlr_ltype;
193 };
194 
195 /* CPSW_PORT_V1 */
196 #define CPSW1_MAX_BLKS      0x00 /* Maximum FIFO Blocks */
197 #define CPSW1_BLK_CNT       0x04 /* FIFO Block Usage Count (Read Only) */
198 #define CPSW1_TX_IN_CTL     0x08 /* Transmit FIFO Control */
199 #define CPSW1_PORT_VLAN     0x0c /* VLAN Register */
200 #define CPSW1_TX_PRI_MAP    0x10 /* Tx Header Priority to Switch Pri Mapping */
201 #define CPSW1_TS_CTL        0x14 /* Time Sync Control */
202 #define CPSW1_TS_SEQ_LTYPE  0x18 /* Time Sync Sequence ID Offset and Msg Type */
203 #define CPSW1_TS_VLAN       0x1c /* Time Sync VLAN1 and VLAN2 */
204 
205 /* CPSW_PORT_V2 */
206 #define CPSW2_CONTROL       0x00 /* Control Register */
207 #define CPSW2_MAX_BLKS      0x08 /* Maximum FIFO Blocks */
208 #define CPSW2_BLK_CNT       0x0c /* FIFO Block Usage Count (Read Only) */
209 #define CPSW2_TX_IN_CTL     0x10 /* Transmit FIFO Control */
210 #define CPSW2_PORT_VLAN     0x14 /* VLAN Register */
211 #define CPSW2_TX_PRI_MAP    0x18 /* Tx Header Priority to Switch Pri Mapping */
212 #define CPSW2_TS_SEQ_MTYPE  0x1c /* Time Sync Sequence ID Offset and Msg Type */
213 
214 /* CPSW_PORT_V1 and V2 */
215 #define SA_LO               0x20 /* CPGMAC_SL Source Address Low */
216 #define SA_HI               0x24 /* CPGMAC_SL Source Address High */
217 #define SEND_PERCENT        0x28 /* Transmit Queue Send Percentages */
218 
219 /* CPSW_PORT_V2 only */
220 #define RX_DSCP_PRI_MAP0    0x30 /* Rx DSCP Priority to Rx Packet Mapping */
221 #define RX_DSCP_PRI_MAP1    0x34 /* Rx DSCP Priority to Rx Packet Mapping */
222 #define RX_DSCP_PRI_MAP2    0x38 /* Rx DSCP Priority to Rx Packet Mapping */
223 #define RX_DSCP_PRI_MAP3    0x3c /* Rx DSCP Priority to Rx Packet Mapping */
224 #define RX_DSCP_PRI_MAP4    0x40 /* Rx DSCP Priority to Rx Packet Mapping */
225 #define RX_DSCP_PRI_MAP5    0x44 /* Rx DSCP Priority to Rx Packet Mapping */
226 #define RX_DSCP_PRI_MAP6    0x48 /* Rx DSCP Priority to Rx Packet Mapping */
227 #define RX_DSCP_PRI_MAP7    0x4c /* Rx DSCP Priority to Rx Packet Mapping */
228 
229 /* Bit definitions for the CPSW2_CONTROL register */
230 #define PASS_PRI_TAGGED     (1<<24) /* Pass Priority Tagged */
231 #define VLAN_LTYPE2_EN      (1<<21) /* VLAN LTYPE 2 enable */
232 #define VLAN_LTYPE1_EN      (1<<20) /* VLAN LTYPE 1 enable */
233 #define DSCP_PRI_EN         (1<<16) /* DSCP Priority Enable */
234 #define TS_320              (1<<14) /* Time Sync Dest Port 320 enable */
235 #define TS_319              (1<<13) /* Time Sync Dest Port 319 enable */
236 #define TS_132              (1<<12) /* Time Sync Dest IP Addr 132 enable */
237 #define TS_131              (1<<11) /* Time Sync Dest IP Addr 131 enable */
238 #define TS_130              (1<<10) /* Time Sync Dest IP Addr 130 enable */
239 #define TS_129              (1<<9)  /* Time Sync Dest IP Addr 129 enable */
240 #define TS_TTL_NONZERO      (1<<8)  /* Time Sync Time To Live Non-zero enable */
241 #define TS_ANNEX_F_EN       (1<<6)  /* Time Sync Annex F enable */
242 #define TS_ANNEX_D_EN       (1<<4)  /* Time Sync Annex D enable */
243 #define TS_LTYPE2_EN        (1<<3)  /* Time Sync LTYPE 2 enable */
244 #define TS_LTYPE1_EN        (1<<2)  /* Time Sync LTYPE 1 enable */
245 #define TS_TX_EN            (1<<1)  /* Time Sync Transmit Enable */
246 #define TS_RX_EN            (1<<0)  /* Time Sync Receive Enable */
247 
248 #define CTRL_V2_TS_BITS \
249 	(TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
250 	 TS_TTL_NONZERO  | TS_ANNEX_D_EN | TS_LTYPE1_EN)
251 
252 #define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN)
253 #define CTRL_V2_TX_TS_BITS  (CTRL_V2_TS_BITS | TS_TX_EN)
254 #define CTRL_V2_RX_TS_BITS  (CTRL_V2_TS_BITS | TS_RX_EN)
255 
256 
257 #define CTRL_V3_TS_BITS \
258 	(TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
259 	 TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\
260 	 TS_LTYPE1_EN)
261 
262 #define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN)
263 #define CTRL_V3_TX_TS_BITS  (CTRL_V3_TS_BITS | TS_TX_EN)
264 #define CTRL_V3_RX_TS_BITS  (CTRL_V3_TS_BITS | TS_RX_EN)
265 
266 /* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */
267 #define TS_SEQ_ID_OFFSET_SHIFT   (16)    /* Time Sync Sequence ID Offset */
268 #define TS_SEQ_ID_OFFSET_MASK    (0x3f)
269 #define TS_MSG_TYPE_EN_SHIFT     (0)     /* Time Sync Message Type Enable */
270 #define TS_MSG_TYPE_EN_MASK      (0xffff)
271 
272 /* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */
273 #define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3))
274 
275 /* Bit definitions for the CPSW1_TS_CTL register */
276 #define CPSW_V1_TS_RX_EN		BIT(0)
277 #define CPSW_V1_TS_TX_EN		BIT(4)
278 #define CPSW_V1_MSG_TYPE_OFS		16
279 
280 /* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */
281 #define CPSW_V1_SEQ_ID_OFS_SHIFT	16
282 
283 struct cpsw_host_regs {
284 	u32	max_blks;
285 	u32	blk_cnt;
286 	u32	tx_in_ctl;
287 	u32	port_vlan;
288 	u32	tx_pri_map;
289 	u32	cpdma_tx_pri_map;
290 	u32	cpdma_rx_chan_map;
291 };
292 
293 struct cpsw_sliver_regs {
294 	u32	id_ver;
295 	u32	mac_control;
296 	u32	mac_status;
297 	u32	soft_reset;
298 	u32	rx_maxlen;
299 	u32	__reserved_0;
300 	u32	rx_pause;
301 	u32	tx_pause;
302 	u32	__reserved_1;
303 	u32	rx_pri_map;
304 };
305 
306 struct cpsw_hw_stats {
307 	u32	rxgoodframes;
308 	u32	rxbroadcastframes;
309 	u32	rxmulticastframes;
310 	u32	rxpauseframes;
311 	u32	rxcrcerrors;
312 	u32	rxaligncodeerrors;
313 	u32	rxoversizedframes;
314 	u32	rxjabberframes;
315 	u32	rxundersizedframes;
316 	u32	rxfragments;
317 	u32	__pad_0[2];
318 	u32	rxoctets;
319 	u32	txgoodframes;
320 	u32	txbroadcastframes;
321 	u32	txmulticastframes;
322 	u32	txpauseframes;
323 	u32	txdeferredframes;
324 	u32	txcollisionframes;
325 	u32	txsinglecollframes;
326 	u32	txmultcollframes;
327 	u32	txexcessivecollisions;
328 	u32	txlatecollisions;
329 	u32	txunderrun;
330 	u32	txcarriersenseerrors;
331 	u32	txoctets;
332 	u32	octetframes64;
333 	u32	octetframes65t127;
334 	u32	octetframes128t255;
335 	u32	octetframes256t511;
336 	u32	octetframes512t1023;
337 	u32	octetframes1024tup;
338 	u32	netoctets;
339 	u32	rxsofoverruns;
340 	u32	rxmofoverruns;
341 	u32	rxdmaoverruns;
342 };
343 
344 struct cpsw_slave {
345 	void __iomem			*regs;
346 	struct cpsw_sliver_regs __iomem	*sliver;
347 	int				slave_num;
348 	u32				mac_control;
349 	struct cpsw_slave_data		*data;
350 	struct phy_device		*phy;
351 	struct net_device		*ndev;
352 	u32				port_vlan;
353 	u32				open_stat;
354 };
355 
356 static inline u32 slave_read(struct cpsw_slave *slave, u32 offset)
357 {
358 	return __raw_readl(slave->regs + offset);
359 }
360 
361 static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset)
362 {
363 	__raw_writel(val, slave->regs + offset);
364 }
365 
366 struct cpsw_priv {
367 	spinlock_t			lock;
368 	struct platform_device		*pdev;
369 	struct net_device		*ndev;
370 	struct device_node		*phy_node;
371 	struct napi_struct		napi_rx;
372 	struct napi_struct		napi_tx;
373 	struct device			*dev;
374 	struct cpsw_platform_data	data;
375 	struct cpsw_ss_regs __iomem	*regs;
376 	struct cpsw_wr_regs __iomem	*wr_regs;
377 	u8 __iomem			*hw_stats;
378 	struct cpsw_host_regs __iomem	*host_port_regs;
379 	u32				msg_enable;
380 	u32				version;
381 	u32				coal_intvl;
382 	u32				bus_freq_mhz;
383 	int				rx_packet_max;
384 	int				host_port;
385 	struct clk			*clk;
386 	u8				mac_addr[ETH_ALEN];
387 	struct cpsw_slave		*slaves;
388 	struct cpdma_ctlr		*dma;
389 	struct cpdma_chan		*txch, *rxch;
390 	struct cpsw_ale			*ale;
391 	bool				rx_pause;
392 	bool				tx_pause;
393 	bool				quirk_irq;
394 	bool				rx_irq_disabled;
395 	bool				tx_irq_disabled;
396 	/* snapshot of IRQ numbers */
397 	u32 irqs_table[4];
398 	u32 num_irqs;
399 	struct cpts *cpts;
400 	u32 emac_port;
401 };
402 
403 struct cpsw_stats {
404 	char stat_string[ETH_GSTRING_LEN];
405 	int type;
406 	int sizeof_stat;
407 	int stat_offset;
408 };
409 
410 enum {
411 	CPSW_STATS,
412 	CPDMA_RX_STATS,
413 	CPDMA_TX_STATS,
414 };
415 
416 #define CPSW_STAT(m)		CPSW_STATS,				\
417 				sizeof(((struct cpsw_hw_stats *)0)->m), \
418 				offsetof(struct cpsw_hw_stats, m)
419 #define CPDMA_RX_STAT(m)	CPDMA_RX_STATS,				   \
420 				sizeof(((struct cpdma_chan_stats *)0)->m), \
421 				offsetof(struct cpdma_chan_stats, m)
422 #define CPDMA_TX_STAT(m)	CPDMA_TX_STATS,				   \
423 				sizeof(((struct cpdma_chan_stats *)0)->m), \
424 				offsetof(struct cpdma_chan_stats, m)
425 
426 static const struct cpsw_stats cpsw_gstrings_stats[] = {
427 	{ "Good Rx Frames", CPSW_STAT(rxgoodframes) },
428 	{ "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) },
429 	{ "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) },
430 	{ "Pause Rx Frames", CPSW_STAT(rxpauseframes) },
431 	{ "Rx CRC Errors", CPSW_STAT(rxcrcerrors) },
432 	{ "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) },
433 	{ "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) },
434 	{ "Rx Jabbers", CPSW_STAT(rxjabberframes) },
435 	{ "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) },
436 	{ "Rx Fragments", CPSW_STAT(rxfragments) },
437 	{ "Rx Octets", CPSW_STAT(rxoctets) },
438 	{ "Good Tx Frames", CPSW_STAT(txgoodframes) },
439 	{ "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) },
440 	{ "Multicast Tx Frames", CPSW_STAT(txmulticastframes) },
441 	{ "Pause Tx Frames", CPSW_STAT(txpauseframes) },
442 	{ "Deferred Tx Frames", CPSW_STAT(txdeferredframes) },
443 	{ "Collisions", CPSW_STAT(txcollisionframes) },
444 	{ "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) },
445 	{ "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) },
446 	{ "Excessive Collisions", CPSW_STAT(txexcessivecollisions) },
447 	{ "Late Collisions", CPSW_STAT(txlatecollisions) },
448 	{ "Tx Underrun", CPSW_STAT(txunderrun) },
449 	{ "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) },
450 	{ "Tx Octets", CPSW_STAT(txoctets) },
451 	{ "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) },
452 	{ "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) },
453 	{ "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) },
454 	{ "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) },
455 	{ "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) },
456 	{ "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) },
457 	{ "Net Octets", CPSW_STAT(netoctets) },
458 	{ "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) },
459 	{ "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) },
460 	{ "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) },
461 	{ "Rx DMA chan: head_enqueue", CPDMA_RX_STAT(head_enqueue) },
462 	{ "Rx DMA chan: tail_enqueue", CPDMA_RX_STAT(tail_enqueue) },
463 	{ "Rx DMA chan: pad_enqueue", CPDMA_RX_STAT(pad_enqueue) },
464 	{ "Rx DMA chan: misqueued", CPDMA_RX_STAT(misqueued) },
465 	{ "Rx DMA chan: desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) },
466 	{ "Rx DMA chan: pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) },
467 	{ "Rx DMA chan: runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) },
468 	{ "Rx DMA chan: runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) },
469 	{ "Rx DMA chan: empty_dequeue", CPDMA_RX_STAT(empty_dequeue) },
470 	{ "Rx DMA chan: busy_dequeue", CPDMA_RX_STAT(busy_dequeue) },
471 	{ "Rx DMA chan: good_dequeue", CPDMA_RX_STAT(good_dequeue) },
472 	{ "Rx DMA chan: requeue", CPDMA_RX_STAT(requeue) },
473 	{ "Rx DMA chan: teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) },
474 	{ "Tx DMA chan: head_enqueue", CPDMA_TX_STAT(head_enqueue) },
475 	{ "Tx DMA chan: tail_enqueue", CPDMA_TX_STAT(tail_enqueue) },
476 	{ "Tx DMA chan: pad_enqueue", CPDMA_TX_STAT(pad_enqueue) },
477 	{ "Tx DMA chan: misqueued", CPDMA_TX_STAT(misqueued) },
478 	{ "Tx DMA chan: desc_alloc_fail", CPDMA_TX_STAT(desc_alloc_fail) },
479 	{ "Tx DMA chan: pad_alloc_fail", CPDMA_TX_STAT(pad_alloc_fail) },
480 	{ "Tx DMA chan: runt_receive_buf", CPDMA_TX_STAT(runt_receive_buff) },
481 	{ "Tx DMA chan: runt_transmit_buf", CPDMA_TX_STAT(runt_transmit_buff) },
482 	{ "Tx DMA chan: empty_dequeue", CPDMA_TX_STAT(empty_dequeue) },
483 	{ "Tx DMA chan: busy_dequeue", CPDMA_TX_STAT(busy_dequeue) },
484 	{ "Tx DMA chan: good_dequeue", CPDMA_TX_STAT(good_dequeue) },
485 	{ "Tx DMA chan: requeue", CPDMA_TX_STAT(requeue) },
486 	{ "Tx DMA chan: teardown_dequeue", CPDMA_TX_STAT(teardown_dequeue) },
487 };
488 
489 #define CPSW_STATS_LEN	ARRAY_SIZE(cpsw_gstrings_stats)
490 
491 #define napi_to_priv(napi)	container_of(napi, struct cpsw_priv, napi)
492 #define for_each_slave(priv, func, arg...)				\
493 	do {								\
494 		struct cpsw_slave *slave;				\
495 		int n;							\
496 		if (priv->data.dual_emac)				\
497 			(func)((priv)->slaves + priv->emac_port, ##arg);\
498 		else							\
499 			for (n = (priv)->data.slaves,			\
500 					slave = (priv)->slaves;		\
501 					n; n--)				\
502 				(func)(slave++, ##arg);			\
503 	} while (0)
504 #define cpsw_get_slave_ndev(priv, __slave_no__)				\
505 	((__slave_no__ < priv->data.slaves) ?				\
506 		priv->slaves[__slave_no__].ndev : NULL)
507 #define cpsw_get_slave_priv(priv, __slave_no__)				\
508 	(((__slave_no__ < priv->data.slaves) &&				\
509 		(priv->slaves[__slave_no__].ndev)) ?			\
510 		netdev_priv(priv->slaves[__slave_no__].ndev) : NULL)	\
511 
512 #define cpsw_dual_emac_src_port_detect(status, priv, ndev, skb)		\
513 	do {								\
514 		if (!priv->data.dual_emac)				\
515 			break;						\
516 		if (CPDMA_RX_SOURCE_PORT(status) == 1) {		\
517 			ndev = cpsw_get_slave_ndev(priv, 0);		\
518 			priv = netdev_priv(ndev);			\
519 			skb->dev = ndev;				\
520 		} else if (CPDMA_RX_SOURCE_PORT(status) == 2) {		\
521 			ndev = cpsw_get_slave_ndev(priv, 1);		\
522 			priv = netdev_priv(ndev);			\
523 			skb->dev = ndev;				\
524 		}							\
525 	} while (0)
526 #define cpsw_add_mcast(priv, addr)					\
527 	do {								\
528 		if (priv->data.dual_emac) {				\
529 			struct cpsw_slave *slave = priv->slaves +	\
530 						priv->emac_port;	\
531 			int slave_port = cpsw_get_slave_port(priv,	\
532 						slave->slave_num);	\
533 			cpsw_ale_add_mcast(priv->ale, addr,		\
534 				1 << slave_port | 1 << priv->host_port,	\
535 				ALE_VLAN, slave->port_vlan, 0);		\
536 		} else {						\
537 			cpsw_ale_add_mcast(priv->ale, addr,		\
538 				ALE_ALL_PORTS << priv->host_port,	\
539 				0, 0, 0);				\
540 		}							\
541 	} while (0)
542 
543 static inline int cpsw_get_slave_port(struct cpsw_priv *priv, u32 slave_num)
544 {
545 	if (priv->host_port == 0)
546 		return slave_num + 1;
547 	else
548 		return slave_num;
549 }
550 
551 static void cpsw_set_promiscious(struct net_device *ndev, bool enable)
552 {
553 	struct cpsw_priv *priv = netdev_priv(ndev);
554 	struct cpsw_ale *ale = priv->ale;
555 	int i;
556 
557 	if (priv->data.dual_emac) {
558 		bool flag = false;
559 
560 		/* Enabling promiscuous mode for one interface will be
561 		 * common for both the interface as the interface shares
562 		 * the same hardware resource.
563 		 */
564 		for (i = 0; i < priv->data.slaves; i++)
565 			if (priv->slaves[i].ndev->flags & IFF_PROMISC)
566 				flag = true;
567 
568 		if (!enable && flag) {
569 			enable = true;
570 			dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n");
571 		}
572 
573 		if (enable) {
574 			/* Enable Bypass */
575 			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1);
576 
577 			dev_dbg(&ndev->dev, "promiscuity enabled\n");
578 		} else {
579 			/* Disable Bypass */
580 			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0);
581 			dev_dbg(&ndev->dev, "promiscuity disabled\n");
582 		}
583 	} else {
584 		if (enable) {
585 			unsigned long timeout = jiffies + HZ;
586 
587 			/* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */
588 			for (i = 0; i <= priv->data.slaves; i++) {
589 				cpsw_ale_control_set(ale, i,
590 						     ALE_PORT_NOLEARN, 1);
591 				cpsw_ale_control_set(ale, i,
592 						     ALE_PORT_NO_SA_UPDATE, 1);
593 			}
594 
595 			/* Clear All Untouched entries */
596 			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
597 			do {
598 				cpu_relax();
599 				if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT))
600 					break;
601 			} while (time_after(timeout, jiffies));
602 			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
603 
604 			/* Clear all mcast from ALE */
605 			cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS <<
606 						 priv->host_port, -1);
607 
608 			/* Flood All Unicast Packets to Host port */
609 			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1);
610 			dev_dbg(&ndev->dev, "promiscuity enabled\n");
611 		} else {
612 			/* Don't Flood All Unicast Packets to Host port */
613 			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0);
614 
615 			/* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */
616 			for (i = 0; i <= priv->data.slaves; i++) {
617 				cpsw_ale_control_set(ale, i,
618 						     ALE_PORT_NOLEARN, 0);
619 				cpsw_ale_control_set(ale, i,
620 						     ALE_PORT_NO_SA_UPDATE, 0);
621 			}
622 			dev_dbg(&ndev->dev, "promiscuity disabled\n");
623 		}
624 	}
625 }
626 
627 static void cpsw_ndo_set_rx_mode(struct net_device *ndev)
628 {
629 	struct cpsw_priv *priv = netdev_priv(ndev);
630 	int vid;
631 
632 	if (priv->data.dual_emac)
633 		vid = priv->slaves[priv->emac_port].port_vlan;
634 	else
635 		vid = priv->data.default_vlan;
636 
637 	if (ndev->flags & IFF_PROMISC) {
638 		/* Enable promiscuous mode */
639 		cpsw_set_promiscious(ndev, true);
640 		cpsw_ale_set_allmulti(priv->ale, IFF_ALLMULTI);
641 		return;
642 	} else {
643 		/* Disable promiscuous mode */
644 		cpsw_set_promiscious(ndev, false);
645 	}
646 
647 	/* Restore allmulti on vlans if necessary */
648 	cpsw_ale_set_allmulti(priv->ale, priv->ndev->flags & IFF_ALLMULTI);
649 
650 	/* Clear all mcast from ALE */
651 	cpsw_ale_flush_multicast(priv->ale, ALE_ALL_PORTS << priv->host_port,
652 				 vid);
653 
654 	if (!netdev_mc_empty(ndev)) {
655 		struct netdev_hw_addr *ha;
656 
657 		/* program multicast address list into ALE register */
658 		netdev_for_each_mc_addr(ha, ndev) {
659 			cpsw_add_mcast(priv, (u8 *)ha->addr);
660 		}
661 	}
662 }
663 
664 static void cpsw_intr_enable(struct cpsw_priv *priv)
665 {
666 	__raw_writel(0xFF, &priv->wr_regs->tx_en);
667 	__raw_writel(0xFF, &priv->wr_regs->rx_en);
668 
669 	cpdma_ctlr_int_ctrl(priv->dma, true);
670 	return;
671 }
672 
673 static void cpsw_intr_disable(struct cpsw_priv *priv)
674 {
675 	__raw_writel(0, &priv->wr_regs->tx_en);
676 	__raw_writel(0, &priv->wr_regs->rx_en);
677 
678 	cpdma_ctlr_int_ctrl(priv->dma, false);
679 	return;
680 }
681 
682 static void cpsw_tx_handler(void *token, int len, int status)
683 {
684 	struct sk_buff		*skb = token;
685 	struct net_device	*ndev = skb->dev;
686 	struct cpsw_priv	*priv = netdev_priv(ndev);
687 
688 	/* Check whether the queue is stopped due to stalled tx dma, if the
689 	 * queue is stopped then start the queue as we have free desc for tx
690 	 */
691 	if (unlikely(netif_queue_stopped(ndev)))
692 		netif_wake_queue(ndev);
693 	cpts_tx_timestamp(priv->cpts, skb);
694 	ndev->stats.tx_packets++;
695 	ndev->stats.tx_bytes += len;
696 	dev_kfree_skb_any(skb);
697 }
698 
699 static void cpsw_rx_handler(void *token, int len, int status)
700 {
701 	struct sk_buff		*skb = token;
702 	struct sk_buff		*new_skb;
703 	struct net_device	*ndev = skb->dev;
704 	struct cpsw_priv	*priv = netdev_priv(ndev);
705 	int			ret = 0;
706 
707 	cpsw_dual_emac_src_port_detect(status, priv, ndev, skb);
708 
709 	if (unlikely(status < 0) || unlikely(!netif_running(ndev))) {
710 		bool ndev_status = false;
711 		struct cpsw_slave *slave = priv->slaves;
712 		int n;
713 
714 		if (priv->data.dual_emac) {
715 			/* In dual emac mode check for all interfaces */
716 			for (n = priv->data.slaves; n; n--, slave++)
717 				if (netif_running(slave->ndev))
718 					ndev_status = true;
719 		}
720 
721 		if (ndev_status && (status >= 0)) {
722 			/* The packet received is for the interface which
723 			 * is already down and the other interface is up
724 			 * and running, instead of freeing which results
725 			 * in reducing of the number of rx descriptor in
726 			 * DMA engine, requeue skb back to cpdma.
727 			 */
728 			new_skb = skb;
729 			goto requeue;
730 		}
731 
732 		/* the interface is going down, skbs are purged */
733 		dev_kfree_skb_any(skb);
734 		return;
735 	}
736 
737 	new_skb = netdev_alloc_skb_ip_align(ndev, priv->rx_packet_max);
738 	if (new_skb) {
739 		skb_put(skb, len);
740 		cpts_rx_timestamp(priv->cpts, skb);
741 		skb->protocol = eth_type_trans(skb, ndev);
742 		netif_receive_skb(skb);
743 		ndev->stats.rx_bytes += len;
744 		ndev->stats.rx_packets++;
745 	} else {
746 		ndev->stats.rx_dropped++;
747 		new_skb = skb;
748 	}
749 
750 requeue:
751 	ret = cpdma_chan_submit(priv->rxch, new_skb, new_skb->data,
752 			skb_tailroom(new_skb), 0);
753 	if (WARN_ON(ret < 0))
754 		dev_kfree_skb_any(new_skb);
755 }
756 
757 static irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id)
758 {
759 	struct cpsw_priv *priv = dev_id;
760 
761 	writel(0, &priv->wr_regs->tx_en);
762 	cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_TX);
763 
764 	if (priv->quirk_irq) {
765 		disable_irq_nosync(priv->irqs_table[1]);
766 		priv->tx_irq_disabled = true;
767 	}
768 
769 	napi_schedule(&priv->napi_tx);
770 	return IRQ_HANDLED;
771 }
772 
773 static irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id)
774 {
775 	struct cpsw_priv *priv = dev_id;
776 
777 	cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_RX);
778 	writel(0, &priv->wr_regs->rx_en);
779 
780 	if (priv->quirk_irq) {
781 		disable_irq_nosync(priv->irqs_table[0]);
782 		priv->rx_irq_disabled = true;
783 	}
784 
785 	napi_schedule(&priv->napi_rx);
786 	return IRQ_HANDLED;
787 }
788 
789 static int cpsw_tx_poll(struct napi_struct *napi_tx, int budget)
790 {
791 	struct cpsw_priv	*priv = napi_to_priv(napi_tx);
792 	int			num_tx;
793 
794 	num_tx = cpdma_chan_process(priv->txch, budget);
795 	if (num_tx < budget) {
796 		napi_complete(napi_tx);
797 		writel(0xff, &priv->wr_regs->tx_en);
798 		if (priv->quirk_irq && priv->tx_irq_disabled) {
799 			priv->tx_irq_disabled = false;
800 			enable_irq(priv->irqs_table[1]);
801 		}
802 	}
803 
804 	if (num_tx)
805 		cpsw_dbg(priv, intr, "poll %d tx pkts\n", num_tx);
806 
807 	return num_tx;
808 }
809 
810 static int cpsw_rx_poll(struct napi_struct *napi_rx, int budget)
811 {
812 	struct cpsw_priv	*priv = napi_to_priv(napi_rx);
813 	int			num_rx;
814 
815 	num_rx = cpdma_chan_process(priv->rxch, budget);
816 	if (num_rx < budget) {
817 		napi_complete(napi_rx);
818 		writel(0xff, &priv->wr_regs->rx_en);
819 		if (priv->quirk_irq && priv->rx_irq_disabled) {
820 			priv->rx_irq_disabled = false;
821 			enable_irq(priv->irqs_table[0]);
822 		}
823 	}
824 
825 	if (num_rx)
826 		cpsw_dbg(priv, intr, "poll %d rx pkts\n", num_rx);
827 
828 	return num_rx;
829 }
830 
831 static inline void soft_reset(const char *module, void __iomem *reg)
832 {
833 	unsigned long timeout = jiffies + HZ;
834 
835 	__raw_writel(1, reg);
836 	do {
837 		cpu_relax();
838 	} while ((__raw_readl(reg) & 1) && time_after(timeout, jiffies));
839 
840 	WARN(__raw_readl(reg) & 1, "failed to soft-reset %s\n", module);
841 }
842 
843 #define mac_hi(mac)	(((mac)[0] << 0) | ((mac)[1] << 8) |	\
844 			 ((mac)[2] << 16) | ((mac)[3] << 24))
845 #define mac_lo(mac)	(((mac)[4] << 0) | ((mac)[5] << 8))
846 
847 static void cpsw_set_slave_mac(struct cpsw_slave *slave,
848 			       struct cpsw_priv *priv)
849 {
850 	slave_write(slave, mac_hi(priv->mac_addr), SA_HI);
851 	slave_write(slave, mac_lo(priv->mac_addr), SA_LO);
852 }
853 
854 static void _cpsw_adjust_link(struct cpsw_slave *slave,
855 			      struct cpsw_priv *priv, bool *link)
856 {
857 	struct phy_device	*phy = slave->phy;
858 	u32			mac_control = 0;
859 	u32			slave_port;
860 
861 	if (!phy)
862 		return;
863 
864 	slave_port = cpsw_get_slave_port(priv, slave->slave_num);
865 
866 	if (phy->link) {
867 		mac_control = priv->data.mac_control;
868 
869 		/* enable forwarding */
870 		cpsw_ale_control_set(priv->ale, slave_port,
871 				     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
872 
873 		if (phy->speed == 1000)
874 			mac_control |= BIT(7);	/* GIGABITEN	*/
875 		if (phy->duplex)
876 			mac_control |= BIT(0);	/* FULLDUPLEXEN	*/
877 
878 		/* set speed_in input in case RMII mode is used in 100Mbps */
879 		if (phy->speed == 100)
880 			mac_control |= BIT(15);
881 		else if (phy->speed == 10)
882 			mac_control |= BIT(18); /* In Band mode */
883 
884 		if (priv->rx_pause)
885 			mac_control |= BIT(3);
886 
887 		if (priv->tx_pause)
888 			mac_control |= BIT(4);
889 
890 		*link = true;
891 	} else {
892 		mac_control = 0;
893 		/* disable forwarding */
894 		cpsw_ale_control_set(priv->ale, slave_port,
895 				     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
896 	}
897 
898 	if (mac_control != slave->mac_control) {
899 		phy_print_status(phy);
900 		__raw_writel(mac_control, &slave->sliver->mac_control);
901 	}
902 
903 	slave->mac_control = mac_control;
904 }
905 
906 static void cpsw_adjust_link(struct net_device *ndev)
907 {
908 	struct cpsw_priv	*priv = netdev_priv(ndev);
909 	bool			link = false;
910 
911 	for_each_slave(priv, _cpsw_adjust_link, priv, &link);
912 
913 	if (link) {
914 		netif_carrier_on(ndev);
915 		if (netif_running(ndev))
916 			netif_wake_queue(ndev);
917 	} else {
918 		netif_carrier_off(ndev);
919 		netif_stop_queue(ndev);
920 	}
921 }
922 
923 static int cpsw_get_coalesce(struct net_device *ndev,
924 				struct ethtool_coalesce *coal)
925 {
926 	struct cpsw_priv *priv = netdev_priv(ndev);
927 
928 	coal->rx_coalesce_usecs = priv->coal_intvl;
929 	return 0;
930 }
931 
932 static int cpsw_set_coalesce(struct net_device *ndev,
933 				struct ethtool_coalesce *coal)
934 {
935 	struct cpsw_priv *priv = netdev_priv(ndev);
936 	u32 int_ctrl;
937 	u32 num_interrupts = 0;
938 	u32 prescale = 0;
939 	u32 addnl_dvdr = 1;
940 	u32 coal_intvl = 0;
941 
942 	coal_intvl = coal->rx_coalesce_usecs;
943 
944 	int_ctrl =  readl(&priv->wr_regs->int_control);
945 	prescale = priv->bus_freq_mhz * 4;
946 
947 	if (!coal->rx_coalesce_usecs) {
948 		int_ctrl &= ~(CPSW_INTPRESCALE_MASK | CPSW_INTPACEEN);
949 		goto update_return;
950 	}
951 
952 	if (coal_intvl < CPSW_CMINTMIN_INTVL)
953 		coal_intvl = CPSW_CMINTMIN_INTVL;
954 
955 	if (coal_intvl > CPSW_CMINTMAX_INTVL) {
956 		/* Interrupt pacer works with 4us Pulse, we can
957 		 * throttle further by dilating the 4us pulse.
958 		 */
959 		addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale;
960 
961 		if (addnl_dvdr > 1) {
962 			prescale *= addnl_dvdr;
963 			if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr))
964 				coal_intvl = (CPSW_CMINTMAX_INTVL
965 						* addnl_dvdr);
966 		} else {
967 			addnl_dvdr = 1;
968 			coal_intvl = CPSW_CMINTMAX_INTVL;
969 		}
970 	}
971 
972 	num_interrupts = (1000 * addnl_dvdr) / coal_intvl;
973 	writel(num_interrupts, &priv->wr_regs->rx_imax);
974 	writel(num_interrupts, &priv->wr_regs->tx_imax);
975 
976 	int_ctrl |= CPSW_INTPACEEN;
977 	int_ctrl &= (~CPSW_INTPRESCALE_MASK);
978 	int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK);
979 
980 update_return:
981 	writel(int_ctrl, &priv->wr_regs->int_control);
982 
983 	cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl);
984 	if (priv->data.dual_emac) {
985 		int i;
986 
987 		for (i = 0; i < priv->data.slaves; i++) {
988 			priv = netdev_priv(priv->slaves[i].ndev);
989 			priv->coal_intvl = coal_intvl;
990 		}
991 	} else {
992 		priv->coal_intvl = coal_intvl;
993 	}
994 
995 	return 0;
996 }
997 
998 static int cpsw_get_sset_count(struct net_device *ndev, int sset)
999 {
1000 	switch (sset) {
1001 	case ETH_SS_STATS:
1002 		return CPSW_STATS_LEN;
1003 	default:
1004 		return -EOPNOTSUPP;
1005 	}
1006 }
1007 
1008 static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1009 {
1010 	u8 *p = data;
1011 	int i;
1012 
1013 	switch (stringset) {
1014 	case ETH_SS_STATS:
1015 		for (i = 0; i < CPSW_STATS_LEN; i++) {
1016 			memcpy(p, cpsw_gstrings_stats[i].stat_string,
1017 			       ETH_GSTRING_LEN);
1018 			p += ETH_GSTRING_LEN;
1019 		}
1020 		break;
1021 	}
1022 }
1023 
1024 static void cpsw_get_ethtool_stats(struct net_device *ndev,
1025 				    struct ethtool_stats *stats, u64 *data)
1026 {
1027 	struct cpsw_priv *priv = netdev_priv(ndev);
1028 	struct cpdma_chan_stats rx_stats;
1029 	struct cpdma_chan_stats tx_stats;
1030 	u32 val;
1031 	u8 *p;
1032 	int i;
1033 
1034 	/* Collect Davinci CPDMA stats for Rx and Tx Channel */
1035 	cpdma_chan_get_stats(priv->rxch, &rx_stats);
1036 	cpdma_chan_get_stats(priv->txch, &tx_stats);
1037 
1038 	for (i = 0; i < CPSW_STATS_LEN; i++) {
1039 		switch (cpsw_gstrings_stats[i].type) {
1040 		case CPSW_STATS:
1041 			val = readl(priv->hw_stats +
1042 				    cpsw_gstrings_stats[i].stat_offset);
1043 			data[i] = val;
1044 			break;
1045 
1046 		case CPDMA_RX_STATS:
1047 			p = (u8 *)&rx_stats +
1048 				cpsw_gstrings_stats[i].stat_offset;
1049 			data[i] = *(u32 *)p;
1050 			break;
1051 
1052 		case CPDMA_TX_STATS:
1053 			p = (u8 *)&tx_stats +
1054 				cpsw_gstrings_stats[i].stat_offset;
1055 			data[i] = *(u32 *)p;
1056 			break;
1057 		}
1058 	}
1059 }
1060 
1061 static int cpsw_common_res_usage_state(struct cpsw_priv *priv)
1062 {
1063 	u32 i;
1064 	u32 usage_count = 0;
1065 
1066 	if (!priv->data.dual_emac)
1067 		return 0;
1068 
1069 	for (i = 0; i < priv->data.slaves; i++)
1070 		if (priv->slaves[i].open_stat)
1071 			usage_count++;
1072 
1073 	return usage_count;
1074 }
1075 
1076 static inline int cpsw_tx_packet_submit(struct net_device *ndev,
1077 			struct cpsw_priv *priv, struct sk_buff *skb)
1078 {
1079 	if (!priv->data.dual_emac)
1080 		return cpdma_chan_submit(priv->txch, skb, skb->data,
1081 				  skb->len, 0);
1082 
1083 	if (ndev == cpsw_get_slave_ndev(priv, 0))
1084 		return cpdma_chan_submit(priv->txch, skb, skb->data,
1085 				  skb->len, 1);
1086 	else
1087 		return cpdma_chan_submit(priv->txch, skb, skb->data,
1088 				  skb->len, 2);
1089 }
1090 
1091 static inline void cpsw_add_dual_emac_def_ale_entries(
1092 		struct cpsw_priv *priv, struct cpsw_slave *slave,
1093 		u32 slave_port)
1094 {
1095 	u32 port_mask = 1 << slave_port | 1 << priv->host_port;
1096 
1097 	if (priv->version == CPSW_VERSION_1)
1098 		slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN);
1099 	else
1100 		slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN);
1101 	cpsw_ale_add_vlan(priv->ale, slave->port_vlan, port_mask,
1102 			  port_mask, port_mask, 0);
1103 	cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast,
1104 			   port_mask, ALE_VLAN, slave->port_vlan, 0);
1105 	cpsw_ale_add_ucast(priv->ale, priv->mac_addr,
1106 		priv->host_port, ALE_VLAN | ALE_SECURE, slave->port_vlan);
1107 }
1108 
1109 static void soft_reset_slave(struct cpsw_slave *slave)
1110 {
1111 	char name[32];
1112 
1113 	snprintf(name, sizeof(name), "slave-%d", slave->slave_num);
1114 	soft_reset(name, &slave->sliver->soft_reset);
1115 }
1116 
1117 static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv)
1118 {
1119 	u32 slave_port;
1120 
1121 	soft_reset_slave(slave);
1122 
1123 	/* setup priority mapping */
1124 	__raw_writel(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map);
1125 
1126 	switch (priv->version) {
1127 	case CPSW_VERSION_1:
1128 		slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP);
1129 		break;
1130 	case CPSW_VERSION_2:
1131 	case CPSW_VERSION_3:
1132 	case CPSW_VERSION_4:
1133 		slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP);
1134 		break;
1135 	}
1136 
1137 	/* setup max packet size, and mac address */
1138 	__raw_writel(priv->rx_packet_max, &slave->sliver->rx_maxlen);
1139 	cpsw_set_slave_mac(slave, priv);
1140 
1141 	slave->mac_control = 0;	/* no link yet */
1142 
1143 	slave_port = cpsw_get_slave_port(priv, slave->slave_num);
1144 
1145 	if (priv->data.dual_emac)
1146 		cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port);
1147 	else
1148 		cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast,
1149 				   1 << slave_port, 0, 0, ALE_MCAST_FWD_2);
1150 
1151 	if (priv->phy_node)
1152 		slave->phy = of_phy_connect(priv->ndev, priv->phy_node,
1153 				 &cpsw_adjust_link, 0, slave->data->phy_if);
1154 	else
1155 		slave->phy = phy_connect(priv->ndev, slave->data->phy_id,
1156 				 &cpsw_adjust_link, slave->data->phy_if);
1157 	if (IS_ERR(slave->phy)) {
1158 		dev_err(priv->dev, "phy %s not found on slave %d\n",
1159 			slave->data->phy_id, slave->slave_num);
1160 		slave->phy = NULL;
1161 	} else {
1162 		dev_info(priv->dev, "phy found : id is : 0x%x\n",
1163 			 slave->phy->phy_id);
1164 		phy_start(slave->phy);
1165 
1166 		/* Configure GMII_SEL register */
1167 		cpsw_phy_sel(&priv->pdev->dev, slave->phy->interface,
1168 			     slave->slave_num);
1169 	}
1170 }
1171 
1172 static inline void cpsw_add_default_vlan(struct cpsw_priv *priv)
1173 {
1174 	const int vlan = priv->data.default_vlan;
1175 	const int port = priv->host_port;
1176 	u32 reg;
1177 	int i;
1178 	int unreg_mcast_mask;
1179 
1180 	reg = (priv->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN :
1181 	       CPSW2_PORT_VLAN;
1182 
1183 	writel(vlan, &priv->host_port_regs->port_vlan);
1184 
1185 	for (i = 0; i < priv->data.slaves; i++)
1186 		slave_write(priv->slaves + i, vlan, reg);
1187 
1188 	if (priv->ndev->flags & IFF_ALLMULTI)
1189 		unreg_mcast_mask = ALE_ALL_PORTS;
1190 	else
1191 		unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
1192 
1193 	cpsw_ale_add_vlan(priv->ale, vlan, ALE_ALL_PORTS << port,
1194 			  ALE_ALL_PORTS << port, ALE_ALL_PORTS << port,
1195 			  unreg_mcast_mask << port);
1196 }
1197 
1198 static void cpsw_init_host_port(struct cpsw_priv *priv)
1199 {
1200 	u32 control_reg;
1201 	u32 fifo_mode;
1202 
1203 	/* soft reset the controller and initialize ale */
1204 	soft_reset("cpsw", &priv->regs->soft_reset);
1205 	cpsw_ale_start(priv->ale);
1206 
1207 	/* switch to vlan unaware mode */
1208 	cpsw_ale_control_set(priv->ale, priv->host_port, ALE_VLAN_AWARE,
1209 			     CPSW_ALE_VLAN_AWARE);
1210 	control_reg = readl(&priv->regs->control);
1211 	control_reg |= CPSW_VLAN_AWARE;
1212 	writel(control_reg, &priv->regs->control);
1213 	fifo_mode = (priv->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE :
1214 		     CPSW_FIFO_NORMAL_MODE;
1215 	writel(fifo_mode, &priv->host_port_regs->tx_in_ctl);
1216 
1217 	/* setup host port priority mapping */
1218 	__raw_writel(CPDMA_TX_PRIORITY_MAP,
1219 		     &priv->host_port_regs->cpdma_tx_pri_map);
1220 	__raw_writel(0, &priv->host_port_regs->cpdma_rx_chan_map);
1221 
1222 	cpsw_ale_control_set(priv->ale, priv->host_port,
1223 			     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
1224 
1225 	if (!priv->data.dual_emac) {
1226 		cpsw_ale_add_ucast(priv->ale, priv->mac_addr, priv->host_port,
1227 				   0, 0);
1228 		cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast,
1229 				   1 << priv->host_port, 0, 0, ALE_MCAST_FWD_2);
1230 	}
1231 }
1232 
1233 static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_priv *priv)
1234 {
1235 	u32 slave_port;
1236 
1237 	slave_port = cpsw_get_slave_port(priv, slave->slave_num);
1238 
1239 	if (!slave->phy)
1240 		return;
1241 	phy_stop(slave->phy);
1242 	phy_disconnect(slave->phy);
1243 	slave->phy = NULL;
1244 	cpsw_ale_control_set(priv->ale, slave_port,
1245 			     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1246 }
1247 
1248 static int cpsw_ndo_open(struct net_device *ndev)
1249 {
1250 	struct cpsw_priv *priv = netdev_priv(ndev);
1251 	int i, ret;
1252 	u32 reg;
1253 
1254 	if (!cpsw_common_res_usage_state(priv))
1255 		cpsw_intr_disable(priv);
1256 	netif_carrier_off(ndev);
1257 
1258 	pm_runtime_get_sync(&priv->pdev->dev);
1259 
1260 	reg = priv->version;
1261 
1262 	dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n",
1263 		 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg),
1264 		 CPSW_RTL_VERSION(reg));
1265 
1266 	/* initialize host and slave ports */
1267 	if (!cpsw_common_res_usage_state(priv))
1268 		cpsw_init_host_port(priv);
1269 	for_each_slave(priv, cpsw_slave_open, priv);
1270 
1271 	/* Add default VLAN */
1272 	if (!priv->data.dual_emac)
1273 		cpsw_add_default_vlan(priv);
1274 	else
1275 		cpsw_ale_add_vlan(priv->ale, priv->data.default_vlan,
1276 				  ALE_ALL_PORTS << priv->host_port,
1277 				  ALE_ALL_PORTS << priv->host_port, 0, 0);
1278 
1279 	if (!cpsw_common_res_usage_state(priv)) {
1280 		struct cpsw_priv *priv_sl0 = cpsw_get_slave_priv(priv, 0);
1281 
1282 		/* setup tx dma to fixed prio and zero offset */
1283 		cpdma_control_set(priv->dma, CPDMA_TX_PRIO_FIXED, 1);
1284 		cpdma_control_set(priv->dma, CPDMA_RX_BUFFER_OFFSET, 0);
1285 
1286 		/* disable priority elevation */
1287 		__raw_writel(0, &priv->regs->ptype);
1288 
1289 		/* enable statistics collection only on all ports */
1290 		__raw_writel(0x7, &priv->regs->stat_port_en);
1291 
1292 		/* Enable internal fifo flow control */
1293 		writel(0x7, &priv->regs->flow_control);
1294 
1295 		napi_enable(&priv_sl0->napi_rx);
1296 		napi_enable(&priv_sl0->napi_tx);
1297 
1298 		if (priv_sl0->tx_irq_disabled) {
1299 			priv_sl0->tx_irq_disabled = false;
1300 			enable_irq(priv->irqs_table[1]);
1301 		}
1302 
1303 		if (priv_sl0->rx_irq_disabled) {
1304 			priv_sl0->rx_irq_disabled = false;
1305 			enable_irq(priv->irqs_table[0]);
1306 		}
1307 
1308 		if (WARN_ON(!priv->data.rx_descs))
1309 			priv->data.rx_descs = 128;
1310 
1311 		for (i = 0; i < priv->data.rx_descs; i++) {
1312 			struct sk_buff *skb;
1313 
1314 			ret = -ENOMEM;
1315 			skb = __netdev_alloc_skb_ip_align(priv->ndev,
1316 					priv->rx_packet_max, GFP_KERNEL);
1317 			if (!skb)
1318 				goto err_cleanup;
1319 			ret = cpdma_chan_submit(priv->rxch, skb, skb->data,
1320 					skb_tailroom(skb), 0);
1321 			if (ret < 0) {
1322 				kfree_skb(skb);
1323 				goto err_cleanup;
1324 			}
1325 		}
1326 		/* continue even if we didn't manage to submit all
1327 		 * receive descs
1328 		 */
1329 		cpsw_info(priv, ifup, "submitted %d rx descriptors\n", i);
1330 
1331 		if (cpts_register(&priv->pdev->dev, priv->cpts,
1332 				  priv->data.cpts_clock_mult,
1333 				  priv->data.cpts_clock_shift))
1334 			dev_err(priv->dev, "error registering cpts device\n");
1335 
1336 	}
1337 
1338 	/* Enable Interrupt pacing if configured */
1339 	if (priv->coal_intvl != 0) {
1340 		struct ethtool_coalesce coal;
1341 
1342 		coal.rx_coalesce_usecs = (priv->coal_intvl << 4);
1343 		cpsw_set_coalesce(ndev, &coal);
1344 	}
1345 
1346 	cpdma_ctlr_start(priv->dma);
1347 	cpsw_intr_enable(priv);
1348 
1349 	if (priv->data.dual_emac)
1350 		priv->slaves[priv->emac_port].open_stat = true;
1351 	return 0;
1352 
1353 err_cleanup:
1354 	cpdma_ctlr_stop(priv->dma);
1355 	for_each_slave(priv, cpsw_slave_stop, priv);
1356 	pm_runtime_put_sync(&priv->pdev->dev);
1357 	netif_carrier_off(priv->ndev);
1358 	return ret;
1359 }
1360 
1361 static int cpsw_ndo_stop(struct net_device *ndev)
1362 {
1363 	struct cpsw_priv *priv = netdev_priv(ndev);
1364 
1365 	cpsw_info(priv, ifdown, "shutting down cpsw device\n");
1366 	netif_stop_queue(priv->ndev);
1367 	netif_carrier_off(priv->ndev);
1368 
1369 	if (cpsw_common_res_usage_state(priv) <= 1) {
1370 		struct cpsw_priv *priv_sl0 = cpsw_get_slave_priv(priv, 0);
1371 
1372 		napi_disable(&priv_sl0->napi_rx);
1373 		napi_disable(&priv_sl0->napi_tx);
1374 		cpts_unregister(priv->cpts);
1375 		cpsw_intr_disable(priv);
1376 		cpdma_ctlr_stop(priv->dma);
1377 		cpsw_ale_stop(priv->ale);
1378 	}
1379 	for_each_slave(priv, cpsw_slave_stop, priv);
1380 	pm_runtime_put_sync(&priv->pdev->dev);
1381 	if (priv->data.dual_emac)
1382 		priv->slaves[priv->emac_port].open_stat = false;
1383 	return 0;
1384 }
1385 
1386 static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb,
1387 				       struct net_device *ndev)
1388 {
1389 	struct cpsw_priv *priv = netdev_priv(ndev);
1390 	int ret;
1391 
1392 	ndev->trans_start = jiffies;
1393 
1394 	if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) {
1395 		cpsw_err(priv, tx_err, "packet pad failed\n");
1396 		ndev->stats.tx_dropped++;
1397 		return NETDEV_TX_OK;
1398 	}
1399 
1400 	if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
1401 				priv->cpts->tx_enable)
1402 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1403 
1404 	skb_tx_timestamp(skb);
1405 
1406 	ret = cpsw_tx_packet_submit(ndev, priv, skb);
1407 	if (unlikely(ret != 0)) {
1408 		cpsw_err(priv, tx_err, "desc submit failed\n");
1409 		goto fail;
1410 	}
1411 
1412 	/* If there is no more tx desc left free then we need to
1413 	 * tell the kernel to stop sending us tx frames.
1414 	 */
1415 	if (unlikely(!cpdma_check_free_tx_desc(priv->txch)))
1416 		netif_stop_queue(ndev);
1417 
1418 	return NETDEV_TX_OK;
1419 fail:
1420 	ndev->stats.tx_dropped++;
1421 	netif_stop_queue(ndev);
1422 	return NETDEV_TX_BUSY;
1423 }
1424 
1425 #ifdef CONFIG_TI_CPTS
1426 
1427 static void cpsw_hwtstamp_v1(struct cpsw_priv *priv)
1428 {
1429 	struct cpsw_slave *slave = &priv->slaves[priv->data.active_slave];
1430 	u32 ts_en, seq_id;
1431 
1432 	if (!priv->cpts->tx_enable && !priv->cpts->rx_enable) {
1433 		slave_write(slave, 0, CPSW1_TS_CTL);
1434 		return;
1435 	}
1436 
1437 	seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588;
1438 	ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS;
1439 
1440 	if (priv->cpts->tx_enable)
1441 		ts_en |= CPSW_V1_TS_TX_EN;
1442 
1443 	if (priv->cpts->rx_enable)
1444 		ts_en |= CPSW_V1_TS_RX_EN;
1445 
1446 	slave_write(slave, ts_en, CPSW1_TS_CTL);
1447 	slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE);
1448 }
1449 
1450 static void cpsw_hwtstamp_v2(struct cpsw_priv *priv)
1451 {
1452 	struct cpsw_slave *slave;
1453 	u32 ctrl, mtype;
1454 
1455 	if (priv->data.dual_emac)
1456 		slave = &priv->slaves[priv->emac_port];
1457 	else
1458 		slave = &priv->slaves[priv->data.active_slave];
1459 
1460 	ctrl = slave_read(slave, CPSW2_CONTROL);
1461 	switch (priv->version) {
1462 	case CPSW_VERSION_2:
1463 		ctrl &= ~CTRL_V2_ALL_TS_MASK;
1464 
1465 		if (priv->cpts->tx_enable)
1466 			ctrl |= CTRL_V2_TX_TS_BITS;
1467 
1468 		if (priv->cpts->rx_enable)
1469 			ctrl |= CTRL_V2_RX_TS_BITS;
1470 		break;
1471 	case CPSW_VERSION_3:
1472 	default:
1473 		ctrl &= ~CTRL_V3_ALL_TS_MASK;
1474 
1475 		if (priv->cpts->tx_enable)
1476 			ctrl |= CTRL_V3_TX_TS_BITS;
1477 
1478 		if (priv->cpts->rx_enable)
1479 			ctrl |= CTRL_V3_RX_TS_BITS;
1480 		break;
1481 	}
1482 
1483 	mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS;
1484 
1485 	slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE);
1486 	slave_write(slave, ctrl, CPSW2_CONTROL);
1487 	__raw_writel(ETH_P_1588, &priv->regs->ts_ltype);
1488 }
1489 
1490 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
1491 {
1492 	struct cpsw_priv *priv = netdev_priv(dev);
1493 	struct cpts *cpts = priv->cpts;
1494 	struct hwtstamp_config cfg;
1495 
1496 	if (priv->version != CPSW_VERSION_1 &&
1497 	    priv->version != CPSW_VERSION_2 &&
1498 	    priv->version != CPSW_VERSION_3)
1499 		return -EOPNOTSUPP;
1500 
1501 	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1502 		return -EFAULT;
1503 
1504 	/* reserved for future extensions */
1505 	if (cfg.flags)
1506 		return -EINVAL;
1507 
1508 	if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON)
1509 		return -ERANGE;
1510 
1511 	switch (cfg.rx_filter) {
1512 	case HWTSTAMP_FILTER_NONE:
1513 		cpts->rx_enable = 0;
1514 		break;
1515 	case HWTSTAMP_FILTER_ALL:
1516 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1517 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1518 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1519 		return -ERANGE;
1520 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1521 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1522 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1523 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1524 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1525 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1526 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1527 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1528 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1529 		cpts->rx_enable = 1;
1530 		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1531 		break;
1532 	default:
1533 		return -ERANGE;
1534 	}
1535 
1536 	cpts->tx_enable = cfg.tx_type == HWTSTAMP_TX_ON;
1537 
1538 	switch (priv->version) {
1539 	case CPSW_VERSION_1:
1540 		cpsw_hwtstamp_v1(priv);
1541 		break;
1542 	case CPSW_VERSION_2:
1543 	case CPSW_VERSION_3:
1544 		cpsw_hwtstamp_v2(priv);
1545 		break;
1546 	default:
1547 		WARN_ON(1);
1548 	}
1549 
1550 	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1551 }
1552 
1553 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
1554 {
1555 	struct cpsw_priv *priv = netdev_priv(dev);
1556 	struct cpts *cpts = priv->cpts;
1557 	struct hwtstamp_config cfg;
1558 
1559 	if (priv->version != CPSW_VERSION_1 &&
1560 	    priv->version != CPSW_VERSION_2 &&
1561 	    priv->version != CPSW_VERSION_3)
1562 		return -EOPNOTSUPP;
1563 
1564 	cfg.flags = 0;
1565 	cfg.tx_type = cpts->tx_enable ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
1566 	cfg.rx_filter = (cpts->rx_enable ?
1567 			 HWTSTAMP_FILTER_PTP_V2_EVENT : HWTSTAMP_FILTER_NONE);
1568 
1569 	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1570 }
1571 
1572 #endif /*CONFIG_TI_CPTS*/
1573 
1574 static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
1575 {
1576 	struct cpsw_priv *priv = netdev_priv(dev);
1577 	int slave_no = cpsw_slave_index(priv);
1578 
1579 	if (!netif_running(dev))
1580 		return -EINVAL;
1581 
1582 	switch (cmd) {
1583 #ifdef CONFIG_TI_CPTS
1584 	case SIOCSHWTSTAMP:
1585 		return cpsw_hwtstamp_set(dev, req);
1586 	case SIOCGHWTSTAMP:
1587 		return cpsw_hwtstamp_get(dev, req);
1588 #endif
1589 	}
1590 
1591 	if (!priv->slaves[slave_no].phy)
1592 		return -EOPNOTSUPP;
1593 	return phy_mii_ioctl(priv->slaves[slave_no].phy, req, cmd);
1594 }
1595 
1596 static void cpsw_ndo_tx_timeout(struct net_device *ndev)
1597 {
1598 	struct cpsw_priv *priv = netdev_priv(ndev);
1599 
1600 	cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n");
1601 	ndev->stats.tx_errors++;
1602 	cpsw_intr_disable(priv);
1603 	cpdma_chan_stop(priv->txch);
1604 	cpdma_chan_start(priv->txch);
1605 	cpsw_intr_enable(priv);
1606 }
1607 
1608 static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p)
1609 {
1610 	struct cpsw_priv *priv = netdev_priv(ndev);
1611 	struct sockaddr *addr = (struct sockaddr *)p;
1612 	int flags = 0;
1613 	u16 vid = 0;
1614 
1615 	if (!is_valid_ether_addr(addr->sa_data))
1616 		return -EADDRNOTAVAIL;
1617 
1618 	if (priv->data.dual_emac) {
1619 		vid = priv->slaves[priv->emac_port].port_vlan;
1620 		flags = ALE_VLAN;
1621 	}
1622 
1623 	cpsw_ale_del_ucast(priv->ale, priv->mac_addr, priv->host_port,
1624 			   flags, vid);
1625 	cpsw_ale_add_ucast(priv->ale, addr->sa_data, priv->host_port,
1626 			   flags, vid);
1627 
1628 	memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
1629 	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
1630 	for_each_slave(priv, cpsw_set_slave_mac, priv);
1631 
1632 	return 0;
1633 }
1634 
1635 #ifdef CONFIG_NET_POLL_CONTROLLER
1636 static void cpsw_ndo_poll_controller(struct net_device *ndev)
1637 {
1638 	struct cpsw_priv *priv = netdev_priv(ndev);
1639 
1640 	cpsw_intr_disable(priv);
1641 	cpsw_rx_interrupt(priv->irqs_table[0], priv);
1642 	cpsw_tx_interrupt(priv->irqs_table[1], priv);
1643 	cpsw_intr_enable(priv);
1644 }
1645 #endif
1646 
1647 static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv,
1648 				unsigned short vid)
1649 {
1650 	int ret;
1651 	int unreg_mcast_mask = 0;
1652 	u32 port_mask;
1653 
1654 	if (priv->data.dual_emac) {
1655 		port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST;
1656 
1657 		if (priv->ndev->flags & IFF_ALLMULTI)
1658 			unreg_mcast_mask = port_mask;
1659 	} else {
1660 		port_mask = ALE_ALL_PORTS;
1661 
1662 		if (priv->ndev->flags & IFF_ALLMULTI)
1663 			unreg_mcast_mask = ALE_ALL_PORTS;
1664 		else
1665 			unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
1666 	}
1667 
1668 	ret = cpsw_ale_add_vlan(priv->ale, vid, port_mask, 0, port_mask,
1669 				unreg_mcast_mask << priv->host_port);
1670 	if (ret != 0)
1671 		return ret;
1672 
1673 	ret = cpsw_ale_add_ucast(priv->ale, priv->mac_addr,
1674 				 priv->host_port, ALE_VLAN, vid);
1675 	if (ret != 0)
1676 		goto clean_vid;
1677 
1678 	ret = cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast,
1679 				 port_mask, ALE_VLAN, vid, 0);
1680 	if (ret != 0)
1681 		goto clean_vlan_ucast;
1682 	return 0;
1683 
1684 clean_vlan_ucast:
1685 	cpsw_ale_del_ucast(priv->ale, priv->mac_addr,
1686 			    priv->host_port, ALE_VLAN, vid);
1687 clean_vid:
1688 	cpsw_ale_del_vlan(priv->ale, vid, 0);
1689 	return ret;
1690 }
1691 
1692 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
1693 				    __be16 proto, u16 vid)
1694 {
1695 	struct cpsw_priv *priv = netdev_priv(ndev);
1696 
1697 	if (vid == priv->data.default_vlan)
1698 		return 0;
1699 
1700 	if (priv->data.dual_emac) {
1701 		/* In dual EMAC, reserved VLAN id should not be used for
1702 		 * creating VLAN interfaces as this can break the dual
1703 		 * EMAC port separation
1704 		 */
1705 		int i;
1706 
1707 		for (i = 0; i < priv->data.slaves; i++) {
1708 			if (vid == priv->slaves[i].port_vlan)
1709 				return -EINVAL;
1710 		}
1711 	}
1712 
1713 	dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid);
1714 	return cpsw_add_vlan_ale_entry(priv, vid);
1715 }
1716 
1717 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev,
1718 				     __be16 proto, u16 vid)
1719 {
1720 	struct cpsw_priv *priv = netdev_priv(ndev);
1721 	int ret;
1722 
1723 	if (vid == priv->data.default_vlan)
1724 		return 0;
1725 
1726 	if (priv->data.dual_emac) {
1727 		int i;
1728 
1729 		for (i = 0; i < priv->data.slaves; i++) {
1730 			if (vid == priv->slaves[i].port_vlan)
1731 				return -EINVAL;
1732 		}
1733 	}
1734 
1735 	dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid);
1736 	ret = cpsw_ale_del_vlan(priv->ale, vid, 0);
1737 	if (ret != 0)
1738 		return ret;
1739 
1740 	ret = cpsw_ale_del_ucast(priv->ale, priv->mac_addr,
1741 				 priv->host_port, ALE_VLAN, vid);
1742 	if (ret != 0)
1743 		return ret;
1744 
1745 	return cpsw_ale_del_mcast(priv->ale, priv->ndev->broadcast,
1746 				  0, ALE_VLAN, vid);
1747 }
1748 
1749 static const struct net_device_ops cpsw_netdev_ops = {
1750 	.ndo_open		= cpsw_ndo_open,
1751 	.ndo_stop		= cpsw_ndo_stop,
1752 	.ndo_start_xmit		= cpsw_ndo_start_xmit,
1753 	.ndo_set_mac_address	= cpsw_ndo_set_mac_address,
1754 	.ndo_do_ioctl		= cpsw_ndo_ioctl,
1755 	.ndo_validate_addr	= eth_validate_addr,
1756 	.ndo_change_mtu		= eth_change_mtu,
1757 	.ndo_tx_timeout		= cpsw_ndo_tx_timeout,
1758 	.ndo_set_rx_mode	= cpsw_ndo_set_rx_mode,
1759 #ifdef CONFIG_NET_POLL_CONTROLLER
1760 	.ndo_poll_controller	= cpsw_ndo_poll_controller,
1761 #endif
1762 	.ndo_vlan_rx_add_vid	= cpsw_ndo_vlan_rx_add_vid,
1763 	.ndo_vlan_rx_kill_vid	= cpsw_ndo_vlan_rx_kill_vid,
1764 };
1765 
1766 static int cpsw_get_regs_len(struct net_device *ndev)
1767 {
1768 	struct cpsw_priv *priv = netdev_priv(ndev);
1769 
1770 	return priv->data.ale_entries * ALE_ENTRY_WORDS * sizeof(u32);
1771 }
1772 
1773 static void cpsw_get_regs(struct net_device *ndev,
1774 			  struct ethtool_regs *regs, void *p)
1775 {
1776 	struct cpsw_priv *priv = netdev_priv(ndev);
1777 	u32 *reg = p;
1778 
1779 	/* update CPSW IP version */
1780 	regs->version = priv->version;
1781 
1782 	cpsw_ale_dump(priv->ale, reg);
1783 }
1784 
1785 static void cpsw_get_drvinfo(struct net_device *ndev,
1786 			     struct ethtool_drvinfo *info)
1787 {
1788 	struct cpsw_priv *priv = netdev_priv(ndev);
1789 
1790 	strlcpy(info->driver, "cpsw", sizeof(info->driver));
1791 	strlcpy(info->version, "1.0", sizeof(info->version));
1792 	strlcpy(info->bus_info, priv->pdev->name, sizeof(info->bus_info));
1793 }
1794 
1795 static u32 cpsw_get_msglevel(struct net_device *ndev)
1796 {
1797 	struct cpsw_priv *priv = netdev_priv(ndev);
1798 	return priv->msg_enable;
1799 }
1800 
1801 static void cpsw_set_msglevel(struct net_device *ndev, u32 value)
1802 {
1803 	struct cpsw_priv *priv = netdev_priv(ndev);
1804 	priv->msg_enable = value;
1805 }
1806 
1807 static int cpsw_get_ts_info(struct net_device *ndev,
1808 			    struct ethtool_ts_info *info)
1809 {
1810 #ifdef CONFIG_TI_CPTS
1811 	struct cpsw_priv *priv = netdev_priv(ndev);
1812 
1813 	info->so_timestamping =
1814 		SOF_TIMESTAMPING_TX_HARDWARE |
1815 		SOF_TIMESTAMPING_TX_SOFTWARE |
1816 		SOF_TIMESTAMPING_RX_HARDWARE |
1817 		SOF_TIMESTAMPING_RX_SOFTWARE |
1818 		SOF_TIMESTAMPING_SOFTWARE |
1819 		SOF_TIMESTAMPING_RAW_HARDWARE;
1820 	info->phc_index = priv->cpts->phc_index;
1821 	info->tx_types =
1822 		(1 << HWTSTAMP_TX_OFF) |
1823 		(1 << HWTSTAMP_TX_ON);
1824 	info->rx_filters =
1825 		(1 << HWTSTAMP_FILTER_NONE) |
1826 		(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
1827 #else
1828 	info->so_timestamping =
1829 		SOF_TIMESTAMPING_TX_SOFTWARE |
1830 		SOF_TIMESTAMPING_RX_SOFTWARE |
1831 		SOF_TIMESTAMPING_SOFTWARE;
1832 	info->phc_index = -1;
1833 	info->tx_types = 0;
1834 	info->rx_filters = 0;
1835 #endif
1836 	return 0;
1837 }
1838 
1839 static int cpsw_get_settings(struct net_device *ndev,
1840 			     struct ethtool_cmd *ecmd)
1841 {
1842 	struct cpsw_priv *priv = netdev_priv(ndev);
1843 	int slave_no = cpsw_slave_index(priv);
1844 
1845 	if (priv->slaves[slave_no].phy)
1846 		return phy_ethtool_gset(priv->slaves[slave_no].phy, ecmd);
1847 	else
1848 		return -EOPNOTSUPP;
1849 }
1850 
1851 static int cpsw_set_settings(struct net_device *ndev, struct ethtool_cmd *ecmd)
1852 {
1853 	struct cpsw_priv *priv = netdev_priv(ndev);
1854 	int slave_no = cpsw_slave_index(priv);
1855 
1856 	if (priv->slaves[slave_no].phy)
1857 		return phy_ethtool_sset(priv->slaves[slave_no].phy, ecmd);
1858 	else
1859 		return -EOPNOTSUPP;
1860 }
1861 
1862 static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1863 {
1864 	struct cpsw_priv *priv = netdev_priv(ndev);
1865 	int slave_no = cpsw_slave_index(priv);
1866 
1867 	wol->supported = 0;
1868 	wol->wolopts = 0;
1869 
1870 	if (priv->slaves[slave_no].phy)
1871 		phy_ethtool_get_wol(priv->slaves[slave_no].phy, wol);
1872 }
1873 
1874 static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1875 {
1876 	struct cpsw_priv *priv = netdev_priv(ndev);
1877 	int slave_no = cpsw_slave_index(priv);
1878 
1879 	if (priv->slaves[slave_no].phy)
1880 		return phy_ethtool_set_wol(priv->slaves[slave_no].phy, wol);
1881 	else
1882 		return -EOPNOTSUPP;
1883 }
1884 
1885 static void cpsw_get_pauseparam(struct net_device *ndev,
1886 				struct ethtool_pauseparam *pause)
1887 {
1888 	struct cpsw_priv *priv = netdev_priv(ndev);
1889 
1890 	pause->autoneg = AUTONEG_DISABLE;
1891 	pause->rx_pause = priv->rx_pause ? true : false;
1892 	pause->tx_pause = priv->tx_pause ? true : false;
1893 }
1894 
1895 static int cpsw_set_pauseparam(struct net_device *ndev,
1896 			       struct ethtool_pauseparam *pause)
1897 {
1898 	struct cpsw_priv *priv = netdev_priv(ndev);
1899 	bool link;
1900 
1901 	priv->rx_pause = pause->rx_pause ? true : false;
1902 	priv->tx_pause = pause->tx_pause ? true : false;
1903 
1904 	for_each_slave(priv, _cpsw_adjust_link, priv, &link);
1905 
1906 	return 0;
1907 }
1908 
1909 static const struct ethtool_ops cpsw_ethtool_ops = {
1910 	.get_drvinfo	= cpsw_get_drvinfo,
1911 	.get_msglevel	= cpsw_get_msglevel,
1912 	.set_msglevel	= cpsw_set_msglevel,
1913 	.get_link	= ethtool_op_get_link,
1914 	.get_ts_info	= cpsw_get_ts_info,
1915 	.get_settings	= cpsw_get_settings,
1916 	.set_settings	= cpsw_set_settings,
1917 	.get_coalesce	= cpsw_get_coalesce,
1918 	.set_coalesce	= cpsw_set_coalesce,
1919 	.get_sset_count		= cpsw_get_sset_count,
1920 	.get_strings		= cpsw_get_strings,
1921 	.get_ethtool_stats	= cpsw_get_ethtool_stats,
1922 	.get_pauseparam		= cpsw_get_pauseparam,
1923 	.set_pauseparam		= cpsw_set_pauseparam,
1924 	.get_wol	= cpsw_get_wol,
1925 	.set_wol	= cpsw_set_wol,
1926 	.get_regs_len	= cpsw_get_regs_len,
1927 	.get_regs	= cpsw_get_regs,
1928 };
1929 
1930 static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_priv *priv,
1931 			    u32 slave_reg_ofs, u32 sliver_reg_ofs)
1932 {
1933 	void __iomem		*regs = priv->regs;
1934 	int			slave_num = slave->slave_num;
1935 	struct cpsw_slave_data	*data = priv->data.slave_data + slave_num;
1936 
1937 	slave->data	= data;
1938 	slave->regs	= regs + slave_reg_ofs;
1939 	slave->sliver	= regs + sliver_reg_ofs;
1940 	slave->port_vlan = data->dual_emac_res_vlan;
1941 }
1942 
1943 static int cpsw_probe_dt(struct cpsw_priv *priv,
1944 			 struct platform_device *pdev)
1945 {
1946 	struct device_node *node = pdev->dev.of_node;
1947 	struct device_node *slave_node;
1948 	struct cpsw_platform_data *data = &priv->data;
1949 	int i = 0, ret;
1950 	u32 prop;
1951 
1952 	if (!node)
1953 		return -EINVAL;
1954 
1955 	if (of_property_read_u32(node, "slaves", &prop)) {
1956 		dev_err(&pdev->dev, "Missing slaves property in the DT.\n");
1957 		return -EINVAL;
1958 	}
1959 	data->slaves = prop;
1960 
1961 	if (of_property_read_u32(node, "active_slave", &prop)) {
1962 		dev_err(&pdev->dev, "Missing active_slave property in the DT.\n");
1963 		return -EINVAL;
1964 	}
1965 	data->active_slave = prop;
1966 
1967 	if (of_property_read_u32(node, "cpts_clock_mult", &prop)) {
1968 		dev_err(&pdev->dev, "Missing cpts_clock_mult property in the DT.\n");
1969 		return -EINVAL;
1970 	}
1971 	data->cpts_clock_mult = prop;
1972 
1973 	if (of_property_read_u32(node, "cpts_clock_shift", &prop)) {
1974 		dev_err(&pdev->dev, "Missing cpts_clock_shift property in the DT.\n");
1975 		return -EINVAL;
1976 	}
1977 	data->cpts_clock_shift = prop;
1978 
1979 	data->slave_data = devm_kzalloc(&pdev->dev, data->slaves
1980 					* sizeof(struct cpsw_slave_data),
1981 					GFP_KERNEL);
1982 	if (!data->slave_data)
1983 		return -ENOMEM;
1984 
1985 	if (of_property_read_u32(node, "cpdma_channels", &prop)) {
1986 		dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n");
1987 		return -EINVAL;
1988 	}
1989 	data->channels = prop;
1990 
1991 	if (of_property_read_u32(node, "ale_entries", &prop)) {
1992 		dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n");
1993 		return -EINVAL;
1994 	}
1995 	data->ale_entries = prop;
1996 
1997 	if (of_property_read_u32(node, "bd_ram_size", &prop)) {
1998 		dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n");
1999 		return -EINVAL;
2000 	}
2001 	data->bd_ram_size = prop;
2002 
2003 	if (of_property_read_u32(node, "rx_descs", &prop)) {
2004 		dev_err(&pdev->dev, "Missing rx_descs property in the DT.\n");
2005 		return -EINVAL;
2006 	}
2007 	data->rx_descs = prop;
2008 
2009 	if (of_property_read_u32(node, "mac_control", &prop)) {
2010 		dev_err(&pdev->dev, "Missing mac_control property in the DT.\n");
2011 		return -EINVAL;
2012 	}
2013 	data->mac_control = prop;
2014 
2015 	if (of_property_read_bool(node, "dual_emac"))
2016 		data->dual_emac = 1;
2017 
2018 	/*
2019 	 * Populate all the child nodes here...
2020 	 */
2021 	ret = of_platform_populate(node, NULL, NULL, &pdev->dev);
2022 	/* We do not want to force this, as in some cases may not have child */
2023 	if (ret)
2024 		dev_warn(&pdev->dev, "Doesn't have any child node\n");
2025 
2026 	for_each_child_of_node(node, slave_node) {
2027 		struct cpsw_slave_data *slave_data = data->slave_data + i;
2028 		const void *mac_addr = NULL;
2029 		int lenp;
2030 		const __be32 *parp;
2031 
2032 		/* This is no slave child node, continue */
2033 		if (strcmp(slave_node->name, "slave"))
2034 			continue;
2035 
2036 		priv->phy_node = of_parse_phandle(slave_node, "phy-handle", 0);
2037 		parp = of_get_property(slave_node, "phy_id", &lenp);
2038 		if (of_phy_is_fixed_link(slave_node)) {
2039 			struct device_node *phy_node;
2040 			struct phy_device *phy_dev;
2041 
2042 			/* In the case of a fixed PHY, the DT node associated
2043 			 * to the PHY is the Ethernet MAC DT node.
2044 			 */
2045 			ret = of_phy_register_fixed_link(slave_node);
2046 			if (ret)
2047 				return ret;
2048 			phy_node = of_node_get(slave_node);
2049 			phy_dev = of_phy_find_device(phy_node);
2050 			if (!phy_dev)
2051 				return -ENODEV;
2052 			snprintf(slave_data->phy_id, sizeof(slave_data->phy_id),
2053 				 PHY_ID_FMT, phy_dev->bus->id, phy_dev->addr);
2054 		} else if (parp) {
2055 			u32 phyid;
2056 			struct device_node *mdio_node;
2057 			struct platform_device *mdio;
2058 
2059 			if (lenp != (sizeof(__be32) * 2)) {
2060 				dev_err(&pdev->dev, "Invalid slave[%d] phy_id property\n", i);
2061 				goto no_phy_slave;
2062 			}
2063 			mdio_node = of_find_node_by_phandle(be32_to_cpup(parp));
2064 			phyid = be32_to_cpup(parp+1);
2065 			mdio = of_find_device_by_node(mdio_node);
2066 			of_node_put(mdio_node);
2067 			if (!mdio) {
2068 				dev_err(&pdev->dev, "Missing mdio platform device\n");
2069 				return -EINVAL;
2070 			}
2071 			snprintf(slave_data->phy_id, sizeof(slave_data->phy_id),
2072 				 PHY_ID_FMT, mdio->name, phyid);
2073 		} else {
2074 			dev_err(&pdev->dev, "No slave[%d] phy_id or fixed-link property\n", i);
2075 			goto no_phy_slave;
2076 		}
2077 		slave_data->phy_if = of_get_phy_mode(slave_node);
2078 		if (slave_data->phy_if < 0) {
2079 			dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n",
2080 				i);
2081 			return slave_data->phy_if;
2082 		}
2083 
2084 no_phy_slave:
2085 		mac_addr = of_get_mac_address(slave_node);
2086 		if (mac_addr) {
2087 			memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN);
2088 		} else {
2089 			ret = ti_cm_get_macid(&pdev->dev, i,
2090 					      slave_data->mac_addr);
2091 			if (ret)
2092 				return ret;
2093 		}
2094 		if (data->dual_emac) {
2095 			if (of_property_read_u32(slave_node, "dual_emac_res_vlan",
2096 						 &prop)) {
2097 				dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n");
2098 				slave_data->dual_emac_res_vlan = i+1;
2099 				dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n",
2100 					slave_data->dual_emac_res_vlan, i);
2101 			} else {
2102 				slave_data->dual_emac_res_vlan = prop;
2103 			}
2104 		}
2105 
2106 		i++;
2107 		if (i == data->slaves)
2108 			break;
2109 	}
2110 
2111 	return 0;
2112 }
2113 
2114 static int cpsw_probe_dual_emac(struct platform_device *pdev,
2115 				struct cpsw_priv *priv)
2116 {
2117 	struct cpsw_platform_data	*data = &priv->data;
2118 	struct net_device		*ndev;
2119 	struct cpsw_priv		*priv_sl2;
2120 	int ret = 0, i;
2121 
2122 	ndev = alloc_etherdev(sizeof(struct cpsw_priv));
2123 	if (!ndev) {
2124 		dev_err(&pdev->dev, "cpsw: error allocating net_device\n");
2125 		return -ENOMEM;
2126 	}
2127 
2128 	priv_sl2 = netdev_priv(ndev);
2129 	spin_lock_init(&priv_sl2->lock);
2130 	priv_sl2->data = *data;
2131 	priv_sl2->pdev = pdev;
2132 	priv_sl2->ndev = ndev;
2133 	priv_sl2->dev  = &ndev->dev;
2134 	priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
2135 	priv_sl2->rx_packet_max = max(rx_packet_max, 128);
2136 
2137 	if (is_valid_ether_addr(data->slave_data[1].mac_addr)) {
2138 		memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr,
2139 			ETH_ALEN);
2140 		dev_info(&pdev->dev, "cpsw: Detected MACID = %pM\n", priv_sl2->mac_addr);
2141 	} else {
2142 		random_ether_addr(priv_sl2->mac_addr);
2143 		dev_info(&pdev->dev, "cpsw: Random MACID = %pM\n", priv_sl2->mac_addr);
2144 	}
2145 	memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN);
2146 
2147 	priv_sl2->slaves = priv->slaves;
2148 	priv_sl2->clk = priv->clk;
2149 
2150 	priv_sl2->coal_intvl = 0;
2151 	priv_sl2->bus_freq_mhz = priv->bus_freq_mhz;
2152 
2153 	priv_sl2->regs = priv->regs;
2154 	priv_sl2->host_port = priv->host_port;
2155 	priv_sl2->host_port_regs = priv->host_port_regs;
2156 	priv_sl2->wr_regs = priv->wr_regs;
2157 	priv_sl2->hw_stats = priv->hw_stats;
2158 	priv_sl2->dma = priv->dma;
2159 	priv_sl2->txch = priv->txch;
2160 	priv_sl2->rxch = priv->rxch;
2161 	priv_sl2->ale = priv->ale;
2162 	priv_sl2->emac_port = 1;
2163 	priv->slaves[1].ndev = ndev;
2164 	priv_sl2->cpts = priv->cpts;
2165 	priv_sl2->version = priv->version;
2166 
2167 	for (i = 0; i < priv->num_irqs; i++) {
2168 		priv_sl2->irqs_table[i] = priv->irqs_table[i];
2169 		priv_sl2->num_irqs = priv->num_irqs;
2170 	}
2171 	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2172 
2173 	ndev->netdev_ops = &cpsw_netdev_ops;
2174 	ndev->ethtool_ops = &cpsw_ethtool_ops;
2175 
2176 	/* register the network device */
2177 	SET_NETDEV_DEV(ndev, &pdev->dev);
2178 	ret = register_netdev(ndev);
2179 	if (ret) {
2180 		dev_err(&pdev->dev, "cpsw: error registering net device\n");
2181 		free_netdev(ndev);
2182 		ret = -ENODEV;
2183 	}
2184 
2185 	return ret;
2186 }
2187 
2188 #define CPSW_QUIRK_IRQ		BIT(0)
2189 
2190 static struct platform_device_id cpsw_devtype[] = {
2191 	{
2192 		/* keep it for existing comaptibles */
2193 		.name = "cpsw",
2194 		.driver_data = CPSW_QUIRK_IRQ,
2195 	}, {
2196 		.name = "am335x-cpsw",
2197 		.driver_data = CPSW_QUIRK_IRQ,
2198 	}, {
2199 		.name = "am4372-cpsw",
2200 		.driver_data = 0,
2201 	}, {
2202 		.name = "dra7-cpsw",
2203 		.driver_data = 0,
2204 	}, {
2205 		/* sentinel */
2206 	}
2207 };
2208 MODULE_DEVICE_TABLE(platform, cpsw_devtype);
2209 
2210 enum ti_cpsw_type {
2211 	CPSW = 0,
2212 	AM335X_CPSW,
2213 	AM4372_CPSW,
2214 	DRA7_CPSW,
2215 };
2216 
2217 static const struct of_device_id cpsw_of_mtable[] = {
2218 	{ .compatible = "ti,cpsw", .data = &cpsw_devtype[CPSW], },
2219 	{ .compatible = "ti,am335x-cpsw", .data = &cpsw_devtype[AM335X_CPSW], },
2220 	{ .compatible = "ti,am4372-cpsw", .data = &cpsw_devtype[AM4372_CPSW], },
2221 	{ .compatible = "ti,dra7-cpsw", .data = &cpsw_devtype[DRA7_CPSW], },
2222 	{ /* sentinel */ },
2223 };
2224 MODULE_DEVICE_TABLE(of, cpsw_of_mtable);
2225 
2226 static int cpsw_probe(struct platform_device *pdev)
2227 {
2228 	struct cpsw_platform_data	*data;
2229 	struct net_device		*ndev;
2230 	struct cpsw_priv		*priv;
2231 	struct cpdma_params		dma_params;
2232 	struct cpsw_ale_params		ale_params;
2233 	void __iomem			*ss_regs;
2234 	struct resource			*res, *ss_res;
2235 	const struct of_device_id	*of_id;
2236 	struct gpio_descs		*mode;
2237 	u32 slave_offset, sliver_offset, slave_size;
2238 	int ret = 0, i;
2239 	int irq;
2240 
2241 	ndev = alloc_etherdev(sizeof(struct cpsw_priv));
2242 	if (!ndev) {
2243 		dev_err(&pdev->dev, "error allocating net_device\n");
2244 		return -ENOMEM;
2245 	}
2246 
2247 	platform_set_drvdata(pdev, ndev);
2248 	priv = netdev_priv(ndev);
2249 	spin_lock_init(&priv->lock);
2250 	priv->pdev = pdev;
2251 	priv->ndev = ndev;
2252 	priv->dev  = &ndev->dev;
2253 	priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
2254 	priv->rx_packet_max = max(rx_packet_max, 128);
2255 	priv->cpts = devm_kzalloc(&pdev->dev, sizeof(struct cpts), GFP_KERNEL);
2256 	if (!priv->cpts) {
2257 		dev_err(&pdev->dev, "error allocating cpts\n");
2258 		ret = -ENOMEM;
2259 		goto clean_ndev_ret;
2260 	}
2261 
2262 	mode = devm_gpiod_get_array_optional(&pdev->dev, "mode", GPIOD_OUT_LOW);
2263 	if (IS_ERR(mode)) {
2264 		ret = PTR_ERR(mode);
2265 		dev_err(&pdev->dev, "gpio request failed, ret %d\n", ret);
2266 		goto clean_ndev_ret;
2267 	}
2268 
2269 	/*
2270 	 * This may be required here for child devices.
2271 	 */
2272 	pm_runtime_enable(&pdev->dev);
2273 
2274 	/* Select default pin state */
2275 	pinctrl_pm_select_default_state(&pdev->dev);
2276 
2277 	if (cpsw_probe_dt(priv, pdev)) {
2278 		dev_err(&pdev->dev, "cpsw: platform data missing\n");
2279 		ret = -ENODEV;
2280 		goto clean_runtime_disable_ret;
2281 	}
2282 	data = &priv->data;
2283 
2284 	if (is_valid_ether_addr(data->slave_data[0].mac_addr)) {
2285 		memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN);
2286 		dev_info(&pdev->dev, "Detected MACID = %pM\n", priv->mac_addr);
2287 	} else {
2288 		eth_random_addr(priv->mac_addr);
2289 		dev_info(&pdev->dev, "Random MACID = %pM\n", priv->mac_addr);
2290 	}
2291 
2292 	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
2293 
2294 	priv->slaves = devm_kzalloc(&pdev->dev,
2295 				    sizeof(struct cpsw_slave) * data->slaves,
2296 				    GFP_KERNEL);
2297 	if (!priv->slaves) {
2298 		ret = -ENOMEM;
2299 		goto clean_runtime_disable_ret;
2300 	}
2301 	for (i = 0; i < data->slaves; i++)
2302 		priv->slaves[i].slave_num = i;
2303 
2304 	priv->slaves[0].ndev = ndev;
2305 	priv->emac_port = 0;
2306 
2307 	priv->clk = devm_clk_get(&pdev->dev, "fck");
2308 	if (IS_ERR(priv->clk)) {
2309 		dev_err(priv->dev, "fck is not found\n");
2310 		ret = -ENODEV;
2311 		goto clean_runtime_disable_ret;
2312 	}
2313 	priv->coal_intvl = 0;
2314 	priv->bus_freq_mhz = clk_get_rate(priv->clk) / 1000000;
2315 
2316 	ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2317 	ss_regs = devm_ioremap_resource(&pdev->dev, ss_res);
2318 	if (IS_ERR(ss_regs)) {
2319 		ret = PTR_ERR(ss_regs);
2320 		goto clean_runtime_disable_ret;
2321 	}
2322 	priv->regs = ss_regs;
2323 	priv->host_port = HOST_PORT_NUM;
2324 
2325 	/* Need to enable clocks with runtime PM api to access module
2326 	 * registers
2327 	 */
2328 	pm_runtime_get_sync(&pdev->dev);
2329 	priv->version = readl(&priv->regs->id_ver);
2330 	pm_runtime_put_sync(&pdev->dev);
2331 
2332 	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2333 	priv->wr_regs = devm_ioremap_resource(&pdev->dev, res);
2334 	if (IS_ERR(priv->wr_regs)) {
2335 		ret = PTR_ERR(priv->wr_regs);
2336 		goto clean_runtime_disable_ret;
2337 	}
2338 
2339 	memset(&dma_params, 0, sizeof(dma_params));
2340 	memset(&ale_params, 0, sizeof(ale_params));
2341 
2342 	switch (priv->version) {
2343 	case CPSW_VERSION_1:
2344 		priv->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET;
2345 		priv->cpts->reg      = ss_regs + CPSW1_CPTS_OFFSET;
2346 		priv->hw_stats	     = ss_regs + CPSW1_HW_STATS;
2347 		dma_params.dmaregs   = ss_regs + CPSW1_CPDMA_OFFSET;
2348 		dma_params.txhdp     = ss_regs + CPSW1_STATERAM_OFFSET;
2349 		ale_params.ale_regs  = ss_regs + CPSW1_ALE_OFFSET;
2350 		slave_offset         = CPSW1_SLAVE_OFFSET;
2351 		slave_size           = CPSW1_SLAVE_SIZE;
2352 		sliver_offset        = CPSW1_SLIVER_OFFSET;
2353 		dma_params.desc_mem_phys = 0;
2354 		break;
2355 	case CPSW_VERSION_2:
2356 	case CPSW_VERSION_3:
2357 	case CPSW_VERSION_4:
2358 		priv->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET;
2359 		priv->cpts->reg      = ss_regs + CPSW2_CPTS_OFFSET;
2360 		priv->hw_stats	     = ss_regs + CPSW2_HW_STATS;
2361 		dma_params.dmaregs   = ss_regs + CPSW2_CPDMA_OFFSET;
2362 		dma_params.txhdp     = ss_regs + CPSW2_STATERAM_OFFSET;
2363 		ale_params.ale_regs  = ss_regs + CPSW2_ALE_OFFSET;
2364 		slave_offset         = CPSW2_SLAVE_OFFSET;
2365 		slave_size           = CPSW2_SLAVE_SIZE;
2366 		sliver_offset        = CPSW2_SLIVER_OFFSET;
2367 		dma_params.desc_mem_phys =
2368 			(u32 __force) ss_res->start + CPSW2_BD_OFFSET;
2369 		break;
2370 	default:
2371 		dev_err(priv->dev, "unknown version 0x%08x\n", priv->version);
2372 		ret = -ENODEV;
2373 		goto clean_runtime_disable_ret;
2374 	}
2375 	for (i = 0; i < priv->data.slaves; i++) {
2376 		struct cpsw_slave *slave = &priv->slaves[i];
2377 		cpsw_slave_init(slave, priv, slave_offset, sliver_offset);
2378 		slave_offset  += slave_size;
2379 		sliver_offset += SLIVER_SIZE;
2380 	}
2381 
2382 	dma_params.dev		= &pdev->dev;
2383 	dma_params.rxthresh	= dma_params.dmaregs + CPDMA_RXTHRESH;
2384 	dma_params.rxfree	= dma_params.dmaregs + CPDMA_RXFREE;
2385 	dma_params.rxhdp	= dma_params.txhdp + CPDMA_RXHDP;
2386 	dma_params.txcp		= dma_params.txhdp + CPDMA_TXCP;
2387 	dma_params.rxcp		= dma_params.txhdp + CPDMA_RXCP;
2388 
2389 	dma_params.num_chan		= data->channels;
2390 	dma_params.has_soft_reset	= true;
2391 	dma_params.min_packet_size	= CPSW_MIN_PACKET_SIZE;
2392 	dma_params.desc_mem_size	= data->bd_ram_size;
2393 	dma_params.desc_align		= 16;
2394 	dma_params.has_ext_regs		= true;
2395 	dma_params.desc_hw_addr         = dma_params.desc_mem_phys;
2396 
2397 	priv->dma = cpdma_ctlr_create(&dma_params);
2398 	if (!priv->dma) {
2399 		dev_err(priv->dev, "error initializing dma\n");
2400 		ret = -ENOMEM;
2401 		goto clean_runtime_disable_ret;
2402 	}
2403 
2404 	priv->txch = cpdma_chan_create(priv->dma, tx_chan_num(0),
2405 				       cpsw_tx_handler);
2406 	priv->rxch = cpdma_chan_create(priv->dma, rx_chan_num(0),
2407 				       cpsw_rx_handler);
2408 
2409 	if (WARN_ON(!priv->txch || !priv->rxch)) {
2410 		dev_err(priv->dev, "error initializing dma channels\n");
2411 		ret = -ENOMEM;
2412 		goto clean_dma_ret;
2413 	}
2414 
2415 	ale_params.dev			= &ndev->dev;
2416 	ale_params.ale_ageout		= ale_ageout;
2417 	ale_params.ale_entries		= data->ale_entries;
2418 	ale_params.ale_ports		= data->slaves;
2419 
2420 	priv->ale = cpsw_ale_create(&ale_params);
2421 	if (!priv->ale) {
2422 		dev_err(priv->dev, "error initializing ale engine\n");
2423 		ret = -ENODEV;
2424 		goto clean_dma_ret;
2425 	}
2426 
2427 	ndev->irq = platform_get_irq(pdev, 1);
2428 	if (ndev->irq < 0) {
2429 		dev_err(priv->dev, "error getting irq resource\n");
2430 		ret = ndev->irq;
2431 		goto clean_ale_ret;
2432 	}
2433 
2434 	of_id = of_match_device(cpsw_of_mtable, &pdev->dev);
2435 	if (of_id) {
2436 		pdev->id_entry = of_id->data;
2437 		if (pdev->id_entry->driver_data)
2438 			priv->quirk_irq = true;
2439 	}
2440 
2441 	/* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and
2442 	 * MISC IRQs which are always kept disabled with this driver so
2443 	 * we will not request them.
2444 	 *
2445 	 * If anyone wants to implement support for those, make sure to
2446 	 * first request and append them to irqs_table array.
2447 	 */
2448 
2449 	/* RX IRQ */
2450 	irq = platform_get_irq(pdev, 1);
2451 	if (irq < 0) {
2452 		ret = irq;
2453 		goto clean_ale_ret;
2454 	}
2455 
2456 	priv->irqs_table[0] = irq;
2457 	ret = devm_request_irq(&pdev->dev, irq, cpsw_rx_interrupt,
2458 			       0, dev_name(&pdev->dev), priv);
2459 	if (ret < 0) {
2460 		dev_err(priv->dev, "error attaching irq (%d)\n", ret);
2461 		goto clean_ale_ret;
2462 	}
2463 
2464 	/* TX IRQ */
2465 	irq = platform_get_irq(pdev, 2);
2466 	if (irq < 0) {
2467 		ret = irq;
2468 		goto clean_ale_ret;
2469 	}
2470 
2471 	priv->irqs_table[1] = irq;
2472 	ret = devm_request_irq(&pdev->dev, irq, cpsw_tx_interrupt,
2473 			       0, dev_name(&pdev->dev), priv);
2474 	if (ret < 0) {
2475 		dev_err(priv->dev, "error attaching irq (%d)\n", ret);
2476 		goto clean_ale_ret;
2477 	}
2478 	priv->num_irqs = 2;
2479 
2480 	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2481 
2482 	ndev->netdev_ops = &cpsw_netdev_ops;
2483 	ndev->ethtool_ops = &cpsw_ethtool_ops;
2484 	netif_napi_add(ndev, &priv->napi_rx, cpsw_rx_poll, CPSW_POLL_WEIGHT);
2485 	netif_napi_add(ndev, &priv->napi_tx, cpsw_tx_poll, CPSW_POLL_WEIGHT);
2486 
2487 	/* register the network device */
2488 	SET_NETDEV_DEV(ndev, &pdev->dev);
2489 	ret = register_netdev(ndev);
2490 	if (ret) {
2491 		dev_err(priv->dev, "error registering net device\n");
2492 		ret = -ENODEV;
2493 		goto clean_ale_ret;
2494 	}
2495 
2496 	cpsw_notice(priv, probe, "initialized device (regs %pa, irq %d)\n",
2497 		    &ss_res->start, ndev->irq);
2498 
2499 	if (priv->data.dual_emac) {
2500 		ret = cpsw_probe_dual_emac(pdev, priv);
2501 		if (ret) {
2502 			cpsw_err(priv, probe, "error probe slave 2 emac interface\n");
2503 			goto clean_ale_ret;
2504 		}
2505 	}
2506 
2507 	return 0;
2508 
2509 clean_ale_ret:
2510 	cpsw_ale_destroy(priv->ale);
2511 clean_dma_ret:
2512 	cpdma_chan_destroy(priv->txch);
2513 	cpdma_chan_destroy(priv->rxch);
2514 	cpdma_ctlr_destroy(priv->dma);
2515 clean_runtime_disable_ret:
2516 	pm_runtime_disable(&pdev->dev);
2517 clean_ndev_ret:
2518 	free_netdev(priv->ndev);
2519 	return ret;
2520 }
2521 
2522 static int cpsw_remove_child_device(struct device *dev, void *c)
2523 {
2524 	struct platform_device *pdev = to_platform_device(dev);
2525 
2526 	of_device_unregister(pdev);
2527 
2528 	return 0;
2529 }
2530 
2531 static int cpsw_remove(struct platform_device *pdev)
2532 {
2533 	struct net_device *ndev = platform_get_drvdata(pdev);
2534 	struct cpsw_priv *priv = netdev_priv(ndev);
2535 
2536 	if (priv->data.dual_emac)
2537 		unregister_netdev(cpsw_get_slave_ndev(priv, 1));
2538 	unregister_netdev(ndev);
2539 
2540 	cpsw_ale_destroy(priv->ale);
2541 	cpdma_chan_destroy(priv->txch);
2542 	cpdma_chan_destroy(priv->rxch);
2543 	cpdma_ctlr_destroy(priv->dma);
2544 	pm_runtime_disable(&pdev->dev);
2545 	device_for_each_child(&pdev->dev, NULL, cpsw_remove_child_device);
2546 	if (priv->data.dual_emac)
2547 		free_netdev(cpsw_get_slave_ndev(priv, 1));
2548 	free_netdev(ndev);
2549 	return 0;
2550 }
2551 
2552 #ifdef CONFIG_PM_SLEEP
2553 static int cpsw_suspend(struct device *dev)
2554 {
2555 	struct platform_device	*pdev = to_platform_device(dev);
2556 	struct net_device	*ndev = platform_get_drvdata(pdev);
2557 	struct cpsw_priv	*priv = netdev_priv(ndev);
2558 
2559 	if (priv->data.dual_emac) {
2560 		int i;
2561 
2562 		for (i = 0; i < priv->data.slaves; i++) {
2563 			if (netif_running(priv->slaves[i].ndev))
2564 				cpsw_ndo_stop(priv->slaves[i].ndev);
2565 			soft_reset_slave(priv->slaves + i);
2566 		}
2567 	} else {
2568 		if (netif_running(ndev))
2569 			cpsw_ndo_stop(ndev);
2570 		for_each_slave(priv, soft_reset_slave);
2571 	}
2572 
2573 	pm_runtime_put_sync(&pdev->dev);
2574 
2575 	/* Select sleep pin state */
2576 	pinctrl_pm_select_sleep_state(&pdev->dev);
2577 
2578 	return 0;
2579 }
2580 
2581 static int cpsw_resume(struct device *dev)
2582 {
2583 	struct platform_device	*pdev = to_platform_device(dev);
2584 	struct net_device	*ndev = platform_get_drvdata(pdev);
2585 	struct cpsw_priv	*priv = netdev_priv(ndev);
2586 
2587 	pm_runtime_get_sync(&pdev->dev);
2588 
2589 	/* Select default pin state */
2590 	pinctrl_pm_select_default_state(&pdev->dev);
2591 
2592 	if (priv->data.dual_emac) {
2593 		int i;
2594 
2595 		for (i = 0; i < priv->data.slaves; i++) {
2596 			if (netif_running(priv->slaves[i].ndev))
2597 				cpsw_ndo_open(priv->slaves[i].ndev);
2598 		}
2599 	} else {
2600 		if (netif_running(ndev))
2601 			cpsw_ndo_open(ndev);
2602 	}
2603 	return 0;
2604 }
2605 #endif
2606 
2607 static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume);
2608 
2609 static struct platform_driver cpsw_driver = {
2610 	.driver = {
2611 		.name	 = "cpsw",
2612 		.pm	 = &cpsw_pm_ops,
2613 		.of_match_table = cpsw_of_mtable,
2614 	},
2615 	.probe = cpsw_probe,
2616 	.remove = cpsw_remove,
2617 };
2618 
2619 module_platform_driver(cpsw_driver);
2620 
2621 MODULE_LICENSE("GPL");
2622 MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>");
2623 MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>");
2624 MODULE_DESCRIPTION("TI CPSW Ethernet driver");
2625