1 /* 2 * Texas Instruments Ethernet Switch Driver 3 * 4 * Copyright (C) 2012 Texas Instruments 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License as 8 * published by the Free Software Foundation version 2. 9 * 10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any 11 * kind, whether express or implied; without even the implied warranty 12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/io.h> 18 #include <linux/clk.h> 19 #include <linux/timer.h> 20 #include <linux/module.h> 21 #include <linux/platform_device.h> 22 #include <linux/irqreturn.h> 23 #include <linux/interrupt.h> 24 #include <linux/if_ether.h> 25 #include <linux/etherdevice.h> 26 #include <linux/netdevice.h> 27 #include <linux/net_tstamp.h> 28 #include <linux/phy.h> 29 #include <linux/workqueue.h> 30 #include <linux/delay.h> 31 #include <linux/pm_runtime.h> 32 #include <linux/of.h> 33 #include <linux/of_net.h> 34 #include <linux/of_device.h> 35 #include <linux/if_vlan.h> 36 37 #include <linux/pinctrl/consumer.h> 38 39 #include "cpsw.h" 40 #include "cpsw_ale.h" 41 #include "cpts.h" 42 #include "davinci_cpdma.h" 43 44 #define CPSW_DEBUG (NETIF_MSG_HW | NETIF_MSG_WOL | \ 45 NETIF_MSG_DRV | NETIF_MSG_LINK | \ 46 NETIF_MSG_IFUP | NETIF_MSG_INTR | \ 47 NETIF_MSG_PROBE | NETIF_MSG_TIMER | \ 48 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | \ 49 NETIF_MSG_TX_ERR | NETIF_MSG_TX_DONE | \ 50 NETIF_MSG_PKTDATA | NETIF_MSG_TX_QUEUED | \ 51 NETIF_MSG_RX_STATUS) 52 53 #define cpsw_info(priv, type, format, ...) \ 54 do { \ 55 if (netif_msg_##type(priv) && net_ratelimit()) \ 56 dev_info(priv->dev, format, ## __VA_ARGS__); \ 57 } while (0) 58 59 #define cpsw_err(priv, type, format, ...) \ 60 do { \ 61 if (netif_msg_##type(priv) && net_ratelimit()) \ 62 dev_err(priv->dev, format, ## __VA_ARGS__); \ 63 } while (0) 64 65 #define cpsw_dbg(priv, type, format, ...) \ 66 do { \ 67 if (netif_msg_##type(priv) && net_ratelimit()) \ 68 dev_dbg(priv->dev, format, ## __VA_ARGS__); \ 69 } while (0) 70 71 #define cpsw_notice(priv, type, format, ...) \ 72 do { \ 73 if (netif_msg_##type(priv) && net_ratelimit()) \ 74 dev_notice(priv->dev, format, ## __VA_ARGS__); \ 75 } while (0) 76 77 #define ALE_ALL_PORTS 0x7 78 79 #define CPSW_MAJOR_VERSION(reg) (reg >> 8 & 0x7) 80 #define CPSW_MINOR_VERSION(reg) (reg & 0xff) 81 #define CPSW_RTL_VERSION(reg) ((reg >> 11) & 0x1f) 82 83 #define CPSW_VERSION_1 0x19010a 84 #define CPSW_VERSION_2 0x19010c 85 #define CPSW_VERSION_3 0x19010f 86 #define CPSW_VERSION_4 0x190112 87 88 #define HOST_PORT_NUM 0 89 #define SLIVER_SIZE 0x40 90 91 #define CPSW1_HOST_PORT_OFFSET 0x028 92 #define CPSW1_SLAVE_OFFSET 0x050 93 #define CPSW1_SLAVE_SIZE 0x040 94 #define CPSW1_CPDMA_OFFSET 0x100 95 #define CPSW1_STATERAM_OFFSET 0x200 96 #define CPSW1_HW_STATS 0x400 97 #define CPSW1_CPTS_OFFSET 0x500 98 #define CPSW1_ALE_OFFSET 0x600 99 #define CPSW1_SLIVER_OFFSET 0x700 100 101 #define CPSW2_HOST_PORT_OFFSET 0x108 102 #define CPSW2_SLAVE_OFFSET 0x200 103 #define CPSW2_SLAVE_SIZE 0x100 104 #define CPSW2_CPDMA_OFFSET 0x800 105 #define CPSW2_HW_STATS 0x900 106 #define CPSW2_STATERAM_OFFSET 0xa00 107 #define CPSW2_CPTS_OFFSET 0xc00 108 #define CPSW2_ALE_OFFSET 0xd00 109 #define CPSW2_SLIVER_OFFSET 0xd80 110 #define CPSW2_BD_OFFSET 0x2000 111 112 #define CPDMA_RXTHRESH 0x0c0 113 #define CPDMA_RXFREE 0x0e0 114 #define CPDMA_TXHDP 0x00 115 #define CPDMA_RXHDP 0x20 116 #define CPDMA_TXCP 0x40 117 #define CPDMA_RXCP 0x60 118 119 #define CPSW_POLL_WEIGHT 64 120 #define CPSW_MIN_PACKET_SIZE 60 121 #define CPSW_MAX_PACKET_SIZE (1500 + 14 + 4 + 4) 122 123 #define RX_PRIORITY_MAPPING 0x76543210 124 #define TX_PRIORITY_MAPPING 0x33221100 125 #define CPDMA_TX_PRIORITY_MAP 0x76543210 126 127 #define CPSW_VLAN_AWARE BIT(1) 128 #define CPSW_ALE_VLAN_AWARE 1 129 130 #define CPSW_FIFO_NORMAL_MODE (0 << 16) 131 #define CPSW_FIFO_DUAL_MAC_MODE (1 << 16) 132 #define CPSW_FIFO_RATE_LIMIT_MODE (2 << 16) 133 134 #define CPSW_INTPACEEN (0x3f << 16) 135 #define CPSW_INTPRESCALE_MASK (0x7FF << 0) 136 #define CPSW_CMINTMAX_CNT 63 137 #define CPSW_CMINTMIN_CNT 2 138 #define CPSW_CMINTMAX_INTVL (1000 / CPSW_CMINTMIN_CNT) 139 #define CPSW_CMINTMIN_INTVL ((1000 / CPSW_CMINTMAX_CNT) + 1) 140 141 #define cpsw_slave_index(priv) \ 142 ((priv->data.dual_emac) ? priv->emac_port : \ 143 priv->data.active_slave) 144 145 static int debug_level; 146 module_param(debug_level, int, 0); 147 MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)"); 148 149 static int ale_ageout = 10; 150 module_param(ale_ageout, int, 0); 151 MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)"); 152 153 static int rx_packet_max = CPSW_MAX_PACKET_SIZE; 154 module_param(rx_packet_max, int, 0); 155 MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)"); 156 157 struct cpsw_wr_regs { 158 u32 id_ver; 159 u32 soft_reset; 160 u32 control; 161 u32 int_control; 162 u32 rx_thresh_en; 163 u32 rx_en; 164 u32 tx_en; 165 u32 misc_en; 166 u32 mem_allign1[8]; 167 u32 rx_thresh_stat; 168 u32 rx_stat; 169 u32 tx_stat; 170 u32 misc_stat; 171 u32 mem_allign2[8]; 172 u32 rx_imax; 173 u32 tx_imax; 174 175 }; 176 177 struct cpsw_ss_regs { 178 u32 id_ver; 179 u32 control; 180 u32 soft_reset; 181 u32 stat_port_en; 182 u32 ptype; 183 u32 soft_idle; 184 u32 thru_rate; 185 u32 gap_thresh; 186 u32 tx_start_wds; 187 u32 flow_control; 188 u32 vlan_ltype; 189 u32 ts_ltype; 190 u32 dlr_ltype; 191 }; 192 193 /* CPSW_PORT_V1 */ 194 #define CPSW1_MAX_BLKS 0x00 /* Maximum FIFO Blocks */ 195 #define CPSW1_BLK_CNT 0x04 /* FIFO Block Usage Count (Read Only) */ 196 #define CPSW1_TX_IN_CTL 0x08 /* Transmit FIFO Control */ 197 #define CPSW1_PORT_VLAN 0x0c /* VLAN Register */ 198 #define CPSW1_TX_PRI_MAP 0x10 /* Tx Header Priority to Switch Pri Mapping */ 199 #define CPSW1_TS_CTL 0x14 /* Time Sync Control */ 200 #define CPSW1_TS_SEQ_LTYPE 0x18 /* Time Sync Sequence ID Offset and Msg Type */ 201 #define CPSW1_TS_VLAN 0x1c /* Time Sync VLAN1 and VLAN2 */ 202 203 /* CPSW_PORT_V2 */ 204 #define CPSW2_CONTROL 0x00 /* Control Register */ 205 #define CPSW2_MAX_BLKS 0x08 /* Maximum FIFO Blocks */ 206 #define CPSW2_BLK_CNT 0x0c /* FIFO Block Usage Count (Read Only) */ 207 #define CPSW2_TX_IN_CTL 0x10 /* Transmit FIFO Control */ 208 #define CPSW2_PORT_VLAN 0x14 /* VLAN Register */ 209 #define CPSW2_TX_PRI_MAP 0x18 /* Tx Header Priority to Switch Pri Mapping */ 210 #define CPSW2_TS_SEQ_MTYPE 0x1c /* Time Sync Sequence ID Offset and Msg Type */ 211 212 /* CPSW_PORT_V1 and V2 */ 213 #define SA_LO 0x20 /* CPGMAC_SL Source Address Low */ 214 #define SA_HI 0x24 /* CPGMAC_SL Source Address High */ 215 #define SEND_PERCENT 0x28 /* Transmit Queue Send Percentages */ 216 217 /* CPSW_PORT_V2 only */ 218 #define RX_DSCP_PRI_MAP0 0x30 /* Rx DSCP Priority to Rx Packet Mapping */ 219 #define RX_DSCP_PRI_MAP1 0x34 /* Rx DSCP Priority to Rx Packet Mapping */ 220 #define RX_DSCP_PRI_MAP2 0x38 /* Rx DSCP Priority to Rx Packet Mapping */ 221 #define RX_DSCP_PRI_MAP3 0x3c /* Rx DSCP Priority to Rx Packet Mapping */ 222 #define RX_DSCP_PRI_MAP4 0x40 /* Rx DSCP Priority to Rx Packet Mapping */ 223 #define RX_DSCP_PRI_MAP5 0x44 /* Rx DSCP Priority to Rx Packet Mapping */ 224 #define RX_DSCP_PRI_MAP6 0x48 /* Rx DSCP Priority to Rx Packet Mapping */ 225 #define RX_DSCP_PRI_MAP7 0x4c /* Rx DSCP Priority to Rx Packet Mapping */ 226 227 /* Bit definitions for the CPSW2_CONTROL register */ 228 #define PASS_PRI_TAGGED (1<<24) /* Pass Priority Tagged */ 229 #define VLAN_LTYPE2_EN (1<<21) /* VLAN LTYPE 2 enable */ 230 #define VLAN_LTYPE1_EN (1<<20) /* VLAN LTYPE 1 enable */ 231 #define DSCP_PRI_EN (1<<16) /* DSCP Priority Enable */ 232 #define TS_320 (1<<14) /* Time Sync Dest Port 320 enable */ 233 #define TS_319 (1<<13) /* Time Sync Dest Port 319 enable */ 234 #define TS_132 (1<<12) /* Time Sync Dest IP Addr 132 enable */ 235 #define TS_131 (1<<11) /* Time Sync Dest IP Addr 131 enable */ 236 #define TS_130 (1<<10) /* Time Sync Dest IP Addr 130 enable */ 237 #define TS_129 (1<<9) /* Time Sync Dest IP Addr 129 enable */ 238 #define TS_TTL_NONZERO (1<<8) /* Time Sync Time To Live Non-zero enable */ 239 #define TS_ANNEX_F_EN (1<<6) /* Time Sync Annex F enable */ 240 #define TS_ANNEX_D_EN (1<<4) /* Time Sync Annex D enable */ 241 #define TS_LTYPE2_EN (1<<3) /* Time Sync LTYPE 2 enable */ 242 #define TS_LTYPE1_EN (1<<2) /* Time Sync LTYPE 1 enable */ 243 #define TS_TX_EN (1<<1) /* Time Sync Transmit Enable */ 244 #define TS_RX_EN (1<<0) /* Time Sync Receive Enable */ 245 246 #define CTRL_V2_TS_BITS \ 247 (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\ 248 TS_TTL_NONZERO | TS_ANNEX_D_EN | TS_LTYPE1_EN) 249 250 #define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN) 251 #define CTRL_V2_TX_TS_BITS (CTRL_V2_TS_BITS | TS_TX_EN) 252 #define CTRL_V2_RX_TS_BITS (CTRL_V2_TS_BITS | TS_RX_EN) 253 254 255 #define CTRL_V3_TS_BITS \ 256 (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\ 257 TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\ 258 TS_LTYPE1_EN) 259 260 #define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN) 261 #define CTRL_V3_TX_TS_BITS (CTRL_V3_TS_BITS | TS_TX_EN) 262 #define CTRL_V3_RX_TS_BITS (CTRL_V3_TS_BITS | TS_RX_EN) 263 264 /* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */ 265 #define TS_SEQ_ID_OFFSET_SHIFT (16) /* Time Sync Sequence ID Offset */ 266 #define TS_SEQ_ID_OFFSET_MASK (0x3f) 267 #define TS_MSG_TYPE_EN_SHIFT (0) /* Time Sync Message Type Enable */ 268 #define TS_MSG_TYPE_EN_MASK (0xffff) 269 270 /* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */ 271 #define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3)) 272 273 /* Bit definitions for the CPSW1_TS_CTL register */ 274 #define CPSW_V1_TS_RX_EN BIT(0) 275 #define CPSW_V1_TS_TX_EN BIT(4) 276 #define CPSW_V1_MSG_TYPE_OFS 16 277 278 /* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */ 279 #define CPSW_V1_SEQ_ID_OFS_SHIFT 16 280 281 struct cpsw_host_regs { 282 u32 max_blks; 283 u32 blk_cnt; 284 u32 tx_in_ctl; 285 u32 port_vlan; 286 u32 tx_pri_map; 287 u32 cpdma_tx_pri_map; 288 u32 cpdma_rx_chan_map; 289 }; 290 291 struct cpsw_sliver_regs { 292 u32 id_ver; 293 u32 mac_control; 294 u32 mac_status; 295 u32 soft_reset; 296 u32 rx_maxlen; 297 u32 __reserved_0; 298 u32 rx_pause; 299 u32 tx_pause; 300 u32 __reserved_1; 301 u32 rx_pri_map; 302 }; 303 304 struct cpsw_hw_stats { 305 u32 rxgoodframes; 306 u32 rxbroadcastframes; 307 u32 rxmulticastframes; 308 u32 rxpauseframes; 309 u32 rxcrcerrors; 310 u32 rxaligncodeerrors; 311 u32 rxoversizedframes; 312 u32 rxjabberframes; 313 u32 rxundersizedframes; 314 u32 rxfragments; 315 u32 __pad_0[2]; 316 u32 rxoctets; 317 u32 txgoodframes; 318 u32 txbroadcastframes; 319 u32 txmulticastframes; 320 u32 txpauseframes; 321 u32 txdeferredframes; 322 u32 txcollisionframes; 323 u32 txsinglecollframes; 324 u32 txmultcollframes; 325 u32 txexcessivecollisions; 326 u32 txlatecollisions; 327 u32 txunderrun; 328 u32 txcarriersenseerrors; 329 u32 txoctets; 330 u32 octetframes64; 331 u32 octetframes65t127; 332 u32 octetframes128t255; 333 u32 octetframes256t511; 334 u32 octetframes512t1023; 335 u32 octetframes1024tup; 336 u32 netoctets; 337 u32 rxsofoverruns; 338 u32 rxmofoverruns; 339 u32 rxdmaoverruns; 340 }; 341 342 struct cpsw_slave { 343 void __iomem *regs; 344 struct cpsw_sliver_regs __iomem *sliver; 345 int slave_num; 346 u32 mac_control; 347 struct cpsw_slave_data *data; 348 struct phy_device *phy; 349 struct net_device *ndev; 350 u32 port_vlan; 351 u32 open_stat; 352 }; 353 354 static inline u32 slave_read(struct cpsw_slave *slave, u32 offset) 355 { 356 return __raw_readl(slave->regs + offset); 357 } 358 359 static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset) 360 { 361 __raw_writel(val, slave->regs + offset); 362 } 363 364 struct cpsw_priv { 365 spinlock_t lock; 366 struct platform_device *pdev; 367 struct net_device *ndev; 368 struct napi_struct napi_rx; 369 struct napi_struct napi_tx; 370 struct device *dev; 371 struct cpsw_platform_data data; 372 struct cpsw_ss_regs __iomem *regs; 373 struct cpsw_wr_regs __iomem *wr_regs; 374 u8 __iomem *hw_stats; 375 struct cpsw_host_regs __iomem *host_port_regs; 376 u32 msg_enable; 377 u32 version; 378 u32 coal_intvl; 379 u32 bus_freq_mhz; 380 int rx_packet_max; 381 int host_port; 382 struct clk *clk; 383 u8 mac_addr[ETH_ALEN]; 384 struct cpsw_slave *slaves; 385 struct cpdma_ctlr *dma; 386 struct cpdma_chan *txch, *rxch; 387 struct cpsw_ale *ale; 388 bool rx_pause; 389 bool tx_pause; 390 bool quirk_irq; 391 bool rx_irq_disabled; 392 bool tx_irq_disabled; 393 /* snapshot of IRQ numbers */ 394 u32 irqs_table[4]; 395 u32 num_irqs; 396 struct cpts *cpts; 397 u32 emac_port; 398 }; 399 400 struct cpsw_stats { 401 char stat_string[ETH_GSTRING_LEN]; 402 int type; 403 int sizeof_stat; 404 int stat_offset; 405 }; 406 407 enum { 408 CPSW_STATS, 409 CPDMA_RX_STATS, 410 CPDMA_TX_STATS, 411 }; 412 413 #define CPSW_STAT(m) CPSW_STATS, \ 414 sizeof(((struct cpsw_hw_stats *)0)->m), \ 415 offsetof(struct cpsw_hw_stats, m) 416 #define CPDMA_RX_STAT(m) CPDMA_RX_STATS, \ 417 sizeof(((struct cpdma_chan_stats *)0)->m), \ 418 offsetof(struct cpdma_chan_stats, m) 419 #define CPDMA_TX_STAT(m) CPDMA_TX_STATS, \ 420 sizeof(((struct cpdma_chan_stats *)0)->m), \ 421 offsetof(struct cpdma_chan_stats, m) 422 423 static const struct cpsw_stats cpsw_gstrings_stats[] = { 424 { "Good Rx Frames", CPSW_STAT(rxgoodframes) }, 425 { "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) }, 426 { "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) }, 427 { "Pause Rx Frames", CPSW_STAT(rxpauseframes) }, 428 { "Rx CRC Errors", CPSW_STAT(rxcrcerrors) }, 429 { "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) }, 430 { "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) }, 431 { "Rx Jabbers", CPSW_STAT(rxjabberframes) }, 432 { "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) }, 433 { "Rx Fragments", CPSW_STAT(rxfragments) }, 434 { "Rx Octets", CPSW_STAT(rxoctets) }, 435 { "Good Tx Frames", CPSW_STAT(txgoodframes) }, 436 { "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) }, 437 { "Multicast Tx Frames", CPSW_STAT(txmulticastframes) }, 438 { "Pause Tx Frames", CPSW_STAT(txpauseframes) }, 439 { "Deferred Tx Frames", CPSW_STAT(txdeferredframes) }, 440 { "Collisions", CPSW_STAT(txcollisionframes) }, 441 { "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) }, 442 { "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) }, 443 { "Excessive Collisions", CPSW_STAT(txexcessivecollisions) }, 444 { "Late Collisions", CPSW_STAT(txlatecollisions) }, 445 { "Tx Underrun", CPSW_STAT(txunderrun) }, 446 { "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) }, 447 { "Tx Octets", CPSW_STAT(txoctets) }, 448 { "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) }, 449 { "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) }, 450 { "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) }, 451 { "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) }, 452 { "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) }, 453 { "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) }, 454 { "Net Octets", CPSW_STAT(netoctets) }, 455 { "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) }, 456 { "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) }, 457 { "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) }, 458 { "Rx DMA chan: head_enqueue", CPDMA_RX_STAT(head_enqueue) }, 459 { "Rx DMA chan: tail_enqueue", CPDMA_RX_STAT(tail_enqueue) }, 460 { "Rx DMA chan: pad_enqueue", CPDMA_RX_STAT(pad_enqueue) }, 461 { "Rx DMA chan: misqueued", CPDMA_RX_STAT(misqueued) }, 462 { "Rx DMA chan: desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) }, 463 { "Rx DMA chan: pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) }, 464 { "Rx DMA chan: runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) }, 465 { "Rx DMA chan: runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) }, 466 { "Rx DMA chan: empty_dequeue", CPDMA_RX_STAT(empty_dequeue) }, 467 { "Rx DMA chan: busy_dequeue", CPDMA_RX_STAT(busy_dequeue) }, 468 { "Rx DMA chan: good_dequeue", CPDMA_RX_STAT(good_dequeue) }, 469 { "Rx DMA chan: requeue", CPDMA_RX_STAT(requeue) }, 470 { "Rx DMA chan: teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) }, 471 { "Tx DMA chan: head_enqueue", CPDMA_TX_STAT(head_enqueue) }, 472 { "Tx DMA chan: tail_enqueue", CPDMA_TX_STAT(tail_enqueue) }, 473 { "Tx DMA chan: pad_enqueue", CPDMA_TX_STAT(pad_enqueue) }, 474 { "Tx DMA chan: misqueued", CPDMA_TX_STAT(misqueued) }, 475 { "Tx DMA chan: desc_alloc_fail", CPDMA_TX_STAT(desc_alloc_fail) }, 476 { "Tx DMA chan: pad_alloc_fail", CPDMA_TX_STAT(pad_alloc_fail) }, 477 { "Tx DMA chan: runt_receive_buf", CPDMA_TX_STAT(runt_receive_buff) }, 478 { "Tx DMA chan: runt_transmit_buf", CPDMA_TX_STAT(runt_transmit_buff) }, 479 { "Tx DMA chan: empty_dequeue", CPDMA_TX_STAT(empty_dequeue) }, 480 { "Tx DMA chan: busy_dequeue", CPDMA_TX_STAT(busy_dequeue) }, 481 { "Tx DMA chan: good_dequeue", CPDMA_TX_STAT(good_dequeue) }, 482 { "Tx DMA chan: requeue", CPDMA_TX_STAT(requeue) }, 483 { "Tx DMA chan: teardown_dequeue", CPDMA_TX_STAT(teardown_dequeue) }, 484 }; 485 486 #define CPSW_STATS_LEN ARRAY_SIZE(cpsw_gstrings_stats) 487 488 #define napi_to_priv(napi) container_of(napi, struct cpsw_priv, napi) 489 #define for_each_slave(priv, func, arg...) \ 490 do { \ 491 struct cpsw_slave *slave; \ 492 int n; \ 493 if (priv->data.dual_emac) \ 494 (func)((priv)->slaves + priv->emac_port, ##arg);\ 495 else \ 496 for (n = (priv)->data.slaves, \ 497 slave = (priv)->slaves; \ 498 n; n--) \ 499 (func)(slave++, ##arg); \ 500 } while (0) 501 #define cpsw_get_slave_ndev(priv, __slave_no__) \ 502 ((__slave_no__ < priv->data.slaves) ? \ 503 priv->slaves[__slave_no__].ndev : NULL) 504 #define cpsw_get_slave_priv(priv, __slave_no__) \ 505 (((__slave_no__ < priv->data.slaves) && \ 506 (priv->slaves[__slave_no__].ndev)) ? \ 507 netdev_priv(priv->slaves[__slave_no__].ndev) : NULL) \ 508 509 #define cpsw_dual_emac_src_port_detect(status, priv, ndev, skb) \ 510 do { \ 511 if (!priv->data.dual_emac) \ 512 break; \ 513 if (CPDMA_RX_SOURCE_PORT(status) == 1) { \ 514 ndev = cpsw_get_slave_ndev(priv, 0); \ 515 priv = netdev_priv(ndev); \ 516 skb->dev = ndev; \ 517 } else if (CPDMA_RX_SOURCE_PORT(status) == 2) { \ 518 ndev = cpsw_get_slave_ndev(priv, 1); \ 519 priv = netdev_priv(ndev); \ 520 skb->dev = ndev; \ 521 } \ 522 } while (0) 523 #define cpsw_add_mcast(priv, addr) \ 524 do { \ 525 if (priv->data.dual_emac) { \ 526 struct cpsw_slave *slave = priv->slaves + \ 527 priv->emac_port; \ 528 int slave_port = cpsw_get_slave_port(priv, \ 529 slave->slave_num); \ 530 cpsw_ale_add_mcast(priv->ale, addr, \ 531 1 << slave_port | 1 << priv->host_port, \ 532 ALE_VLAN, slave->port_vlan, 0); \ 533 } else { \ 534 cpsw_ale_add_mcast(priv->ale, addr, \ 535 ALE_ALL_PORTS << priv->host_port, \ 536 0, 0, 0); \ 537 } \ 538 } while (0) 539 540 static inline int cpsw_get_slave_port(struct cpsw_priv *priv, u32 slave_num) 541 { 542 if (priv->host_port == 0) 543 return slave_num + 1; 544 else 545 return slave_num; 546 } 547 548 static void cpsw_set_promiscious(struct net_device *ndev, bool enable) 549 { 550 struct cpsw_priv *priv = netdev_priv(ndev); 551 struct cpsw_ale *ale = priv->ale; 552 int i; 553 554 if (priv->data.dual_emac) { 555 bool flag = false; 556 557 /* Enabling promiscuous mode for one interface will be 558 * common for both the interface as the interface shares 559 * the same hardware resource. 560 */ 561 for (i = 0; i < priv->data.slaves; i++) 562 if (priv->slaves[i].ndev->flags & IFF_PROMISC) 563 flag = true; 564 565 if (!enable && flag) { 566 enable = true; 567 dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n"); 568 } 569 570 if (enable) { 571 /* Enable Bypass */ 572 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1); 573 574 dev_dbg(&ndev->dev, "promiscuity enabled\n"); 575 } else { 576 /* Disable Bypass */ 577 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0); 578 dev_dbg(&ndev->dev, "promiscuity disabled\n"); 579 } 580 } else { 581 if (enable) { 582 unsigned long timeout = jiffies + HZ; 583 584 /* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */ 585 for (i = 0; i <= priv->data.slaves; i++) { 586 cpsw_ale_control_set(ale, i, 587 ALE_PORT_NOLEARN, 1); 588 cpsw_ale_control_set(ale, i, 589 ALE_PORT_NO_SA_UPDATE, 1); 590 } 591 592 /* Clear All Untouched entries */ 593 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1); 594 do { 595 cpu_relax(); 596 if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT)) 597 break; 598 } while (time_after(timeout, jiffies)); 599 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1); 600 601 /* Clear all mcast from ALE */ 602 cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS << 603 priv->host_port, -1); 604 605 /* Flood All Unicast Packets to Host port */ 606 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1); 607 dev_dbg(&ndev->dev, "promiscuity enabled\n"); 608 } else { 609 /* Don't Flood All Unicast Packets to Host port */ 610 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0); 611 612 /* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */ 613 for (i = 0; i <= priv->data.slaves; i++) { 614 cpsw_ale_control_set(ale, i, 615 ALE_PORT_NOLEARN, 0); 616 cpsw_ale_control_set(ale, i, 617 ALE_PORT_NO_SA_UPDATE, 0); 618 } 619 dev_dbg(&ndev->dev, "promiscuity disabled\n"); 620 } 621 } 622 } 623 624 static void cpsw_ndo_set_rx_mode(struct net_device *ndev) 625 { 626 struct cpsw_priv *priv = netdev_priv(ndev); 627 int vid; 628 629 if (priv->data.dual_emac) 630 vid = priv->slaves[priv->emac_port].port_vlan; 631 else 632 vid = priv->data.default_vlan; 633 634 if (ndev->flags & IFF_PROMISC) { 635 /* Enable promiscuous mode */ 636 cpsw_set_promiscious(ndev, true); 637 cpsw_ale_set_allmulti(priv->ale, IFF_ALLMULTI); 638 return; 639 } else { 640 /* Disable promiscuous mode */ 641 cpsw_set_promiscious(ndev, false); 642 } 643 644 /* Restore allmulti on vlans if necessary */ 645 cpsw_ale_set_allmulti(priv->ale, priv->ndev->flags & IFF_ALLMULTI); 646 647 /* Clear all mcast from ALE */ 648 cpsw_ale_flush_multicast(priv->ale, ALE_ALL_PORTS << priv->host_port, 649 vid); 650 651 if (!netdev_mc_empty(ndev)) { 652 struct netdev_hw_addr *ha; 653 654 /* program multicast address list into ALE register */ 655 netdev_for_each_mc_addr(ha, ndev) { 656 cpsw_add_mcast(priv, (u8 *)ha->addr); 657 } 658 } 659 } 660 661 static void cpsw_intr_enable(struct cpsw_priv *priv) 662 { 663 __raw_writel(0xFF, &priv->wr_regs->tx_en); 664 __raw_writel(0xFF, &priv->wr_regs->rx_en); 665 666 cpdma_ctlr_int_ctrl(priv->dma, true); 667 return; 668 } 669 670 static void cpsw_intr_disable(struct cpsw_priv *priv) 671 { 672 __raw_writel(0, &priv->wr_regs->tx_en); 673 __raw_writel(0, &priv->wr_regs->rx_en); 674 675 cpdma_ctlr_int_ctrl(priv->dma, false); 676 return; 677 } 678 679 static void cpsw_tx_handler(void *token, int len, int status) 680 { 681 struct sk_buff *skb = token; 682 struct net_device *ndev = skb->dev; 683 struct cpsw_priv *priv = netdev_priv(ndev); 684 685 /* Check whether the queue is stopped due to stalled tx dma, if the 686 * queue is stopped then start the queue as we have free desc for tx 687 */ 688 if (unlikely(netif_queue_stopped(ndev))) 689 netif_wake_queue(ndev); 690 cpts_tx_timestamp(priv->cpts, skb); 691 ndev->stats.tx_packets++; 692 ndev->stats.tx_bytes += len; 693 dev_kfree_skb_any(skb); 694 } 695 696 static void cpsw_rx_handler(void *token, int len, int status) 697 { 698 struct sk_buff *skb = token; 699 struct sk_buff *new_skb; 700 struct net_device *ndev = skb->dev; 701 struct cpsw_priv *priv = netdev_priv(ndev); 702 int ret = 0; 703 704 cpsw_dual_emac_src_port_detect(status, priv, ndev, skb); 705 706 if (unlikely(status < 0) || unlikely(!netif_running(ndev))) { 707 bool ndev_status = false; 708 struct cpsw_slave *slave = priv->slaves; 709 int n; 710 711 if (priv->data.dual_emac) { 712 /* In dual emac mode check for all interfaces */ 713 for (n = priv->data.slaves; n; n--, slave++) 714 if (netif_running(slave->ndev)) 715 ndev_status = true; 716 } 717 718 if (ndev_status && (status >= 0)) { 719 /* The packet received is for the interface which 720 * is already down and the other interface is up 721 * and running, instead of freeing which results 722 * in reducing of the number of rx descriptor in 723 * DMA engine, requeue skb back to cpdma. 724 */ 725 new_skb = skb; 726 goto requeue; 727 } 728 729 /* the interface is going down, skbs are purged */ 730 dev_kfree_skb_any(skb); 731 return; 732 } 733 734 new_skb = netdev_alloc_skb_ip_align(ndev, priv->rx_packet_max); 735 if (new_skb) { 736 skb_put(skb, len); 737 cpts_rx_timestamp(priv->cpts, skb); 738 skb->protocol = eth_type_trans(skb, ndev); 739 netif_receive_skb(skb); 740 ndev->stats.rx_bytes += len; 741 ndev->stats.rx_packets++; 742 } else { 743 ndev->stats.rx_dropped++; 744 new_skb = skb; 745 } 746 747 requeue: 748 ret = cpdma_chan_submit(priv->rxch, new_skb, new_skb->data, 749 skb_tailroom(new_skb), 0); 750 if (WARN_ON(ret < 0)) 751 dev_kfree_skb_any(new_skb); 752 } 753 754 static irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id) 755 { 756 struct cpsw_priv *priv = dev_id; 757 758 writel(0, &priv->wr_regs->tx_en); 759 cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_TX); 760 761 if (priv->quirk_irq) { 762 disable_irq_nosync(priv->irqs_table[1]); 763 priv->tx_irq_disabled = true; 764 } 765 766 napi_schedule(&priv->napi_tx); 767 return IRQ_HANDLED; 768 } 769 770 static irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id) 771 { 772 struct cpsw_priv *priv = dev_id; 773 774 cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_RX); 775 writel(0, &priv->wr_regs->rx_en); 776 777 if (priv->quirk_irq) { 778 disable_irq_nosync(priv->irqs_table[0]); 779 priv->rx_irq_disabled = true; 780 } 781 782 napi_schedule(&priv->napi_rx); 783 return IRQ_HANDLED; 784 } 785 786 static int cpsw_tx_poll(struct napi_struct *napi_tx, int budget) 787 { 788 struct cpsw_priv *priv = napi_to_priv(napi_tx); 789 int num_tx; 790 791 num_tx = cpdma_chan_process(priv->txch, budget); 792 if (num_tx < budget) { 793 napi_complete(napi_tx); 794 writel(0xff, &priv->wr_regs->tx_en); 795 if (priv->quirk_irq && priv->tx_irq_disabled) { 796 priv->tx_irq_disabled = false; 797 enable_irq(priv->irqs_table[1]); 798 } 799 } 800 801 if (num_tx) 802 cpsw_dbg(priv, intr, "poll %d tx pkts\n", num_tx); 803 804 return num_tx; 805 } 806 807 static int cpsw_rx_poll(struct napi_struct *napi_rx, int budget) 808 { 809 struct cpsw_priv *priv = napi_to_priv(napi_rx); 810 int num_rx; 811 812 num_rx = cpdma_chan_process(priv->rxch, budget); 813 if (num_rx < budget) { 814 napi_complete(napi_rx); 815 writel(0xff, &priv->wr_regs->rx_en); 816 if (priv->quirk_irq && priv->rx_irq_disabled) { 817 priv->rx_irq_disabled = false; 818 enable_irq(priv->irqs_table[0]); 819 } 820 } 821 822 if (num_rx) 823 cpsw_dbg(priv, intr, "poll %d rx pkts\n", num_rx); 824 825 return num_rx; 826 } 827 828 static inline void soft_reset(const char *module, void __iomem *reg) 829 { 830 unsigned long timeout = jiffies + HZ; 831 832 __raw_writel(1, reg); 833 do { 834 cpu_relax(); 835 } while ((__raw_readl(reg) & 1) && time_after(timeout, jiffies)); 836 837 WARN(__raw_readl(reg) & 1, "failed to soft-reset %s\n", module); 838 } 839 840 #define mac_hi(mac) (((mac)[0] << 0) | ((mac)[1] << 8) | \ 841 ((mac)[2] << 16) | ((mac)[3] << 24)) 842 #define mac_lo(mac) (((mac)[4] << 0) | ((mac)[5] << 8)) 843 844 static void cpsw_set_slave_mac(struct cpsw_slave *slave, 845 struct cpsw_priv *priv) 846 { 847 slave_write(slave, mac_hi(priv->mac_addr), SA_HI); 848 slave_write(slave, mac_lo(priv->mac_addr), SA_LO); 849 } 850 851 static void _cpsw_adjust_link(struct cpsw_slave *slave, 852 struct cpsw_priv *priv, bool *link) 853 { 854 struct phy_device *phy = slave->phy; 855 u32 mac_control = 0; 856 u32 slave_port; 857 858 if (!phy) 859 return; 860 861 slave_port = cpsw_get_slave_port(priv, slave->slave_num); 862 863 if (phy->link) { 864 mac_control = priv->data.mac_control; 865 866 /* enable forwarding */ 867 cpsw_ale_control_set(priv->ale, slave_port, 868 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD); 869 870 if (phy->speed == 1000) 871 mac_control |= BIT(7); /* GIGABITEN */ 872 if (phy->duplex) 873 mac_control |= BIT(0); /* FULLDUPLEXEN */ 874 875 /* set speed_in input in case RMII mode is used in 100Mbps */ 876 if (phy->speed == 100) 877 mac_control |= BIT(15); 878 else if (phy->speed == 10) 879 mac_control |= BIT(18); /* In Band mode */ 880 881 if (priv->rx_pause) 882 mac_control |= BIT(3); 883 884 if (priv->tx_pause) 885 mac_control |= BIT(4); 886 887 *link = true; 888 } else { 889 mac_control = 0; 890 /* disable forwarding */ 891 cpsw_ale_control_set(priv->ale, slave_port, 892 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE); 893 } 894 895 if (mac_control != slave->mac_control) { 896 phy_print_status(phy); 897 __raw_writel(mac_control, &slave->sliver->mac_control); 898 } 899 900 slave->mac_control = mac_control; 901 } 902 903 static void cpsw_adjust_link(struct net_device *ndev) 904 { 905 struct cpsw_priv *priv = netdev_priv(ndev); 906 bool link = false; 907 908 for_each_slave(priv, _cpsw_adjust_link, priv, &link); 909 910 if (link) { 911 netif_carrier_on(ndev); 912 if (netif_running(ndev)) 913 netif_wake_queue(ndev); 914 } else { 915 netif_carrier_off(ndev); 916 netif_stop_queue(ndev); 917 } 918 } 919 920 static int cpsw_get_coalesce(struct net_device *ndev, 921 struct ethtool_coalesce *coal) 922 { 923 struct cpsw_priv *priv = netdev_priv(ndev); 924 925 coal->rx_coalesce_usecs = priv->coal_intvl; 926 return 0; 927 } 928 929 static int cpsw_set_coalesce(struct net_device *ndev, 930 struct ethtool_coalesce *coal) 931 { 932 struct cpsw_priv *priv = netdev_priv(ndev); 933 u32 int_ctrl; 934 u32 num_interrupts = 0; 935 u32 prescale = 0; 936 u32 addnl_dvdr = 1; 937 u32 coal_intvl = 0; 938 939 coal_intvl = coal->rx_coalesce_usecs; 940 941 int_ctrl = readl(&priv->wr_regs->int_control); 942 prescale = priv->bus_freq_mhz * 4; 943 944 if (!coal->rx_coalesce_usecs) { 945 int_ctrl &= ~(CPSW_INTPRESCALE_MASK | CPSW_INTPACEEN); 946 goto update_return; 947 } 948 949 if (coal_intvl < CPSW_CMINTMIN_INTVL) 950 coal_intvl = CPSW_CMINTMIN_INTVL; 951 952 if (coal_intvl > CPSW_CMINTMAX_INTVL) { 953 /* Interrupt pacer works with 4us Pulse, we can 954 * throttle further by dilating the 4us pulse. 955 */ 956 addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale; 957 958 if (addnl_dvdr > 1) { 959 prescale *= addnl_dvdr; 960 if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr)) 961 coal_intvl = (CPSW_CMINTMAX_INTVL 962 * addnl_dvdr); 963 } else { 964 addnl_dvdr = 1; 965 coal_intvl = CPSW_CMINTMAX_INTVL; 966 } 967 } 968 969 num_interrupts = (1000 * addnl_dvdr) / coal_intvl; 970 writel(num_interrupts, &priv->wr_regs->rx_imax); 971 writel(num_interrupts, &priv->wr_regs->tx_imax); 972 973 int_ctrl |= CPSW_INTPACEEN; 974 int_ctrl &= (~CPSW_INTPRESCALE_MASK); 975 int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK); 976 977 update_return: 978 writel(int_ctrl, &priv->wr_regs->int_control); 979 980 cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl); 981 if (priv->data.dual_emac) { 982 int i; 983 984 for (i = 0; i < priv->data.slaves; i++) { 985 priv = netdev_priv(priv->slaves[i].ndev); 986 priv->coal_intvl = coal_intvl; 987 } 988 } else { 989 priv->coal_intvl = coal_intvl; 990 } 991 992 return 0; 993 } 994 995 static int cpsw_get_sset_count(struct net_device *ndev, int sset) 996 { 997 switch (sset) { 998 case ETH_SS_STATS: 999 return CPSW_STATS_LEN; 1000 default: 1001 return -EOPNOTSUPP; 1002 } 1003 } 1004 1005 static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data) 1006 { 1007 u8 *p = data; 1008 int i; 1009 1010 switch (stringset) { 1011 case ETH_SS_STATS: 1012 for (i = 0; i < CPSW_STATS_LEN; i++) { 1013 memcpy(p, cpsw_gstrings_stats[i].stat_string, 1014 ETH_GSTRING_LEN); 1015 p += ETH_GSTRING_LEN; 1016 } 1017 break; 1018 } 1019 } 1020 1021 static void cpsw_get_ethtool_stats(struct net_device *ndev, 1022 struct ethtool_stats *stats, u64 *data) 1023 { 1024 struct cpsw_priv *priv = netdev_priv(ndev); 1025 struct cpdma_chan_stats rx_stats; 1026 struct cpdma_chan_stats tx_stats; 1027 u32 val; 1028 u8 *p; 1029 int i; 1030 1031 /* Collect Davinci CPDMA stats for Rx and Tx Channel */ 1032 cpdma_chan_get_stats(priv->rxch, &rx_stats); 1033 cpdma_chan_get_stats(priv->txch, &tx_stats); 1034 1035 for (i = 0; i < CPSW_STATS_LEN; i++) { 1036 switch (cpsw_gstrings_stats[i].type) { 1037 case CPSW_STATS: 1038 val = readl(priv->hw_stats + 1039 cpsw_gstrings_stats[i].stat_offset); 1040 data[i] = val; 1041 break; 1042 1043 case CPDMA_RX_STATS: 1044 p = (u8 *)&rx_stats + 1045 cpsw_gstrings_stats[i].stat_offset; 1046 data[i] = *(u32 *)p; 1047 break; 1048 1049 case CPDMA_TX_STATS: 1050 p = (u8 *)&tx_stats + 1051 cpsw_gstrings_stats[i].stat_offset; 1052 data[i] = *(u32 *)p; 1053 break; 1054 } 1055 } 1056 } 1057 1058 static int cpsw_common_res_usage_state(struct cpsw_priv *priv) 1059 { 1060 u32 i; 1061 u32 usage_count = 0; 1062 1063 if (!priv->data.dual_emac) 1064 return 0; 1065 1066 for (i = 0; i < priv->data.slaves; i++) 1067 if (priv->slaves[i].open_stat) 1068 usage_count++; 1069 1070 return usage_count; 1071 } 1072 1073 static inline int cpsw_tx_packet_submit(struct net_device *ndev, 1074 struct cpsw_priv *priv, struct sk_buff *skb) 1075 { 1076 if (!priv->data.dual_emac) 1077 return cpdma_chan_submit(priv->txch, skb, skb->data, 1078 skb->len, 0); 1079 1080 if (ndev == cpsw_get_slave_ndev(priv, 0)) 1081 return cpdma_chan_submit(priv->txch, skb, skb->data, 1082 skb->len, 1); 1083 else 1084 return cpdma_chan_submit(priv->txch, skb, skb->data, 1085 skb->len, 2); 1086 } 1087 1088 static inline void cpsw_add_dual_emac_def_ale_entries( 1089 struct cpsw_priv *priv, struct cpsw_slave *slave, 1090 u32 slave_port) 1091 { 1092 u32 port_mask = 1 << slave_port | 1 << priv->host_port; 1093 1094 if (priv->version == CPSW_VERSION_1) 1095 slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN); 1096 else 1097 slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN); 1098 cpsw_ale_add_vlan(priv->ale, slave->port_vlan, port_mask, 1099 port_mask, port_mask, 0); 1100 cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast, 1101 port_mask, ALE_VLAN, slave->port_vlan, 0); 1102 cpsw_ale_add_ucast(priv->ale, priv->mac_addr, 1103 priv->host_port, ALE_VLAN | ALE_SECURE, slave->port_vlan); 1104 } 1105 1106 static void soft_reset_slave(struct cpsw_slave *slave) 1107 { 1108 char name[32]; 1109 1110 snprintf(name, sizeof(name), "slave-%d", slave->slave_num); 1111 soft_reset(name, &slave->sliver->soft_reset); 1112 } 1113 1114 static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv) 1115 { 1116 u32 slave_port; 1117 1118 soft_reset_slave(slave); 1119 1120 /* setup priority mapping */ 1121 __raw_writel(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map); 1122 1123 switch (priv->version) { 1124 case CPSW_VERSION_1: 1125 slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP); 1126 break; 1127 case CPSW_VERSION_2: 1128 case CPSW_VERSION_3: 1129 case CPSW_VERSION_4: 1130 slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP); 1131 break; 1132 } 1133 1134 /* setup max packet size, and mac address */ 1135 __raw_writel(priv->rx_packet_max, &slave->sliver->rx_maxlen); 1136 cpsw_set_slave_mac(slave, priv); 1137 1138 slave->mac_control = 0; /* no link yet */ 1139 1140 slave_port = cpsw_get_slave_port(priv, slave->slave_num); 1141 1142 if (priv->data.dual_emac) 1143 cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port); 1144 else 1145 cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast, 1146 1 << slave_port, 0, 0, ALE_MCAST_FWD_2); 1147 1148 slave->phy = phy_connect(priv->ndev, slave->data->phy_id, 1149 &cpsw_adjust_link, slave->data->phy_if); 1150 if (IS_ERR(slave->phy)) { 1151 dev_err(priv->dev, "phy %s not found on slave %d\n", 1152 slave->data->phy_id, slave->slave_num); 1153 slave->phy = NULL; 1154 } else { 1155 dev_info(priv->dev, "phy found : id is : 0x%x\n", 1156 slave->phy->phy_id); 1157 phy_start(slave->phy); 1158 1159 /* Configure GMII_SEL register */ 1160 cpsw_phy_sel(&priv->pdev->dev, slave->phy->interface, 1161 slave->slave_num); 1162 } 1163 } 1164 1165 static inline void cpsw_add_default_vlan(struct cpsw_priv *priv) 1166 { 1167 const int vlan = priv->data.default_vlan; 1168 const int port = priv->host_port; 1169 u32 reg; 1170 int i; 1171 int unreg_mcast_mask; 1172 1173 reg = (priv->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN : 1174 CPSW2_PORT_VLAN; 1175 1176 writel(vlan, &priv->host_port_regs->port_vlan); 1177 1178 for (i = 0; i < priv->data.slaves; i++) 1179 slave_write(priv->slaves + i, vlan, reg); 1180 1181 if (priv->ndev->flags & IFF_ALLMULTI) 1182 unreg_mcast_mask = ALE_ALL_PORTS; 1183 else 1184 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2; 1185 1186 cpsw_ale_add_vlan(priv->ale, vlan, ALE_ALL_PORTS << port, 1187 ALE_ALL_PORTS << port, ALE_ALL_PORTS << port, 1188 unreg_mcast_mask << port); 1189 } 1190 1191 static void cpsw_init_host_port(struct cpsw_priv *priv) 1192 { 1193 u32 control_reg; 1194 u32 fifo_mode; 1195 1196 /* soft reset the controller and initialize ale */ 1197 soft_reset("cpsw", &priv->regs->soft_reset); 1198 cpsw_ale_start(priv->ale); 1199 1200 /* switch to vlan unaware mode */ 1201 cpsw_ale_control_set(priv->ale, priv->host_port, ALE_VLAN_AWARE, 1202 CPSW_ALE_VLAN_AWARE); 1203 control_reg = readl(&priv->regs->control); 1204 control_reg |= CPSW_VLAN_AWARE; 1205 writel(control_reg, &priv->regs->control); 1206 fifo_mode = (priv->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE : 1207 CPSW_FIFO_NORMAL_MODE; 1208 writel(fifo_mode, &priv->host_port_regs->tx_in_ctl); 1209 1210 /* setup host port priority mapping */ 1211 __raw_writel(CPDMA_TX_PRIORITY_MAP, 1212 &priv->host_port_regs->cpdma_tx_pri_map); 1213 __raw_writel(0, &priv->host_port_regs->cpdma_rx_chan_map); 1214 1215 cpsw_ale_control_set(priv->ale, priv->host_port, 1216 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD); 1217 1218 if (!priv->data.dual_emac) { 1219 cpsw_ale_add_ucast(priv->ale, priv->mac_addr, priv->host_port, 1220 0, 0); 1221 cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast, 1222 1 << priv->host_port, 0, 0, ALE_MCAST_FWD_2); 1223 } 1224 } 1225 1226 static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_priv *priv) 1227 { 1228 u32 slave_port; 1229 1230 slave_port = cpsw_get_slave_port(priv, slave->slave_num); 1231 1232 if (!slave->phy) 1233 return; 1234 phy_stop(slave->phy); 1235 phy_disconnect(slave->phy); 1236 slave->phy = NULL; 1237 cpsw_ale_control_set(priv->ale, slave_port, 1238 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE); 1239 } 1240 1241 static int cpsw_ndo_open(struct net_device *ndev) 1242 { 1243 struct cpsw_priv *priv = netdev_priv(ndev); 1244 int i, ret; 1245 u32 reg; 1246 1247 if (!cpsw_common_res_usage_state(priv)) 1248 cpsw_intr_disable(priv); 1249 netif_carrier_off(ndev); 1250 1251 pm_runtime_get_sync(&priv->pdev->dev); 1252 1253 reg = priv->version; 1254 1255 dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n", 1256 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg), 1257 CPSW_RTL_VERSION(reg)); 1258 1259 /* initialize host and slave ports */ 1260 if (!cpsw_common_res_usage_state(priv)) 1261 cpsw_init_host_port(priv); 1262 for_each_slave(priv, cpsw_slave_open, priv); 1263 1264 /* Add default VLAN */ 1265 if (!priv->data.dual_emac) 1266 cpsw_add_default_vlan(priv); 1267 else 1268 cpsw_ale_add_vlan(priv->ale, priv->data.default_vlan, 1269 ALE_ALL_PORTS << priv->host_port, 1270 ALE_ALL_PORTS << priv->host_port, 0, 0); 1271 1272 if (!cpsw_common_res_usage_state(priv)) { 1273 struct cpsw_priv *priv_sl0 = cpsw_get_slave_priv(priv, 0); 1274 1275 /* setup tx dma to fixed prio and zero offset */ 1276 cpdma_control_set(priv->dma, CPDMA_TX_PRIO_FIXED, 1); 1277 cpdma_control_set(priv->dma, CPDMA_RX_BUFFER_OFFSET, 0); 1278 1279 /* disable priority elevation */ 1280 __raw_writel(0, &priv->regs->ptype); 1281 1282 /* enable statistics collection only on all ports */ 1283 __raw_writel(0x7, &priv->regs->stat_port_en); 1284 1285 /* Enable internal fifo flow control */ 1286 writel(0x7, &priv->regs->flow_control); 1287 1288 napi_enable(&priv_sl0->napi_rx); 1289 napi_enable(&priv_sl0->napi_tx); 1290 1291 if (priv_sl0->tx_irq_disabled) { 1292 priv_sl0->tx_irq_disabled = false; 1293 enable_irq(priv->irqs_table[1]); 1294 } 1295 1296 if (priv_sl0->rx_irq_disabled) { 1297 priv_sl0->rx_irq_disabled = false; 1298 enable_irq(priv->irqs_table[0]); 1299 } 1300 1301 if (WARN_ON(!priv->data.rx_descs)) 1302 priv->data.rx_descs = 128; 1303 1304 for (i = 0; i < priv->data.rx_descs; i++) { 1305 struct sk_buff *skb; 1306 1307 ret = -ENOMEM; 1308 skb = __netdev_alloc_skb_ip_align(priv->ndev, 1309 priv->rx_packet_max, GFP_KERNEL); 1310 if (!skb) 1311 goto err_cleanup; 1312 ret = cpdma_chan_submit(priv->rxch, skb, skb->data, 1313 skb_tailroom(skb), 0); 1314 if (ret < 0) { 1315 kfree_skb(skb); 1316 goto err_cleanup; 1317 } 1318 } 1319 /* continue even if we didn't manage to submit all 1320 * receive descs 1321 */ 1322 cpsw_info(priv, ifup, "submitted %d rx descriptors\n", i); 1323 1324 if (cpts_register(&priv->pdev->dev, priv->cpts, 1325 priv->data.cpts_clock_mult, 1326 priv->data.cpts_clock_shift)) 1327 dev_err(priv->dev, "error registering cpts device\n"); 1328 1329 } 1330 1331 /* Enable Interrupt pacing if configured */ 1332 if (priv->coal_intvl != 0) { 1333 struct ethtool_coalesce coal; 1334 1335 coal.rx_coalesce_usecs = (priv->coal_intvl << 4); 1336 cpsw_set_coalesce(ndev, &coal); 1337 } 1338 1339 cpdma_ctlr_start(priv->dma); 1340 cpsw_intr_enable(priv); 1341 1342 if (priv->data.dual_emac) 1343 priv->slaves[priv->emac_port].open_stat = true; 1344 return 0; 1345 1346 err_cleanup: 1347 cpdma_ctlr_stop(priv->dma); 1348 for_each_slave(priv, cpsw_slave_stop, priv); 1349 pm_runtime_put_sync(&priv->pdev->dev); 1350 netif_carrier_off(priv->ndev); 1351 return ret; 1352 } 1353 1354 static int cpsw_ndo_stop(struct net_device *ndev) 1355 { 1356 struct cpsw_priv *priv = netdev_priv(ndev); 1357 1358 cpsw_info(priv, ifdown, "shutting down cpsw device\n"); 1359 netif_stop_queue(priv->ndev); 1360 netif_carrier_off(priv->ndev); 1361 1362 if (cpsw_common_res_usage_state(priv) <= 1) { 1363 struct cpsw_priv *priv_sl0 = cpsw_get_slave_priv(priv, 0); 1364 1365 napi_disable(&priv_sl0->napi_rx); 1366 napi_disable(&priv_sl0->napi_tx); 1367 cpts_unregister(priv->cpts); 1368 cpsw_intr_disable(priv); 1369 cpdma_ctlr_stop(priv->dma); 1370 cpsw_ale_stop(priv->ale); 1371 } 1372 for_each_slave(priv, cpsw_slave_stop, priv); 1373 pm_runtime_put_sync(&priv->pdev->dev); 1374 if (priv->data.dual_emac) 1375 priv->slaves[priv->emac_port].open_stat = false; 1376 return 0; 1377 } 1378 1379 static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb, 1380 struct net_device *ndev) 1381 { 1382 struct cpsw_priv *priv = netdev_priv(ndev); 1383 int ret; 1384 1385 ndev->trans_start = jiffies; 1386 1387 if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) { 1388 cpsw_err(priv, tx_err, "packet pad failed\n"); 1389 ndev->stats.tx_dropped++; 1390 return NETDEV_TX_OK; 1391 } 1392 1393 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && 1394 priv->cpts->tx_enable) 1395 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1396 1397 skb_tx_timestamp(skb); 1398 1399 ret = cpsw_tx_packet_submit(ndev, priv, skb); 1400 if (unlikely(ret != 0)) { 1401 cpsw_err(priv, tx_err, "desc submit failed\n"); 1402 goto fail; 1403 } 1404 1405 /* If there is no more tx desc left free then we need to 1406 * tell the kernel to stop sending us tx frames. 1407 */ 1408 if (unlikely(!cpdma_check_free_tx_desc(priv->txch))) 1409 netif_stop_queue(ndev); 1410 1411 return NETDEV_TX_OK; 1412 fail: 1413 ndev->stats.tx_dropped++; 1414 netif_stop_queue(ndev); 1415 return NETDEV_TX_BUSY; 1416 } 1417 1418 #ifdef CONFIG_TI_CPTS 1419 1420 static void cpsw_hwtstamp_v1(struct cpsw_priv *priv) 1421 { 1422 struct cpsw_slave *slave = &priv->slaves[priv->data.active_slave]; 1423 u32 ts_en, seq_id; 1424 1425 if (!priv->cpts->tx_enable && !priv->cpts->rx_enable) { 1426 slave_write(slave, 0, CPSW1_TS_CTL); 1427 return; 1428 } 1429 1430 seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588; 1431 ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS; 1432 1433 if (priv->cpts->tx_enable) 1434 ts_en |= CPSW_V1_TS_TX_EN; 1435 1436 if (priv->cpts->rx_enable) 1437 ts_en |= CPSW_V1_TS_RX_EN; 1438 1439 slave_write(slave, ts_en, CPSW1_TS_CTL); 1440 slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE); 1441 } 1442 1443 static void cpsw_hwtstamp_v2(struct cpsw_priv *priv) 1444 { 1445 struct cpsw_slave *slave; 1446 u32 ctrl, mtype; 1447 1448 if (priv->data.dual_emac) 1449 slave = &priv->slaves[priv->emac_port]; 1450 else 1451 slave = &priv->slaves[priv->data.active_slave]; 1452 1453 ctrl = slave_read(slave, CPSW2_CONTROL); 1454 switch (priv->version) { 1455 case CPSW_VERSION_2: 1456 ctrl &= ~CTRL_V2_ALL_TS_MASK; 1457 1458 if (priv->cpts->tx_enable) 1459 ctrl |= CTRL_V2_TX_TS_BITS; 1460 1461 if (priv->cpts->rx_enable) 1462 ctrl |= CTRL_V2_RX_TS_BITS; 1463 break; 1464 case CPSW_VERSION_3: 1465 default: 1466 ctrl &= ~CTRL_V3_ALL_TS_MASK; 1467 1468 if (priv->cpts->tx_enable) 1469 ctrl |= CTRL_V3_TX_TS_BITS; 1470 1471 if (priv->cpts->rx_enable) 1472 ctrl |= CTRL_V3_RX_TS_BITS; 1473 break; 1474 } 1475 1476 mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS; 1477 1478 slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE); 1479 slave_write(slave, ctrl, CPSW2_CONTROL); 1480 __raw_writel(ETH_P_1588, &priv->regs->ts_ltype); 1481 } 1482 1483 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr) 1484 { 1485 struct cpsw_priv *priv = netdev_priv(dev); 1486 struct cpts *cpts = priv->cpts; 1487 struct hwtstamp_config cfg; 1488 1489 if (priv->version != CPSW_VERSION_1 && 1490 priv->version != CPSW_VERSION_2 && 1491 priv->version != CPSW_VERSION_3) 1492 return -EOPNOTSUPP; 1493 1494 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg))) 1495 return -EFAULT; 1496 1497 /* reserved for future extensions */ 1498 if (cfg.flags) 1499 return -EINVAL; 1500 1501 if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON) 1502 return -ERANGE; 1503 1504 switch (cfg.rx_filter) { 1505 case HWTSTAMP_FILTER_NONE: 1506 cpts->rx_enable = 0; 1507 break; 1508 case HWTSTAMP_FILTER_ALL: 1509 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 1510 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 1511 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 1512 return -ERANGE; 1513 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 1514 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 1515 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 1516 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 1517 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 1518 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 1519 case HWTSTAMP_FILTER_PTP_V2_EVENT: 1520 case HWTSTAMP_FILTER_PTP_V2_SYNC: 1521 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 1522 cpts->rx_enable = 1; 1523 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 1524 break; 1525 default: 1526 return -ERANGE; 1527 } 1528 1529 cpts->tx_enable = cfg.tx_type == HWTSTAMP_TX_ON; 1530 1531 switch (priv->version) { 1532 case CPSW_VERSION_1: 1533 cpsw_hwtstamp_v1(priv); 1534 break; 1535 case CPSW_VERSION_2: 1536 case CPSW_VERSION_3: 1537 cpsw_hwtstamp_v2(priv); 1538 break; 1539 default: 1540 WARN_ON(1); 1541 } 1542 1543 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; 1544 } 1545 1546 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr) 1547 { 1548 struct cpsw_priv *priv = netdev_priv(dev); 1549 struct cpts *cpts = priv->cpts; 1550 struct hwtstamp_config cfg; 1551 1552 if (priv->version != CPSW_VERSION_1 && 1553 priv->version != CPSW_VERSION_2 && 1554 priv->version != CPSW_VERSION_3) 1555 return -EOPNOTSUPP; 1556 1557 cfg.flags = 0; 1558 cfg.tx_type = cpts->tx_enable ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF; 1559 cfg.rx_filter = (cpts->rx_enable ? 1560 HWTSTAMP_FILTER_PTP_V2_EVENT : HWTSTAMP_FILTER_NONE); 1561 1562 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; 1563 } 1564 1565 #endif /*CONFIG_TI_CPTS*/ 1566 1567 static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 1568 { 1569 struct cpsw_priv *priv = netdev_priv(dev); 1570 int slave_no = cpsw_slave_index(priv); 1571 1572 if (!netif_running(dev)) 1573 return -EINVAL; 1574 1575 switch (cmd) { 1576 #ifdef CONFIG_TI_CPTS 1577 case SIOCSHWTSTAMP: 1578 return cpsw_hwtstamp_set(dev, req); 1579 case SIOCGHWTSTAMP: 1580 return cpsw_hwtstamp_get(dev, req); 1581 #endif 1582 } 1583 1584 if (!priv->slaves[slave_no].phy) 1585 return -EOPNOTSUPP; 1586 return phy_mii_ioctl(priv->slaves[slave_no].phy, req, cmd); 1587 } 1588 1589 static void cpsw_ndo_tx_timeout(struct net_device *ndev) 1590 { 1591 struct cpsw_priv *priv = netdev_priv(ndev); 1592 1593 cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n"); 1594 ndev->stats.tx_errors++; 1595 cpsw_intr_disable(priv); 1596 cpdma_chan_stop(priv->txch); 1597 cpdma_chan_start(priv->txch); 1598 cpsw_intr_enable(priv); 1599 } 1600 1601 static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p) 1602 { 1603 struct cpsw_priv *priv = netdev_priv(ndev); 1604 struct sockaddr *addr = (struct sockaddr *)p; 1605 int flags = 0; 1606 u16 vid = 0; 1607 1608 if (!is_valid_ether_addr(addr->sa_data)) 1609 return -EADDRNOTAVAIL; 1610 1611 if (priv->data.dual_emac) { 1612 vid = priv->slaves[priv->emac_port].port_vlan; 1613 flags = ALE_VLAN; 1614 } 1615 1616 cpsw_ale_del_ucast(priv->ale, priv->mac_addr, priv->host_port, 1617 flags, vid); 1618 cpsw_ale_add_ucast(priv->ale, addr->sa_data, priv->host_port, 1619 flags, vid); 1620 1621 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN); 1622 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN); 1623 for_each_slave(priv, cpsw_set_slave_mac, priv); 1624 1625 return 0; 1626 } 1627 1628 #ifdef CONFIG_NET_POLL_CONTROLLER 1629 static void cpsw_ndo_poll_controller(struct net_device *ndev) 1630 { 1631 struct cpsw_priv *priv = netdev_priv(ndev); 1632 1633 cpsw_intr_disable(priv); 1634 cpsw_rx_interrupt(priv->irqs_table[0], priv); 1635 cpsw_tx_interrupt(priv->irqs_table[1], priv); 1636 cpsw_intr_enable(priv); 1637 } 1638 #endif 1639 1640 static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv, 1641 unsigned short vid) 1642 { 1643 int ret; 1644 int unreg_mcast_mask = 0; 1645 u32 port_mask; 1646 1647 if (priv->data.dual_emac) { 1648 port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST; 1649 1650 if (priv->ndev->flags & IFF_ALLMULTI) 1651 unreg_mcast_mask = port_mask; 1652 } else { 1653 port_mask = ALE_ALL_PORTS; 1654 1655 if (priv->ndev->flags & IFF_ALLMULTI) 1656 unreg_mcast_mask = ALE_ALL_PORTS; 1657 else 1658 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2; 1659 } 1660 1661 ret = cpsw_ale_add_vlan(priv->ale, vid, port_mask, 0, port_mask, 1662 unreg_mcast_mask << priv->host_port); 1663 if (ret != 0) 1664 return ret; 1665 1666 ret = cpsw_ale_add_ucast(priv->ale, priv->mac_addr, 1667 priv->host_port, ALE_VLAN, vid); 1668 if (ret != 0) 1669 goto clean_vid; 1670 1671 ret = cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast, 1672 port_mask, ALE_VLAN, vid, 0); 1673 if (ret != 0) 1674 goto clean_vlan_ucast; 1675 return 0; 1676 1677 clean_vlan_ucast: 1678 cpsw_ale_del_ucast(priv->ale, priv->mac_addr, 1679 priv->host_port, ALE_VLAN, vid); 1680 clean_vid: 1681 cpsw_ale_del_vlan(priv->ale, vid, 0); 1682 return ret; 1683 } 1684 1685 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev, 1686 __be16 proto, u16 vid) 1687 { 1688 struct cpsw_priv *priv = netdev_priv(ndev); 1689 1690 if (vid == priv->data.default_vlan) 1691 return 0; 1692 1693 if (priv->data.dual_emac) { 1694 /* In dual EMAC, reserved VLAN id should not be used for 1695 * creating VLAN interfaces as this can break the dual 1696 * EMAC port separation 1697 */ 1698 int i; 1699 1700 for (i = 0; i < priv->data.slaves; i++) { 1701 if (vid == priv->slaves[i].port_vlan) 1702 return -EINVAL; 1703 } 1704 } 1705 1706 dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid); 1707 return cpsw_add_vlan_ale_entry(priv, vid); 1708 } 1709 1710 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev, 1711 __be16 proto, u16 vid) 1712 { 1713 struct cpsw_priv *priv = netdev_priv(ndev); 1714 int ret; 1715 1716 if (vid == priv->data.default_vlan) 1717 return 0; 1718 1719 if (priv->data.dual_emac) { 1720 int i; 1721 1722 for (i = 0; i < priv->data.slaves; i++) { 1723 if (vid == priv->slaves[i].port_vlan) 1724 return -EINVAL; 1725 } 1726 } 1727 1728 dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid); 1729 ret = cpsw_ale_del_vlan(priv->ale, vid, 0); 1730 if (ret != 0) 1731 return ret; 1732 1733 ret = cpsw_ale_del_ucast(priv->ale, priv->mac_addr, 1734 priv->host_port, ALE_VLAN, vid); 1735 if (ret != 0) 1736 return ret; 1737 1738 return cpsw_ale_del_mcast(priv->ale, priv->ndev->broadcast, 1739 0, ALE_VLAN, vid); 1740 } 1741 1742 static const struct net_device_ops cpsw_netdev_ops = { 1743 .ndo_open = cpsw_ndo_open, 1744 .ndo_stop = cpsw_ndo_stop, 1745 .ndo_start_xmit = cpsw_ndo_start_xmit, 1746 .ndo_set_mac_address = cpsw_ndo_set_mac_address, 1747 .ndo_do_ioctl = cpsw_ndo_ioctl, 1748 .ndo_validate_addr = eth_validate_addr, 1749 .ndo_change_mtu = eth_change_mtu, 1750 .ndo_tx_timeout = cpsw_ndo_tx_timeout, 1751 .ndo_set_rx_mode = cpsw_ndo_set_rx_mode, 1752 #ifdef CONFIG_NET_POLL_CONTROLLER 1753 .ndo_poll_controller = cpsw_ndo_poll_controller, 1754 #endif 1755 .ndo_vlan_rx_add_vid = cpsw_ndo_vlan_rx_add_vid, 1756 .ndo_vlan_rx_kill_vid = cpsw_ndo_vlan_rx_kill_vid, 1757 }; 1758 1759 static int cpsw_get_regs_len(struct net_device *ndev) 1760 { 1761 struct cpsw_priv *priv = netdev_priv(ndev); 1762 1763 return priv->data.ale_entries * ALE_ENTRY_WORDS * sizeof(u32); 1764 } 1765 1766 static void cpsw_get_regs(struct net_device *ndev, 1767 struct ethtool_regs *regs, void *p) 1768 { 1769 struct cpsw_priv *priv = netdev_priv(ndev); 1770 u32 *reg = p; 1771 1772 /* update CPSW IP version */ 1773 regs->version = priv->version; 1774 1775 cpsw_ale_dump(priv->ale, reg); 1776 } 1777 1778 static void cpsw_get_drvinfo(struct net_device *ndev, 1779 struct ethtool_drvinfo *info) 1780 { 1781 struct cpsw_priv *priv = netdev_priv(ndev); 1782 1783 strlcpy(info->driver, "cpsw", sizeof(info->driver)); 1784 strlcpy(info->version, "1.0", sizeof(info->version)); 1785 strlcpy(info->bus_info, priv->pdev->name, sizeof(info->bus_info)); 1786 info->regdump_len = cpsw_get_regs_len(ndev); 1787 } 1788 1789 static u32 cpsw_get_msglevel(struct net_device *ndev) 1790 { 1791 struct cpsw_priv *priv = netdev_priv(ndev); 1792 return priv->msg_enable; 1793 } 1794 1795 static void cpsw_set_msglevel(struct net_device *ndev, u32 value) 1796 { 1797 struct cpsw_priv *priv = netdev_priv(ndev); 1798 priv->msg_enable = value; 1799 } 1800 1801 static int cpsw_get_ts_info(struct net_device *ndev, 1802 struct ethtool_ts_info *info) 1803 { 1804 #ifdef CONFIG_TI_CPTS 1805 struct cpsw_priv *priv = netdev_priv(ndev); 1806 1807 info->so_timestamping = 1808 SOF_TIMESTAMPING_TX_HARDWARE | 1809 SOF_TIMESTAMPING_TX_SOFTWARE | 1810 SOF_TIMESTAMPING_RX_HARDWARE | 1811 SOF_TIMESTAMPING_RX_SOFTWARE | 1812 SOF_TIMESTAMPING_SOFTWARE | 1813 SOF_TIMESTAMPING_RAW_HARDWARE; 1814 info->phc_index = priv->cpts->phc_index; 1815 info->tx_types = 1816 (1 << HWTSTAMP_TX_OFF) | 1817 (1 << HWTSTAMP_TX_ON); 1818 info->rx_filters = 1819 (1 << HWTSTAMP_FILTER_NONE) | 1820 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 1821 #else 1822 info->so_timestamping = 1823 SOF_TIMESTAMPING_TX_SOFTWARE | 1824 SOF_TIMESTAMPING_RX_SOFTWARE | 1825 SOF_TIMESTAMPING_SOFTWARE; 1826 info->phc_index = -1; 1827 info->tx_types = 0; 1828 info->rx_filters = 0; 1829 #endif 1830 return 0; 1831 } 1832 1833 static int cpsw_get_settings(struct net_device *ndev, 1834 struct ethtool_cmd *ecmd) 1835 { 1836 struct cpsw_priv *priv = netdev_priv(ndev); 1837 int slave_no = cpsw_slave_index(priv); 1838 1839 if (priv->slaves[slave_no].phy) 1840 return phy_ethtool_gset(priv->slaves[slave_no].phy, ecmd); 1841 else 1842 return -EOPNOTSUPP; 1843 } 1844 1845 static int cpsw_set_settings(struct net_device *ndev, struct ethtool_cmd *ecmd) 1846 { 1847 struct cpsw_priv *priv = netdev_priv(ndev); 1848 int slave_no = cpsw_slave_index(priv); 1849 1850 if (priv->slaves[slave_no].phy) 1851 return phy_ethtool_sset(priv->slaves[slave_no].phy, ecmd); 1852 else 1853 return -EOPNOTSUPP; 1854 } 1855 1856 static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 1857 { 1858 struct cpsw_priv *priv = netdev_priv(ndev); 1859 int slave_no = cpsw_slave_index(priv); 1860 1861 wol->supported = 0; 1862 wol->wolopts = 0; 1863 1864 if (priv->slaves[slave_no].phy) 1865 phy_ethtool_get_wol(priv->slaves[slave_no].phy, wol); 1866 } 1867 1868 static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 1869 { 1870 struct cpsw_priv *priv = netdev_priv(ndev); 1871 int slave_no = cpsw_slave_index(priv); 1872 1873 if (priv->slaves[slave_no].phy) 1874 return phy_ethtool_set_wol(priv->slaves[slave_no].phy, wol); 1875 else 1876 return -EOPNOTSUPP; 1877 } 1878 1879 static void cpsw_get_pauseparam(struct net_device *ndev, 1880 struct ethtool_pauseparam *pause) 1881 { 1882 struct cpsw_priv *priv = netdev_priv(ndev); 1883 1884 pause->autoneg = AUTONEG_DISABLE; 1885 pause->rx_pause = priv->rx_pause ? true : false; 1886 pause->tx_pause = priv->tx_pause ? true : false; 1887 } 1888 1889 static int cpsw_set_pauseparam(struct net_device *ndev, 1890 struct ethtool_pauseparam *pause) 1891 { 1892 struct cpsw_priv *priv = netdev_priv(ndev); 1893 bool link; 1894 1895 priv->rx_pause = pause->rx_pause ? true : false; 1896 priv->tx_pause = pause->tx_pause ? true : false; 1897 1898 for_each_slave(priv, _cpsw_adjust_link, priv, &link); 1899 1900 return 0; 1901 } 1902 1903 static const struct ethtool_ops cpsw_ethtool_ops = { 1904 .get_drvinfo = cpsw_get_drvinfo, 1905 .get_msglevel = cpsw_get_msglevel, 1906 .set_msglevel = cpsw_set_msglevel, 1907 .get_link = ethtool_op_get_link, 1908 .get_ts_info = cpsw_get_ts_info, 1909 .get_settings = cpsw_get_settings, 1910 .set_settings = cpsw_set_settings, 1911 .get_coalesce = cpsw_get_coalesce, 1912 .set_coalesce = cpsw_set_coalesce, 1913 .get_sset_count = cpsw_get_sset_count, 1914 .get_strings = cpsw_get_strings, 1915 .get_ethtool_stats = cpsw_get_ethtool_stats, 1916 .get_pauseparam = cpsw_get_pauseparam, 1917 .set_pauseparam = cpsw_set_pauseparam, 1918 .get_wol = cpsw_get_wol, 1919 .set_wol = cpsw_set_wol, 1920 .get_regs_len = cpsw_get_regs_len, 1921 .get_regs = cpsw_get_regs, 1922 }; 1923 1924 static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_priv *priv, 1925 u32 slave_reg_ofs, u32 sliver_reg_ofs) 1926 { 1927 void __iomem *regs = priv->regs; 1928 int slave_num = slave->slave_num; 1929 struct cpsw_slave_data *data = priv->data.slave_data + slave_num; 1930 1931 slave->data = data; 1932 slave->regs = regs + slave_reg_ofs; 1933 slave->sliver = regs + sliver_reg_ofs; 1934 slave->port_vlan = data->dual_emac_res_vlan; 1935 } 1936 1937 static int cpsw_probe_dt(struct cpsw_platform_data *data, 1938 struct platform_device *pdev) 1939 { 1940 struct device_node *node = pdev->dev.of_node; 1941 struct device_node *slave_node; 1942 int i = 0, ret; 1943 u32 prop; 1944 1945 if (!node) 1946 return -EINVAL; 1947 1948 if (of_property_read_u32(node, "slaves", &prop)) { 1949 dev_err(&pdev->dev, "Missing slaves property in the DT.\n"); 1950 return -EINVAL; 1951 } 1952 data->slaves = prop; 1953 1954 if (of_property_read_u32(node, "active_slave", &prop)) { 1955 dev_err(&pdev->dev, "Missing active_slave property in the DT.\n"); 1956 return -EINVAL; 1957 } 1958 data->active_slave = prop; 1959 1960 if (of_property_read_u32(node, "cpts_clock_mult", &prop)) { 1961 dev_err(&pdev->dev, "Missing cpts_clock_mult property in the DT.\n"); 1962 return -EINVAL; 1963 } 1964 data->cpts_clock_mult = prop; 1965 1966 if (of_property_read_u32(node, "cpts_clock_shift", &prop)) { 1967 dev_err(&pdev->dev, "Missing cpts_clock_shift property in the DT.\n"); 1968 return -EINVAL; 1969 } 1970 data->cpts_clock_shift = prop; 1971 1972 data->slave_data = devm_kzalloc(&pdev->dev, data->slaves 1973 * sizeof(struct cpsw_slave_data), 1974 GFP_KERNEL); 1975 if (!data->slave_data) 1976 return -ENOMEM; 1977 1978 if (of_property_read_u32(node, "cpdma_channels", &prop)) { 1979 dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n"); 1980 return -EINVAL; 1981 } 1982 data->channels = prop; 1983 1984 if (of_property_read_u32(node, "ale_entries", &prop)) { 1985 dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n"); 1986 return -EINVAL; 1987 } 1988 data->ale_entries = prop; 1989 1990 if (of_property_read_u32(node, "bd_ram_size", &prop)) { 1991 dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n"); 1992 return -EINVAL; 1993 } 1994 data->bd_ram_size = prop; 1995 1996 if (of_property_read_u32(node, "rx_descs", &prop)) { 1997 dev_err(&pdev->dev, "Missing rx_descs property in the DT.\n"); 1998 return -EINVAL; 1999 } 2000 data->rx_descs = prop; 2001 2002 if (of_property_read_u32(node, "mac_control", &prop)) { 2003 dev_err(&pdev->dev, "Missing mac_control property in the DT.\n"); 2004 return -EINVAL; 2005 } 2006 data->mac_control = prop; 2007 2008 if (of_property_read_bool(node, "dual_emac")) 2009 data->dual_emac = 1; 2010 2011 /* 2012 * Populate all the child nodes here... 2013 */ 2014 ret = of_platform_populate(node, NULL, NULL, &pdev->dev); 2015 /* We do not want to force this, as in some cases may not have child */ 2016 if (ret) 2017 dev_warn(&pdev->dev, "Doesn't have any child node\n"); 2018 2019 for_each_child_of_node(node, slave_node) { 2020 struct cpsw_slave_data *slave_data = data->slave_data + i; 2021 const void *mac_addr = NULL; 2022 u32 phyid; 2023 int lenp; 2024 const __be32 *parp; 2025 struct device_node *mdio_node; 2026 struct platform_device *mdio; 2027 2028 /* This is no slave child node, continue */ 2029 if (strcmp(slave_node->name, "slave")) 2030 continue; 2031 2032 parp = of_get_property(slave_node, "phy_id", &lenp); 2033 if ((parp == NULL) || (lenp != (sizeof(void *) * 2))) { 2034 dev_err(&pdev->dev, "Missing slave[%d] phy_id property\n", i); 2035 goto no_phy_slave; 2036 } 2037 mdio_node = of_find_node_by_phandle(be32_to_cpup(parp)); 2038 phyid = be32_to_cpup(parp+1); 2039 mdio = of_find_device_by_node(mdio_node); 2040 of_node_put(mdio_node); 2041 if (!mdio) { 2042 dev_err(&pdev->dev, "Missing mdio platform device\n"); 2043 return -EINVAL; 2044 } 2045 snprintf(slave_data->phy_id, sizeof(slave_data->phy_id), 2046 PHY_ID_FMT, mdio->name, phyid); 2047 2048 slave_data->phy_if = of_get_phy_mode(slave_node); 2049 if (slave_data->phy_if < 0) { 2050 dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n", 2051 i); 2052 return slave_data->phy_if; 2053 } 2054 2055 no_phy_slave: 2056 mac_addr = of_get_mac_address(slave_node); 2057 if (mac_addr) { 2058 memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN); 2059 } else { 2060 if (of_machine_is_compatible("ti,am33xx")) { 2061 ret = cpsw_am33xx_cm_get_macid(&pdev->dev, 2062 0x630, i, 2063 slave_data->mac_addr); 2064 if (ret) 2065 return ret; 2066 } 2067 } 2068 if (data->dual_emac) { 2069 if (of_property_read_u32(slave_node, "dual_emac_res_vlan", 2070 &prop)) { 2071 dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n"); 2072 slave_data->dual_emac_res_vlan = i+1; 2073 dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n", 2074 slave_data->dual_emac_res_vlan, i); 2075 } else { 2076 slave_data->dual_emac_res_vlan = prop; 2077 } 2078 } 2079 2080 i++; 2081 if (i == data->slaves) 2082 break; 2083 } 2084 2085 return 0; 2086 } 2087 2088 static int cpsw_probe_dual_emac(struct platform_device *pdev, 2089 struct cpsw_priv *priv) 2090 { 2091 struct cpsw_platform_data *data = &priv->data; 2092 struct net_device *ndev; 2093 struct cpsw_priv *priv_sl2; 2094 int ret = 0, i; 2095 2096 ndev = alloc_etherdev(sizeof(struct cpsw_priv)); 2097 if (!ndev) { 2098 dev_err(&pdev->dev, "cpsw: error allocating net_device\n"); 2099 return -ENOMEM; 2100 } 2101 2102 priv_sl2 = netdev_priv(ndev); 2103 spin_lock_init(&priv_sl2->lock); 2104 priv_sl2->data = *data; 2105 priv_sl2->pdev = pdev; 2106 priv_sl2->ndev = ndev; 2107 priv_sl2->dev = &ndev->dev; 2108 priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG); 2109 priv_sl2->rx_packet_max = max(rx_packet_max, 128); 2110 2111 if (is_valid_ether_addr(data->slave_data[1].mac_addr)) { 2112 memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr, 2113 ETH_ALEN); 2114 dev_info(&pdev->dev, "cpsw: Detected MACID = %pM\n", priv_sl2->mac_addr); 2115 } else { 2116 random_ether_addr(priv_sl2->mac_addr); 2117 dev_info(&pdev->dev, "cpsw: Random MACID = %pM\n", priv_sl2->mac_addr); 2118 } 2119 memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN); 2120 2121 priv_sl2->slaves = priv->slaves; 2122 priv_sl2->clk = priv->clk; 2123 2124 priv_sl2->coal_intvl = 0; 2125 priv_sl2->bus_freq_mhz = priv->bus_freq_mhz; 2126 2127 priv_sl2->regs = priv->regs; 2128 priv_sl2->host_port = priv->host_port; 2129 priv_sl2->host_port_regs = priv->host_port_regs; 2130 priv_sl2->wr_regs = priv->wr_regs; 2131 priv_sl2->hw_stats = priv->hw_stats; 2132 priv_sl2->dma = priv->dma; 2133 priv_sl2->txch = priv->txch; 2134 priv_sl2->rxch = priv->rxch; 2135 priv_sl2->ale = priv->ale; 2136 priv_sl2->emac_port = 1; 2137 priv->slaves[1].ndev = ndev; 2138 priv_sl2->cpts = priv->cpts; 2139 priv_sl2->version = priv->version; 2140 2141 for (i = 0; i < priv->num_irqs; i++) { 2142 priv_sl2->irqs_table[i] = priv->irqs_table[i]; 2143 priv_sl2->num_irqs = priv->num_irqs; 2144 } 2145 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 2146 2147 ndev->netdev_ops = &cpsw_netdev_ops; 2148 ndev->ethtool_ops = &cpsw_ethtool_ops; 2149 2150 /* register the network device */ 2151 SET_NETDEV_DEV(ndev, &pdev->dev); 2152 ret = register_netdev(ndev); 2153 if (ret) { 2154 dev_err(&pdev->dev, "cpsw: error registering net device\n"); 2155 free_netdev(ndev); 2156 ret = -ENODEV; 2157 } 2158 2159 return ret; 2160 } 2161 2162 #define CPSW_QUIRK_IRQ BIT(0) 2163 2164 static struct platform_device_id cpsw_devtype[] = { 2165 { 2166 /* keep it for existing comaptibles */ 2167 .name = "cpsw", 2168 .driver_data = CPSW_QUIRK_IRQ, 2169 }, { 2170 .name = "am335x-cpsw", 2171 .driver_data = CPSW_QUIRK_IRQ, 2172 }, { 2173 .name = "am4372-cpsw", 2174 .driver_data = 0, 2175 }, { 2176 .name = "dra7-cpsw", 2177 .driver_data = 0, 2178 }, { 2179 /* sentinel */ 2180 } 2181 }; 2182 MODULE_DEVICE_TABLE(platform, cpsw_devtype); 2183 2184 enum ti_cpsw_type { 2185 CPSW = 0, 2186 AM335X_CPSW, 2187 AM4372_CPSW, 2188 DRA7_CPSW, 2189 }; 2190 2191 static const struct of_device_id cpsw_of_mtable[] = { 2192 { .compatible = "ti,cpsw", .data = &cpsw_devtype[CPSW], }, 2193 { .compatible = "ti,am335x-cpsw", .data = &cpsw_devtype[AM335X_CPSW], }, 2194 { .compatible = "ti,am4372-cpsw", .data = &cpsw_devtype[AM4372_CPSW], }, 2195 { .compatible = "ti,dra7-cpsw", .data = &cpsw_devtype[DRA7_CPSW], }, 2196 { /* sentinel */ }, 2197 }; 2198 MODULE_DEVICE_TABLE(of, cpsw_of_mtable); 2199 2200 static int cpsw_probe(struct platform_device *pdev) 2201 { 2202 struct cpsw_platform_data *data; 2203 struct net_device *ndev; 2204 struct cpsw_priv *priv; 2205 struct cpdma_params dma_params; 2206 struct cpsw_ale_params ale_params; 2207 void __iomem *ss_regs; 2208 struct resource *res, *ss_res; 2209 const struct of_device_id *of_id; 2210 u32 slave_offset, sliver_offset, slave_size; 2211 int ret = 0, i; 2212 int irq; 2213 2214 ndev = alloc_etherdev(sizeof(struct cpsw_priv)); 2215 if (!ndev) { 2216 dev_err(&pdev->dev, "error allocating net_device\n"); 2217 return -ENOMEM; 2218 } 2219 2220 platform_set_drvdata(pdev, ndev); 2221 priv = netdev_priv(ndev); 2222 spin_lock_init(&priv->lock); 2223 priv->pdev = pdev; 2224 priv->ndev = ndev; 2225 priv->dev = &ndev->dev; 2226 priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG); 2227 priv->rx_packet_max = max(rx_packet_max, 128); 2228 priv->cpts = devm_kzalloc(&pdev->dev, sizeof(struct cpts), GFP_KERNEL); 2229 if (!priv->cpts) { 2230 dev_err(&pdev->dev, "error allocating cpts\n"); 2231 ret = -ENOMEM; 2232 goto clean_ndev_ret; 2233 } 2234 2235 /* 2236 * This may be required here for child devices. 2237 */ 2238 pm_runtime_enable(&pdev->dev); 2239 2240 /* Select default pin state */ 2241 pinctrl_pm_select_default_state(&pdev->dev); 2242 2243 if (cpsw_probe_dt(&priv->data, pdev)) { 2244 dev_err(&pdev->dev, "cpsw: platform data missing\n"); 2245 ret = -ENODEV; 2246 goto clean_runtime_disable_ret; 2247 } 2248 data = &priv->data; 2249 2250 if (is_valid_ether_addr(data->slave_data[0].mac_addr)) { 2251 memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN); 2252 dev_info(&pdev->dev, "Detected MACID = %pM\n", priv->mac_addr); 2253 } else { 2254 eth_random_addr(priv->mac_addr); 2255 dev_info(&pdev->dev, "Random MACID = %pM\n", priv->mac_addr); 2256 } 2257 2258 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN); 2259 2260 priv->slaves = devm_kzalloc(&pdev->dev, 2261 sizeof(struct cpsw_slave) * data->slaves, 2262 GFP_KERNEL); 2263 if (!priv->slaves) { 2264 ret = -ENOMEM; 2265 goto clean_runtime_disable_ret; 2266 } 2267 for (i = 0; i < data->slaves; i++) 2268 priv->slaves[i].slave_num = i; 2269 2270 priv->slaves[0].ndev = ndev; 2271 priv->emac_port = 0; 2272 2273 priv->clk = devm_clk_get(&pdev->dev, "fck"); 2274 if (IS_ERR(priv->clk)) { 2275 dev_err(priv->dev, "fck is not found\n"); 2276 ret = -ENODEV; 2277 goto clean_runtime_disable_ret; 2278 } 2279 priv->coal_intvl = 0; 2280 priv->bus_freq_mhz = clk_get_rate(priv->clk) / 1000000; 2281 2282 ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2283 ss_regs = devm_ioremap_resource(&pdev->dev, ss_res); 2284 if (IS_ERR(ss_regs)) { 2285 ret = PTR_ERR(ss_regs); 2286 goto clean_runtime_disable_ret; 2287 } 2288 priv->regs = ss_regs; 2289 priv->host_port = HOST_PORT_NUM; 2290 2291 /* Need to enable clocks with runtime PM api to access module 2292 * registers 2293 */ 2294 pm_runtime_get_sync(&pdev->dev); 2295 priv->version = readl(&priv->regs->id_ver); 2296 pm_runtime_put_sync(&pdev->dev); 2297 2298 res = platform_get_resource(pdev, IORESOURCE_MEM, 1); 2299 priv->wr_regs = devm_ioremap_resource(&pdev->dev, res); 2300 if (IS_ERR(priv->wr_regs)) { 2301 ret = PTR_ERR(priv->wr_regs); 2302 goto clean_runtime_disable_ret; 2303 } 2304 2305 memset(&dma_params, 0, sizeof(dma_params)); 2306 memset(&ale_params, 0, sizeof(ale_params)); 2307 2308 switch (priv->version) { 2309 case CPSW_VERSION_1: 2310 priv->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET; 2311 priv->cpts->reg = ss_regs + CPSW1_CPTS_OFFSET; 2312 priv->hw_stats = ss_regs + CPSW1_HW_STATS; 2313 dma_params.dmaregs = ss_regs + CPSW1_CPDMA_OFFSET; 2314 dma_params.txhdp = ss_regs + CPSW1_STATERAM_OFFSET; 2315 ale_params.ale_regs = ss_regs + CPSW1_ALE_OFFSET; 2316 slave_offset = CPSW1_SLAVE_OFFSET; 2317 slave_size = CPSW1_SLAVE_SIZE; 2318 sliver_offset = CPSW1_SLIVER_OFFSET; 2319 dma_params.desc_mem_phys = 0; 2320 break; 2321 case CPSW_VERSION_2: 2322 case CPSW_VERSION_3: 2323 case CPSW_VERSION_4: 2324 priv->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET; 2325 priv->cpts->reg = ss_regs + CPSW2_CPTS_OFFSET; 2326 priv->hw_stats = ss_regs + CPSW2_HW_STATS; 2327 dma_params.dmaregs = ss_regs + CPSW2_CPDMA_OFFSET; 2328 dma_params.txhdp = ss_regs + CPSW2_STATERAM_OFFSET; 2329 ale_params.ale_regs = ss_regs + CPSW2_ALE_OFFSET; 2330 slave_offset = CPSW2_SLAVE_OFFSET; 2331 slave_size = CPSW2_SLAVE_SIZE; 2332 sliver_offset = CPSW2_SLIVER_OFFSET; 2333 dma_params.desc_mem_phys = 2334 (u32 __force) ss_res->start + CPSW2_BD_OFFSET; 2335 break; 2336 default: 2337 dev_err(priv->dev, "unknown version 0x%08x\n", priv->version); 2338 ret = -ENODEV; 2339 goto clean_runtime_disable_ret; 2340 } 2341 for (i = 0; i < priv->data.slaves; i++) { 2342 struct cpsw_slave *slave = &priv->slaves[i]; 2343 cpsw_slave_init(slave, priv, slave_offset, sliver_offset); 2344 slave_offset += slave_size; 2345 sliver_offset += SLIVER_SIZE; 2346 } 2347 2348 dma_params.dev = &pdev->dev; 2349 dma_params.rxthresh = dma_params.dmaregs + CPDMA_RXTHRESH; 2350 dma_params.rxfree = dma_params.dmaregs + CPDMA_RXFREE; 2351 dma_params.rxhdp = dma_params.txhdp + CPDMA_RXHDP; 2352 dma_params.txcp = dma_params.txhdp + CPDMA_TXCP; 2353 dma_params.rxcp = dma_params.txhdp + CPDMA_RXCP; 2354 2355 dma_params.num_chan = data->channels; 2356 dma_params.has_soft_reset = true; 2357 dma_params.min_packet_size = CPSW_MIN_PACKET_SIZE; 2358 dma_params.desc_mem_size = data->bd_ram_size; 2359 dma_params.desc_align = 16; 2360 dma_params.has_ext_regs = true; 2361 dma_params.desc_hw_addr = dma_params.desc_mem_phys; 2362 2363 priv->dma = cpdma_ctlr_create(&dma_params); 2364 if (!priv->dma) { 2365 dev_err(priv->dev, "error initializing dma\n"); 2366 ret = -ENOMEM; 2367 goto clean_runtime_disable_ret; 2368 } 2369 2370 priv->txch = cpdma_chan_create(priv->dma, tx_chan_num(0), 2371 cpsw_tx_handler); 2372 priv->rxch = cpdma_chan_create(priv->dma, rx_chan_num(0), 2373 cpsw_rx_handler); 2374 2375 if (WARN_ON(!priv->txch || !priv->rxch)) { 2376 dev_err(priv->dev, "error initializing dma channels\n"); 2377 ret = -ENOMEM; 2378 goto clean_dma_ret; 2379 } 2380 2381 ale_params.dev = &ndev->dev; 2382 ale_params.ale_ageout = ale_ageout; 2383 ale_params.ale_entries = data->ale_entries; 2384 ale_params.ale_ports = data->slaves; 2385 2386 priv->ale = cpsw_ale_create(&ale_params); 2387 if (!priv->ale) { 2388 dev_err(priv->dev, "error initializing ale engine\n"); 2389 ret = -ENODEV; 2390 goto clean_dma_ret; 2391 } 2392 2393 ndev->irq = platform_get_irq(pdev, 1); 2394 if (ndev->irq < 0) { 2395 dev_err(priv->dev, "error getting irq resource\n"); 2396 ret = -ENOENT; 2397 goto clean_ale_ret; 2398 } 2399 2400 of_id = of_match_device(cpsw_of_mtable, &pdev->dev); 2401 if (of_id) { 2402 pdev->id_entry = of_id->data; 2403 if (pdev->id_entry->driver_data) 2404 priv->quirk_irq = true; 2405 } 2406 2407 /* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and 2408 * MISC IRQs which are always kept disabled with this driver so 2409 * we will not request them. 2410 * 2411 * If anyone wants to implement support for those, make sure to 2412 * first request and append them to irqs_table array. 2413 */ 2414 2415 /* RX IRQ */ 2416 irq = platform_get_irq(pdev, 1); 2417 if (irq < 0) 2418 goto clean_ale_ret; 2419 2420 priv->irqs_table[0] = irq; 2421 ret = devm_request_irq(&pdev->dev, irq, cpsw_rx_interrupt, 2422 0, dev_name(&pdev->dev), priv); 2423 if (ret < 0) { 2424 dev_err(priv->dev, "error attaching irq (%d)\n", ret); 2425 goto clean_ale_ret; 2426 } 2427 2428 /* TX IRQ */ 2429 irq = platform_get_irq(pdev, 2); 2430 if (irq < 0) 2431 goto clean_ale_ret; 2432 2433 priv->irqs_table[1] = irq; 2434 ret = devm_request_irq(&pdev->dev, irq, cpsw_tx_interrupt, 2435 0, dev_name(&pdev->dev), priv); 2436 if (ret < 0) { 2437 dev_err(priv->dev, "error attaching irq (%d)\n", ret); 2438 goto clean_ale_ret; 2439 } 2440 priv->num_irqs = 2; 2441 2442 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 2443 2444 ndev->netdev_ops = &cpsw_netdev_ops; 2445 ndev->ethtool_ops = &cpsw_ethtool_ops; 2446 netif_napi_add(ndev, &priv->napi_rx, cpsw_rx_poll, CPSW_POLL_WEIGHT); 2447 netif_napi_add(ndev, &priv->napi_tx, cpsw_tx_poll, CPSW_POLL_WEIGHT); 2448 2449 /* register the network device */ 2450 SET_NETDEV_DEV(ndev, &pdev->dev); 2451 ret = register_netdev(ndev); 2452 if (ret) { 2453 dev_err(priv->dev, "error registering net device\n"); 2454 ret = -ENODEV; 2455 goto clean_ale_ret; 2456 } 2457 2458 cpsw_notice(priv, probe, "initialized device (regs %pa, irq %d)\n", 2459 &ss_res->start, ndev->irq); 2460 2461 if (priv->data.dual_emac) { 2462 ret = cpsw_probe_dual_emac(pdev, priv); 2463 if (ret) { 2464 cpsw_err(priv, probe, "error probe slave 2 emac interface\n"); 2465 goto clean_ale_ret; 2466 } 2467 } 2468 2469 return 0; 2470 2471 clean_ale_ret: 2472 cpsw_ale_destroy(priv->ale); 2473 clean_dma_ret: 2474 cpdma_chan_destroy(priv->txch); 2475 cpdma_chan_destroy(priv->rxch); 2476 cpdma_ctlr_destroy(priv->dma); 2477 clean_runtime_disable_ret: 2478 pm_runtime_disable(&pdev->dev); 2479 clean_ndev_ret: 2480 free_netdev(priv->ndev); 2481 return ret; 2482 } 2483 2484 static int cpsw_remove_child_device(struct device *dev, void *c) 2485 { 2486 struct platform_device *pdev = to_platform_device(dev); 2487 2488 of_device_unregister(pdev); 2489 2490 return 0; 2491 } 2492 2493 static int cpsw_remove(struct platform_device *pdev) 2494 { 2495 struct net_device *ndev = platform_get_drvdata(pdev); 2496 struct cpsw_priv *priv = netdev_priv(ndev); 2497 2498 if (priv->data.dual_emac) 2499 unregister_netdev(cpsw_get_slave_ndev(priv, 1)); 2500 unregister_netdev(ndev); 2501 2502 cpsw_ale_destroy(priv->ale); 2503 cpdma_chan_destroy(priv->txch); 2504 cpdma_chan_destroy(priv->rxch); 2505 cpdma_ctlr_destroy(priv->dma); 2506 pm_runtime_disable(&pdev->dev); 2507 device_for_each_child(&pdev->dev, NULL, cpsw_remove_child_device); 2508 if (priv->data.dual_emac) 2509 free_netdev(cpsw_get_slave_ndev(priv, 1)); 2510 free_netdev(ndev); 2511 return 0; 2512 } 2513 2514 #ifdef CONFIG_PM_SLEEP 2515 static int cpsw_suspend(struct device *dev) 2516 { 2517 struct platform_device *pdev = to_platform_device(dev); 2518 struct net_device *ndev = platform_get_drvdata(pdev); 2519 struct cpsw_priv *priv = netdev_priv(ndev); 2520 2521 if (priv->data.dual_emac) { 2522 int i; 2523 2524 for (i = 0; i < priv->data.slaves; i++) { 2525 if (netif_running(priv->slaves[i].ndev)) 2526 cpsw_ndo_stop(priv->slaves[i].ndev); 2527 soft_reset_slave(priv->slaves + i); 2528 } 2529 } else { 2530 if (netif_running(ndev)) 2531 cpsw_ndo_stop(ndev); 2532 for_each_slave(priv, soft_reset_slave); 2533 } 2534 2535 pm_runtime_put_sync(&pdev->dev); 2536 2537 /* Select sleep pin state */ 2538 pinctrl_pm_select_sleep_state(&pdev->dev); 2539 2540 return 0; 2541 } 2542 2543 static int cpsw_resume(struct device *dev) 2544 { 2545 struct platform_device *pdev = to_platform_device(dev); 2546 struct net_device *ndev = platform_get_drvdata(pdev); 2547 struct cpsw_priv *priv = netdev_priv(ndev); 2548 2549 pm_runtime_get_sync(&pdev->dev); 2550 2551 /* Select default pin state */ 2552 pinctrl_pm_select_default_state(&pdev->dev); 2553 2554 if (priv->data.dual_emac) { 2555 int i; 2556 2557 for (i = 0; i < priv->data.slaves; i++) { 2558 if (netif_running(priv->slaves[i].ndev)) 2559 cpsw_ndo_open(priv->slaves[i].ndev); 2560 } 2561 } else { 2562 if (netif_running(ndev)) 2563 cpsw_ndo_open(ndev); 2564 } 2565 return 0; 2566 } 2567 #endif 2568 2569 static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume); 2570 2571 static struct platform_driver cpsw_driver = { 2572 .driver = { 2573 .name = "cpsw", 2574 .pm = &cpsw_pm_ops, 2575 .of_match_table = cpsw_of_mtable, 2576 }, 2577 .probe = cpsw_probe, 2578 .remove = cpsw_remove, 2579 }; 2580 2581 static int __init cpsw_init(void) 2582 { 2583 return platform_driver_register(&cpsw_driver); 2584 } 2585 late_initcall(cpsw_init); 2586 2587 static void __exit cpsw_exit(void) 2588 { 2589 platform_driver_unregister(&cpsw_driver); 2590 } 2591 module_exit(cpsw_exit); 2592 2593 MODULE_LICENSE("GPL"); 2594 MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>"); 2595 MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>"); 2596 MODULE_DESCRIPTION("TI CPSW Ethernet driver"); 2597