xref: /openbmc/linux/drivers/net/ethernet/ti/cpsw.c (revision a2cab953)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Texas Instruments Ethernet Switch Driver
4  *
5  * Copyright (C) 2012 Texas Instruments
6  *
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/io.h>
11 #include <linux/clk.h>
12 #include <linux/timer.h>
13 #include <linux/module.h>
14 #include <linux/platform_device.h>
15 #include <linux/irqreturn.h>
16 #include <linux/interrupt.h>
17 #include <linux/if_ether.h>
18 #include <linux/etherdevice.h>
19 #include <linux/netdevice.h>
20 #include <linux/net_tstamp.h>
21 #include <linux/phy.h>
22 #include <linux/phy/phy.h>
23 #include <linux/workqueue.h>
24 #include <linux/delay.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/gpio/consumer.h>
27 #include <linux/of.h>
28 #include <linux/of_mdio.h>
29 #include <linux/of_net.h>
30 #include <linux/of_device.h>
31 #include <linux/if_vlan.h>
32 #include <linux/kmemleak.h>
33 #include <linux/sys_soc.h>
34 #include <net/page_pool.h>
35 #include <linux/bpf.h>
36 #include <linux/bpf_trace.h>
37 
38 #include <linux/pinctrl/consumer.h>
39 #include <net/pkt_cls.h>
40 
41 #include "cpsw.h"
42 #include "cpsw_ale.h"
43 #include "cpsw_priv.h"
44 #include "cpsw_sl.h"
45 #include "cpts.h"
46 #include "davinci_cpdma.h"
47 
48 #include <net/pkt_sched.h>
49 
50 static int debug_level;
51 module_param(debug_level, int, 0);
52 MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)");
53 
54 static int ale_ageout = 10;
55 module_param(ale_ageout, int, 0);
56 MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)");
57 
58 static int rx_packet_max = CPSW_MAX_PACKET_SIZE;
59 module_param(rx_packet_max, int, 0);
60 MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)");
61 
62 static int descs_pool_size = CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT;
63 module_param(descs_pool_size, int, 0444);
64 MODULE_PARM_DESC(descs_pool_size, "Number of CPDMA CPPI descriptors in pool");
65 
66 #define for_each_slave(priv, func, arg...)				\
67 	do {								\
68 		struct cpsw_slave *slave;				\
69 		struct cpsw_common *cpsw = (priv)->cpsw;		\
70 		int n;							\
71 		if (cpsw->data.dual_emac)				\
72 			(func)((cpsw)->slaves + priv->emac_port, ##arg);\
73 		else							\
74 			for (n = cpsw->data.slaves,			\
75 					slave = cpsw->slaves;		\
76 					n; n--)				\
77 				(func)(slave++, ##arg);			\
78 	} while (0)
79 
80 static int cpsw_slave_index_priv(struct cpsw_common *cpsw,
81 				 struct cpsw_priv *priv)
82 {
83 	return cpsw->data.dual_emac ? priv->emac_port : cpsw->data.active_slave;
84 }
85 
86 static int cpsw_get_slave_port(u32 slave_num)
87 {
88 	return slave_num + 1;
89 }
90 
91 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
92 				    __be16 proto, u16 vid);
93 
94 static void cpsw_set_promiscious(struct net_device *ndev, bool enable)
95 {
96 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
97 	struct cpsw_ale *ale = cpsw->ale;
98 	int i;
99 
100 	if (cpsw->data.dual_emac) {
101 		bool flag = false;
102 
103 		/* Enabling promiscuous mode for one interface will be
104 		 * common for both the interface as the interface shares
105 		 * the same hardware resource.
106 		 */
107 		for (i = 0; i < cpsw->data.slaves; i++)
108 			if (cpsw->slaves[i].ndev->flags & IFF_PROMISC)
109 				flag = true;
110 
111 		if (!enable && flag) {
112 			enable = true;
113 			dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n");
114 		}
115 
116 		if (enable) {
117 			/* Enable Bypass */
118 			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1);
119 
120 			dev_dbg(&ndev->dev, "promiscuity enabled\n");
121 		} else {
122 			/* Disable Bypass */
123 			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0);
124 			dev_dbg(&ndev->dev, "promiscuity disabled\n");
125 		}
126 	} else {
127 		if (enable) {
128 			unsigned long timeout = jiffies + HZ;
129 
130 			/* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */
131 			for (i = 0; i <= cpsw->data.slaves; i++) {
132 				cpsw_ale_control_set(ale, i,
133 						     ALE_PORT_NOLEARN, 1);
134 				cpsw_ale_control_set(ale, i,
135 						     ALE_PORT_NO_SA_UPDATE, 1);
136 			}
137 
138 			/* Clear All Untouched entries */
139 			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
140 			do {
141 				cpu_relax();
142 				if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT))
143 					break;
144 			} while (time_after(timeout, jiffies));
145 			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
146 
147 			/* Clear all mcast from ALE */
148 			cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS, -1);
149 			__hw_addr_ref_unsync_dev(&ndev->mc, ndev, NULL);
150 
151 			/* Flood All Unicast Packets to Host port */
152 			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1);
153 			dev_dbg(&ndev->dev, "promiscuity enabled\n");
154 		} else {
155 			/* Don't Flood All Unicast Packets to Host port */
156 			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0);
157 
158 			/* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */
159 			for (i = 0; i <= cpsw->data.slaves; i++) {
160 				cpsw_ale_control_set(ale, i,
161 						     ALE_PORT_NOLEARN, 0);
162 				cpsw_ale_control_set(ale, i,
163 						     ALE_PORT_NO_SA_UPDATE, 0);
164 			}
165 			dev_dbg(&ndev->dev, "promiscuity disabled\n");
166 		}
167 	}
168 }
169 
170 /**
171  * cpsw_set_mc - adds multicast entry to the table if it's not added or deletes
172  * if it's not deleted
173  * @ndev: device to sync
174  * @addr: address to be added or deleted
175  * @vid: vlan id, if vid < 0 set/unset address for real device
176  * @add: add address if the flag is set or remove otherwise
177  */
178 static int cpsw_set_mc(struct net_device *ndev, const u8 *addr,
179 		       int vid, int add)
180 {
181 	struct cpsw_priv *priv = netdev_priv(ndev);
182 	struct cpsw_common *cpsw = priv->cpsw;
183 	int mask, flags, ret;
184 
185 	if (vid < 0) {
186 		if (cpsw->data.dual_emac)
187 			vid = cpsw->slaves[priv->emac_port].port_vlan;
188 		else
189 			vid = 0;
190 	}
191 
192 	mask = cpsw->data.dual_emac ? ALE_PORT_HOST : ALE_ALL_PORTS;
193 	flags = vid ? ALE_VLAN : 0;
194 
195 	if (add)
196 		ret = cpsw_ale_add_mcast(cpsw->ale, addr, mask, flags, vid, 0);
197 	else
198 		ret = cpsw_ale_del_mcast(cpsw->ale, addr, 0, flags, vid);
199 
200 	return ret;
201 }
202 
203 static int cpsw_update_vlan_mc(struct net_device *vdev, int vid, void *ctx)
204 {
205 	struct addr_sync_ctx *sync_ctx = ctx;
206 	struct netdev_hw_addr *ha;
207 	int found = 0, ret = 0;
208 
209 	if (!vdev || !(vdev->flags & IFF_UP))
210 		return 0;
211 
212 	/* vlan address is relevant if its sync_cnt != 0 */
213 	netdev_for_each_mc_addr(ha, vdev) {
214 		if (ether_addr_equal(ha->addr, sync_ctx->addr)) {
215 			found = ha->sync_cnt;
216 			break;
217 		}
218 	}
219 
220 	if (found)
221 		sync_ctx->consumed++;
222 
223 	if (sync_ctx->flush) {
224 		if (!found)
225 			cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 0);
226 		return 0;
227 	}
228 
229 	if (found)
230 		ret = cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 1);
231 
232 	return ret;
233 }
234 
235 static int cpsw_add_mc_addr(struct net_device *ndev, const u8 *addr, int num)
236 {
237 	struct addr_sync_ctx sync_ctx;
238 	int ret;
239 
240 	sync_ctx.consumed = 0;
241 	sync_ctx.addr = addr;
242 	sync_ctx.ndev = ndev;
243 	sync_ctx.flush = 0;
244 
245 	ret = vlan_for_each(ndev, cpsw_update_vlan_mc, &sync_ctx);
246 	if (sync_ctx.consumed < num && !ret)
247 		ret = cpsw_set_mc(ndev, addr, -1, 1);
248 
249 	return ret;
250 }
251 
252 static int cpsw_del_mc_addr(struct net_device *ndev, const u8 *addr, int num)
253 {
254 	struct addr_sync_ctx sync_ctx;
255 
256 	sync_ctx.consumed = 0;
257 	sync_ctx.addr = addr;
258 	sync_ctx.ndev = ndev;
259 	sync_ctx.flush = 1;
260 
261 	vlan_for_each(ndev, cpsw_update_vlan_mc, &sync_ctx);
262 	if (sync_ctx.consumed == num)
263 		cpsw_set_mc(ndev, addr, -1, 0);
264 
265 	return 0;
266 }
267 
268 static int cpsw_purge_vlan_mc(struct net_device *vdev, int vid, void *ctx)
269 {
270 	struct addr_sync_ctx *sync_ctx = ctx;
271 	struct netdev_hw_addr *ha;
272 	int found = 0;
273 
274 	if (!vdev || !(vdev->flags & IFF_UP))
275 		return 0;
276 
277 	/* vlan address is relevant if its sync_cnt != 0 */
278 	netdev_for_each_mc_addr(ha, vdev) {
279 		if (ether_addr_equal(ha->addr, sync_ctx->addr)) {
280 			found = ha->sync_cnt;
281 			break;
282 		}
283 	}
284 
285 	if (!found)
286 		return 0;
287 
288 	sync_ctx->consumed++;
289 	cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 0);
290 	return 0;
291 }
292 
293 static int cpsw_purge_all_mc(struct net_device *ndev, const u8 *addr, int num)
294 {
295 	struct addr_sync_ctx sync_ctx;
296 
297 	sync_ctx.addr = addr;
298 	sync_ctx.ndev = ndev;
299 	sync_ctx.consumed = 0;
300 
301 	vlan_for_each(ndev, cpsw_purge_vlan_mc, &sync_ctx);
302 	if (sync_ctx.consumed < num)
303 		cpsw_set_mc(ndev, addr, -1, 0);
304 
305 	return 0;
306 }
307 
308 static void cpsw_ndo_set_rx_mode(struct net_device *ndev)
309 {
310 	struct cpsw_priv *priv = netdev_priv(ndev);
311 	struct cpsw_common *cpsw = priv->cpsw;
312 	int slave_port = -1;
313 
314 	if (cpsw->data.dual_emac)
315 		slave_port = priv->emac_port + 1;
316 
317 	if (ndev->flags & IFF_PROMISC) {
318 		/* Enable promiscuous mode */
319 		cpsw_set_promiscious(ndev, true);
320 		cpsw_ale_set_allmulti(cpsw->ale, IFF_ALLMULTI, slave_port);
321 		return;
322 	} else {
323 		/* Disable promiscuous mode */
324 		cpsw_set_promiscious(ndev, false);
325 	}
326 
327 	/* Restore allmulti on vlans if necessary */
328 	cpsw_ale_set_allmulti(cpsw->ale,
329 			      ndev->flags & IFF_ALLMULTI, slave_port);
330 
331 	/* add/remove mcast address either for real netdev or for vlan */
332 	__hw_addr_ref_sync_dev(&ndev->mc, ndev, cpsw_add_mc_addr,
333 			       cpsw_del_mc_addr);
334 }
335 
336 static unsigned int cpsw_rxbuf_total_len(unsigned int len)
337 {
338 	len += CPSW_HEADROOM_NA;
339 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
340 
341 	return SKB_DATA_ALIGN(len);
342 }
343 
344 static void cpsw_rx_handler(void *token, int len, int status)
345 {
346 	struct page		*new_page, *page = token;
347 	void			*pa = page_address(page);
348 	struct cpsw_meta_xdp	*xmeta = pa + CPSW_XMETA_OFFSET;
349 	struct cpsw_common	*cpsw = ndev_to_cpsw(xmeta->ndev);
350 	int			pkt_size = cpsw->rx_packet_max;
351 	int			ret = 0, port, ch = xmeta->ch;
352 	int			headroom = CPSW_HEADROOM_NA;
353 	struct net_device	*ndev = xmeta->ndev;
354 	struct cpsw_priv	*priv;
355 	struct page_pool	*pool;
356 	struct sk_buff		*skb;
357 	struct xdp_buff		xdp;
358 	dma_addr_t		dma;
359 
360 	if (cpsw->data.dual_emac && status >= 0) {
361 		port = CPDMA_RX_SOURCE_PORT(status);
362 		if (port)
363 			ndev = cpsw->slaves[--port].ndev;
364 	}
365 
366 	priv = netdev_priv(ndev);
367 	pool = cpsw->page_pool[ch];
368 	if (unlikely(status < 0) || unlikely(!netif_running(ndev))) {
369 		/* In dual emac mode check for all interfaces */
370 		if (cpsw->data.dual_emac && cpsw->usage_count &&
371 		    (status >= 0)) {
372 			/* The packet received is for the interface which
373 			 * is already down and the other interface is up
374 			 * and running, instead of freeing which results
375 			 * in reducing of the number of rx descriptor in
376 			 * DMA engine, requeue page back to cpdma.
377 			 */
378 			new_page = page;
379 			goto requeue;
380 		}
381 
382 		/* the interface is going down, pages are purged */
383 		page_pool_recycle_direct(pool, page);
384 		return;
385 	}
386 
387 	new_page = page_pool_dev_alloc_pages(pool);
388 	if (unlikely(!new_page)) {
389 		new_page = page;
390 		ndev->stats.rx_dropped++;
391 		goto requeue;
392 	}
393 
394 	if (priv->xdp_prog) {
395 		int size = len;
396 
397 		xdp_init_buff(&xdp, PAGE_SIZE, &priv->xdp_rxq[ch]);
398 		if (status & CPDMA_RX_VLAN_ENCAP) {
399 			headroom += CPSW_RX_VLAN_ENCAP_HDR_SIZE;
400 			size -= CPSW_RX_VLAN_ENCAP_HDR_SIZE;
401 		}
402 
403 		xdp_prepare_buff(&xdp, pa, headroom, size, false);
404 
405 		port = priv->emac_port + cpsw->data.dual_emac;
406 		ret = cpsw_run_xdp(priv, ch, &xdp, page, port, &len);
407 		if (ret != CPSW_XDP_PASS)
408 			goto requeue;
409 
410 		headroom = xdp.data - xdp.data_hard_start;
411 
412 		/* XDP prog can modify vlan tag, so can't use encap header */
413 		status &= ~CPDMA_RX_VLAN_ENCAP;
414 	}
415 
416 	/* pass skb to netstack if no XDP prog or returned XDP_PASS */
417 	skb = build_skb(pa, cpsw_rxbuf_total_len(pkt_size));
418 	if (!skb) {
419 		ndev->stats.rx_dropped++;
420 		page_pool_recycle_direct(pool, page);
421 		goto requeue;
422 	}
423 
424 	skb_reserve(skb, headroom);
425 	skb_put(skb, len);
426 	skb->dev = ndev;
427 	if (status & CPDMA_RX_VLAN_ENCAP)
428 		cpsw_rx_vlan_encap(skb);
429 	if (priv->rx_ts_enabled)
430 		cpts_rx_timestamp(cpsw->cpts, skb);
431 	skb->protocol = eth_type_trans(skb, ndev);
432 
433 	/* mark skb for recycling */
434 	skb_mark_for_recycle(skb);
435 	netif_receive_skb(skb);
436 
437 	ndev->stats.rx_bytes += len;
438 	ndev->stats.rx_packets++;
439 
440 requeue:
441 	xmeta = page_address(new_page) + CPSW_XMETA_OFFSET;
442 	xmeta->ndev = ndev;
443 	xmeta->ch = ch;
444 
445 	dma = page_pool_get_dma_addr(new_page) + CPSW_HEADROOM_NA;
446 	ret = cpdma_chan_submit_mapped(cpsw->rxv[ch].ch, new_page, dma,
447 				       pkt_size, 0);
448 	if (ret < 0) {
449 		WARN_ON(ret == -ENOMEM);
450 		page_pool_recycle_direct(pool, new_page);
451 	}
452 }
453 
454 static void _cpsw_adjust_link(struct cpsw_slave *slave,
455 			      struct cpsw_priv *priv, bool *link)
456 {
457 	struct phy_device	*phy = slave->phy;
458 	u32			mac_control = 0;
459 	u32			slave_port;
460 	struct cpsw_common *cpsw = priv->cpsw;
461 
462 	if (!phy)
463 		return;
464 
465 	slave_port = cpsw_get_slave_port(slave->slave_num);
466 
467 	if (phy->link) {
468 		mac_control = CPSW_SL_CTL_GMII_EN;
469 
470 		if (phy->speed == 1000)
471 			mac_control |= CPSW_SL_CTL_GIG;
472 		if (phy->duplex)
473 			mac_control |= CPSW_SL_CTL_FULLDUPLEX;
474 
475 		/* set speed_in input in case RMII mode is used in 100Mbps */
476 		if (phy->speed == 100)
477 			mac_control |= CPSW_SL_CTL_IFCTL_A;
478 		/* in band mode only works in 10Mbps RGMII mode */
479 		else if ((phy->speed == 10) && phy_interface_is_rgmii(phy))
480 			mac_control |= CPSW_SL_CTL_EXT_EN; /* In Band mode */
481 
482 		if (priv->rx_pause)
483 			mac_control |= CPSW_SL_CTL_RX_FLOW_EN;
484 
485 		if (priv->tx_pause)
486 			mac_control |= CPSW_SL_CTL_TX_FLOW_EN;
487 
488 		if (mac_control != slave->mac_control)
489 			cpsw_sl_ctl_set(slave->mac_sl, mac_control);
490 
491 		/* enable forwarding */
492 		cpsw_ale_control_set(cpsw->ale, slave_port,
493 				     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
494 
495 		*link = true;
496 
497 		if (priv->shp_cfg_speed &&
498 		    priv->shp_cfg_speed != slave->phy->speed &&
499 		    !cpsw_shp_is_off(priv))
500 			dev_warn(priv->dev,
501 				 "Speed was changed, CBS shaper speeds are changed!");
502 	} else {
503 		mac_control = 0;
504 		/* disable forwarding */
505 		cpsw_ale_control_set(cpsw->ale, slave_port,
506 				     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
507 
508 		cpsw_sl_wait_for_idle(slave->mac_sl, 100);
509 
510 		cpsw_sl_ctl_reset(slave->mac_sl);
511 	}
512 
513 	if (mac_control != slave->mac_control)
514 		phy_print_status(phy);
515 
516 	slave->mac_control = mac_control;
517 }
518 
519 static void cpsw_adjust_link(struct net_device *ndev)
520 {
521 	struct cpsw_priv	*priv = netdev_priv(ndev);
522 	struct cpsw_common	*cpsw = priv->cpsw;
523 	bool			link = false;
524 
525 	for_each_slave(priv, _cpsw_adjust_link, priv, &link);
526 
527 	if (link) {
528 		if (cpsw_need_resplit(cpsw))
529 			cpsw_split_res(cpsw);
530 
531 		netif_carrier_on(ndev);
532 		if (netif_running(ndev))
533 			netif_tx_wake_all_queues(ndev);
534 	} else {
535 		netif_carrier_off(ndev);
536 		netif_tx_stop_all_queues(ndev);
537 	}
538 }
539 
540 static inline void cpsw_add_dual_emac_def_ale_entries(
541 		struct cpsw_priv *priv, struct cpsw_slave *slave,
542 		u32 slave_port)
543 {
544 	struct cpsw_common *cpsw = priv->cpsw;
545 	u32 port_mask = 1 << slave_port | ALE_PORT_HOST;
546 
547 	if (cpsw->version == CPSW_VERSION_1)
548 		slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN);
549 	else
550 		slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN);
551 	cpsw_ale_add_vlan(cpsw->ale, slave->port_vlan, port_mask,
552 			  port_mask, port_mask, 0);
553 	cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
554 			   ALE_PORT_HOST, ALE_VLAN, slave->port_vlan, 0);
555 	cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
556 			   HOST_PORT_NUM, ALE_VLAN |
557 			   ALE_SECURE, slave->port_vlan);
558 	cpsw_ale_control_set(cpsw->ale, slave_port,
559 			     ALE_PORT_DROP_UNKNOWN_VLAN, 1);
560 }
561 
562 static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv)
563 {
564 	u32 slave_port;
565 	struct phy_device *phy;
566 	struct cpsw_common *cpsw = priv->cpsw;
567 
568 	cpsw_sl_reset(slave->mac_sl, 100);
569 	cpsw_sl_ctl_reset(slave->mac_sl);
570 
571 	/* setup priority mapping */
572 	cpsw_sl_reg_write(slave->mac_sl, CPSW_SL_RX_PRI_MAP,
573 			  RX_PRIORITY_MAPPING);
574 
575 	switch (cpsw->version) {
576 	case CPSW_VERSION_1:
577 		slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP);
578 		/* Increase RX FIFO size to 5 for supporting fullduplex
579 		 * flow control mode
580 		 */
581 		slave_write(slave,
582 			    (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
583 			    CPSW_MAX_BLKS_RX, CPSW1_MAX_BLKS);
584 		break;
585 	case CPSW_VERSION_2:
586 	case CPSW_VERSION_3:
587 	case CPSW_VERSION_4:
588 		slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP);
589 		/* Increase RX FIFO size to 5 for supporting fullduplex
590 		 * flow control mode
591 		 */
592 		slave_write(slave,
593 			    (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
594 			    CPSW_MAX_BLKS_RX, CPSW2_MAX_BLKS);
595 		break;
596 	}
597 
598 	/* setup max packet size, and mac address */
599 	cpsw_sl_reg_write(slave->mac_sl, CPSW_SL_RX_MAXLEN,
600 			  cpsw->rx_packet_max);
601 	cpsw_set_slave_mac(slave, priv);
602 
603 	slave->mac_control = 0;	/* no link yet */
604 
605 	slave_port = cpsw_get_slave_port(slave->slave_num);
606 
607 	if (cpsw->data.dual_emac)
608 		cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port);
609 	else
610 		cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
611 				   1 << slave_port, 0, 0, ALE_MCAST_FWD_2);
612 
613 	if (slave->data->phy_node) {
614 		phy = of_phy_connect(priv->ndev, slave->data->phy_node,
615 				 &cpsw_adjust_link, 0, slave->data->phy_if);
616 		if (!phy) {
617 			dev_err(priv->dev, "phy \"%pOF\" not found on slave %d\n",
618 				slave->data->phy_node,
619 				slave->slave_num);
620 			return;
621 		}
622 	} else {
623 		phy = phy_connect(priv->ndev, slave->data->phy_id,
624 				 &cpsw_adjust_link, slave->data->phy_if);
625 		if (IS_ERR(phy)) {
626 			dev_err(priv->dev,
627 				"phy \"%s\" not found on slave %d, err %ld\n",
628 				slave->data->phy_id, slave->slave_num,
629 				PTR_ERR(phy));
630 			return;
631 		}
632 	}
633 
634 	slave->phy = phy;
635 
636 	phy_attached_info(slave->phy);
637 
638 	phy_start(slave->phy);
639 
640 	/* Configure GMII_SEL register */
641 	if (!IS_ERR(slave->data->ifphy))
642 		phy_set_mode_ext(slave->data->ifphy, PHY_MODE_ETHERNET,
643 				 slave->data->phy_if);
644 	else
645 		cpsw_phy_sel(cpsw->dev, slave->phy->interface,
646 			     slave->slave_num);
647 }
648 
649 static inline void cpsw_add_default_vlan(struct cpsw_priv *priv)
650 {
651 	struct cpsw_common *cpsw = priv->cpsw;
652 	const int vlan = cpsw->data.default_vlan;
653 	u32 reg;
654 	int i;
655 	int unreg_mcast_mask;
656 
657 	reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN :
658 	       CPSW2_PORT_VLAN;
659 
660 	writel(vlan, &cpsw->host_port_regs->port_vlan);
661 
662 	for (i = 0; i < cpsw->data.slaves; i++)
663 		slave_write(cpsw->slaves + i, vlan, reg);
664 
665 	if (priv->ndev->flags & IFF_ALLMULTI)
666 		unreg_mcast_mask = ALE_ALL_PORTS;
667 	else
668 		unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
669 
670 	cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS,
671 			  ALE_ALL_PORTS, ALE_ALL_PORTS,
672 			  unreg_mcast_mask);
673 }
674 
675 static void cpsw_init_host_port(struct cpsw_priv *priv)
676 {
677 	u32 fifo_mode;
678 	u32 control_reg;
679 	struct cpsw_common *cpsw = priv->cpsw;
680 
681 	/* soft reset the controller and initialize ale */
682 	soft_reset("cpsw", &cpsw->regs->soft_reset);
683 	cpsw_ale_start(cpsw->ale);
684 
685 	/* switch to vlan unaware mode */
686 	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_VLAN_AWARE,
687 			     CPSW_ALE_VLAN_AWARE);
688 	control_reg = readl(&cpsw->regs->control);
689 	control_reg |= CPSW_VLAN_AWARE | CPSW_RX_VLAN_ENCAP;
690 	writel(control_reg, &cpsw->regs->control);
691 	fifo_mode = (cpsw->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE :
692 		     CPSW_FIFO_NORMAL_MODE;
693 	writel(fifo_mode, &cpsw->host_port_regs->tx_in_ctl);
694 
695 	/* setup host port priority mapping */
696 	writel_relaxed(CPDMA_TX_PRIORITY_MAP,
697 		       &cpsw->host_port_regs->cpdma_tx_pri_map);
698 	writel_relaxed(0, &cpsw->host_port_regs->cpdma_rx_chan_map);
699 
700 	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM,
701 			     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
702 
703 	if (!cpsw->data.dual_emac) {
704 		cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
705 				   0, 0);
706 		cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
707 				   ALE_PORT_HOST, 0, 0, ALE_MCAST_FWD_2);
708 	}
709 }
710 
711 static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_common *cpsw)
712 {
713 	u32 slave_port;
714 
715 	slave_port = cpsw_get_slave_port(slave->slave_num);
716 
717 	if (!slave->phy)
718 		return;
719 	phy_stop(slave->phy);
720 	phy_disconnect(slave->phy);
721 	slave->phy = NULL;
722 	cpsw_ale_control_set(cpsw->ale, slave_port,
723 			     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
724 	cpsw_sl_reset(slave->mac_sl, 100);
725 	cpsw_sl_ctl_reset(slave->mac_sl);
726 }
727 
728 static int cpsw_restore_vlans(struct net_device *vdev, int vid, void *arg)
729 {
730 	struct cpsw_priv *priv = arg;
731 
732 	if (!vdev)
733 		return 0;
734 
735 	cpsw_ndo_vlan_rx_add_vid(priv->ndev, 0, vid);
736 	return 0;
737 }
738 
739 /* restore resources after port reset */
740 static void cpsw_restore(struct cpsw_priv *priv)
741 {
742 	/* restore vlan configurations */
743 	vlan_for_each(priv->ndev, cpsw_restore_vlans, priv);
744 
745 	/* restore MQPRIO offload */
746 	for_each_slave(priv, cpsw_mqprio_resume, priv);
747 
748 	/* restore CBS offload */
749 	for_each_slave(priv, cpsw_cbs_resume, priv);
750 }
751 
752 static int cpsw_ndo_open(struct net_device *ndev)
753 {
754 	struct cpsw_priv *priv = netdev_priv(ndev);
755 	struct cpsw_common *cpsw = priv->cpsw;
756 	int ret;
757 	u32 reg;
758 
759 	ret = pm_runtime_resume_and_get(cpsw->dev);
760 	if (ret < 0)
761 		return ret;
762 
763 	netif_carrier_off(ndev);
764 
765 	/* Notify the stack of the actual queue counts. */
766 	ret = netif_set_real_num_tx_queues(ndev, cpsw->tx_ch_num);
767 	if (ret) {
768 		dev_err(priv->dev, "cannot set real number of tx queues\n");
769 		goto err_cleanup;
770 	}
771 
772 	ret = netif_set_real_num_rx_queues(ndev, cpsw->rx_ch_num);
773 	if (ret) {
774 		dev_err(priv->dev, "cannot set real number of rx queues\n");
775 		goto err_cleanup;
776 	}
777 
778 	reg = cpsw->version;
779 
780 	dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n",
781 		 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg),
782 		 CPSW_RTL_VERSION(reg));
783 
784 	/* Initialize host and slave ports */
785 	if (!cpsw->usage_count)
786 		cpsw_init_host_port(priv);
787 	for_each_slave(priv, cpsw_slave_open, priv);
788 
789 	/* Add default VLAN */
790 	if (!cpsw->data.dual_emac)
791 		cpsw_add_default_vlan(priv);
792 	else
793 		cpsw_ale_add_vlan(cpsw->ale, cpsw->data.default_vlan,
794 				  ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0);
795 
796 	/* initialize shared resources for every ndev */
797 	if (!cpsw->usage_count) {
798 		/* disable priority elevation */
799 		writel_relaxed(0, &cpsw->regs->ptype);
800 
801 		/* enable statistics collection only on all ports */
802 		writel_relaxed(0x7, &cpsw->regs->stat_port_en);
803 
804 		/* Enable internal fifo flow control */
805 		writel(0x7, &cpsw->regs->flow_control);
806 
807 		napi_enable(&cpsw->napi_rx);
808 		napi_enable(&cpsw->napi_tx);
809 
810 		if (cpsw->tx_irq_disabled) {
811 			cpsw->tx_irq_disabled = false;
812 			enable_irq(cpsw->irqs_table[1]);
813 		}
814 
815 		if (cpsw->rx_irq_disabled) {
816 			cpsw->rx_irq_disabled = false;
817 			enable_irq(cpsw->irqs_table[0]);
818 		}
819 
820 		/* create rxqs for both infs in dual mac as they use same pool
821 		 * and must be destroyed together when no users.
822 		 */
823 		ret = cpsw_create_xdp_rxqs(cpsw);
824 		if (ret < 0)
825 			goto err_cleanup;
826 
827 		ret = cpsw_fill_rx_channels(priv);
828 		if (ret < 0)
829 			goto err_cleanup;
830 
831 		if (cpsw->cpts) {
832 			if (cpts_register(cpsw->cpts))
833 				dev_err(priv->dev, "error registering cpts device\n");
834 			else
835 				writel(0x10, &cpsw->wr_regs->misc_en);
836 		}
837 	}
838 
839 	cpsw_restore(priv);
840 
841 	/* Enable Interrupt pacing if configured */
842 	if (cpsw->coal_intvl != 0) {
843 		struct ethtool_coalesce coal;
844 
845 		coal.rx_coalesce_usecs = cpsw->coal_intvl;
846 		cpsw_set_coalesce(ndev, &coal, NULL, NULL);
847 	}
848 
849 	cpdma_ctlr_start(cpsw->dma);
850 	cpsw_intr_enable(cpsw);
851 	cpsw->usage_count++;
852 
853 	return 0;
854 
855 err_cleanup:
856 	if (!cpsw->usage_count) {
857 		napi_disable(&cpsw->napi_rx);
858 		napi_disable(&cpsw->napi_tx);
859 		cpdma_ctlr_stop(cpsw->dma);
860 		cpsw_destroy_xdp_rxqs(cpsw);
861 	}
862 
863 	for_each_slave(priv, cpsw_slave_stop, cpsw);
864 	pm_runtime_put_sync(cpsw->dev);
865 	netif_carrier_off(priv->ndev);
866 	return ret;
867 }
868 
869 static int cpsw_ndo_stop(struct net_device *ndev)
870 {
871 	struct cpsw_priv *priv = netdev_priv(ndev);
872 	struct cpsw_common *cpsw = priv->cpsw;
873 
874 	cpsw_info(priv, ifdown, "shutting down cpsw device\n");
875 	__hw_addr_ref_unsync_dev(&ndev->mc, ndev, cpsw_purge_all_mc);
876 	netif_tx_stop_all_queues(priv->ndev);
877 	netif_carrier_off(priv->ndev);
878 
879 	if (cpsw->usage_count <= 1) {
880 		napi_disable(&cpsw->napi_rx);
881 		napi_disable(&cpsw->napi_tx);
882 		cpts_unregister(cpsw->cpts);
883 		cpsw_intr_disable(cpsw);
884 		cpdma_ctlr_stop(cpsw->dma);
885 		cpsw_ale_stop(cpsw->ale);
886 		cpsw_destroy_xdp_rxqs(cpsw);
887 	}
888 	for_each_slave(priv, cpsw_slave_stop, cpsw);
889 
890 	if (cpsw_need_resplit(cpsw))
891 		cpsw_split_res(cpsw);
892 
893 	cpsw->usage_count--;
894 	pm_runtime_put_sync(cpsw->dev);
895 	return 0;
896 }
897 
898 static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb,
899 				       struct net_device *ndev)
900 {
901 	struct cpsw_priv *priv = netdev_priv(ndev);
902 	struct cpsw_common *cpsw = priv->cpsw;
903 	struct cpts *cpts = cpsw->cpts;
904 	struct netdev_queue *txq;
905 	struct cpdma_chan *txch;
906 	int ret, q_idx;
907 
908 	if (skb_put_padto(skb, CPSW_MIN_PACKET_SIZE)) {
909 		cpsw_err(priv, tx_err, "packet pad failed\n");
910 		ndev->stats.tx_dropped++;
911 		return NET_XMIT_DROP;
912 	}
913 
914 	if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
915 	    priv->tx_ts_enabled && cpts_can_timestamp(cpts, skb))
916 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
917 
918 	q_idx = skb_get_queue_mapping(skb);
919 	if (q_idx >= cpsw->tx_ch_num)
920 		q_idx = q_idx % cpsw->tx_ch_num;
921 
922 	txch = cpsw->txv[q_idx].ch;
923 	txq = netdev_get_tx_queue(ndev, q_idx);
924 	skb_tx_timestamp(skb);
925 	ret = cpdma_chan_submit(txch, skb, skb->data, skb->len,
926 				priv->emac_port + cpsw->data.dual_emac);
927 	if (unlikely(ret != 0)) {
928 		cpsw_err(priv, tx_err, "desc submit failed\n");
929 		goto fail;
930 	}
931 
932 	/* If there is no more tx desc left free then we need to
933 	 * tell the kernel to stop sending us tx frames.
934 	 */
935 	if (unlikely(!cpdma_check_free_tx_desc(txch))) {
936 		netif_tx_stop_queue(txq);
937 
938 		/* Barrier, so that stop_queue visible to other cpus */
939 		smp_mb__after_atomic();
940 
941 		if (cpdma_check_free_tx_desc(txch))
942 			netif_tx_wake_queue(txq);
943 	}
944 
945 	return NETDEV_TX_OK;
946 fail:
947 	ndev->stats.tx_dropped++;
948 	netif_tx_stop_queue(txq);
949 
950 	/* Barrier, so that stop_queue visible to other cpus */
951 	smp_mb__after_atomic();
952 
953 	if (cpdma_check_free_tx_desc(txch))
954 		netif_tx_wake_queue(txq);
955 
956 	return NETDEV_TX_BUSY;
957 }
958 
959 static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p)
960 {
961 	struct cpsw_priv *priv = netdev_priv(ndev);
962 	struct sockaddr *addr = (struct sockaddr *)p;
963 	struct cpsw_common *cpsw = priv->cpsw;
964 	int flags = 0;
965 	u16 vid = 0;
966 	int ret;
967 
968 	if (!is_valid_ether_addr(addr->sa_data))
969 		return -EADDRNOTAVAIL;
970 
971 	ret = pm_runtime_resume_and_get(cpsw->dev);
972 	if (ret < 0)
973 		return ret;
974 
975 	if (cpsw->data.dual_emac) {
976 		vid = cpsw->slaves[priv->emac_port].port_vlan;
977 		flags = ALE_VLAN;
978 	}
979 
980 	cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
981 			   flags, vid);
982 	cpsw_ale_add_ucast(cpsw->ale, addr->sa_data, HOST_PORT_NUM,
983 			   flags, vid);
984 
985 	memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
986 	eth_hw_addr_set(ndev, priv->mac_addr);
987 	for_each_slave(priv, cpsw_set_slave_mac, priv);
988 
989 	pm_runtime_put(cpsw->dev);
990 
991 	return 0;
992 }
993 
994 static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv,
995 				unsigned short vid)
996 {
997 	int ret;
998 	int unreg_mcast_mask = 0;
999 	int mcast_mask;
1000 	u32 port_mask;
1001 	struct cpsw_common *cpsw = priv->cpsw;
1002 
1003 	if (cpsw->data.dual_emac) {
1004 		port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST;
1005 
1006 		mcast_mask = ALE_PORT_HOST;
1007 		if (priv->ndev->flags & IFF_ALLMULTI)
1008 			unreg_mcast_mask = mcast_mask;
1009 	} else {
1010 		port_mask = ALE_ALL_PORTS;
1011 		mcast_mask = port_mask;
1012 
1013 		if (priv->ndev->flags & IFF_ALLMULTI)
1014 			unreg_mcast_mask = ALE_ALL_PORTS;
1015 		else
1016 			unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
1017 	}
1018 
1019 	ret = cpsw_ale_add_vlan(cpsw->ale, vid, port_mask, 0, port_mask,
1020 				unreg_mcast_mask);
1021 	if (ret != 0)
1022 		return ret;
1023 
1024 	ret = cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
1025 				 HOST_PORT_NUM, ALE_VLAN, vid);
1026 	if (ret != 0)
1027 		goto clean_vid;
1028 
1029 	ret = cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1030 				 mcast_mask, ALE_VLAN, vid, 0);
1031 	if (ret != 0)
1032 		goto clean_vlan_ucast;
1033 	return 0;
1034 
1035 clean_vlan_ucast:
1036 	cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
1037 			   HOST_PORT_NUM, ALE_VLAN, vid);
1038 clean_vid:
1039 	cpsw_ale_del_vlan(cpsw->ale, vid, 0);
1040 	return ret;
1041 }
1042 
1043 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
1044 				    __be16 proto, u16 vid)
1045 {
1046 	struct cpsw_priv *priv = netdev_priv(ndev);
1047 	struct cpsw_common *cpsw = priv->cpsw;
1048 	int ret;
1049 
1050 	if (vid == cpsw->data.default_vlan)
1051 		return 0;
1052 
1053 	ret = pm_runtime_resume_and_get(cpsw->dev);
1054 	if (ret < 0)
1055 		return ret;
1056 
1057 	if (cpsw->data.dual_emac) {
1058 		/* In dual EMAC, reserved VLAN id should not be used for
1059 		 * creating VLAN interfaces as this can break the dual
1060 		 * EMAC port separation
1061 		 */
1062 		int i;
1063 
1064 		for (i = 0; i < cpsw->data.slaves; i++) {
1065 			if (vid == cpsw->slaves[i].port_vlan) {
1066 				ret = -EINVAL;
1067 				goto err;
1068 			}
1069 		}
1070 	}
1071 
1072 	dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid);
1073 	ret = cpsw_add_vlan_ale_entry(priv, vid);
1074 err:
1075 	pm_runtime_put(cpsw->dev);
1076 	return ret;
1077 }
1078 
1079 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev,
1080 				     __be16 proto, u16 vid)
1081 {
1082 	struct cpsw_priv *priv = netdev_priv(ndev);
1083 	struct cpsw_common *cpsw = priv->cpsw;
1084 	int ret;
1085 
1086 	if (vid == cpsw->data.default_vlan)
1087 		return 0;
1088 
1089 	ret = pm_runtime_resume_and_get(cpsw->dev);
1090 	if (ret < 0)
1091 		return ret;
1092 
1093 	if (cpsw->data.dual_emac) {
1094 		int i;
1095 
1096 		for (i = 0; i < cpsw->data.slaves; i++) {
1097 			if (vid == cpsw->slaves[i].port_vlan)
1098 				goto err;
1099 		}
1100 	}
1101 
1102 	dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid);
1103 	ret = cpsw_ale_del_vlan(cpsw->ale, vid, 0);
1104 	ret |= cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
1105 				  HOST_PORT_NUM, ALE_VLAN, vid);
1106 	ret |= cpsw_ale_del_mcast(cpsw->ale, priv->ndev->broadcast,
1107 				  0, ALE_VLAN, vid);
1108 	ret |= cpsw_ale_flush_multicast(cpsw->ale, ALE_PORT_HOST, vid);
1109 err:
1110 	pm_runtime_put(cpsw->dev);
1111 	return ret;
1112 }
1113 
1114 static int cpsw_ndo_xdp_xmit(struct net_device *ndev, int n,
1115 			     struct xdp_frame **frames, u32 flags)
1116 {
1117 	struct cpsw_priv *priv = netdev_priv(ndev);
1118 	struct cpsw_common *cpsw = priv->cpsw;
1119 	struct xdp_frame *xdpf;
1120 	int i, nxmit = 0, port;
1121 
1122 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
1123 		return -EINVAL;
1124 
1125 	for (i = 0; i < n; i++) {
1126 		xdpf = frames[i];
1127 		if (xdpf->len < CPSW_MIN_PACKET_SIZE)
1128 			break;
1129 
1130 		port = priv->emac_port + cpsw->data.dual_emac;
1131 		if (cpsw_xdp_tx_frame(priv, xdpf, NULL, port))
1132 			break;
1133 		nxmit++;
1134 	}
1135 
1136 	return nxmit;
1137 }
1138 
1139 #ifdef CONFIG_NET_POLL_CONTROLLER
1140 static void cpsw_ndo_poll_controller(struct net_device *ndev)
1141 {
1142 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1143 
1144 	cpsw_intr_disable(cpsw);
1145 	cpsw_rx_interrupt(cpsw->irqs_table[0], cpsw);
1146 	cpsw_tx_interrupt(cpsw->irqs_table[1], cpsw);
1147 	cpsw_intr_enable(cpsw);
1148 }
1149 #endif
1150 
1151 static const struct net_device_ops cpsw_netdev_ops = {
1152 	.ndo_open		= cpsw_ndo_open,
1153 	.ndo_stop		= cpsw_ndo_stop,
1154 	.ndo_start_xmit		= cpsw_ndo_start_xmit,
1155 	.ndo_set_mac_address	= cpsw_ndo_set_mac_address,
1156 	.ndo_eth_ioctl		= cpsw_ndo_ioctl,
1157 	.ndo_validate_addr	= eth_validate_addr,
1158 	.ndo_tx_timeout		= cpsw_ndo_tx_timeout,
1159 	.ndo_set_rx_mode	= cpsw_ndo_set_rx_mode,
1160 	.ndo_set_tx_maxrate	= cpsw_ndo_set_tx_maxrate,
1161 #ifdef CONFIG_NET_POLL_CONTROLLER
1162 	.ndo_poll_controller	= cpsw_ndo_poll_controller,
1163 #endif
1164 	.ndo_vlan_rx_add_vid	= cpsw_ndo_vlan_rx_add_vid,
1165 	.ndo_vlan_rx_kill_vid	= cpsw_ndo_vlan_rx_kill_vid,
1166 	.ndo_setup_tc           = cpsw_ndo_setup_tc,
1167 	.ndo_bpf		= cpsw_ndo_bpf,
1168 	.ndo_xdp_xmit		= cpsw_ndo_xdp_xmit,
1169 };
1170 
1171 static void cpsw_get_drvinfo(struct net_device *ndev,
1172 			     struct ethtool_drvinfo *info)
1173 {
1174 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1175 	struct platform_device	*pdev = to_platform_device(cpsw->dev);
1176 
1177 	strscpy(info->driver, "cpsw", sizeof(info->driver));
1178 	strscpy(info->version, "1.0", sizeof(info->version));
1179 	strscpy(info->bus_info, pdev->name, sizeof(info->bus_info));
1180 }
1181 
1182 static int cpsw_set_pauseparam(struct net_device *ndev,
1183 			       struct ethtool_pauseparam *pause)
1184 {
1185 	struct cpsw_priv *priv = netdev_priv(ndev);
1186 	bool link;
1187 
1188 	priv->rx_pause = pause->rx_pause ? true : false;
1189 	priv->tx_pause = pause->tx_pause ? true : false;
1190 
1191 	for_each_slave(priv, _cpsw_adjust_link, priv, &link);
1192 	return 0;
1193 }
1194 
1195 static int cpsw_set_channels(struct net_device *ndev,
1196 			     struct ethtool_channels *chs)
1197 {
1198 	return cpsw_set_channels_common(ndev, chs, cpsw_rx_handler);
1199 }
1200 
1201 static const struct ethtool_ops cpsw_ethtool_ops = {
1202 	.supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS,
1203 	.get_drvinfo	= cpsw_get_drvinfo,
1204 	.get_msglevel	= cpsw_get_msglevel,
1205 	.set_msglevel	= cpsw_set_msglevel,
1206 	.get_link	= ethtool_op_get_link,
1207 	.get_ts_info	= cpsw_get_ts_info,
1208 	.get_coalesce	= cpsw_get_coalesce,
1209 	.set_coalesce	= cpsw_set_coalesce,
1210 	.get_sset_count		= cpsw_get_sset_count,
1211 	.get_strings		= cpsw_get_strings,
1212 	.get_ethtool_stats	= cpsw_get_ethtool_stats,
1213 	.get_pauseparam		= cpsw_get_pauseparam,
1214 	.set_pauseparam		= cpsw_set_pauseparam,
1215 	.get_wol	= cpsw_get_wol,
1216 	.set_wol	= cpsw_set_wol,
1217 	.get_regs_len	= cpsw_get_regs_len,
1218 	.get_regs	= cpsw_get_regs,
1219 	.begin		= cpsw_ethtool_op_begin,
1220 	.complete	= cpsw_ethtool_op_complete,
1221 	.get_channels	= cpsw_get_channels,
1222 	.set_channels	= cpsw_set_channels,
1223 	.get_link_ksettings	= cpsw_get_link_ksettings,
1224 	.set_link_ksettings	= cpsw_set_link_ksettings,
1225 	.get_eee	= cpsw_get_eee,
1226 	.set_eee	= cpsw_set_eee,
1227 	.nway_reset	= cpsw_nway_reset,
1228 	.get_ringparam = cpsw_get_ringparam,
1229 	.set_ringparam = cpsw_set_ringparam,
1230 };
1231 
1232 static int cpsw_probe_dt(struct cpsw_platform_data *data,
1233 			 struct platform_device *pdev)
1234 {
1235 	struct device_node *node = pdev->dev.of_node;
1236 	struct device_node *slave_node;
1237 	int i = 0, ret;
1238 	u32 prop;
1239 
1240 	if (!node)
1241 		return -EINVAL;
1242 
1243 	if (of_property_read_u32(node, "slaves", &prop)) {
1244 		dev_err(&pdev->dev, "Missing slaves property in the DT.\n");
1245 		return -EINVAL;
1246 	}
1247 	data->slaves = prop;
1248 
1249 	if (of_property_read_u32(node, "active_slave", &prop)) {
1250 		dev_err(&pdev->dev, "Missing active_slave property in the DT.\n");
1251 		return -EINVAL;
1252 	}
1253 	data->active_slave = prop;
1254 
1255 	data->slave_data = devm_kcalloc(&pdev->dev,
1256 					data->slaves,
1257 					sizeof(struct cpsw_slave_data),
1258 					GFP_KERNEL);
1259 	if (!data->slave_data)
1260 		return -ENOMEM;
1261 
1262 	if (of_property_read_u32(node, "cpdma_channels", &prop)) {
1263 		dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n");
1264 		return -EINVAL;
1265 	}
1266 	data->channels = prop;
1267 
1268 	if (of_property_read_u32(node, "bd_ram_size", &prop)) {
1269 		dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n");
1270 		return -EINVAL;
1271 	}
1272 	data->bd_ram_size = prop;
1273 
1274 	if (of_property_read_u32(node, "mac_control", &prop)) {
1275 		dev_err(&pdev->dev, "Missing mac_control property in the DT.\n");
1276 		return -EINVAL;
1277 	}
1278 	data->mac_control = prop;
1279 
1280 	if (of_property_read_bool(node, "dual_emac"))
1281 		data->dual_emac = true;
1282 
1283 	/*
1284 	 * Populate all the child nodes here...
1285 	 */
1286 	ret = of_platform_populate(node, NULL, NULL, &pdev->dev);
1287 	/* We do not want to force this, as in some cases may not have child */
1288 	if (ret)
1289 		dev_warn(&pdev->dev, "Doesn't have any child node\n");
1290 
1291 	for_each_available_child_of_node(node, slave_node) {
1292 		struct cpsw_slave_data *slave_data = data->slave_data + i;
1293 		int lenp;
1294 		const __be32 *parp;
1295 
1296 		/* This is no slave child node, continue */
1297 		if (!of_node_name_eq(slave_node, "slave"))
1298 			continue;
1299 
1300 		slave_data->ifphy = devm_of_phy_get(&pdev->dev, slave_node,
1301 						    NULL);
1302 		if (!IS_ENABLED(CONFIG_TI_CPSW_PHY_SEL) &&
1303 		    IS_ERR(slave_data->ifphy)) {
1304 			ret = PTR_ERR(slave_data->ifphy);
1305 			dev_err(&pdev->dev,
1306 				"%d: Error retrieving port phy: %d\n", i, ret);
1307 			goto err_node_put;
1308 		}
1309 
1310 		slave_data->slave_node = slave_node;
1311 		slave_data->phy_node = of_parse_phandle(slave_node,
1312 							"phy-handle", 0);
1313 		parp = of_get_property(slave_node, "phy_id", &lenp);
1314 		if (slave_data->phy_node) {
1315 			dev_dbg(&pdev->dev,
1316 				"slave[%d] using phy-handle=\"%pOF\"\n",
1317 				i, slave_data->phy_node);
1318 		} else if (of_phy_is_fixed_link(slave_node)) {
1319 			/* In the case of a fixed PHY, the DT node associated
1320 			 * to the PHY is the Ethernet MAC DT node.
1321 			 */
1322 			ret = of_phy_register_fixed_link(slave_node);
1323 			if (ret) {
1324 				dev_err_probe(&pdev->dev, ret, "failed to register fixed-link phy\n");
1325 				goto err_node_put;
1326 			}
1327 			slave_data->phy_node = of_node_get(slave_node);
1328 		} else if (parp) {
1329 			u32 phyid;
1330 			struct device_node *mdio_node;
1331 			struct platform_device *mdio;
1332 
1333 			if (lenp != (sizeof(__be32) * 2)) {
1334 				dev_err(&pdev->dev, "Invalid slave[%d] phy_id property\n", i);
1335 				goto no_phy_slave;
1336 			}
1337 			mdio_node = of_find_node_by_phandle(be32_to_cpup(parp));
1338 			phyid = be32_to_cpup(parp+1);
1339 			mdio = of_find_device_by_node(mdio_node);
1340 			of_node_put(mdio_node);
1341 			if (!mdio) {
1342 				dev_err(&pdev->dev, "Missing mdio platform device\n");
1343 				ret = -EINVAL;
1344 				goto err_node_put;
1345 			}
1346 			snprintf(slave_data->phy_id, sizeof(slave_data->phy_id),
1347 				 PHY_ID_FMT, mdio->name, phyid);
1348 			put_device(&mdio->dev);
1349 		} else {
1350 			dev_err(&pdev->dev,
1351 				"No slave[%d] phy_id, phy-handle, or fixed-link property\n",
1352 				i);
1353 			goto no_phy_slave;
1354 		}
1355 		ret = of_get_phy_mode(slave_node, &slave_data->phy_if);
1356 		if (ret) {
1357 			dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n",
1358 				i);
1359 			goto err_node_put;
1360 		}
1361 
1362 no_phy_slave:
1363 		ret = of_get_mac_address(slave_node, slave_data->mac_addr);
1364 		if (ret) {
1365 			ret = ti_cm_get_macid(&pdev->dev, i,
1366 					      slave_data->mac_addr);
1367 			if (ret)
1368 				goto err_node_put;
1369 		}
1370 		if (data->dual_emac) {
1371 			if (of_property_read_u32(slave_node, "dual_emac_res_vlan",
1372 						 &prop)) {
1373 				dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n");
1374 				slave_data->dual_emac_res_vlan = i+1;
1375 				dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n",
1376 					slave_data->dual_emac_res_vlan, i);
1377 			} else {
1378 				slave_data->dual_emac_res_vlan = prop;
1379 			}
1380 		}
1381 
1382 		i++;
1383 		if (i == data->slaves) {
1384 			ret = 0;
1385 			goto err_node_put;
1386 		}
1387 	}
1388 
1389 	return 0;
1390 
1391 err_node_put:
1392 	of_node_put(slave_node);
1393 	return ret;
1394 }
1395 
1396 static void cpsw_remove_dt(struct platform_device *pdev)
1397 {
1398 	struct cpsw_common *cpsw = platform_get_drvdata(pdev);
1399 	struct cpsw_platform_data *data = &cpsw->data;
1400 	struct device_node *node = pdev->dev.of_node;
1401 	struct device_node *slave_node;
1402 	int i = 0;
1403 
1404 	for_each_available_child_of_node(node, slave_node) {
1405 		struct cpsw_slave_data *slave_data = &data->slave_data[i];
1406 
1407 		if (!of_node_name_eq(slave_node, "slave"))
1408 			continue;
1409 
1410 		if (of_phy_is_fixed_link(slave_node))
1411 			of_phy_deregister_fixed_link(slave_node);
1412 
1413 		of_node_put(slave_data->phy_node);
1414 
1415 		i++;
1416 		if (i == data->slaves) {
1417 			of_node_put(slave_node);
1418 			break;
1419 		}
1420 	}
1421 
1422 	of_platform_depopulate(&pdev->dev);
1423 }
1424 
1425 static int cpsw_probe_dual_emac(struct cpsw_priv *priv)
1426 {
1427 	struct cpsw_common		*cpsw = priv->cpsw;
1428 	struct cpsw_platform_data	*data = &cpsw->data;
1429 	struct net_device		*ndev;
1430 	struct cpsw_priv		*priv_sl2;
1431 	int ret = 0;
1432 
1433 	ndev = devm_alloc_etherdev_mqs(cpsw->dev, sizeof(struct cpsw_priv),
1434 				       CPSW_MAX_QUEUES, CPSW_MAX_QUEUES);
1435 	if (!ndev) {
1436 		dev_err(cpsw->dev, "cpsw: error allocating net_device\n");
1437 		return -ENOMEM;
1438 	}
1439 
1440 	priv_sl2 = netdev_priv(ndev);
1441 	priv_sl2->cpsw = cpsw;
1442 	priv_sl2->ndev = ndev;
1443 	priv_sl2->dev  = &ndev->dev;
1444 	priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
1445 
1446 	if (is_valid_ether_addr(data->slave_data[1].mac_addr)) {
1447 		memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr,
1448 			ETH_ALEN);
1449 		dev_info(cpsw->dev, "cpsw: Detected MACID = %pM\n",
1450 			 priv_sl2->mac_addr);
1451 	} else {
1452 		eth_random_addr(priv_sl2->mac_addr);
1453 		dev_info(cpsw->dev, "cpsw: Random MACID = %pM\n",
1454 			 priv_sl2->mac_addr);
1455 	}
1456 	eth_hw_addr_set(ndev, priv_sl2->mac_addr);
1457 
1458 	priv_sl2->emac_port = 1;
1459 	cpsw->slaves[1].ndev = ndev;
1460 	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX;
1461 
1462 	ndev->netdev_ops = &cpsw_netdev_ops;
1463 	ndev->ethtool_ops = &cpsw_ethtool_ops;
1464 
1465 	/* register the network device */
1466 	SET_NETDEV_DEV(ndev, cpsw->dev);
1467 	ndev->dev.of_node = cpsw->slaves[1].data->slave_node;
1468 	ret = register_netdev(ndev);
1469 	if (ret)
1470 		dev_err(cpsw->dev, "cpsw: error registering net device\n");
1471 
1472 	return ret;
1473 }
1474 
1475 static const struct of_device_id cpsw_of_mtable[] = {
1476 	{ .compatible = "ti,cpsw"},
1477 	{ .compatible = "ti,am335x-cpsw"},
1478 	{ .compatible = "ti,am4372-cpsw"},
1479 	{ .compatible = "ti,dra7-cpsw"},
1480 	{ /* sentinel */ },
1481 };
1482 MODULE_DEVICE_TABLE(of, cpsw_of_mtable);
1483 
1484 static const struct soc_device_attribute cpsw_soc_devices[] = {
1485 	{ .family = "AM33xx", .revision = "ES1.0"},
1486 	{ /* sentinel */ }
1487 };
1488 
1489 static int cpsw_probe(struct platform_device *pdev)
1490 {
1491 	struct device			*dev = &pdev->dev;
1492 	struct clk			*clk;
1493 	struct cpsw_platform_data	*data;
1494 	struct net_device		*ndev;
1495 	struct cpsw_priv		*priv;
1496 	void __iomem			*ss_regs;
1497 	struct resource			*ss_res;
1498 	struct gpio_descs		*mode;
1499 	const struct soc_device_attribute *soc;
1500 	struct cpsw_common		*cpsw;
1501 	int ret = 0, ch;
1502 	int irq;
1503 
1504 	cpsw = devm_kzalloc(dev, sizeof(struct cpsw_common), GFP_KERNEL);
1505 	if (!cpsw)
1506 		return -ENOMEM;
1507 
1508 	platform_set_drvdata(pdev, cpsw);
1509 	cpsw_slave_index = cpsw_slave_index_priv;
1510 
1511 	cpsw->dev = dev;
1512 
1513 	mode = devm_gpiod_get_array_optional(dev, "mode", GPIOD_OUT_LOW);
1514 	if (IS_ERR(mode)) {
1515 		ret = PTR_ERR(mode);
1516 		dev_err(dev, "gpio request failed, ret %d\n", ret);
1517 		return ret;
1518 	}
1519 
1520 	clk = devm_clk_get(dev, "fck");
1521 	if (IS_ERR(clk)) {
1522 		ret = PTR_ERR(clk);
1523 		dev_err(dev, "fck is not found %d\n", ret);
1524 		return ret;
1525 	}
1526 	cpsw->bus_freq_mhz = clk_get_rate(clk) / 1000000;
1527 
1528 	ss_regs = devm_platform_get_and_ioremap_resource(pdev, 0, &ss_res);
1529 	if (IS_ERR(ss_regs))
1530 		return PTR_ERR(ss_regs);
1531 	cpsw->regs = ss_regs;
1532 
1533 	cpsw->wr_regs = devm_platform_ioremap_resource(pdev, 1);
1534 	if (IS_ERR(cpsw->wr_regs))
1535 		return PTR_ERR(cpsw->wr_regs);
1536 
1537 	/* RX IRQ */
1538 	irq = platform_get_irq(pdev, 1);
1539 	if (irq < 0)
1540 		return irq;
1541 	cpsw->irqs_table[0] = irq;
1542 
1543 	/* TX IRQ */
1544 	irq = platform_get_irq(pdev, 2);
1545 	if (irq < 0)
1546 		return irq;
1547 	cpsw->irqs_table[1] = irq;
1548 
1549 	/* get misc irq*/
1550 	irq = platform_get_irq(pdev, 3);
1551 	if (irq <= 0)
1552 		return irq;
1553 	cpsw->misc_irq = irq;
1554 
1555 	/*
1556 	 * This may be required here for child devices.
1557 	 */
1558 	pm_runtime_enable(dev);
1559 
1560 	/* Need to enable clocks with runtime PM api to access module
1561 	 * registers
1562 	 */
1563 	ret = pm_runtime_resume_and_get(dev);
1564 	if (ret < 0)
1565 		goto clean_runtime_disable_ret;
1566 
1567 	ret = cpsw_probe_dt(&cpsw->data, pdev);
1568 	if (ret)
1569 		goto clean_dt_ret;
1570 
1571 	soc = soc_device_match(cpsw_soc_devices);
1572 	if (soc)
1573 		cpsw->quirk_irq = true;
1574 
1575 	data = &cpsw->data;
1576 	cpsw->slaves = devm_kcalloc(dev,
1577 				    data->slaves, sizeof(struct cpsw_slave),
1578 				    GFP_KERNEL);
1579 	if (!cpsw->slaves) {
1580 		ret = -ENOMEM;
1581 		goto clean_dt_ret;
1582 	}
1583 
1584 	cpsw->rx_packet_max = max(rx_packet_max, CPSW_MAX_PACKET_SIZE);
1585 	cpsw->descs_pool_size = descs_pool_size;
1586 
1587 	ret = cpsw_init_common(cpsw, ss_regs, ale_ageout,
1588 			       ss_res->start + CPSW2_BD_OFFSET,
1589 			       descs_pool_size);
1590 	if (ret)
1591 		goto clean_dt_ret;
1592 
1593 	ch = cpsw->quirk_irq ? 0 : 7;
1594 	cpsw->txv[0].ch = cpdma_chan_create(cpsw->dma, ch, cpsw_tx_handler, 0);
1595 	if (IS_ERR(cpsw->txv[0].ch)) {
1596 		dev_err(dev, "error initializing tx dma channel\n");
1597 		ret = PTR_ERR(cpsw->txv[0].ch);
1598 		goto clean_cpts;
1599 	}
1600 
1601 	cpsw->rxv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_rx_handler, 1);
1602 	if (IS_ERR(cpsw->rxv[0].ch)) {
1603 		dev_err(dev, "error initializing rx dma channel\n");
1604 		ret = PTR_ERR(cpsw->rxv[0].ch);
1605 		goto clean_cpts;
1606 	}
1607 	cpsw_split_res(cpsw);
1608 
1609 	/* setup netdev */
1610 	ndev = devm_alloc_etherdev_mqs(dev, sizeof(struct cpsw_priv),
1611 				       CPSW_MAX_QUEUES, CPSW_MAX_QUEUES);
1612 	if (!ndev) {
1613 		dev_err(dev, "error allocating net_device\n");
1614 		ret = -ENOMEM;
1615 		goto clean_cpts;
1616 	}
1617 
1618 	priv = netdev_priv(ndev);
1619 	priv->cpsw = cpsw;
1620 	priv->ndev = ndev;
1621 	priv->dev  = dev;
1622 	priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
1623 	priv->emac_port = 0;
1624 
1625 	if (is_valid_ether_addr(data->slave_data[0].mac_addr)) {
1626 		memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN);
1627 		dev_info(dev, "Detected MACID = %pM\n", priv->mac_addr);
1628 	} else {
1629 		eth_random_addr(priv->mac_addr);
1630 		dev_info(dev, "Random MACID = %pM\n", priv->mac_addr);
1631 	}
1632 
1633 	eth_hw_addr_set(ndev, priv->mac_addr);
1634 
1635 	cpsw->slaves[0].ndev = ndev;
1636 
1637 	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX;
1638 
1639 	ndev->netdev_ops = &cpsw_netdev_ops;
1640 	ndev->ethtool_ops = &cpsw_ethtool_ops;
1641 	netif_napi_add(ndev, &cpsw->napi_rx,
1642 		       cpsw->quirk_irq ? cpsw_rx_poll : cpsw_rx_mq_poll);
1643 	netif_napi_add_tx(ndev, &cpsw->napi_tx,
1644 			  cpsw->quirk_irq ? cpsw_tx_poll : cpsw_tx_mq_poll);
1645 
1646 	/* register the network device */
1647 	SET_NETDEV_DEV(ndev, dev);
1648 	ndev->dev.of_node = cpsw->slaves[0].data->slave_node;
1649 	ret = register_netdev(ndev);
1650 	if (ret) {
1651 		dev_err(dev, "error registering net device\n");
1652 		ret = -ENODEV;
1653 		goto clean_cpts;
1654 	}
1655 
1656 	if (cpsw->data.dual_emac) {
1657 		ret = cpsw_probe_dual_emac(priv);
1658 		if (ret) {
1659 			cpsw_err(priv, probe, "error probe slave 2 emac interface\n");
1660 			goto clean_unregister_netdev_ret;
1661 		}
1662 	}
1663 
1664 	/* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and
1665 	 * MISC IRQs which are always kept disabled with this driver so
1666 	 * we will not request them.
1667 	 *
1668 	 * If anyone wants to implement support for those, make sure to
1669 	 * first request and append them to irqs_table array.
1670 	 */
1671 	ret = devm_request_irq(dev, cpsw->irqs_table[0], cpsw_rx_interrupt,
1672 			       0, dev_name(dev), cpsw);
1673 	if (ret < 0) {
1674 		dev_err(dev, "error attaching irq (%d)\n", ret);
1675 		goto clean_unregister_netdev_ret;
1676 	}
1677 
1678 
1679 	ret = devm_request_irq(dev, cpsw->irqs_table[1], cpsw_tx_interrupt,
1680 			       0, dev_name(&pdev->dev), cpsw);
1681 	if (ret < 0) {
1682 		dev_err(dev, "error attaching irq (%d)\n", ret);
1683 		goto clean_unregister_netdev_ret;
1684 	}
1685 
1686 	if (!cpsw->cpts)
1687 		goto skip_cpts;
1688 
1689 	ret = devm_request_irq(&pdev->dev, cpsw->misc_irq, cpsw_misc_interrupt,
1690 			       0, dev_name(&pdev->dev), cpsw);
1691 	if (ret < 0) {
1692 		dev_err(dev, "error attaching misc irq (%d)\n", ret);
1693 		goto clean_unregister_netdev_ret;
1694 	}
1695 
1696 	/* Enable misc CPTS evnt_pend IRQ */
1697 	cpts_set_irqpoll(cpsw->cpts, false);
1698 
1699 skip_cpts:
1700 	cpsw_notice(priv, probe,
1701 		    "initialized device (regs %pa, irq %d, pool size %d)\n",
1702 		    &ss_res->start, cpsw->irqs_table[0], descs_pool_size);
1703 
1704 	pm_runtime_put(&pdev->dev);
1705 
1706 	return 0;
1707 
1708 clean_unregister_netdev_ret:
1709 	unregister_netdev(ndev);
1710 clean_cpts:
1711 	cpts_release(cpsw->cpts);
1712 	cpdma_ctlr_destroy(cpsw->dma);
1713 clean_dt_ret:
1714 	cpsw_remove_dt(pdev);
1715 	pm_runtime_put_sync(&pdev->dev);
1716 clean_runtime_disable_ret:
1717 	pm_runtime_disable(&pdev->dev);
1718 	return ret;
1719 }
1720 
1721 static int cpsw_remove(struct platform_device *pdev)
1722 {
1723 	struct cpsw_common *cpsw = platform_get_drvdata(pdev);
1724 	int i, ret;
1725 
1726 	ret = pm_runtime_resume_and_get(&pdev->dev);
1727 	if (ret < 0)
1728 		return ret;
1729 
1730 	for (i = 0; i < cpsw->data.slaves; i++)
1731 		if (cpsw->slaves[i].ndev)
1732 			unregister_netdev(cpsw->slaves[i].ndev);
1733 
1734 	cpts_release(cpsw->cpts);
1735 	cpdma_ctlr_destroy(cpsw->dma);
1736 	cpsw_remove_dt(pdev);
1737 	pm_runtime_put_sync(&pdev->dev);
1738 	pm_runtime_disable(&pdev->dev);
1739 	return 0;
1740 }
1741 
1742 #ifdef CONFIG_PM_SLEEP
1743 static int cpsw_suspend(struct device *dev)
1744 {
1745 	struct cpsw_common *cpsw = dev_get_drvdata(dev);
1746 	int i;
1747 
1748 	rtnl_lock();
1749 
1750 	for (i = 0; i < cpsw->data.slaves; i++)
1751 		if (cpsw->slaves[i].ndev)
1752 			if (netif_running(cpsw->slaves[i].ndev))
1753 				cpsw_ndo_stop(cpsw->slaves[i].ndev);
1754 
1755 	rtnl_unlock();
1756 
1757 	/* Select sleep pin state */
1758 	pinctrl_pm_select_sleep_state(dev);
1759 
1760 	return 0;
1761 }
1762 
1763 static int cpsw_resume(struct device *dev)
1764 {
1765 	struct cpsw_common *cpsw = dev_get_drvdata(dev);
1766 	int i;
1767 
1768 	/* Select default pin state */
1769 	pinctrl_pm_select_default_state(dev);
1770 
1771 	/* shut up ASSERT_RTNL() warning in netif_set_real_num_tx/rx_queues */
1772 	rtnl_lock();
1773 
1774 	for (i = 0; i < cpsw->data.slaves; i++)
1775 		if (cpsw->slaves[i].ndev)
1776 			if (netif_running(cpsw->slaves[i].ndev))
1777 				cpsw_ndo_open(cpsw->slaves[i].ndev);
1778 
1779 	rtnl_unlock();
1780 
1781 	return 0;
1782 }
1783 #endif
1784 
1785 static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume);
1786 
1787 static struct platform_driver cpsw_driver = {
1788 	.driver = {
1789 		.name	 = "cpsw",
1790 		.pm	 = &cpsw_pm_ops,
1791 		.of_match_table = cpsw_of_mtable,
1792 	},
1793 	.probe = cpsw_probe,
1794 	.remove = cpsw_remove,
1795 };
1796 
1797 module_platform_driver(cpsw_driver);
1798 
1799 MODULE_LICENSE("GPL");
1800 MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>");
1801 MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>");
1802 MODULE_DESCRIPTION("TI CPSW Ethernet driver");
1803