xref: /openbmc/linux/drivers/net/ethernet/ti/cpsw.c (revision 9dae47aba0a055f761176d9297371d5bb24289ec)
1 /*
2  * Texas Instruments Ethernet Switch Driver
3  *
4  * Copyright (C) 2012 Texas Instruments
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation version 2.
9  *
10  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11  * kind, whether express or implied; without even the implied warranty
12  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/io.h>
18 #include <linux/clk.h>
19 #include <linux/timer.h>
20 #include <linux/module.h>
21 #include <linux/platform_device.h>
22 #include <linux/irqreturn.h>
23 #include <linux/interrupt.h>
24 #include <linux/if_ether.h>
25 #include <linux/etherdevice.h>
26 #include <linux/netdevice.h>
27 #include <linux/net_tstamp.h>
28 #include <linux/phy.h>
29 #include <linux/workqueue.h>
30 #include <linux/delay.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/gpio.h>
33 #include <linux/of.h>
34 #include <linux/of_mdio.h>
35 #include <linux/of_net.h>
36 #include <linux/of_device.h>
37 #include <linux/if_vlan.h>
38 
39 #include <linux/pinctrl/consumer.h>
40 
41 #include "cpsw.h"
42 #include "cpsw_ale.h"
43 #include "cpts.h"
44 #include "davinci_cpdma.h"
45 
46 #define CPSW_DEBUG	(NETIF_MSG_HW		| NETIF_MSG_WOL		| \
47 			 NETIF_MSG_DRV		| NETIF_MSG_LINK	| \
48 			 NETIF_MSG_IFUP		| NETIF_MSG_INTR	| \
49 			 NETIF_MSG_PROBE	| NETIF_MSG_TIMER	| \
50 			 NETIF_MSG_IFDOWN	| NETIF_MSG_RX_ERR	| \
51 			 NETIF_MSG_TX_ERR	| NETIF_MSG_TX_DONE	| \
52 			 NETIF_MSG_PKTDATA	| NETIF_MSG_TX_QUEUED	| \
53 			 NETIF_MSG_RX_STATUS)
54 
55 #define cpsw_info(priv, type, format, ...)		\
56 do {								\
57 	if (netif_msg_##type(priv) && net_ratelimit())		\
58 		dev_info(priv->dev, format, ## __VA_ARGS__);	\
59 } while (0)
60 
61 #define cpsw_err(priv, type, format, ...)		\
62 do {								\
63 	if (netif_msg_##type(priv) && net_ratelimit())		\
64 		dev_err(priv->dev, format, ## __VA_ARGS__);	\
65 } while (0)
66 
67 #define cpsw_dbg(priv, type, format, ...)		\
68 do {								\
69 	if (netif_msg_##type(priv) && net_ratelimit())		\
70 		dev_dbg(priv->dev, format, ## __VA_ARGS__);	\
71 } while (0)
72 
73 #define cpsw_notice(priv, type, format, ...)		\
74 do {								\
75 	if (netif_msg_##type(priv) && net_ratelimit())		\
76 		dev_notice(priv->dev, format, ## __VA_ARGS__);	\
77 } while (0)
78 
79 #define ALE_ALL_PORTS		0x7
80 
81 #define CPSW_MAJOR_VERSION(reg)		(reg >> 8 & 0x7)
82 #define CPSW_MINOR_VERSION(reg)		(reg & 0xff)
83 #define CPSW_RTL_VERSION(reg)		((reg >> 11) & 0x1f)
84 
85 #define CPSW_VERSION_1		0x19010a
86 #define CPSW_VERSION_2		0x19010c
87 #define CPSW_VERSION_3		0x19010f
88 #define CPSW_VERSION_4		0x190112
89 
90 #define HOST_PORT_NUM		0
91 #define CPSW_ALE_PORTS_NUM	3
92 #define SLIVER_SIZE		0x40
93 
94 #define CPSW1_HOST_PORT_OFFSET	0x028
95 #define CPSW1_SLAVE_OFFSET	0x050
96 #define CPSW1_SLAVE_SIZE	0x040
97 #define CPSW1_CPDMA_OFFSET	0x100
98 #define CPSW1_STATERAM_OFFSET	0x200
99 #define CPSW1_HW_STATS		0x400
100 #define CPSW1_CPTS_OFFSET	0x500
101 #define CPSW1_ALE_OFFSET	0x600
102 #define CPSW1_SLIVER_OFFSET	0x700
103 
104 #define CPSW2_HOST_PORT_OFFSET	0x108
105 #define CPSW2_SLAVE_OFFSET	0x200
106 #define CPSW2_SLAVE_SIZE	0x100
107 #define CPSW2_CPDMA_OFFSET	0x800
108 #define CPSW2_HW_STATS		0x900
109 #define CPSW2_STATERAM_OFFSET	0xa00
110 #define CPSW2_CPTS_OFFSET	0xc00
111 #define CPSW2_ALE_OFFSET	0xd00
112 #define CPSW2_SLIVER_OFFSET	0xd80
113 #define CPSW2_BD_OFFSET		0x2000
114 
115 #define CPDMA_RXTHRESH		0x0c0
116 #define CPDMA_RXFREE		0x0e0
117 #define CPDMA_TXHDP		0x00
118 #define CPDMA_RXHDP		0x20
119 #define CPDMA_TXCP		0x40
120 #define CPDMA_RXCP		0x60
121 
122 #define CPSW_POLL_WEIGHT	64
123 #define CPSW_MIN_PACKET_SIZE	(VLAN_ETH_ZLEN)
124 #define CPSW_MAX_PACKET_SIZE	(VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)
125 
126 #define RX_PRIORITY_MAPPING	0x76543210
127 #define TX_PRIORITY_MAPPING	0x33221100
128 #define CPDMA_TX_PRIORITY_MAP	0x01234567
129 
130 #define CPSW_VLAN_AWARE		BIT(1)
131 #define CPSW_ALE_VLAN_AWARE	1
132 
133 #define CPSW_FIFO_NORMAL_MODE		(0 << 16)
134 #define CPSW_FIFO_DUAL_MAC_MODE		(1 << 16)
135 #define CPSW_FIFO_RATE_LIMIT_MODE	(2 << 16)
136 
137 #define CPSW_INTPACEEN		(0x3f << 16)
138 #define CPSW_INTPRESCALE_MASK	(0x7FF << 0)
139 #define CPSW_CMINTMAX_CNT	63
140 #define CPSW_CMINTMIN_CNT	2
141 #define CPSW_CMINTMAX_INTVL	(1000 / CPSW_CMINTMIN_CNT)
142 #define CPSW_CMINTMIN_INTVL	((1000 / CPSW_CMINTMAX_CNT) + 1)
143 
144 #define cpsw_slave_index(cpsw, priv)				\
145 		((cpsw->data.dual_emac) ? priv->emac_port :	\
146 		cpsw->data.active_slave)
147 #define IRQ_NUM			2
148 #define CPSW_MAX_QUEUES		8
149 #define CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT 256
150 
151 static int debug_level;
152 module_param(debug_level, int, 0);
153 MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)");
154 
155 static int ale_ageout = 10;
156 module_param(ale_ageout, int, 0);
157 MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)");
158 
159 static int rx_packet_max = CPSW_MAX_PACKET_SIZE;
160 module_param(rx_packet_max, int, 0);
161 MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)");
162 
163 static int descs_pool_size = CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT;
164 module_param(descs_pool_size, int, 0444);
165 MODULE_PARM_DESC(descs_pool_size, "Number of CPDMA CPPI descriptors in pool");
166 
167 struct cpsw_wr_regs {
168 	u32	id_ver;
169 	u32	soft_reset;
170 	u32	control;
171 	u32	int_control;
172 	u32	rx_thresh_en;
173 	u32	rx_en;
174 	u32	tx_en;
175 	u32	misc_en;
176 	u32	mem_allign1[8];
177 	u32	rx_thresh_stat;
178 	u32	rx_stat;
179 	u32	tx_stat;
180 	u32	misc_stat;
181 	u32	mem_allign2[8];
182 	u32	rx_imax;
183 	u32	tx_imax;
184 
185 };
186 
187 struct cpsw_ss_regs {
188 	u32	id_ver;
189 	u32	control;
190 	u32	soft_reset;
191 	u32	stat_port_en;
192 	u32	ptype;
193 	u32	soft_idle;
194 	u32	thru_rate;
195 	u32	gap_thresh;
196 	u32	tx_start_wds;
197 	u32	flow_control;
198 	u32	vlan_ltype;
199 	u32	ts_ltype;
200 	u32	dlr_ltype;
201 };
202 
203 /* CPSW_PORT_V1 */
204 #define CPSW1_MAX_BLKS      0x00 /* Maximum FIFO Blocks */
205 #define CPSW1_BLK_CNT       0x04 /* FIFO Block Usage Count (Read Only) */
206 #define CPSW1_TX_IN_CTL     0x08 /* Transmit FIFO Control */
207 #define CPSW1_PORT_VLAN     0x0c /* VLAN Register */
208 #define CPSW1_TX_PRI_MAP    0x10 /* Tx Header Priority to Switch Pri Mapping */
209 #define CPSW1_TS_CTL        0x14 /* Time Sync Control */
210 #define CPSW1_TS_SEQ_LTYPE  0x18 /* Time Sync Sequence ID Offset and Msg Type */
211 #define CPSW1_TS_VLAN       0x1c /* Time Sync VLAN1 and VLAN2 */
212 
213 /* CPSW_PORT_V2 */
214 #define CPSW2_CONTROL       0x00 /* Control Register */
215 #define CPSW2_MAX_BLKS      0x08 /* Maximum FIFO Blocks */
216 #define CPSW2_BLK_CNT       0x0c /* FIFO Block Usage Count (Read Only) */
217 #define CPSW2_TX_IN_CTL     0x10 /* Transmit FIFO Control */
218 #define CPSW2_PORT_VLAN     0x14 /* VLAN Register */
219 #define CPSW2_TX_PRI_MAP    0x18 /* Tx Header Priority to Switch Pri Mapping */
220 #define CPSW2_TS_SEQ_MTYPE  0x1c /* Time Sync Sequence ID Offset and Msg Type */
221 
222 /* CPSW_PORT_V1 and V2 */
223 #define SA_LO               0x20 /* CPGMAC_SL Source Address Low */
224 #define SA_HI               0x24 /* CPGMAC_SL Source Address High */
225 #define SEND_PERCENT        0x28 /* Transmit Queue Send Percentages */
226 
227 /* CPSW_PORT_V2 only */
228 #define RX_DSCP_PRI_MAP0    0x30 /* Rx DSCP Priority to Rx Packet Mapping */
229 #define RX_DSCP_PRI_MAP1    0x34 /* Rx DSCP Priority to Rx Packet Mapping */
230 #define RX_DSCP_PRI_MAP2    0x38 /* Rx DSCP Priority to Rx Packet Mapping */
231 #define RX_DSCP_PRI_MAP3    0x3c /* Rx DSCP Priority to Rx Packet Mapping */
232 #define RX_DSCP_PRI_MAP4    0x40 /* Rx DSCP Priority to Rx Packet Mapping */
233 #define RX_DSCP_PRI_MAP5    0x44 /* Rx DSCP Priority to Rx Packet Mapping */
234 #define RX_DSCP_PRI_MAP6    0x48 /* Rx DSCP Priority to Rx Packet Mapping */
235 #define RX_DSCP_PRI_MAP7    0x4c /* Rx DSCP Priority to Rx Packet Mapping */
236 
237 /* Bit definitions for the CPSW2_CONTROL register */
238 #define PASS_PRI_TAGGED     (1<<24) /* Pass Priority Tagged */
239 #define VLAN_LTYPE2_EN      (1<<21) /* VLAN LTYPE 2 enable */
240 #define VLAN_LTYPE1_EN      (1<<20) /* VLAN LTYPE 1 enable */
241 #define DSCP_PRI_EN         (1<<16) /* DSCP Priority Enable */
242 #define TS_320              (1<<14) /* Time Sync Dest Port 320 enable */
243 #define TS_319              (1<<13) /* Time Sync Dest Port 319 enable */
244 #define TS_132              (1<<12) /* Time Sync Dest IP Addr 132 enable */
245 #define TS_131              (1<<11) /* Time Sync Dest IP Addr 131 enable */
246 #define TS_130              (1<<10) /* Time Sync Dest IP Addr 130 enable */
247 #define TS_129              (1<<9)  /* Time Sync Dest IP Addr 129 enable */
248 #define TS_TTL_NONZERO      (1<<8)  /* Time Sync Time To Live Non-zero enable */
249 #define TS_ANNEX_F_EN       (1<<6)  /* Time Sync Annex F enable */
250 #define TS_ANNEX_D_EN       (1<<4)  /* Time Sync Annex D enable */
251 #define TS_LTYPE2_EN        (1<<3)  /* Time Sync LTYPE 2 enable */
252 #define TS_LTYPE1_EN        (1<<2)  /* Time Sync LTYPE 1 enable */
253 #define TS_TX_EN            (1<<1)  /* Time Sync Transmit Enable */
254 #define TS_RX_EN            (1<<0)  /* Time Sync Receive Enable */
255 
256 #define CTRL_V2_TS_BITS \
257 	(TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
258 	 TS_TTL_NONZERO  | TS_ANNEX_D_EN | TS_LTYPE1_EN)
259 
260 #define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN)
261 #define CTRL_V2_TX_TS_BITS  (CTRL_V2_TS_BITS | TS_TX_EN)
262 #define CTRL_V2_RX_TS_BITS  (CTRL_V2_TS_BITS | TS_RX_EN)
263 
264 
265 #define CTRL_V3_TS_BITS \
266 	(TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
267 	 TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\
268 	 TS_LTYPE1_EN)
269 
270 #define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN)
271 #define CTRL_V3_TX_TS_BITS  (CTRL_V3_TS_BITS | TS_TX_EN)
272 #define CTRL_V3_RX_TS_BITS  (CTRL_V3_TS_BITS | TS_RX_EN)
273 
274 /* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */
275 #define TS_SEQ_ID_OFFSET_SHIFT   (16)    /* Time Sync Sequence ID Offset */
276 #define TS_SEQ_ID_OFFSET_MASK    (0x3f)
277 #define TS_MSG_TYPE_EN_SHIFT     (0)     /* Time Sync Message Type Enable */
278 #define TS_MSG_TYPE_EN_MASK      (0xffff)
279 
280 /* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */
281 #define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3))
282 
283 /* Bit definitions for the CPSW1_TS_CTL register */
284 #define CPSW_V1_TS_RX_EN		BIT(0)
285 #define CPSW_V1_TS_TX_EN		BIT(4)
286 #define CPSW_V1_MSG_TYPE_OFS		16
287 
288 /* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */
289 #define CPSW_V1_SEQ_ID_OFS_SHIFT	16
290 
291 #define CPSW_MAX_BLKS_TX		15
292 #define CPSW_MAX_BLKS_TX_SHIFT		4
293 #define CPSW_MAX_BLKS_RX		5
294 
295 struct cpsw_host_regs {
296 	u32	max_blks;
297 	u32	blk_cnt;
298 	u32	tx_in_ctl;
299 	u32	port_vlan;
300 	u32	tx_pri_map;
301 	u32	cpdma_tx_pri_map;
302 	u32	cpdma_rx_chan_map;
303 };
304 
305 struct cpsw_sliver_regs {
306 	u32	id_ver;
307 	u32	mac_control;
308 	u32	mac_status;
309 	u32	soft_reset;
310 	u32	rx_maxlen;
311 	u32	__reserved_0;
312 	u32	rx_pause;
313 	u32	tx_pause;
314 	u32	__reserved_1;
315 	u32	rx_pri_map;
316 };
317 
318 struct cpsw_hw_stats {
319 	u32	rxgoodframes;
320 	u32	rxbroadcastframes;
321 	u32	rxmulticastframes;
322 	u32	rxpauseframes;
323 	u32	rxcrcerrors;
324 	u32	rxaligncodeerrors;
325 	u32	rxoversizedframes;
326 	u32	rxjabberframes;
327 	u32	rxundersizedframes;
328 	u32	rxfragments;
329 	u32	__pad_0[2];
330 	u32	rxoctets;
331 	u32	txgoodframes;
332 	u32	txbroadcastframes;
333 	u32	txmulticastframes;
334 	u32	txpauseframes;
335 	u32	txdeferredframes;
336 	u32	txcollisionframes;
337 	u32	txsinglecollframes;
338 	u32	txmultcollframes;
339 	u32	txexcessivecollisions;
340 	u32	txlatecollisions;
341 	u32	txunderrun;
342 	u32	txcarriersenseerrors;
343 	u32	txoctets;
344 	u32	octetframes64;
345 	u32	octetframes65t127;
346 	u32	octetframes128t255;
347 	u32	octetframes256t511;
348 	u32	octetframes512t1023;
349 	u32	octetframes1024tup;
350 	u32	netoctets;
351 	u32	rxsofoverruns;
352 	u32	rxmofoverruns;
353 	u32	rxdmaoverruns;
354 };
355 
356 struct cpsw_slave_data {
357 	struct device_node *phy_node;
358 	char		phy_id[MII_BUS_ID_SIZE];
359 	int		phy_if;
360 	u8		mac_addr[ETH_ALEN];
361 	u16		dual_emac_res_vlan;	/* Reserved VLAN for DualEMAC */
362 };
363 
364 struct cpsw_platform_data {
365 	struct cpsw_slave_data	*slave_data;
366 	u32	ss_reg_ofs;	/* Subsystem control register offset */
367 	u32	channels;	/* number of cpdma channels (symmetric) */
368 	u32	slaves;		/* number of slave cpgmac ports */
369 	u32	active_slave; /* time stamping, ethtool and SIOCGMIIPHY slave */
370 	u32	ale_entries;	/* ale table size */
371 	u32	bd_ram_size;  /*buffer descriptor ram size */
372 	u32	mac_control;	/* Mac control register */
373 	u16	default_vlan;	/* Def VLAN for ALE lookup in VLAN aware mode*/
374 	bool	dual_emac;	/* Enable Dual EMAC mode */
375 };
376 
377 struct cpsw_slave {
378 	void __iomem			*regs;
379 	struct cpsw_sliver_regs __iomem	*sliver;
380 	int				slave_num;
381 	u32				mac_control;
382 	struct cpsw_slave_data		*data;
383 	struct phy_device		*phy;
384 	struct net_device		*ndev;
385 	u32				port_vlan;
386 };
387 
388 static inline u32 slave_read(struct cpsw_slave *slave, u32 offset)
389 {
390 	return readl_relaxed(slave->regs + offset);
391 }
392 
393 static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset)
394 {
395 	writel_relaxed(val, slave->regs + offset);
396 }
397 
398 struct cpsw_vector {
399 	struct cpdma_chan *ch;
400 	int budget;
401 };
402 
403 struct cpsw_common {
404 	struct device			*dev;
405 	struct cpsw_platform_data	data;
406 	struct napi_struct		napi_rx;
407 	struct napi_struct		napi_tx;
408 	struct cpsw_ss_regs __iomem	*regs;
409 	struct cpsw_wr_regs __iomem	*wr_regs;
410 	u8 __iomem			*hw_stats;
411 	struct cpsw_host_regs __iomem	*host_port_regs;
412 	u32				version;
413 	u32				coal_intvl;
414 	u32				bus_freq_mhz;
415 	int				rx_packet_max;
416 	struct cpsw_slave		*slaves;
417 	struct cpdma_ctlr		*dma;
418 	struct cpsw_vector		txv[CPSW_MAX_QUEUES];
419 	struct cpsw_vector		rxv[CPSW_MAX_QUEUES];
420 	struct cpsw_ale			*ale;
421 	bool				quirk_irq;
422 	bool				rx_irq_disabled;
423 	bool				tx_irq_disabled;
424 	u32 irqs_table[IRQ_NUM];
425 	struct cpts			*cpts;
426 	int				rx_ch_num, tx_ch_num;
427 	int				speed;
428 	int				usage_count;
429 };
430 
431 struct cpsw_priv {
432 	struct net_device		*ndev;
433 	struct device			*dev;
434 	u32				msg_enable;
435 	u8				mac_addr[ETH_ALEN];
436 	bool				rx_pause;
437 	bool				tx_pause;
438 	u32 emac_port;
439 	struct cpsw_common *cpsw;
440 };
441 
442 struct cpsw_stats {
443 	char stat_string[ETH_GSTRING_LEN];
444 	int type;
445 	int sizeof_stat;
446 	int stat_offset;
447 };
448 
449 enum {
450 	CPSW_STATS,
451 	CPDMA_RX_STATS,
452 	CPDMA_TX_STATS,
453 };
454 
455 #define CPSW_STAT(m)		CPSW_STATS,				\
456 				sizeof(((struct cpsw_hw_stats *)0)->m), \
457 				offsetof(struct cpsw_hw_stats, m)
458 #define CPDMA_RX_STAT(m)	CPDMA_RX_STATS,				   \
459 				sizeof(((struct cpdma_chan_stats *)0)->m), \
460 				offsetof(struct cpdma_chan_stats, m)
461 #define CPDMA_TX_STAT(m)	CPDMA_TX_STATS,				   \
462 				sizeof(((struct cpdma_chan_stats *)0)->m), \
463 				offsetof(struct cpdma_chan_stats, m)
464 
465 static const struct cpsw_stats cpsw_gstrings_stats[] = {
466 	{ "Good Rx Frames", CPSW_STAT(rxgoodframes) },
467 	{ "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) },
468 	{ "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) },
469 	{ "Pause Rx Frames", CPSW_STAT(rxpauseframes) },
470 	{ "Rx CRC Errors", CPSW_STAT(rxcrcerrors) },
471 	{ "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) },
472 	{ "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) },
473 	{ "Rx Jabbers", CPSW_STAT(rxjabberframes) },
474 	{ "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) },
475 	{ "Rx Fragments", CPSW_STAT(rxfragments) },
476 	{ "Rx Octets", CPSW_STAT(rxoctets) },
477 	{ "Good Tx Frames", CPSW_STAT(txgoodframes) },
478 	{ "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) },
479 	{ "Multicast Tx Frames", CPSW_STAT(txmulticastframes) },
480 	{ "Pause Tx Frames", CPSW_STAT(txpauseframes) },
481 	{ "Deferred Tx Frames", CPSW_STAT(txdeferredframes) },
482 	{ "Collisions", CPSW_STAT(txcollisionframes) },
483 	{ "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) },
484 	{ "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) },
485 	{ "Excessive Collisions", CPSW_STAT(txexcessivecollisions) },
486 	{ "Late Collisions", CPSW_STAT(txlatecollisions) },
487 	{ "Tx Underrun", CPSW_STAT(txunderrun) },
488 	{ "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) },
489 	{ "Tx Octets", CPSW_STAT(txoctets) },
490 	{ "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) },
491 	{ "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) },
492 	{ "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) },
493 	{ "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) },
494 	{ "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) },
495 	{ "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) },
496 	{ "Net Octets", CPSW_STAT(netoctets) },
497 	{ "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) },
498 	{ "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) },
499 	{ "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) },
500 };
501 
502 static const struct cpsw_stats cpsw_gstrings_ch_stats[] = {
503 	{ "head_enqueue", CPDMA_RX_STAT(head_enqueue) },
504 	{ "tail_enqueue", CPDMA_RX_STAT(tail_enqueue) },
505 	{ "pad_enqueue", CPDMA_RX_STAT(pad_enqueue) },
506 	{ "misqueued", CPDMA_RX_STAT(misqueued) },
507 	{ "desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) },
508 	{ "pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) },
509 	{ "runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) },
510 	{ "runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) },
511 	{ "empty_dequeue", CPDMA_RX_STAT(empty_dequeue) },
512 	{ "busy_dequeue", CPDMA_RX_STAT(busy_dequeue) },
513 	{ "good_dequeue", CPDMA_RX_STAT(good_dequeue) },
514 	{ "requeue", CPDMA_RX_STAT(requeue) },
515 	{ "teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) },
516 };
517 
518 #define CPSW_STATS_COMMON_LEN	ARRAY_SIZE(cpsw_gstrings_stats)
519 #define CPSW_STATS_CH_LEN	ARRAY_SIZE(cpsw_gstrings_ch_stats)
520 
521 #define ndev_to_cpsw(ndev) (((struct cpsw_priv *)netdev_priv(ndev))->cpsw)
522 #define napi_to_cpsw(napi)	container_of(napi, struct cpsw_common, napi)
523 #define for_each_slave(priv, func, arg...)				\
524 	do {								\
525 		struct cpsw_slave *slave;				\
526 		struct cpsw_common *cpsw = (priv)->cpsw;		\
527 		int n;							\
528 		if (cpsw->data.dual_emac)				\
529 			(func)((cpsw)->slaves + priv->emac_port, ##arg);\
530 		else							\
531 			for (n = cpsw->data.slaves,			\
532 					slave = cpsw->slaves;		\
533 					n; n--)				\
534 				(func)(slave++, ##arg);			\
535 	} while (0)
536 
537 #define cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb)		\
538 	do {								\
539 		if (!cpsw->data.dual_emac)				\
540 			break;						\
541 		if (CPDMA_RX_SOURCE_PORT(status) == 1) {		\
542 			ndev = cpsw->slaves[0].ndev;			\
543 			skb->dev = ndev;				\
544 		} else if (CPDMA_RX_SOURCE_PORT(status) == 2) {		\
545 			ndev = cpsw->slaves[1].ndev;			\
546 			skb->dev = ndev;				\
547 		}							\
548 	} while (0)
549 #define cpsw_add_mcast(cpsw, priv, addr)				\
550 	do {								\
551 		if (cpsw->data.dual_emac) {				\
552 			struct cpsw_slave *slave = cpsw->slaves +	\
553 						priv->emac_port;	\
554 			int slave_port = cpsw_get_slave_port(		\
555 						slave->slave_num);	\
556 			cpsw_ale_add_mcast(cpsw->ale, addr,		\
557 				1 << slave_port | ALE_PORT_HOST,	\
558 				ALE_VLAN, slave->port_vlan, 0);		\
559 		} else {						\
560 			cpsw_ale_add_mcast(cpsw->ale, addr,		\
561 				ALE_ALL_PORTS,				\
562 				0, 0, 0);				\
563 		}							\
564 	} while (0)
565 
566 static inline int cpsw_get_slave_port(u32 slave_num)
567 {
568 	return slave_num + 1;
569 }
570 
571 static void cpsw_set_promiscious(struct net_device *ndev, bool enable)
572 {
573 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
574 	struct cpsw_ale *ale = cpsw->ale;
575 	int i;
576 
577 	if (cpsw->data.dual_emac) {
578 		bool flag = false;
579 
580 		/* Enabling promiscuous mode for one interface will be
581 		 * common for both the interface as the interface shares
582 		 * the same hardware resource.
583 		 */
584 		for (i = 0; i < cpsw->data.slaves; i++)
585 			if (cpsw->slaves[i].ndev->flags & IFF_PROMISC)
586 				flag = true;
587 
588 		if (!enable && flag) {
589 			enable = true;
590 			dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n");
591 		}
592 
593 		if (enable) {
594 			/* Enable Bypass */
595 			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1);
596 
597 			dev_dbg(&ndev->dev, "promiscuity enabled\n");
598 		} else {
599 			/* Disable Bypass */
600 			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0);
601 			dev_dbg(&ndev->dev, "promiscuity disabled\n");
602 		}
603 	} else {
604 		if (enable) {
605 			unsigned long timeout = jiffies + HZ;
606 
607 			/* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */
608 			for (i = 0; i <= cpsw->data.slaves; i++) {
609 				cpsw_ale_control_set(ale, i,
610 						     ALE_PORT_NOLEARN, 1);
611 				cpsw_ale_control_set(ale, i,
612 						     ALE_PORT_NO_SA_UPDATE, 1);
613 			}
614 
615 			/* Clear All Untouched entries */
616 			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
617 			do {
618 				cpu_relax();
619 				if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT))
620 					break;
621 			} while (time_after(timeout, jiffies));
622 			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
623 
624 			/* Clear all mcast from ALE */
625 			cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS, -1);
626 
627 			/* Flood All Unicast Packets to Host port */
628 			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1);
629 			dev_dbg(&ndev->dev, "promiscuity enabled\n");
630 		} else {
631 			/* Don't Flood All Unicast Packets to Host port */
632 			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0);
633 
634 			/* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */
635 			for (i = 0; i <= cpsw->data.slaves; i++) {
636 				cpsw_ale_control_set(ale, i,
637 						     ALE_PORT_NOLEARN, 0);
638 				cpsw_ale_control_set(ale, i,
639 						     ALE_PORT_NO_SA_UPDATE, 0);
640 			}
641 			dev_dbg(&ndev->dev, "promiscuity disabled\n");
642 		}
643 	}
644 }
645 
646 static void cpsw_ndo_set_rx_mode(struct net_device *ndev)
647 {
648 	struct cpsw_priv *priv = netdev_priv(ndev);
649 	struct cpsw_common *cpsw = priv->cpsw;
650 	int vid;
651 
652 	if (cpsw->data.dual_emac)
653 		vid = cpsw->slaves[priv->emac_port].port_vlan;
654 	else
655 		vid = cpsw->data.default_vlan;
656 
657 	if (ndev->flags & IFF_PROMISC) {
658 		/* Enable promiscuous mode */
659 		cpsw_set_promiscious(ndev, true);
660 		cpsw_ale_set_allmulti(cpsw->ale, IFF_ALLMULTI);
661 		return;
662 	} else {
663 		/* Disable promiscuous mode */
664 		cpsw_set_promiscious(ndev, false);
665 	}
666 
667 	/* Restore allmulti on vlans if necessary */
668 	cpsw_ale_set_allmulti(cpsw->ale, priv->ndev->flags & IFF_ALLMULTI);
669 
670 	/* Clear all mcast from ALE */
671 	cpsw_ale_flush_multicast(cpsw->ale, ALE_ALL_PORTS, vid);
672 
673 	if (!netdev_mc_empty(ndev)) {
674 		struct netdev_hw_addr *ha;
675 
676 		/* program multicast address list into ALE register */
677 		netdev_for_each_mc_addr(ha, ndev) {
678 			cpsw_add_mcast(cpsw, priv, (u8 *)ha->addr);
679 		}
680 	}
681 }
682 
683 static void cpsw_intr_enable(struct cpsw_common *cpsw)
684 {
685 	writel_relaxed(0xFF, &cpsw->wr_regs->tx_en);
686 	writel_relaxed(0xFF, &cpsw->wr_regs->rx_en);
687 
688 	cpdma_ctlr_int_ctrl(cpsw->dma, true);
689 	return;
690 }
691 
692 static void cpsw_intr_disable(struct cpsw_common *cpsw)
693 {
694 	writel_relaxed(0, &cpsw->wr_regs->tx_en);
695 	writel_relaxed(0, &cpsw->wr_regs->rx_en);
696 
697 	cpdma_ctlr_int_ctrl(cpsw->dma, false);
698 	return;
699 }
700 
701 static void cpsw_tx_handler(void *token, int len, int status)
702 {
703 	struct netdev_queue	*txq;
704 	struct sk_buff		*skb = token;
705 	struct net_device	*ndev = skb->dev;
706 	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
707 
708 	/* Check whether the queue is stopped due to stalled tx dma, if the
709 	 * queue is stopped then start the queue as we have free desc for tx
710 	 */
711 	txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb));
712 	if (unlikely(netif_tx_queue_stopped(txq)))
713 		netif_tx_wake_queue(txq);
714 
715 	cpts_tx_timestamp(cpsw->cpts, skb);
716 	ndev->stats.tx_packets++;
717 	ndev->stats.tx_bytes += len;
718 	dev_kfree_skb_any(skb);
719 }
720 
721 static void cpsw_rx_handler(void *token, int len, int status)
722 {
723 	struct cpdma_chan	*ch;
724 	struct sk_buff		*skb = token;
725 	struct sk_buff		*new_skb;
726 	struct net_device	*ndev = skb->dev;
727 	int			ret = 0;
728 	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
729 
730 	cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb);
731 
732 	if (unlikely(status < 0) || unlikely(!netif_running(ndev))) {
733 		/* In dual emac mode check for all interfaces */
734 		if (cpsw->data.dual_emac && cpsw->usage_count &&
735 		    (status >= 0)) {
736 			/* The packet received is for the interface which
737 			 * is already down and the other interface is up
738 			 * and running, instead of freeing which results
739 			 * in reducing of the number of rx descriptor in
740 			 * DMA engine, requeue skb back to cpdma.
741 			 */
742 			new_skb = skb;
743 			goto requeue;
744 		}
745 
746 		/* the interface is going down, skbs are purged */
747 		dev_kfree_skb_any(skb);
748 		return;
749 	}
750 
751 	new_skb = netdev_alloc_skb_ip_align(ndev, cpsw->rx_packet_max);
752 	if (new_skb) {
753 		skb_copy_queue_mapping(new_skb, skb);
754 		skb_put(skb, len);
755 		cpts_rx_timestamp(cpsw->cpts, skb);
756 		skb->protocol = eth_type_trans(skb, ndev);
757 		netif_receive_skb(skb);
758 		ndev->stats.rx_bytes += len;
759 		ndev->stats.rx_packets++;
760 		kmemleak_not_leak(new_skb);
761 	} else {
762 		ndev->stats.rx_dropped++;
763 		new_skb = skb;
764 	}
765 
766 requeue:
767 	if (netif_dormant(ndev)) {
768 		dev_kfree_skb_any(new_skb);
769 		return;
770 	}
771 
772 	ch = cpsw->rxv[skb_get_queue_mapping(new_skb)].ch;
773 	ret = cpdma_chan_submit(ch, new_skb, new_skb->data,
774 				skb_tailroom(new_skb), 0);
775 	if (WARN_ON(ret < 0))
776 		dev_kfree_skb_any(new_skb);
777 }
778 
779 static void cpsw_split_res(struct net_device *ndev)
780 {
781 	struct cpsw_priv *priv = netdev_priv(ndev);
782 	u32 consumed_rate = 0, bigest_rate = 0;
783 	struct cpsw_common *cpsw = priv->cpsw;
784 	struct cpsw_vector *txv = cpsw->txv;
785 	int i, ch_weight, rlim_ch_num = 0;
786 	int budget, bigest_rate_ch = 0;
787 	u32 ch_rate, max_rate;
788 	int ch_budget = 0;
789 
790 	for (i = 0; i < cpsw->tx_ch_num; i++) {
791 		ch_rate = cpdma_chan_get_rate(txv[i].ch);
792 		if (!ch_rate)
793 			continue;
794 
795 		rlim_ch_num++;
796 		consumed_rate += ch_rate;
797 	}
798 
799 	if (cpsw->tx_ch_num == rlim_ch_num) {
800 		max_rate = consumed_rate;
801 	} else if (!rlim_ch_num) {
802 		ch_budget = CPSW_POLL_WEIGHT / cpsw->tx_ch_num;
803 		bigest_rate = 0;
804 		max_rate = consumed_rate;
805 	} else {
806 		max_rate = cpsw->speed * 1000;
807 
808 		/* if max_rate is less then expected due to reduced link speed,
809 		 * split proportionally according next potential max speed
810 		 */
811 		if (max_rate < consumed_rate)
812 			max_rate *= 10;
813 
814 		if (max_rate < consumed_rate)
815 			max_rate *= 10;
816 
817 		ch_budget = (consumed_rate * CPSW_POLL_WEIGHT) / max_rate;
818 		ch_budget = (CPSW_POLL_WEIGHT - ch_budget) /
819 			    (cpsw->tx_ch_num - rlim_ch_num);
820 		bigest_rate = (max_rate - consumed_rate) /
821 			      (cpsw->tx_ch_num - rlim_ch_num);
822 	}
823 
824 	/* split tx weight/budget */
825 	budget = CPSW_POLL_WEIGHT;
826 	for (i = 0; i < cpsw->tx_ch_num; i++) {
827 		ch_rate = cpdma_chan_get_rate(txv[i].ch);
828 		if (ch_rate) {
829 			txv[i].budget = (ch_rate * CPSW_POLL_WEIGHT) / max_rate;
830 			if (!txv[i].budget)
831 				txv[i].budget++;
832 			if (ch_rate > bigest_rate) {
833 				bigest_rate_ch = i;
834 				bigest_rate = ch_rate;
835 			}
836 
837 			ch_weight = (ch_rate * 100) / max_rate;
838 			if (!ch_weight)
839 				ch_weight++;
840 			cpdma_chan_set_weight(cpsw->txv[i].ch, ch_weight);
841 		} else {
842 			txv[i].budget = ch_budget;
843 			if (!bigest_rate_ch)
844 				bigest_rate_ch = i;
845 			cpdma_chan_set_weight(cpsw->txv[i].ch, 0);
846 		}
847 
848 		budget -= txv[i].budget;
849 	}
850 
851 	if (budget)
852 		txv[bigest_rate_ch].budget += budget;
853 
854 	/* split rx budget */
855 	budget = CPSW_POLL_WEIGHT;
856 	ch_budget = budget / cpsw->rx_ch_num;
857 	for (i = 0; i < cpsw->rx_ch_num; i++) {
858 		cpsw->rxv[i].budget = ch_budget;
859 		budget -= ch_budget;
860 	}
861 
862 	if (budget)
863 		cpsw->rxv[0].budget += budget;
864 }
865 
866 static irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id)
867 {
868 	struct cpsw_common *cpsw = dev_id;
869 
870 	writel(0, &cpsw->wr_regs->tx_en);
871 	cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_TX);
872 
873 	if (cpsw->quirk_irq) {
874 		disable_irq_nosync(cpsw->irqs_table[1]);
875 		cpsw->tx_irq_disabled = true;
876 	}
877 
878 	napi_schedule(&cpsw->napi_tx);
879 	return IRQ_HANDLED;
880 }
881 
882 static irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id)
883 {
884 	struct cpsw_common *cpsw = dev_id;
885 
886 	cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_RX);
887 	writel(0, &cpsw->wr_regs->rx_en);
888 
889 	if (cpsw->quirk_irq) {
890 		disable_irq_nosync(cpsw->irqs_table[0]);
891 		cpsw->rx_irq_disabled = true;
892 	}
893 
894 	napi_schedule(&cpsw->napi_rx);
895 	return IRQ_HANDLED;
896 }
897 
898 static int cpsw_tx_poll(struct napi_struct *napi_tx, int budget)
899 {
900 	u32			ch_map;
901 	int			num_tx, cur_budget, ch;
902 	struct cpsw_common	*cpsw = napi_to_cpsw(napi_tx);
903 	struct cpsw_vector	*txv;
904 
905 	/* process every unprocessed channel */
906 	ch_map = cpdma_ctrl_txchs_state(cpsw->dma);
907 	for (ch = 0, num_tx = 0; ch_map; ch_map >>= 1, ch++) {
908 		if (!(ch_map & 0x01))
909 			continue;
910 
911 		txv = &cpsw->txv[ch];
912 		if (unlikely(txv->budget > budget - num_tx))
913 			cur_budget = budget - num_tx;
914 		else
915 			cur_budget = txv->budget;
916 
917 		num_tx += cpdma_chan_process(txv->ch, cur_budget);
918 		if (num_tx >= budget)
919 			break;
920 	}
921 
922 	if (num_tx < budget) {
923 		napi_complete(napi_tx);
924 		writel(0xff, &cpsw->wr_regs->tx_en);
925 		if (cpsw->quirk_irq && cpsw->tx_irq_disabled) {
926 			cpsw->tx_irq_disabled = false;
927 			enable_irq(cpsw->irqs_table[1]);
928 		}
929 	}
930 
931 	return num_tx;
932 }
933 
934 static int cpsw_rx_poll(struct napi_struct *napi_rx, int budget)
935 {
936 	u32			ch_map;
937 	int			num_rx, cur_budget, ch;
938 	struct cpsw_common	*cpsw = napi_to_cpsw(napi_rx);
939 	struct cpsw_vector	*rxv;
940 
941 	/* process every unprocessed channel */
942 	ch_map = cpdma_ctrl_rxchs_state(cpsw->dma);
943 	for (ch = 0, num_rx = 0; ch_map; ch_map >>= 1, ch++) {
944 		if (!(ch_map & 0x01))
945 			continue;
946 
947 		rxv = &cpsw->rxv[ch];
948 		if (unlikely(rxv->budget > budget - num_rx))
949 			cur_budget = budget - num_rx;
950 		else
951 			cur_budget = rxv->budget;
952 
953 		num_rx += cpdma_chan_process(rxv->ch, cur_budget);
954 		if (num_rx >= budget)
955 			break;
956 	}
957 
958 	if (num_rx < budget) {
959 		napi_complete_done(napi_rx, num_rx);
960 		writel(0xff, &cpsw->wr_regs->rx_en);
961 		if (cpsw->quirk_irq && cpsw->rx_irq_disabled) {
962 			cpsw->rx_irq_disabled = false;
963 			enable_irq(cpsw->irqs_table[0]);
964 		}
965 	}
966 
967 	return num_rx;
968 }
969 
970 static inline void soft_reset(const char *module, void __iomem *reg)
971 {
972 	unsigned long timeout = jiffies + HZ;
973 
974 	writel_relaxed(1, reg);
975 	do {
976 		cpu_relax();
977 	} while ((readl_relaxed(reg) & 1) && time_after(timeout, jiffies));
978 
979 	WARN(readl_relaxed(reg) & 1, "failed to soft-reset %s\n", module);
980 }
981 
982 static void cpsw_set_slave_mac(struct cpsw_slave *slave,
983 			       struct cpsw_priv *priv)
984 {
985 	slave_write(slave, mac_hi(priv->mac_addr), SA_HI);
986 	slave_write(slave, mac_lo(priv->mac_addr), SA_LO);
987 }
988 
989 static void _cpsw_adjust_link(struct cpsw_slave *slave,
990 			      struct cpsw_priv *priv, bool *link)
991 {
992 	struct phy_device	*phy = slave->phy;
993 	u32			mac_control = 0;
994 	u32			slave_port;
995 	struct cpsw_common *cpsw = priv->cpsw;
996 
997 	if (!phy)
998 		return;
999 
1000 	slave_port = cpsw_get_slave_port(slave->slave_num);
1001 
1002 	if (phy->link) {
1003 		mac_control = cpsw->data.mac_control;
1004 
1005 		/* enable forwarding */
1006 		cpsw_ale_control_set(cpsw->ale, slave_port,
1007 				     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
1008 
1009 		if (phy->speed == 1000)
1010 			mac_control |= BIT(7);	/* GIGABITEN	*/
1011 		if (phy->duplex)
1012 			mac_control |= BIT(0);	/* FULLDUPLEXEN	*/
1013 
1014 		/* set speed_in input in case RMII mode is used in 100Mbps */
1015 		if (phy->speed == 100)
1016 			mac_control |= BIT(15);
1017 		else if (phy->speed == 10)
1018 			mac_control |= BIT(18); /* In Band mode */
1019 
1020 		if (priv->rx_pause)
1021 			mac_control |= BIT(3);
1022 
1023 		if (priv->tx_pause)
1024 			mac_control |= BIT(4);
1025 
1026 		*link = true;
1027 	} else {
1028 		mac_control = 0;
1029 		/* disable forwarding */
1030 		cpsw_ale_control_set(cpsw->ale, slave_port,
1031 				     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1032 	}
1033 
1034 	if (mac_control != slave->mac_control) {
1035 		phy_print_status(phy);
1036 		writel_relaxed(mac_control, &slave->sliver->mac_control);
1037 	}
1038 
1039 	slave->mac_control = mac_control;
1040 }
1041 
1042 static int cpsw_get_common_speed(struct cpsw_common *cpsw)
1043 {
1044 	int i, speed;
1045 
1046 	for (i = 0, speed = 0; i < cpsw->data.slaves; i++)
1047 		if (cpsw->slaves[i].phy && cpsw->slaves[i].phy->link)
1048 			speed += cpsw->slaves[i].phy->speed;
1049 
1050 	return speed;
1051 }
1052 
1053 static int cpsw_need_resplit(struct cpsw_common *cpsw)
1054 {
1055 	int i, rlim_ch_num;
1056 	int speed, ch_rate;
1057 
1058 	/* re-split resources only in case speed was changed */
1059 	speed = cpsw_get_common_speed(cpsw);
1060 	if (speed == cpsw->speed || !speed)
1061 		return 0;
1062 
1063 	cpsw->speed = speed;
1064 
1065 	for (i = 0, rlim_ch_num = 0; i < cpsw->tx_ch_num; i++) {
1066 		ch_rate = cpdma_chan_get_rate(cpsw->txv[i].ch);
1067 		if (!ch_rate)
1068 			break;
1069 
1070 		rlim_ch_num++;
1071 	}
1072 
1073 	/* cases not dependent on speed */
1074 	if (!rlim_ch_num || rlim_ch_num == cpsw->tx_ch_num)
1075 		return 0;
1076 
1077 	return 1;
1078 }
1079 
1080 static void cpsw_adjust_link(struct net_device *ndev)
1081 {
1082 	struct cpsw_priv	*priv = netdev_priv(ndev);
1083 	struct cpsw_common	*cpsw = priv->cpsw;
1084 	bool			link = false;
1085 
1086 	for_each_slave(priv, _cpsw_adjust_link, priv, &link);
1087 
1088 	if (link) {
1089 		if (cpsw_need_resplit(cpsw))
1090 			cpsw_split_res(ndev);
1091 
1092 		netif_carrier_on(ndev);
1093 		if (netif_running(ndev))
1094 			netif_tx_wake_all_queues(ndev);
1095 	} else {
1096 		netif_carrier_off(ndev);
1097 		netif_tx_stop_all_queues(ndev);
1098 	}
1099 }
1100 
1101 static int cpsw_get_coalesce(struct net_device *ndev,
1102 				struct ethtool_coalesce *coal)
1103 {
1104 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1105 
1106 	coal->rx_coalesce_usecs = cpsw->coal_intvl;
1107 	return 0;
1108 }
1109 
1110 static int cpsw_set_coalesce(struct net_device *ndev,
1111 				struct ethtool_coalesce *coal)
1112 {
1113 	struct cpsw_priv *priv = netdev_priv(ndev);
1114 	u32 int_ctrl;
1115 	u32 num_interrupts = 0;
1116 	u32 prescale = 0;
1117 	u32 addnl_dvdr = 1;
1118 	u32 coal_intvl = 0;
1119 	struct cpsw_common *cpsw = priv->cpsw;
1120 
1121 	coal_intvl = coal->rx_coalesce_usecs;
1122 
1123 	int_ctrl =  readl(&cpsw->wr_regs->int_control);
1124 	prescale = cpsw->bus_freq_mhz * 4;
1125 
1126 	if (!coal->rx_coalesce_usecs) {
1127 		int_ctrl &= ~(CPSW_INTPRESCALE_MASK | CPSW_INTPACEEN);
1128 		goto update_return;
1129 	}
1130 
1131 	if (coal_intvl < CPSW_CMINTMIN_INTVL)
1132 		coal_intvl = CPSW_CMINTMIN_INTVL;
1133 
1134 	if (coal_intvl > CPSW_CMINTMAX_INTVL) {
1135 		/* Interrupt pacer works with 4us Pulse, we can
1136 		 * throttle further by dilating the 4us pulse.
1137 		 */
1138 		addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale;
1139 
1140 		if (addnl_dvdr > 1) {
1141 			prescale *= addnl_dvdr;
1142 			if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr))
1143 				coal_intvl = (CPSW_CMINTMAX_INTVL
1144 						* addnl_dvdr);
1145 		} else {
1146 			addnl_dvdr = 1;
1147 			coal_intvl = CPSW_CMINTMAX_INTVL;
1148 		}
1149 	}
1150 
1151 	num_interrupts = (1000 * addnl_dvdr) / coal_intvl;
1152 	writel(num_interrupts, &cpsw->wr_regs->rx_imax);
1153 	writel(num_interrupts, &cpsw->wr_regs->tx_imax);
1154 
1155 	int_ctrl |= CPSW_INTPACEEN;
1156 	int_ctrl &= (~CPSW_INTPRESCALE_MASK);
1157 	int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK);
1158 
1159 update_return:
1160 	writel(int_ctrl, &cpsw->wr_regs->int_control);
1161 
1162 	cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl);
1163 	cpsw->coal_intvl = coal_intvl;
1164 
1165 	return 0;
1166 }
1167 
1168 static int cpsw_get_sset_count(struct net_device *ndev, int sset)
1169 {
1170 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1171 
1172 	switch (sset) {
1173 	case ETH_SS_STATS:
1174 		return (CPSW_STATS_COMMON_LEN +
1175 		       (cpsw->rx_ch_num + cpsw->tx_ch_num) *
1176 		       CPSW_STATS_CH_LEN);
1177 	default:
1178 		return -EOPNOTSUPP;
1179 	}
1180 }
1181 
1182 static void cpsw_add_ch_strings(u8 **p, int ch_num, int rx_dir)
1183 {
1184 	int ch_stats_len;
1185 	int line;
1186 	int i;
1187 
1188 	ch_stats_len = CPSW_STATS_CH_LEN * ch_num;
1189 	for (i = 0; i < ch_stats_len; i++) {
1190 		line = i % CPSW_STATS_CH_LEN;
1191 		snprintf(*p, ETH_GSTRING_LEN,
1192 			 "%s DMA chan %d: %s", rx_dir ? "Rx" : "Tx",
1193 			 i / CPSW_STATS_CH_LEN,
1194 			 cpsw_gstrings_ch_stats[line].stat_string);
1195 		*p += ETH_GSTRING_LEN;
1196 	}
1197 }
1198 
1199 static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1200 {
1201 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1202 	u8 *p = data;
1203 	int i;
1204 
1205 	switch (stringset) {
1206 	case ETH_SS_STATS:
1207 		for (i = 0; i < CPSW_STATS_COMMON_LEN; i++) {
1208 			memcpy(p, cpsw_gstrings_stats[i].stat_string,
1209 			       ETH_GSTRING_LEN);
1210 			p += ETH_GSTRING_LEN;
1211 		}
1212 
1213 		cpsw_add_ch_strings(&p, cpsw->rx_ch_num, 1);
1214 		cpsw_add_ch_strings(&p, cpsw->tx_ch_num, 0);
1215 		break;
1216 	}
1217 }
1218 
1219 static void cpsw_get_ethtool_stats(struct net_device *ndev,
1220 				    struct ethtool_stats *stats, u64 *data)
1221 {
1222 	u8 *p;
1223 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1224 	struct cpdma_chan_stats ch_stats;
1225 	int i, l, ch;
1226 
1227 	/* Collect Davinci CPDMA stats for Rx and Tx Channel */
1228 	for (l = 0; l < CPSW_STATS_COMMON_LEN; l++)
1229 		data[l] = readl(cpsw->hw_stats +
1230 				cpsw_gstrings_stats[l].stat_offset);
1231 
1232 	for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1233 		cpdma_chan_get_stats(cpsw->rxv[ch].ch, &ch_stats);
1234 		for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
1235 			p = (u8 *)&ch_stats +
1236 				cpsw_gstrings_ch_stats[i].stat_offset;
1237 			data[l] = *(u32 *)p;
1238 		}
1239 	}
1240 
1241 	for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
1242 		cpdma_chan_get_stats(cpsw->txv[ch].ch, &ch_stats);
1243 		for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
1244 			p = (u8 *)&ch_stats +
1245 				cpsw_gstrings_ch_stats[i].stat_offset;
1246 			data[l] = *(u32 *)p;
1247 		}
1248 	}
1249 }
1250 
1251 static inline int cpsw_tx_packet_submit(struct cpsw_priv *priv,
1252 					struct sk_buff *skb,
1253 					struct cpdma_chan *txch)
1254 {
1255 	struct cpsw_common *cpsw = priv->cpsw;
1256 
1257 	skb_tx_timestamp(skb);
1258 	return cpdma_chan_submit(txch, skb, skb->data, skb->len,
1259 				 priv->emac_port + cpsw->data.dual_emac);
1260 }
1261 
1262 static inline void cpsw_add_dual_emac_def_ale_entries(
1263 		struct cpsw_priv *priv, struct cpsw_slave *slave,
1264 		u32 slave_port)
1265 {
1266 	struct cpsw_common *cpsw = priv->cpsw;
1267 	u32 port_mask = 1 << slave_port | ALE_PORT_HOST;
1268 
1269 	if (cpsw->version == CPSW_VERSION_1)
1270 		slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN);
1271 	else
1272 		slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN);
1273 	cpsw_ale_add_vlan(cpsw->ale, slave->port_vlan, port_mask,
1274 			  port_mask, port_mask, 0);
1275 	cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1276 			   port_mask, ALE_VLAN, slave->port_vlan, 0);
1277 	cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
1278 			   HOST_PORT_NUM, ALE_VLAN |
1279 			   ALE_SECURE, slave->port_vlan);
1280 }
1281 
1282 static void soft_reset_slave(struct cpsw_slave *slave)
1283 {
1284 	char name[32];
1285 
1286 	snprintf(name, sizeof(name), "slave-%d", slave->slave_num);
1287 	soft_reset(name, &slave->sliver->soft_reset);
1288 }
1289 
1290 static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv)
1291 {
1292 	u32 slave_port;
1293 	struct phy_device *phy;
1294 	struct cpsw_common *cpsw = priv->cpsw;
1295 
1296 	soft_reset_slave(slave);
1297 
1298 	/* setup priority mapping */
1299 	writel_relaxed(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map);
1300 
1301 	switch (cpsw->version) {
1302 	case CPSW_VERSION_1:
1303 		slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP);
1304 		/* Increase RX FIFO size to 5 for supporting fullduplex
1305 		 * flow control mode
1306 		 */
1307 		slave_write(slave,
1308 			    (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
1309 			    CPSW_MAX_BLKS_RX, CPSW1_MAX_BLKS);
1310 		break;
1311 	case CPSW_VERSION_2:
1312 	case CPSW_VERSION_3:
1313 	case CPSW_VERSION_4:
1314 		slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP);
1315 		/* Increase RX FIFO size to 5 for supporting fullduplex
1316 		 * flow control mode
1317 		 */
1318 		slave_write(slave,
1319 			    (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
1320 			    CPSW_MAX_BLKS_RX, CPSW2_MAX_BLKS);
1321 		break;
1322 	}
1323 
1324 	/* setup max packet size, and mac address */
1325 	writel_relaxed(cpsw->rx_packet_max, &slave->sliver->rx_maxlen);
1326 	cpsw_set_slave_mac(slave, priv);
1327 
1328 	slave->mac_control = 0;	/* no link yet */
1329 
1330 	slave_port = cpsw_get_slave_port(slave->slave_num);
1331 
1332 	if (cpsw->data.dual_emac)
1333 		cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port);
1334 	else
1335 		cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1336 				   1 << slave_port, 0, 0, ALE_MCAST_FWD_2);
1337 
1338 	if (slave->data->phy_node) {
1339 		phy = of_phy_connect(priv->ndev, slave->data->phy_node,
1340 				 &cpsw_adjust_link, 0, slave->data->phy_if);
1341 		if (!phy) {
1342 			dev_err(priv->dev, "phy \"%pOF\" not found on slave %d\n",
1343 				slave->data->phy_node,
1344 				slave->slave_num);
1345 			return;
1346 		}
1347 	} else {
1348 		phy = phy_connect(priv->ndev, slave->data->phy_id,
1349 				 &cpsw_adjust_link, slave->data->phy_if);
1350 		if (IS_ERR(phy)) {
1351 			dev_err(priv->dev,
1352 				"phy \"%s\" not found on slave %d, err %ld\n",
1353 				slave->data->phy_id, slave->slave_num,
1354 				PTR_ERR(phy));
1355 			return;
1356 		}
1357 	}
1358 
1359 	slave->phy = phy;
1360 
1361 	phy_attached_info(slave->phy);
1362 
1363 	phy_start(slave->phy);
1364 
1365 	/* Configure GMII_SEL register */
1366 	cpsw_phy_sel(cpsw->dev, slave->phy->interface, slave->slave_num);
1367 }
1368 
1369 static inline void cpsw_add_default_vlan(struct cpsw_priv *priv)
1370 {
1371 	struct cpsw_common *cpsw = priv->cpsw;
1372 	const int vlan = cpsw->data.default_vlan;
1373 	u32 reg;
1374 	int i;
1375 	int unreg_mcast_mask;
1376 
1377 	reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN :
1378 	       CPSW2_PORT_VLAN;
1379 
1380 	writel(vlan, &cpsw->host_port_regs->port_vlan);
1381 
1382 	for (i = 0; i < cpsw->data.slaves; i++)
1383 		slave_write(cpsw->slaves + i, vlan, reg);
1384 
1385 	if (priv->ndev->flags & IFF_ALLMULTI)
1386 		unreg_mcast_mask = ALE_ALL_PORTS;
1387 	else
1388 		unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
1389 
1390 	cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS,
1391 			  ALE_ALL_PORTS, ALE_ALL_PORTS,
1392 			  unreg_mcast_mask);
1393 }
1394 
1395 static void cpsw_init_host_port(struct cpsw_priv *priv)
1396 {
1397 	u32 fifo_mode;
1398 	u32 control_reg;
1399 	struct cpsw_common *cpsw = priv->cpsw;
1400 
1401 	/* soft reset the controller and initialize ale */
1402 	soft_reset("cpsw", &cpsw->regs->soft_reset);
1403 	cpsw_ale_start(cpsw->ale);
1404 
1405 	/* switch to vlan unaware mode */
1406 	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_VLAN_AWARE,
1407 			     CPSW_ALE_VLAN_AWARE);
1408 	control_reg = readl(&cpsw->regs->control);
1409 	control_reg |= CPSW_VLAN_AWARE;
1410 	writel(control_reg, &cpsw->regs->control);
1411 	fifo_mode = (cpsw->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE :
1412 		     CPSW_FIFO_NORMAL_MODE;
1413 	writel(fifo_mode, &cpsw->host_port_regs->tx_in_ctl);
1414 
1415 	/* setup host port priority mapping */
1416 	writel_relaxed(CPDMA_TX_PRIORITY_MAP,
1417 		       &cpsw->host_port_regs->cpdma_tx_pri_map);
1418 	writel_relaxed(0, &cpsw->host_port_regs->cpdma_rx_chan_map);
1419 
1420 	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM,
1421 			     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
1422 
1423 	if (!cpsw->data.dual_emac) {
1424 		cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1425 				   0, 0);
1426 		cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1427 				   ALE_PORT_HOST, 0, 0, ALE_MCAST_FWD_2);
1428 	}
1429 }
1430 
1431 static int cpsw_fill_rx_channels(struct cpsw_priv *priv)
1432 {
1433 	struct cpsw_common *cpsw = priv->cpsw;
1434 	struct sk_buff *skb;
1435 	int ch_buf_num;
1436 	int ch, i, ret;
1437 
1438 	for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1439 		ch_buf_num = cpdma_chan_get_rx_buf_num(cpsw->rxv[ch].ch);
1440 		for (i = 0; i < ch_buf_num; i++) {
1441 			skb = __netdev_alloc_skb_ip_align(priv->ndev,
1442 							  cpsw->rx_packet_max,
1443 							  GFP_KERNEL);
1444 			if (!skb) {
1445 				cpsw_err(priv, ifup, "cannot allocate skb\n");
1446 				return -ENOMEM;
1447 			}
1448 
1449 			skb_set_queue_mapping(skb, ch);
1450 			ret = cpdma_chan_submit(cpsw->rxv[ch].ch, skb,
1451 						skb->data, skb_tailroom(skb),
1452 						0);
1453 			if (ret < 0) {
1454 				cpsw_err(priv, ifup,
1455 					 "cannot submit skb to channel %d rx, error %d\n",
1456 					 ch, ret);
1457 				kfree_skb(skb);
1458 				return ret;
1459 			}
1460 			kmemleak_not_leak(skb);
1461 		}
1462 
1463 		cpsw_info(priv, ifup, "ch %d rx, submitted %d descriptors\n",
1464 			  ch, ch_buf_num);
1465 	}
1466 
1467 	return 0;
1468 }
1469 
1470 static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_common *cpsw)
1471 {
1472 	u32 slave_port;
1473 
1474 	slave_port = cpsw_get_slave_port(slave->slave_num);
1475 
1476 	if (!slave->phy)
1477 		return;
1478 	phy_stop(slave->phy);
1479 	phy_disconnect(slave->phy);
1480 	slave->phy = NULL;
1481 	cpsw_ale_control_set(cpsw->ale, slave_port,
1482 			     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1483 	soft_reset_slave(slave);
1484 }
1485 
1486 static int cpsw_ndo_open(struct net_device *ndev)
1487 {
1488 	struct cpsw_priv *priv = netdev_priv(ndev);
1489 	struct cpsw_common *cpsw = priv->cpsw;
1490 	int ret;
1491 	u32 reg;
1492 
1493 	ret = pm_runtime_get_sync(cpsw->dev);
1494 	if (ret < 0) {
1495 		pm_runtime_put_noidle(cpsw->dev);
1496 		return ret;
1497 	}
1498 
1499 	netif_carrier_off(ndev);
1500 
1501 	/* Notify the stack of the actual queue counts. */
1502 	ret = netif_set_real_num_tx_queues(ndev, cpsw->tx_ch_num);
1503 	if (ret) {
1504 		dev_err(priv->dev, "cannot set real number of tx queues\n");
1505 		goto err_cleanup;
1506 	}
1507 
1508 	ret = netif_set_real_num_rx_queues(ndev, cpsw->rx_ch_num);
1509 	if (ret) {
1510 		dev_err(priv->dev, "cannot set real number of rx queues\n");
1511 		goto err_cleanup;
1512 	}
1513 
1514 	reg = cpsw->version;
1515 
1516 	dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n",
1517 		 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg),
1518 		 CPSW_RTL_VERSION(reg));
1519 
1520 	/* Initialize host and slave ports */
1521 	if (!cpsw->usage_count)
1522 		cpsw_init_host_port(priv);
1523 	for_each_slave(priv, cpsw_slave_open, priv);
1524 
1525 	/* Add default VLAN */
1526 	if (!cpsw->data.dual_emac)
1527 		cpsw_add_default_vlan(priv);
1528 	else
1529 		cpsw_ale_add_vlan(cpsw->ale, cpsw->data.default_vlan,
1530 				  ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0);
1531 
1532 	/* initialize shared resources for every ndev */
1533 	if (!cpsw->usage_count) {
1534 		/* disable priority elevation */
1535 		writel_relaxed(0, &cpsw->regs->ptype);
1536 
1537 		/* enable statistics collection only on all ports */
1538 		writel_relaxed(0x7, &cpsw->regs->stat_port_en);
1539 
1540 		/* Enable internal fifo flow control */
1541 		writel(0x7, &cpsw->regs->flow_control);
1542 
1543 		napi_enable(&cpsw->napi_rx);
1544 		napi_enable(&cpsw->napi_tx);
1545 
1546 		if (cpsw->tx_irq_disabled) {
1547 			cpsw->tx_irq_disabled = false;
1548 			enable_irq(cpsw->irqs_table[1]);
1549 		}
1550 
1551 		if (cpsw->rx_irq_disabled) {
1552 			cpsw->rx_irq_disabled = false;
1553 			enable_irq(cpsw->irqs_table[0]);
1554 		}
1555 
1556 		ret = cpsw_fill_rx_channels(priv);
1557 		if (ret < 0)
1558 			goto err_cleanup;
1559 
1560 		if (cpts_register(cpsw->cpts))
1561 			dev_err(priv->dev, "error registering cpts device\n");
1562 
1563 	}
1564 
1565 	/* Enable Interrupt pacing if configured */
1566 	if (cpsw->coal_intvl != 0) {
1567 		struct ethtool_coalesce coal;
1568 
1569 		coal.rx_coalesce_usecs = cpsw->coal_intvl;
1570 		cpsw_set_coalesce(ndev, &coal);
1571 	}
1572 
1573 	cpdma_ctlr_start(cpsw->dma);
1574 	cpsw_intr_enable(cpsw);
1575 	cpsw->usage_count++;
1576 
1577 	return 0;
1578 
1579 err_cleanup:
1580 	cpdma_ctlr_stop(cpsw->dma);
1581 	for_each_slave(priv, cpsw_slave_stop, cpsw);
1582 	pm_runtime_put_sync(cpsw->dev);
1583 	netif_carrier_off(priv->ndev);
1584 	return ret;
1585 }
1586 
1587 static int cpsw_ndo_stop(struct net_device *ndev)
1588 {
1589 	struct cpsw_priv *priv = netdev_priv(ndev);
1590 	struct cpsw_common *cpsw = priv->cpsw;
1591 
1592 	cpsw_info(priv, ifdown, "shutting down cpsw device\n");
1593 	netif_tx_stop_all_queues(priv->ndev);
1594 	netif_carrier_off(priv->ndev);
1595 
1596 	if (cpsw->usage_count <= 1) {
1597 		napi_disable(&cpsw->napi_rx);
1598 		napi_disable(&cpsw->napi_tx);
1599 		cpts_unregister(cpsw->cpts);
1600 		cpsw_intr_disable(cpsw);
1601 		cpdma_ctlr_stop(cpsw->dma);
1602 		cpsw_ale_stop(cpsw->ale);
1603 	}
1604 	for_each_slave(priv, cpsw_slave_stop, cpsw);
1605 
1606 	if (cpsw_need_resplit(cpsw))
1607 		cpsw_split_res(ndev);
1608 
1609 	cpsw->usage_count--;
1610 	pm_runtime_put_sync(cpsw->dev);
1611 	return 0;
1612 }
1613 
1614 static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb,
1615 				       struct net_device *ndev)
1616 {
1617 	struct cpsw_priv *priv = netdev_priv(ndev);
1618 	struct cpsw_common *cpsw = priv->cpsw;
1619 	struct cpts *cpts = cpsw->cpts;
1620 	struct netdev_queue *txq;
1621 	struct cpdma_chan *txch;
1622 	int ret, q_idx;
1623 
1624 	if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) {
1625 		cpsw_err(priv, tx_err, "packet pad failed\n");
1626 		ndev->stats.tx_dropped++;
1627 		return NET_XMIT_DROP;
1628 	}
1629 
1630 	if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
1631 	    cpts_is_tx_enabled(cpts) && cpts_can_timestamp(cpts, skb))
1632 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1633 
1634 	q_idx = skb_get_queue_mapping(skb);
1635 	if (q_idx >= cpsw->tx_ch_num)
1636 		q_idx = q_idx % cpsw->tx_ch_num;
1637 
1638 	txch = cpsw->txv[q_idx].ch;
1639 	ret = cpsw_tx_packet_submit(priv, skb, txch);
1640 	if (unlikely(ret != 0)) {
1641 		cpsw_err(priv, tx_err, "desc submit failed\n");
1642 		goto fail;
1643 	}
1644 
1645 	/* If there is no more tx desc left free then we need to
1646 	 * tell the kernel to stop sending us tx frames.
1647 	 */
1648 	if (unlikely(!cpdma_check_free_tx_desc(txch))) {
1649 		txq = netdev_get_tx_queue(ndev, q_idx);
1650 		netif_tx_stop_queue(txq);
1651 	}
1652 
1653 	return NETDEV_TX_OK;
1654 fail:
1655 	ndev->stats.tx_dropped++;
1656 	txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb));
1657 	netif_tx_stop_queue(txq);
1658 	return NETDEV_TX_BUSY;
1659 }
1660 
1661 #if IS_ENABLED(CONFIG_TI_CPTS)
1662 
1663 static void cpsw_hwtstamp_v1(struct cpsw_common *cpsw)
1664 {
1665 	struct cpsw_slave *slave = &cpsw->slaves[cpsw->data.active_slave];
1666 	u32 ts_en, seq_id;
1667 
1668 	if (!cpts_is_tx_enabled(cpsw->cpts) &&
1669 	    !cpts_is_rx_enabled(cpsw->cpts)) {
1670 		slave_write(slave, 0, CPSW1_TS_CTL);
1671 		return;
1672 	}
1673 
1674 	seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588;
1675 	ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS;
1676 
1677 	if (cpts_is_tx_enabled(cpsw->cpts))
1678 		ts_en |= CPSW_V1_TS_TX_EN;
1679 
1680 	if (cpts_is_rx_enabled(cpsw->cpts))
1681 		ts_en |= CPSW_V1_TS_RX_EN;
1682 
1683 	slave_write(slave, ts_en, CPSW1_TS_CTL);
1684 	slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE);
1685 }
1686 
1687 static void cpsw_hwtstamp_v2(struct cpsw_priv *priv)
1688 {
1689 	struct cpsw_slave *slave;
1690 	struct cpsw_common *cpsw = priv->cpsw;
1691 	u32 ctrl, mtype;
1692 
1693 	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
1694 
1695 	ctrl = slave_read(slave, CPSW2_CONTROL);
1696 	switch (cpsw->version) {
1697 	case CPSW_VERSION_2:
1698 		ctrl &= ~CTRL_V2_ALL_TS_MASK;
1699 
1700 		if (cpts_is_tx_enabled(cpsw->cpts))
1701 			ctrl |= CTRL_V2_TX_TS_BITS;
1702 
1703 		if (cpts_is_rx_enabled(cpsw->cpts))
1704 			ctrl |= CTRL_V2_RX_TS_BITS;
1705 		break;
1706 	case CPSW_VERSION_3:
1707 	default:
1708 		ctrl &= ~CTRL_V3_ALL_TS_MASK;
1709 
1710 		if (cpts_is_tx_enabled(cpsw->cpts))
1711 			ctrl |= CTRL_V3_TX_TS_BITS;
1712 
1713 		if (cpts_is_rx_enabled(cpsw->cpts))
1714 			ctrl |= CTRL_V3_RX_TS_BITS;
1715 		break;
1716 	}
1717 
1718 	mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS;
1719 
1720 	slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE);
1721 	slave_write(slave, ctrl, CPSW2_CONTROL);
1722 	writel_relaxed(ETH_P_1588, &cpsw->regs->ts_ltype);
1723 }
1724 
1725 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
1726 {
1727 	struct cpsw_priv *priv = netdev_priv(dev);
1728 	struct hwtstamp_config cfg;
1729 	struct cpsw_common *cpsw = priv->cpsw;
1730 	struct cpts *cpts = cpsw->cpts;
1731 
1732 	if (cpsw->version != CPSW_VERSION_1 &&
1733 	    cpsw->version != CPSW_VERSION_2 &&
1734 	    cpsw->version != CPSW_VERSION_3)
1735 		return -EOPNOTSUPP;
1736 
1737 	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1738 		return -EFAULT;
1739 
1740 	/* reserved for future extensions */
1741 	if (cfg.flags)
1742 		return -EINVAL;
1743 
1744 	if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON)
1745 		return -ERANGE;
1746 
1747 	switch (cfg.rx_filter) {
1748 	case HWTSTAMP_FILTER_NONE:
1749 		cpts_rx_enable(cpts, 0);
1750 		break;
1751 	case HWTSTAMP_FILTER_ALL:
1752 	case HWTSTAMP_FILTER_NTP_ALL:
1753 		return -ERANGE;
1754 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1755 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1756 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1757 		cpts_rx_enable(cpts, HWTSTAMP_FILTER_PTP_V1_L4_EVENT);
1758 		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
1759 		break;
1760 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1761 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1762 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1763 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1764 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1765 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1766 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1767 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1768 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1769 		cpts_rx_enable(cpts, HWTSTAMP_FILTER_PTP_V2_EVENT);
1770 		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1771 		break;
1772 	default:
1773 		return -ERANGE;
1774 	}
1775 
1776 	cpts_tx_enable(cpts, cfg.tx_type == HWTSTAMP_TX_ON);
1777 
1778 	switch (cpsw->version) {
1779 	case CPSW_VERSION_1:
1780 		cpsw_hwtstamp_v1(cpsw);
1781 		break;
1782 	case CPSW_VERSION_2:
1783 	case CPSW_VERSION_3:
1784 		cpsw_hwtstamp_v2(priv);
1785 		break;
1786 	default:
1787 		WARN_ON(1);
1788 	}
1789 
1790 	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1791 }
1792 
1793 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
1794 {
1795 	struct cpsw_common *cpsw = ndev_to_cpsw(dev);
1796 	struct cpts *cpts = cpsw->cpts;
1797 	struct hwtstamp_config cfg;
1798 
1799 	if (cpsw->version != CPSW_VERSION_1 &&
1800 	    cpsw->version != CPSW_VERSION_2 &&
1801 	    cpsw->version != CPSW_VERSION_3)
1802 		return -EOPNOTSUPP;
1803 
1804 	cfg.flags = 0;
1805 	cfg.tx_type = cpts_is_tx_enabled(cpts) ?
1806 		      HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
1807 	cfg.rx_filter = (cpts_is_rx_enabled(cpts) ?
1808 			 cpts->rx_enable : HWTSTAMP_FILTER_NONE);
1809 
1810 	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1811 }
1812 #else
1813 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
1814 {
1815 	return -EOPNOTSUPP;
1816 }
1817 
1818 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
1819 {
1820 	return -EOPNOTSUPP;
1821 }
1822 #endif /*CONFIG_TI_CPTS*/
1823 
1824 static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
1825 {
1826 	struct cpsw_priv *priv = netdev_priv(dev);
1827 	struct cpsw_common *cpsw = priv->cpsw;
1828 	int slave_no = cpsw_slave_index(cpsw, priv);
1829 
1830 	if (!netif_running(dev))
1831 		return -EINVAL;
1832 
1833 	switch (cmd) {
1834 	case SIOCSHWTSTAMP:
1835 		return cpsw_hwtstamp_set(dev, req);
1836 	case SIOCGHWTSTAMP:
1837 		return cpsw_hwtstamp_get(dev, req);
1838 	}
1839 
1840 	if (!cpsw->slaves[slave_no].phy)
1841 		return -EOPNOTSUPP;
1842 	return phy_mii_ioctl(cpsw->slaves[slave_no].phy, req, cmd);
1843 }
1844 
1845 static void cpsw_ndo_tx_timeout(struct net_device *ndev)
1846 {
1847 	struct cpsw_priv *priv = netdev_priv(ndev);
1848 	struct cpsw_common *cpsw = priv->cpsw;
1849 	int ch;
1850 
1851 	cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n");
1852 	ndev->stats.tx_errors++;
1853 	cpsw_intr_disable(cpsw);
1854 	for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
1855 		cpdma_chan_stop(cpsw->txv[ch].ch);
1856 		cpdma_chan_start(cpsw->txv[ch].ch);
1857 	}
1858 
1859 	cpsw_intr_enable(cpsw);
1860 	netif_trans_update(ndev);
1861 	netif_tx_wake_all_queues(ndev);
1862 }
1863 
1864 static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p)
1865 {
1866 	struct cpsw_priv *priv = netdev_priv(ndev);
1867 	struct sockaddr *addr = (struct sockaddr *)p;
1868 	struct cpsw_common *cpsw = priv->cpsw;
1869 	int flags = 0;
1870 	u16 vid = 0;
1871 	int ret;
1872 
1873 	if (!is_valid_ether_addr(addr->sa_data))
1874 		return -EADDRNOTAVAIL;
1875 
1876 	ret = pm_runtime_get_sync(cpsw->dev);
1877 	if (ret < 0) {
1878 		pm_runtime_put_noidle(cpsw->dev);
1879 		return ret;
1880 	}
1881 
1882 	if (cpsw->data.dual_emac) {
1883 		vid = cpsw->slaves[priv->emac_port].port_vlan;
1884 		flags = ALE_VLAN;
1885 	}
1886 
1887 	cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1888 			   flags, vid);
1889 	cpsw_ale_add_ucast(cpsw->ale, addr->sa_data, HOST_PORT_NUM,
1890 			   flags, vid);
1891 
1892 	memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
1893 	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
1894 	for_each_slave(priv, cpsw_set_slave_mac, priv);
1895 
1896 	pm_runtime_put(cpsw->dev);
1897 
1898 	return 0;
1899 }
1900 
1901 #ifdef CONFIG_NET_POLL_CONTROLLER
1902 static void cpsw_ndo_poll_controller(struct net_device *ndev)
1903 {
1904 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1905 
1906 	cpsw_intr_disable(cpsw);
1907 	cpsw_rx_interrupt(cpsw->irqs_table[0], cpsw);
1908 	cpsw_tx_interrupt(cpsw->irqs_table[1], cpsw);
1909 	cpsw_intr_enable(cpsw);
1910 }
1911 #endif
1912 
1913 static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv,
1914 				unsigned short vid)
1915 {
1916 	int ret;
1917 	int unreg_mcast_mask = 0;
1918 	u32 port_mask;
1919 	struct cpsw_common *cpsw = priv->cpsw;
1920 
1921 	if (cpsw->data.dual_emac) {
1922 		port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST;
1923 
1924 		if (priv->ndev->flags & IFF_ALLMULTI)
1925 			unreg_mcast_mask = port_mask;
1926 	} else {
1927 		port_mask = ALE_ALL_PORTS;
1928 
1929 		if (priv->ndev->flags & IFF_ALLMULTI)
1930 			unreg_mcast_mask = ALE_ALL_PORTS;
1931 		else
1932 			unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
1933 	}
1934 
1935 	ret = cpsw_ale_add_vlan(cpsw->ale, vid, port_mask, 0, port_mask,
1936 				unreg_mcast_mask);
1937 	if (ret != 0)
1938 		return ret;
1939 
1940 	ret = cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
1941 				 HOST_PORT_NUM, ALE_VLAN, vid);
1942 	if (ret != 0)
1943 		goto clean_vid;
1944 
1945 	ret = cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1946 				 port_mask, ALE_VLAN, vid, 0);
1947 	if (ret != 0)
1948 		goto clean_vlan_ucast;
1949 	return 0;
1950 
1951 clean_vlan_ucast:
1952 	cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
1953 			   HOST_PORT_NUM, ALE_VLAN, vid);
1954 clean_vid:
1955 	cpsw_ale_del_vlan(cpsw->ale, vid, 0);
1956 	return ret;
1957 }
1958 
1959 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
1960 				    __be16 proto, u16 vid)
1961 {
1962 	struct cpsw_priv *priv = netdev_priv(ndev);
1963 	struct cpsw_common *cpsw = priv->cpsw;
1964 	int ret;
1965 
1966 	if (vid == cpsw->data.default_vlan)
1967 		return 0;
1968 
1969 	ret = pm_runtime_get_sync(cpsw->dev);
1970 	if (ret < 0) {
1971 		pm_runtime_put_noidle(cpsw->dev);
1972 		return ret;
1973 	}
1974 
1975 	if (cpsw->data.dual_emac) {
1976 		/* In dual EMAC, reserved VLAN id should not be used for
1977 		 * creating VLAN interfaces as this can break the dual
1978 		 * EMAC port separation
1979 		 */
1980 		int i;
1981 
1982 		for (i = 0; i < cpsw->data.slaves; i++) {
1983 			if (vid == cpsw->slaves[i].port_vlan)
1984 				return -EINVAL;
1985 		}
1986 	}
1987 
1988 	dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid);
1989 	ret = cpsw_add_vlan_ale_entry(priv, vid);
1990 
1991 	pm_runtime_put(cpsw->dev);
1992 	return ret;
1993 }
1994 
1995 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev,
1996 				     __be16 proto, u16 vid)
1997 {
1998 	struct cpsw_priv *priv = netdev_priv(ndev);
1999 	struct cpsw_common *cpsw = priv->cpsw;
2000 	int ret;
2001 
2002 	if (vid == cpsw->data.default_vlan)
2003 		return 0;
2004 
2005 	ret = pm_runtime_get_sync(cpsw->dev);
2006 	if (ret < 0) {
2007 		pm_runtime_put_noidle(cpsw->dev);
2008 		return ret;
2009 	}
2010 
2011 	if (cpsw->data.dual_emac) {
2012 		int i;
2013 
2014 		for (i = 0; i < cpsw->data.slaves; i++) {
2015 			if (vid == cpsw->slaves[i].port_vlan)
2016 				return -EINVAL;
2017 		}
2018 	}
2019 
2020 	dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid);
2021 	ret = cpsw_ale_del_vlan(cpsw->ale, vid, 0);
2022 	if (ret != 0)
2023 		return ret;
2024 
2025 	ret = cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
2026 				 HOST_PORT_NUM, ALE_VLAN, vid);
2027 	if (ret != 0)
2028 		return ret;
2029 
2030 	ret = cpsw_ale_del_mcast(cpsw->ale, priv->ndev->broadcast,
2031 				 0, ALE_VLAN, vid);
2032 	pm_runtime_put(cpsw->dev);
2033 	return ret;
2034 }
2035 
2036 static int cpsw_ndo_set_tx_maxrate(struct net_device *ndev, int queue, u32 rate)
2037 {
2038 	struct cpsw_priv *priv = netdev_priv(ndev);
2039 	struct cpsw_common *cpsw = priv->cpsw;
2040 	struct cpsw_slave *slave;
2041 	u32 min_rate;
2042 	u32 ch_rate;
2043 	int i, ret;
2044 
2045 	ch_rate = netdev_get_tx_queue(ndev, queue)->tx_maxrate;
2046 	if (ch_rate == rate)
2047 		return 0;
2048 
2049 	ch_rate = rate * 1000;
2050 	min_rate = cpdma_chan_get_min_rate(cpsw->dma);
2051 	if ((ch_rate < min_rate && ch_rate)) {
2052 		dev_err(priv->dev, "The channel rate cannot be less than %dMbps",
2053 			min_rate);
2054 		return -EINVAL;
2055 	}
2056 
2057 	if (rate > cpsw->speed) {
2058 		dev_err(priv->dev, "The channel rate cannot be more than 2Gbps");
2059 		return -EINVAL;
2060 	}
2061 
2062 	ret = pm_runtime_get_sync(cpsw->dev);
2063 	if (ret < 0) {
2064 		pm_runtime_put_noidle(cpsw->dev);
2065 		return ret;
2066 	}
2067 
2068 	ret = cpdma_chan_set_rate(cpsw->txv[queue].ch, ch_rate);
2069 	pm_runtime_put(cpsw->dev);
2070 
2071 	if (ret)
2072 		return ret;
2073 
2074 	/* update rates for slaves tx queues */
2075 	for (i = 0; i < cpsw->data.slaves; i++) {
2076 		slave = &cpsw->slaves[i];
2077 		if (!slave->ndev)
2078 			continue;
2079 
2080 		netdev_get_tx_queue(slave->ndev, queue)->tx_maxrate = rate;
2081 	}
2082 
2083 	cpsw_split_res(ndev);
2084 	return ret;
2085 }
2086 
2087 static const struct net_device_ops cpsw_netdev_ops = {
2088 	.ndo_open		= cpsw_ndo_open,
2089 	.ndo_stop		= cpsw_ndo_stop,
2090 	.ndo_start_xmit		= cpsw_ndo_start_xmit,
2091 	.ndo_set_mac_address	= cpsw_ndo_set_mac_address,
2092 	.ndo_do_ioctl		= cpsw_ndo_ioctl,
2093 	.ndo_validate_addr	= eth_validate_addr,
2094 	.ndo_tx_timeout		= cpsw_ndo_tx_timeout,
2095 	.ndo_set_rx_mode	= cpsw_ndo_set_rx_mode,
2096 	.ndo_set_tx_maxrate	= cpsw_ndo_set_tx_maxrate,
2097 #ifdef CONFIG_NET_POLL_CONTROLLER
2098 	.ndo_poll_controller	= cpsw_ndo_poll_controller,
2099 #endif
2100 	.ndo_vlan_rx_add_vid	= cpsw_ndo_vlan_rx_add_vid,
2101 	.ndo_vlan_rx_kill_vid	= cpsw_ndo_vlan_rx_kill_vid,
2102 };
2103 
2104 static int cpsw_get_regs_len(struct net_device *ndev)
2105 {
2106 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2107 
2108 	return cpsw->data.ale_entries * ALE_ENTRY_WORDS * sizeof(u32);
2109 }
2110 
2111 static void cpsw_get_regs(struct net_device *ndev,
2112 			  struct ethtool_regs *regs, void *p)
2113 {
2114 	u32 *reg = p;
2115 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2116 
2117 	/* update CPSW IP version */
2118 	regs->version = cpsw->version;
2119 
2120 	cpsw_ale_dump(cpsw->ale, reg);
2121 }
2122 
2123 static void cpsw_get_drvinfo(struct net_device *ndev,
2124 			     struct ethtool_drvinfo *info)
2125 {
2126 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2127 	struct platform_device	*pdev = to_platform_device(cpsw->dev);
2128 
2129 	strlcpy(info->driver, "cpsw", sizeof(info->driver));
2130 	strlcpy(info->version, "1.0", sizeof(info->version));
2131 	strlcpy(info->bus_info, pdev->name, sizeof(info->bus_info));
2132 }
2133 
2134 static u32 cpsw_get_msglevel(struct net_device *ndev)
2135 {
2136 	struct cpsw_priv *priv = netdev_priv(ndev);
2137 	return priv->msg_enable;
2138 }
2139 
2140 static void cpsw_set_msglevel(struct net_device *ndev, u32 value)
2141 {
2142 	struct cpsw_priv *priv = netdev_priv(ndev);
2143 	priv->msg_enable = value;
2144 }
2145 
2146 #if IS_ENABLED(CONFIG_TI_CPTS)
2147 static int cpsw_get_ts_info(struct net_device *ndev,
2148 			    struct ethtool_ts_info *info)
2149 {
2150 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2151 
2152 	info->so_timestamping =
2153 		SOF_TIMESTAMPING_TX_HARDWARE |
2154 		SOF_TIMESTAMPING_TX_SOFTWARE |
2155 		SOF_TIMESTAMPING_RX_HARDWARE |
2156 		SOF_TIMESTAMPING_RX_SOFTWARE |
2157 		SOF_TIMESTAMPING_SOFTWARE |
2158 		SOF_TIMESTAMPING_RAW_HARDWARE;
2159 	info->phc_index = cpsw->cpts->phc_index;
2160 	info->tx_types =
2161 		(1 << HWTSTAMP_TX_OFF) |
2162 		(1 << HWTSTAMP_TX_ON);
2163 	info->rx_filters =
2164 		(1 << HWTSTAMP_FILTER_NONE) |
2165 		(1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
2166 		(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2167 	return 0;
2168 }
2169 #else
2170 static int cpsw_get_ts_info(struct net_device *ndev,
2171 			    struct ethtool_ts_info *info)
2172 {
2173 	info->so_timestamping =
2174 		SOF_TIMESTAMPING_TX_SOFTWARE |
2175 		SOF_TIMESTAMPING_RX_SOFTWARE |
2176 		SOF_TIMESTAMPING_SOFTWARE;
2177 	info->phc_index = -1;
2178 	info->tx_types = 0;
2179 	info->rx_filters = 0;
2180 	return 0;
2181 }
2182 #endif
2183 
2184 static int cpsw_get_link_ksettings(struct net_device *ndev,
2185 				   struct ethtool_link_ksettings *ecmd)
2186 {
2187 	struct cpsw_priv *priv = netdev_priv(ndev);
2188 	struct cpsw_common *cpsw = priv->cpsw;
2189 	int slave_no = cpsw_slave_index(cpsw, priv);
2190 
2191 	if (!cpsw->slaves[slave_no].phy)
2192 		return -EOPNOTSUPP;
2193 
2194 	phy_ethtool_ksettings_get(cpsw->slaves[slave_no].phy, ecmd);
2195 	return 0;
2196 }
2197 
2198 static int cpsw_set_link_ksettings(struct net_device *ndev,
2199 				   const struct ethtool_link_ksettings *ecmd)
2200 {
2201 	struct cpsw_priv *priv = netdev_priv(ndev);
2202 	struct cpsw_common *cpsw = priv->cpsw;
2203 	int slave_no = cpsw_slave_index(cpsw, priv);
2204 
2205 	if (cpsw->slaves[slave_no].phy)
2206 		return phy_ethtool_ksettings_set(cpsw->slaves[slave_no].phy,
2207 						 ecmd);
2208 	else
2209 		return -EOPNOTSUPP;
2210 }
2211 
2212 static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2213 {
2214 	struct cpsw_priv *priv = netdev_priv(ndev);
2215 	struct cpsw_common *cpsw = priv->cpsw;
2216 	int slave_no = cpsw_slave_index(cpsw, priv);
2217 
2218 	wol->supported = 0;
2219 	wol->wolopts = 0;
2220 
2221 	if (cpsw->slaves[slave_no].phy)
2222 		phy_ethtool_get_wol(cpsw->slaves[slave_no].phy, wol);
2223 }
2224 
2225 static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2226 {
2227 	struct cpsw_priv *priv = netdev_priv(ndev);
2228 	struct cpsw_common *cpsw = priv->cpsw;
2229 	int slave_no = cpsw_slave_index(cpsw, priv);
2230 
2231 	if (cpsw->slaves[slave_no].phy)
2232 		return phy_ethtool_set_wol(cpsw->slaves[slave_no].phy, wol);
2233 	else
2234 		return -EOPNOTSUPP;
2235 }
2236 
2237 static void cpsw_get_pauseparam(struct net_device *ndev,
2238 				struct ethtool_pauseparam *pause)
2239 {
2240 	struct cpsw_priv *priv = netdev_priv(ndev);
2241 
2242 	pause->autoneg = AUTONEG_DISABLE;
2243 	pause->rx_pause = priv->rx_pause ? true : false;
2244 	pause->tx_pause = priv->tx_pause ? true : false;
2245 }
2246 
2247 static int cpsw_set_pauseparam(struct net_device *ndev,
2248 			       struct ethtool_pauseparam *pause)
2249 {
2250 	struct cpsw_priv *priv = netdev_priv(ndev);
2251 	bool link;
2252 
2253 	priv->rx_pause = pause->rx_pause ? true : false;
2254 	priv->tx_pause = pause->tx_pause ? true : false;
2255 
2256 	for_each_slave(priv, _cpsw_adjust_link, priv, &link);
2257 	return 0;
2258 }
2259 
2260 static int cpsw_ethtool_op_begin(struct net_device *ndev)
2261 {
2262 	struct cpsw_priv *priv = netdev_priv(ndev);
2263 	struct cpsw_common *cpsw = priv->cpsw;
2264 	int ret;
2265 
2266 	ret = pm_runtime_get_sync(cpsw->dev);
2267 	if (ret < 0) {
2268 		cpsw_err(priv, drv, "ethtool begin failed %d\n", ret);
2269 		pm_runtime_put_noidle(cpsw->dev);
2270 	}
2271 
2272 	return ret;
2273 }
2274 
2275 static void cpsw_ethtool_op_complete(struct net_device *ndev)
2276 {
2277 	struct cpsw_priv *priv = netdev_priv(ndev);
2278 	int ret;
2279 
2280 	ret = pm_runtime_put(priv->cpsw->dev);
2281 	if (ret < 0)
2282 		cpsw_err(priv, drv, "ethtool complete failed %d\n", ret);
2283 }
2284 
2285 static void cpsw_get_channels(struct net_device *ndev,
2286 			      struct ethtool_channels *ch)
2287 {
2288 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2289 
2290 	ch->max_combined = 0;
2291 	ch->max_rx = CPSW_MAX_QUEUES;
2292 	ch->max_tx = CPSW_MAX_QUEUES;
2293 	ch->max_other = 0;
2294 	ch->other_count = 0;
2295 	ch->rx_count = cpsw->rx_ch_num;
2296 	ch->tx_count = cpsw->tx_ch_num;
2297 	ch->combined_count = 0;
2298 }
2299 
2300 static int cpsw_check_ch_settings(struct cpsw_common *cpsw,
2301 				  struct ethtool_channels *ch)
2302 {
2303 	if (ch->combined_count)
2304 		return -EINVAL;
2305 
2306 	/* verify we have at least one channel in each direction */
2307 	if (!ch->rx_count || !ch->tx_count)
2308 		return -EINVAL;
2309 
2310 	if (ch->rx_count > cpsw->data.channels ||
2311 	    ch->tx_count > cpsw->data.channels)
2312 		return -EINVAL;
2313 
2314 	return 0;
2315 }
2316 
2317 static int cpsw_update_channels_res(struct cpsw_priv *priv, int ch_num, int rx)
2318 {
2319 	struct cpsw_common *cpsw = priv->cpsw;
2320 	void (*handler)(void *, int, int);
2321 	struct netdev_queue *queue;
2322 	struct cpsw_vector *vec;
2323 	int ret, *ch;
2324 
2325 	if (rx) {
2326 		ch = &cpsw->rx_ch_num;
2327 		vec = cpsw->rxv;
2328 		handler = cpsw_rx_handler;
2329 	} else {
2330 		ch = &cpsw->tx_ch_num;
2331 		vec = cpsw->txv;
2332 		handler = cpsw_tx_handler;
2333 	}
2334 
2335 	while (*ch < ch_num) {
2336 		vec[*ch].ch = cpdma_chan_create(cpsw->dma, *ch, handler, rx);
2337 		queue = netdev_get_tx_queue(priv->ndev, *ch);
2338 		queue->tx_maxrate = 0;
2339 
2340 		if (IS_ERR(vec[*ch].ch))
2341 			return PTR_ERR(vec[*ch].ch);
2342 
2343 		if (!vec[*ch].ch)
2344 			return -EINVAL;
2345 
2346 		cpsw_info(priv, ifup, "created new %d %s channel\n", *ch,
2347 			  (rx ? "rx" : "tx"));
2348 		(*ch)++;
2349 	}
2350 
2351 	while (*ch > ch_num) {
2352 		(*ch)--;
2353 
2354 		ret = cpdma_chan_destroy(vec[*ch].ch);
2355 		if (ret)
2356 			return ret;
2357 
2358 		cpsw_info(priv, ifup, "destroyed %d %s channel\n", *ch,
2359 			  (rx ? "rx" : "tx"));
2360 	}
2361 
2362 	return 0;
2363 }
2364 
2365 static int cpsw_update_channels(struct cpsw_priv *priv,
2366 				struct ethtool_channels *ch)
2367 {
2368 	int ret;
2369 
2370 	ret = cpsw_update_channels_res(priv, ch->rx_count, 1);
2371 	if (ret)
2372 		return ret;
2373 
2374 	ret = cpsw_update_channels_res(priv, ch->tx_count, 0);
2375 	if (ret)
2376 		return ret;
2377 
2378 	return 0;
2379 }
2380 
2381 static void cpsw_suspend_data_pass(struct net_device *ndev)
2382 {
2383 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2384 	struct cpsw_slave *slave;
2385 	int i;
2386 
2387 	/* Disable NAPI scheduling */
2388 	cpsw_intr_disable(cpsw);
2389 
2390 	/* Stop all transmit queues for every network device.
2391 	 * Disable re-using rx descriptors with dormant_on.
2392 	 */
2393 	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
2394 		if (!(slave->ndev && netif_running(slave->ndev)))
2395 			continue;
2396 
2397 		netif_tx_stop_all_queues(slave->ndev);
2398 		netif_dormant_on(slave->ndev);
2399 	}
2400 
2401 	/* Handle rest of tx packets and stop cpdma channels */
2402 	cpdma_ctlr_stop(cpsw->dma);
2403 }
2404 
2405 static int cpsw_resume_data_pass(struct net_device *ndev)
2406 {
2407 	struct cpsw_priv *priv = netdev_priv(ndev);
2408 	struct cpsw_common *cpsw = priv->cpsw;
2409 	struct cpsw_slave *slave;
2410 	int i, ret;
2411 
2412 	/* Allow rx packets handling */
2413 	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++)
2414 		if (slave->ndev && netif_running(slave->ndev))
2415 			netif_dormant_off(slave->ndev);
2416 
2417 	/* After this receive is started */
2418 	if (cpsw->usage_count) {
2419 		ret = cpsw_fill_rx_channels(priv);
2420 		if (ret)
2421 			return ret;
2422 
2423 		cpdma_ctlr_start(cpsw->dma);
2424 		cpsw_intr_enable(cpsw);
2425 	}
2426 
2427 	/* Resume transmit for every affected interface */
2428 	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++)
2429 		if (slave->ndev && netif_running(slave->ndev))
2430 			netif_tx_start_all_queues(slave->ndev);
2431 
2432 	return 0;
2433 }
2434 
2435 static int cpsw_set_channels(struct net_device *ndev,
2436 			     struct ethtool_channels *chs)
2437 {
2438 	struct cpsw_priv *priv = netdev_priv(ndev);
2439 	struct cpsw_common *cpsw = priv->cpsw;
2440 	struct cpsw_slave *slave;
2441 	int i, ret;
2442 
2443 	ret = cpsw_check_ch_settings(cpsw, chs);
2444 	if (ret < 0)
2445 		return ret;
2446 
2447 	cpsw_suspend_data_pass(ndev);
2448 	ret = cpsw_update_channels(priv, chs);
2449 	if (ret)
2450 		goto err;
2451 
2452 	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
2453 		if (!(slave->ndev && netif_running(slave->ndev)))
2454 			continue;
2455 
2456 		/* Inform stack about new count of queues */
2457 		ret = netif_set_real_num_tx_queues(slave->ndev,
2458 						   cpsw->tx_ch_num);
2459 		if (ret) {
2460 			dev_err(priv->dev, "cannot set real number of tx queues\n");
2461 			goto err;
2462 		}
2463 
2464 		ret = netif_set_real_num_rx_queues(slave->ndev,
2465 						   cpsw->rx_ch_num);
2466 		if (ret) {
2467 			dev_err(priv->dev, "cannot set real number of rx queues\n");
2468 			goto err;
2469 		}
2470 	}
2471 
2472 	if (cpsw->usage_count)
2473 		cpsw_split_res(ndev);
2474 
2475 	ret = cpsw_resume_data_pass(ndev);
2476 	if (!ret)
2477 		return 0;
2478 err:
2479 	dev_err(priv->dev, "cannot update channels number, closing device\n");
2480 	dev_close(ndev);
2481 	return ret;
2482 }
2483 
2484 static int cpsw_get_eee(struct net_device *ndev, struct ethtool_eee *edata)
2485 {
2486 	struct cpsw_priv *priv = netdev_priv(ndev);
2487 	struct cpsw_common *cpsw = priv->cpsw;
2488 	int slave_no = cpsw_slave_index(cpsw, priv);
2489 
2490 	if (cpsw->slaves[slave_no].phy)
2491 		return phy_ethtool_get_eee(cpsw->slaves[slave_no].phy, edata);
2492 	else
2493 		return -EOPNOTSUPP;
2494 }
2495 
2496 static int cpsw_set_eee(struct net_device *ndev, struct ethtool_eee *edata)
2497 {
2498 	struct cpsw_priv *priv = netdev_priv(ndev);
2499 	struct cpsw_common *cpsw = priv->cpsw;
2500 	int slave_no = cpsw_slave_index(cpsw, priv);
2501 
2502 	if (cpsw->slaves[slave_no].phy)
2503 		return phy_ethtool_set_eee(cpsw->slaves[slave_no].phy, edata);
2504 	else
2505 		return -EOPNOTSUPP;
2506 }
2507 
2508 static int cpsw_nway_reset(struct net_device *ndev)
2509 {
2510 	struct cpsw_priv *priv = netdev_priv(ndev);
2511 	struct cpsw_common *cpsw = priv->cpsw;
2512 	int slave_no = cpsw_slave_index(cpsw, priv);
2513 
2514 	if (cpsw->slaves[slave_no].phy)
2515 		return genphy_restart_aneg(cpsw->slaves[slave_no].phy);
2516 	else
2517 		return -EOPNOTSUPP;
2518 }
2519 
2520 static void cpsw_get_ringparam(struct net_device *ndev,
2521 			       struct ethtool_ringparam *ering)
2522 {
2523 	struct cpsw_priv *priv = netdev_priv(ndev);
2524 	struct cpsw_common *cpsw = priv->cpsw;
2525 
2526 	/* not supported */
2527 	ering->tx_max_pending = 0;
2528 	ering->tx_pending = cpdma_get_num_tx_descs(cpsw->dma);
2529 	ering->rx_max_pending = descs_pool_size - CPSW_MAX_QUEUES;
2530 	ering->rx_pending = cpdma_get_num_rx_descs(cpsw->dma);
2531 }
2532 
2533 static int cpsw_set_ringparam(struct net_device *ndev,
2534 			      struct ethtool_ringparam *ering)
2535 {
2536 	struct cpsw_priv *priv = netdev_priv(ndev);
2537 	struct cpsw_common *cpsw = priv->cpsw;
2538 	int ret;
2539 
2540 	/* ignore ering->tx_pending - only rx_pending adjustment is supported */
2541 
2542 	if (ering->rx_mini_pending || ering->rx_jumbo_pending ||
2543 	    ering->rx_pending < CPSW_MAX_QUEUES ||
2544 	    ering->rx_pending > (descs_pool_size - CPSW_MAX_QUEUES))
2545 		return -EINVAL;
2546 
2547 	if (ering->rx_pending == cpdma_get_num_rx_descs(cpsw->dma))
2548 		return 0;
2549 
2550 	cpsw_suspend_data_pass(ndev);
2551 
2552 	cpdma_set_num_rx_descs(cpsw->dma, ering->rx_pending);
2553 
2554 	if (cpsw->usage_count)
2555 		cpdma_chan_split_pool(cpsw->dma);
2556 
2557 	ret = cpsw_resume_data_pass(ndev);
2558 	if (!ret)
2559 		return 0;
2560 
2561 	dev_err(&ndev->dev, "cannot set ring params, closing device\n");
2562 	dev_close(ndev);
2563 	return ret;
2564 }
2565 
2566 static const struct ethtool_ops cpsw_ethtool_ops = {
2567 	.get_drvinfo	= cpsw_get_drvinfo,
2568 	.get_msglevel	= cpsw_get_msglevel,
2569 	.set_msglevel	= cpsw_set_msglevel,
2570 	.get_link	= ethtool_op_get_link,
2571 	.get_ts_info	= cpsw_get_ts_info,
2572 	.get_coalesce	= cpsw_get_coalesce,
2573 	.set_coalesce	= cpsw_set_coalesce,
2574 	.get_sset_count		= cpsw_get_sset_count,
2575 	.get_strings		= cpsw_get_strings,
2576 	.get_ethtool_stats	= cpsw_get_ethtool_stats,
2577 	.get_pauseparam		= cpsw_get_pauseparam,
2578 	.set_pauseparam		= cpsw_set_pauseparam,
2579 	.get_wol	= cpsw_get_wol,
2580 	.set_wol	= cpsw_set_wol,
2581 	.get_regs_len	= cpsw_get_regs_len,
2582 	.get_regs	= cpsw_get_regs,
2583 	.begin		= cpsw_ethtool_op_begin,
2584 	.complete	= cpsw_ethtool_op_complete,
2585 	.get_channels	= cpsw_get_channels,
2586 	.set_channels	= cpsw_set_channels,
2587 	.get_link_ksettings	= cpsw_get_link_ksettings,
2588 	.set_link_ksettings	= cpsw_set_link_ksettings,
2589 	.get_eee	= cpsw_get_eee,
2590 	.set_eee	= cpsw_set_eee,
2591 	.nway_reset	= cpsw_nway_reset,
2592 	.get_ringparam = cpsw_get_ringparam,
2593 	.set_ringparam = cpsw_set_ringparam,
2594 };
2595 
2596 static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_common *cpsw,
2597 			    u32 slave_reg_ofs, u32 sliver_reg_ofs)
2598 {
2599 	void __iomem		*regs = cpsw->regs;
2600 	int			slave_num = slave->slave_num;
2601 	struct cpsw_slave_data	*data = cpsw->data.slave_data + slave_num;
2602 
2603 	slave->data	= data;
2604 	slave->regs	= regs + slave_reg_ofs;
2605 	slave->sliver	= regs + sliver_reg_ofs;
2606 	slave->port_vlan = data->dual_emac_res_vlan;
2607 }
2608 
2609 static int cpsw_probe_dt(struct cpsw_platform_data *data,
2610 			 struct platform_device *pdev)
2611 {
2612 	struct device_node *node = pdev->dev.of_node;
2613 	struct device_node *slave_node;
2614 	int i = 0, ret;
2615 	u32 prop;
2616 
2617 	if (!node)
2618 		return -EINVAL;
2619 
2620 	if (of_property_read_u32(node, "slaves", &prop)) {
2621 		dev_err(&pdev->dev, "Missing slaves property in the DT.\n");
2622 		return -EINVAL;
2623 	}
2624 	data->slaves = prop;
2625 
2626 	if (of_property_read_u32(node, "active_slave", &prop)) {
2627 		dev_err(&pdev->dev, "Missing active_slave property in the DT.\n");
2628 		return -EINVAL;
2629 	}
2630 	data->active_slave = prop;
2631 
2632 	data->slave_data = devm_kzalloc(&pdev->dev, data->slaves
2633 					* sizeof(struct cpsw_slave_data),
2634 					GFP_KERNEL);
2635 	if (!data->slave_data)
2636 		return -ENOMEM;
2637 
2638 	if (of_property_read_u32(node, "cpdma_channels", &prop)) {
2639 		dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n");
2640 		return -EINVAL;
2641 	}
2642 	data->channels = prop;
2643 
2644 	if (of_property_read_u32(node, "ale_entries", &prop)) {
2645 		dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n");
2646 		return -EINVAL;
2647 	}
2648 	data->ale_entries = prop;
2649 
2650 	if (of_property_read_u32(node, "bd_ram_size", &prop)) {
2651 		dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n");
2652 		return -EINVAL;
2653 	}
2654 	data->bd_ram_size = prop;
2655 
2656 	if (of_property_read_u32(node, "mac_control", &prop)) {
2657 		dev_err(&pdev->dev, "Missing mac_control property in the DT.\n");
2658 		return -EINVAL;
2659 	}
2660 	data->mac_control = prop;
2661 
2662 	if (of_property_read_bool(node, "dual_emac"))
2663 		data->dual_emac = 1;
2664 
2665 	/*
2666 	 * Populate all the child nodes here...
2667 	 */
2668 	ret = of_platform_populate(node, NULL, NULL, &pdev->dev);
2669 	/* We do not want to force this, as in some cases may not have child */
2670 	if (ret)
2671 		dev_warn(&pdev->dev, "Doesn't have any child node\n");
2672 
2673 	for_each_available_child_of_node(node, slave_node) {
2674 		struct cpsw_slave_data *slave_data = data->slave_data + i;
2675 		const void *mac_addr = NULL;
2676 		int lenp;
2677 		const __be32 *parp;
2678 
2679 		/* This is no slave child node, continue */
2680 		if (strcmp(slave_node->name, "slave"))
2681 			continue;
2682 
2683 		slave_data->phy_node = of_parse_phandle(slave_node,
2684 							"phy-handle", 0);
2685 		parp = of_get_property(slave_node, "phy_id", &lenp);
2686 		if (slave_data->phy_node) {
2687 			dev_dbg(&pdev->dev,
2688 				"slave[%d] using phy-handle=\"%pOF\"\n",
2689 				i, slave_data->phy_node);
2690 		} else if (of_phy_is_fixed_link(slave_node)) {
2691 			/* In the case of a fixed PHY, the DT node associated
2692 			 * to the PHY is the Ethernet MAC DT node.
2693 			 */
2694 			ret = of_phy_register_fixed_link(slave_node);
2695 			if (ret) {
2696 				if (ret != -EPROBE_DEFER)
2697 					dev_err(&pdev->dev, "failed to register fixed-link phy: %d\n", ret);
2698 				return ret;
2699 			}
2700 			slave_data->phy_node = of_node_get(slave_node);
2701 		} else if (parp) {
2702 			u32 phyid;
2703 			struct device_node *mdio_node;
2704 			struct platform_device *mdio;
2705 
2706 			if (lenp != (sizeof(__be32) * 2)) {
2707 				dev_err(&pdev->dev, "Invalid slave[%d] phy_id property\n", i);
2708 				goto no_phy_slave;
2709 			}
2710 			mdio_node = of_find_node_by_phandle(be32_to_cpup(parp));
2711 			phyid = be32_to_cpup(parp+1);
2712 			mdio = of_find_device_by_node(mdio_node);
2713 			of_node_put(mdio_node);
2714 			if (!mdio) {
2715 				dev_err(&pdev->dev, "Missing mdio platform device\n");
2716 				return -EINVAL;
2717 			}
2718 			snprintf(slave_data->phy_id, sizeof(slave_data->phy_id),
2719 				 PHY_ID_FMT, mdio->name, phyid);
2720 			put_device(&mdio->dev);
2721 		} else {
2722 			dev_err(&pdev->dev,
2723 				"No slave[%d] phy_id, phy-handle, or fixed-link property\n",
2724 				i);
2725 			goto no_phy_slave;
2726 		}
2727 		slave_data->phy_if = of_get_phy_mode(slave_node);
2728 		if (slave_data->phy_if < 0) {
2729 			dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n",
2730 				i);
2731 			return slave_data->phy_if;
2732 		}
2733 
2734 no_phy_slave:
2735 		mac_addr = of_get_mac_address(slave_node);
2736 		if (mac_addr) {
2737 			memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN);
2738 		} else {
2739 			ret = ti_cm_get_macid(&pdev->dev, i,
2740 					      slave_data->mac_addr);
2741 			if (ret)
2742 				return ret;
2743 		}
2744 		if (data->dual_emac) {
2745 			if (of_property_read_u32(slave_node, "dual_emac_res_vlan",
2746 						 &prop)) {
2747 				dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n");
2748 				slave_data->dual_emac_res_vlan = i+1;
2749 				dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n",
2750 					slave_data->dual_emac_res_vlan, i);
2751 			} else {
2752 				slave_data->dual_emac_res_vlan = prop;
2753 			}
2754 		}
2755 
2756 		i++;
2757 		if (i == data->slaves)
2758 			break;
2759 	}
2760 
2761 	return 0;
2762 }
2763 
2764 static void cpsw_remove_dt(struct platform_device *pdev)
2765 {
2766 	struct net_device *ndev = platform_get_drvdata(pdev);
2767 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2768 	struct cpsw_platform_data *data = &cpsw->data;
2769 	struct device_node *node = pdev->dev.of_node;
2770 	struct device_node *slave_node;
2771 	int i = 0;
2772 
2773 	for_each_available_child_of_node(node, slave_node) {
2774 		struct cpsw_slave_data *slave_data = &data->slave_data[i];
2775 
2776 		if (strcmp(slave_node->name, "slave"))
2777 			continue;
2778 
2779 		if (of_phy_is_fixed_link(slave_node))
2780 			of_phy_deregister_fixed_link(slave_node);
2781 
2782 		of_node_put(slave_data->phy_node);
2783 
2784 		i++;
2785 		if (i == data->slaves)
2786 			break;
2787 	}
2788 
2789 	of_platform_depopulate(&pdev->dev);
2790 }
2791 
2792 static int cpsw_probe_dual_emac(struct cpsw_priv *priv)
2793 {
2794 	struct cpsw_common		*cpsw = priv->cpsw;
2795 	struct cpsw_platform_data	*data = &cpsw->data;
2796 	struct net_device		*ndev;
2797 	struct cpsw_priv		*priv_sl2;
2798 	int ret = 0;
2799 
2800 	ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
2801 	if (!ndev) {
2802 		dev_err(cpsw->dev, "cpsw: error allocating net_device\n");
2803 		return -ENOMEM;
2804 	}
2805 
2806 	priv_sl2 = netdev_priv(ndev);
2807 	priv_sl2->cpsw = cpsw;
2808 	priv_sl2->ndev = ndev;
2809 	priv_sl2->dev  = &ndev->dev;
2810 	priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
2811 
2812 	if (is_valid_ether_addr(data->slave_data[1].mac_addr)) {
2813 		memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr,
2814 			ETH_ALEN);
2815 		dev_info(cpsw->dev, "cpsw: Detected MACID = %pM\n",
2816 			 priv_sl2->mac_addr);
2817 	} else {
2818 		random_ether_addr(priv_sl2->mac_addr);
2819 		dev_info(cpsw->dev, "cpsw: Random MACID = %pM\n",
2820 			 priv_sl2->mac_addr);
2821 	}
2822 	memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN);
2823 
2824 	priv_sl2->emac_port = 1;
2825 	cpsw->slaves[1].ndev = ndev;
2826 	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2827 
2828 	ndev->netdev_ops = &cpsw_netdev_ops;
2829 	ndev->ethtool_ops = &cpsw_ethtool_ops;
2830 
2831 	/* register the network device */
2832 	SET_NETDEV_DEV(ndev, cpsw->dev);
2833 	ret = register_netdev(ndev);
2834 	if (ret) {
2835 		dev_err(cpsw->dev, "cpsw: error registering net device\n");
2836 		free_netdev(ndev);
2837 		ret = -ENODEV;
2838 	}
2839 
2840 	return ret;
2841 }
2842 
2843 #define CPSW_QUIRK_IRQ		BIT(0)
2844 
2845 static const struct platform_device_id cpsw_devtype[] = {
2846 	{
2847 		/* keep it for existing comaptibles */
2848 		.name = "cpsw",
2849 		.driver_data = CPSW_QUIRK_IRQ,
2850 	}, {
2851 		.name = "am335x-cpsw",
2852 		.driver_data = CPSW_QUIRK_IRQ,
2853 	}, {
2854 		.name = "am4372-cpsw",
2855 		.driver_data = 0,
2856 	}, {
2857 		.name = "dra7-cpsw",
2858 		.driver_data = 0,
2859 	}, {
2860 		/* sentinel */
2861 	}
2862 };
2863 MODULE_DEVICE_TABLE(platform, cpsw_devtype);
2864 
2865 enum ti_cpsw_type {
2866 	CPSW = 0,
2867 	AM335X_CPSW,
2868 	AM4372_CPSW,
2869 	DRA7_CPSW,
2870 };
2871 
2872 static const struct of_device_id cpsw_of_mtable[] = {
2873 	{ .compatible = "ti,cpsw", .data = &cpsw_devtype[CPSW], },
2874 	{ .compatible = "ti,am335x-cpsw", .data = &cpsw_devtype[AM335X_CPSW], },
2875 	{ .compatible = "ti,am4372-cpsw", .data = &cpsw_devtype[AM4372_CPSW], },
2876 	{ .compatible = "ti,dra7-cpsw", .data = &cpsw_devtype[DRA7_CPSW], },
2877 	{ /* sentinel */ },
2878 };
2879 MODULE_DEVICE_TABLE(of, cpsw_of_mtable);
2880 
2881 static int cpsw_probe(struct platform_device *pdev)
2882 {
2883 	struct clk			*clk;
2884 	struct cpsw_platform_data	*data;
2885 	struct net_device		*ndev;
2886 	struct cpsw_priv		*priv;
2887 	struct cpdma_params		dma_params;
2888 	struct cpsw_ale_params		ale_params;
2889 	void __iomem			*ss_regs;
2890 	void __iomem			*cpts_regs;
2891 	struct resource			*res, *ss_res;
2892 	const struct of_device_id	*of_id;
2893 	struct gpio_descs		*mode;
2894 	u32 slave_offset, sliver_offset, slave_size;
2895 	struct cpsw_common		*cpsw;
2896 	int ret = 0, i;
2897 	int irq;
2898 
2899 	cpsw = devm_kzalloc(&pdev->dev, sizeof(struct cpsw_common), GFP_KERNEL);
2900 	if (!cpsw)
2901 		return -ENOMEM;
2902 
2903 	cpsw->dev = &pdev->dev;
2904 
2905 	ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
2906 	if (!ndev) {
2907 		dev_err(&pdev->dev, "error allocating net_device\n");
2908 		return -ENOMEM;
2909 	}
2910 
2911 	platform_set_drvdata(pdev, ndev);
2912 	priv = netdev_priv(ndev);
2913 	priv->cpsw = cpsw;
2914 	priv->ndev = ndev;
2915 	priv->dev  = &ndev->dev;
2916 	priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
2917 	cpsw->rx_packet_max = max(rx_packet_max, 128);
2918 
2919 	mode = devm_gpiod_get_array_optional(&pdev->dev, "mode", GPIOD_OUT_LOW);
2920 	if (IS_ERR(mode)) {
2921 		ret = PTR_ERR(mode);
2922 		dev_err(&pdev->dev, "gpio request failed, ret %d\n", ret);
2923 		goto clean_ndev_ret;
2924 	}
2925 
2926 	/*
2927 	 * This may be required here for child devices.
2928 	 */
2929 	pm_runtime_enable(&pdev->dev);
2930 
2931 	/* Select default pin state */
2932 	pinctrl_pm_select_default_state(&pdev->dev);
2933 
2934 	/* Need to enable clocks with runtime PM api to access module
2935 	 * registers
2936 	 */
2937 	ret = pm_runtime_get_sync(&pdev->dev);
2938 	if (ret < 0) {
2939 		pm_runtime_put_noidle(&pdev->dev);
2940 		goto clean_runtime_disable_ret;
2941 	}
2942 
2943 	ret = cpsw_probe_dt(&cpsw->data, pdev);
2944 	if (ret)
2945 		goto clean_dt_ret;
2946 
2947 	data = &cpsw->data;
2948 	cpsw->rx_ch_num = 1;
2949 	cpsw->tx_ch_num = 1;
2950 
2951 	if (is_valid_ether_addr(data->slave_data[0].mac_addr)) {
2952 		memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN);
2953 		dev_info(&pdev->dev, "Detected MACID = %pM\n", priv->mac_addr);
2954 	} else {
2955 		eth_random_addr(priv->mac_addr);
2956 		dev_info(&pdev->dev, "Random MACID = %pM\n", priv->mac_addr);
2957 	}
2958 
2959 	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
2960 
2961 	cpsw->slaves = devm_kzalloc(&pdev->dev,
2962 				    sizeof(struct cpsw_slave) * data->slaves,
2963 				    GFP_KERNEL);
2964 	if (!cpsw->slaves) {
2965 		ret = -ENOMEM;
2966 		goto clean_dt_ret;
2967 	}
2968 	for (i = 0; i < data->slaves; i++)
2969 		cpsw->slaves[i].slave_num = i;
2970 
2971 	cpsw->slaves[0].ndev = ndev;
2972 	priv->emac_port = 0;
2973 
2974 	clk = devm_clk_get(&pdev->dev, "fck");
2975 	if (IS_ERR(clk)) {
2976 		dev_err(priv->dev, "fck is not found\n");
2977 		ret = -ENODEV;
2978 		goto clean_dt_ret;
2979 	}
2980 	cpsw->bus_freq_mhz = clk_get_rate(clk) / 1000000;
2981 
2982 	ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2983 	ss_regs = devm_ioremap_resource(&pdev->dev, ss_res);
2984 	if (IS_ERR(ss_regs)) {
2985 		ret = PTR_ERR(ss_regs);
2986 		goto clean_dt_ret;
2987 	}
2988 	cpsw->regs = ss_regs;
2989 
2990 	cpsw->version = readl(&cpsw->regs->id_ver);
2991 
2992 	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2993 	cpsw->wr_regs = devm_ioremap_resource(&pdev->dev, res);
2994 	if (IS_ERR(cpsw->wr_regs)) {
2995 		ret = PTR_ERR(cpsw->wr_regs);
2996 		goto clean_dt_ret;
2997 	}
2998 
2999 	memset(&dma_params, 0, sizeof(dma_params));
3000 	memset(&ale_params, 0, sizeof(ale_params));
3001 
3002 	switch (cpsw->version) {
3003 	case CPSW_VERSION_1:
3004 		cpsw->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET;
3005 		cpts_regs		= ss_regs + CPSW1_CPTS_OFFSET;
3006 		cpsw->hw_stats	     = ss_regs + CPSW1_HW_STATS;
3007 		dma_params.dmaregs   = ss_regs + CPSW1_CPDMA_OFFSET;
3008 		dma_params.txhdp     = ss_regs + CPSW1_STATERAM_OFFSET;
3009 		ale_params.ale_regs  = ss_regs + CPSW1_ALE_OFFSET;
3010 		slave_offset         = CPSW1_SLAVE_OFFSET;
3011 		slave_size           = CPSW1_SLAVE_SIZE;
3012 		sliver_offset        = CPSW1_SLIVER_OFFSET;
3013 		dma_params.desc_mem_phys = 0;
3014 		break;
3015 	case CPSW_VERSION_2:
3016 	case CPSW_VERSION_3:
3017 	case CPSW_VERSION_4:
3018 		cpsw->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET;
3019 		cpts_regs		= ss_regs + CPSW2_CPTS_OFFSET;
3020 		cpsw->hw_stats	     = ss_regs + CPSW2_HW_STATS;
3021 		dma_params.dmaregs   = ss_regs + CPSW2_CPDMA_OFFSET;
3022 		dma_params.txhdp     = ss_regs + CPSW2_STATERAM_OFFSET;
3023 		ale_params.ale_regs  = ss_regs + CPSW2_ALE_OFFSET;
3024 		slave_offset         = CPSW2_SLAVE_OFFSET;
3025 		slave_size           = CPSW2_SLAVE_SIZE;
3026 		sliver_offset        = CPSW2_SLIVER_OFFSET;
3027 		dma_params.desc_mem_phys =
3028 			(u32 __force) ss_res->start + CPSW2_BD_OFFSET;
3029 		break;
3030 	default:
3031 		dev_err(priv->dev, "unknown version 0x%08x\n", cpsw->version);
3032 		ret = -ENODEV;
3033 		goto clean_dt_ret;
3034 	}
3035 	for (i = 0; i < cpsw->data.slaves; i++) {
3036 		struct cpsw_slave *slave = &cpsw->slaves[i];
3037 
3038 		cpsw_slave_init(slave, cpsw, slave_offset, sliver_offset);
3039 		slave_offset  += slave_size;
3040 		sliver_offset += SLIVER_SIZE;
3041 	}
3042 
3043 	dma_params.dev		= &pdev->dev;
3044 	dma_params.rxthresh	= dma_params.dmaregs + CPDMA_RXTHRESH;
3045 	dma_params.rxfree	= dma_params.dmaregs + CPDMA_RXFREE;
3046 	dma_params.rxhdp	= dma_params.txhdp + CPDMA_RXHDP;
3047 	dma_params.txcp		= dma_params.txhdp + CPDMA_TXCP;
3048 	dma_params.rxcp		= dma_params.txhdp + CPDMA_RXCP;
3049 
3050 	dma_params.num_chan		= data->channels;
3051 	dma_params.has_soft_reset	= true;
3052 	dma_params.min_packet_size	= CPSW_MIN_PACKET_SIZE;
3053 	dma_params.desc_mem_size	= data->bd_ram_size;
3054 	dma_params.desc_align		= 16;
3055 	dma_params.has_ext_regs		= true;
3056 	dma_params.desc_hw_addr         = dma_params.desc_mem_phys;
3057 	dma_params.bus_freq_mhz		= cpsw->bus_freq_mhz;
3058 	dma_params.descs_pool_size	= descs_pool_size;
3059 
3060 	cpsw->dma = cpdma_ctlr_create(&dma_params);
3061 	if (!cpsw->dma) {
3062 		dev_err(priv->dev, "error initializing dma\n");
3063 		ret = -ENOMEM;
3064 		goto clean_dt_ret;
3065 	}
3066 
3067 	cpsw->txv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_tx_handler, 0);
3068 	if (IS_ERR(cpsw->txv[0].ch)) {
3069 		dev_err(priv->dev, "error initializing tx dma channel\n");
3070 		ret = PTR_ERR(cpsw->txv[0].ch);
3071 		goto clean_dma_ret;
3072 	}
3073 
3074 	cpsw->rxv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_rx_handler, 1);
3075 	if (IS_ERR(cpsw->rxv[0].ch)) {
3076 		dev_err(priv->dev, "error initializing rx dma channel\n");
3077 		ret = PTR_ERR(cpsw->rxv[0].ch);
3078 		goto clean_dma_ret;
3079 	}
3080 
3081 	ale_params.dev			= &pdev->dev;
3082 	ale_params.ale_ageout		= ale_ageout;
3083 	ale_params.ale_entries		= data->ale_entries;
3084 	ale_params.ale_ports		= CPSW_ALE_PORTS_NUM;
3085 
3086 	cpsw->ale = cpsw_ale_create(&ale_params);
3087 	if (!cpsw->ale) {
3088 		dev_err(priv->dev, "error initializing ale engine\n");
3089 		ret = -ENODEV;
3090 		goto clean_dma_ret;
3091 	}
3092 
3093 	cpsw->cpts = cpts_create(cpsw->dev, cpts_regs, cpsw->dev->of_node);
3094 	if (IS_ERR(cpsw->cpts)) {
3095 		ret = PTR_ERR(cpsw->cpts);
3096 		goto clean_dma_ret;
3097 	}
3098 
3099 	ndev->irq = platform_get_irq(pdev, 1);
3100 	if (ndev->irq < 0) {
3101 		dev_err(priv->dev, "error getting irq resource\n");
3102 		ret = ndev->irq;
3103 		goto clean_dma_ret;
3104 	}
3105 
3106 	of_id = of_match_device(cpsw_of_mtable, &pdev->dev);
3107 	if (of_id) {
3108 		pdev->id_entry = of_id->data;
3109 		if (pdev->id_entry->driver_data)
3110 			cpsw->quirk_irq = true;
3111 	}
3112 
3113 	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
3114 
3115 	ndev->netdev_ops = &cpsw_netdev_ops;
3116 	ndev->ethtool_ops = &cpsw_ethtool_ops;
3117 	netif_napi_add(ndev, &cpsw->napi_rx, cpsw_rx_poll, CPSW_POLL_WEIGHT);
3118 	netif_tx_napi_add(ndev, &cpsw->napi_tx, cpsw_tx_poll, CPSW_POLL_WEIGHT);
3119 	cpsw_split_res(ndev);
3120 
3121 	/* register the network device */
3122 	SET_NETDEV_DEV(ndev, &pdev->dev);
3123 	ret = register_netdev(ndev);
3124 	if (ret) {
3125 		dev_err(priv->dev, "error registering net device\n");
3126 		ret = -ENODEV;
3127 		goto clean_dma_ret;
3128 	}
3129 
3130 	if (cpsw->data.dual_emac) {
3131 		ret = cpsw_probe_dual_emac(priv);
3132 		if (ret) {
3133 			cpsw_err(priv, probe, "error probe slave 2 emac interface\n");
3134 			goto clean_unregister_netdev_ret;
3135 		}
3136 	}
3137 
3138 	/* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and
3139 	 * MISC IRQs which are always kept disabled with this driver so
3140 	 * we will not request them.
3141 	 *
3142 	 * If anyone wants to implement support for those, make sure to
3143 	 * first request and append them to irqs_table array.
3144 	 */
3145 
3146 	/* RX IRQ */
3147 	irq = platform_get_irq(pdev, 1);
3148 	if (irq < 0) {
3149 		ret = irq;
3150 		goto clean_dma_ret;
3151 	}
3152 
3153 	cpsw->irqs_table[0] = irq;
3154 	ret = devm_request_irq(&pdev->dev, irq, cpsw_rx_interrupt,
3155 			       0, dev_name(&pdev->dev), cpsw);
3156 	if (ret < 0) {
3157 		dev_err(priv->dev, "error attaching irq (%d)\n", ret);
3158 		goto clean_dma_ret;
3159 	}
3160 
3161 	/* TX IRQ */
3162 	irq = platform_get_irq(pdev, 2);
3163 	if (irq < 0) {
3164 		ret = irq;
3165 		goto clean_dma_ret;
3166 	}
3167 
3168 	cpsw->irqs_table[1] = irq;
3169 	ret = devm_request_irq(&pdev->dev, irq, cpsw_tx_interrupt,
3170 			       0, dev_name(&pdev->dev), cpsw);
3171 	if (ret < 0) {
3172 		dev_err(priv->dev, "error attaching irq (%d)\n", ret);
3173 		goto clean_dma_ret;
3174 	}
3175 
3176 	cpsw_notice(priv, probe,
3177 		    "initialized device (regs %pa, irq %d, pool size %d)\n",
3178 		    &ss_res->start, ndev->irq, dma_params.descs_pool_size);
3179 
3180 	pm_runtime_put(&pdev->dev);
3181 
3182 	return 0;
3183 
3184 clean_unregister_netdev_ret:
3185 	unregister_netdev(ndev);
3186 clean_dma_ret:
3187 	cpdma_ctlr_destroy(cpsw->dma);
3188 clean_dt_ret:
3189 	cpsw_remove_dt(pdev);
3190 	pm_runtime_put_sync(&pdev->dev);
3191 clean_runtime_disable_ret:
3192 	pm_runtime_disable(&pdev->dev);
3193 clean_ndev_ret:
3194 	free_netdev(priv->ndev);
3195 	return ret;
3196 }
3197 
3198 static int cpsw_remove(struct platform_device *pdev)
3199 {
3200 	struct net_device *ndev = platform_get_drvdata(pdev);
3201 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
3202 	int ret;
3203 
3204 	ret = pm_runtime_get_sync(&pdev->dev);
3205 	if (ret < 0) {
3206 		pm_runtime_put_noidle(&pdev->dev);
3207 		return ret;
3208 	}
3209 
3210 	if (cpsw->data.dual_emac)
3211 		unregister_netdev(cpsw->slaves[1].ndev);
3212 	unregister_netdev(ndev);
3213 
3214 	cpts_release(cpsw->cpts);
3215 	cpdma_ctlr_destroy(cpsw->dma);
3216 	cpsw_remove_dt(pdev);
3217 	pm_runtime_put_sync(&pdev->dev);
3218 	pm_runtime_disable(&pdev->dev);
3219 	if (cpsw->data.dual_emac)
3220 		free_netdev(cpsw->slaves[1].ndev);
3221 	free_netdev(ndev);
3222 	return 0;
3223 }
3224 
3225 #ifdef CONFIG_PM_SLEEP
3226 static int cpsw_suspend(struct device *dev)
3227 {
3228 	struct platform_device	*pdev = to_platform_device(dev);
3229 	struct net_device	*ndev = platform_get_drvdata(pdev);
3230 	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
3231 
3232 	if (cpsw->data.dual_emac) {
3233 		int i;
3234 
3235 		for (i = 0; i < cpsw->data.slaves; i++) {
3236 			if (netif_running(cpsw->slaves[i].ndev))
3237 				cpsw_ndo_stop(cpsw->slaves[i].ndev);
3238 		}
3239 	} else {
3240 		if (netif_running(ndev))
3241 			cpsw_ndo_stop(ndev);
3242 	}
3243 
3244 	/* Select sleep pin state */
3245 	pinctrl_pm_select_sleep_state(dev);
3246 
3247 	return 0;
3248 }
3249 
3250 static int cpsw_resume(struct device *dev)
3251 {
3252 	struct platform_device	*pdev = to_platform_device(dev);
3253 	struct net_device	*ndev = platform_get_drvdata(pdev);
3254 	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
3255 
3256 	/* Select default pin state */
3257 	pinctrl_pm_select_default_state(dev);
3258 
3259 	/* shut up ASSERT_RTNL() warning in netif_set_real_num_tx/rx_queues */
3260 	rtnl_lock();
3261 	if (cpsw->data.dual_emac) {
3262 		int i;
3263 
3264 		for (i = 0; i < cpsw->data.slaves; i++) {
3265 			if (netif_running(cpsw->slaves[i].ndev))
3266 				cpsw_ndo_open(cpsw->slaves[i].ndev);
3267 		}
3268 	} else {
3269 		if (netif_running(ndev))
3270 			cpsw_ndo_open(ndev);
3271 	}
3272 	rtnl_unlock();
3273 
3274 	return 0;
3275 }
3276 #endif
3277 
3278 static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume);
3279 
3280 static struct platform_driver cpsw_driver = {
3281 	.driver = {
3282 		.name	 = "cpsw",
3283 		.pm	 = &cpsw_pm_ops,
3284 		.of_match_table = cpsw_of_mtable,
3285 	},
3286 	.probe = cpsw_probe,
3287 	.remove = cpsw_remove,
3288 };
3289 
3290 module_platform_driver(cpsw_driver);
3291 
3292 MODULE_LICENSE("GPL");
3293 MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>");
3294 MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>");
3295 MODULE_DESCRIPTION("TI CPSW Ethernet driver");
3296