1 /* 2 * Texas Instruments Ethernet Switch Driver 3 * 4 * Copyright (C) 2012 Texas Instruments 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License as 8 * published by the Free Software Foundation version 2. 9 * 10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any 11 * kind, whether express or implied; without even the implied warranty 12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/io.h> 18 #include <linux/clk.h> 19 #include <linux/timer.h> 20 #include <linux/module.h> 21 #include <linux/platform_device.h> 22 #include <linux/irqreturn.h> 23 #include <linux/interrupt.h> 24 #include <linux/if_ether.h> 25 #include <linux/etherdevice.h> 26 #include <linux/netdevice.h> 27 #include <linux/net_tstamp.h> 28 #include <linux/phy.h> 29 #include <linux/workqueue.h> 30 #include <linux/delay.h> 31 #include <linux/pm_runtime.h> 32 #include <linux/gpio/consumer.h> 33 #include <linux/of.h> 34 #include <linux/of_mdio.h> 35 #include <linux/of_net.h> 36 #include <linux/of_device.h> 37 #include <linux/if_vlan.h> 38 #include <linux/kmemleak.h> 39 #include <linux/sys_soc.h> 40 41 #include <linux/pinctrl/consumer.h> 42 #include <net/pkt_cls.h> 43 44 #include "cpsw.h" 45 #include "cpsw_ale.h" 46 #include "cpts.h" 47 #include "davinci_cpdma.h" 48 49 #include <net/pkt_sched.h> 50 51 #define CPSW_DEBUG (NETIF_MSG_HW | NETIF_MSG_WOL | \ 52 NETIF_MSG_DRV | NETIF_MSG_LINK | \ 53 NETIF_MSG_IFUP | NETIF_MSG_INTR | \ 54 NETIF_MSG_PROBE | NETIF_MSG_TIMER | \ 55 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | \ 56 NETIF_MSG_TX_ERR | NETIF_MSG_TX_DONE | \ 57 NETIF_MSG_PKTDATA | NETIF_MSG_TX_QUEUED | \ 58 NETIF_MSG_RX_STATUS) 59 60 #define cpsw_info(priv, type, format, ...) \ 61 do { \ 62 if (netif_msg_##type(priv) && net_ratelimit()) \ 63 dev_info(priv->dev, format, ## __VA_ARGS__); \ 64 } while (0) 65 66 #define cpsw_err(priv, type, format, ...) \ 67 do { \ 68 if (netif_msg_##type(priv) && net_ratelimit()) \ 69 dev_err(priv->dev, format, ## __VA_ARGS__); \ 70 } while (0) 71 72 #define cpsw_dbg(priv, type, format, ...) \ 73 do { \ 74 if (netif_msg_##type(priv) && net_ratelimit()) \ 75 dev_dbg(priv->dev, format, ## __VA_ARGS__); \ 76 } while (0) 77 78 #define cpsw_notice(priv, type, format, ...) \ 79 do { \ 80 if (netif_msg_##type(priv) && net_ratelimit()) \ 81 dev_notice(priv->dev, format, ## __VA_ARGS__); \ 82 } while (0) 83 84 #define ALE_ALL_PORTS 0x7 85 86 #define CPSW_MAJOR_VERSION(reg) (reg >> 8 & 0x7) 87 #define CPSW_MINOR_VERSION(reg) (reg & 0xff) 88 #define CPSW_RTL_VERSION(reg) ((reg >> 11) & 0x1f) 89 90 #define CPSW_VERSION_1 0x19010a 91 #define CPSW_VERSION_2 0x19010c 92 #define CPSW_VERSION_3 0x19010f 93 #define CPSW_VERSION_4 0x190112 94 95 #define HOST_PORT_NUM 0 96 #define CPSW_ALE_PORTS_NUM 3 97 #define SLIVER_SIZE 0x40 98 99 #define CPSW1_HOST_PORT_OFFSET 0x028 100 #define CPSW1_SLAVE_OFFSET 0x050 101 #define CPSW1_SLAVE_SIZE 0x040 102 #define CPSW1_CPDMA_OFFSET 0x100 103 #define CPSW1_STATERAM_OFFSET 0x200 104 #define CPSW1_HW_STATS 0x400 105 #define CPSW1_CPTS_OFFSET 0x500 106 #define CPSW1_ALE_OFFSET 0x600 107 #define CPSW1_SLIVER_OFFSET 0x700 108 109 #define CPSW2_HOST_PORT_OFFSET 0x108 110 #define CPSW2_SLAVE_OFFSET 0x200 111 #define CPSW2_SLAVE_SIZE 0x100 112 #define CPSW2_CPDMA_OFFSET 0x800 113 #define CPSW2_HW_STATS 0x900 114 #define CPSW2_STATERAM_OFFSET 0xa00 115 #define CPSW2_CPTS_OFFSET 0xc00 116 #define CPSW2_ALE_OFFSET 0xd00 117 #define CPSW2_SLIVER_OFFSET 0xd80 118 #define CPSW2_BD_OFFSET 0x2000 119 120 #define CPDMA_RXTHRESH 0x0c0 121 #define CPDMA_RXFREE 0x0e0 122 #define CPDMA_TXHDP 0x00 123 #define CPDMA_RXHDP 0x20 124 #define CPDMA_TXCP 0x40 125 #define CPDMA_RXCP 0x60 126 127 #define CPSW_POLL_WEIGHT 64 128 #define CPSW_RX_VLAN_ENCAP_HDR_SIZE 4 129 #define CPSW_MIN_PACKET_SIZE (VLAN_ETH_ZLEN) 130 #define CPSW_MAX_PACKET_SIZE (VLAN_ETH_FRAME_LEN +\ 131 ETH_FCS_LEN +\ 132 CPSW_RX_VLAN_ENCAP_HDR_SIZE) 133 134 #define RX_PRIORITY_MAPPING 0x76543210 135 #define TX_PRIORITY_MAPPING 0x33221100 136 #define CPDMA_TX_PRIORITY_MAP 0x76543210 137 138 #define CPSW_VLAN_AWARE BIT(1) 139 #define CPSW_RX_VLAN_ENCAP BIT(2) 140 #define CPSW_ALE_VLAN_AWARE 1 141 142 #define CPSW_FIFO_NORMAL_MODE (0 << 16) 143 #define CPSW_FIFO_DUAL_MAC_MODE (1 << 16) 144 #define CPSW_FIFO_RATE_LIMIT_MODE (2 << 16) 145 146 #define CPSW_INTPACEEN (0x3f << 16) 147 #define CPSW_INTPRESCALE_MASK (0x7FF << 0) 148 #define CPSW_CMINTMAX_CNT 63 149 #define CPSW_CMINTMIN_CNT 2 150 #define CPSW_CMINTMAX_INTVL (1000 / CPSW_CMINTMIN_CNT) 151 #define CPSW_CMINTMIN_INTVL ((1000 / CPSW_CMINTMAX_CNT) + 1) 152 153 #define cpsw_slave_index(cpsw, priv) \ 154 ((cpsw->data.dual_emac) ? priv->emac_port : \ 155 cpsw->data.active_slave) 156 #define IRQ_NUM 2 157 #define CPSW_MAX_QUEUES 8 158 #define CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT 256 159 #define CPSW_FIFO_QUEUE_TYPE_SHIFT 16 160 #define CPSW_FIFO_SHAPE_EN_SHIFT 16 161 #define CPSW_FIFO_RATE_EN_SHIFT 20 162 #define CPSW_TC_NUM 4 163 #define CPSW_FIFO_SHAPERS_NUM (CPSW_TC_NUM - 1) 164 #define CPSW_PCT_MASK 0x7f 165 166 #define CPSW_RX_VLAN_ENCAP_HDR_PRIO_SHIFT 29 167 #define CPSW_RX_VLAN_ENCAP_HDR_PRIO_MSK GENMASK(2, 0) 168 #define CPSW_RX_VLAN_ENCAP_HDR_VID_SHIFT 16 169 #define CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_SHIFT 8 170 #define CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_MSK GENMASK(1, 0) 171 enum { 172 CPSW_RX_VLAN_ENCAP_HDR_PKT_VLAN_TAG = 0, 173 CPSW_RX_VLAN_ENCAP_HDR_PKT_RESERV, 174 CPSW_RX_VLAN_ENCAP_HDR_PKT_PRIO_TAG, 175 CPSW_RX_VLAN_ENCAP_HDR_PKT_UNTAG, 176 }; 177 178 static int debug_level; 179 module_param(debug_level, int, 0); 180 MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)"); 181 182 static int ale_ageout = 10; 183 module_param(ale_ageout, int, 0); 184 MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)"); 185 186 static int rx_packet_max = CPSW_MAX_PACKET_SIZE; 187 module_param(rx_packet_max, int, 0); 188 MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)"); 189 190 static int descs_pool_size = CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT; 191 module_param(descs_pool_size, int, 0444); 192 MODULE_PARM_DESC(descs_pool_size, "Number of CPDMA CPPI descriptors in pool"); 193 194 struct cpsw_wr_regs { 195 u32 id_ver; 196 u32 soft_reset; 197 u32 control; 198 u32 int_control; 199 u32 rx_thresh_en; 200 u32 rx_en; 201 u32 tx_en; 202 u32 misc_en; 203 u32 mem_allign1[8]; 204 u32 rx_thresh_stat; 205 u32 rx_stat; 206 u32 tx_stat; 207 u32 misc_stat; 208 u32 mem_allign2[8]; 209 u32 rx_imax; 210 u32 tx_imax; 211 212 }; 213 214 struct cpsw_ss_regs { 215 u32 id_ver; 216 u32 control; 217 u32 soft_reset; 218 u32 stat_port_en; 219 u32 ptype; 220 u32 soft_idle; 221 u32 thru_rate; 222 u32 gap_thresh; 223 u32 tx_start_wds; 224 u32 flow_control; 225 u32 vlan_ltype; 226 u32 ts_ltype; 227 u32 dlr_ltype; 228 }; 229 230 /* CPSW_PORT_V1 */ 231 #define CPSW1_MAX_BLKS 0x00 /* Maximum FIFO Blocks */ 232 #define CPSW1_BLK_CNT 0x04 /* FIFO Block Usage Count (Read Only) */ 233 #define CPSW1_TX_IN_CTL 0x08 /* Transmit FIFO Control */ 234 #define CPSW1_PORT_VLAN 0x0c /* VLAN Register */ 235 #define CPSW1_TX_PRI_MAP 0x10 /* Tx Header Priority to Switch Pri Mapping */ 236 #define CPSW1_TS_CTL 0x14 /* Time Sync Control */ 237 #define CPSW1_TS_SEQ_LTYPE 0x18 /* Time Sync Sequence ID Offset and Msg Type */ 238 #define CPSW1_TS_VLAN 0x1c /* Time Sync VLAN1 and VLAN2 */ 239 240 /* CPSW_PORT_V2 */ 241 #define CPSW2_CONTROL 0x00 /* Control Register */ 242 #define CPSW2_MAX_BLKS 0x08 /* Maximum FIFO Blocks */ 243 #define CPSW2_BLK_CNT 0x0c /* FIFO Block Usage Count (Read Only) */ 244 #define CPSW2_TX_IN_CTL 0x10 /* Transmit FIFO Control */ 245 #define CPSW2_PORT_VLAN 0x14 /* VLAN Register */ 246 #define CPSW2_TX_PRI_MAP 0x18 /* Tx Header Priority to Switch Pri Mapping */ 247 #define CPSW2_TS_SEQ_MTYPE 0x1c /* Time Sync Sequence ID Offset and Msg Type */ 248 249 /* CPSW_PORT_V1 and V2 */ 250 #define SA_LO 0x20 /* CPGMAC_SL Source Address Low */ 251 #define SA_HI 0x24 /* CPGMAC_SL Source Address High */ 252 #define SEND_PERCENT 0x28 /* Transmit Queue Send Percentages */ 253 254 /* CPSW_PORT_V2 only */ 255 #define RX_DSCP_PRI_MAP0 0x30 /* Rx DSCP Priority to Rx Packet Mapping */ 256 #define RX_DSCP_PRI_MAP1 0x34 /* Rx DSCP Priority to Rx Packet Mapping */ 257 #define RX_DSCP_PRI_MAP2 0x38 /* Rx DSCP Priority to Rx Packet Mapping */ 258 #define RX_DSCP_PRI_MAP3 0x3c /* Rx DSCP Priority to Rx Packet Mapping */ 259 #define RX_DSCP_PRI_MAP4 0x40 /* Rx DSCP Priority to Rx Packet Mapping */ 260 #define RX_DSCP_PRI_MAP5 0x44 /* Rx DSCP Priority to Rx Packet Mapping */ 261 #define RX_DSCP_PRI_MAP6 0x48 /* Rx DSCP Priority to Rx Packet Mapping */ 262 #define RX_DSCP_PRI_MAP7 0x4c /* Rx DSCP Priority to Rx Packet Mapping */ 263 264 /* Bit definitions for the CPSW2_CONTROL register */ 265 #define PASS_PRI_TAGGED BIT(24) /* Pass Priority Tagged */ 266 #define VLAN_LTYPE2_EN BIT(21) /* VLAN LTYPE 2 enable */ 267 #define VLAN_LTYPE1_EN BIT(20) /* VLAN LTYPE 1 enable */ 268 #define DSCP_PRI_EN BIT(16) /* DSCP Priority Enable */ 269 #define TS_107 BIT(15) /* Tyme Sync Dest IP Address 107 */ 270 #define TS_320 BIT(14) /* Time Sync Dest Port 320 enable */ 271 #define TS_319 BIT(13) /* Time Sync Dest Port 319 enable */ 272 #define TS_132 BIT(12) /* Time Sync Dest IP Addr 132 enable */ 273 #define TS_131 BIT(11) /* Time Sync Dest IP Addr 131 enable */ 274 #define TS_130 BIT(10) /* Time Sync Dest IP Addr 130 enable */ 275 #define TS_129 BIT(9) /* Time Sync Dest IP Addr 129 enable */ 276 #define TS_TTL_NONZERO BIT(8) /* Time Sync Time To Live Non-zero enable */ 277 #define TS_ANNEX_F_EN BIT(6) /* Time Sync Annex F enable */ 278 #define TS_ANNEX_D_EN BIT(4) /* Time Sync Annex D enable */ 279 #define TS_LTYPE2_EN BIT(3) /* Time Sync LTYPE 2 enable */ 280 #define TS_LTYPE1_EN BIT(2) /* Time Sync LTYPE 1 enable */ 281 #define TS_TX_EN BIT(1) /* Time Sync Transmit Enable */ 282 #define TS_RX_EN BIT(0) /* Time Sync Receive Enable */ 283 284 #define CTRL_V2_TS_BITS \ 285 (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\ 286 TS_TTL_NONZERO | TS_ANNEX_D_EN | TS_LTYPE1_EN) 287 288 #define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN) 289 #define CTRL_V2_TX_TS_BITS (CTRL_V2_TS_BITS | TS_TX_EN) 290 #define CTRL_V2_RX_TS_BITS (CTRL_V2_TS_BITS | TS_RX_EN) 291 292 293 #define CTRL_V3_TS_BITS \ 294 (TS_107 | TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\ 295 TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\ 296 TS_LTYPE1_EN) 297 298 #define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN) 299 #define CTRL_V3_TX_TS_BITS (CTRL_V3_TS_BITS | TS_TX_EN) 300 #define CTRL_V3_RX_TS_BITS (CTRL_V3_TS_BITS | TS_RX_EN) 301 302 /* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */ 303 #define TS_SEQ_ID_OFFSET_SHIFT (16) /* Time Sync Sequence ID Offset */ 304 #define TS_SEQ_ID_OFFSET_MASK (0x3f) 305 #define TS_MSG_TYPE_EN_SHIFT (0) /* Time Sync Message Type Enable */ 306 #define TS_MSG_TYPE_EN_MASK (0xffff) 307 308 /* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */ 309 #define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3)) 310 311 /* Bit definitions for the CPSW1_TS_CTL register */ 312 #define CPSW_V1_TS_RX_EN BIT(0) 313 #define CPSW_V1_TS_TX_EN BIT(4) 314 #define CPSW_V1_MSG_TYPE_OFS 16 315 316 /* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */ 317 #define CPSW_V1_SEQ_ID_OFS_SHIFT 16 318 319 #define CPSW_MAX_BLKS_TX 15 320 #define CPSW_MAX_BLKS_TX_SHIFT 4 321 #define CPSW_MAX_BLKS_RX 5 322 323 struct cpsw_host_regs { 324 u32 max_blks; 325 u32 blk_cnt; 326 u32 tx_in_ctl; 327 u32 port_vlan; 328 u32 tx_pri_map; 329 u32 cpdma_tx_pri_map; 330 u32 cpdma_rx_chan_map; 331 }; 332 333 struct cpsw_sliver_regs { 334 u32 id_ver; 335 u32 mac_control; 336 u32 mac_status; 337 u32 soft_reset; 338 u32 rx_maxlen; 339 u32 __reserved_0; 340 u32 rx_pause; 341 u32 tx_pause; 342 u32 __reserved_1; 343 u32 rx_pri_map; 344 }; 345 346 struct cpsw_hw_stats { 347 u32 rxgoodframes; 348 u32 rxbroadcastframes; 349 u32 rxmulticastframes; 350 u32 rxpauseframes; 351 u32 rxcrcerrors; 352 u32 rxaligncodeerrors; 353 u32 rxoversizedframes; 354 u32 rxjabberframes; 355 u32 rxundersizedframes; 356 u32 rxfragments; 357 u32 __pad_0[2]; 358 u32 rxoctets; 359 u32 txgoodframes; 360 u32 txbroadcastframes; 361 u32 txmulticastframes; 362 u32 txpauseframes; 363 u32 txdeferredframes; 364 u32 txcollisionframes; 365 u32 txsinglecollframes; 366 u32 txmultcollframes; 367 u32 txexcessivecollisions; 368 u32 txlatecollisions; 369 u32 txunderrun; 370 u32 txcarriersenseerrors; 371 u32 txoctets; 372 u32 octetframes64; 373 u32 octetframes65t127; 374 u32 octetframes128t255; 375 u32 octetframes256t511; 376 u32 octetframes512t1023; 377 u32 octetframes1024tup; 378 u32 netoctets; 379 u32 rxsofoverruns; 380 u32 rxmofoverruns; 381 u32 rxdmaoverruns; 382 }; 383 384 struct cpsw_slave_data { 385 struct device_node *phy_node; 386 char phy_id[MII_BUS_ID_SIZE]; 387 int phy_if; 388 u8 mac_addr[ETH_ALEN]; 389 u16 dual_emac_res_vlan; /* Reserved VLAN for DualEMAC */ 390 }; 391 392 struct cpsw_platform_data { 393 struct cpsw_slave_data *slave_data; 394 u32 ss_reg_ofs; /* Subsystem control register offset */ 395 u32 channels; /* number of cpdma channels (symmetric) */ 396 u32 slaves; /* number of slave cpgmac ports */ 397 u32 active_slave; /* time stamping, ethtool and SIOCGMIIPHY slave */ 398 u32 ale_entries; /* ale table size */ 399 u32 bd_ram_size; /*buffer descriptor ram size */ 400 u32 mac_control; /* Mac control register */ 401 u16 default_vlan; /* Def VLAN for ALE lookup in VLAN aware mode*/ 402 bool dual_emac; /* Enable Dual EMAC mode */ 403 }; 404 405 struct cpsw_slave { 406 void __iomem *regs; 407 struct cpsw_sliver_regs __iomem *sliver; 408 int slave_num; 409 u32 mac_control; 410 struct cpsw_slave_data *data; 411 struct phy_device *phy; 412 struct net_device *ndev; 413 u32 port_vlan; 414 }; 415 416 static inline u32 slave_read(struct cpsw_slave *slave, u32 offset) 417 { 418 return readl_relaxed(slave->regs + offset); 419 } 420 421 static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset) 422 { 423 writel_relaxed(val, slave->regs + offset); 424 } 425 426 struct cpsw_vector { 427 struct cpdma_chan *ch; 428 int budget; 429 }; 430 431 struct cpsw_common { 432 struct device *dev; 433 struct cpsw_platform_data data; 434 struct napi_struct napi_rx; 435 struct napi_struct napi_tx; 436 struct cpsw_ss_regs __iomem *regs; 437 struct cpsw_wr_regs __iomem *wr_regs; 438 u8 __iomem *hw_stats; 439 struct cpsw_host_regs __iomem *host_port_regs; 440 u32 version; 441 u32 coal_intvl; 442 u32 bus_freq_mhz; 443 int rx_packet_max; 444 struct cpsw_slave *slaves; 445 struct cpdma_ctlr *dma; 446 struct cpsw_vector txv[CPSW_MAX_QUEUES]; 447 struct cpsw_vector rxv[CPSW_MAX_QUEUES]; 448 struct cpsw_ale *ale; 449 bool quirk_irq; 450 bool rx_irq_disabled; 451 bool tx_irq_disabled; 452 u32 irqs_table[IRQ_NUM]; 453 struct cpts *cpts; 454 int rx_ch_num, tx_ch_num; 455 int speed; 456 int usage_count; 457 }; 458 459 struct cpsw_priv { 460 struct net_device *ndev; 461 struct device *dev; 462 u32 msg_enable; 463 u8 mac_addr[ETH_ALEN]; 464 bool rx_pause; 465 bool tx_pause; 466 bool mqprio_hw; 467 int fifo_bw[CPSW_TC_NUM]; 468 int shp_cfg_speed; 469 u32 emac_port; 470 struct cpsw_common *cpsw; 471 }; 472 473 struct cpsw_stats { 474 char stat_string[ETH_GSTRING_LEN]; 475 int type; 476 int sizeof_stat; 477 int stat_offset; 478 }; 479 480 enum { 481 CPSW_STATS, 482 CPDMA_RX_STATS, 483 CPDMA_TX_STATS, 484 }; 485 486 #define CPSW_STAT(m) CPSW_STATS, \ 487 FIELD_SIZEOF(struct cpsw_hw_stats, m), \ 488 offsetof(struct cpsw_hw_stats, m) 489 #define CPDMA_RX_STAT(m) CPDMA_RX_STATS, \ 490 FIELD_SIZEOF(struct cpdma_chan_stats, m), \ 491 offsetof(struct cpdma_chan_stats, m) 492 #define CPDMA_TX_STAT(m) CPDMA_TX_STATS, \ 493 FIELD_SIZEOF(struct cpdma_chan_stats, m), \ 494 offsetof(struct cpdma_chan_stats, m) 495 496 static const struct cpsw_stats cpsw_gstrings_stats[] = { 497 { "Good Rx Frames", CPSW_STAT(rxgoodframes) }, 498 { "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) }, 499 { "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) }, 500 { "Pause Rx Frames", CPSW_STAT(rxpauseframes) }, 501 { "Rx CRC Errors", CPSW_STAT(rxcrcerrors) }, 502 { "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) }, 503 { "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) }, 504 { "Rx Jabbers", CPSW_STAT(rxjabberframes) }, 505 { "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) }, 506 { "Rx Fragments", CPSW_STAT(rxfragments) }, 507 { "Rx Octets", CPSW_STAT(rxoctets) }, 508 { "Good Tx Frames", CPSW_STAT(txgoodframes) }, 509 { "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) }, 510 { "Multicast Tx Frames", CPSW_STAT(txmulticastframes) }, 511 { "Pause Tx Frames", CPSW_STAT(txpauseframes) }, 512 { "Deferred Tx Frames", CPSW_STAT(txdeferredframes) }, 513 { "Collisions", CPSW_STAT(txcollisionframes) }, 514 { "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) }, 515 { "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) }, 516 { "Excessive Collisions", CPSW_STAT(txexcessivecollisions) }, 517 { "Late Collisions", CPSW_STAT(txlatecollisions) }, 518 { "Tx Underrun", CPSW_STAT(txunderrun) }, 519 { "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) }, 520 { "Tx Octets", CPSW_STAT(txoctets) }, 521 { "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) }, 522 { "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) }, 523 { "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) }, 524 { "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) }, 525 { "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) }, 526 { "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) }, 527 { "Net Octets", CPSW_STAT(netoctets) }, 528 { "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) }, 529 { "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) }, 530 { "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) }, 531 }; 532 533 static const struct cpsw_stats cpsw_gstrings_ch_stats[] = { 534 { "head_enqueue", CPDMA_RX_STAT(head_enqueue) }, 535 { "tail_enqueue", CPDMA_RX_STAT(tail_enqueue) }, 536 { "pad_enqueue", CPDMA_RX_STAT(pad_enqueue) }, 537 { "misqueued", CPDMA_RX_STAT(misqueued) }, 538 { "desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) }, 539 { "pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) }, 540 { "runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) }, 541 { "runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) }, 542 { "empty_dequeue", CPDMA_RX_STAT(empty_dequeue) }, 543 { "busy_dequeue", CPDMA_RX_STAT(busy_dequeue) }, 544 { "good_dequeue", CPDMA_RX_STAT(good_dequeue) }, 545 { "requeue", CPDMA_RX_STAT(requeue) }, 546 { "teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) }, 547 }; 548 549 #define CPSW_STATS_COMMON_LEN ARRAY_SIZE(cpsw_gstrings_stats) 550 #define CPSW_STATS_CH_LEN ARRAY_SIZE(cpsw_gstrings_ch_stats) 551 552 #define ndev_to_cpsw(ndev) (((struct cpsw_priv *)netdev_priv(ndev))->cpsw) 553 #define napi_to_cpsw(napi) container_of(napi, struct cpsw_common, napi) 554 #define for_each_slave(priv, func, arg...) \ 555 do { \ 556 struct cpsw_slave *slave; \ 557 struct cpsw_common *cpsw = (priv)->cpsw; \ 558 int n; \ 559 if (cpsw->data.dual_emac) \ 560 (func)((cpsw)->slaves + priv->emac_port, ##arg);\ 561 else \ 562 for (n = cpsw->data.slaves, \ 563 slave = cpsw->slaves; \ 564 n; n--) \ 565 (func)(slave++, ##arg); \ 566 } while (0) 567 568 static inline int cpsw_get_slave_port(u32 slave_num) 569 { 570 return slave_num + 1; 571 } 572 573 static void cpsw_add_mcast(struct cpsw_priv *priv, const u8 *addr) 574 { 575 struct cpsw_common *cpsw = priv->cpsw; 576 577 if (cpsw->data.dual_emac) { 578 struct cpsw_slave *slave = cpsw->slaves + priv->emac_port; 579 580 cpsw_ale_add_mcast(cpsw->ale, addr, ALE_PORT_HOST, 581 ALE_VLAN, slave->port_vlan, 0); 582 return; 583 } 584 585 cpsw_ale_add_mcast(cpsw->ale, addr, ALE_ALL_PORTS, 0, 0, 0); 586 } 587 588 static void cpsw_set_promiscious(struct net_device *ndev, bool enable) 589 { 590 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 591 struct cpsw_ale *ale = cpsw->ale; 592 int i; 593 594 if (cpsw->data.dual_emac) { 595 bool flag = false; 596 597 /* Enabling promiscuous mode for one interface will be 598 * common for both the interface as the interface shares 599 * the same hardware resource. 600 */ 601 for (i = 0; i < cpsw->data.slaves; i++) 602 if (cpsw->slaves[i].ndev->flags & IFF_PROMISC) 603 flag = true; 604 605 if (!enable && flag) { 606 enable = true; 607 dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n"); 608 } 609 610 if (enable) { 611 /* Enable Bypass */ 612 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1); 613 614 dev_dbg(&ndev->dev, "promiscuity enabled\n"); 615 } else { 616 /* Disable Bypass */ 617 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0); 618 dev_dbg(&ndev->dev, "promiscuity disabled\n"); 619 } 620 } else { 621 if (enable) { 622 unsigned long timeout = jiffies + HZ; 623 624 /* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */ 625 for (i = 0; i <= cpsw->data.slaves; i++) { 626 cpsw_ale_control_set(ale, i, 627 ALE_PORT_NOLEARN, 1); 628 cpsw_ale_control_set(ale, i, 629 ALE_PORT_NO_SA_UPDATE, 1); 630 } 631 632 /* Clear All Untouched entries */ 633 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1); 634 do { 635 cpu_relax(); 636 if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT)) 637 break; 638 } while (time_after(timeout, jiffies)); 639 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1); 640 641 /* Clear all mcast from ALE */ 642 cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS, -1); 643 __dev_mc_unsync(ndev, NULL); 644 645 /* Flood All Unicast Packets to Host port */ 646 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1); 647 dev_dbg(&ndev->dev, "promiscuity enabled\n"); 648 } else { 649 /* Don't Flood All Unicast Packets to Host port */ 650 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0); 651 652 /* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */ 653 for (i = 0; i <= cpsw->data.slaves; i++) { 654 cpsw_ale_control_set(ale, i, 655 ALE_PORT_NOLEARN, 0); 656 cpsw_ale_control_set(ale, i, 657 ALE_PORT_NO_SA_UPDATE, 0); 658 } 659 dev_dbg(&ndev->dev, "promiscuity disabled\n"); 660 } 661 } 662 } 663 664 static int cpsw_add_mc_addr(struct net_device *ndev, const u8 *addr) 665 { 666 struct cpsw_priv *priv = netdev_priv(ndev); 667 668 cpsw_add_mcast(priv, addr); 669 return 0; 670 } 671 672 static int cpsw_del_mc_addr(struct net_device *ndev, const u8 *addr) 673 { 674 struct cpsw_priv *priv = netdev_priv(ndev); 675 struct cpsw_common *cpsw = priv->cpsw; 676 int vid, flags; 677 678 if (cpsw->data.dual_emac) { 679 vid = cpsw->slaves[priv->emac_port].port_vlan; 680 flags = ALE_VLAN; 681 } else { 682 vid = 0; 683 flags = 0; 684 } 685 686 cpsw_ale_del_mcast(cpsw->ale, addr, 0, flags, vid); 687 return 0; 688 } 689 690 static void cpsw_ndo_set_rx_mode(struct net_device *ndev) 691 { 692 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 693 694 if (ndev->flags & IFF_PROMISC) { 695 /* Enable promiscuous mode */ 696 cpsw_set_promiscious(ndev, true); 697 cpsw_ale_set_allmulti(cpsw->ale, IFF_ALLMULTI); 698 return; 699 } else { 700 /* Disable promiscuous mode */ 701 cpsw_set_promiscious(ndev, false); 702 } 703 704 /* Restore allmulti on vlans if necessary */ 705 cpsw_ale_set_allmulti(cpsw->ale, ndev->flags & IFF_ALLMULTI); 706 707 __dev_mc_sync(ndev, cpsw_add_mc_addr, cpsw_del_mc_addr); 708 } 709 710 static void cpsw_intr_enable(struct cpsw_common *cpsw) 711 { 712 writel_relaxed(0xFF, &cpsw->wr_regs->tx_en); 713 writel_relaxed(0xFF, &cpsw->wr_regs->rx_en); 714 715 cpdma_ctlr_int_ctrl(cpsw->dma, true); 716 return; 717 } 718 719 static void cpsw_intr_disable(struct cpsw_common *cpsw) 720 { 721 writel_relaxed(0, &cpsw->wr_regs->tx_en); 722 writel_relaxed(0, &cpsw->wr_regs->rx_en); 723 724 cpdma_ctlr_int_ctrl(cpsw->dma, false); 725 return; 726 } 727 728 static void cpsw_tx_handler(void *token, int len, int status) 729 { 730 struct netdev_queue *txq; 731 struct sk_buff *skb = token; 732 struct net_device *ndev = skb->dev; 733 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 734 735 /* Check whether the queue is stopped due to stalled tx dma, if the 736 * queue is stopped then start the queue as we have free desc for tx 737 */ 738 txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb)); 739 if (unlikely(netif_tx_queue_stopped(txq))) 740 netif_tx_wake_queue(txq); 741 742 cpts_tx_timestamp(cpsw->cpts, skb); 743 ndev->stats.tx_packets++; 744 ndev->stats.tx_bytes += len; 745 dev_kfree_skb_any(skb); 746 } 747 748 static void cpsw_rx_vlan_encap(struct sk_buff *skb) 749 { 750 struct cpsw_priv *priv = netdev_priv(skb->dev); 751 struct cpsw_common *cpsw = priv->cpsw; 752 u32 rx_vlan_encap_hdr = *((u32 *)skb->data); 753 u16 vtag, vid, prio, pkt_type; 754 755 /* Remove VLAN header encapsulation word */ 756 skb_pull(skb, CPSW_RX_VLAN_ENCAP_HDR_SIZE); 757 758 pkt_type = (rx_vlan_encap_hdr >> 759 CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_SHIFT) & 760 CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_MSK; 761 /* Ignore unknown & Priority-tagged packets*/ 762 if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_RESERV || 763 pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_PRIO_TAG) 764 return; 765 766 vid = (rx_vlan_encap_hdr >> 767 CPSW_RX_VLAN_ENCAP_HDR_VID_SHIFT) & 768 VLAN_VID_MASK; 769 /* Ignore vid 0 and pass packet as is */ 770 if (!vid) 771 return; 772 /* Ignore default vlans in dual mac mode */ 773 if (cpsw->data.dual_emac && 774 vid == cpsw->slaves[priv->emac_port].port_vlan) 775 return; 776 777 prio = (rx_vlan_encap_hdr >> 778 CPSW_RX_VLAN_ENCAP_HDR_PRIO_SHIFT) & 779 CPSW_RX_VLAN_ENCAP_HDR_PRIO_MSK; 780 781 vtag = (prio << VLAN_PRIO_SHIFT) | vid; 782 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vtag); 783 784 /* strip vlan tag for VLAN-tagged packet */ 785 if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_VLAN_TAG) { 786 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); 787 skb_pull(skb, VLAN_HLEN); 788 } 789 } 790 791 static void cpsw_rx_handler(void *token, int len, int status) 792 { 793 struct cpdma_chan *ch; 794 struct sk_buff *skb = token; 795 struct sk_buff *new_skb; 796 struct net_device *ndev = skb->dev; 797 int ret = 0, port; 798 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 799 800 if (cpsw->data.dual_emac) { 801 port = CPDMA_RX_SOURCE_PORT(status); 802 if (port) { 803 ndev = cpsw->slaves[--port].ndev; 804 skb->dev = ndev; 805 } 806 } 807 808 if (unlikely(status < 0) || unlikely(!netif_running(ndev))) { 809 /* In dual emac mode check for all interfaces */ 810 if (cpsw->data.dual_emac && cpsw->usage_count && 811 (status >= 0)) { 812 /* The packet received is for the interface which 813 * is already down and the other interface is up 814 * and running, instead of freeing which results 815 * in reducing of the number of rx descriptor in 816 * DMA engine, requeue skb back to cpdma. 817 */ 818 new_skb = skb; 819 goto requeue; 820 } 821 822 /* the interface is going down, skbs are purged */ 823 dev_kfree_skb_any(skb); 824 return; 825 } 826 827 new_skb = netdev_alloc_skb_ip_align(ndev, cpsw->rx_packet_max); 828 if (new_skb) { 829 skb_copy_queue_mapping(new_skb, skb); 830 skb_put(skb, len); 831 if (status & CPDMA_RX_VLAN_ENCAP) 832 cpsw_rx_vlan_encap(skb); 833 cpts_rx_timestamp(cpsw->cpts, skb); 834 skb->protocol = eth_type_trans(skb, ndev); 835 netif_receive_skb(skb); 836 ndev->stats.rx_bytes += len; 837 ndev->stats.rx_packets++; 838 kmemleak_not_leak(new_skb); 839 } else { 840 ndev->stats.rx_dropped++; 841 new_skb = skb; 842 } 843 844 requeue: 845 if (netif_dormant(ndev)) { 846 dev_kfree_skb_any(new_skb); 847 return; 848 } 849 850 ch = cpsw->rxv[skb_get_queue_mapping(new_skb)].ch; 851 ret = cpdma_chan_submit(ch, new_skb, new_skb->data, 852 skb_tailroom(new_skb), 0); 853 if (WARN_ON(ret < 0)) 854 dev_kfree_skb_any(new_skb); 855 } 856 857 static void cpsw_split_res(struct net_device *ndev) 858 { 859 struct cpsw_priv *priv = netdev_priv(ndev); 860 u32 consumed_rate = 0, bigest_rate = 0; 861 struct cpsw_common *cpsw = priv->cpsw; 862 struct cpsw_vector *txv = cpsw->txv; 863 int i, ch_weight, rlim_ch_num = 0; 864 int budget, bigest_rate_ch = 0; 865 u32 ch_rate, max_rate; 866 int ch_budget = 0; 867 868 for (i = 0; i < cpsw->tx_ch_num; i++) { 869 ch_rate = cpdma_chan_get_rate(txv[i].ch); 870 if (!ch_rate) 871 continue; 872 873 rlim_ch_num++; 874 consumed_rate += ch_rate; 875 } 876 877 if (cpsw->tx_ch_num == rlim_ch_num) { 878 max_rate = consumed_rate; 879 } else if (!rlim_ch_num) { 880 ch_budget = CPSW_POLL_WEIGHT / cpsw->tx_ch_num; 881 bigest_rate = 0; 882 max_rate = consumed_rate; 883 } else { 884 max_rate = cpsw->speed * 1000; 885 886 /* if max_rate is less then expected due to reduced link speed, 887 * split proportionally according next potential max speed 888 */ 889 if (max_rate < consumed_rate) 890 max_rate *= 10; 891 892 if (max_rate < consumed_rate) 893 max_rate *= 10; 894 895 ch_budget = (consumed_rate * CPSW_POLL_WEIGHT) / max_rate; 896 ch_budget = (CPSW_POLL_WEIGHT - ch_budget) / 897 (cpsw->tx_ch_num - rlim_ch_num); 898 bigest_rate = (max_rate - consumed_rate) / 899 (cpsw->tx_ch_num - rlim_ch_num); 900 } 901 902 /* split tx weight/budget */ 903 budget = CPSW_POLL_WEIGHT; 904 for (i = 0; i < cpsw->tx_ch_num; i++) { 905 ch_rate = cpdma_chan_get_rate(txv[i].ch); 906 if (ch_rate) { 907 txv[i].budget = (ch_rate * CPSW_POLL_WEIGHT) / max_rate; 908 if (!txv[i].budget) 909 txv[i].budget++; 910 if (ch_rate > bigest_rate) { 911 bigest_rate_ch = i; 912 bigest_rate = ch_rate; 913 } 914 915 ch_weight = (ch_rate * 100) / max_rate; 916 if (!ch_weight) 917 ch_weight++; 918 cpdma_chan_set_weight(cpsw->txv[i].ch, ch_weight); 919 } else { 920 txv[i].budget = ch_budget; 921 if (!bigest_rate_ch) 922 bigest_rate_ch = i; 923 cpdma_chan_set_weight(cpsw->txv[i].ch, 0); 924 } 925 926 budget -= txv[i].budget; 927 } 928 929 if (budget) 930 txv[bigest_rate_ch].budget += budget; 931 932 /* split rx budget */ 933 budget = CPSW_POLL_WEIGHT; 934 ch_budget = budget / cpsw->rx_ch_num; 935 for (i = 0; i < cpsw->rx_ch_num; i++) { 936 cpsw->rxv[i].budget = ch_budget; 937 budget -= ch_budget; 938 } 939 940 if (budget) 941 cpsw->rxv[0].budget += budget; 942 } 943 944 static irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id) 945 { 946 struct cpsw_common *cpsw = dev_id; 947 948 writel(0, &cpsw->wr_regs->tx_en); 949 cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_TX); 950 951 if (cpsw->quirk_irq) { 952 disable_irq_nosync(cpsw->irqs_table[1]); 953 cpsw->tx_irq_disabled = true; 954 } 955 956 napi_schedule(&cpsw->napi_tx); 957 return IRQ_HANDLED; 958 } 959 960 static irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id) 961 { 962 struct cpsw_common *cpsw = dev_id; 963 964 cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_RX); 965 writel(0, &cpsw->wr_regs->rx_en); 966 967 if (cpsw->quirk_irq) { 968 disable_irq_nosync(cpsw->irqs_table[0]); 969 cpsw->rx_irq_disabled = true; 970 } 971 972 napi_schedule(&cpsw->napi_rx); 973 return IRQ_HANDLED; 974 } 975 976 static int cpsw_tx_mq_poll(struct napi_struct *napi_tx, int budget) 977 { 978 u32 ch_map; 979 int num_tx, cur_budget, ch; 980 struct cpsw_common *cpsw = napi_to_cpsw(napi_tx); 981 struct cpsw_vector *txv; 982 983 /* process every unprocessed channel */ 984 ch_map = cpdma_ctrl_txchs_state(cpsw->dma); 985 for (ch = 0, num_tx = 0; ch_map & 0xff; ch_map <<= 1, ch++) { 986 if (!(ch_map & 0x80)) 987 continue; 988 989 txv = &cpsw->txv[ch]; 990 if (unlikely(txv->budget > budget - num_tx)) 991 cur_budget = budget - num_tx; 992 else 993 cur_budget = txv->budget; 994 995 num_tx += cpdma_chan_process(txv->ch, cur_budget); 996 if (num_tx >= budget) 997 break; 998 } 999 1000 if (num_tx < budget) { 1001 napi_complete(napi_tx); 1002 writel(0xff, &cpsw->wr_regs->tx_en); 1003 } 1004 1005 return num_tx; 1006 } 1007 1008 static int cpsw_tx_poll(struct napi_struct *napi_tx, int budget) 1009 { 1010 struct cpsw_common *cpsw = napi_to_cpsw(napi_tx); 1011 int num_tx; 1012 1013 num_tx = cpdma_chan_process(cpsw->txv[0].ch, budget); 1014 if (num_tx < budget) { 1015 napi_complete(napi_tx); 1016 writel(0xff, &cpsw->wr_regs->tx_en); 1017 if (cpsw->tx_irq_disabled) { 1018 cpsw->tx_irq_disabled = false; 1019 enable_irq(cpsw->irqs_table[1]); 1020 } 1021 } 1022 1023 return num_tx; 1024 } 1025 1026 static int cpsw_rx_mq_poll(struct napi_struct *napi_rx, int budget) 1027 { 1028 u32 ch_map; 1029 int num_rx, cur_budget, ch; 1030 struct cpsw_common *cpsw = napi_to_cpsw(napi_rx); 1031 struct cpsw_vector *rxv; 1032 1033 /* process every unprocessed channel */ 1034 ch_map = cpdma_ctrl_rxchs_state(cpsw->dma); 1035 for (ch = 0, num_rx = 0; ch_map; ch_map >>= 1, ch++) { 1036 if (!(ch_map & 0x01)) 1037 continue; 1038 1039 rxv = &cpsw->rxv[ch]; 1040 if (unlikely(rxv->budget > budget - num_rx)) 1041 cur_budget = budget - num_rx; 1042 else 1043 cur_budget = rxv->budget; 1044 1045 num_rx += cpdma_chan_process(rxv->ch, cur_budget); 1046 if (num_rx >= budget) 1047 break; 1048 } 1049 1050 if (num_rx < budget) { 1051 napi_complete_done(napi_rx, num_rx); 1052 writel(0xff, &cpsw->wr_regs->rx_en); 1053 } 1054 1055 return num_rx; 1056 } 1057 1058 static int cpsw_rx_poll(struct napi_struct *napi_rx, int budget) 1059 { 1060 struct cpsw_common *cpsw = napi_to_cpsw(napi_rx); 1061 int num_rx; 1062 1063 num_rx = cpdma_chan_process(cpsw->rxv[0].ch, budget); 1064 if (num_rx < budget) { 1065 napi_complete_done(napi_rx, num_rx); 1066 writel(0xff, &cpsw->wr_regs->rx_en); 1067 if (cpsw->rx_irq_disabled) { 1068 cpsw->rx_irq_disabled = false; 1069 enable_irq(cpsw->irqs_table[0]); 1070 } 1071 } 1072 1073 return num_rx; 1074 } 1075 1076 static inline void soft_reset(const char *module, void __iomem *reg) 1077 { 1078 unsigned long timeout = jiffies + HZ; 1079 1080 writel_relaxed(1, reg); 1081 do { 1082 cpu_relax(); 1083 } while ((readl_relaxed(reg) & 1) && time_after(timeout, jiffies)); 1084 1085 WARN(readl_relaxed(reg) & 1, "failed to soft-reset %s\n", module); 1086 } 1087 1088 static void cpsw_set_slave_mac(struct cpsw_slave *slave, 1089 struct cpsw_priv *priv) 1090 { 1091 slave_write(slave, mac_hi(priv->mac_addr), SA_HI); 1092 slave_write(slave, mac_lo(priv->mac_addr), SA_LO); 1093 } 1094 1095 static bool cpsw_shp_is_off(struct cpsw_priv *priv) 1096 { 1097 struct cpsw_common *cpsw = priv->cpsw; 1098 struct cpsw_slave *slave; 1099 u32 shift, mask, val; 1100 1101 val = readl_relaxed(&cpsw->regs->ptype); 1102 1103 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; 1104 shift = CPSW_FIFO_SHAPE_EN_SHIFT + 3 * slave->slave_num; 1105 mask = 7 << shift; 1106 val = val & mask; 1107 1108 return !val; 1109 } 1110 1111 static void cpsw_fifo_shp_on(struct cpsw_priv *priv, int fifo, int on) 1112 { 1113 struct cpsw_common *cpsw = priv->cpsw; 1114 struct cpsw_slave *slave; 1115 u32 shift, mask, val; 1116 1117 val = readl_relaxed(&cpsw->regs->ptype); 1118 1119 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; 1120 shift = CPSW_FIFO_SHAPE_EN_SHIFT + 3 * slave->slave_num; 1121 mask = (1 << --fifo) << shift; 1122 val = on ? val | mask : val & ~mask; 1123 1124 writel_relaxed(val, &cpsw->regs->ptype); 1125 } 1126 1127 static void _cpsw_adjust_link(struct cpsw_slave *slave, 1128 struct cpsw_priv *priv, bool *link) 1129 { 1130 struct phy_device *phy = slave->phy; 1131 u32 mac_control = 0; 1132 u32 slave_port; 1133 struct cpsw_common *cpsw = priv->cpsw; 1134 1135 if (!phy) 1136 return; 1137 1138 slave_port = cpsw_get_slave_port(slave->slave_num); 1139 1140 if (phy->link) { 1141 mac_control = cpsw->data.mac_control; 1142 1143 /* enable forwarding */ 1144 cpsw_ale_control_set(cpsw->ale, slave_port, 1145 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD); 1146 1147 if (phy->speed == 1000) 1148 mac_control |= BIT(7); /* GIGABITEN */ 1149 if (phy->duplex) 1150 mac_control |= BIT(0); /* FULLDUPLEXEN */ 1151 1152 /* set speed_in input in case RMII mode is used in 100Mbps */ 1153 if (phy->speed == 100) 1154 mac_control |= BIT(15); 1155 /* in band mode only works in 10Mbps RGMII mode */ 1156 else if ((phy->speed == 10) && phy_interface_is_rgmii(phy)) 1157 mac_control |= BIT(18); /* In Band mode */ 1158 1159 if (priv->rx_pause) 1160 mac_control |= BIT(3); 1161 1162 if (priv->tx_pause) 1163 mac_control |= BIT(4); 1164 1165 *link = true; 1166 1167 if (priv->shp_cfg_speed && 1168 priv->shp_cfg_speed != slave->phy->speed && 1169 !cpsw_shp_is_off(priv)) 1170 dev_warn(priv->dev, 1171 "Speed was changed, CBS shaper speeds are changed!"); 1172 } else { 1173 mac_control = 0; 1174 /* disable forwarding */ 1175 cpsw_ale_control_set(cpsw->ale, slave_port, 1176 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE); 1177 } 1178 1179 if (mac_control != slave->mac_control) { 1180 phy_print_status(phy); 1181 writel_relaxed(mac_control, &slave->sliver->mac_control); 1182 } 1183 1184 slave->mac_control = mac_control; 1185 } 1186 1187 static int cpsw_get_common_speed(struct cpsw_common *cpsw) 1188 { 1189 int i, speed; 1190 1191 for (i = 0, speed = 0; i < cpsw->data.slaves; i++) 1192 if (cpsw->slaves[i].phy && cpsw->slaves[i].phy->link) 1193 speed += cpsw->slaves[i].phy->speed; 1194 1195 return speed; 1196 } 1197 1198 static int cpsw_need_resplit(struct cpsw_common *cpsw) 1199 { 1200 int i, rlim_ch_num; 1201 int speed, ch_rate; 1202 1203 /* re-split resources only in case speed was changed */ 1204 speed = cpsw_get_common_speed(cpsw); 1205 if (speed == cpsw->speed || !speed) 1206 return 0; 1207 1208 cpsw->speed = speed; 1209 1210 for (i = 0, rlim_ch_num = 0; i < cpsw->tx_ch_num; i++) { 1211 ch_rate = cpdma_chan_get_rate(cpsw->txv[i].ch); 1212 if (!ch_rate) 1213 break; 1214 1215 rlim_ch_num++; 1216 } 1217 1218 /* cases not dependent on speed */ 1219 if (!rlim_ch_num || rlim_ch_num == cpsw->tx_ch_num) 1220 return 0; 1221 1222 return 1; 1223 } 1224 1225 static void cpsw_adjust_link(struct net_device *ndev) 1226 { 1227 struct cpsw_priv *priv = netdev_priv(ndev); 1228 struct cpsw_common *cpsw = priv->cpsw; 1229 bool link = false; 1230 1231 for_each_slave(priv, _cpsw_adjust_link, priv, &link); 1232 1233 if (link) { 1234 if (cpsw_need_resplit(cpsw)) 1235 cpsw_split_res(ndev); 1236 1237 netif_carrier_on(ndev); 1238 if (netif_running(ndev)) 1239 netif_tx_wake_all_queues(ndev); 1240 } else { 1241 netif_carrier_off(ndev); 1242 netif_tx_stop_all_queues(ndev); 1243 } 1244 } 1245 1246 static int cpsw_get_coalesce(struct net_device *ndev, 1247 struct ethtool_coalesce *coal) 1248 { 1249 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1250 1251 coal->rx_coalesce_usecs = cpsw->coal_intvl; 1252 return 0; 1253 } 1254 1255 static int cpsw_set_coalesce(struct net_device *ndev, 1256 struct ethtool_coalesce *coal) 1257 { 1258 struct cpsw_priv *priv = netdev_priv(ndev); 1259 u32 int_ctrl; 1260 u32 num_interrupts = 0; 1261 u32 prescale = 0; 1262 u32 addnl_dvdr = 1; 1263 u32 coal_intvl = 0; 1264 struct cpsw_common *cpsw = priv->cpsw; 1265 1266 coal_intvl = coal->rx_coalesce_usecs; 1267 1268 int_ctrl = readl(&cpsw->wr_regs->int_control); 1269 prescale = cpsw->bus_freq_mhz * 4; 1270 1271 if (!coal->rx_coalesce_usecs) { 1272 int_ctrl &= ~(CPSW_INTPRESCALE_MASK | CPSW_INTPACEEN); 1273 goto update_return; 1274 } 1275 1276 if (coal_intvl < CPSW_CMINTMIN_INTVL) 1277 coal_intvl = CPSW_CMINTMIN_INTVL; 1278 1279 if (coal_intvl > CPSW_CMINTMAX_INTVL) { 1280 /* Interrupt pacer works with 4us Pulse, we can 1281 * throttle further by dilating the 4us pulse. 1282 */ 1283 addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale; 1284 1285 if (addnl_dvdr > 1) { 1286 prescale *= addnl_dvdr; 1287 if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr)) 1288 coal_intvl = (CPSW_CMINTMAX_INTVL 1289 * addnl_dvdr); 1290 } else { 1291 addnl_dvdr = 1; 1292 coal_intvl = CPSW_CMINTMAX_INTVL; 1293 } 1294 } 1295 1296 num_interrupts = (1000 * addnl_dvdr) / coal_intvl; 1297 writel(num_interrupts, &cpsw->wr_regs->rx_imax); 1298 writel(num_interrupts, &cpsw->wr_regs->tx_imax); 1299 1300 int_ctrl |= CPSW_INTPACEEN; 1301 int_ctrl &= (~CPSW_INTPRESCALE_MASK); 1302 int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK); 1303 1304 update_return: 1305 writel(int_ctrl, &cpsw->wr_regs->int_control); 1306 1307 cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl); 1308 cpsw->coal_intvl = coal_intvl; 1309 1310 return 0; 1311 } 1312 1313 static int cpsw_get_sset_count(struct net_device *ndev, int sset) 1314 { 1315 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1316 1317 switch (sset) { 1318 case ETH_SS_STATS: 1319 return (CPSW_STATS_COMMON_LEN + 1320 (cpsw->rx_ch_num + cpsw->tx_ch_num) * 1321 CPSW_STATS_CH_LEN); 1322 default: 1323 return -EOPNOTSUPP; 1324 } 1325 } 1326 1327 static void cpsw_add_ch_strings(u8 **p, int ch_num, int rx_dir) 1328 { 1329 int ch_stats_len; 1330 int line; 1331 int i; 1332 1333 ch_stats_len = CPSW_STATS_CH_LEN * ch_num; 1334 for (i = 0; i < ch_stats_len; i++) { 1335 line = i % CPSW_STATS_CH_LEN; 1336 snprintf(*p, ETH_GSTRING_LEN, 1337 "%s DMA chan %ld: %s", rx_dir ? "Rx" : "Tx", 1338 (long)(i / CPSW_STATS_CH_LEN), 1339 cpsw_gstrings_ch_stats[line].stat_string); 1340 *p += ETH_GSTRING_LEN; 1341 } 1342 } 1343 1344 static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data) 1345 { 1346 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1347 u8 *p = data; 1348 int i; 1349 1350 switch (stringset) { 1351 case ETH_SS_STATS: 1352 for (i = 0; i < CPSW_STATS_COMMON_LEN; i++) { 1353 memcpy(p, cpsw_gstrings_stats[i].stat_string, 1354 ETH_GSTRING_LEN); 1355 p += ETH_GSTRING_LEN; 1356 } 1357 1358 cpsw_add_ch_strings(&p, cpsw->rx_ch_num, 1); 1359 cpsw_add_ch_strings(&p, cpsw->tx_ch_num, 0); 1360 break; 1361 } 1362 } 1363 1364 static void cpsw_get_ethtool_stats(struct net_device *ndev, 1365 struct ethtool_stats *stats, u64 *data) 1366 { 1367 u8 *p; 1368 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1369 struct cpdma_chan_stats ch_stats; 1370 int i, l, ch; 1371 1372 /* Collect Davinci CPDMA stats for Rx and Tx Channel */ 1373 for (l = 0; l < CPSW_STATS_COMMON_LEN; l++) 1374 data[l] = readl(cpsw->hw_stats + 1375 cpsw_gstrings_stats[l].stat_offset); 1376 1377 for (ch = 0; ch < cpsw->rx_ch_num; ch++) { 1378 cpdma_chan_get_stats(cpsw->rxv[ch].ch, &ch_stats); 1379 for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) { 1380 p = (u8 *)&ch_stats + 1381 cpsw_gstrings_ch_stats[i].stat_offset; 1382 data[l] = *(u32 *)p; 1383 } 1384 } 1385 1386 for (ch = 0; ch < cpsw->tx_ch_num; ch++) { 1387 cpdma_chan_get_stats(cpsw->txv[ch].ch, &ch_stats); 1388 for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) { 1389 p = (u8 *)&ch_stats + 1390 cpsw_gstrings_ch_stats[i].stat_offset; 1391 data[l] = *(u32 *)p; 1392 } 1393 } 1394 } 1395 1396 static inline int cpsw_tx_packet_submit(struct cpsw_priv *priv, 1397 struct sk_buff *skb, 1398 struct cpdma_chan *txch) 1399 { 1400 struct cpsw_common *cpsw = priv->cpsw; 1401 1402 skb_tx_timestamp(skb); 1403 return cpdma_chan_submit(txch, skb, skb->data, skb->len, 1404 priv->emac_port + cpsw->data.dual_emac); 1405 } 1406 1407 static inline void cpsw_add_dual_emac_def_ale_entries( 1408 struct cpsw_priv *priv, struct cpsw_slave *slave, 1409 u32 slave_port) 1410 { 1411 struct cpsw_common *cpsw = priv->cpsw; 1412 u32 port_mask = 1 << slave_port | ALE_PORT_HOST; 1413 1414 if (cpsw->version == CPSW_VERSION_1) 1415 slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN); 1416 else 1417 slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN); 1418 cpsw_ale_add_vlan(cpsw->ale, slave->port_vlan, port_mask, 1419 port_mask, port_mask, 0); 1420 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, 1421 ALE_PORT_HOST, ALE_VLAN, slave->port_vlan, 0); 1422 cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, 1423 HOST_PORT_NUM, ALE_VLAN | 1424 ALE_SECURE, slave->port_vlan); 1425 cpsw_ale_control_set(cpsw->ale, slave_port, 1426 ALE_PORT_DROP_UNKNOWN_VLAN, 1); 1427 } 1428 1429 static void soft_reset_slave(struct cpsw_slave *slave) 1430 { 1431 char name[32]; 1432 1433 snprintf(name, sizeof(name), "slave-%d", slave->slave_num); 1434 soft_reset(name, &slave->sliver->soft_reset); 1435 } 1436 1437 static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv) 1438 { 1439 u32 slave_port; 1440 struct phy_device *phy; 1441 struct cpsw_common *cpsw = priv->cpsw; 1442 1443 soft_reset_slave(slave); 1444 1445 /* setup priority mapping */ 1446 writel_relaxed(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map); 1447 1448 switch (cpsw->version) { 1449 case CPSW_VERSION_1: 1450 slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP); 1451 /* Increase RX FIFO size to 5 for supporting fullduplex 1452 * flow control mode 1453 */ 1454 slave_write(slave, 1455 (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) | 1456 CPSW_MAX_BLKS_RX, CPSW1_MAX_BLKS); 1457 break; 1458 case CPSW_VERSION_2: 1459 case CPSW_VERSION_3: 1460 case CPSW_VERSION_4: 1461 slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP); 1462 /* Increase RX FIFO size to 5 for supporting fullduplex 1463 * flow control mode 1464 */ 1465 slave_write(slave, 1466 (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) | 1467 CPSW_MAX_BLKS_RX, CPSW2_MAX_BLKS); 1468 break; 1469 } 1470 1471 /* setup max packet size, and mac address */ 1472 writel_relaxed(cpsw->rx_packet_max, &slave->sliver->rx_maxlen); 1473 cpsw_set_slave_mac(slave, priv); 1474 1475 slave->mac_control = 0; /* no link yet */ 1476 1477 slave_port = cpsw_get_slave_port(slave->slave_num); 1478 1479 if (cpsw->data.dual_emac) 1480 cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port); 1481 else 1482 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, 1483 1 << slave_port, 0, 0, ALE_MCAST_FWD_2); 1484 1485 if (slave->data->phy_node) { 1486 phy = of_phy_connect(priv->ndev, slave->data->phy_node, 1487 &cpsw_adjust_link, 0, slave->data->phy_if); 1488 if (!phy) { 1489 dev_err(priv->dev, "phy \"%pOF\" not found on slave %d\n", 1490 slave->data->phy_node, 1491 slave->slave_num); 1492 return; 1493 } 1494 } else { 1495 phy = phy_connect(priv->ndev, slave->data->phy_id, 1496 &cpsw_adjust_link, slave->data->phy_if); 1497 if (IS_ERR(phy)) { 1498 dev_err(priv->dev, 1499 "phy \"%s\" not found on slave %d, err %ld\n", 1500 slave->data->phy_id, slave->slave_num, 1501 PTR_ERR(phy)); 1502 return; 1503 } 1504 } 1505 1506 slave->phy = phy; 1507 1508 phy_attached_info(slave->phy); 1509 1510 phy_start(slave->phy); 1511 1512 /* Configure GMII_SEL register */ 1513 cpsw_phy_sel(cpsw->dev, slave->phy->interface, slave->slave_num); 1514 } 1515 1516 static inline void cpsw_add_default_vlan(struct cpsw_priv *priv) 1517 { 1518 struct cpsw_common *cpsw = priv->cpsw; 1519 const int vlan = cpsw->data.default_vlan; 1520 u32 reg; 1521 int i; 1522 int unreg_mcast_mask; 1523 1524 reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN : 1525 CPSW2_PORT_VLAN; 1526 1527 writel(vlan, &cpsw->host_port_regs->port_vlan); 1528 1529 for (i = 0; i < cpsw->data.slaves; i++) 1530 slave_write(cpsw->slaves + i, vlan, reg); 1531 1532 if (priv->ndev->flags & IFF_ALLMULTI) 1533 unreg_mcast_mask = ALE_ALL_PORTS; 1534 else 1535 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2; 1536 1537 cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS, 1538 ALE_ALL_PORTS, ALE_ALL_PORTS, 1539 unreg_mcast_mask); 1540 } 1541 1542 static void cpsw_init_host_port(struct cpsw_priv *priv) 1543 { 1544 u32 fifo_mode; 1545 u32 control_reg; 1546 struct cpsw_common *cpsw = priv->cpsw; 1547 1548 /* soft reset the controller and initialize ale */ 1549 soft_reset("cpsw", &cpsw->regs->soft_reset); 1550 cpsw_ale_start(cpsw->ale); 1551 1552 /* switch to vlan unaware mode */ 1553 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_VLAN_AWARE, 1554 CPSW_ALE_VLAN_AWARE); 1555 control_reg = readl(&cpsw->regs->control); 1556 control_reg |= CPSW_VLAN_AWARE | CPSW_RX_VLAN_ENCAP; 1557 writel(control_reg, &cpsw->regs->control); 1558 fifo_mode = (cpsw->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE : 1559 CPSW_FIFO_NORMAL_MODE; 1560 writel(fifo_mode, &cpsw->host_port_regs->tx_in_ctl); 1561 1562 /* setup host port priority mapping */ 1563 writel_relaxed(CPDMA_TX_PRIORITY_MAP, 1564 &cpsw->host_port_regs->cpdma_tx_pri_map); 1565 writel_relaxed(0, &cpsw->host_port_regs->cpdma_rx_chan_map); 1566 1567 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, 1568 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD); 1569 1570 if (!cpsw->data.dual_emac) { 1571 cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM, 1572 0, 0); 1573 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, 1574 ALE_PORT_HOST, 0, 0, ALE_MCAST_FWD_2); 1575 } 1576 } 1577 1578 static int cpsw_fill_rx_channels(struct cpsw_priv *priv) 1579 { 1580 struct cpsw_common *cpsw = priv->cpsw; 1581 struct sk_buff *skb; 1582 int ch_buf_num; 1583 int ch, i, ret; 1584 1585 for (ch = 0; ch < cpsw->rx_ch_num; ch++) { 1586 ch_buf_num = cpdma_chan_get_rx_buf_num(cpsw->rxv[ch].ch); 1587 for (i = 0; i < ch_buf_num; i++) { 1588 skb = __netdev_alloc_skb_ip_align(priv->ndev, 1589 cpsw->rx_packet_max, 1590 GFP_KERNEL); 1591 if (!skb) { 1592 cpsw_err(priv, ifup, "cannot allocate skb\n"); 1593 return -ENOMEM; 1594 } 1595 1596 skb_set_queue_mapping(skb, ch); 1597 ret = cpdma_chan_submit(cpsw->rxv[ch].ch, skb, 1598 skb->data, skb_tailroom(skb), 1599 0); 1600 if (ret < 0) { 1601 cpsw_err(priv, ifup, 1602 "cannot submit skb to channel %d rx, error %d\n", 1603 ch, ret); 1604 kfree_skb(skb); 1605 return ret; 1606 } 1607 kmemleak_not_leak(skb); 1608 } 1609 1610 cpsw_info(priv, ifup, "ch %d rx, submitted %d descriptors\n", 1611 ch, ch_buf_num); 1612 } 1613 1614 return 0; 1615 } 1616 1617 static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_common *cpsw) 1618 { 1619 u32 slave_port; 1620 1621 slave_port = cpsw_get_slave_port(slave->slave_num); 1622 1623 if (!slave->phy) 1624 return; 1625 phy_stop(slave->phy); 1626 phy_disconnect(slave->phy); 1627 slave->phy = NULL; 1628 cpsw_ale_control_set(cpsw->ale, slave_port, 1629 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE); 1630 soft_reset_slave(slave); 1631 } 1632 1633 static int cpsw_tc_to_fifo(int tc, int num_tc) 1634 { 1635 if (tc == num_tc - 1) 1636 return 0; 1637 1638 return CPSW_FIFO_SHAPERS_NUM - tc; 1639 } 1640 1641 static int cpsw_set_fifo_bw(struct cpsw_priv *priv, int fifo, int bw) 1642 { 1643 struct cpsw_common *cpsw = priv->cpsw; 1644 u32 val = 0, send_pct, shift; 1645 struct cpsw_slave *slave; 1646 int pct = 0, i; 1647 1648 if (bw > priv->shp_cfg_speed * 1000) 1649 goto err; 1650 1651 /* shaping has to stay enabled for highest fifos linearly 1652 * and fifo bw no more then interface can allow 1653 */ 1654 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; 1655 send_pct = slave_read(slave, SEND_PERCENT); 1656 for (i = CPSW_FIFO_SHAPERS_NUM; i > 0; i--) { 1657 if (!bw) { 1658 if (i >= fifo || !priv->fifo_bw[i]) 1659 continue; 1660 1661 dev_warn(priv->dev, "Prev FIFO%d is shaped", i); 1662 continue; 1663 } 1664 1665 if (!priv->fifo_bw[i] && i > fifo) { 1666 dev_err(priv->dev, "Upper FIFO%d is not shaped", i); 1667 return -EINVAL; 1668 } 1669 1670 shift = (i - 1) * 8; 1671 if (i == fifo) { 1672 send_pct &= ~(CPSW_PCT_MASK << shift); 1673 val = DIV_ROUND_UP(bw, priv->shp_cfg_speed * 10); 1674 if (!val) 1675 val = 1; 1676 1677 send_pct |= val << shift; 1678 pct += val; 1679 continue; 1680 } 1681 1682 if (priv->fifo_bw[i]) 1683 pct += (send_pct >> shift) & CPSW_PCT_MASK; 1684 } 1685 1686 if (pct >= 100) 1687 goto err; 1688 1689 slave_write(slave, send_pct, SEND_PERCENT); 1690 priv->fifo_bw[fifo] = bw; 1691 1692 dev_warn(priv->dev, "set FIFO%d bw = %d\n", fifo, 1693 DIV_ROUND_CLOSEST(val * priv->shp_cfg_speed, 100)); 1694 1695 return 0; 1696 err: 1697 dev_err(priv->dev, "Bandwidth doesn't fit in tc configuration"); 1698 return -EINVAL; 1699 } 1700 1701 static int cpsw_set_fifo_rlimit(struct cpsw_priv *priv, int fifo, int bw) 1702 { 1703 struct cpsw_common *cpsw = priv->cpsw; 1704 struct cpsw_slave *slave; 1705 u32 tx_in_ctl_rg, val; 1706 int ret; 1707 1708 ret = cpsw_set_fifo_bw(priv, fifo, bw); 1709 if (ret) 1710 return ret; 1711 1712 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; 1713 tx_in_ctl_rg = cpsw->version == CPSW_VERSION_1 ? 1714 CPSW1_TX_IN_CTL : CPSW2_TX_IN_CTL; 1715 1716 if (!bw) 1717 cpsw_fifo_shp_on(priv, fifo, bw); 1718 1719 val = slave_read(slave, tx_in_ctl_rg); 1720 if (cpsw_shp_is_off(priv)) { 1721 /* disable FIFOs rate limited queues */ 1722 val &= ~(0xf << CPSW_FIFO_RATE_EN_SHIFT); 1723 1724 /* set type of FIFO queues to normal priority mode */ 1725 val &= ~(3 << CPSW_FIFO_QUEUE_TYPE_SHIFT); 1726 1727 /* set type of FIFO queues to be rate limited */ 1728 if (bw) 1729 val |= 2 << CPSW_FIFO_QUEUE_TYPE_SHIFT; 1730 else 1731 priv->shp_cfg_speed = 0; 1732 } 1733 1734 /* toggle a FIFO rate limited queue */ 1735 if (bw) 1736 val |= BIT(fifo + CPSW_FIFO_RATE_EN_SHIFT); 1737 else 1738 val &= ~BIT(fifo + CPSW_FIFO_RATE_EN_SHIFT); 1739 slave_write(slave, val, tx_in_ctl_rg); 1740 1741 /* FIFO transmit shape enable */ 1742 cpsw_fifo_shp_on(priv, fifo, bw); 1743 return 0; 1744 } 1745 1746 /* Defaults: 1747 * class A - prio 3 1748 * class B - prio 2 1749 * shaping for class A should be set first 1750 */ 1751 static int cpsw_set_cbs(struct net_device *ndev, 1752 struct tc_cbs_qopt_offload *qopt) 1753 { 1754 struct cpsw_priv *priv = netdev_priv(ndev); 1755 struct cpsw_common *cpsw = priv->cpsw; 1756 struct cpsw_slave *slave; 1757 int prev_speed = 0; 1758 int tc, ret, fifo; 1759 u32 bw = 0; 1760 1761 tc = netdev_txq_to_tc(priv->ndev, qopt->queue); 1762 1763 /* enable channels in backward order, as highest FIFOs must be rate 1764 * limited first and for compliance with CPDMA rate limited channels 1765 * that also used in bacward order. FIFO0 cannot be rate limited. 1766 */ 1767 fifo = cpsw_tc_to_fifo(tc, ndev->num_tc); 1768 if (!fifo) { 1769 dev_err(priv->dev, "Last tc%d can't be rate limited", tc); 1770 return -EINVAL; 1771 } 1772 1773 /* do nothing, it's disabled anyway */ 1774 if (!qopt->enable && !priv->fifo_bw[fifo]) 1775 return 0; 1776 1777 /* shapers can be set if link speed is known */ 1778 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; 1779 if (slave->phy && slave->phy->link) { 1780 if (priv->shp_cfg_speed && 1781 priv->shp_cfg_speed != slave->phy->speed) 1782 prev_speed = priv->shp_cfg_speed; 1783 1784 priv->shp_cfg_speed = slave->phy->speed; 1785 } 1786 1787 if (!priv->shp_cfg_speed) { 1788 dev_err(priv->dev, "Link speed is not known"); 1789 return -1; 1790 } 1791 1792 ret = pm_runtime_get_sync(cpsw->dev); 1793 if (ret < 0) { 1794 pm_runtime_put_noidle(cpsw->dev); 1795 return ret; 1796 } 1797 1798 bw = qopt->enable ? qopt->idleslope : 0; 1799 ret = cpsw_set_fifo_rlimit(priv, fifo, bw); 1800 if (ret) { 1801 priv->shp_cfg_speed = prev_speed; 1802 prev_speed = 0; 1803 } 1804 1805 if (bw && prev_speed) 1806 dev_warn(priv->dev, 1807 "Speed was changed, CBS shaper speeds are changed!"); 1808 1809 pm_runtime_put_sync(cpsw->dev); 1810 return ret; 1811 } 1812 1813 static void cpsw_cbs_resume(struct cpsw_slave *slave, struct cpsw_priv *priv) 1814 { 1815 int fifo, bw; 1816 1817 for (fifo = CPSW_FIFO_SHAPERS_NUM; fifo > 0; fifo--) { 1818 bw = priv->fifo_bw[fifo]; 1819 if (!bw) 1820 continue; 1821 1822 cpsw_set_fifo_rlimit(priv, fifo, bw); 1823 } 1824 } 1825 1826 static void cpsw_mqprio_resume(struct cpsw_slave *slave, struct cpsw_priv *priv) 1827 { 1828 struct cpsw_common *cpsw = priv->cpsw; 1829 u32 tx_prio_map = 0; 1830 int i, tc, fifo; 1831 u32 tx_prio_rg; 1832 1833 if (!priv->mqprio_hw) 1834 return; 1835 1836 for (i = 0; i < 8; i++) { 1837 tc = netdev_get_prio_tc_map(priv->ndev, i); 1838 fifo = CPSW_FIFO_SHAPERS_NUM - tc; 1839 tx_prio_map |= fifo << (4 * i); 1840 } 1841 1842 tx_prio_rg = cpsw->version == CPSW_VERSION_1 ? 1843 CPSW1_TX_PRI_MAP : CPSW2_TX_PRI_MAP; 1844 1845 slave_write(slave, tx_prio_map, tx_prio_rg); 1846 } 1847 1848 /* restore resources after port reset */ 1849 static void cpsw_restore(struct cpsw_priv *priv) 1850 { 1851 /* restore MQPRIO offload */ 1852 for_each_slave(priv, cpsw_mqprio_resume, priv); 1853 1854 /* restore CBS offload */ 1855 for_each_slave(priv, cpsw_cbs_resume, priv); 1856 } 1857 1858 static int cpsw_ndo_open(struct net_device *ndev) 1859 { 1860 struct cpsw_priv *priv = netdev_priv(ndev); 1861 struct cpsw_common *cpsw = priv->cpsw; 1862 int ret; 1863 u32 reg; 1864 1865 ret = pm_runtime_get_sync(cpsw->dev); 1866 if (ret < 0) { 1867 pm_runtime_put_noidle(cpsw->dev); 1868 return ret; 1869 } 1870 1871 netif_carrier_off(ndev); 1872 1873 /* Notify the stack of the actual queue counts. */ 1874 ret = netif_set_real_num_tx_queues(ndev, cpsw->tx_ch_num); 1875 if (ret) { 1876 dev_err(priv->dev, "cannot set real number of tx queues\n"); 1877 goto err_cleanup; 1878 } 1879 1880 ret = netif_set_real_num_rx_queues(ndev, cpsw->rx_ch_num); 1881 if (ret) { 1882 dev_err(priv->dev, "cannot set real number of rx queues\n"); 1883 goto err_cleanup; 1884 } 1885 1886 reg = cpsw->version; 1887 1888 dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n", 1889 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg), 1890 CPSW_RTL_VERSION(reg)); 1891 1892 /* Initialize host and slave ports */ 1893 if (!cpsw->usage_count) 1894 cpsw_init_host_port(priv); 1895 for_each_slave(priv, cpsw_slave_open, priv); 1896 1897 /* Add default VLAN */ 1898 if (!cpsw->data.dual_emac) 1899 cpsw_add_default_vlan(priv); 1900 else 1901 cpsw_ale_add_vlan(cpsw->ale, cpsw->data.default_vlan, 1902 ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0); 1903 1904 /* initialize shared resources for every ndev */ 1905 if (!cpsw->usage_count) { 1906 /* disable priority elevation */ 1907 writel_relaxed(0, &cpsw->regs->ptype); 1908 1909 /* enable statistics collection only on all ports */ 1910 writel_relaxed(0x7, &cpsw->regs->stat_port_en); 1911 1912 /* Enable internal fifo flow control */ 1913 writel(0x7, &cpsw->regs->flow_control); 1914 1915 napi_enable(&cpsw->napi_rx); 1916 napi_enable(&cpsw->napi_tx); 1917 1918 if (cpsw->tx_irq_disabled) { 1919 cpsw->tx_irq_disabled = false; 1920 enable_irq(cpsw->irqs_table[1]); 1921 } 1922 1923 if (cpsw->rx_irq_disabled) { 1924 cpsw->rx_irq_disabled = false; 1925 enable_irq(cpsw->irqs_table[0]); 1926 } 1927 1928 ret = cpsw_fill_rx_channels(priv); 1929 if (ret < 0) 1930 goto err_cleanup; 1931 1932 if (cpts_register(cpsw->cpts)) 1933 dev_err(priv->dev, "error registering cpts device\n"); 1934 1935 } 1936 1937 cpsw_restore(priv); 1938 1939 /* Enable Interrupt pacing if configured */ 1940 if (cpsw->coal_intvl != 0) { 1941 struct ethtool_coalesce coal; 1942 1943 coal.rx_coalesce_usecs = cpsw->coal_intvl; 1944 cpsw_set_coalesce(ndev, &coal); 1945 } 1946 1947 cpdma_ctlr_start(cpsw->dma); 1948 cpsw_intr_enable(cpsw); 1949 cpsw->usage_count++; 1950 1951 return 0; 1952 1953 err_cleanup: 1954 cpdma_ctlr_stop(cpsw->dma); 1955 for_each_slave(priv, cpsw_slave_stop, cpsw); 1956 pm_runtime_put_sync(cpsw->dev); 1957 netif_carrier_off(priv->ndev); 1958 return ret; 1959 } 1960 1961 static int cpsw_ndo_stop(struct net_device *ndev) 1962 { 1963 struct cpsw_priv *priv = netdev_priv(ndev); 1964 struct cpsw_common *cpsw = priv->cpsw; 1965 1966 cpsw_info(priv, ifdown, "shutting down cpsw device\n"); 1967 __dev_mc_unsync(priv->ndev, cpsw_del_mc_addr); 1968 netif_tx_stop_all_queues(priv->ndev); 1969 netif_carrier_off(priv->ndev); 1970 1971 if (cpsw->usage_count <= 1) { 1972 napi_disable(&cpsw->napi_rx); 1973 napi_disable(&cpsw->napi_tx); 1974 cpts_unregister(cpsw->cpts); 1975 cpsw_intr_disable(cpsw); 1976 cpdma_ctlr_stop(cpsw->dma); 1977 cpsw_ale_stop(cpsw->ale); 1978 } 1979 for_each_slave(priv, cpsw_slave_stop, cpsw); 1980 1981 if (cpsw_need_resplit(cpsw)) 1982 cpsw_split_res(ndev); 1983 1984 cpsw->usage_count--; 1985 pm_runtime_put_sync(cpsw->dev); 1986 return 0; 1987 } 1988 1989 static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb, 1990 struct net_device *ndev) 1991 { 1992 struct cpsw_priv *priv = netdev_priv(ndev); 1993 struct cpsw_common *cpsw = priv->cpsw; 1994 struct cpts *cpts = cpsw->cpts; 1995 struct netdev_queue *txq; 1996 struct cpdma_chan *txch; 1997 int ret, q_idx; 1998 1999 if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) { 2000 cpsw_err(priv, tx_err, "packet pad failed\n"); 2001 ndev->stats.tx_dropped++; 2002 return NET_XMIT_DROP; 2003 } 2004 2005 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && 2006 cpts_is_tx_enabled(cpts) && cpts_can_timestamp(cpts, skb)) 2007 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 2008 2009 q_idx = skb_get_queue_mapping(skb); 2010 if (q_idx >= cpsw->tx_ch_num) 2011 q_idx = q_idx % cpsw->tx_ch_num; 2012 2013 txch = cpsw->txv[q_idx].ch; 2014 txq = netdev_get_tx_queue(ndev, q_idx); 2015 ret = cpsw_tx_packet_submit(priv, skb, txch); 2016 if (unlikely(ret != 0)) { 2017 cpsw_err(priv, tx_err, "desc submit failed\n"); 2018 goto fail; 2019 } 2020 2021 /* If there is no more tx desc left free then we need to 2022 * tell the kernel to stop sending us tx frames. 2023 */ 2024 if (unlikely(!cpdma_check_free_tx_desc(txch))) { 2025 netif_tx_stop_queue(txq); 2026 2027 /* Barrier, so that stop_queue visible to other cpus */ 2028 smp_mb__after_atomic(); 2029 2030 if (cpdma_check_free_tx_desc(txch)) 2031 netif_tx_wake_queue(txq); 2032 } 2033 2034 return NETDEV_TX_OK; 2035 fail: 2036 ndev->stats.tx_dropped++; 2037 netif_tx_stop_queue(txq); 2038 2039 /* Barrier, so that stop_queue visible to other cpus */ 2040 smp_mb__after_atomic(); 2041 2042 if (cpdma_check_free_tx_desc(txch)) 2043 netif_tx_wake_queue(txq); 2044 2045 return NETDEV_TX_BUSY; 2046 } 2047 2048 #if IS_ENABLED(CONFIG_TI_CPTS) 2049 2050 static void cpsw_hwtstamp_v1(struct cpsw_common *cpsw) 2051 { 2052 struct cpsw_slave *slave = &cpsw->slaves[cpsw->data.active_slave]; 2053 u32 ts_en, seq_id; 2054 2055 if (!cpts_is_tx_enabled(cpsw->cpts) && 2056 !cpts_is_rx_enabled(cpsw->cpts)) { 2057 slave_write(slave, 0, CPSW1_TS_CTL); 2058 return; 2059 } 2060 2061 seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588; 2062 ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS; 2063 2064 if (cpts_is_tx_enabled(cpsw->cpts)) 2065 ts_en |= CPSW_V1_TS_TX_EN; 2066 2067 if (cpts_is_rx_enabled(cpsw->cpts)) 2068 ts_en |= CPSW_V1_TS_RX_EN; 2069 2070 slave_write(slave, ts_en, CPSW1_TS_CTL); 2071 slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE); 2072 } 2073 2074 static void cpsw_hwtstamp_v2(struct cpsw_priv *priv) 2075 { 2076 struct cpsw_slave *slave; 2077 struct cpsw_common *cpsw = priv->cpsw; 2078 u32 ctrl, mtype; 2079 2080 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; 2081 2082 ctrl = slave_read(slave, CPSW2_CONTROL); 2083 switch (cpsw->version) { 2084 case CPSW_VERSION_2: 2085 ctrl &= ~CTRL_V2_ALL_TS_MASK; 2086 2087 if (cpts_is_tx_enabled(cpsw->cpts)) 2088 ctrl |= CTRL_V2_TX_TS_BITS; 2089 2090 if (cpts_is_rx_enabled(cpsw->cpts)) 2091 ctrl |= CTRL_V2_RX_TS_BITS; 2092 break; 2093 case CPSW_VERSION_3: 2094 default: 2095 ctrl &= ~CTRL_V3_ALL_TS_MASK; 2096 2097 if (cpts_is_tx_enabled(cpsw->cpts)) 2098 ctrl |= CTRL_V3_TX_TS_BITS; 2099 2100 if (cpts_is_rx_enabled(cpsw->cpts)) 2101 ctrl |= CTRL_V3_RX_TS_BITS; 2102 break; 2103 } 2104 2105 mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS; 2106 2107 slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE); 2108 slave_write(slave, ctrl, CPSW2_CONTROL); 2109 writel_relaxed(ETH_P_1588, &cpsw->regs->ts_ltype); 2110 } 2111 2112 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr) 2113 { 2114 struct cpsw_priv *priv = netdev_priv(dev); 2115 struct hwtstamp_config cfg; 2116 struct cpsw_common *cpsw = priv->cpsw; 2117 struct cpts *cpts = cpsw->cpts; 2118 2119 if (cpsw->version != CPSW_VERSION_1 && 2120 cpsw->version != CPSW_VERSION_2 && 2121 cpsw->version != CPSW_VERSION_3) 2122 return -EOPNOTSUPP; 2123 2124 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg))) 2125 return -EFAULT; 2126 2127 /* reserved for future extensions */ 2128 if (cfg.flags) 2129 return -EINVAL; 2130 2131 if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON) 2132 return -ERANGE; 2133 2134 switch (cfg.rx_filter) { 2135 case HWTSTAMP_FILTER_NONE: 2136 cpts_rx_enable(cpts, 0); 2137 break; 2138 case HWTSTAMP_FILTER_ALL: 2139 case HWTSTAMP_FILTER_NTP_ALL: 2140 return -ERANGE; 2141 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 2142 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 2143 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 2144 cpts_rx_enable(cpts, HWTSTAMP_FILTER_PTP_V1_L4_EVENT); 2145 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 2146 break; 2147 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 2148 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 2149 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 2150 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 2151 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 2152 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 2153 case HWTSTAMP_FILTER_PTP_V2_EVENT: 2154 case HWTSTAMP_FILTER_PTP_V2_SYNC: 2155 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 2156 cpts_rx_enable(cpts, HWTSTAMP_FILTER_PTP_V2_EVENT); 2157 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 2158 break; 2159 default: 2160 return -ERANGE; 2161 } 2162 2163 cpts_tx_enable(cpts, cfg.tx_type == HWTSTAMP_TX_ON); 2164 2165 switch (cpsw->version) { 2166 case CPSW_VERSION_1: 2167 cpsw_hwtstamp_v1(cpsw); 2168 break; 2169 case CPSW_VERSION_2: 2170 case CPSW_VERSION_3: 2171 cpsw_hwtstamp_v2(priv); 2172 break; 2173 default: 2174 WARN_ON(1); 2175 } 2176 2177 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; 2178 } 2179 2180 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr) 2181 { 2182 struct cpsw_common *cpsw = ndev_to_cpsw(dev); 2183 struct cpts *cpts = cpsw->cpts; 2184 struct hwtstamp_config cfg; 2185 2186 if (cpsw->version != CPSW_VERSION_1 && 2187 cpsw->version != CPSW_VERSION_2 && 2188 cpsw->version != CPSW_VERSION_3) 2189 return -EOPNOTSUPP; 2190 2191 cfg.flags = 0; 2192 cfg.tx_type = cpts_is_tx_enabled(cpts) ? 2193 HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF; 2194 cfg.rx_filter = (cpts_is_rx_enabled(cpts) ? 2195 cpts->rx_enable : HWTSTAMP_FILTER_NONE); 2196 2197 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; 2198 } 2199 #else 2200 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr) 2201 { 2202 return -EOPNOTSUPP; 2203 } 2204 2205 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr) 2206 { 2207 return -EOPNOTSUPP; 2208 } 2209 #endif /*CONFIG_TI_CPTS*/ 2210 2211 static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 2212 { 2213 struct cpsw_priv *priv = netdev_priv(dev); 2214 struct cpsw_common *cpsw = priv->cpsw; 2215 int slave_no = cpsw_slave_index(cpsw, priv); 2216 2217 if (!netif_running(dev)) 2218 return -EINVAL; 2219 2220 switch (cmd) { 2221 case SIOCSHWTSTAMP: 2222 return cpsw_hwtstamp_set(dev, req); 2223 case SIOCGHWTSTAMP: 2224 return cpsw_hwtstamp_get(dev, req); 2225 } 2226 2227 if (!cpsw->slaves[slave_no].phy) 2228 return -EOPNOTSUPP; 2229 return phy_mii_ioctl(cpsw->slaves[slave_no].phy, req, cmd); 2230 } 2231 2232 static void cpsw_ndo_tx_timeout(struct net_device *ndev) 2233 { 2234 struct cpsw_priv *priv = netdev_priv(ndev); 2235 struct cpsw_common *cpsw = priv->cpsw; 2236 int ch; 2237 2238 cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n"); 2239 ndev->stats.tx_errors++; 2240 cpsw_intr_disable(cpsw); 2241 for (ch = 0; ch < cpsw->tx_ch_num; ch++) { 2242 cpdma_chan_stop(cpsw->txv[ch].ch); 2243 cpdma_chan_start(cpsw->txv[ch].ch); 2244 } 2245 2246 cpsw_intr_enable(cpsw); 2247 netif_trans_update(ndev); 2248 netif_tx_wake_all_queues(ndev); 2249 } 2250 2251 static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p) 2252 { 2253 struct cpsw_priv *priv = netdev_priv(ndev); 2254 struct sockaddr *addr = (struct sockaddr *)p; 2255 struct cpsw_common *cpsw = priv->cpsw; 2256 int flags = 0; 2257 u16 vid = 0; 2258 int ret; 2259 2260 if (!is_valid_ether_addr(addr->sa_data)) 2261 return -EADDRNOTAVAIL; 2262 2263 ret = pm_runtime_get_sync(cpsw->dev); 2264 if (ret < 0) { 2265 pm_runtime_put_noidle(cpsw->dev); 2266 return ret; 2267 } 2268 2269 if (cpsw->data.dual_emac) { 2270 vid = cpsw->slaves[priv->emac_port].port_vlan; 2271 flags = ALE_VLAN; 2272 } 2273 2274 cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM, 2275 flags, vid); 2276 cpsw_ale_add_ucast(cpsw->ale, addr->sa_data, HOST_PORT_NUM, 2277 flags, vid); 2278 2279 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN); 2280 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN); 2281 for_each_slave(priv, cpsw_set_slave_mac, priv); 2282 2283 pm_runtime_put(cpsw->dev); 2284 2285 return 0; 2286 } 2287 2288 #ifdef CONFIG_NET_POLL_CONTROLLER 2289 static void cpsw_ndo_poll_controller(struct net_device *ndev) 2290 { 2291 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 2292 2293 cpsw_intr_disable(cpsw); 2294 cpsw_rx_interrupt(cpsw->irqs_table[0], cpsw); 2295 cpsw_tx_interrupt(cpsw->irqs_table[1], cpsw); 2296 cpsw_intr_enable(cpsw); 2297 } 2298 #endif 2299 2300 static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv, 2301 unsigned short vid) 2302 { 2303 int ret; 2304 int unreg_mcast_mask = 0; 2305 int mcast_mask; 2306 u32 port_mask; 2307 struct cpsw_common *cpsw = priv->cpsw; 2308 2309 if (cpsw->data.dual_emac) { 2310 port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST; 2311 2312 mcast_mask = ALE_PORT_HOST; 2313 if (priv->ndev->flags & IFF_ALLMULTI) 2314 unreg_mcast_mask = mcast_mask; 2315 } else { 2316 port_mask = ALE_ALL_PORTS; 2317 mcast_mask = port_mask; 2318 2319 if (priv->ndev->flags & IFF_ALLMULTI) 2320 unreg_mcast_mask = ALE_ALL_PORTS; 2321 else 2322 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2; 2323 } 2324 2325 ret = cpsw_ale_add_vlan(cpsw->ale, vid, port_mask, 0, port_mask, 2326 unreg_mcast_mask); 2327 if (ret != 0) 2328 return ret; 2329 2330 ret = cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, 2331 HOST_PORT_NUM, ALE_VLAN, vid); 2332 if (ret != 0) 2333 goto clean_vid; 2334 2335 ret = cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, 2336 mcast_mask, ALE_VLAN, vid, 0); 2337 if (ret != 0) 2338 goto clean_vlan_ucast; 2339 return 0; 2340 2341 clean_vlan_ucast: 2342 cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, 2343 HOST_PORT_NUM, ALE_VLAN, vid); 2344 clean_vid: 2345 cpsw_ale_del_vlan(cpsw->ale, vid, 0); 2346 return ret; 2347 } 2348 2349 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev, 2350 __be16 proto, u16 vid) 2351 { 2352 struct cpsw_priv *priv = netdev_priv(ndev); 2353 struct cpsw_common *cpsw = priv->cpsw; 2354 int ret; 2355 2356 if (vid == cpsw->data.default_vlan) 2357 return 0; 2358 2359 ret = pm_runtime_get_sync(cpsw->dev); 2360 if (ret < 0) { 2361 pm_runtime_put_noidle(cpsw->dev); 2362 return ret; 2363 } 2364 2365 if (cpsw->data.dual_emac) { 2366 /* In dual EMAC, reserved VLAN id should not be used for 2367 * creating VLAN interfaces as this can break the dual 2368 * EMAC port separation 2369 */ 2370 int i; 2371 2372 for (i = 0; i < cpsw->data.slaves; i++) { 2373 if (vid == cpsw->slaves[i].port_vlan) { 2374 ret = -EINVAL; 2375 goto err; 2376 } 2377 } 2378 } 2379 2380 dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid); 2381 ret = cpsw_add_vlan_ale_entry(priv, vid); 2382 err: 2383 pm_runtime_put(cpsw->dev); 2384 return ret; 2385 } 2386 2387 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev, 2388 __be16 proto, u16 vid) 2389 { 2390 struct cpsw_priv *priv = netdev_priv(ndev); 2391 struct cpsw_common *cpsw = priv->cpsw; 2392 int ret; 2393 2394 if (vid == cpsw->data.default_vlan) 2395 return 0; 2396 2397 ret = pm_runtime_get_sync(cpsw->dev); 2398 if (ret < 0) { 2399 pm_runtime_put_noidle(cpsw->dev); 2400 return ret; 2401 } 2402 2403 if (cpsw->data.dual_emac) { 2404 int i; 2405 2406 for (i = 0; i < cpsw->data.slaves; i++) { 2407 if (vid == cpsw->slaves[i].port_vlan) 2408 goto err; 2409 } 2410 } 2411 2412 dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid); 2413 ret = cpsw_ale_del_vlan(cpsw->ale, vid, 0); 2414 ret |= cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, 2415 HOST_PORT_NUM, ALE_VLAN, vid); 2416 ret |= cpsw_ale_del_mcast(cpsw->ale, priv->ndev->broadcast, 2417 0, ALE_VLAN, vid); 2418 err: 2419 pm_runtime_put(cpsw->dev); 2420 return ret; 2421 } 2422 2423 static int cpsw_ndo_set_tx_maxrate(struct net_device *ndev, int queue, u32 rate) 2424 { 2425 struct cpsw_priv *priv = netdev_priv(ndev); 2426 struct cpsw_common *cpsw = priv->cpsw; 2427 struct cpsw_slave *slave; 2428 u32 min_rate; 2429 u32 ch_rate; 2430 int i, ret; 2431 2432 ch_rate = netdev_get_tx_queue(ndev, queue)->tx_maxrate; 2433 if (ch_rate == rate) 2434 return 0; 2435 2436 ch_rate = rate * 1000; 2437 min_rate = cpdma_chan_get_min_rate(cpsw->dma); 2438 if ((ch_rate < min_rate && ch_rate)) { 2439 dev_err(priv->dev, "The channel rate cannot be less than %dMbps", 2440 min_rate); 2441 return -EINVAL; 2442 } 2443 2444 if (rate > cpsw->speed) { 2445 dev_err(priv->dev, "The channel rate cannot be more than 2Gbps"); 2446 return -EINVAL; 2447 } 2448 2449 ret = pm_runtime_get_sync(cpsw->dev); 2450 if (ret < 0) { 2451 pm_runtime_put_noidle(cpsw->dev); 2452 return ret; 2453 } 2454 2455 ret = cpdma_chan_set_rate(cpsw->txv[queue].ch, ch_rate); 2456 pm_runtime_put(cpsw->dev); 2457 2458 if (ret) 2459 return ret; 2460 2461 /* update rates for slaves tx queues */ 2462 for (i = 0; i < cpsw->data.slaves; i++) { 2463 slave = &cpsw->slaves[i]; 2464 if (!slave->ndev) 2465 continue; 2466 2467 netdev_get_tx_queue(slave->ndev, queue)->tx_maxrate = rate; 2468 } 2469 2470 cpsw_split_res(ndev); 2471 return ret; 2472 } 2473 2474 static int cpsw_set_mqprio(struct net_device *ndev, void *type_data) 2475 { 2476 struct tc_mqprio_qopt_offload *mqprio = type_data; 2477 struct cpsw_priv *priv = netdev_priv(ndev); 2478 struct cpsw_common *cpsw = priv->cpsw; 2479 int fifo, num_tc, count, offset; 2480 struct cpsw_slave *slave; 2481 u32 tx_prio_map = 0; 2482 int i, tc, ret; 2483 2484 num_tc = mqprio->qopt.num_tc; 2485 if (num_tc > CPSW_TC_NUM) 2486 return -EINVAL; 2487 2488 if (mqprio->mode != TC_MQPRIO_MODE_DCB) 2489 return -EINVAL; 2490 2491 ret = pm_runtime_get_sync(cpsw->dev); 2492 if (ret < 0) { 2493 pm_runtime_put_noidle(cpsw->dev); 2494 return ret; 2495 } 2496 2497 if (num_tc) { 2498 for (i = 0; i < 8; i++) { 2499 tc = mqprio->qopt.prio_tc_map[i]; 2500 fifo = cpsw_tc_to_fifo(tc, num_tc); 2501 tx_prio_map |= fifo << (4 * i); 2502 } 2503 2504 netdev_set_num_tc(ndev, num_tc); 2505 for (i = 0; i < num_tc; i++) { 2506 count = mqprio->qopt.count[i]; 2507 offset = mqprio->qopt.offset[i]; 2508 netdev_set_tc_queue(ndev, i, count, offset); 2509 } 2510 } 2511 2512 if (!mqprio->qopt.hw) { 2513 /* restore default configuration */ 2514 netdev_reset_tc(ndev); 2515 tx_prio_map = TX_PRIORITY_MAPPING; 2516 } 2517 2518 priv->mqprio_hw = mqprio->qopt.hw; 2519 2520 offset = cpsw->version == CPSW_VERSION_1 ? 2521 CPSW1_TX_PRI_MAP : CPSW2_TX_PRI_MAP; 2522 2523 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; 2524 slave_write(slave, tx_prio_map, offset); 2525 2526 pm_runtime_put_sync(cpsw->dev); 2527 2528 return 0; 2529 } 2530 2531 static int cpsw_ndo_setup_tc(struct net_device *ndev, enum tc_setup_type type, 2532 void *type_data) 2533 { 2534 switch (type) { 2535 case TC_SETUP_QDISC_CBS: 2536 return cpsw_set_cbs(ndev, type_data); 2537 2538 case TC_SETUP_QDISC_MQPRIO: 2539 return cpsw_set_mqprio(ndev, type_data); 2540 2541 default: 2542 return -EOPNOTSUPP; 2543 } 2544 } 2545 2546 static const struct net_device_ops cpsw_netdev_ops = { 2547 .ndo_open = cpsw_ndo_open, 2548 .ndo_stop = cpsw_ndo_stop, 2549 .ndo_start_xmit = cpsw_ndo_start_xmit, 2550 .ndo_set_mac_address = cpsw_ndo_set_mac_address, 2551 .ndo_do_ioctl = cpsw_ndo_ioctl, 2552 .ndo_validate_addr = eth_validate_addr, 2553 .ndo_tx_timeout = cpsw_ndo_tx_timeout, 2554 .ndo_set_rx_mode = cpsw_ndo_set_rx_mode, 2555 .ndo_set_tx_maxrate = cpsw_ndo_set_tx_maxrate, 2556 #ifdef CONFIG_NET_POLL_CONTROLLER 2557 .ndo_poll_controller = cpsw_ndo_poll_controller, 2558 #endif 2559 .ndo_vlan_rx_add_vid = cpsw_ndo_vlan_rx_add_vid, 2560 .ndo_vlan_rx_kill_vid = cpsw_ndo_vlan_rx_kill_vid, 2561 .ndo_setup_tc = cpsw_ndo_setup_tc, 2562 }; 2563 2564 static int cpsw_get_regs_len(struct net_device *ndev) 2565 { 2566 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 2567 2568 return cpsw->data.ale_entries * ALE_ENTRY_WORDS * sizeof(u32); 2569 } 2570 2571 static void cpsw_get_regs(struct net_device *ndev, 2572 struct ethtool_regs *regs, void *p) 2573 { 2574 u32 *reg = p; 2575 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 2576 2577 /* update CPSW IP version */ 2578 regs->version = cpsw->version; 2579 2580 cpsw_ale_dump(cpsw->ale, reg); 2581 } 2582 2583 static void cpsw_get_drvinfo(struct net_device *ndev, 2584 struct ethtool_drvinfo *info) 2585 { 2586 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 2587 struct platform_device *pdev = to_platform_device(cpsw->dev); 2588 2589 strlcpy(info->driver, "cpsw", sizeof(info->driver)); 2590 strlcpy(info->version, "1.0", sizeof(info->version)); 2591 strlcpy(info->bus_info, pdev->name, sizeof(info->bus_info)); 2592 } 2593 2594 static u32 cpsw_get_msglevel(struct net_device *ndev) 2595 { 2596 struct cpsw_priv *priv = netdev_priv(ndev); 2597 return priv->msg_enable; 2598 } 2599 2600 static void cpsw_set_msglevel(struct net_device *ndev, u32 value) 2601 { 2602 struct cpsw_priv *priv = netdev_priv(ndev); 2603 priv->msg_enable = value; 2604 } 2605 2606 #if IS_ENABLED(CONFIG_TI_CPTS) 2607 static int cpsw_get_ts_info(struct net_device *ndev, 2608 struct ethtool_ts_info *info) 2609 { 2610 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 2611 2612 info->so_timestamping = 2613 SOF_TIMESTAMPING_TX_HARDWARE | 2614 SOF_TIMESTAMPING_TX_SOFTWARE | 2615 SOF_TIMESTAMPING_RX_HARDWARE | 2616 SOF_TIMESTAMPING_RX_SOFTWARE | 2617 SOF_TIMESTAMPING_SOFTWARE | 2618 SOF_TIMESTAMPING_RAW_HARDWARE; 2619 info->phc_index = cpsw->cpts->phc_index; 2620 info->tx_types = 2621 (1 << HWTSTAMP_TX_OFF) | 2622 (1 << HWTSTAMP_TX_ON); 2623 info->rx_filters = 2624 (1 << HWTSTAMP_FILTER_NONE) | 2625 (1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) | 2626 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 2627 return 0; 2628 } 2629 #else 2630 static int cpsw_get_ts_info(struct net_device *ndev, 2631 struct ethtool_ts_info *info) 2632 { 2633 info->so_timestamping = 2634 SOF_TIMESTAMPING_TX_SOFTWARE | 2635 SOF_TIMESTAMPING_RX_SOFTWARE | 2636 SOF_TIMESTAMPING_SOFTWARE; 2637 info->phc_index = -1; 2638 info->tx_types = 0; 2639 info->rx_filters = 0; 2640 return 0; 2641 } 2642 #endif 2643 2644 static int cpsw_get_link_ksettings(struct net_device *ndev, 2645 struct ethtool_link_ksettings *ecmd) 2646 { 2647 struct cpsw_priv *priv = netdev_priv(ndev); 2648 struct cpsw_common *cpsw = priv->cpsw; 2649 int slave_no = cpsw_slave_index(cpsw, priv); 2650 2651 if (!cpsw->slaves[slave_no].phy) 2652 return -EOPNOTSUPP; 2653 2654 phy_ethtool_ksettings_get(cpsw->slaves[slave_no].phy, ecmd); 2655 return 0; 2656 } 2657 2658 static int cpsw_set_link_ksettings(struct net_device *ndev, 2659 const struct ethtool_link_ksettings *ecmd) 2660 { 2661 struct cpsw_priv *priv = netdev_priv(ndev); 2662 struct cpsw_common *cpsw = priv->cpsw; 2663 int slave_no = cpsw_slave_index(cpsw, priv); 2664 2665 if (cpsw->slaves[slave_no].phy) 2666 return phy_ethtool_ksettings_set(cpsw->slaves[slave_no].phy, 2667 ecmd); 2668 else 2669 return -EOPNOTSUPP; 2670 } 2671 2672 static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 2673 { 2674 struct cpsw_priv *priv = netdev_priv(ndev); 2675 struct cpsw_common *cpsw = priv->cpsw; 2676 int slave_no = cpsw_slave_index(cpsw, priv); 2677 2678 wol->supported = 0; 2679 wol->wolopts = 0; 2680 2681 if (cpsw->slaves[slave_no].phy) 2682 phy_ethtool_get_wol(cpsw->slaves[slave_no].phy, wol); 2683 } 2684 2685 static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 2686 { 2687 struct cpsw_priv *priv = netdev_priv(ndev); 2688 struct cpsw_common *cpsw = priv->cpsw; 2689 int slave_no = cpsw_slave_index(cpsw, priv); 2690 2691 if (cpsw->slaves[slave_no].phy) 2692 return phy_ethtool_set_wol(cpsw->slaves[slave_no].phy, wol); 2693 else 2694 return -EOPNOTSUPP; 2695 } 2696 2697 static void cpsw_get_pauseparam(struct net_device *ndev, 2698 struct ethtool_pauseparam *pause) 2699 { 2700 struct cpsw_priv *priv = netdev_priv(ndev); 2701 2702 pause->autoneg = AUTONEG_DISABLE; 2703 pause->rx_pause = priv->rx_pause ? true : false; 2704 pause->tx_pause = priv->tx_pause ? true : false; 2705 } 2706 2707 static int cpsw_set_pauseparam(struct net_device *ndev, 2708 struct ethtool_pauseparam *pause) 2709 { 2710 struct cpsw_priv *priv = netdev_priv(ndev); 2711 bool link; 2712 2713 priv->rx_pause = pause->rx_pause ? true : false; 2714 priv->tx_pause = pause->tx_pause ? true : false; 2715 2716 for_each_slave(priv, _cpsw_adjust_link, priv, &link); 2717 return 0; 2718 } 2719 2720 static int cpsw_ethtool_op_begin(struct net_device *ndev) 2721 { 2722 struct cpsw_priv *priv = netdev_priv(ndev); 2723 struct cpsw_common *cpsw = priv->cpsw; 2724 int ret; 2725 2726 ret = pm_runtime_get_sync(cpsw->dev); 2727 if (ret < 0) { 2728 cpsw_err(priv, drv, "ethtool begin failed %d\n", ret); 2729 pm_runtime_put_noidle(cpsw->dev); 2730 } 2731 2732 return ret; 2733 } 2734 2735 static void cpsw_ethtool_op_complete(struct net_device *ndev) 2736 { 2737 struct cpsw_priv *priv = netdev_priv(ndev); 2738 int ret; 2739 2740 ret = pm_runtime_put(priv->cpsw->dev); 2741 if (ret < 0) 2742 cpsw_err(priv, drv, "ethtool complete failed %d\n", ret); 2743 } 2744 2745 static void cpsw_get_channels(struct net_device *ndev, 2746 struct ethtool_channels *ch) 2747 { 2748 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 2749 2750 ch->max_rx = cpsw->quirk_irq ? 1 : CPSW_MAX_QUEUES; 2751 ch->max_tx = cpsw->quirk_irq ? 1 : CPSW_MAX_QUEUES; 2752 ch->max_combined = 0; 2753 ch->max_other = 0; 2754 ch->other_count = 0; 2755 ch->rx_count = cpsw->rx_ch_num; 2756 ch->tx_count = cpsw->tx_ch_num; 2757 ch->combined_count = 0; 2758 } 2759 2760 static int cpsw_check_ch_settings(struct cpsw_common *cpsw, 2761 struct ethtool_channels *ch) 2762 { 2763 if (cpsw->quirk_irq) { 2764 dev_err(cpsw->dev, "Maximum one tx/rx queue is allowed"); 2765 return -EOPNOTSUPP; 2766 } 2767 2768 if (ch->combined_count) 2769 return -EINVAL; 2770 2771 /* verify we have at least one channel in each direction */ 2772 if (!ch->rx_count || !ch->tx_count) 2773 return -EINVAL; 2774 2775 if (ch->rx_count > cpsw->data.channels || 2776 ch->tx_count > cpsw->data.channels) 2777 return -EINVAL; 2778 2779 return 0; 2780 } 2781 2782 static int cpsw_update_channels_res(struct cpsw_priv *priv, int ch_num, int rx) 2783 { 2784 struct cpsw_common *cpsw = priv->cpsw; 2785 void (*handler)(void *, int, int); 2786 struct netdev_queue *queue; 2787 struct cpsw_vector *vec; 2788 int ret, *ch, vch; 2789 2790 if (rx) { 2791 ch = &cpsw->rx_ch_num; 2792 vec = cpsw->rxv; 2793 handler = cpsw_rx_handler; 2794 } else { 2795 ch = &cpsw->tx_ch_num; 2796 vec = cpsw->txv; 2797 handler = cpsw_tx_handler; 2798 } 2799 2800 while (*ch < ch_num) { 2801 vch = rx ? *ch : 7 - *ch; 2802 vec[*ch].ch = cpdma_chan_create(cpsw->dma, vch, handler, rx); 2803 queue = netdev_get_tx_queue(priv->ndev, *ch); 2804 queue->tx_maxrate = 0; 2805 2806 if (IS_ERR(vec[*ch].ch)) 2807 return PTR_ERR(vec[*ch].ch); 2808 2809 if (!vec[*ch].ch) 2810 return -EINVAL; 2811 2812 cpsw_info(priv, ifup, "created new %d %s channel\n", *ch, 2813 (rx ? "rx" : "tx")); 2814 (*ch)++; 2815 } 2816 2817 while (*ch > ch_num) { 2818 (*ch)--; 2819 2820 ret = cpdma_chan_destroy(vec[*ch].ch); 2821 if (ret) 2822 return ret; 2823 2824 cpsw_info(priv, ifup, "destroyed %d %s channel\n", *ch, 2825 (rx ? "rx" : "tx")); 2826 } 2827 2828 return 0; 2829 } 2830 2831 static int cpsw_update_channels(struct cpsw_priv *priv, 2832 struct ethtool_channels *ch) 2833 { 2834 int ret; 2835 2836 ret = cpsw_update_channels_res(priv, ch->rx_count, 1); 2837 if (ret) 2838 return ret; 2839 2840 ret = cpsw_update_channels_res(priv, ch->tx_count, 0); 2841 if (ret) 2842 return ret; 2843 2844 return 0; 2845 } 2846 2847 static void cpsw_suspend_data_pass(struct net_device *ndev) 2848 { 2849 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 2850 struct cpsw_slave *slave; 2851 int i; 2852 2853 /* Disable NAPI scheduling */ 2854 cpsw_intr_disable(cpsw); 2855 2856 /* Stop all transmit queues for every network device. 2857 * Disable re-using rx descriptors with dormant_on. 2858 */ 2859 for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) { 2860 if (!(slave->ndev && netif_running(slave->ndev))) 2861 continue; 2862 2863 netif_tx_stop_all_queues(slave->ndev); 2864 netif_dormant_on(slave->ndev); 2865 } 2866 2867 /* Handle rest of tx packets and stop cpdma channels */ 2868 cpdma_ctlr_stop(cpsw->dma); 2869 } 2870 2871 static int cpsw_resume_data_pass(struct net_device *ndev) 2872 { 2873 struct cpsw_priv *priv = netdev_priv(ndev); 2874 struct cpsw_common *cpsw = priv->cpsw; 2875 struct cpsw_slave *slave; 2876 int i, ret; 2877 2878 /* Allow rx packets handling */ 2879 for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) 2880 if (slave->ndev && netif_running(slave->ndev)) 2881 netif_dormant_off(slave->ndev); 2882 2883 /* After this receive is started */ 2884 if (cpsw->usage_count) { 2885 ret = cpsw_fill_rx_channels(priv); 2886 if (ret) 2887 return ret; 2888 2889 cpdma_ctlr_start(cpsw->dma); 2890 cpsw_intr_enable(cpsw); 2891 } 2892 2893 /* Resume transmit for every affected interface */ 2894 for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) 2895 if (slave->ndev && netif_running(slave->ndev)) 2896 netif_tx_start_all_queues(slave->ndev); 2897 2898 return 0; 2899 } 2900 2901 static int cpsw_set_channels(struct net_device *ndev, 2902 struct ethtool_channels *chs) 2903 { 2904 struct cpsw_priv *priv = netdev_priv(ndev); 2905 struct cpsw_common *cpsw = priv->cpsw; 2906 struct cpsw_slave *slave; 2907 int i, ret; 2908 2909 ret = cpsw_check_ch_settings(cpsw, chs); 2910 if (ret < 0) 2911 return ret; 2912 2913 cpsw_suspend_data_pass(ndev); 2914 ret = cpsw_update_channels(priv, chs); 2915 if (ret) 2916 goto err; 2917 2918 for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) { 2919 if (!(slave->ndev && netif_running(slave->ndev))) 2920 continue; 2921 2922 /* Inform stack about new count of queues */ 2923 ret = netif_set_real_num_tx_queues(slave->ndev, 2924 cpsw->tx_ch_num); 2925 if (ret) { 2926 dev_err(priv->dev, "cannot set real number of tx queues\n"); 2927 goto err; 2928 } 2929 2930 ret = netif_set_real_num_rx_queues(slave->ndev, 2931 cpsw->rx_ch_num); 2932 if (ret) { 2933 dev_err(priv->dev, "cannot set real number of rx queues\n"); 2934 goto err; 2935 } 2936 } 2937 2938 if (cpsw->usage_count) 2939 cpsw_split_res(ndev); 2940 2941 ret = cpsw_resume_data_pass(ndev); 2942 if (!ret) 2943 return 0; 2944 err: 2945 dev_err(priv->dev, "cannot update channels number, closing device\n"); 2946 dev_close(ndev); 2947 return ret; 2948 } 2949 2950 static int cpsw_get_eee(struct net_device *ndev, struct ethtool_eee *edata) 2951 { 2952 struct cpsw_priv *priv = netdev_priv(ndev); 2953 struct cpsw_common *cpsw = priv->cpsw; 2954 int slave_no = cpsw_slave_index(cpsw, priv); 2955 2956 if (cpsw->slaves[slave_no].phy) 2957 return phy_ethtool_get_eee(cpsw->slaves[slave_no].phy, edata); 2958 else 2959 return -EOPNOTSUPP; 2960 } 2961 2962 static int cpsw_set_eee(struct net_device *ndev, struct ethtool_eee *edata) 2963 { 2964 struct cpsw_priv *priv = netdev_priv(ndev); 2965 struct cpsw_common *cpsw = priv->cpsw; 2966 int slave_no = cpsw_slave_index(cpsw, priv); 2967 2968 if (cpsw->slaves[slave_no].phy) 2969 return phy_ethtool_set_eee(cpsw->slaves[slave_no].phy, edata); 2970 else 2971 return -EOPNOTSUPP; 2972 } 2973 2974 static int cpsw_nway_reset(struct net_device *ndev) 2975 { 2976 struct cpsw_priv *priv = netdev_priv(ndev); 2977 struct cpsw_common *cpsw = priv->cpsw; 2978 int slave_no = cpsw_slave_index(cpsw, priv); 2979 2980 if (cpsw->slaves[slave_no].phy) 2981 return genphy_restart_aneg(cpsw->slaves[slave_no].phy); 2982 else 2983 return -EOPNOTSUPP; 2984 } 2985 2986 static void cpsw_get_ringparam(struct net_device *ndev, 2987 struct ethtool_ringparam *ering) 2988 { 2989 struct cpsw_priv *priv = netdev_priv(ndev); 2990 struct cpsw_common *cpsw = priv->cpsw; 2991 2992 /* not supported */ 2993 ering->tx_max_pending = 0; 2994 ering->tx_pending = cpdma_get_num_tx_descs(cpsw->dma); 2995 ering->rx_max_pending = descs_pool_size - CPSW_MAX_QUEUES; 2996 ering->rx_pending = cpdma_get_num_rx_descs(cpsw->dma); 2997 } 2998 2999 static int cpsw_set_ringparam(struct net_device *ndev, 3000 struct ethtool_ringparam *ering) 3001 { 3002 struct cpsw_priv *priv = netdev_priv(ndev); 3003 struct cpsw_common *cpsw = priv->cpsw; 3004 int ret; 3005 3006 /* ignore ering->tx_pending - only rx_pending adjustment is supported */ 3007 3008 if (ering->rx_mini_pending || ering->rx_jumbo_pending || 3009 ering->rx_pending < CPSW_MAX_QUEUES || 3010 ering->rx_pending > (descs_pool_size - CPSW_MAX_QUEUES)) 3011 return -EINVAL; 3012 3013 if (ering->rx_pending == cpdma_get_num_rx_descs(cpsw->dma)) 3014 return 0; 3015 3016 cpsw_suspend_data_pass(ndev); 3017 3018 cpdma_set_num_rx_descs(cpsw->dma, ering->rx_pending); 3019 3020 if (cpsw->usage_count) 3021 cpdma_chan_split_pool(cpsw->dma); 3022 3023 ret = cpsw_resume_data_pass(ndev); 3024 if (!ret) 3025 return 0; 3026 3027 dev_err(&ndev->dev, "cannot set ring params, closing device\n"); 3028 dev_close(ndev); 3029 return ret; 3030 } 3031 3032 static const struct ethtool_ops cpsw_ethtool_ops = { 3033 .get_drvinfo = cpsw_get_drvinfo, 3034 .get_msglevel = cpsw_get_msglevel, 3035 .set_msglevel = cpsw_set_msglevel, 3036 .get_link = ethtool_op_get_link, 3037 .get_ts_info = cpsw_get_ts_info, 3038 .get_coalesce = cpsw_get_coalesce, 3039 .set_coalesce = cpsw_set_coalesce, 3040 .get_sset_count = cpsw_get_sset_count, 3041 .get_strings = cpsw_get_strings, 3042 .get_ethtool_stats = cpsw_get_ethtool_stats, 3043 .get_pauseparam = cpsw_get_pauseparam, 3044 .set_pauseparam = cpsw_set_pauseparam, 3045 .get_wol = cpsw_get_wol, 3046 .set_wol = cpsw_set_wol, 3047 .get_regs_len = cpsw_get_regs_len, 3048 .get_regs = cpsw_get_regs, 3049 .begin = cpsw_ethtool_op_begin, 3050 .complete = cpsw_ethtool_op_complete, 3051 .get_channels = cpsw_get_channels, 3052 .set_channels = cpsw_set_channels, 3053 .get_link_ksettings = cpsw_get_link_ksettings, 3054 .set_link_ksettings = cpsw_set_link_ksettings, 3055 .get_eee = cpsw_get_eee, 3056 .set_eee = cpsw_set_eee, 3057 .nway_reset = cpsw_nway_reset, 3058 .get_ringparam = cpsw_get_ringparam, 3059 .set_ringparam = cpsw_set_ringparam, 3060 }; 3061 3062 static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_common *cpsw, 3063 u32 slave_reg_ofs, u32 sliver_reg_ofs) 3064 { 3065 void __iomem *regs = cpsw->regs; 3066 int slave_num = slave->slave_num; 3067 struct cpsw_slave_data *data = cpsw->data.slave_data + slave_num; 3068 3069 slave->data = data; 3070 slave->regs = regs + slave_reg_ofs; 3071 slave->sliver = regs + sliver_reg_ofs; 3072 slave->port_vlan = data->dual_emac_res_vlan; 3073 } 3074 3075 static int cpsw_probe_dt(struct cpsw_platform_data *data, 3076 struct platform_device *pdev) 3077 { 3078 struct device_node *node = pdev->dev.of_node; 3079 struct device_node *slave_node; 3080 int i = 0, ret; 3081 u32 prop; 3082 3083 if (!node) 3084 return -EINVAL; 3085 3086 if (of_property_read_u32(node, "slaves", &prop)) { 3087 dev_err(&pdev->dev, "Missing slaves property in the DT.\n"); 3088 return -EINVAL; 3089 } 3090 data->slaves = prop; 3091 3092 if (of_property_read_u32(node, "active_slave", &prop)) { 3093 dev_err(&pdev->dev, "Missing active_slave property in the DT.\n"); 3094 return -EINVAL; 3095 } 3096 data->active_slave = prop; 3097 3098 data->slave_data = devm_kcalloc(&pdev->dev, 3099 data->slaves, 3100 sizeof(struct cpsw_slave_data), 3101 GFP_KERNEL); 3102 if (!data->slave_data) 3103 return -ENOMEM; 3104 3105 if (of_property_read_u32(node, "cpdma_channels", &prop)) { 3106 dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n"); 3107 return -EINVAL; 3108 } 3109 data->channels = prop; 3110 3111 if (of_property_read_u32(node, "ale_entries", &prop)) { 3112 dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n"); 3113 return -EINVAL; 3114 } 3115 data->ale_entries = prop; 3116 3117 if (of_property_read_u32(node, "bd_ram_size", &prop)) { 3118 dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n"); 3119 return -EINVAL; 3120 } 3121 data->bd_ram_size = prop; 3122 3123 if (of_property_read_u32(node, "mac_control", &prop)) { 3124 dev_err(&pdev->dev, "Missing mac_control property in the DT.\n"); 3125 return -EINVAL; 3126 } 3127 data->mac_control = prop; 3128 3129 if (of_property_read_bool(node, "dual_emac")) 3130 data->dual_emac = 1; 3131 3132 /* 3133 * Populate all the child nodes here... 3134 */ 3135 ret = of_platform_populate(node, NULL, NULL, &pdev->dev); 3136 /* We do not want to force this, as in some cases may not have child */ 3137 if (ret) 3138 dev_warn(&pdev->dev, "Doesn't have any child node\n"); 3139 3140 for_each_available_child_of_node(node, slave_node) { 3141 struct cpsw_slave_data *slave_data = data->slave_data + i; 3142 const void *mac_addr = NULL; 3143 int lenp; 3144 const __be32 *parp; 3145 3146 /* This is no slave child node, continue */ 3147 if (strcmp(slave_node->name, "slave")) 3148 continue; 3149 3150 slave_data->phy_node = of_parse_phandle(slave_node, 3151 "phy-handle", 0); 3152 parp = of_get_property(slave_node, "phy_id", &lenp); 3153 if (slave_data->phy_node) { 3154 dev_dbg(&pdev->dev, 3155 "slave[%d] using phy-handle=\"%pOF\"\n", 3156 i, slave_data->phy_node); 3157 } else if (of_phy_is_fixed_link(slave_node)) { 3158 /* In the case of a fixed PHY, the DT node associated 3159 * to the PHY is the Ethernet MAC DT node. 3160 */ 3161 ret = of_phy_register_fixed_link(slave_node); 3162 if (ret) { 3163 if (ret != -EPROBE_DEFER) 3164 dev_err(&pdev->dev, "failed to register fixed-link phy: %d\n", ret); 3165 return ret; 3166 } 3167 slave_data->phy_node = of_node_get(slave_node); 3168 } else if (parp) { 3169 u32 phyid; 3170 struct device_node *mdio_node; 3171 struct platform_device *mdio; 3172 3173 if (lenp != (sizeof(__be32) * 2)) { 3174 dev_err(&pdev->dev, "Invalid slave[%d] phy_id property\n", i); 3175 goto no_phy_slave; 3176 } 3177 mdio_node = of_find_node_by_phandle(be32_to_cpup(parp)); 3178 phyid = be32_to_cpup(parp+1); 3179 mdio = of_find_device_by_node(mdio_node); 3180 of_node_put(mdio_node); 3181 if (!mdio) { 3182 dev_err(&pdev->dev, "Missing mdio platform device\n"); 3183 return -EINVAL; 3184 } 3185 snprintf(slave_data->phy_id, sizeof(slave_data->phy_id), 3186 PHY_ID_FMT, mdio->name, phyid); 3187 put_device(&mdio->dev); 3188 } else { 3189 dev_err(&pdev->dev, 3190 "No slave[%d] phy_id, phy-handle, or fixed-link property\n", 3191 i); 3192 goto no_phy_slave; 3193 } 3194 slave_data->phy_if = of_get_phy_mode(slave_node); 3195 if (slave_data->phy_if < 0) { 3196 dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n", 3197 i); 3198 return slave_data->phy_if; 3199 } 3200 3201 no_phy_slave: 3202 mac_addr = of_get_mac_address(slave_node); 3203 if (mac_addr) { 3204 memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN); 3205 } else { 3206 ret = ti_cm_get_macid(&pdev->dev, i, 3207 slave_data->mac_addr); 3208 if (ret) 3209 return ret; 3210 } 3211 if (data->dual_emac) { 3212 if (of_property_read_u32(slave_node, "dual_emac_res_vlan", 3213 &prop)) { 3214 dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n"); 3215 slave_data->dual_emac_res_vlan = i+1; 3216 dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n", 3217 slave_data->dual_emac_res_vlan, i); 3218 } else { 3219 slave_data->dual_emac_res_vlan = prop; 3220 } 3221 } 3222 3223 i++; 3224 if (i == data->slaves) 3225 break; 3226 } 3227 3228 return 0; 3229 } 3230 3231 static void cpsw_remove_dt(struct platform_device *pdev) 3232 { 3233 struct net_device *ndev = platform_get_drvdata(pdev); 3234 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 3235 struct cpsw_platform_data *data = &cpsw->data; 3236 struct device_node *node = pdev->dev.of_node; 3237 struct device_node *slave_node; 3238 int i = 0; 3239 3240 for_each_available_child_of_node(node, slave_node) { 3241 struct cpsw_slave_data *slave_data = &data->slave_data[i]; 3242 3243 if (strcmp(slave_node->name, "slave")) 3244 continue; 3245 3246 if (of_phy_is_fixed_link(slave_node)) 3247 of_phy_deregister_fixed_link(slave_node); 3248 3249 of_node_put(slave_data->phy_node); 3250 3251 i++; 3252 if (i == data->slaves) 3253 break; 3254 } 3255 3256 of_platform_depopulate(&pdev->dev); 3257 } 3258 3259 static int cpsw_probe_dual_emac(struct cpsw_priv *priv) 3260 { 3261 struct cpsw_common *cpsw = priv->cpsw; 3262 struct cpsw_platform_data *data = &cpsw->data; 3263 struct net_device *ndev; 3264 struct cpsw_priv *priv_sl2; 3265 int ret = 0; 3266 3267 ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES); 3268 if (!ndev) { 3269 dev_err(cpsw->dev, "cpsw: error allocating net_device\n"); 3270 return -ENOMEM; 3271 } 3272 3273 priv_sl2 = netdev_priv(ndev); 3274 priv_sl2->cpsw = cpsw; 3275 priv_sl2->ndev = ndev; 3276 priv_sl2->dev = &ndev->dev; 3277 priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG); 3278 3279 if (is_valid_ether_addr(data->slave_data[1].mac_addr)) { 3280 memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr, 3281 ETH_ALEN); 3282 dev_info(cpsw->dev, "cpsw: Detected MACID = %pM\n", 3283 priv_sl2->mac_addr); 3284 } else { 3285 eth_random_addr(priv_sl2->mac_addr); 3286 dev_info(cpsw->dev, "cpsw: Random MACID = %pM\n", 3287 priv_sl2->mac_addr); 3288 } 3289 memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN); 3290 3291 priv_sl2->emac_port = 1; 3292 cpsw->slaves[1].ndev = ndev; 3293 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX; 3294 3295 ndev->netdev_ops = &cpsw_netdev_ops; 3296 ndev->ethtool_ops = &cpsw_ethtool_ops; 3297 3298 /* register the network device */ 3299 SET_NETDEV_DEV(ndev, cpsw->dev); 3300 ret = register_netdev(ndev); 3301 if (ret) { 3302 dev_err(cpsw->dev, "cpsw: error registering net device\n"); 3303 free_netdev(ndev); 3304 ret = -ENODEV; 3305 } 3306 3307 return ret; 3308 } 3309 3310 static const struct of_device_id cpsw_of_mtable[] = { 3311 { .compatible = "ti,cpsw"}, 3312 { .compatible = "ti,am335x-cpsw"}, 3313 { .compatible = "ti,am4372-cpsw"}, 3314 { .compatible = "ti,dra7-cpsw"}, 3315 { /* sentinel */ }, 3316 }; 3317 MODULE_DEVICE_TABLE(of, cpsw_of_mtable); 3318 3319 static const struct soc_device_attribute cpsw_soc_devices[] = { 3320 { .family = "AM33xx", .revision = "ES1.0"}, 3321 { /* sentinel */ } 3322 }; 3323 3324 static int cpsw_probe(struct platform_device *pdev) 3325 { 3326 struct clk *clk; 3327 struct cpsw_platform_data *data; 3328 struct net_device *ndev; 3329 struct cpsw_priv *priv; 3330 struct cpdma_params dma_params; 3331 struct cpsw_ale_params ale_params; 3332 void __iomem *ss_regs; 3333 void __iomem *cpts_regs; 3334 struct resource *res, *ss_res; 3335 struct gpio_descs *mode; 3336 u32 slave_offset, sliver_offset, slave_size; 3337 const struct soc_device_attribute *soc; 3338 struct cpsw_common *cpsw; 3339 int ret = 0, i, ch; 3340 int irq; 3341 3342 cpsw = devm_kzalloc(&pdev->dev, sizeof(struct cpsw_common), GFP_KERNEL); 3343 if (!cpsw) 3344 return -ENOMEM; 3345 3346 cpsw->dev = &pdev->dev; 3347 3348 ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES); 3349 if (!ndev) { 3350 dev_err(&pdev->dev, "error allocating net_device\n"); 3351 return -ENOMEM; 3352 } 3353 3354 platform_set_drvdata(pdev, ndev); 3355 priv = netdev_priv(ndev); 3356 priv->cpsw = cpsw; 3357 priv->ndev = ndev; 3358 priv->dev = &ndev->dev; 3359 priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG); 3360 cpsw->rx_packet_max = max(rx_packet_max, 128); 3361 3362 mode = devm_gpiod_get_array_optional(&pdev->dev, "mode", GPIOD_OUT_LOW); 3363 if (IS_ERR(mode)) { 3364 ret = PTR_ERR(mode); 3365 dev_err(&pdev->dev, "gpio request failed, ret %d\n", ret); 3366 goto clean_ndev_ret; 3367 } 3368 3369 /* 3370 * This may be required here for child devices. 3371 */ 3372 pm_runtime_enable(&pdev->dev); 3373 3374 /* Select default pin state */ 3375 pinctrl_pm_select_default_state(&pdev->dev); 3376 3377 /* Need to enable clocks with runtime PM api to access module 3378 * registers 3379 */ 3380 ret = pm_runtime_get_sync(&pdev->dev); 3381 if (ret < 0) { 3382 pm_runtime_put_noidle(&pdev->dev); 3383 goto clean_runtime_disable_ret; 3384 } 3385 3386 ret = cpsw_probe_dt(&cpsw->data, pdev); 3387 if (ret) 3388 goto clean_dt_ret; 3389 3390 data = &cpsw->data; 3391 cpsw->rx_ch_num = 1; 3392 cpsw->tx_ch_num = 1; 3393 3394 if (is_valid_ether_addr(data->slave_data[0].mac_addr)) { 3395 memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN); 3396 dev_info(&pdev->dev, "Detected MACID = %pM\n", priv->mac_addr); 3397 } else { 3398 eth_random_addr(priv->mac_addr); 3399 dev_info(&pdev->dev, "Random MACID = %pM\n", priv->mac_addr); 3400 } 3401 3402 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN); 3403 3404 cpsw->slaves = devm_kcalloc(&pdev->dev, 3405 data->slaves, sizeof(struct cpsw_slave), 3406 GFP_KERNEL); 3407 if (!cpsw->slaves) { 3408 ret = -ENOMEM; 3409 goto clean_dt_ret; 3410 } 3411 for (i = 0; i < data->slaves; i++) 3412 cpsw->slaves[i].slave_num = i; 3413 3414 cpsw->slaves[0].ndev = ndev; 3415 priv->emac_port = 0; 3416 3417 clk = devm_clk_get(&pdev->dev, "fck"); 3418 if (IS_ERR(clk)) { 3419 dev_err(priv->dev, "fck is not found\n"); 3420 ret = -ENODEV; 3421 goto clean_dt_ret; 3422 } 3423 cpsw->bus_freq_mhz = clk_get_rate(clk) / 1000000; 3424 3425 ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 3426 ss_regs = devm_ioremap_resource(&pdev->dev, ss_res); 3427 if (IS_ERR(ss_regs)) { 3428 ret = PTR_ERR(ss_regs); 3429 goto clean_dt_ret; 3430 } 3431 cpsw->regs = ss_regs; 3432 3433 cpsw->version = readl(&cpsw->regs->id_ver); 3434 3435 res = platform_get_resource(pdev, IORESOURCE_MEM, 1); 3436 cpsw->wr_regs = devm_ioremap_resource(&pdev->dev, res); 3437 if (IS_ERR(cpsw->wr_regs)) { 3438 ret = PTR_ERR(cpsw->wr_regs); 3439 goto clean_dt_ret; 3440 } 3441 3442 memset(&dma_params, 0, sizeof(dma_params)); 3443 memset(&ale_params, 0, sizeof(ale_params)); 3444 3445 switch (cpsw->version) { 3446 case CPSW_VERSION_1: 3447 cpsw->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET; 3448 cpts_regs = ss_regs + CPSW1_CPTS_OFFSET; 3449 cpsw->hw_stats = ss_regs + CPSW1_HW_STATS; 3450 dma_params.dmaregs = ss_regs + CPSW1_CPDMA_OFFSET; 3451 dma_params.txhdp = ss_regs + CPSW1_STATERAM_OFFSET; 3452 ale_params.ale_regs = ss_regs + CPSW1_ALE_OFFSET; 3453 slave_offset = CPSW1_SLAVE_OFFSET; 3454 slave_size = CPSW1_SLAVE_SIZE; 3455 sliver_offset = CPSW1_SLIVER_OFFSET; 3456 dma_params.desc_mem_phys = 0; 3457 break; 3458 case CPSW_VERSION_2: 3459 case CPSW_VERSION_3: 3460 case CPSW_VERSION_4: 3461 cpsw->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET; 3462 cpts_regs = ss_regs + CPSW2_CPTS_OFFSET; 3463 cpsw->hw_stats = ss_regs + CPSW2_HW_STATS; 3464 dma_params.dmaregs = ss_regs + CPSW2_CPDMA_OFFSET; 3465 dma_params.txhdp = ss_regs + CPSW2_STATERAM_OFFSET; 3466 ale_params.ale_regs = ss_regs + CPSW2_ALE_OFFSET; 3467 slave_offset = CPSW2_SLAVE_OFFSET; 3468 slave_size = CPSW2_SLAVE_SIZE; 3469 sliver_offset = CPSW2_SLIVER_OFFSET; 3470 dma_params.desc_mem_phys = 3471 (u32 __force) ss_res->start + CPSW2_BD_OFFSET; 3472 break; 3473 default: 3474 dev_err(priv->dev, "unknown version 0x%08x\n", cpsw->version); 3475 ret = -ENODEV; 3476 goto clean_dt_ret; 3477 } 3478 for (i = 0; i < cpsw->data.slaves; i++) { 3479 struct cpsw_slave *slave = &cpsw->slaves[i]; 3480 3481 cpsw_slave_init(slave, cpsw, slave_offset, sliver_offset); 3482 slave_offset += slave_size; 3483 sliver_offset += SLIVER_SIZE; 3484 } 3485 3486 dma_params.dev = &pdev->dev; 3487 dma_params.rxthresh = dma_params.dmaregs + CPDMA_RXTHRESH; 3488 dma_params.rxfree = dma_params.dmaregs + CPDMA_RXFREE; 3489 dma_params.rxhdp = dma_params.txhdp + CPDMA_RXHDP; 3490 dma_params.txcp = dma_params.txhdp + CPDMA_TXCP; 3491 dma_params.rxcp = dma_params.txhdp + CPDMA_RXCP; 3492 3493 dma_params.num_chan = data->channels; 3494 dma_params.has_soft_reset = true; 3495 dma_params.min_packet_size = CPSW_MIN_PACKET_SIZE; 3496 dma_params.desc_mem_size = data->bd_ram_size; 3497 dma_params.desc_align = 16; 3498 dma_params.has_ext_regs = true; 3499 dma_params.desc_hw_addr = dma_params.desc_mem_phys; 3500 dma_params.bus_freq_mhz = cpsw->bus_freq_mhz; 3501 dma_params.descs_pool_size = descs_pool_size; 3502 3503 cpsw->dma = cpdma_ctlr_create(&dma_params); 3504 if (!cpsw->dma) { 3505 dev_err(priv->dev, "error initializing dma\n"); 3506 ret = -ENOMEM; 3507 goto clean_dt_ret; 3508 } 3509 3510 soc = soc_device_match(cpsw_soc_devices); 3511 if (soc) 3512 cpsw->quirk_irq = 1; 3513 3514 ch = cpsw->quirk_irq ? 0 : 7; 3515 cpsw->txv[0].ch = cpdma_chan_create(cpsw->dma, ch, cpsw_tx_handler, 0); 3516 if (IS_ERR(cpsw->txv[0].ch)) { 3517 dev_err(priv->dev, "error initializing tx dma channel\n"); 3518 ret = PTR_ERR(cpsw->txv[0].ch); 3519 goto clean_dma_ret; 3520 } 3521 3522 cpsw->rxv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_rx_handler, 1); 3523 if (IS_ERR(cpsw->rxv[0].ch)) { 3524 dev_err(priv->dev, "error initializing rx dma channel\n"); 3525 ret = PTR_ERR(cpsw->rxv[0].ch); 3526 goto clean_dma_ret; 3527 } 3528 3529 ale_params.dev = &pdev->dev; 3530 ale_params.ale_ageout = ale_ageout; 3531 ale_params.ale_entries = data->ale_entries; 3532 ale_params.ale_ports = CPSW_ALE_PORTS_NUM; 3533 3534 cpsw->ale = cpsw_ale_create(&ale_params); 3535 if (!cpsw->ale) { 3536 dev_err(priv->dev, "error initializing ale engine\n"); 3537 ret = -ENODEV; 3538 goto clean_dma_ret; 3539 } 3540 3541 cpsw->cpts = cpts_create(cpsw->dev, cpts_regs, cpsw->dev->of_node); 3542 if (IS_ERR(cpsw->cpts)) { 3543 ret = PTR_ERR(cpsw->cpts); 3544 goto clean_dma_ret; 3545 } 3546 3547 ndev->irq = platform_get_irq(pdev, 1); 3548 if (ndev->irq < 0) { 3549 dev_err(priv->dev, "error getting irq resource\n"); 3550 ret = ndev->irq; 3551 goto clean_dma_ret; 3552 } 3553 3554 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX; 3555 3556 ndev->netdev_ops = &cpsw_netdev_ops; 3557 ndev->ethtool_ops = &cpsw_ethtool_ops; 3558 netif_napi_add(ndev, &cpsw->napi_rx, 3559 cpsw->quirk_irq ? cpsw_rx_poll : cpsw_rx_mq_poll, 3560 CPSW_POLL_WEIGHT); 3561 netif_tx_napi_add(ndev, &cpsw->napi_tx, 3562 cpsw->quirk_irq ? cpsw_tx_poll : cpsw_tx_mq_poll, 3563 CPSW_POLL_WEIGHT); 3564 cpsw_split_res(ndev); 3565 3566 /* register the network device */ 3567 SET_NETDEV_DEV(ndev, &pdev->dev); 3568 ret = register_netdev(ndev); 3569 if (ret) { 3570 dev_err(priv->dev, "error registering net device\n"); 3571 ret = -ENODEV; 3572 goto clean_dma_ret; 3573 } 3574 3575 if (cpsw->data.dual_emac) { 3576 ret = cpsw_probe_dual_emac(priv); 3577 if (ret) { 3578 cpsw_err(priv, probe, "error probe slave 2 emac interface\n"); 3579 goto clean_unregister_netdev_ret; 3580 } 3581 } 3582 3583 /* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and 3584 * MISC IRQs which are always kept disabled with this driver so 3585 * we will not request them. 3586 * 3587 * If anyone wants to implement support for those, make sure to 3588 * first request and append them to irqs_table array. 3589 */ 3590 3591 /* RX IRQ */ 3592 irq = platform_get_irq(pdev, 1); 3593 if (irq < 0) { 3594 ret = irq; 3595 goto clean_dma_ret; 3596 } 3597 3598 cpsw->irqs_table[0] = irq; 3599 ret = devm_request_irq(&pdev->dev, irq, cpsw_rx_interrupt, 3600 0, dev_name(&pdev->dev), cpsw); 3601 if (ret < 0) { 3602 dev_err(priv->dev, "error attaching irq (%d)\n", ret); 3603 goto clean_dma_ret; 3604 } 3605 3606 /* TX IRQ */ 3607 irq = platform_get_irq(pdev, 2); 3608 if (irq < 0) { 3609 ret = irq; 3610 goto clean_dma_ret; 3611 } 3612 3613 cpsw->irqs_table[1] = irq; 3614 ret = devm_request_irq(&pdev->dev, irq, cpsw_tx_interrupt, 3615 0, dev_name(&pdev->dev), cpsw); 3616 if (ret < 0) { 3617 dev_err(priv->dev, "error attaching irq (%d)\n", ret); 3618 goto clean_dma_ret; 3619 } 3620 3621 cpsw_notice(priv, probe, 3622 "initialized device (regs %pa, irq %d, pool size %d)\n", 3623 &ss_res->start, ndev->irq, dma_params.descs_pool_size); 3624 3625 pm_runtime_put(&pdev->dev); 3626 3627 return 0; 3628 3629 clean_unregister_netdev_ret: 3630 unregister_netdev(ndev); 3631 clean_dma_ret: 3632 cpdma_ctlr_destroy(cpsw->dma); 3633 clean_dt_ret: 3634 cpsw_remove_dt(pdev); 3635 pm_runtime_put_sync(&pdev->dev); 3636 clean_runtime_disable_ret: 3637 pm_runtime_disable(&pdev->dev); 3638 clean_ndev_ret: 3639 free_netdev(priv->ndev); 3640 return ret; 3641 } 3642 3643 static int cpsw_remove(struct platform_device *pdev) 3644 { 3645 struct net_device *ndev = platform_get_drvdata(pdev); 3646 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 3647 int ret; 3648 3649 ret = pm_runtime_get_sync(&pdev->dev); 3650 if (ret < 0) { 3651 pm_runtime_put_noidle(&pdev->dev); 3652 return ret; 3653 } 3654 3655 if (cpsw->data.dual_emac) 3656 unregister_netdev(cpsw->slaves[1].ndev); 3657 unregister_netdev(ndev); 3658 3659 cpts_release(cpsw->cpts); 3660 cpdma_ctlr_destroy(cpsw->dma); 3661 cpsw_remove_dt(pdev); 3662 pm_runtime_put_sync(&pdev->dev); 3663 pm_runtime_disable(&pdev->dev); 3664 if (cpsw->data.dual_emac) 3665 free_netdev(cpsw->slaves[1].ndev); 3666 free_netdev(ndev); 3667 return 0; 3668 } 3669 3670 #ifdef CONFIG_PM_SLEEP 3671 static int cpsw_suspend(struct device *dev) 3672 { 3673 struct net_device *ndev = dev_get_drvdata(dev); 3674 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 3675 3676 if (cpsw->data.dual_emac) { 3677 int i; 3678 3679 for (i = 0; i < cpsw->data.slaves; i++) { 3680 if (netif_running(cpsw->slaves[i].ndev)) 3681 cpsw_ndo_stop(cpsw->slaves[i].ndev); 3682 } 3683 } else { 3684 if (netif_running(ndev)) 3685 cpsw_ndo_stop(ndev); 3686 } 3687 3688 /* Select sleep pin state */ 3689 pinctrl_pm_select_sleep_state(dev); 3690 3691 return 0; 3692 } 3693 3694 static int cpsw_resume(struct device *dev) 3695 { 3696 struct net_device *ndev = dev_get_drvdata(dev); 3697 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 3698 3699 /* Select default pin state */ 3700 pinctrl_pm_select_default_state(dev); 3701 3702 /* shut up ASSERT_RTNL() warning in netif_set_real_num_tx/rx_queues */ 3703 rtnl_lock(); 3704 if (cpsw->data.dual_emac) { 3705 int i; 3706 3707 for (i = 0; i < cpsw->data.slaves; i++) { 3708 if (netif_running(cpsw->slaves[i].ndev)) 3709 cpsw_ndo_open(cpsw->slaves[i].ndev); 3710 } 3711 } else { 3712 if (netif_running(ndev)) 3713 cpsw_ndo_open(ndev); 3714 } 3715 rtnl_unlock(); 3716 3717 return 0; 3718 } 3719 #endif 3720 3721 static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume); 3722 3723 static struct platform_driver cpsw_driver = { 3724 .driver = { 3725 .name = "cpsw", 3726 .pm = &cpsw_pm_ops, 3727 .of_match_table = cpsw_of_mtable, 3728 }, 3729 .probe = cpsw_probe, 3730 .remove = cpsw_remove, 3731 }; 3732 3733 module_platform_driver(cpsw_driver); 3734 3735 MODULE_LICENSE("GPL"); 3736 MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>"); 3737 MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>"); 3738 MODULE_DESCRIPTION("TI CPSW Ethernet driver"); 3739