xref: /openbmc/linux/drivers/net/ethernet/ti/cpsw.c (revision 943126417891372d56aa3fe46295cbf53db31370)
1 /*
2  * Texas Instruments Ethernet Switch Driver
3  *
4  * Copyright (C) 2012 Texas Instruments
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation version 2.
9  *
10  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11  * kind, whether express or implied; without even the implied warranty
12  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/io.h>
18 #include <linux/clk.h>
19 #include <linux/timer.h>
20 #include <linux/module.h>
21 #include <linux/platform_device.h>
22 #include <linux/irqreturn.h>
23 #include <linux/interrupt.h>
24 #include <linux/if_ether.h>
25 #include <linux/etherdevice.h>
26 #include <linux/netdevice.h>
27 #include <linux/net_tstamp.h>
28 #include <linux/phy.h>
29 #include <linux/workqueue.h>
30 #include <linux/delay.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/gpio/consumer.h>
33 #include <linux/of.h>
34 #include <linux/of_mdio.h>
35 #include <linux/of_net.h>
36 #include <linux/of_device.h>
37 #include <linux/if_vlan.h>
38 #include <linux/kmemleak.h>
39 #include <linux/sys_soc.h>
40 
41 #include <linux/pinctrl/consumer.h>
42 #include <net/pkt_cls.h>
43 
44 #include "cpsw.h"
45 #include "cpsw_ale.h"
46 #include "cpts.h"
47 #include "davinci_cpdma.h"
48 
49 #include <net/pkt_sched.h>
50 
51 #define CPSW_DEBUG	(NETIF_MSG_HW		| NETIF_MSG_WOL		| \
52 			 NETIF_MSG_DRV		| NETIF_MSG_LINK	| \
53 			 NETIF_MSG_IFUP		| NETIF_MSG_INTR	| \
54 			 NETIF_MSG_PROBE	| NETIF_MSG_TIMER	| \
55 			 NETIF_MSG_IFDOWN	| NETIF_MSG_RX_ERR	| \
56 			 NETIF_MSG_TX_ERR	| NETIF_MSG_TX_DONE	| \
57 			 NETIF_MSG_PKTDATA	| NETIF_MSG_TX_QUEUED	| \
58 			 NETIF_MSG_RX_STATUS)
59 
60 #define cpsw_info(priv, type, format, ...)		\
61 do {								\
62 	if (netif_msg_##type(priv) && net_ratelimit())		\
63 		dev_info(priv->dev, format, ## __VA_ARGS__);	\
64 } while (0)
65 
66 #define cpsw_err(priv, type, format, ...)		\
67 do {								\
68 	if (netif_msg_##type(priv) && net_ratelimit())		\
69 		dev_err(priv->dev, format, ## __VA_ARGS__);	\
70 } while (0)
71 
72 #define cpsw_dbg(priv, type, format, ...)		\
73 do {								\
74 	if (netif_msg_##type(priv) && net_ratelimit())		\
75 		dev_dbg(priv->dev, format, ## __VA_ARGS__);	\
76 } while (0)
77 
78 #define cpsw_notice(priv, type, format, ...)		\
79 do {								\
80 	if (netif_msg_##type(priv) && net_ratelimit())		\
81 		dev_notice(priv->dev, format, ## __VA_ARGS__);	\
82 } while (0)
83 
84 #define ALE_ALL_PORTS		0x7
85 
86 #define CPSW_MAJOR_VERSION(reg)		(reg >> 8 & 0x7)
87 #define CPSW_MINOR_VERSION(reg)		(reg & 0xff)
88 #define CPSW_RTL_VERSION(reg)		((reg >> 11) & 0x1f)
89 
90 #define CPSW_VERSION_1		0x19010a
91 #define CPSW_VERSION_2		0x19010c
92 #define CPSW_VERSION_3		0x19010f
93 #define CPSW_VERSION_4		0x190112
94 
95 #define HOST_PORT_NUM		0
96 #define CPSW_ALE_PORTS_NUM	3
97 #define SLIVER_SIZE		0x40
98 
99 #define CPSW1_HOST_PORT_OFFSET	0x028
100 #define CPSW1_SLAVE_OFFSET	0x050
101 #define CPSW1_SLAVE_SIZE	0x040
102 #define CPSW1_CPDMA_OFFSET	0x100
103 #define CPSW1_STATERAM_OFFSET	0x200
104 #define CPSW1_HW_STATS		0x400
105 #define CPSW1_CPTS_OFFSET	0x500
106 #define CPSW1_ALE_OFFSET	0x600
107 #define CPSW1_SLIVER_OFFSET	0x700
108 
109 #define CPSW2_HOST_PORT_OFFSET	0x108
110 #define CPSW2_SLAVE_OFFSET	0x200
111 #define CPSW2_SLAVE_SIZE	0x100
112 #define CPSW2_CPDMA_OFFSET	0x800
113 #define CPSW2_HW_STATS		0x900
114 #define CPSW2_STATERAM_OFFSET	0xa00
115 #define CPSW2_CPTS_OFFSET	0xc00
116 #define CPSW2_ALE_OFFSET	0xd00
117 #define CPSW2_SLIVER_OFFSET	0xd80
118 #define CPSW2_BD_OFFSET		0x2000
119 
120 #define CPDMA_RXTHRESH		0x0c0
121 #define CPDMA_RXFREE		0x0e0
122 #define CPDMA_TXHDP		0x00
123 #define CPDMA_RXHDP		0x20
124 #define CPDMA_TXCP		0x40
125 #define CPDMA_RXCP		0x60
126 
127 #define CPSW_POLL_WEIGHT	64
128 #define CPSW_RX_VLAN_ENCAP_HDR_SIZE		4
129 #define CPSW_MIN_PACKET_SIZE	(VLAN_ETH_ZLEN)
130 #define CPSW_MAX_PACKET_SIZE	(VLAN_ETH_FRAME_LEN +\
131 				 ETH_FCS_LEN +\
132 				 CPSW_RX_VLAN_ENCAP_HDR_SIZE)
133 
134 #define RX_PRIORITY_MAPPING	0x76543210
135 #define TX_PRIORITY_MAPPING	0x33221100
136 #define CPDMA_TX_PRIORITY_MAP	0x76543210
137 
138 #define CPSW_VLAN_AWARE		BIT(1)
139 #define CPSW_RX_VLAN_ENCAP	BIT(2)
140 #define CPSW_ALE_VLAN_AWARE	1
141 
142 #define CPSW_FIFO_NORMAL_MODE		(0 << 16)
143 #define CPSW_FIFO_DUAL_MAC_MODE		(1 << 16)
144 #define CPSW_FIFO_RATE_LIMIT_MODE	(2 << 16)
145 
146 #define CPSW_INTPACEEN		(0x3f << 16)
147 #define CPSW_INTPRESCALE_MASK	(0x7FF << 0)
148 #define CPSW_CMINTMAX_CNT	63
149 #define CPSW_CMINTMIN_CNT	2
150 #define CPSW_CMINTMAX_INTVL	(1000 / CPSW_CMINTMIN_CNT)
151 #define CPSW_CMINTMIN_INTVL	((1000 / CPSW_CMINTMAX_CNT) + 1)
152 
153 #define cpsw_slave_index(cpsw, priv)				\
154 		((cpsw->data.dual_emac) ? priv->emac_port :	\
155 		cpsw->data.active_slave)
156 #define IRQ_NUM			2
157 #define CPSW_MAX_QUEUES		8
158 #define CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT 256
159 #define CPSW_FIFO_QUEUE_TYPE_SHIFT	16
160 #define CPSW_FIFO_SHAPE_EN_SHIFT	16
161 #define CPSW_FIFO_RATE_EN_SHIFT		20
162 #define CPSW_TC_NUM			4
163 #define CPSW_FIFO_SHAPERS_NUM		(CPSW_TC_NUM - 1)
164 #define CPSW_PCT_MASK			0x7f
165 
166 #define CPSW_RX_VLAN_ENCAP_HDR_PRIO_SHIFT	29
167 #define CPSW_RX_VLAN_ENCAP_HDR_PRIO_MSK		GENMASK(2, 0)
168 #define CPSW_RX_VLAN_ENCAP_HDR_VID_SHIFT	16
169 #define CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_SHIFT	8
170 #define CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_MSK	GENMASK(1, 0)
171 enum {
172 	CPSW_RX_VLAN_ENCAP_HDR_PKT_VLAN_TAG = 0,
173 	CPSW_RX_VLAN_ENCAP_HDR_PKT_RESERV,
174 	CPSW_RX_VLAN_ENCAP_HDR_PKT_PRIO_TAG,
175 	CPSW_RX_VLAN_ENCAP_HDR_PKT_UNTAG,
176 };
177 
178 static int debug_level;
179 module_param(debug_level, int, 0);
180 MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)");
181 
182 static int ale_ageout = 10;
183 module_param(ale_ageout, int, 0);
184 MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)");
185 
186 static int rx_packet_max = CPSW_MAX_PACKET_SIZE;
187 module_param(rx_packet_max, int, 0);
188 MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)");
189 
190 static int descs_pool_size = CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT;
191 module_param(descs_pool_size, int, 0444);
192 MODULE_PARM_DESC(descs_pool_size, "Number of CPDMA CPPI descriptors in pool");
193 
194 struct cpsw_wr_regs {
195 	u32	id_ver;
196 	u32	soft_reset;
197 	u32	control;
198 	u32	int_control;
199 	u32	rx_thresh_en;
200 	u32	rx_en;
201 	u32	tx_en;
202 	u32	misc_en;
203 	u32	mem_allign1[8];
204 	u32	rx_thresh_stat;
205 	u32	rx_stat;
206 	u32	tx_stat;
207 	u32	misc_stat;
208 	u32	mem_allign2[8];
209 	u32	rx_imax;
210 	u32	tx_imax;
211 
212 };
213 
214 struct cpsw_ss_regs {
215 	u32	id_ver;
216 	u32	control;
217 	u32	soft_reset;
218 	u32	stat_port_en;
219 	u32	ptype;
220 	u32	soft_idle;
221 	u32	thru_rate;
222 	u32	gap_thresh;
223 	u32	tx_start_wds;
224 	u32	flow_control;
225 	u32	vlan_ltype;
226 	u32	ts_ltype;
227 	u32	dlr_ltype;
228 };
229 
230 /* CPSW_PORT_V1 */
231 #define CPSW1_MAX_BLKS      0x00 /* Maximum FIFO Blocks */
232 #define CPSW1_BLK_CNT       0x04 /* FIFO Block Usage Count (Read Only) */
233 #define CPSW1_TX_IN_CTL     0x08 /* Transmit FIFO Control */
234 #define CPSW1_PORT_VLAN     0x0c /* VLAN Register */
235 #define CPSW1_TX_PRI_MAP    0x10 /* Tx Header Priority to Switch Pri Mapping */
236 #define CPSW1_TS_CTL        0x14 /* Time Sync Control */
237 #define CPSW1_TS_SEQ_LTYPE  0x18 /* Time Sync Sequence ID Offset and Msg Type */
238 #define CPSW1_TS_VLAN       0x1c /* Time Sync VLAN1 and VLAN2 */
239 
240 /* CPSW_PORT_V2 */
241 #define CPSW2_CONTROL       0x00 /* Control Register */
242 #define CPSW2_MAX_BLKS      0x08 /* Maximum FIFO Blocks */
243 #define CPSW2_BLK_CNT       0x0c /* FIFO Block Usage Count (Read Only) */
244 #define CPSW2_TX_IN_CTL     0x10 /* Transmit FIFO Control */
245 #define CPSW2_PORT_VLAN     0x14 /* VLAN Register */
246 #define CPSW2_TX_PRI_MAP    0x18 /* Tx Header Priority to Switch Pri Mapping */
247 #define CPSW2_TS_SEQ_MTYPE  0x1c /* Time Sync Sequence ID Offset and Msg Type */
248 
249 /* CPSW_PORT_V1 and V2 */
250 #define SA_LO               0x20 /* CPGMAC_SL Source Address Low */
251 #define SA_HI               0x24 /* CPGMAC_SL Source Address High */
252 #define SEND_PERCENT        0x28 /* Transmit Queue Send Percentages */
253 
254 /* CPSW_PORT_V2 only */
255 #define RX_DSCP_PRI_MAP0    0x30 /* Rx DSCP Priority to Rx Packet Mapping */
256 #define RX_DSCP_PRI_MAP1    0x34 /* Rx DSCP Priority to Rx Packet Mapping */
257 #define RX_DSCP_PRI_MAP2    0x38 /* Rx DSCP Priority to Rx Packet Mapping */
258 #define RX_DSCP_PRI_MAP3    0x3c /* Rx DSCP Priority to Rx Packet Mapping */
259 #define RX_DSCP_PRI_MAP4    0x40 /* Rx DSCP Priority to Rx Packet Mapping */
260 #define RX_DSCP_PRI_MAP5    0x44 /* Rx DSCP Priority to Rx Packet Mapping */
261 #define RX_DSCP_PRI_MAP6    0x48 /* Rx DSCP Priority to Rx Packet Mapping */
262 #define RX_DSCP_PRI_MAP7    0x4c /* Rx DSCP Priority to Rx Packet Mapping */
263 
264 /* Bit definitions for the CPSW2_CONTROL register */
265 #define PASS_PRI_TAGGED     BIT(24) /* Pass Priority Tagged */
266 #define VLAN_LTYPE2_EN      BIT(21) /* VLAN LTYPE 2 enable */
267 #define VLAN_LTYPE1_EN      BIT(20) /* VLAN LTYPE 1 enable */
268 #define DSCP_PRI_EN         BIT(16) /* DSCP Priority Enable */
269 #define TS_107              BIT(15) /* Tyme Sync Dest IP Address 107 */
270 #define TS_320              BIT(14) /* Time Sync Dest Port 320 enable */
271 #define TS_319              BIT(13) /* Time Sync Dest Port 319 enable */
272 #define TS_132              BIT(12) /* Time Sync Dest IP Addr 132 enable */
273 #define TS_131              BIT(11) /* Time Sync Dest IP Addr 131 enable */
274 #define TS_130              BIT(10) /* Time Sync Dest IP Addr 130 enable */
275 #define TS_129              BIT(9)  /* Time Sync Dest IP Addr 129 enable */
276 #define TS_TTL_NONZERO      BIT(8)  /* Time Sync Time To Live Non-zero enable */
277 #define TS_ANNEX_F_EN       BIT(6)  /* Time Sync Annex F enable */
278 #define TS_ANNEX_D_EN       BIT(4)  /* Time Sync Annex D enable */
279 #define TS_LTYPE2_EN        BIT(3)  /* Time Sync LTYPE 2 enable */
280 #define TS_LTYPE1_EN        BIT(2)  /* Time Sync LTYPE 1 enable */
281 #define TS_TX_EN            BIT(1)  /* Time Sync Transmit Enable */
282 #define TS_RX_EN            BIT(0)  /* Time Sync Receive Enable */
283 
284 #define CTRL_V2_TS_BITS \
285 	(TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
286 	 TS_TTL_NONZERO  | TS_ANNEX_D_EN | TS_LTYPE1_EN)
287 
288 #define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN)
289 #define CTRL_V2_TX_TS_BITS  (CTRL_V2_TS_BITS | TS_TX_EN)
290 #define CTRL_V2_RX_TS_BITS  (CTRL_V2_TS_BITS | TS_RX_EN)
291 
292 
293 #define CTRL_V3_TS_BITS \
294 	(TS_107 | TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
295 	 TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\
296 	 TS_LTYPE1_EN)
297 
298 #define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN)
299 #define CTRL_V3_TX_TS_BITS  (CTRL_V3_TS_BITS | TS_TX_EN)
300 #define CTRL_V3_RX_TS_BITS  (CTRL_V3_TS_BITS | TS_RX_EN)
301 
302 /* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */
303 #define TS_SEQ_ID_OFFSET_SHIFT   (16)    /* Time Sync Sequence ID Offset */
304 #define TS_SEQ_ID_OFFSET_MASK    (0x3f)
305 #define TS_MSG_TYPE_EN_SHIFT     (0)     /* Time Sync Message Type Enable */
306 #define TS_MSG_TYPE_EN_MASK      (0xffff)
307 
308 /* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */
309 #define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3))
310 
311 /* Bit definitions for the CPSW1_TS_CTL register */
312 #define CPSW_V1_TS_RX_EN		BIT(0)
313 #define CPSW_V1_TS_TX_EN		BIT(4)
314 #define CPSW_V1_MSG_TYPE_OFS		16
315 
316 /* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */
317 #define CPSW_V1_SEQ_ID_OFS_SHIFT	16
318 
319 #define CPSW_MAX_BLKS_TX		15
320 #define CPSW_MAX_BLKS_TX_SHIFT		4
321 #define CPSW_MAX_BLKS_RX		5
322 
323 struct cpsw_host_regs {
324 	u32	max_blks;
325 	u32	blk_cnt;
326 	u32	tx_in_ctl;
327 	u32	port_vlan;
328 	u32	tx_pri_map;
329 	u32	cpdma_tx_pri_map;
330 	u32	cpdma_rx_chan_map;
331 };
332 
333 struct cpsw_sliver_regs {
334 	u32	id_ver;
335 	u32	mac_control;
336 	u32	mac_status;
337 	u32	soft_reset;
338 	u32	rx_maxlen;
339 	u32	__reserved_0;
340 	u32	rx_pause;
341 	u32	tx_pause;
342 	u32	__reserved_1;
343 	u32	rx_pri_map;
344 };
345 
346 struct cpsw_hw_stats {
347 	u32	rxgoodframes;
348 	u32	rxbroadcastframes;
349 	u32	rxmulticastframes;
350 	u32	rxpauseframes;
351 	u32	rxcrcerrors;
352 	u32	rxaligncodeerrors;
353 	u32	rxoversizedframes;
354 	u32	rxjabberframes;
355 	u32	rxundersizedframes;
356 	u32	rxfragments;
357 	u32	__pad_0[2];
358 	u32	rxoctets;
359 	u32	txgoodframes;
360 	u32	txbroadcastframes;
361 	u32	txmulticastframes;
362 	u32	txpauseframes;
363 	u32	txdeferredframes;
364 	u32	txcollisionframes;
365 	u32	txsinglecollframes;
366 	u32	txmultcollframes;
367 	u32	txexcessivecollisions;
368 	u32	txlatecollisions;
369 	u32	txunderrun;
370 	u32	txcarriersenseerrors;
371 	u32	txoctets;
372 	u32	octetframes64;
373 	u32	octetframes65t127;
374 	u32	octetframes128t255;
375 	u32	octetframes256t511;
376 	u32	octetframes512t1023;
377 	u32	octetframes1024tup;
378 	u32	netoctets;
379 	u32	rxsofoverruns;
380 	u32	rxmofoverruns;
381 	u32	rxdmaoverruns;
382 };
383 
384 struct cpsw_slave_data {
385 	struct device_node *phy_node;
386 	char		phy_id[MII_BUS_ID_SIZE];
387 	int		phy_if;
388 	u8		mac_addr[ETH_ALEN];
389 	u16		dual_emac_res_vlan;	/* Reserved VLAN for DualEMAC */
390 };
391 
392 struct cpsw_platform_data {
393 	struct cpsw_slave_data	*slave_data;
394 	u32	ss_reg_ofs;	/* Subsystem control register offset */
395 	u32	channels;	/* number of cpdma channels (symmetric) */
396 	u32	slaves;		/* number of slave cpgmac ports */
397 	u32	active_slave; /* time stamping, ethtool and SIOCGMIIPHY slave */
398 	u32	ale_entries;	/* ale table size */
399 	u32	bd_ram_size;  /*buffer descriptor ram size */
400 	u32	mac_control;	/* Mac control register */
401 	u16	default_vlan;	/* Def VLAN for ALE lookup in VLAN aware mode*/
402 	bool	dual_emac;	/* Enable Dual EMAC mode */
403 };
404 
405 struct cpsw_slave {
406 	void __iomem			*regs;
407 	struct cpsw_sliver_regs __iomem	*sliver;
408 	int				slave_num;
409 	u32				mac_control;
410 	struct cpsw_slave_data		*data;
411 	struct phy_device		*phy;
412 	struct net_device		*ndev;
413 	u32				port_vlan;
414 };
415 
416 static inline u32 slave_read(struct cpsw_slave *slave, u32 offset)
417 {
418 	return readl_relaxed(slave->regs + offset);
419 }
420 
421 static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset)
422 {
423 	writel_relaxed(val, slave->regs + offset);
424 }
425 
426 struct cpsw_vector {
427 	struct cpdma_chan *ch;
428 	int budget;
429 };
430 
431 struct cpsw_common {
432 	struct device			*dev;
433 	struct cpsw_platform_data	data;
434 	struct napi_struct		napi_rx;
435 	struct napi_struct		napi_tx;
436 	struct cpsw_ss_regs __iomem	*regs;
437 	struct cpsw_wr_regs __iomem	*wr_regs;
438 	u8 __iomem			*hw_stats;
439 	struct cpsw_host_regs __iomem	*host_port_regs;
440 	u32				version;
441 	u32				coal_intvl;
442 	u32				bus_freq_mhz;
443 	int				rx_packet_max;
444 	struct cpsw_slave		*slaves;
445 	struct cpdma_ctlr		*dma;
446 	struct cpsw_vector		txv[CPSW_MAX_QUEUES];
447 	struct cpsw_vector		rxv[CPSW_MAX_QUEUES];
448 	struct cpsw_ale			*ale;
449 	bool				quirk_irq;
450 	bool				rx_irq_disabled;
451 	bool				tx_irq_disabled;
452 	u32 irqs_table[IRQ_NUM];
453 	struct cpts			*cpts;
454 	int				rx_ch_num, tx_ch_num;
455 	int				speed;
456 	int				usage_count;
457 };
458 
459 struct cpsw_priv {
460 	struct net_device		*ndev;
461 	struct device			*dev;
462 	u32				msg_enable;
463 	u8				mac_addr[ETH_ALEN];
464 	bool				rx_pause;
465 	bool				tx_pause;
466 	bool				mqprio_hw;
467 	int				fifo_bw[CPSW_TC_NUM];
468 	int				shp_cfg_speed;
469 	u32 emac_port;
470 	struct cpsw_common *cpsw;
471 };
472 
473 struct cpsw_stats {
474 	char stat_string[ETH_GSTRING_LEN];
475 	int type;
476 	int sizeof_stat;
477 	int stat_offset;
478 };
479 
480 enum {
481 	CPSW_STATS,
482 	CPDMA_RX_STATS,
483 	CPDMA_TX_STATS,
484 };
485 
486 #define CPSW_STAT(m)		CPSW_STATS,				\
487 				FIELD_SIZEOF(struct cpsw_hw_stats, m), \
488 				offsetof(struct cpsw_hw_stats, m)
489 #define CPDMA_RX_STAT(m)	CPDMA_RX_STATS,				   \
490 				FIELD_SIZEOF(struct cpdma_chan_stats, m), \
491 				offsetof(struct cpdma_chan_stats, m)
492 #define CPDMA_TX_STAT(m)	CPDMA_TX_STATS,				   \
493 				FIELD_SIZEOF(struct cpdma_chan_stats, m), \
494 				offsetof(struct cpdma_chan_stats, m)
495 
496 static const struct cpsw_stats cpsw_gstrings_stats[] = {
497 	{ "Good Rx Frames", CPSW_STAT(rxgoodframes) },
498 	{ "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) },
499 	{ "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) },
500 	{ "Pause Rx Frames", CPSW_STAT(rxpauseframes) },
501 	{ "Rx CRC Errors", CPSW_STAT(rxcrcerrors) },
502 	{ "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) },
503 	{ "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) },
504 	{ "Rx Jabbers", CPSW_STAT(rxjabberframes) },
505 	{ "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) },
506 	{ "Rx Fragments", CPSW_STAT(rxfragments) },
507 	{ "Rx Octets", CPSW_STAT(rxoctets) },
508 	{ "Good Tx Frames", CPSW_STAT(txgoodframes) },
509 	{ "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) },
510 	{ "Multicast Tx Frames", CPSW_STAT(txmulticastframes) },
511 	{ "Pause Tx Frames", CPSW_STAT(txpauseframes) },
512 	{ "Deferred Tx Frames", CPSW_STAT(txdeferredframes) },
513 	{ "Collisions", CPSW_STAT(txcollisionframes) },
514 	{ "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) },
515 	{ "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) },
516 	{ "Excessive Collisions", CPSW_STAT(txexcessivecollisions) },
517 	{ "Late Collisions", CPSW_STAT(txlatecollisions) },
518 	{ "Tx Underrun", CPSW_STAT(txunderrun) },
519 	{ "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) },
520 	{ "Tx Octets", CPSW_STAT(txoctets) },
521 	{ "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) },
522 	{ "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) },
523 	{ "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) },
524 	{ "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) },
525 	{ "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) },
526 	{ "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) },
527 	{ "Net Octets", CPSW_STAT(netoctets) },
528 	{ "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) },
529 	{ "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) },
530 	{ "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) },
531 };
532 
533 static const struct cpsw_stats cpsw_gstrings_ch_stats[] = {
534 	{ "head_enqueue", CPDMA_RX_STAT(head_enqueue) },
535 	{ "tail_enqueue", CPDMA_RX_STAT(tail_enqueue) },
536 	{ "pad_enqueue", CPDMA_RX_STAT(pad_enqueue) },
537 	{ "misqueued", CPDMA_RX_STAT(misqueued) },
538 	{ "desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) },
539 	{ "pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) },
540 	{ "runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) },
541 	{ "runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) },
542 	{ "empty_dequeue", CPDMA_RX_STAT(empty_dequeue) },
543 	{ "busy_dequeue", CPDMA_RX_STAT(busy_dequeue) },
544 	{ "good_dequeue", CPDMA_RX_STAT(good_dequeue) },
545 	{ "requeue", CPDMA_RX_STAT(requeue) },
546 	{ "teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) },
547 };
548 
549 #define CPSW_STATS_COMMON_LEN	ARRAY_SIZE(cpsw_gstrings_stats)
550 #define CPSW_STATS_CH_LEN	ARRAY_SIZE(cpsw_gstrings_ch_stats)
551 
552 #define ndev_to_cpsw(ndev) (((struct cpsw_priv *)netdev_priv(ndev))->cpsw)
553 #define napi_to_cpsw(napi)	container_of(napi, struct cpsw_common, napi)
554 #define for_each_slave(priv, func, arg...)				\
555 	do {								\
556 		struct cpsw_slave *slave;				\
557 		struct cpsw_common *cpsw = (priv)->cpsw;		\
558 		int n;							\
559 		if (cpsw->data.dual_emac)				\
560 			(func)((cpsw)->slaves + priv->emac_port, ##arg);\
561 		else							\
562 			for (n = cpsw->data.slaves,			\
563 					slave = cpsw->slaves;		\
564 					n; n--)				\
565 				(func)(slave++, ##arg);			\
566 	} while (0)
567 
568 static inline int cpsw_get_slave_port(u32 slave_num)
569 {
570 	return slave_num + 1;
571 }
572 
573 static void cpsw_add_mcast(struct cpsw_priv *priv, const u8 *addr)
574 {
575 	struct cpsw_common *cpsw = priv->cpsw;
576 
577 	if (cpsw->data.dual_emac) {
578 		struct cpsw_slave *slave = cpsw->slaves + priv->emac_port;
579 
580 		cpsw_ale_add_mcast(cpsw->ale, addr, ALE_PORT_HOST,
581 				   ALE_VLAN, slave->port_vlan, 0);
582 		return;
583 	}
584 
585 	cpsw_ale_add_mcast(cpsw->ale, addr, ALE_ALL_PORTS, 0, 0, 0);
586 }
587 
588 static void cpsw_set_promiscious(struct net_device *ndev, bool enable)
589 {
590 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
591 	struct cpsw_ale *ale = cpsw->ale;
592 	int i;
593 
594 	if (cpsw->data.dual_emac) {
595 		bool flag = false;
596 
597 		/* Enabling promiscuous mode for one interface will be
598 		 * common for both the interface as the interface shares
599 		 * the same hardware resource.
600 		 */
601 		for (i = 0; i < cpsw->data.slaves; i++)
602 			if (cpsw->slaves[i].ndev->flags & IFF_PROMISC)
603 				flag = true;
604 
605 		if (!enable && flag) {
606 			enable = true;
607 			dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n");
608 		}
609 
610 		if (enable) {
611 			/* Enable Bypass */
612 			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1);
613 
614 			dev_dbg(&ndev->dev, "promiscuity enabled\n");
615 		} else {
616 			/* Disable Bypass */
617 			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0);
618 			dev_dbg(&ndev->dev, "promiscuity disabled\n");
619 		}
620 	} else {
621 		if (enable) {
622 			unsigned long timeout = jiffies + HZ;
623 
624 			/* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */
625 			for (i = 0; i <= cpsw->data.slaves; i++) {
626 				cpsw_ale_control_set(ale, i,
627 						     ALE_PORT_NOLEARN, 1);
628 				cpsw_ale_control_set(ale, i,
629 						     ALE_PORT_NO_SA_UPDATE, 1);
630 			}
631 
632 			/* Clear All Untouched entries */
633 			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
634 			do {
635 				cpu_relax();
636 				if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT))
637 					break;
638 			} while (time_after(timeout, jiffies));
639 			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
640 
641 			/* Clear all mcast from ALE */
642 			cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS, -1);
643 			__dev_mc_unsync(ndev, NULL);
644 
645 			/* Flood All Unicast Packets to Host port */
646 			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1);
647 			dev_dbg(&ndev->dev, "promiscuity enabled\n");
648 		} else {
649 			/* Don't Flood All Unicast Packets to Host port */
650 			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0);
651 
652 			/* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */
653 			for (i = 0; i <= cpsw->data.slaves; i++) {
654 				cpsw_ale_control_set(ale, i,
655 						     ALE_PORT_NOLEARN, 0);
656 				cpsw_ale_control_set(ale, i,
657 						     ALE_PORT_NO_SA_UPDATE, 0);
658 			}
659 			dev_dbg(&ndev->dev, "promiscuity disabled\n");
660 		}
661 	}
662 }
663 
664 static int cpsw_add_mc_addr(struct net_device *ndev, const u8 *addr)
665 {
666 	struct cpsw_priv *priv = netdev_priv(ndev);
667 
668 	cpsw_add_mcast(priv, addr);
669 	return 0;
670 }
671 
672 static int cpsw_del_mc_addr(struct net_device *ndev, const u8 *addr)
673 {
674 	struct cpsw_priv *priv = netdev_priv(ndev);
675 	struct cpsw_common *cpsw = priv->cpsw;
676 	int vid, flags;
677 
678 	if (cpsw->data.dual_emac) {
679 		vid = cpsw->slaves[priv->emac_port].port_vlan;
680 		flags = ALE_VLAN;
681 	} else {
682 		vid = 0;
683 		flags = 0;
684 	}
685 
686 	cpsw_ale_del_mcast(cpsw->ale, addr, 0, flags, vid);
687 	return 0;
688 }
689 
690 static void cpsw_ndo_set_rx_mode(struct net_device *ndev)
691 {
692 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
693 
694 	if (ndev->flags & IFF_PROMISC) {
695 		/* Enable promiscuous mode */
696 		cpsw_set_promiscious(ndev, true);
697 		cpsw_ale_set_allmulti(cpsw->ale, IFF_ALLMULTI);
698 		return;
699 	} else {
700 		/* Disable promiscuous mode */
701 		cpsw_set_promiscious(ndev, false);
702 	}
703 
704 	/* Restore allmulti on vlans if necessary */
705 	cpsw_ale_set_allmulti(cpsw->ale, ndev->flags & IFF_ALLMULTI);
706 
707 	__dev_mc_sync(ndev, cpsw_add_mc_addr, cpsw_del_mc_addr);
708 }
709 
710 static void cpsw_intr_enable(struct cpsw_common *cpsw)
711 {
712 	writel_relaxed(0xFF, &cpsw->wr_regs->tx_en);
713 	writel_relaxed(0xFF, &cpsw->wr_regs->rx_en);
714 
715 	cpdma_ctlr_int_ctrl(cpsw->dma, true);
716 	return;
717 }
718 
719 static void cpsw_intr_disable(struct cpsw_common *cpsw)
720 {
721 	writel_relaxed(0, &cpsw->wr_regs->tx_en);
722 	writel_relaxed(0, &cpsw->wr_regs->rx_en);
723 
724 	cpdma_ctlr_int_ctrl(cpsw->dma, false);
725 	return;
726 }
727 
728 static void cpsw_tx_handler(void *token, int len, int status)
729 {
730 	struct netdev_queue	*txq;
731 	struct sk_buff		*skb = token;
732 	struct net_device	*ndev = skb->dev;
733 	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
734 
735 	/* Check whether the queue is stopped due to stalled tx dma, if the
736 	 * queue is stopped then start the queue as we have free desc for tx
737 	 */
738 	txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb));
739 	if (unlikely(netif_tx_queue_stopped(txq)))
740 		netif_tx_wake_queue(txq);
741 
742 	cpts_tx_timestamp(cpsw->cpts, skb);
743 	ndev->stats.tx_packets++;
744 	ndev->stats.tx_bytes += len;
745 	dev_kfree_skb_any(skb);
746 }
747 
748 static void cpsw_rx_vlan_encap(struct sk_buff *skb)
749 {
750 	struct cpsw_priv *priv = netdev_priv(skb->dev);
751 	struct cpsw_common *cpsw = priv->cpsw;
752 	u32 rx_vlan_encap_hdr = *((u32 *)skb->data);
753 	u16 vtag, vid, prio, pkt_type;
754 
755 	/* Remove VLAN header encapsulation word */
756 	skb_pull(skb, CPSW_RX_VLAN_ENCAP_HDR_SIZE);
757 
758 	pkt_type = (rx_vlan_encap_hdr >>
759 		    CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_SHIFT) &
760 		    CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_MSK;
761 	/* Ignore unknown & Priority-tagged packets*/
762 	if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_RESERV ||
763 	    pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_PRIO_TAG)
764 		return;
765 
766 	vid = (rx_vlan_encap_hdr >>
767 	       CPSW_RX_VLAN_ENCAP_HDR_VID_SHIFT) &
768 	       VLAN_VID_MASK;
769 	/* Ignore vid 0 and pass packet as is */
770 	if (!vid)
771 		return;
772 	/* Ignore default vlans in dual mac mode */
773 	if (cpsw->data.dual_emac &&
774 	    vid == cpsw->slaves[priv->emac_port].port_vlan)
775 		return;
776 
777 	prio = (rx_vlan_encap_hdr >>
778 		CPSW_RX_VLAN_ENCAP_HDR_PRIO_SHIFT) &
779 		CPSW_RX_VLAN_ENCAP_HDR_PRIO_MSK;
780 
781 	vtag = (prio << VLAN_PRIO_SHIFT) | vid;
782 	__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vtag);
783 
784 	/* strip vlan tag for VLAN-tagged packet */
785 	if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_VLAN_TAG) {
786 		memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
787 		skb_pull(skb, VLAN_HLEN);
788 	}
789 }
790 
791 static void cpsw_rx_handler(void *token, int len, int status)
792 {
793 	struct cpdma_chan	*ch;
794 	struct sk_buff		*skb = token;
795 	struct sk_buff		*new_skb;
796 	struct net_device	*ndev = skb->dev;
797 	int			ret = 0, port;
798 	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
799 
800 	if (cpsw->data.dual_emac) {
801 		port = CPDMA_RX_SOURCE_PORT(status);
802 		if (port) {
803 			ndev = cpsw->slaves[--port].ndev;
804 			skb->dev = ndev;
805 		}
806 	}
807 
808 	if (unlikely(status < 0) || unlikely(!netif_running(ndev))) {
809 		/* In dual emac mode check for all interfaces */
810 		if (cpsw->data.dual_emac && cpsw->usage_count &&
811 		    (status >= 0)) {
812 			/* The packet received is for the interface which
813 			 * is already down and the other interface is up
814 			 * and running, instead of freeing which results
815 			 * in reducing of the number of rx descriptor in
816 			 * DMA engine, requeue skb back to cpdma.
817 			 */
818 			new_skb = skb;
819 			goto requeue;
820 		}
821 
822 		/* the interface is going down, skbs are purged */
823 		dev_kfree_skb_any(skb);
824 		return;
825 	}
826 
827 	new_skb = netdev_alloc_skb_ip_align(ndev, cpsw->rx_packet_max);
828 	if (new_skb) {
829 		skb_copy_queue_mapping(new_skb, skb);
830 		skb_put(skb, len);
831 		if (status & CPDMA_RX_VLAN_ENCAP)
832 			cpsw_rx_vlan_encap(skb);
833 		cpts_rx_timestamp(cpsw->cpts, skb);
834 		skb->protocol = eth_type_trans(skb, ndev);
835 		netif_receive_skb(skb);
836 		ndev->stats.rx_bytes += len;
837 		ndev->stats.rx_packets++;
838 		kmemleak_not_leak(new_skb);
839 	} else {
840 		ndev->stats.rx_dropped++;
841 		new_skb = skb;
842 	}
843 
844 requeue:
845 	if (netif_dormant(ndev)) {
846 		dev_kfree_skb_any(new_skb);
847 		return;
848 	}
849 
850 	ch = cpsw->rxv[skb_get_queue_mapping(new_skb)].ch;
851 	ret = cpdma_chan_submit(ch, new_skb, new_skb->data,
852 				skb_tailroom(new_skb), 0);
853 	if (WARN_ON(ret < 0))
854 		dev_kfree_skb_any(new_skb);
855 }
856 
857 static void cpsw_split_res(struct net_device *ndev)
858 {
859 	struct cpsw_priv *priv = netdev_priv(ndev);
860 	u32 consumed_rate = 0, bigest_rate = 0;
861 	struct cpsw_common *cpsw = priv->cpsw;
862 	struct cpsw_vector *txv = cpsw->txv;
863 	int i, ch_weight, rlim_ch_num = 0;
864 	int budget, bigest_rate_ch = 0;
865 	u32 ch_rate, max_rate;
866 	int ch_budget = 0;
867 
868 	for (i = 0; i < cpsw->tx_ch_num; i++) {
869 		ch_rate = cpdma_chan_get_rate(txv[i].ch);
870 		if (!ch_rate)
871 			continue;
872 
873 		rlim_ch_num++;
874 		consumed_rate += ch_rate;
875 	}
876 
877 	if (cpsw->tx_ch_num == rlim_ch_num) {
878 		max_rate = consumed_rate;
879 	} else if (!rlim_ch_num) {
880 		ch_budget = CPSW_POLL_WEIGHT / cpsw->tx_ch_num;
881 		bigest_rate = 0;
882 		max_rate = consumed_rate;
883 	} else {
884 		max_rate = cpsw->speed * 1000;
885 
886 		/* if max_rate is less then expected due to reduced link speed,
887 		 * split proportionally according next potential max speed
888 		 */
889 		if (max_rate < consumed_rate)
890 			max_rate *= 10;
891 
892 		if (max_rate < consumed_rate)
893 			max_rate *= 10;
894 
895 		ch_budget = (consumed_rate * CPSW_POLL_WEIGHT) / max_rate;
896 		ch_budget = (CPSW_POLL_WEIGHT - ch_budget) /
897 			    (cpsw->tx_ch_num - rlim_ch_num);
898 		bigest_rate = (max_rate - consumed_rate) /
899 			      (cpsw->tx_ch_num - rlim_ch_num);
900 	}
901 
902 	/* split tx weight/budget */
903 	budget = CPSW_POLL_WEIGHT;
904 	for (i = 0; i < cpsw->tx_ch_num; i++) {
905 		ch_rate = cpdma_chan_get_rate(txv[i].ch);
906 		if (ch_rate) {
907 			txv[i].budget = (ch_rate * CPSW_POLL_WEIGHT) / max_rate;
908 			if (!txv[i].budget)
909 				txv[i].budget++;
910 			if (ch_rate > bigest_rate) {
911 				bigest_rate_ch = i;
912 				bigest_rate = ch_rate;
913 			}
914 
915 			ch_weight = (ch_rate * 100) / max_rate;
916 			if (!ch_weight)
917 				ch_weight++;
918 			cpdma_chan_set_weight(cpsw->txv[i].ch, ch_weight);
919 		} else {
920 			txv[i].budget = ch_budget;
921 			if (!bigest_rate_ch)
922 				bigest_rate_ch = i;
923 			cpdma_chan_set_weight(cpsw->txv[i].ch, 0);
924 		}
925 
926 		budget -= txv[i].budget;
927 	}
928 
929 	if (budget)
930 		txv[bigest_rate_ch].budget += budget;
931 
932 	/* split rx budget */
933 	budget = CPSW_POLL_WEIGHT;
934 	ch_budget = budget / cpsw->rx_ch_num;
935 	for (i = 0; i < cpsw->rx_ch_num; i++) {
936 		cpsw->rxv[i].budget = ch_budget;
937 		budget -= ch_budget;
938 	}
939 
940 	if (budget)
941 		cpsw->rxv[0].budget += budget;
942 }
943 
944 static irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id)
945 {
946 	struct cpsw_common *cpsw = dev_id;
947 
948 	writel(0, &cpsw->wr_regs->tx_en);
949 	cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_TX);
950 
951 	if (cpsw->quirk_irq) {
952 		disable_irq_nosync(cpsw->irqs_table[1]);
953 		cpsw->tx_irq_disabled = true;
954 	}
955 
956 	napi_schedule(&cpsw->napi_tx);
957 	return IRQ_HANDLED;
958 }
959 
960 static irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id)
961 {
962 	struct cpsw_common *cpsw = dev_id;
963 
964 	cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_RX);
965 	writel(0, &cpsw->wr_regs->rx_en);
966 
967 	if (cpsw->quirk_irq) {
968 		disable_irq_nosync(cpsw->irqs_table[0]);
969 		cpsw->rx_irq_disabled = true;
970 	}
971 
972 	napi_schedule(&cpsw->napi_rx);
973 	return IRQ_HANDLED;
974 }
975 
976 static int cpsw_tx_mq_poll(struct napi_struct *napi_tx, int budget)
977 {
978 	u32			ch_map;
979 	int			num_tx, cur_budget, ch;
980 	struct cpsw_common	*cpsw = napi_to_cpsw(napi_tx);
981 	struct cpsw_vector	*txv;
982 
983 	/* process every unprocessed channel */
984 	ch_map = cpdma_ctrl_txchs_state(cpsw->dma);
985 	for (ch = 0, num_tx = 0; ch_map & 0xff; ch_map <<= 1, ch++) {
986 		if (!(ch_map & 0x80))
987 			continue;
988 
989 		txv = &cpsw->txv[ch];
990 		if (unlikely(txv->budget > budget - num_tx))
991 			cur_budget = budget - num_tx;
992 		else
993 			cur_budget = txv->budget;
994 
995 		num_tx += cpdma_chan_process(txv->ch, cur_budget);
996 		if (num_tx >= budget)
997 			break;
998 	}
999 
1000 	if (num_tx < budget) {
1001 		napi_complete(napi_tx);
1002 		writel(0xff, &cpsw->wr_regs->tx_en);
1003 	}
1004 
1005 	return num_tx;
1006 }
1007 
1008 static int cpsw_tx_poll(struct napi_struct *napi_tx, int budget)
1009 {
1010 	struct cpsw_common *cpsw = napi_to_cpsw(napi_tx);
1011 	int num_tx;
1012 
1013 	num_tx = cpdma_chan_process(cpsw->txv[0].ch, budget);
1014 	if (num_tx < budget) {
1015 		napi_complete(napi_tx);
1016 		writel(0xff, &cpsw->wr_regs->tx_en);
1017 		if (cpsw->tx_irq_disabled) {
1018 			cpsw->tx_irq_disabled = false;
1019 			enable_irq(cpsw->irqs_table[1]);
1020 		}
1021 	}
1022 
1023 	return num_tx;
1024 }
1025 
1026 static int cpsw_rx_mq_poll(struct napi_struct *napi_rx, int budget)
1027 {
1028 	u32			ch_map;
1029 	int			num_rx, cur_budget, ch;
1030 	struct cpsw_common	*cpsw = napi_to_cpsw(napi_rx);
1031 	struct cpsw_vector	*rxv;
1032 
1033 	/* process every unprocessed channel */
1034 	ch_map = cpdma_ctrl_rxchs_state(cpsw->dma);
1035 	for (ch = 0, num_rx = 0; ch_map; ch_map >>= 1, ch++) {
1036 		if (!(ch_map & 0x01))
1037 			continue;
1038 
1039 		rxv = &cpsw->rxv[ch];
1040 		if (unlikely(rxv->budget > budget - num_rx))
1041 			cur_budget = budget - num_rx;
1042 		else
1043 			cur_budget = rxv->budget;
1044 
1045 		num_rx += cpdma_chan_process(rxv->ch, cur_budget);
1046 		if (num_rx >= budget)
1047 			break;
1048 	}
1049 
1050 	if (num_rx < budget) {
1051 		napi_complete_done(napi_rx, num_rx);
1052 		writel(0xff, &cpsw->wr_regs->rx_en);
1053 	}
1054 
1055 	return num_rx;
1056 }
1057 
1058 static int cpsw_rx_poll(struct napi_struct *napi_rx, int budget)
1059 {
1060 	struct cpsw_common *cpsw = napi_to_cpsw(napi_rx);
1061 	int num_rx;
1062 
1063 	num_rx = cpdma_chan_process(cpsw->rxv[0].ch, budget);
1064 	if (num_rx < budget) {
1065 		napi_complete_done(napi_rx, num_rx);
1066 		writel(0xff, &cpsw->wr_regs->rx_en);
1067 		if (cpsw->rx_irq_disabled) {
1068 			cpsw->rx_irq_disabled = false;
1069 			enable_irq(cpsw->irqs_table[0]);
1070 		}
1071 	}
1072 
1073 	return num_rx;
1074 }
1075 
1076 static inline void soft_reset(const char *module, void __iomem *reg)
1077 {
1078 	unsigned long timeout = jiffies + HZ;
1079 
1080 	writel_relaxed(1, reg);
1081 	do {
1082 		cpu_relax();
1083 	} while ((readl_relaxed(reg) & 1) && time_after(timeout, jiffies));
1084 
1085 	WARN(readl_relaxed(reg) & 1, "failed to soft-reset %s\n", module);
1086 }
1087 
1088 static void cpsw_set_slave_mac(struct cpsw_slave *slave,
1089 			       struct cpsw_priv *priv)
1090 {
1091 	slave_write(slave, mac_hi(priv->mac_addr), SA_HI);
1092 	slave_write(slave, mac_lo(priv->mac_addr), SA_LO);
1093 }
1094 
1095 static bool cpsw_shp_is_off(struct cpsw_priv *priv)
1096 {
1097 	struct cpsw_common *cpsw = priv->cpsw;
1098 	struct cpsw_slave *slave;
1099 	u32 shift, mask, val;
1100 
1101 	val = readl_relaxed(&cpsw->regs->ptype);
1102 
1103 	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
1104 	shift = CPSW_FIFO_SHAPE_EN_SHIFT + 3 * slave->slave_num;
1105 	mask = 7 << shift;
1106 	val = val & mask;
1107 
1108 	return !val;
1109 }
1110 
1111 static void cpsw_fifo_shp_on(struct cpsw_priv *priv, int fifo, int on)
1112 {
1113 	struct cpsw_common *cpsw = priv->cpsw;
1114 	struct cpsw_slave *slave;
1115 	u32 shift, mask, val;
1116 
1117 	val = readl_relaxed(&cpsw->regs->ptype);
1118 
1119 	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
1120 	shift = CPSW_FIFO_SHAPE_EN_SHIFT + 3 * slave->slave_num;
1121 	mask = (1 << --fifo) << shift;
1122 	val = on ? val | mask : val & ~mask;
1123 
1124 	writel_relaxed(val, &cpsw->regs->ptype);
1125 }
1126 
1127 static void _cpsw_adjust_link(struct cpsw_slave *slave,
1128 			      struct cpsw_priv *priv, bool *link)
1129 {
1130 	struct phy_device	*phy = slave->phy;
1131 	u32			mac_control = 0;
1132 	u32			slave_port;
1133 	struct cpsw_common *cpsw = priv->cpsw;
1134 
1135 	if (!phy)
1136 		return;
1137 
1138 	slave_port = cpsw_get_slave_port(slave->slave_num);
1139 
1140 	if (phy->link) {
1141 		mac_control = cpsw->data.mac_control;
1142 
1143 		/* enable forwarding */
1144 		cpsw_ale_control_set(cpsw->ale, slave_port,
1145 				     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
1146 
1147 		if (phy->speed == 1000)
1148 			mac_control |= BIT(7);	/* GIGABITEN	*/
1149 		if (phy->duplex)
1150 			mac_control |= BIT(0);	/* FULLDUPLEXEN	*/
1151 
1152 		/* set speed_in input in case RMII mode is used in 100Mbps */
1153 		if (phy->speed == 100)
1154 			mac_control |= BIT(15);
1155 		/* in band mode only works in 10Mbps RGMII mode */
1156 		else if ((phy->speed == 10) && phy_interface_is_rgmii(phy))
1157 			mac_control |= BIT(18); /* In Band mode */
1158 
1159 		if (priv->rx_pause)
1160 			mac_control |= BIT(3);
1161 
1162 		if (priv->tx_pause)
1163 			mac_control |= BIT(4);
1164 
1165 		*link = true;
1166 
1167 		if (priv->shp_cfg_speed &&
1168 		    priv->shp_cfg_speed != slave->phy->speed &&
1169 		    !cpsw_shp_is_off(priv))
1170 			dev_warn(priv->dev,
1171 				 "Speed was changed, CBS shaper speeds are changed!");
1172 	} else {
1173 		mac_control = 0;
1174 		/* disable forwarding */
1175 		cpsw_ale_control_set(cpsw->ale, slave_port,
1176 				     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1177 	}
1178 
1179 	if (mac_control != slave->mac_control) {
1180 		phy_print_status(phy);
1181 		writel_relaxed(mac_control, &slave->sliver->mac_control);
1182 	}
1183 
1184 	slave->mac_control = mac_control;
1185 }
1186 
1187 static int cpsw_get_common_speed(struct cpsw_common *cpsw)
1188 {
1189 	int i, speed;
1190 
1191 	for (i = 0, speed = 0; i < cpsw->data.slaves; i++)
1192 		if (cpsw->slaves[i].phy && cpsw->slaves[i].phy->link)
1193 			speed += cpsw->slaves[i].phy->speed;
1194 
1195 	return speed;
1196 }
1197 
1198 static int cpsw_need_resplit(struct cpsw_common *cpsw)
1199 {
1200 	int i, rlim_ch_num;
1201 	int speed, ch_rate;
1202 
1203 	/* re-split resources only in case speed was changed */
1204 	speed = cpsw_get_common_speed(cpsw);
1205 	if (speed == cpsw->speed || !speed)
1206 		return 0;
1207 
1208 	cpsw->speed = speed;
1209 
1210 	for (i = 0, rlim_ch_num = 0; i < cpsw->tx_ch_num; i++) {
1211 		ch_rate = cpdma_chan_get_rate(cpsw->txv[i].ch);
1212 		if (!ch_rate)
1213 			break;
1214 
1215 		rlim_ch_num++;
1216 	}
1217 
1218 	/* cases not dependent on speed */
1219 	if (!rlim_ch_num || rlim_ch_num == cpsw->tx_ch_num)
1220 		return 0;
1221 
1222 	return 1;
1223 }
1224 
1225 static void cpsw_adjust_link(struct net_device *ndev)
1226 {
1227 	struct cpsw_priv	*priv = netdev_priv(ndev);
1228 	struct cpsw_common	*cpsw = priv->cpsw;
1229 	bool			link = false;
1230 
1231 	for_each_slave(priv, _cpsw_adjust_link, priv, &link);
1232 
1233 	if (link) {
1234 		if (cpsw_need_resplit(cpsw))
1235 			cpsw_split_res(ndev);
1236 
1237 		netif_carrier_on(ndev);
1238 		if (netif_running(ndev))
1239 			netif_tx_wake_all_queues(ndev);
1240 	} else {
1241 		netif_carrier_off(ndev);
1242 		netif_tx_stop_all_queues(ndev);
1243 	}
1244 }
1245 
1246 static int cpsw_get_coalesce(struct net_device *ndev,
1247 				struct ethtool_coalesce *coal)
1248 {
1249 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1250 
1251 	coal->rx_coalesce_usecs = cpsw->coal_intvl;
1252 	return 0;
1253 }
1254 
1255 static int cpsw_set_coalesce(struct net_device *ndev,
1256 				struct ethtool_coalesce *coal)
1257 {
1258 	struct cpsw_priv *priv = netdev_priv(ndev);
1259 	u32 int_ctrl;
1260 	u32 num_interrupts = 0;
1261 	u32 prescale = 0;
1262 	u32 addnl_dvdr = 1;
1263 	u32 coal_intvl = 0;
1264 	struct cpsw_common *cpsw = priv->cpsw;
1265 
1266 	coal_intvl = coal->rx_coalesce_usecs;
1267 
1268 	int_ctrl =  readl(&cpsw->wr_regs->int_control);
1269 	prescale = cpsw->bus_freq_mhz * 4;
1270 
1271 	if (!coal->rx_coalesce_usecs) {
1272 		int_ctrl &= ~(CPSW_INTPRESCALE_MASK | CPSW_INTPACEEN);
1273 		goto update_return;
1274 	}
1275 
1276 	if (coal_intvl < CPSW_CMINTMIN_INTVL)
1277 		coal_intvl = CPSW_CMINTMIN_INTVL;
1278 
1279 	if (coal_intvl > CPSW_CMINTMAX_INTVL) {
1280 		/* Interrupt pacer works with 4us Pulse, we can
1281 		 * throttle further by dilating the 4us pulse.
1282 		 */
1283 		addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale;
1284 
1285 		if (addnl_dvdr > 1) {
1286 			prescale *= addnl_dvdr;
1287 			if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr))
1288 				coal_intvl = (CPSW_CMINTMAX_INTVL
1289 						* addnl_dvdr);
1290 		} else {
1291 			addnl_dvdr = 1;
1292 			coal_intvl = CPSW_CMINTMAX_INTVL;
1293 		}
1294 	}
1295 
1296 	num_interrupts = (1000 * addnl_dvdr) / coal_intvl;
1297 	writel(num_interrupts, &cpsw->wr_regs->rx_imax);
1298 	writel(num_interrupts, &cpsw->wr_regs->tx_imax);
1299 
1300 	int_ctrl |= CPSW_INTPACEEN;
1301 	int_ctrl &= (~CPSW_INTPRESCALE_MASK);
1302 	int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK);
1303 
1304 update_return:
1305 	writel(int_ctrl, &cpsw->wr_regs->int_control);
1306 
1307 	cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl);
1308 	cpsw->coal_intvl = coal_intvl;
1309 
1310 	return 0;
1311 }
1312 
1313 static int cpsw_get_sset_count(struct net_device *ndev, int sset)
1314 {
1315 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1316 
1317 	switch (sset) {
1318 	case ETH_SS_STATS:
1319 		return (CPSW_STATS_COMMON_LEN +
1320 		       (cpsw->rx_ch_num + cpsw->tx_ch_num) *
1321 		       CPSW_STATS_CH_LEN);
1322 	default:
1323 		return -EOPNOTSUPP;
1324 	}
1325 }
1326 
1327 static void cpsw_add_ch_strings(u8 **p, int ch_num, int rx_dir)
1328 {
1329 	int ch_stats_len;
1330 	int line;
1331 	int i;
1332 
1333 	ch_stats_len = CPSW_STATS_CH_LEN * ch_num;
1334 	for (i = 0; i < ch_stats_len; i++) {
1335 		line = i % CPSW_STATS_CH_LEN;
1336 		snprintf(*p, ETH_GSTRING_LEN,
1337 			 "%s DMA chan %ld: %s", rx_dir ? "Rx" : "Tx",
1338 			 (long)(i / CPSW_STATS_CH_LEN),
1339 			 cpsw_gstrings_ch_stats[line].stat_string);
1340 		*p += ETH_GSTRING_LEN;
1341 	}
1342 }
1343 
1344 static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1345 {
1346 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1347 	u8 *p = data;
1348 	int i;
1349 
1350 	switch (stringset) {
1351 	case ETH_SS_STATS:
1352 		for (i = 0; i < CPSW_STATS_COMMON_LEN; i++) {
1353 			memcpy(p, cpsw_gstrings_stats[i].stat_string,
1354 			       ETH_GSTRING_LEN);
1355 			p += ETH_GSTRING_LEN;
1356 		}
1357 
1358 		cpsw_add_ch_strings(&p, cpsw->rx_ch_num, 1);
1359 		cpsw_add_ch_strings(&p, cpsw->tx_ch_num, 0);
1360 		break;
1361 	}
1362 }
1363 
1364 static void cpsw_get_ethtool_stats(struct net_device *ndev,
1365 				    struct ethtool_stats *stats, u64 *data)
1366 {
1367 	u8 *p;
1368 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1369 	struct cpdma_chan_stats ch_stats;
1370 	int i, l, ch;
1371 
1372 	/* Collect Davinci CPDMA stats for Rx and Tx Channel */
1373 	for (l = 0; l < CPSW_STATS_COMMON_LEN; l++)
1374 		data[l] = readl(cpsw->hw_stats +
1375 				cpsw_gstrings_stats[l].stat_offset);
1376 
1377 	for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1378 		cpdma_chan_get_stats(cpsw->rxv[ch].ch, &ch_stats);
1379 		for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
1380 			p = (u8 *)&ch_stats +
1381 				cpsw_gstrings_ch_stats[i].stat_offset;
1382 			data[l] = *(u32 *)p;
1383 		}
1384 	}
1385 
1386 	for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
1387 		cpdma_chan_get_stats(cpsw->txv[ch].ch, &ch_stats);
1388 		for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
1389 			p = (u8 *)&ch_stats +
1390 				cpsw_gstrings_ch_stats[i].stat_offset;
1391 			data[l] = *(u32 *)p;
1392 		}
1393 	}
1394 }
1395 
1396 static inline int cpsw_tx_packet_submit(struct cpsw_priv *priv,
1397 					struct sk_buff *skb,
1398 					struct cpdma_chan *txch)
1399 {
1400 	struct cpsw_common *cpsw = priv->cpsw;
1401 
1402 	skb_tx_timestamp(skb);
1403 	return cpdma_chan_submit(txch, skb, skb->data, skb->len,
1404 				 priv->emac_port + cpsw->data.dual_emac);
1405 }
1406 
1407 static inline void cpsw_add_dual_emac_def_ale_entries(
1408 		struct cpsw_priv *priv, struct cpsw_slave *slave,
1409 		u32 slave_port)
1410 {
1411 	struct cpsw_common *cpsw = priv->cpsw;
1412 	u32 port_mask = 1 << slave_port | ALE_PORT_HOST;
1413 
1414 	if (cpsw->version == CPSW_VERSION_1)
1415 		slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN);
1416 	else
1417 		slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN);
1418 	cpsw_ale_add_vlan(cpsw->ale, slave->port_vlan, port_mask,
1419 			  port_mask, port_mask, 0);
1420 	cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1421 			   ALE_PORT_HOST, ALE_VLAN, slave->port_vlan, 0);
1422 	cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
1423 			   HOST_PORT_NUM, ALE_VLAN |
1424 			   ALE_SECURE, slave->port_vlan);
1425 	cpsw_ale_control_set(cpsw->ale, slave_port,
1426 			     ALE_PORT_DROP_UNKNOWN_VLAN, 1);
1427 }
1428 
1429 static void soft_reset_slave(struct cpsw_slave *slave)
1430 {
1431 	char name[32];
1432 
1433 	snprintf(name, sizeof(name), "slave-%d", slave->slave_num);
1434 	soft_reset(name, &slave->sliver->soft_reset);
1435 }
1436 
1437 static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv)
1438 {
1439 	u32 slave_port;
1440 	struct phy_device *phy;
1441 	struct cpsw_common *cpsw = priv->cpsw;
1442 
1443 	soft_reset_slave(slave);
1444 
1445 	/* setup priority mapping */
1446 	writel_relaxed(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map);
1447 
1448 	switch (cpsw->version) {
1449 	case CPSW_VERSION_1:
1450 		slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP);
1451 		/* Increase RX FIFO size to 5 for supporting fullduplex
1452 		 * flow control mode
1453 		 */
1454 		slave_write(slave,
1455 			    (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
1456 			    CPSW_MAX_BLKS_RX, CPSW1_MAX_BLKS);
1457 		break;
1458 	case CPSW_VERSION_2:
1459 	case CPSW_VERSION_3:
1460 	case CPSW_VERSION_4:
1461 		slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP);
1462 		/* Increase RX FIFO size to 5 for supporting fullduplex
1463 		 * flow control mode
1464 		 */
1465 		slave_write(slave,
1466 			    (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
1467 			    CPSW_MAX_BLKS_RX, CPSW2_MAX_BLKS);
1468 		break;
1469 	}
1470 
1471 	/* setup max packet size, and mac address */
1472 	writel_relaxed(cpsw->rx_packet_max, &slave->sliver->rx_maxlen);
1473 	cpsw_set_slave_mac(slave, priv);
1474 
1475 	slave->mac_control = 0;	/* no link yet */
1476 
1477 	slave_port = cpsw_get_slave_port(slave->slave_num);
1478 
1479 	if (cpsw->data.dual_emac)
1480 		cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port);
1481 	else
1482 		cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1483 				   1 << slave_port, 0, 0, ALE_MCAST_FWD_2);
1484 
1485 	if (slave->data->phy_node) {
1486 		phy = of_phy_connect(priv->ndev, slave->data->phy_node,
1487 				 &cpsw_adjust_link, 0, slave->data->phy_if);
1488 		if (!phy) {
1489 			dev_err(priv->dev, "phy \"%pOF\" not found on slave %d\n",
1490 				slave->data->phy_node,
1491 				slave->slave_num);
1492 			return;
1493 		}
1494 	} else {
1495 		phy = phy_connect(priv->ndev, slave->data->phy_id,
1496 				 &cpsw_adjust_link, slave->data->phy_if);
1497 		if (IS_ERR(phy)) {
1498 			dev_err(priv->dev,
1499 				"phy \"%s\" not found on slave %d, err %ld\n",
1500 				slave->data->phy_id, slave->slave_num,
1501 				PTR_ERR(phy));
1502 			return;
1503 		}
1504 	}
1505 
1506 	slave->phy = phy;
1507 
1508 	phy_attached_info(slave->phy);
1509 
1510 	phy_start(slave->phy);
1511 
1512 	/* Configure GMII_SEL register */
1513 	cpsw_phy_sel(cpsw->dev, slave->phy->interface, slave->slave_num);
1514 }
1515 
1516 static inline void cpsw_add_default_vlan(struct cpsw_priv *priv)
1517 {
1518 	struct cpsw_common *cpsw = priv->cpsw;
1519 	const int vlan = cpsw->data.default_vlan;
1520 	u32 reg;
1521 	int i;
1522 	int unreg_mcast_mask;
1523 
1524 	reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN :
1525 	       CPSW2_PORT_VLAN;
1526 
1527 	writel(vlan, &cpsw->host_port_regs->port_vlan);
1528 
1529 	for (i = 0; i < cpsw->data.slaves; i++)
1530 		slave_write(cpsw->slaves + i, vlan, reg);
1531 
1532 	if (priv->ndev->flags & IFF_ALLMULTI)
1533 		unreg_mcast_mask = ALE_ALL_PORTS;
1534 	else
1535 		unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
1536 
1537 	cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS,
1538 			  ALE_ALL_PORTS, ALE_ALL_PORTS,
1539 			  unreg_mcast_mask);
1540 }
1541 
1542 static void cpsw_init_host_port(struct cpsw_priv *priv)
1543 {
1544 	u32 fifo_mode;
1545 	u32 control_reg;
1546 	struct cpsw_common *cpsw = priv->cpsw;
1547 
1548 	/* soft reset the controller and initialize ale */
1549 	soft_reset("cpsw", &cpsw->regs->soft_reset);
1550 	cpsw_ale_start(cpsw->ale);
1551 
1552 	/* switch to vlan unaware mode */
1553 	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_VLAN_AWARE,
1554 			     CPSW_ALE_VLAN_AWARE);
1555 	control_reg = readl(&cpsw->regs->control);
1556 	control_reg |= CPSW_VLAN_AWARE | CPSW_RX_VLAN_ENCAP;
1557 	writel(control_reg, &cpsw->regs->control);
1558 	fifo_mode = (cpsw->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE :
1559 		     CPSW_FIFO_NORMAL_MODE;
1560 	writel(fifo_mode, &cpsw->host_port_regs->tx_in_ctl);
1561 
1562 	/* setup host port priority mapping */
1563 	writel_relaxed(CPDMA_TX_PRIORITY_MAP,
1564 		       &cpsw->host_port_regs->cpdma_tx_pri_map);
1565 	writel_relaxed(0, &cpsw->host_port_regs->cpdma_rx_chan_map);
1566 
1567 	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM,
1568 			     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
1569 
1570 	if (!cpsw->data.dual_emac) {
1571 		cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1572 				   0, 0);
1573 		cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1574 				   ALE_PORT_HOST, 0, 0, ALE_MCAST_FWD_2);
1575 	}
1576 }
1577 
1578 static int cpsw_fill_rx_channels(struct cpsw_priv *priv)
1579 {
1580 	struct cpsw_common *cpsw = priv->cpsw;
1581 	struct sk_buff *skb;
1582 	int ch_buf_num;
1583 	int ch, i, ret;
1584 
1585 	for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1586 		ch_buf_num = cpdma_chan_get_rx_buf_num(cpsw->rxv[ch].ch);
1587 		for (i = 0; i < ch_buf_num; i++) {
1588 			skb = __netdev_alloc_skb_ip_align(priv->ndev,
1589 							  cpsw->rx_packet_max,
1590 							  GFP_KERNEL);
1591 			if (!skb) {
1592 				cpsw_err(priv, ifup, "cannot allocate skb\n");
1593 				return -ENOMEM;
1594 			}
1595 
1596 			skb_set_queue_mapping(skb, ch);
1597 			ret = cpdma_chan_submit(cpsw->rxv[ch].ch, skb,
1598 						skb->data, skb_tailroom(skb),
1599 						0);
1600 			if (ret < 0) {
1601 				cpsw_err(priv, ifup,
1602 					 "cannot submit skb to channel %d rx, error %d\n",
1603 					 ch, ret);
1604 				kfree_skb(skb);
1605 				return ret;
1606 			}
1607 			kmemleak_not_leak(skb);
1608 		}
1609 
1610 		cpsw_info(priv, ifup, "ch %d rx, submitted %d descriptors\n",
1611 			  ch, ch_buf_num);
1612 	}
1613 
1614 	return 0;
1615 }
1616 
1617 static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_common *cpsw)
1618 {
1619 	u32 slave_port;
1620 
1621 	slave_port = cpsw_get_slave_port(slave->slave_num);
1622 
1623 	if (!slave->phy)
1624 		return;
1625 	phy_stop(slave->phy);
1626 	phy_disconnect(slave->phy);
1627 	slave->phy = NULL;
1628 	cpsw_ale_control_set(cpsw->ale, slave_port,
1629 			     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1630 	soft_reset_slave(slave);
1631 }
1632 
1633 static int cpsw_tc_to_fifo(int tc, int num_tc)
1634 {
1635 	if (tc == num_tc - 1)
1636 		return 0;
1637 
1638 	return CPSW_FIFO_SHAPERS_NUM - tc;
1639 }
1640 
1641 static int cpsw_set_fifo_bw(struct cpsw_priv *priv, int fifo, int bw)
1642 {
1643 	struct cpsw_common *cpsw = priv->cpsw;
1644 	u32 val = 0, send_pct, shift;
1645 	struct cpsw_slave *slave;
1646 	int pct = 0, i;
1647 
1648 	if (bw > priv->shp_cfg_speed * 1000)
1649 		goto err;
1650 
1651 	/* shaping has to stay enabled for highest fifos linearly
1652 	 * and fifo bw no more then interface can allow
1653 	 */
1654 	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
1655 	send_pct = slave_read(slave, SEND_PERCENT);
1656 	for (i = CPSW_FIFO_SHAPERS_NUM; i > 0; i--) {
1657 		if (!bw) {
1658 			if (i >= fifo || !priv->fifo_bw[i])
1659 				continue;
1660 
1661 			dev_warn(priv->dev, "Prev FIFO%d is shaped", i);
1662 			continue;
1663 		}
1664 
1665 		if (!priv->fifo_bw[i] && i > fifo) {
1666 			dev_err(priv->dev, "Upper FIFO%d is not shaped", i);
1667 			return -EINVAL;
1668 		}
1669 
1670 		shift = (i - 1) * 8;
1671 		if (i == fifo) {
1672 			send_pct &= ~(CPSW_PCT_MASK << shift);
1673 			val = DIV_ROUND_UP(bw, priv->shp_cfg_speed * 10);
1674 			if (!val)
1675 				val = 1;
1676 
1677 			send_pct |= val << shift;
1678 			pct += val;
1679 			continue;
1680 		}
1681 
1682 		if (priv->fifo_bw[i])
1683 			pct += (send_pct >> shift) & CPSW_PCT_MASK;
1684 	}
1685 
1686 	if (pct >= 100)
1687 		goto err;
1688 
1689 	slave_write(slave, send_pct, SEND_PERCENT);
1690 	priv->fifo_bw[fifo] = bw;
1691 
1692 	dev_warn(priv->dev, "set FIFO%d bw = %d\n", fifo,
1693 		 DIV_ROUND_CLOSEST(val * priv->shp_cfg_speed, 100));
1694 
1695 	return 0;
1696 err:
1697 	dev_err(priv->dev, "Bandwidth doesn't fit in tc configuration");
1698 	return -EINVAL;
1699 }
1700 
1701 static int cpsw_set_fifo_rlimit(struct cpsw_priv *priv, int fifo, int bw)
1702 {
1703 	struct cpsw_common *cpsw = priv->cpsw;
1704 	struct cpsw_slave *slave;
1705 	u32 tx_in_ctl_rg, val;
1706 	int ret;
1707 
1708 	ret = cpsw_set_fifo_bw(priv, fifo, bw);
1709 	if (ret)
1710 		return ret;
1711 
1712 	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
1713 	tx_in_ctl_rg = cpsw->version == CPSW_VERSION_1 ?
1714 		       CPSW1_TX_IN_CTL : CPSW2_TX_IN_CTL;
1715 
1716 	if (!bw)
1717 		cpsw_fifo_shp_on(priv, fifo, bw);
1718 
1719 	val = slave_read(slave, tx_in_ctl_rg);
1720 	if (cpsw_shp_is_off(priv)) {
1721 		/* disable FIFOs rate limited queues */
1722 		val &= ~(0xf << CPSW_FIFO_RATE_EN_SHIFT);
1723 
1724 		/* set type of FIFO queues to normal priority mode */
1725 		val &= ~(3 << CPSW_FIFO_QUEUE_TYPE_SHIFT);
1726 
1727 		/* set type of FIFO queues to be rate limited */
1728 		if (bw)
1729 			val |= 2 << CPSW_FIFO_QUEUE_TYPE_SHIFT;
1730 		else
1731 			priv->shp_cfg_speed = 0;
1732 	}
1733 
1734 	/* toggle a FIFO rate limited queue */
1735 	if (bw)
1736 		val |= BIT(fifo + CPSW_FIFO_RATE_EN_SHIFT);
1737 	else
1738 		val &= ~BIT(fifo + CPSW_FIFO_RATE_EN_SHIFT);
1739 	slave_write(slave, val, tx_in_ctl_rg);
1740 
1741 	/* FIFO transmit shape enable */
1742 	cpsw_fifo_shp_on(priv, fifo, bw);
1743 	return 0;
1744 }
1745 
1746 /* Defaults:
1747  * class A - prio 3
1748  * class B - prio 2
1749  * shaping for class A should be set first
1750  */
1751 static int cpsw_set_cbs(struct net_device *ndev,
1752 			struct tc_cbs_qopt_offload *qopt)
1753 {
1754 	struct cpsw_priv *priv = netdev_priv(ndev);
1755 	struct cpsw_common *cpsw = priv->cpsw;
1756 	struct cpsw_slave *slave;
1757 	int prev_speed = 0;
1758 	int tc, ret, fifo;
1759 	u32 bw = 0;
1760 
1761 	tc = netdev_txq_to_tc(priv->ndev, qopt->queue);
1762 
1763 	/* enable channels in backward order, as highest FIFOs must be rate
1764 	 * limited first and for compliance with CPDMA rate limited channels
1765 	 * that also used in bacward order. FIFO0 cannot be rate limited.
1766 	 */
1767 	fifo = cpsw_tc_to_fifo(tc, ndev->num_tc);
1768 	if (!fifo) {
1769 		dev_err(priv->dev, "Last tc%d can't be rate limited", tc);
1770 		return -EINVAL;
1771 	}
1772 
1773 	/* do nothing, it's disabled anyway */
1774 	if (!qopt->enable && !priv->fifo_bw[fifo])
1775 		return 0;
1776 
1777 	/* shapers can be set if link speed is known */
1778 	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
1779 	if (slave->phy && slave->phy->link) {
1780 		if (priv->shp_cfg_speed &&
1781 		    priv->shp_cfg_speed != slave->phy->speed)
1782 			prev_speed = priv->shp_cfg_speed;
1783 
1784 		priv->shp_cfg_speed = slave->phy->speed;
1785 	}
1786 
1787 	if (!priv->shp_cfg_speed) {
1788 		dev_err(priv->dev, "Link speed is not known");
1789 		return -1;
1790 	}
1791 
1792 	ret = pm_runtime_get_sync(cpsw->dev);
1793 	if (ret < 0) {
1794 		pm_runtime_put_noidle(cpsw->dev);
1795 		return ret;
1796 	}
1797 
1798 	bw = qopt->enable ? qopt->idleslope : 0;
1799 	ret = cpsw_set_fifo_rlimit(priv, fifo, bw);
1800 	if (ret) {
1801 		priv->shp_cfg_speed = prev_speed;
1802 		prev_speed = 0;
1803 	}
1804 
1805 	if (bw && prev_speed)
1806 		dev_warn(priv->dev,
1807 			 "Speed was changed, CBS shaper speeds are changed!");
1808 
1809 	pm_runtime_put_sync(cpsw->dev);
1810 	return ret;
1811 }
1812 
1813 static void cpsw_cbs_resume(struct cpsw_slave *slave, struct cpsw_priv *priv)
1814 {
1815 	int fifo, bw;
1816 
1817 	for (fifo = CPSW_FIFO_SHAPERS_NUM; fifo > 0; fifo--) {
1818 		bw = priv->fifo_bw[fifo];
1819 		if (!bw)
1820 			continue;
1821 
1822 		cpsw_set_fifo_rlimit(priv, fifo, bw);
1823 	}
1824 }
1825 
1826 static void cpsw_mqprio_resume(struct cpsw_slave *slave, struct cpsw_priv *priv)
1827 {
1828 	struct cpsw_common *cpsw = priv->cpsw;
1829 	u32 tx_prio_map = 0;
1830 	int i, tc, fifo;
1831 	u32 tx_prio_rg;
1832 
1833 	if (!priv->mqprio_hw)
1834 		return;
1835 
1836 	for (i = 0; i < 8; i++) {
1837 		tc = netdev_get_prio_tc_map(priv->ndev, i);
1838 		fifo = CPSW_FIFO_SHAPERS_NUM - tc;
1839 		tx_prio_map |= fifo << (4 * i);
1840 	}
1841 
1842 	tx_prio_rg = cpsw->version == CPSW_VERSION_1 ?
1843 		     CPSW1_TX_PRI_MAP : CPSW2_TX_PRI_MAP;
1844 
1845 	slave_write(slave, tx_prio_map, tx_prio_rg);
1846 }
1847 
1848 /* restore resources after port reset */
1849 static void cpsw_restore(struct cpsw_priv *priv)
1850 {
1851 	/* restore MQPRIO offload */
1852 	for_each_slave(priv, cpsw_mqprio_resume, priv);
1853 
1854 	/* restore CBS offload */
1855 	for_each_slave(priv, cpsw_cbs_resume, priv);
1856 }
1857 
1858 static int cpsw_ndo_open(struct net_device *ndev)
1859 {
1860 	struct cpsw_priv *priv = netdev_priv(ndev);
1861 	struct cpsw_common *cpsw = priv->cpsw;
1862 	int ret;
1863 	u32 reg;
1864 
1865 	ret = pm_runtime_get_sync(cpsw->dev);
1866 	if (ret < 0) {
1867 		pm_runtime_put_noidle(cpsw->dev);
1868 		return ret;
1869 	}
1870 
1871 	netif_carrier_off(ndev);
1872 
1873 	/* Notify the stack of the actual queue counts. */
1874 	ret = netif_set_real_num_tx_queues(ndev, cpsw->tx_ch_num);
1875 	if (ret) {
1876 		dev_err(priv->dev, "cannot set real number of tx queues\n");
1877 		goto err_cleanup;
1878 	}
1879 
1880 	ret = netif_set_real_num_rx_queues(ndev, cpsw->rx_ch_num);
1881 	if (ret) {
1882 		dev_err(priv->dev, "cannot set real number of rx queues\n");
1883 		goto err_cleanup;
1884 	}
1885 
1886 	reg = cpsw->version;
1887 
1888 	dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n",
1889 		 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg),
1890 		 CPSW_RTL_VERSION(reg));
1891 
1892 	/* Initialize host and slave ports */
1893 	if (!cpsw->usage_count)
1894 		cpsw_init_host_port(priv);
1895 	for_each_slave(priv, cpsw_slave_open, priv);
1896 
1897 	/* Add default VLAN */
1898 	if (!cpsw->data.dual_emac)
1899 		cpsw_add_default_vlan(priv);
1900 	else
1901 		cpsw_ale_add_vlan(cpsw->ale, cpsw->data.default_vlan,
1902 				  ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0);
1903 
1904 	/* initialize shared resources for every ndev */
1905 	if (!cpsw->usage_count) {
1906 		/* disable priority elevation */
1907 		writel_relaxed(0, &cpsw->regs->ptype);
1908 
1909 		/* enable statistics collection only on all ports */
1910 		writel_relaxed(0x7, &cpsw->regs->stat_port_en);
1911 
1912 		/* Enable internal fifo flow control */
1913 		writel(0x7, &cpsw->regs->flow_control);
1914 
1915 		napi_enable(&cpsw->napi_rx);
1916 		napi_enable(&cpsw->napi_tx);
1917 
1918 		if (cpsw->tx_irq_disabled) {
1919 			cpsw->tx_irq_disabled = false;
1920 			enable_irq(cpsw->irqs_table[1]);
1921 		}
1922 
1923 		if (cpsw->rx_irq_disabled) {
1924 			cpsw->rx_irq_disabled = false;
1925 			enable_irq(cpsw->irqs_table[0]);
1926 		}
1927 
1928 		ret = cpsw_fill_rx_channels(priv);
1929 		if (ret < 0)
1930 			goto err_cleanup;
1931 
1932 		if (cpts_register(cpsw->cpts))
1933 			dev_err(priv->dev, "error registering cpts device\n");
1934 
1935 	}
1936 
1937 	cpsw_restore(priv);
1938 
1939 	/* Enable Interrupt pacing if configured */
1940 	if (cpsw->coal_intvl != 0) {
1941 		struct ethtool_coalesce coal;
1942 
1943 		coal.rx_coalesce_usecs = cpsw->coal_intvl;
1944 		cpsw_set_coalesce(ndev, &coal);
1945 	}
1946 
1947 	cpdma_ctlr_start(cpsw->dma);
1948 	cpsw_intr_enable(cpsw);
1949 	cpsw->usage_count++;
1950 
1951 	return 0;
1952 
1953 err_cleanup:
1954 	cpdma_ctlr_stop(cpsw->dma);
1955 	for_each_slave(priv, cpsw_slave_stop, cpsw);
1956 	pm_runtime_put_sync(cpsw->dev);
1957 	netif_carrier_off(priv->ndev);
1958 	return ret;
1959 }
1960 
1961 static int cpsw_ndo_stop(struct net_device *ndev)
1962 {
1963 	struct cpsw_priv *priv = netdev_priv(ndev);
1964 	struct cpsw_common *cpsw = priv->cpsw;
1965 
1966 	cpsw_info(priv, ifdown, "shutting down cpsw device\n");
1967 	__dev_mc_unsync(priv->ndev, cpsw_del_mc_addr);
1968 	netif_tx_stop_all_queues(priv->ndev);
1969 	netif_carrier_off(priv->ndev);
1970 
1971 	if (cpsw->usage_count <= 1) {
1972 		napi_disable(&cpsw->napi_rx);
1973 		napi_disable(&cpsw->napi_tx);
1974 		cpts_unregister(cpsw->cpts);
1975 		cpsw_intr_disable(cpsw);
1976 		cpdma_ctlr_stop(cpsw->dma);
1977 		cpsw_ale_stop(cpsw->ale);
1978 	}
1979 	for_each_slave(priv, cpsw_slave_stop, cpsw);
1980 
1981 	if (cpsw_need_resplit(cpsw))
1982 		cpsw_split_res(ndev);
1983 
1984 	cpsw->usage_count--;
1985 	pm_runtime_put_sync(cpsw->dev);
1986 	return 0;
1987 }
1988 
1989 static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb,
1990 				       struct net_device *ndev)
1991 {
1992 	struct cpsw_priv *priv = netdev_priv(ndev);
1993 	struct cpsw_common *cpsw = priv->cpsw;
1994 	struct cpts *cpts = cpsw->cpts;
1995 	struct netdev_queue *txq;
1996 	struct cpdma_chan *txch;
1997 	int ret, q_idx;
1998 
1999 	if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) {
2000 		cpsw_err(priv, tx_err, "packet pad failed\n");
2001 		ndev->stats.tx_dropped++;
2002 		return NET_XMIT_DROP;
2003 	}
2004 
2005 	if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
2006 	    cpts_is_tx_enabled(cpts) && cpts_can_timestamp(cpts, skb))
2007 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2008 
2009 	q_idx = skb_get_queue_mapping(skb);
2010 	if (q_idx >= cpsw->tx_ch_num)
2011 		q_idx = q_idx % cpsw->tx_ch_num;
2012 
2013 	txch = cpsw->txv[q_idx].ch;
2014 	txq = netdev_get_tx_queue(ndev, q_idx);
2015 	ret = cpsw_tx_packet_submit(priv, skb, txch);
2016 	if (unlikely(ret != 0)) {
2017 		cpsw_err(priv, tx_err, "desc submit failed\n");
2018 		goto fail;
2019 	}
2020 
2021 	/* If there is no more tx desc left free then we need to
2022 	 * tell the kernel to stop sending us tx frames.
2023 	 */
2024 	if (unlikely(!cpdma_check_free_tx_desc(txch))) {
2025 		netif_tx_stop_queue(txq);
2026 
2027 		/* Barrier, so that stop_queue visible to other cpus */
2028 		smp_mb__after_atomic();
2029 
2030 		if (cpdma_check_free_tx_desc(txch))
2031 			netif_tx_wake_queue(txq);
2032 	}
2033 
2034 	return NETDEV_TX_OK;
2035 fail:
2036 	ndev->stats.tx_dropped++;
2037 	netif_tx_stop_queue(txq);
2038 
2039 	/* Barrier, so that stop_queue visible to other cpus */
2040 	smp_mb__after_atomic();
2041 
2042 	if (cpdma_check_free_tx_desc(txch))
2043 		netif_tx_wake_queue(txq);
2044 
2045 	return NETDEV_TX_BUSY;
2046 }
2047 
2048 #if IS_ENABLED(CONFIG_TI_CPTS)
2049 
2050 static void cpsw_hwtstamp_v1(struct cpsw_common *cpsw)
2051 {
2052 	struct cpsw_slave *slave = &cpsw->slaves[cpsw->data.active_slave];
2053 	u32 ts_en, seq_id;
2054 
2055 	if (!cpts_is_tx_enabled(cpsw->cpts) &&
2056 	    !cpts_is_rx_enabled(cpsw->cpts)) {
2057 		slave_write(slave, 0, CPSW1_TS_CTL);
2058 		return;
2059 	}
2060 
2061 	seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588;
2062 	ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS;
2063 
2064 	if (cpts_is_tx_enabled(cpsw->cpts))
2065 		ts_en |= CPSW_V1_TS_TX_EN;
2066 
2067 	if (cpts_is_rx_enabled(cpsw->cpts))
2068 		ts_en |= CPSW_V1_TS_RX_EN;
2069 
2070 	slave_write(slave, ts_en, CPSW1_TS_CTL);
2071 	slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE);
2072 }
2073 
2074 static void cpsw_hwtstamp_v2(struct cpsw_priv *priv)
2075 {
2076 	struct cpsw_slave *slave;
2077 	struct cpsw_common *cpsw = priv->cpsw;
2078 	u32 ctrl, mtype;
2079 
2080 	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
2081 
2082 	ctrl = slave_read(slave, CPSW2_CONTROL);
2083 	switch (cpsw->version) {
2084 	case CPSW_VERSION_2:
2085 		ctrl &= ~CTRL_V2_ALL_TS_MASK;
2086 
2087 		if (cpts_is_tx_enabled(cpsw->cpts))
2088 			ctrl |= CTRL_V2_TX_TS_BITS;
2089 
2090 		if (cpts_is_rx_enabled(cpsw->cpts))
2091 			ctrl |= CTRL_V2_RX_TS_BITS;
2092 		break;
2093 	case CPSW_VERSION_3:
2094 	default:
2095 		ctrl &= ~CTRL_V3_ALL_TS_MASK;
2096 
2097 		if (cpts_is_tx_enabled(cpsw->cpts))
2098 			ctrl |= CTRL_V3_TX_TS_BITS;
2099 
2100 		if (cpts_is_rx_enabled(cpsw->cpts))
2101 			ctrl |= CTRL_V3_RX_TS_BITS;
2102 		break;
2103 	}
2104 
2105 	mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS;
2106 
2107 	slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE);
2108 	slave_write(slave, ctrl, CPSW2_CONTROL);
2109 	writel_relaxed(ETH_P_1588, &cpsw->regs->ts_ltype);
2110 }
2111 
2112 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
2113 {
2114 	struct cpsw_priv *priv = netdev_priv(dev);
2115 	struct hwtstamp_config cfg;
2116 	struct cpsw_common *cpsw = priv->cpsw;
2117 	struct cpts *cpts = cpsw->cpts;
2118 
2119 	if (cpsw->version != CPSW_VERSION_1 &&
2120 	    cpsw->version != CPSW_VERSION_2 &&
2121 	    cpsw->version != CPSW_VERSION_3)
2122 		return -EOPNOTSUPP;
2123 
2124 	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
2125 		return -EFAULT;
2126 
2127 	/* reserved for future extensions */
2128 	if (cfg.flags)
2129 		return -EINVAL;
2130 
2131 	if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON)
2132 		return -ERANGE;
2133 
2134 	switch (cfg.rx_filter) {
2135 	case HWTSTAMP_FILTER_NONE:
2136 		cpts_rx_enable(cpts, 0);
2137 		break;
2138 	case HWTSTAMP_FILTER_ALL:
2139 	case HWTSTAMP_FILTER_NTP_ALL:
2140 		return -ERANGE;
2141 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
2142 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
2143 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
2144 		cpts_rx_enable(cpts, HWTSTAMP_FILTER_PTP_V1_L4_EVENT);
2145 		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
2146 		break;
2147 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2148 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2149 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2150 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2151 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
2152 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
2153 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
2154 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
2155 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
2156 		cpts_rx_enable(cpts, HWTSTAMP_FILTER_PTP_V2_EVENT);
2157 		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
2158 		break;
2159 	default:
2160 		return -ERANGE;
2161 	}
2162 
2163 	cpts_tx_enable(cpts, cfg.tx_type == HWTSTAMP_TX_ON);
2164 
2165 	switch (cpsw->version) {
2166 	case CPSW_VERSION_1:
2167 		cpsw_hwtstamp_v1(cpsw);
2168 		break;
2169 	case CPSW_VERSION_2:
2170 	case CPSW_VERSION_3:
2171 		cpsw_hwtstamp_v2(priv);
2172 		break;
2173 	default:
2174 		WARN_ON(1);
2175 	}
2176 
2177 	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
2178 }
2179 
2180 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
2181 {
2182 	struct cpsw_common *cpsw = ndev_to_cpsw(dev);
2183 	struct cpts *cpts = cpsw->cpts;
2184 	struct hwtstamp_config cfg;
2185 
2186 	if (cpsw->version != CPSW_VERSION_1 &&
2187 	    cpsw->version != CPSW_VERSION_2 &&
2188 	    cpsw->version != CPSW_VERSION_3)
2189 		return -EOPNOTSUPP;
2190 
2191 	cfg.flags = 0;
2192 	cfg.tx_type = cpts_is_tx_enabled(cpts) ?
2193 		      HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
2194 	cfg.rx_filter = (cpts_is_rx_enabled(cpts) ?
2195 			 cpts->rx_enable : HWTSTAMP_FILTER_NONE);
2196 
2197 	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
2198 }
2199 #else
2200 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
2201 {
2202 	return -EOPNOTSUPP;
2203 }
2204 
2205 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
2206 {
2207 	return -EOPNOTSUPP;
2208 }
2209 #endif /*CONFIG_TI_CPTS*/
2210 
2211 static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2212 {
2213 	struct cpsw_priv *priv = netdev_priv(dev);
2214 	struct cpsw_common *cpsw = priv->cpsw;
2215 	int slave_no = cpsw_slave_index(cpsw, priv);
2216 
2217 	if (!netif_running(dev))
2218 		return -EINVAL;
2219 
2220 	switch (cmd) {
2221 	case SIOCSHWTSTAMP:
2222 		return cpsw_hwtstamp_set(dev, req);
2223 	case SIOCGHWTSTAMP:
2224 		return cpsw_hwtstamp_get(dev, req);
2225 	}
2226 
2227 	if (!cpsw->slaves[slave_no].phy)
2228 		return -EOPNOTSUPP;
2229 	return phy_mii_ioctl(cpsw->slaves[slave_no].phy, req, cmd);
2230 }
2231 
2232 static void cpsw_ndo_tx_timeout(struct net_device *ndev)
2233 {
2234 	struct cpsw_priv *priv = netdev_priv(ndev);
2235 	struct cpsw_common *cpsw = priv->cpsw;
2236 	int ch;
2237 
2238 	cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n");
2239 	ndev->stats.tx_errors++;
2240 	cpsw_intr_disable(cpsw);
2241 	for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
2242 		cpdma_chan_stop(cpsw->txv[ch].ch);
2243 		cpdma_chan_start(cpsw->txv[ch].ch);
2244 	}
2245 
2246 	cpsw_intr_enable(cpsw);
2247 	netif_trans_update(ndev);
2248 	netif_tx_wake_all_queues(ndev);
2249 }
2250 
2251 static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p)
2252 {
2253 	struct cpsw_priv *priv = netdev_priv(ndev);
2254 	struct sockaddr *addr = (struct sockaddr *)p;
2255 	struct cpsw_common *cpsw = priv->cpsw;
2256 	int flags = 0;
2257 	u16 vid = 0;
2258 	int ret;
2259 
2260 	if (!is_valid_ether_addr(addr->sa_data))
2261 		return -EADDRNOTAVAIL;
2262 
2263 	ret = pm_runtime_get_sync(cpsw->dev);
2264 	if (ret < 0) {
2265 		pm_runtime_put_noidle(cpsw->dev);
2266 		return ret;
2267 	}
2268 
2269 	if (cpsw->data.dual_emac) {
2270 		vid = cpsw->slaves[priv->emac_port].port_vlan;
2271 		flags = ALE_VLAN;
2272 	}
2273 
2274 	cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
2275 			   flags, vid);
2276 	cpsw_ale_add_ucast(cpsw->ale, addr->sa_data, HOST_PORT_NUM,
2277 			   flags, vid);
2278 
2279 	memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
2280 	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
2281 	for_each_slave(priv, cpsw_set_slave_mac, priv);
2282 
2283 	pm_runtime_put(cpsw->dev);
2284 
2285 	return 0;
2286 }
2287 
2288 #ifdef CONFIG_NET_POLL_CONTROLLER
2289 static void cpsw_ndo_poll_controller(struct net_device *ndev)
2290 {
2291 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2292 
2293 	cpsw_intr_disable(cpsw);
2294 	cpsw_rx_interrupt(cpsw->irqs_table[0], cpsw);
2295 	cpsw_tx_interrupt(cpsw->irqs_table[1], cpsw);
2296 	cpsw_intr_enable(cpsw);
2297 }
2298 #endif
2299 
2300 static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv,
2301 				unsigned short vid)
2302 {
2303 	int ret;
2304 	int unreg_mcast_mask = 0;
2305 	int mcast_mask;
2306 	u32 port_mask;
2307 	struct cpsw_common *cpsw = priv->cpsw;
2308 
2309 	if (cpsw->data.dual_emac) {
2310 		port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST;
2311 
2312 		mcast_mask = ALE_PORT_HOST;
2313 		if (priv->ndev->flags & IFF_ALLMULTI)
2314 			unreg_mcast_mask = mcast_mask;
2315 	} else {
2316 		port_mask = ALE_ALL_PORTS;
2317 		mcast_mask = port_mask;
2318 
2319 		if (priv->ndev->flags & IFF_ALLMULTI)
2320 			unreg_mcast_mask = ALE_ALL_PORTS;
2321 		else
2322 			unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
2323 	}
2324 
2325 	ret = cpsw_ale_add_vlan(cpsw->ale, vid, port_mask, 0, port_mask,
2326 				unreg_mcast_mask);
2327 	if (ret != 0)
2328 		return ret;
2329 
2330 	ret = cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
2331 				 HOST_PORT_NUM, ALE_VLAN, vid);
2332 	if (ret != 0)
2333 		goto clean_vid;
2334 
2335 	ret = cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
2336 				 mcast_mask, ALE_VLAN, vid, 0);
2337 	if (ret != 0)
2338 		goto clean_vlan_ucast;
2339 	return 0;
2340 
2341 clean_vlan_ucast:
2342 	cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
2343 			   HOST_PORT_NUM, ALE_VLAN, vid);
2344 clean_vid:
2345 	cpsw_ale_del_vlan(cpsw->ale, vid, 0);
2346 	return ret;
2347 }
2348 
2349 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
2350 				    __be16 proto, u16 vid)
2351 {
2352 	struct cpsw_priv *priv = netdev_priv(ndev);
2353 	struct cpsw_common *cpsw = priv->cpsw;
2354 	int ret;
2355 
2356 	if (vid == cpsw->data.default_vlan)
2357 		return 0;
2358 
2359 	ret = pm_runtime_get_sync(cpsw->dev);
2360 	if (ret < 0) {
2361 		pm_runtime_put_noidle(cpsw->dev);
2362 		return ret;
2363 	}
2364 
2365 	if (cpsw->data.dual_emac) {
2366 		/* In dual EMAC, reserved VLAN id should not be used for
2367 		 * creating VLAN interfaces as this can break the dual
2368 		 * EMAC port separation
2369 		 */
2370 		int i;
2371 
2372 		for (i = 0; i < cpsw->data.slaves; i++) {
2373 			if (vid == cpsw->slaves[i].port_vlan) {
2374 				ret = -EINVAL;
2375 				goto err;
2376 			}
2377 		}
2378 	}
2379 
2380 	dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid);
2381 	ret = cpsw_add_vlan_ale_entry(priv, vid);
2382 err:
2383 	pm_runtime_put(cpsw->dev);
2384 	return ret;
2385 }
2386 
2387 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev,
2388 				     __be16 proto, u16 vid)
2389 {
2390 	struct cpsw_priv *priv = netdev_priv(ndev);
2391 	struct cpsw_common *cpsw = priv->cpsw;
2392 	int ret;
2393 
2394 	if (vid == cpsw->data.default_vlan)
2395 		return 0;
2396 
2397 	ret = pm_runtime_get_sync(cpsw->dev);
2398 	if (ret < 0) {
2399 		pm_runtime_put_noidle(cpsw->dev);
2400 		return ret;
2401 	}
2402 
2403 	if (cpsw->data.dual_emac) {
2404 		int i;
2405 
2406 		for (i = 0; i < cpsw->data.slaves; i++) {
2407 			if (vid == cpsw->slaves[i].port_vlan)
2408 				goto err;
2409 		}
2410 	}
2411 
2412 	dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid);
2413 	ret = cpsw_ale_del_vlan(cpsw->ale, vid, 0);
2414 	ret |= cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
2415 				  HOST_PORT_NUM, ALE_VLAN, vid);
2416 	ret |= cpsw_ale_del_mcast(cpsw->ale, priv->ndev->broadcast,
2417 				  0, ALE_VLAN, vid);
2418 err:
2419 	pm_runtime_put(cpsw->dev);
2420 	return ret;
2421 }
2422 
2423 static int cpsw_ndo_set_tx_maxrate(struct net_device *ndev, int queue, u32 rate)
2424 {
2425 	struct cpsw_priv *priv = netdev_priv(ndev);
2426 	struct cpsw_common *cpsw = priv->cpsw;
2427 	struct cpsw_slave *slave;
2428 	u32 min_rate;
2429 	u32 ch_rate;
2430 	int i, ret;
2431 
2432 	ch_rate = netdev_get_tx_queue(ndev, queue)->tx_maxrate;
2433 	if (ch_rate == rate)
2434 		return 0;
2435 
2436 	ch_rate = rate * 1000;
2437 	min_rate = cpdma_chan_get_min_rate(cpsw->dma);
2438 	if ((ch_rate < min_rate && ch_rate)) {
2439 		dev_err(priv->dev, "The channel rate cannot be less than %dMbps",
2440 			min_rate);
2441 		return -EINVAL;
2442 	}
2443 
2444 	if (rate > cpsw->speed) {
2445 		dev_err(priv->dev, "The channel rate cannot be more than 2Gbps");
2446 		return -EINVAL;
2447 	}
2448 
2449 	ret = pm_runtime_get_sync(cpsw->dev);
2450 	if (ret < 0) {
2451 		pm_runtime_put_noidle(cpsw->dev);
2452 		return ret;
2453 	}
2454 
2455 	ret = cpdma_chan_set_rate(cpsw->txv[queue].ch, ch_rate);
2456 	pm_runtime_put(cpsw->dev);
2457 
2458 	if (ret)
2459 		return ret;
2460 
2461 	/* update rates for slaves tx queues */
2462 	for (i = 0; i < cpsw->data.slaves; i++) {
2463 		slave = &cpsw->slaves[i];
2464 		if (!slave->ndev)
2465 			continue;
2466 
2467 		netdev_get_tx_queue(slave->ndev, queue)->tx_maxrate = rate;
2468 	}
2469 
2470 	cpsw_split_res(ndev);
2471 	return ret;
2472 }
2473 
2474 static int cpsw_set_mqprio(struct net_device *ndev, void *type_data)
2475 {
2476 	struct tc_mqprio_qopt_offload *mqprio = type_data;
2477 	struct cpsw_priv *priv = netdev_priv(ndev);
2478 	struct cpsw_common *cpsw = priv->cpsw;
2479 	int fifo, num_tc, count, offset;
2480 	struct cpsw_slave *slave;
2481 	u32 tx_prio_map = 0;
2482 	int i, tc, ret;
2483 
2484 	num_tc = mqprio->qopt.num_tc;
2485 	if (num_tc > CPSW_TC_NUM)
2486 		return -EINVAL;
2487 
2488 	if (mqprio->mode != TC_MQPRIO_MODE_DCB)
2489 		return -EINVAL;
2490 
2491 	ret = pm_runtime_get_sync(cpsw->dev);
2492 	if (ret < 0) {
2493 		pm_runtime_put_noidle(cpsw->dev);
2494 		return ret;
2495 	}
2496 
2497 	if (num_tc) {
2498 		for (i = 0; i < 8; i++) {
2499 			tc = mqprio->qopt.prio_tc_map[i];
2500 			fifo = cpsw_tc_to_fifo(tc, num_tc);
2501 			tx_prio_map |= fifo << (4 * i);
2502 		}
2503 
2504 		netdev_set_num_tc(ndev, num_tc);
2505 		for (i = 0; i < num_tc; i++) {
2506 			count = mqprio->qopt.count[i];
2507 			offset = mqprio->qopt.offset[i];
2508 			netdev_set_tc_queue(ndev, i, count, offset);
2509 		}
2510 	}
2511 
2512 	if (!mqprio->qopt.hw) {
2513 		/* restore default configuration */
2514 		netdev_reset_tc(ndev);
2515 		tx_prio_map = TX_PRIORITY_MAPPING;
2516 	}
2517 
2518 	priv->mqprio_hw = mqprio->qopt.hw;
2519 
2520 	offset = cpsw->version == CPSW_VERSION_1 ?
2521 		 CPSW1_TX_PRI_MAP : CPSW2_TX_PRI_MAP;
2522 
2523 	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
2524 	slave_write(slave, tx_prio_map, offset);
2525 
2526 	pm_runtime_put_sync(cpsw->dev);
2527 
2528 	return 0;
2529 }
2530 
2531 static int cpsw_ndo_setup_tc(struct net_device *ndev, enum tc_setup_type type,
2532 			     void *type_data)
2533 {
2534 	switch (type) {
2535 	case TC_SETUP_QDISC_CBS:
2536 		return cpsw_set_cbs(ndev, type_data);
2537 
2538 	case TC_SETUP_QDISC_MQPRIO:
2539 		return cpsw_set_mqprio(ndev, type_data);
2540 
2541 	default:
2542 		return -EOPNOTSUPP;
2543 	}
2544 }
2545 
2546 static const struct net_device_ops cpsw_netdev_ops = {
2547 	.ndo_open		= cpsw_ndo_open,
2548 	.ndo_stop		= cpsw_ndo_stop,
2549 	.ndo_start_xmit		= cpsw_ndo_start_xmit,
2550 	.ndo_set_mac_address	= cpsw_ndo_set_mac_address,
2551 	.ndo_do_ioctl		= cpsw_ndo_ioctl,
2552 	.ndo_validate_addr	= eth_validate_addr,
2553 	.ndo_tx_timeout		= cpsw_ndo_tx_timeout,
2554 	.ndo_set_rx_mode	= cpsw_ndo_set_rx_mode,
2555 	.ndo_set_tx_maxrate	= cpsw_ndo_set_tx_maxrate,
2556 #ifdef CONFIG_NET_POLL_CONTROLLER
2557 	.ndo_poll_controller	= cpsw_ndo_poll_controller,
2558 #endif
2559 	.ndo_vlan_rx_add_vid	= cpsw_ndo_vlan_rx_add_vid,
2560 	.ndo_vlan_rx_kill_vid	= cpsw_ndo_vlan_rx_kill_vid,
2561 	.ndo_setup_tc           = cpsw_ndo_setup_tc,
2562 };
2563 
2564 static int cpsw_get_regs_len(struct net_device *ndev)
2565 {
2566 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2567 
2568 	return cpsw->data.ale_entries * ALE_ENTRY_WORDS * sizeof(u32);
2569 }
2570 
2571 static void cpsw_get_regs(struct net_device *ndev,
2572 			  struct ethtool_regs *regs, void *p)
2573 {
2574 	u32 *reg = p;
2575 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2576 
2577 	/* update CPSW IP version */
2578 	regs->version = cpsw->version;
2579 
2580 	cpsw_ale_dump(cpsw->ale, reg);
2581 }
2582 
2583 static void cpsw_get_drvinfo(struct net_device *ndev,
2584 			     struct ethtool_drvinfo *info)
2585 {
2586 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2587 	struct platform_device	*pdev = to_platform_device(cpsw->dev);
2588 
2589 	strlcpy(info->driver, "cpsw", sizeof(info->driver));
2590 	strlcpy(info->version, "1.0", sizeof(info->version));
2591 	strlcpy(info->bus_info, pdev->name, sizeof(info->bus_info));
2592 }
2593 
2594 static u32 cpsw_get_msglevel(struct net_device *ndev)
2595 {
2596 	struct cpsw_priv *priv = netdev_priv(ndev);
2597 	return priv->msg_enable;
2598 }
2599 
2600 static void cpsw_set_msglevel(struct net_device *ndev, u32 value)
2601 {
2602 	struct cpsw_priv *priv = netdev_priv(ndev);
2603 	priv->msg_enable = value;
2604 }
2605 
2606 #if IS_ENABLED(CONFIG_TI_CPTS)
2607 static int cpsw_get_ts_info(struct net_device *ndev,
2608 			    struct ethtool_ts_info *info)
2609 {
2610 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2611 
2612 	info->so_timestamping =
2613 		SOF_TIMESTAMPING_TX_HARDWARE |
2614 		SOF_TIMESTAMPING_TX_SOFTWARE |
2615 		SOF_TIMESTAMPING_RX_HARDWARE |
2616 		SOF_TIMESTAMPING_RX_SOFTWARE |
2617 		SOF_TIMESTAMPING_SOFTWARE |
2618 		SOF_TIMESTAMPING_RAW_HARDWARE;
2619 	info->phc_index = cpsw->cpts->phc_index;
2620 	info->tx_types =
2621 		(1 << HWTSTAMP_TX_OFF) |
2622 		(1 << HWTSTAMP_TX_ON);
2623 	info->rx_filters =
2624 		(1 << HWTSTAMP_FILTER_NONE) |
2625 		(1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
2626 		(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2627 	return 0;
2628 }
2629 #else
2630 static int cpsw_get_ts_info(struct net_device *ndev,
2631 			    struct ethtool_ts_info *info)
2632 {
2633 	info->so_timestamping =
2634 		SOF_TIMESTAMPING_TX_SOFTWARE |
2635 		SOF_TIMESTAMPING_RX_SOFTWARE |
2636 		SOF_TIMESTAMPING_SOFTWARE;
2637 	info->phc_index = -1;
2638 	info->tx_types = 0;
2639 	info->rx_filters = 0;
2640 	return 0;
2641 }
2642 #endif
2643 
2644 static int cpsw_get_link_ksettings(struct net_device *ndev,
2645 				   struct ethtool_link_ksettings *ecmd)
2646 {
2647 	struct cpsw_priv *priv = netdev_priv(ndev);
2648 	struct cpsw_common *cpsw = priv->cpsw;
2649 	int slave_no = cpsw_slave_index(cpsw, priv);
2650 
2651 	if (!cpsw->slaves[slave_no].phy)
2652 		return -EOPNOTSUPP;
2653 
2654 	phy_ethtool_ksettings_get(cpsw->slaves[slave_no].phy, ecmd);
2655 	return 0;
2656 }
2657 
2658 static int cpsw_set_link_ksettings(struct net_device *ndev,
2659 				   const struct ethtool_link_ksettings *ecmd)
2660 {
2661 	struct cpsw_priv *priv = netdev_priv(ndev);
2662 	struct cpsw_common *cpsw = priv->cpsw;
2663 	int slave_no = cpsw_slave_index(cpsw, priv);
2664 
2665 	if (cpsw->slaves[slave_no].phy)
2666 		return phy_ethtool_ksettings_set(cpsw->slaves[slave_no].phy,
2667 						 ecmd);
2668 	else
2669 		return -EOPNOTSUPP;
2670 }
2671 
2672 static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2673 {
2674 	struct cpsw_priv *priv = netdev_priv(ndev);
2675 	struct cpsw_common *cpsw = priv->cpsw;
2676 	int slave_no = cpsw_slave_index(cpsw, priv);
2677 
2678 	wol->supported = 0;
2679 	wol->wolopts = 0;
2680 
2681 	if (cpsw->slaves[slave_no].phy)
2682 		phy_ethtool_get_wol(cpsw->slaves[slave_no].phy, wol);
2683 }
2684 
2685 static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2686 {
2687 	struct cpsw_priv *priv = netdev_priv(ndev);
2688 	struct cpsw_common *cpsw = priv->cpsw;
2689 	int slave_no = cpsw_slave_index(cpsw, priv);
2690 
2691 	if (cpsw->slaves[slave_no].phy)
2692 		return phy_ethtool_set_wol(cpsw->slaves[slave_no].phy, wol);
2693 	else
2694 		return -EOPNOTSUPP;
2695 }
2696 
2697 static void cpsw_get_pauseparam(struct net_device *ndev,
2698 				struct ethtool_pauseparam *pause)
2699 {
2700 	struct cpsw_priv *priv = netdev_priv(ndev);
2701 
2702 	pause->autoneg = AUTONEG_DISABLE;
2703 	pause->rx_pause = priv->rx_pause ? true : false;
2704 	pause->tx_pause = priv->tx_pause ? true : false;
2705 }
2706 
2707 static int cpsw_set_pauseparam(struct net_device *ndev,
2708 			       struct ethtool_pauseparam *pause)
2709 {
2710 	struct cpsw_priv *priv = netdev_priv(ndev);
2711 	bool link;
2712 
2713 	priv->rx_pause = pause->rx_pause ? true : false;
2714 	priv->tx_pause = pause->tx_pause ? true : false;
2715 
2716 	for_each_slave(priv, _cpsw_adjust_link, priv, &link);
2717 	return 0;
2718 }
2719 
2720 static int cpsw_ethtool_op_begin(struct net_device *ndev)
2721 {
2722 	struct cpsw_priv *priv = netdev_priv(ndev);
2723 	struct cpsw_common *cpsw = priv->cpsw;
2724 	int ret;
2725 
2726 	ret = pm_runtime_get_sync(cpsw->dev);
2727 	if (ret < 0) {
2728 		cpsw_err(priv, drv, "ethtool begin failed %d\n", ret);
2729 		pm_runtime_put_noidle(cpsw->dev);
2730 	}
2731 
2732 	return ret;
2733 }
2734 
2735 static void cpsw_ethtool_op_complete(struct net_device *ndev)
2736 {
2737 	struct cpsw_priv *priv = netdev_priv(ndev);
2738 	int ret;
2739 
2740 	ret = pm_runtime_put(priv->cpsw->dev);
2741 	if (ret < 0)
2742 		cpsw_err(priv, drv, "ethtool complete failed %d\n", ret);
2743 }
2744 
2745 static void cpsw_get_channels(struct net_device *ndev,
2746 			      struct ethtool_channels *ch)
2747 {
2748 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2749 
2750 	ch->max_rx = cpsw->quirk_irq ? 1 : CPSW_MAX_QUEUES;
2751 	ch->max_tx = cpsw->quirk_irq ? 1 : CPSW_MAX_QUEUES;
2752 	ch->max_combined = 0;
2753 	ch->max_other = 0;
2754 	ch->other_count = 0;
2755 	ch->rx_count = cpsw->rx_ch_num;
2756 	ch->tx_count = cpsw->tx_ch_num;
2757 	ch->combined_count = 0;
2758 }
2759 
2760 static int cpsw_check_ch_settings(struct cpsw_common *cpsw,
2761 				  struct ethtool_channels *ch)
2762 {
2763 	if (cpsw->quirk_irq) {
2764 		dev_err(cpsw->dev, "Maximum one tx/rx queue is allowed");
2765 		return -EOPNOTSUPP;
2766 	}
2767 
2768 	if (ch->combined_count)
2769 		return -EINVAL;
2770 
2771 	/* verify we have at least one channel in each direction */
2772 	if (!ch->rx_count || !ch->tx_count)
2773 		return -EINVAL;
2774 
2775 	if (ch->rx_count > cpsw->data.channels ||
2776 	    ch->tx_count > cpsw->data.channels)
2777 		return -EINVAL;
2778 
2779 	return 0;
2780 }
2781 
2782 static int cpsw_update_channels_res(struct cpsw_priv *priv, int ch_num, int rx)
2783 {
2784 	struct cpsw_common *cpsw = priv->cpsw;
2785 	void (*handler)(void *, int, int);
2786 	struct netdev_queue *queue;
2787 	struct cpsw_vector *vec;
2788 	int ret, *ch, vch;
2789 
2790 	if (rx) {
2791 		ch = &cpsw->rx_ch_num;
2792 		vec = cpsw->rxv;
2793 		handler = cpsw_rx_handler;
2794 	} else {
2795 		ch = &cpsw->tx_ch_num;
2796 		vec = cpsw->txv;
2797 		handler = cpsw_tx_handler;
2798 	}
2799 
2800 	while (*ch < ch_num) {
2801 		vch = rx ? *ch : 7 - *ch;
2802 		vec[*ch].ch = cpdma_chan_create(cpsw->dma, vch, handler, rx);
2803 		queue = netdev_get_tx_queue(priv->ndev, *ch);
2804 		queue->tx_maxrate = 0;
2805 
2806 		if (IS_ERR(vec[*ch].ch))
2807 			return PTR_ERR(vec[*ch].ch);
2808 
2809 		if (!vec[*ch].ch)
2810 			return -EINVAL;
2811 
2812 		cpsw_info(priv, ifup, "created new %d %s channel\n", *ch,
2813 			  (rx ? "rx" : "tx"));
2814 		(*ch)++;
2815 	}
2816 
2817 	while (*ch > ch_num) {
2818 		(*ch)--;
2819 
2820 		ret = cpdma_chan_destroy(vec[*ch].ch);
2821 		if (ret)
2822 			return ret;
2823 
2824 		cpsw_info(priv, ifup, "destroyed %d %s channel\n", *ch,
2825 			  (rx ? "rx" : "tx"));
2826 	}
2827 
2828 	return 0;
2829 }
2830 
2831 static int cpsw_update_channels(struct cpsw_priv *priv,
2832 				struct ethtool_channels *ch)
2833 {
2834 	int ret;
2835 
2836 	ret = cpsw_update_channels_res(priv, ch->rx_count, 1);
2837 	if (ret)
2838 		return ret;
2839 
2840 	ret = cpsw_update_channels_res(priv, ch->tx_count, 0);
2841 	if (ret)
2842 		return ret;
2843 
2844 	return 0;
2845 }
2846 
2847 static void cpsw_suspend_data_pass(struct net_device *ndev)
2848 {
2849 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2850 	struct cpsw_slave *slave;
2851 	int i;
2852 
2853 	/* Disable NAPI scheduling */
2854 	cpsw_intr_disable(cpsw);
2855 
2856 	/* Stop all transmit queues for every network device.
2857 	 * Disable re-using rx descriptors with dormant_on.
2858 	 */
2859 	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
2860 		if (!(slave->ndev && netif_running(slave->ndev)))
2861 			continue;
2862 
2863 		netif_tx_stop_all_queues(slave->ndev);
2864 		netif_dormant_on(slave->ndev);
2865 	}
2866 
2867 	/* Handle rest of tx packets and stop cpdma channels */
2868 	cpdma_ctlr_stop(cpsw->dma);
2869 }
2870 
2871 static int cpsw_resume_data_pass(struct net_device *ndev)
2872 {
2873 	struct cpsw_priv *priv = netdev_priv(ndev);
2874 	struct cpsw_common *cpsw = priv->cpsw;
2875 	struct cpsw_slave *slave;
2876 	int i, ret;
2877 
2878 	/* Allow rx packets handling */
2879 	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++)
2880 		if (slave->ndev && netif_running(slave->ndev))
2881 			netif_dormant_off(slave->ndev);
2882 
2883 	/* After this receive is started */
2884 	if (cpsw->usage_count) {
2885 		ret = cpsw_fill_rx_channels(priv);
2886 		if (ret)
2887 			return ret;
2888 
2889 		cpdma_ctlr_start(cpsw->dma);
2890 		cpsw_intr_enable(cpsw);
2891 	}
2892 
2893 	/* Resume transmit for every affected interface */
2894 	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++)
2895 		if (slave->ndev && netif_running(slave->ndev))
2896 			netif_tx_start_all_queues(slave->ndev);
2897 
2898 	return 0;
2899 }
2900 
2901 static int cpsw_set_channels(struct net_device *ndev,
2902 			     struct ethtool_channels *chs)
2903 {
2904 	struct cpsw_priv *priv = netdev_priv(ndev);
2905 	struct cpsw_common *cpsw = priv->cpsw;
2906 	struct cpsw_slave *slave;
2907 	int i, ret;
2908 
2909 	ret = cpsw_check_ch_settings(cpsw, chs);
2910 	if (ret < 0)
2911 		return ret;
2912 
2913 	cpsw_suspend_data_pass(ndev);
2914 	ret = cpsw_update_channels(priv, chs);
2915 	if (ret)
2916 		goto err;
2917 
2918 	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
2919 		if (!(slave->ndev && netif_running(slave->ndev)))
2920 			continue;
2921 
2922 		/* Inform stack about new count of queues */
2923 		ret = netif_set_real_num_tx_queues(slave->ndev,
2924 						   cpsw->tx_ch_num);
2925 		if (ret) {
2926 			dev_err(priv->dev, "cannot set real number of tx queues\n");
2927 			goto err;
2928 		}
2929 
2930 		ret = netif_set_real_num_rx_queues(slave->ndev,
2931 						   cpsw->rx_ch_num);
2932 		if (ret) {
2933 			dev_err(priv->dev, "cannot set real number of rx queues\n");
2934 			goto err;
2935 		}
2936 	}
2937 
2938 	if (cpsw->usage_count)
2939 		cpsw_split_res(ndev);
2940 
2941 	ret = cpsw_resume_data_pass(ndev);
2942 	if (!ret)
2943 		return 0;
2944 err:
2945 	dev_err(priv->dev, "cannot update channels number, closing device\n");
2946 	dev_close(ndev);
2947 	return ret;
2948 }
2949 
2950 static int cpsw_get_eee(struct net_device *ndev, struct ethtool_eee *edata)
2951 {
2952 	struct cpsw_priv *priv = netdev_priv(ndev);
2953 	struct cpsw_common *cpsw = priv->cpsw;
2954 	int slave_no = cpsw_slave_index(cpsw, priv);
2955 
2956 	if (cpsw->slaves[slave_no].phy)
2957 		return phy_ethtool_get_eee(cpsw->slaves[slave_no].phy, edata);
2958 	else
2959 		return -EOPNOTSUPP;
2960 }
2961 
2962 static int cpsw_set_eee(struct net_device *ndev, struct ethtool_eee *edata)
2963 {
2964 	struct cpsw_priv *priv = netdev_priv(ndev);
2965 	struct cpsw_common *cpsw = priv->cpsw;
2966 	int slave_no = cpsw_slave_index(cpsw, priv);
2967 
2968 	if (cpsw->slaves[slave_no].phy)
2969 		return phy_ethtool_set_eee(cpsw->slaves[slave_no].phy, edata);
2970 	else
2971 		return -EOPNOTSUPP;
2972 }
2973 
2974 static int cpsw_nway_reset(struct net_device *ndev)
2975 {
2976 	struct cpsw_priv *priv = netdev_priv(ndev);
2977 	struct cpsw_common *cpsw = priv->cpsw;
2978 	int slave_no = cpsw_slave_index(cpsw, priv);
2979 
2980 	if (cpsw->slaves[slave_no].phy)
2981 		return genphy_restart_aneg(cpsw->slaves[slave_no].phy);
2982 	else
2983 		return -EOPNOTSUPP;
2984 }
2985 
2986 static void cpsw_get_ringparam(struct net_device *ndev,
2987 			       struct ethtool_ringparam *ering)
2988 {
2989 	struct cpsw_priv *priv = netdev_priv(ndev);
2990 	struct cpsw_common *cpsw = priv->cpsw;
2991 
2992 	/* not supported */
2993 	ering->tx_max_pending = 0;
2994 	ering->tx_pending = cpdma_get_num_tx_descs(cpsw->dma);
2995 	ering->rx_max_pending = descs_pool_size - CPSW_MAX_QUEUES;
2996 	ering->rx_pending = cpdma_get_num_rx_descs(cpsw->dma);
2997 }
2998 
2999 static int cpsw_set_ringparam(struct net_device *ndev,
3000 			      struct ethtool_ringparam *ering)
3001 {
3002 	struct cpsw_priv *priv = netdev_priv(ndev);
3003 	struct cpsw_common *cpsw = priv->cpsw;
3004 	int ret;
3005 
3006 	/* ignore ering->tx_pending - only rx_pending adjustment is supported */
3007 
3008 	if (ering->rx_mini_pending || ering->rx_jumbo_pending ||
3009 	    ering->rx_pending < CPSW_MAX_QUEUES ||
3010 	    ering->rx_pending > (descs_pool_size - CPSW_MAX_QUEUES))
3011 		return -EINVAL;
3012 
3013 	if (ering->rx_pending == cpdma_get_num_rx_descs(cpsw->dma))
3014 		return 0;
3015 
3016 	cpsw_suspend_data_pass(ndev);
3017 
3018 	cpdma_set_num_rx_descs(cpsw->dma, ering->rx_pending);
3019 
3020 	if (cpsw->usage_count)
3021 		cpdma_chan_split_pool(cpsw->dma);
3022 
3023 	ret = cpsw_resume_data_pass(ndev);
3024 	if (!ret)
3025 		return 0;
3026 
3027 	dev_err(&ndev->dev, "cannot set ring params, closing device\n");
3028 	dev_close(ndev);
3029 	return ret;
3030 }
3031 
3032 static const struct ethtool_ops cpsw_ethtool_ops = {
3033 	.get_drvinfo	= cpsw_get_drvinfo,
3034 	.get_msglevel	= cpsw_get_msglevel,
3035 	.set_msglevel	= cpsw_set_msglevel,
3036 	.get_link	= ethtool_op_get_link,
3037 	.get_ts_info	= cpsw_get_ts_info,
3038 	.get_coalesce	= cpsw_get_coalesce,
3039 	.set_coalesce	= cpsw_set_coalesce,
3040 	.get_sset_count		= cpsw_get_sset_count,
3041 	.get_strings		= cpsw_get_strings,
3042 	.get_ethtool_stats	= cpsw_get_ethtool_stats,
3043 	.get_pauseparam		= cpsw_get_pauseparam,
3044 	.set_pauseparam		= cpsw_set_pauseparam,
3045 	.get_wol	= cpsw_get_wol,
3046 	.set_wol	= cpsw_set_wol,
3047 	.get_regs_len	= cpsw_get_regs_len,
3048 	.get_regs	= cpsw_get_regs,
3049 	.begin		= cpsw_ethtool_op_begin,
3050 	.complete	= cpsw_ethtool_op_complete,
3051 	.get_channels	= cpsw_get_channels,
3052 	.set_channels	= cpsw_set_channels,
3053 	.get_link_ksettings	= cpsw_get_link_ksettings,
3054 	.set_link_ksettings	= cpsw_set_link_ksettings,
3055 	.get_eee	= cpsw_get_eee,
3056 	.set_eee	= cpsw_set_eee,
3057 	.nway_reset	= cpsw_nway_reset,
3058 	.get_ringparam = cpsw_get_ringparam,
3059 	.set_ringparam = cpsw_set_ringparam,
3060 };
3061 
3062 static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_common *cpsw,
3063 			    u32 slave_reg_ofs, u32 sliver_reg_ofs)
3064 {
3065 	void __iomem		*regs = cpsw->regs;
3066 	int			slave_num = slave->slave_num;
3067 	struct cpsw_slave_data	*data = cpsw->data.slave_data + slave_num;
3068 
3069 	slave->data	= data;
3070 	slave->regs	= regs + slave_reg_ofs;
3071 	slave->sliver	= regs + sliver_reg_ofs;
3072 	slave->port_vlan = data->dual_emac_res_vlan;
3073 }
3074 
3075 static int cpsw_probe_dt(struct cpsw_platform_data *data,
3076 			 struct platform_device *pdev)
3077 {
3078 	struct device_node *node = pdev->dev.of_node;
3079 	struct device_node *slave_node;
3080 	int i = 0, ret;
3081 	u32 prop;
3082 
3083 	if (!node)
3084 		return -EINVAL;
3085 
3086 	if (of_property_read_u32(node, "slaves", &prop)) {
3087 		dev_err(&pdev->dev, "Missing slaves property in the DT.\n");
3088 		return -EINVAL;
3089 	}
3090 	data->slaves = prop;
3091 
3092 	if (of_property_read_u32(node, "active_slave", &prop)) {
3093 		dev_err(&pdev->dev, "Missing active_slave property in the DT.\n");
3094 		return -EINVAL;
3095 	}
3096 	data->active_slave = prop;
3097 
3098 	data->slave_data = devm_kcalloc(&pdev->dev,
3099 					data->slaves,
3100 					sizeof(struct cpsw_slave_data),
3101 					GFP_KERNEL);
3102 	if (!data->slave_data)
3103 		return -ENOMEM;
3104 
3105 	if (of_property_read_u32(node, "cpdma_channels", &prop)) {
3106 		dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n");
3107 		return -EINVAL;
3108 	}
3109 	data->channels = prop;
3110 
3111 	if (of_property_read_u32(node, "ale_entries", &prop)) {
3112 		dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n");
3113 		return -EINVAL;
3114 	}
3115 	data->ale_entries = prop;
3116 
3117 	if (of_property_read_u32(node, "bd_ram_size", &prop)) {
3118 		dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n");
3119 		return -EINVAL;
3120 	}
3121 	data->bd_ram_size = prop;
3122 
3123 	if (of_property_read_u32(node, "mac_control", &prop)) {
3124 		dev_err(&pdev->dev, "Missing mac_control property in the DT.\n");
3125 		return -EINVAL;
3126 	}
3127 	data->mac_control = prop;
3128 
3129 	if (of_property_read_bool(node, "dual_emac"))
3130 		data->dual_emac = 1;
3131 
3132 	/*
3133 	 * Populate all the child nodes here...
3134 	 */
3135 	ret = of_platform_populate(node, NULL, NULL, &pdev->dev);
3136 	/* We do not want to force this, as in some cases may not have child */
3137 	if (ret)
3138 		dev_warn(&pdev->dev, "Doesn't have any child node\n");
3139 
3140 	for_each_available_child_of_node(node, slave_node) {
3141 		struct cpsw_slave_data *slave_data = data->slave_data + i;
3142 		const void *mac_addr = NULL;
3143 		int lenp;
3144 		const __be32 *parp;
3145 
3146 		/* This is no slave child node, continue */
3147 		if (strcmp(slave_node->name, "slave"))
3148 			continue;
3149 
3150 		slave_data->phy_node = of_parse_phandle(slave_node,
3151 							"phy-handle", 0);
3152 		parp = of_get_property(slave_node, "phy_id", &lenp);
3153 		if (slave_data->phy_node) {
3154 			dev_dbg(&pdev->dev,
3155 				"slave[%d] using phy-handle=\"%pOF\"\n",
3156 				i, slave_data->phy_node);
3157 		} else if (of_phy_is_fixed_link(slave_node)) {
3158 			/* In the case of a fixed PHY, the DT node associated
3159 			 * to the PHY is the Ethernet MAC DT node.
3160 			 */
3161 			ret = of_phy_register_fixed_link(slave_node);
3162 			if (ret) {
3163 				if (ret != -EPROBE_DEFER)
3164 					dev_err(&pdev->dev, "failed to register fixed-link phy: %d\n", ret);
3165 				return ret;
3166 			}
3167 			slave_data->phy_node = of_node_get(slave_node);
3168 		} else if (parp) {
3169 			u32 phyid;
3170 			struct device_node *mdio_node;
3171 			struct platform_device *mdio;
3172 
3173 			if (lenp != (sizeof(__be32) * 2)) {
3174 				dev_err(&pdev->dev, "Invalid slave[%d] phy_id property\n", i);
3175 				goto no_phy_slave;
3176 			}
3177 			mdio_node = of_find_node_by_phandle(be32_to_cpup(parp));
3178 			phyid = be32_to_cpup(parp+1);
3179 			mdio = of_find_device_by_node(mdio_node);
3180 			of_node_put(mdio_node);
3181 			if (!mdio) {
3182 				dev_err(&pdev->dev, "Missing mdio platform device\n");
3183 				return -EINVAL;
3184 			}
3185 			snprintf(slave_data->phy_id, sizeof(slave_data->phy_id),
3186 				 PHY_ID_FMT, mdio->name, phyid);
3187 			put_device(&mdio->dev);
3188 		} else {
3189 			dev_err(&pdev->dev,
3190 				"No slave[%d] phy_id, phy-handle, or fixed-link property\n",
3191 				i);
3192 			goto no_phy_slave;
3193 		}
3194 		slave_data->phy_if = of_get_phy_mode(slave_node);
3195 		if (slave_data->phy_if < 0) {
3196 			dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n",
3197 				i);
3198 			return slave_data->phy_if;
3199 		}
3200 
3201 no_phy_slave:
3202 		mac_addr = of_get_mac_address(slave_node);
3203 		if (mac_addr) {
3204 			memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN);
3205 		} else {
3206 			ret = ti_cm_get_macid(&pdev->dev, i,
3207 					      slave_data->mac_addr);
3208 			if (ret)
3209 				return ret;
3210 		}
3211 		if (data->dual_emac) {
3212 			if (of_property_read_u32(slave_node, "dual_emac_res_vlan",
3213 						 &prop)) {
3214 				dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n");
3215 				slave_data->dual_emac_res_vlan = i+1;
3216 				dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n",
3217 					slave_data->dual_emac_res_vlan, i);
3218 			} else {
3219 				slave_data->dual_emac_res_vlan = prop;
3220 			}
3221 		}
3222 
3223 		i++;
3224 		if (i == data->slaves)
3225 			break;
3226 	}
3227 
3228 	return 0;
3229 }
3230 
3231 static void cpsw_remove_dt(struct platform_device *pdev)
3232 {
3233 	struct net_device *ndev = platform_get_drvdata(pdev);
3234 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
3235 	struct cpsw_platform_data *data = &cpsw->data;
3236 	struct device_node *node = pdev->dev.of_node;
3237 	struct device_node *slave_node;
3238 	int i = 0;
3239 
3240 	for_each_available_child_of_node(node, slave_node) {
3241 		struct cpsw_slave_data *slave_data = &data->slave_data[i];
3242 
3243 		if (strcmp(slave_node->name, "slave"))
3244 			continue;
3245 
3246 		if (of_phy_is_fixed_link(slave_node))
3247 			of_phy_deregister_fixed_link(slave_node);
3248 
3249 		of_node_put(slave_data->phy_node);
3250 
3251 		i++;
3252 		if (i == data->slaves)
3253 			break;
3254 	}
3255 
3256 	of_platform_depopulate(&pdev->dev);
3257 }
3258 
3259 static int cpsw_probe_dual_emac(struct cpsw_priv *priv)
3260 {
3261 	struct cpsw_common		*cpsw = priv->cpsw;
3262 	struct cpsw_platform_data	*data = &cpsw->data;
3263 	struct net_device		*ndev;
3264 	struct cpsw_priv		*priv_sl2;
3265 	int ret = 0;
3266 
3267 	ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
3268 	if (!ndev) {
3269 		dev_err(cpsw->dev, "cpsw: error allocating net_device\n");
3270 		return -ENOMEM;
3271 	}
3272 
3273 	priv_sl2 = netdev_priv(ndev);
3274 	priv_sl2->cpsw = cpsw;
3275 	priv_sl2->ndev = ndev;
3276 	priv_sl2->dev  = &ndev->dev;
3277 	priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
3278 
3279 	if (is_valid_ether_addr(data->slave_data[1].mac_addr)) {
3280 		memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr,
3281 			ETH_ALEN);
3282 		dev_info(cpsw->dev, "cpsw: Detected MACID = %pM\n",
3283 			 priv_sl2->mac_addr);
3284 	} else {
3285 		eth_random_addr(priv_sl2->mac_addr);
3286 		dev_info(cpsw->dev, "cpsw: Random MACID = %pM\n",
3287 			 priv_sl2->mac_addr);
3288 	}
3289 	memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN);
3290 
3291 	priv_sl2->emac_port = 1;
3292 	cpsw->slaves[1].ndev = ndev;
3293 	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX;
3294 
3295 	ndev->netdev_ops = &cpsw_netdev_ops;
3296 	ndev->ethtool_ops = &cpsw_ethtool_ops;
3297 
3298 	/* register the network device */
3299 	SET_NETDEV_DEV(ndev, cpsw->dev);
3300 	ret = register_netdev(ndev);
3301 	if (ret) {
3302 		dev_err(cpsw->dev, "cpsw: error registering net device\n");
3303 		free_netdev(ndev);
3304 		ret = -ENODEV;
3305 	}
3306 
3307 	return ret;
3308 }
3309 
3310 static const struct of_device_id cpsw_of_mtable[] = {
3311 	{ .compatible = "ti,cpsw"},
3312 	{ .compatible = "ti,am335x-cpsw"},
3313 	{ .compatible = "ti,am4372-cpsw"},
3314 	{ .compatible = "ti,dra7-cpsw"},
3315 	{ /* sentinel */ },
3316 };
3317 MODULE_DEVICE_TABLE(of, cpsw_of_mtable);
3318 
3319 static const struct soc_device_attribute cpsw_soc_devices[] = {
3320 	{ .family = "AM33xx", .revision = "ES1.0"},
3321 	{ /* sentinel */ }
3322 };
3323 
3324 static int cpsw_probe(struct platform_device *pdev)
3325 {
3326 	struct clk			*clk;
3327 	struct cpsw_platform_data	*data;
3328 	struct net_device		*ndev;
3329 	struct cpsw_priv		*priv;
3330 	struct cpdma_params		dma_params;
3331 	struct cpsw_ale_params		ale_params;
3332 	void __iomem			*ss_regs;
3333 	void __iomem			*cpts_regs;
3334 	struct resource			*res, *ss_res;
3335 	struct gpio_descs		*mode;
3336 	u32 slave_offset, sliver_offset, slave_size;
3337 	const struct soc_device_attribute *soc;
3338 	struct cpsw_common		*cpsw;
3339 	int ret = 0, i, ch;
3340 	int irq;
3341 
3342 	cpsw = devm_kzalloc(&pdev->dev, sizeof(struct cpsw_common), GFP_KERNEL);
3343 	if (!cpsw)
3344 		return -ENOMEM;
3345 
3346 	cpsw->dev = &pdev->dev;
3347 
3348 	ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
3349 	if (!ndev) {
3350 		dev_err(&pdev->dev, "error allocating net_device\n");
3351 		return -ENOMEM;
3352 	}
3353 
3354 	platform_set_drvdata(pdev, ndev);
3355 	priv = netdev_priv(ndev);
3356 	priv->cpsw = cpsw;
3357 	priv->ndev = ndev;
3358 	priv->dev  = &ndev->dev;
3359 	priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
3360 	cpsw->rx_packet_max = max(rx_packet_max, 128);
3361 
3362 	mode = devm_gpiod_get_array_optional(&pdev->dev, "mode", GPIOD_OUT_LOW);
3363 	if (IS_ERR(mode)) {
3364 		ret = PTR_ERR(mode);
3365 		dev_err(&pdev->dev, "gpio request failed, ret %d\n", ret);
3366 		goto clean_ndev_ret;
3367 	}
3368 
3369 	/*
3370 	 * This may be required here for child devices.
3371 	 */
3372 	pm_runtime_enable(&pdev->dev);
3373 
3374 	/* Select default pin state */
3375 	pinctrl_pm_select_default_state(&pdev->dev);
3376 
3377 	/* Need to enable clocks with runtime PM api to access module
3378 	 * registers
3379 	 */
3380 	ret = pm_runtime_get_sync(&pdev->dev);
3381 	if (ret < 0) {
3382 		pm_runtime_put_noidle(&pdev->dev);
3383 		goto clean_runtime_disable_ret;
3384 	}
3385 
3386 	ret = cpsw_probe_dt(&cpsw->data, pdev);
3387 	if (ret)
3388 		goto clean_dt_ret;
3389 
3390 	data = &cpsw->data;
3391 	cpsw->rx_ch_num = 1;
3392 	cpsw->tx_ch_num = 1;
3393 
3394 	if (is_valid_ether_addr(data->slave_data[0].mac_addr)) {
3395 		memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN);
3396 		dev_info(&pdev->dev, "Detected MACID = %pM\n", priv->mac_addr);
3397 	} else {
3398 		eth_random_addr(priv->mac_addr);
3399 		dev_info(&pdev->dev, "Random MACID = %pM\n", priv->mac_addr);
3400 	}
3401 
3402 	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
3403 
3404 	cpsw->slaves = devm_kcalloc(&pdev->dev,
3405 				    data->slaves, sizeof(struct cpsw_slave),
3406 				    GFP_KERNEL);
3407 	if (!cpsw->slaves) {
3408 		ret = -ENOMEM;
3409 		goto clean_dt_ret;
3410 	}
3411 	for (i = 0; i < data->slaves; i++)
3412 		cpsw->slaves[i].slave_num = i;
3413 
3414 	cpsw->slaves[0].ndev = ndev;
3415 	priv->emac_port = 0;
3416 
3417 	clk = devm_clk_get(&pdev->dev, "fck");
3418 	if (IS_ERR(clk)) {
3419 		dev_err(priv->dev, "fck is not found\n");
3420 		ret = -ENODEV;
3421 		goto clean_dt_ret;
3422 	}
3423 	cpsw->bus_freq_mhz = clk_get_rate(clk) / 1000000;
3424 
3425 	ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3426 	ss_regs = devm_ioremap_resource(&pdev->dev, ss_res);
3427 	if (IS_ERR(ss_regs)) {
3428 		ret = PTR_ERR(ss_regs);
3429 		goto clean_dt_ret;
3430 	}
3431 	cpsw->regs = ss_regs;
3432 
3433 	cpsw->version = readl(&cpsw->regs->id_ver);
3434 
3435 	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
3436 	cpsw->wr_regs = devm_ioremap_resource(&pdev->dev, res);
3437 	if (IS_ERR(cpsw->wr_regs)) {
3438 		ret = PTR_ERR(cpsw->wr_regs);
3439 		goto clean_dt_ret;
3440 	}
3441 
3442 	memset(&dma_params, 0, sizeof(dma_params));
3443 	memset(&ale_params, 0, sizeof(ale_params));
3444 
3445 	switch (cpsw->version) {
3446 	case CPSW_VERSION_1:
3447 		cpsw->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET;
3448 		cpts_regs		= ss_regs + CPSW1_CPTS_OFFSET;
3449 		cpsw->hw_stats	     = ss_regs + CPSW1_HW_STATS;
3450 		dma_params.dmaregs   = ss_regs + CPSW1_CPDMA_OFFSET;
3451 		dma_params.txhdp     = ss_regs + CPSW1_STATERAM_OFFSET;
3452 		ale_params.ale_regs  = ss_regs + CPSW1_ALE_OFFSET;
3453 		slave_offset         = CPSW1_SLAVE_OFFSET;
3454 		slave_size           = CPSW1_SLAVE_SIZE;
3455 		sliver_offset        = CPSW1_SLIVER_OFFSET;
3456 		dma_params.desc_mem_phys = 0;
3457 		break;
3458 	case CPSW_VERSION_2:
3459 	case CPSW_VERSION_3:
3460 	case CPSW_VERSION_4:
3461 		cpsw->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET;
3462 		cpts_regs		= ss_regs + CPSW2_CPTS_OFFSET;
3463 		cpsw->hw_stats	     = ss_regs + CPSW2_HW_STATS;
3464 		dma_params.dmaregs   = ss_regs + CPSW2_CPDMA_OFFSET;
3465 		dma_params.txhdp     = ss_regs + CPSW2_STATERAM_OFFSET;
3466 		ale_params.ale_regs  = ss_regs + CPSW2_ALE_OFFSET;
3467 		slave_offset         = CPSW2_SLAVE_OFFSET;
3468 		slave_size           = CPSW2_SLAVE_SIZE;
3469 		sliver_offset        = CPSW2_SLIVER_OFFSET;
3470 		dma_params.desc_mem_phys =
3471 			(u32 __force) ss_res->start + CPSW2_BD_OFFSET;
3472 		break;
3473 	default:
3474 		dev_err(priv->dev, "unknown version 0x%08x\n", cpsw->version);
3475 		ret = -ENODEV;
3476 		goto clean_dt_ret;
3477 	}
3478 	for (i = 0; i < cpsw->data.slaves; i++) {
3479 		struct cpsw_slave *slave = &cpsw->slaves[i];
3480 
3481 		cpsw_slave_init(slave, cpsw, slave_offset, sliver_offset);
3482 		slave_offset  += slave_size;
3483 		sliver_offset += SLIVER_SIZE;
3484 	}
3485 
3486 	dma_params.dev		= &pdev->dev;
3487 	dma_params.rxthresh	= dma_params.dmaregs + CPDMA_RXTHRESH;
3488 	dma_params.rxfree	= dma_params.dmaregs + CPDMA_RXFREE;
3489 	dma_params.rxhdp	= dma_params.txhdp + CPDMA_RXHDP;
3490 	dma_params.txcp		= dma_params.txhdp + CPDMA_TXCP;
3491 	dma_params.rxcp		= dma_params.txhdp + CPDMA_RXCP;
3492 
3493 	dma_params.num_chan		= data->channels;
3494 	dma_params.has_soft_reset	= true;
3495 	dma_params.min_packet_size	= CPSW_MIN_PACKET_SIZE;
3496 	dma_params.desc_mem_size	= data->bd_ram_size;
3497 	dma_params.desc_align		= 16;
3498 	dma_params.has_ext_regs		= true;
3499 	dma_params.desc_hw_addr         = dma_params.desc_mem_phys;
3500 	dma_params.bus_freq_mhz		= cpsw->bus_freq_mhz;
3501 	dma_params.descs_pool_size	= descs_pool_size;
3502 
3503 	cpsw->dma = cpdma_ctlr_create(&dma_params);
3504 	if (!cpsw->dma) {
3505 		dev_err(priv->dev, "error initializing dma\n");
3506 		ret = -ENOMEM;
3507 		goto clean_dt_ret;
3508 	}
3509 
3510 	soc = soc_device_match(cpsw_soc_devices);
3511 	if (soc)
3512 		cpsw->quirk_irq = 1;
3513 
3514 	ch = cpsw->quirk_irq ? 0 : 7;
3515 	cpsw->txv[0].ch = cpdma_chan_create(cpsw->dma, ch, cpsw_tx_handler, 0);
3516 	if (IS_ERR(cpsw->txv[0].ch)) {
3517 		dev_err(priv->dev, "error initializing tx dma channel\n");
3518 		ret = PTR_ERR(cpsw->txv[0].ch);
3519 		goto clean_dma_ret;
3520 	}
3521 
3522 	cpsw->rxv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_rx_handler, 1);
3523 	if (IS_ERR(cpsw->rxv[0].ch)) {
3524 		dev_err(priv->dev, "error initializing rx dma channel\n");
3525 		ret = PTR_ERR(cpsw->rxv[0].ch);
3526 		goto clean_dma_ret;
3527 	}
3528 
3529 	ale_params.dev			= &pdev->dev;
3530 	ale_params.ale_ageout		= ale_ageout;
3531 	ale_params.ale_entries		= data->ale_entries;
3532 	ale_params.ale_ports		= CPSW_ALE_PORTS_NUM;
3533 
3534 	cpsw->ale = cpsw_ale_create(&ale_params);
3535 	if (!cpsw->ale) {
3536 		dev_err(priv->dev, "error initializing ale engine\n");
3537 		ret = -ENODEV;
3538 		goto clean_dma_ret;
3539 	}
3540 
3541 	cpsw->cpts = cpts_create(cpsw->dev, cpts_regs, cpsw->dev->of_node);
3542 	if (IS_ERR(cpsw->cpts)) {
3543 		ret = PTR_ERR(cpsw->cpts);
3544 		goto clean_dma_ret;
3545 	}
3546 
3547 	ndev->irq = platform_get_irq(pdev, 1);
3548 	if (ndev->irq < 0) {
3549 		dev_err(priv->dev, "error getting irq resource\n");
3550 		ret = ndev->irq;
3551 		goto clean_dma_ret;
3552 	}
3553 
3554 	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX;
3555 
3556 	ndev->netdev_ops = &cpsw_netdev_ops;
3557 	ndev->ethtool_ops = &cpsw_ethtool_ops;
3558 	netif_napi_add(ndev, &cpsw->napi_rx,
3559 		       cpsw->quirk_irq ? cpsw_rx_poll : cpsw_rx_mq_poll,
3560 		       CPSW_POLL_WEIGHT);
3561 	netif_tx_napi_add(ndev, &cpsw->napi_tx,
3562 			  cpsw->quirk_irq ? cpsw_tx_poll : cpsw_tx_mq_poll,
3563 			  CPSW_POLL_WEIGHT);
3564 	cpsw_split_res(ndev);
3565 
3566 	/* register the network device */
3567 	SET_NETDEV_DEV(ndev, &pdev->dev);
3568 	ret = register_netdev(ndev);
3569 	if (ret) {
3570 		dev_err(priv->dev, "error registering net device\n");
3571 		ret = -ENODEV;
3572 		goto clean_dma_ret;
3573 	}
3574 
3575 	if (cpsw->data.dual_emac) {
3576 		ret = cpsw_probe_dual_emac(priv);
3577 		if (ret) {
3578 			cpsw_err(priv, probe, "error probe slave 2 emac interface\n");
3579 			goto clean_unregister_netdev_ret;
3580 		}
3581 	}
3582 
3583 	/* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and
3584 	 * MISC IRQs which are always kept disabled with this driver so
3585 	 * we will not request them.
3586 	 *
3587 	 * If anyone wants to implement support for those, make sure to
3588 	 * first request and append them to irqs_table array.
3589 	 */
3590 
3591 	/* RX IRQ */
3592 	irq = platform_get_irq(pdev, 1);
3593 	if (irq < 0) {
3594 		ret = irq;
3595 		goto clean_dma_ret;
3596 	}
3597 
3598 	cpsw->irqs_table[0] = irq;
3599 	ret = devm_request_irq(&pdev->dev, irq, cpsw_rx_interrupt,
3600 			       0, dev_name(&pdev->dev), cpsw);
3601 	if (ret < 0) {
3602 		dev_err(priv->dev, "error attaching irq (%d)\n", ret);
3603 		goto clean_dma_ret;
3604 	}
3605 
3606 	/* TX IRQ */
3607 	irq = platform_get_irq(pdev, 2);
3608 	if (irq < 0) {
3609 		ret = irq;
3610 		goto clean_dma_ret;
3611 	}
3612 
3613 	cpsw->irqs_table[1] = irq;
3614 	ret = devm_request_irq(&pdev->dev, irq, cpsw_tx_interrupt,
3615 			       0, dev_name(&pdev->dev), cpsw);
3616 	if (ret < 0) {
3617 		dev_err(priv->dev, "error attaching irq (%d)\n", ret);
3618 		goto clean_dma_ret;
3619 	}
3620 
3621 	cpsw_notice(priv, probe,
3622 		    "initialized device (regs %pa, irq %d, pool size %d)\n",
3623 		    &ss_res->start, ndev->irq, dma_params.descs_pool_size);
3624 
3625 	pm_runtime_put(&pdev->dev);
3626 
3627 	return 0;
3628 
3629 clean_unregister_netdev_ret:
3630 	unregister_netdev(ndev);
3631 clean_dma_ret:
3632 	cpdma_ctlr_destroy(cpsw->dma);
3633 clean_dt_ret:
3634 	cpsw_remove_dt(pdev);
3635 	pm_runtime_put_sync(&pdev->dev);
3636 clean_runtime_disable_ret:
3637 	pm_runtime_disable(&pdev->dev);
3638 clean_ndev_ret:
3639 	free_netdev(priv->ndev);
3640 	return ret;
3641 }
3642 
3643 static int cpsw_remove(struct platform_device *pdev)
3644 {
3645 	struct net_device *ndev = platform_get_drvdata(pdev);
3646 	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
3647 	int ret;
3648 
3649 	ret = pm_runtime_get_sync(&pdev->dev);
3650 	if (ret < 0) {
3651 		pm_runtime_put_noidle(&pdev->dev);
3652 		return ret;
3653 	}
3654 
3655 	if (cpsw->data.dual_emac)
3656 		unregister_netdev(cpsw->slaves[1].ndev);
3657 	unregister_netdev(ndev);
3658 
3659 	cpts_release(cpsw->cpts);
3660 	cpdma_ctlr_destroy(cpsw->dma);
3661 	cpsw_remove_dt(pdev);
3662 	pm_runtime_put_sync(&pdev->dev);
3663 	pm_runtime_disable(&pdev->dev);
3664 	if (cpsw->data.dual_emac)
3665 		free_netdev(cpsw->slaves[1].ndev);
3666 	free_netdev(ndev);
3667 	return 0;
3668 }
3669 
3670 #ifdef CONFIG_PM_SLEEP
3671 static int cpsw_suspend(struct device *dev)
3672 {
3673 	struct net_device	*ndev = dev_get_drvdata(dev);
3674 	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
3675 
3676 	if (cpsw->data.dual_emac) {
3677 		int i;
3678 
3679 		for (i = 0; i < cpsw->data.slaves; i++) {
3680 			if (netif_running(cpsw->slaves[i].ndev))
3681 				cpsw_ndo_stop(cpsw->slaves[i].ndev);
3682 		}
3683 	} else {
3684 		if (netif_running(ndev))
3685 			cpsw_ndo_stop(ndev);
3686 	}
3687 
3688 	/* Select sleep pin state */
3689 	pinctrl_pm_select_sleep_state(dev);
3690 
3691 	return 0;
3692 }
3693 
3694 static int cpsw_resume(struct device *dev)
3695 {
3696 	struct net_device	*ndev = dev_get_drvdata(dev);
3697 	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
3698 
3699 	/* Select default pin state */
3700 	pinctrl_pm_select_default_state(dev);
3701 
3702 	/* shut up ASSERT_RTNL() warning in netif_set_real_num_tx/rx_queues */
3703 	rtnl_lock();
3704 	if (cpsw->data.dual_emac) {
3705 		int i;
3706 
3707 		for (i = 0; i < cpsw->data.slaves; i++) {
3708 			if (netif_running(cpsw->slaves[i].ndev))
3709 				cpsw_ndo_open(cpsw->slaves[i].ndev);
3710 		}
3711 	} else {
3712 		if (netif_running(ndev))
3713 			cpsw_ndo_open(ndev);
3714 	}
3715 	rtnl_unlock();
3716 
3717 	return 0;
3718 }
3719 #endif
3720 
3721 static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume);
3722 
3723 static struct platform_driver cpsw_driver = {
3724 	.driver = {
3725 		.name	 = "cpsw",
3726 		.pm	 = &cpsw_pm_ops,
3727 		.of_match_table = cpsw_of_mtable,
3728 	},
3729 	.probe = cpsw_probe,
3730 	.remove = cpsw_remove,
3731 };
3732 
3733 module_platform_driver(cpsw_driver);
3734 
3735 MODULE_LICENSE("GPL");
3736 MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>");
3737 MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>");
3738 MODULE_DESCRIPTION("TI CPSW Ethernet driver");
3739