1 /* 2 * Texas Instruments Ethernet Switch Driver 3 * 4 * Copyright (C) 2012 Texas Instruments 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License as 8 * published by the Free Software Foundation version 2. 9 * 10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any 11 * kind, whether express or implied; without even the implied warranty 12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/io.h> 18 #include <linux/clk.h> 19 #include <linux/timer.h> 20 #include <linux/module.h> 21 #include <linux/platform_device.h> 22 #include <linux/irqreturn.h> 23 #include <linux/interrupt.h> 24 #include <linux/if_ether.h> 25 #include <linux/etherdevice.h> 26 #include <linux/netdevice.h> 27 #include <linux/net_tstamp.h> 28 #include <linux/phy.h> 29 #include <linux/workqueue.h> 30 #include <linux/delay.h> 31 #include <linux/pm_runtime.h> 32 #include <linux/of.h> 33 #include <linux/of_net.h> 34 #include <linux/of_device.h> 35 #include <linux/if_vlan.h> 36 37 #include <linux/pinctrl/consumer.h> 38 39 #include "cpsw.h" 40 #include "cpsw_ale.h" 41 #include "cpts.h" 42 #include "davinci_cpdma.h" 43 44 #define CPSW_DEBUG (NETIF_MSG_HW | NETIF_MSG_WOL | \ 45 NETIF_MSG_DRV | NETIF_MSG_LINK | \ 46 NETIF_MSG_IFUP | NETIF_MSG_INTR | \ 47 NETIF_MSG_PROBE | NETIF_MSG_TIMER | \ 48 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | \ 49 NETIF_MSG_TX_ERR | NETIF_MSG_TX_DONE | \ 50 NETIF_MSG_PKTDATA | NETIF_MSG_TX_QUEUED | \ 51 NETIF_MSG_RX_STATUS) 52 53 #define cpsw_info(priv, type, format, ...) \ 54 do { \ 55 if (netif_msg_##type(priv) && net_ratelimit()) \ 56 dev_info(priv->dev, format, ## __VA_ARGS__); \ 57 } while (0) 58 59 #define cpsw_err(priv, type, format, ...) \ 60 do { \ 61 if (netif_msg_##type(priv) && net_ratelimit()) \ 62 dev_err(priv->dev, format, ## __VA_ARGS__); \ 63 } while (0) 64 65 #define cpsw_dbg(priv, type, format, ...) \ 66 do { \ 67 if (netif_msg_##type(priv) && net_ratelimit()) \ 68 dev_dbg(priv->dev, format, ## __VA_ARGS__); \ 69 } while (0) 70 71 #define cpsw_notice(priv, type, format, ...) \ 72 do { \ 73 if (netif_msg_##type(priv) && net_ratelimit()) \ 74 dev_notice(priv->dev, format, ## __VA_ARGS__); \ 75 } while (0) 76 77 #define ALE_ALL_PORTS 0x7 78 79 #define CPSW_MAJOR_VERSION(reg) (reg >> 8 & 0x7) 80 #define CPSW_MINOR_VERSION(reg) (reg & 0xff) 81 #define CPSW_RTL_VERSION(reg) ((reg >> 11) & 0x1f) 82 83 #define CPSW_VERSION_1 0x19010a 84 #define CPSW_VERSION_2 0x19010c 85 #define CPSW_VERSION_3 0x19010f 86 #define CPSW_VERSION_4 0x190112 87 88 #define HOST_PORT_NUM 0 89 #define SLIVER_SIZE 0x40 90 91 #define CPSW1_HOST_PORT_OFFSET 0x028 92 #define CPSW1_SLAVE_OFFSET 0x050 93 #define CPSW1_SLAVE_SIZE 0x040 94 #define CPSW1_CPDMA_OFFSET 0x100 95 #define CPSW1_STATERAM_OFFSET 0x200 96 #define CPSW1_HW_STATS 0x400 97 #define CPSW1_CPTS_OFFSET 0x500 98 #define CPSW1_ALE_OFFSET 0x600 99 #define CPSW1_SLIVER_OFFSET 0x700 100 101 #define CPSW2_HOST_PORT_OFFSET 0x108 102 #define CPSW2_SLAVE_OFFSET 0x200 103 #define CPSW2_SLAVE_SIZE 0x100 104 #define CPSW2_CPDMA_OFFSET 0x800 105 #define CPSW2_HW_STATS 0x900 106 #define CPSW2_STATERAM_OFFSET 0xa00 107 #define CPSW2_CPTS_OFFSET 0xc00 108 #define CPSW2_ALE_OFFSET 0xd00 109 #define CPSW2_SLIVER_OFFSET 0xd80 110 #define CPSW2_BD_OFFSET 0x2000 111 112 #define CPDMA_RXTHRESH 0x0c0 113 #define CPDMA_RXFREE 0x0e0 114 #define CPDMA_TXHDP 0x00 115 #define CPDMA_RXHDP 0x20 116 #define CPDMA_TXCP 0x40 117 #define CPDMA_RXCP 0x60 118 119 #define CPSW_POLL_WEIGHT 64 120 #define CPSW_MIN_PACKET_SIZE 60 121 #define CPSW_MAX_PACKET_SIZE (1500 + 14 + 4 + 4) 122 123 #define RX_PRIORITY_MAPPING 0x76543210 124 #define TX_PRIORITY_MAPPING 0x33221100 125 #define CPDMA_TX_PRIORITY_MAP 0x76543210 126 127 #define CPSW_VLAN_AWARE BIT(1) 128 #define CPSW_ALE_VLAN_AWARE 1 129 130 #define CPSW_FIFO_NORMAL_MODE (0 << 16) 131 #define CPSW_FIFO_DUAL_MAC_MODE (1 << 16) 132 #define CPSW_FIFO_RATE_LIMIT_MODE (2 << 16) 133 134 #define CPSW_INTPACEEN (0x3f << 16) 135 #define CPSW_INTPRESCALE_MASK (0x7FF << 0) 136 #define CPSW_CMINTMAX_CNT 63 137 #define CPSW_CMINTMIN_CNT 2 138 #define CPSW_CMINTMAX_INTVL (1000 / CPSW_CMINTMIN_CNT) 139 #define CPSW_CMINTMIN_INTVL ((1000 / CPSW_CMINTMAX_CNT) + 1) 140 141 #define cpsw_slave_index(priv) \ 142 ((priv->data.dual_emac) ? priv->emac_port : \ 143 priv->data.active_slave) 144 145 static int debug_level; 146 module_param(debug_level, int, 0); 147 MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)"); 148 149 static int ale_ageout = 10; 150 module_param(ale_ageout, int, 0); 151 MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)"); 152 153 static int rx_packet_max = CPSW_MAX_PACKET_SIZE; 154 module_param(rx_packet_max, int, 0); 155 MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)"); 156 157 struct cpsw_wr_regs { 158 u32 id_ver; 159 u32 soft_reset; 160 u32 control; 161 u32 int_control; 162 u32 rx_thresh_en; 163 u32 rx_en; 164 u32 tx_en; 165 u32 misc_en; 166 u32 mem_allign1[8]; 167 u32 rx_thresh_stat; 168 u32 rx_stat; 169 u32 tx_stat; 170 u32 misc_stat; 171 u32 mem_allign2[8]; 172 u32 rx_imax; 173 u32 tx_imax; 174 175 }; 176 177 struct cpsw_ss_regs { 178 u32 id_ver; 179 u32 control; 180 u32 soft_reset; 181 u32 stat_port_en; 182 u32 ptype; 183 u32 soft_idle; 184 u32 thru_rate; 185 u32 gap_thresh; 186 u32 tx_start_wds; 187 u32 flow_control; 188 u32 vlan_ltype; 189 u32 ts_ltype; 190 u32 dlr_ltype; 191 }; 192 193 /* CPSW_PORT_V1 */ 194 #define CPSW1_MAX_BLKS 0x00 /* Maximum FIFO Blocks */ 195 #define CPSW1_BLK_CNT 0x04 /* FIFO Block Usage Count (Read Only) */ 196 #define CPSW1_TX_IN_CTL 0x08 /* Transmit FIFO Control */ 197 #define CPSW1_PORT_VLAN 0x0c /* VLAN Register */ 198 #define CPSW1_TX_PRI_MAP 0x10 /* Tx Header Priority to Switch Pri Mapping */ 199 #define CPSW1_TS_CTL 0x14 /* Time Sync Control */ 200 #define CPSW1_TS_SEQ_LTYPE 0x18 /* Time Sync Sequence ID Offset and Msg Type */ 201 #define CPSW1_TS_VLAN 0x1c /* Time Sync VLAN1 and VLAN2 */ 202 203 /* CPSW_PORT_V2 */ 204 #define CPSW2_CONTROL 0x00 /* Control Register */ 205 #define CPSW2_MAX_BLKS 0x08 /* Maximum FIFO Blocks */ 206 #define CPSW2_BLK_CNT 0x0c /* FIFO Block Usage Count (Read Only) */ 207 #define CPSW2_TX_IN_CTL 0x10 /* Transmit FIFO Control */ 208 #define CPSW2_PORT_VLAN 0x14 /* VLAN Register */ 209 #define CPSW2_TX_PRI_MAP 0x18 /* Tx Header Priority to Switch Pri Mapping */ 210 #define CPSW2_TS_SEQ_MTYPE 0x1c /* Time Sync Sequence ID Offset and Msg Type */ 211 212 /* CPSW_PORT_V1 and V2 */ 213 #define SA_LO 0x20 /* CPGMAC_SL Source Address Low */ 214 #define SA_HI 0x24 /* CPGMAC_SL Source Address High */ 215 #define SEND_PERCENT 0x28 /* Transmit Queue Send Percentages */ 216 217 /* CPSW_PORT_V2 only */ 218 #define RX_DSCP_PRI_MAP0 0x30 /* Rx DSCP Priority to Rx Packet Mapping */ 219 #define RX_DSCP_PRI_MAP1 0x34 /* Rx DSCP Priority to Rx Packet Mapping */ 220 #define RX_DSCP_PRI_MAP2 0x38 /* Rx DSCP Priority to Rx Packet Mapping */ 221 #define RX_DSCP_PRI_MAP3 0x3c /* Rx DSCP Priority to Rx Packet Mapping */ 222 #define RX_DSCP_PRI_MAP4 0x40 /* Rx DSCP Priority to Rx Packet Mapping */ 223 #define RX_DSCP_PRI_MAP5 0x44 /* Rx DSCP Priority to Rx Packet Mapping */ 224 #define RX_DSCP_PRI_MAP6 0x48 /* Rx DSCP Priority to Rx Packet Mapping */ 225 #define RX_DSCP_PRI_MAP7 0x4c /* Rx DSCP Priority to Rx Packet Mapping */ 226 227 /* Bit definitions for the CPSW2_CONTROL register */ 228 #define PASS_PRI_TAGGED (1<<24) /* Pass Priority Tagged */ 229 #define VLAN_LTYPE2_EN (1<<21) /* VLAN LTYPE 2 enable */ 230 #define VLAN_LTYPE1_EN (1<<20) /* VLAN LTYPE 1 enable */ 231 #define DSCP_PRI_EN (1<<16) /* DSCP Priority Enable */ 232 #define TS_320 (1<<14) /* Time Sync Dest Port 320 enable */ 233 #define TS_319 (1<<13) /* Time Sync Dest Port 319 enable */ 234 #define TS_132 (1<<12) /* Time Sync Dest IP Addr 132 enable */ 235 #define TS_131 (1<<11) /* Time Sync Dest IP Addr 131 enable */ 236 #define TS_130 (1<<10) /* Time Sync Dest IP Addr 130 enable */ 237 #define TS_129 (1<<9) /* Time Sync Dest IP Addr 129 enable */ 238 #define TS_TTL_NONZERO (1<<8) /* Time Sync Time To Live Non-zero enable */ 239 #define TS_ANNEX_F_EN (1<<6) /* Time Sync Annex F enable */ 240 #define TS_ANNEX_D_EN (1<<4) /* Time Sync Annex D enable */ 241 #define TS_LTYPE2_EN (1<<3) /* Time Sync LTYPE 2 enable */ 242 #define TS_LTYPE1_EN (1<<2) /* Time Sync LTYPE 1 enable */ 243 #define TS_TX_EN (1<<1) /* Time Sync Transmit Enable */ 244 #define TS_RX_EN (1<<0) /* Time Sync Receive Enable */ 245 246 #define CTRL_V2_TS_BITS \ 247 (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\ 248 TS_TTL_NONZERO | TS_ANNEX_D_EN | TS_LTYPE1_EN) 249 250 #define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN) 251 #define CTRL_V2_TX_TS_BITS (CTRL_V2_TS_BITS | TS_TX_EN) 252 #define CTRL_V2_RX_TS_BITS (CTRL_V2_TS_BITS | TS_RX_EN) 253 254 255 #define CTRL_V3_TS_BITS \ 256 (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\ 257 TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\ 258 TS_LTYPE1_EN) 259 260 #define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN) 261 #define CTRL_V3_TX_TS_BITS (CTRL_V3_TS_BITS | TS_TX_EN) 262 #define CTRL_V3_RX_TS_BITS (CTRL_V3_TS_BITS | TS_RX_EN) 263 264 /* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */ 265 #define TS_SEQ_ID_OFFSET_SHIFT (16) /* Time Sync Sequence ID Offset */ 266 #define TS_SEQ_ID_OFFSET_MASK (0x3f) 267 #define TS_MSG_TYPE_EN_SHIFT (0) /* Time Sync Message Type Enable */ 268 #define TS_MSG_TYPE_EN_MASK (0xffff) 269 270 /* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */ 271 #define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3)) 272 273 /* Bit definitions for the CPSW1_TS_CTL register */ 274 #define CPSW_V1_TS_RX_EN BIT(0) 275 #define CPSW_V1_TS_TX_EN BIT(4) 276 #define CPSW_V1_MSG_TYPE_OFS 16 277 278 /* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */ 279 #define CPSW_V1_SEQ_ID_OFS_SHIFT 16 280 281 struct cpsw_host_regs { 282 u32 max_blks; 283 u32 blk_cnt; 284 u32 tx_in_ctl; 285 u32 port_vlan; 286 u32 tx_pri_map; 287 u32 cpdma_tx_pri_map; 288 u32 cpdma_rx_chan_map; 289 }; 290 291 struct cpsw_sliver_regs { 292 u32 id_ver; 293 u32 mac_control; 294 u32 mac_status; 295 u32 soft_reset; 296 u32 rx_maxlen; 297 u32 __reserved_0; 298 u32 rx_pause; 299 u32 tx_pause; 300 u32 __reserved_1; 301 u32 rx_pri_map; 302 }; 303 304 struct cpsw_hw_stats { 305 u32 rxgoodframes; 306 u32 rxbroadcastframes; 307 u32 rxmulticastframes; 308 u32 rxpauseframes; 309 u32 rxcrcerrors; 310 u32 rxaligncodeerrors; 311 u32 rxoversizedframes; 312 u32 rxjabberframes; 313 u32 rxundersizedframes; 314 u32 rxfragments; 315 u32 __pad_0[2]; 316 u32 rxoctets; 317 u32 txgoodframes; 318 u32 txbroadcastframes; 319 u32 txmulticastframes; 320 u32 txpauseframes; 321 u32 txdeferredframes; 322 u32 txcollisionframes; 323 u32 txsinglecollframes; 324 u32 txmultcollframes; 325 u32 txexcessivecollisions; 326 u32 txlatecollisions; 327 u32 txunderrun; 328 u32 txcarriersenseerrors; 329 u32 txoctets; 330 u32 octetframes64; 331 u32 octetframes65t127; 332 u32 octetframes128t255; 333 u32 octetframes256t511; 334 u32 octetframes512t1023; 335 u32 octetframes1024tup; 336 u32 netoctets; 337 u32 rxsofoverruns; 338 u32 rxmofoverruns; 339 u32 rxdmaoverruns; 340 }; 341 342 struct cpsw_slave { 343 void __iomem *regs; 344 struct cpsw_sliver_regs __iomem *sliver; 345 int slave_num; 346 u32 mac_control; 347 struct cpsw_slave_data *data; 348 struct phy_device *phy; 349 struct net_device *ndev; 350 u32 port_vlan; 351 u32 open_stat; 352 }; 353 354 static inline u32 slave_read(struct cpsw_slave *slave, u32 offset) 355 { 356 return __raw_readl(slave->regs + offset); 357 } 358 359 static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset) 360 { 361 __raw_writel(val, slave->regs + offset); 362 } 363 364 struct cpsw_priv { 365 spinlock_t lock; 366 struct platform_device *pdev; 367 struct net_device *ndev; 368 struct napi_struct napi; 369 struct device *dev; 370 struct cpsw_platform_data data; 371 struct cpsw_ss_regs __iomem *regs; 372 struct cpsw_wr_regs __iomem *wr_regs; 373 u8 __iomem *hw_stats; 374 struct cpsw_host_regs __iomem *host_port_regs; 375 u32 msg_enable; 376 u32 version; 377 u32 coal_intvl; 378 u32 bus_freq_mhz; 379 int rx_packet_max; 380 int host_port; 381 struct clk *clk; 382 u8 mac_addr[ETH_ALEN]; 383 struct cpsw_slave *slaves; 384 struct cpdma_ctlr *dma; 385 struct cpdma_chan *txch, *rxch; 386 struct cpsw_ale *ale; 387 bool rx_pause; 388 bool tx_pause; 389 /* snapshot of IRQ numbers */ 390 u32 irqs_table[4]; 391 u32 num_irqs; 392 bool irq_enabled; 393 struct cpts *cpts; 394 u32 emac_port; 395 }; 396 397 struct cpsw_stats { 398 char stat_string[ETH_GSTRING_LEN]; 399 int type; 400 int sizeof_stat; 401 int stat_offset; 402 }; 403 404 enum { 405 CPSW_STATS, 406 CPDMA_RX_STATS, 407 CPDMA_TX_STATS, 408 }; 409 410 #define CPSW_STAT(m) CPSW_STATS, \ 411 sizeof(((struct cpsw_hw_stats *)0)->m), \ 412 offsetof(struct cpsw_hw_stats, m) 413 #define CPDMA_RX_STAT(m) CPDMA_RX_STATS, \ 414 sizeof(((struct cpdma_chan_stats *)0)->m), \ 415 offsetof(struct cpdma_chan_stats, m) 416 #define CPDMA_TX_STAT(m) CPDMA_TX_STATS, \ 417 sizeof(((struct cpdma_chan_stats *)0)->m), \ 418 offsetof(struct cpdma_chan_stats, m) 419 420 static const struct cpsw_stats cpsw_gstrings_stats[] = { 421 { "Good Rx Frames", CPSW_STAT(rxgoodframes) }, 422 { "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) }, 423 { "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) }, 424 { "Pause Rx Frames", CPSW_STAT(rxpauseframes) }, 425 { "Rx CRC Errors", CPSW_STAT(rxcrcerrors) }, 426 { "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) }, 427 { "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) }, 428 { "Rx Jabbers", CPSW_STAT(rxjabberframes) }, 429 { "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) }, 430 { "Rx Fragments", CPSW_STAT(rxfragments) }, 431 { "Rx Octets", CPSW_STAT(rxoctets) }, 432 { "Good Tx Frames", CPSW_STAT(txgoodframes) }, 433 { "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) }, 434 { "Multicast Tx Frames", CPSW_STAT(txmulticastframes) }, 435 { "Pause Tx Frames", CPSW_STAT(txpauseframes) }, 436 { "Deferred Tx Frames", CPSW_STAT(txdeferredframes) }, 437 { "Collisions", CPSW_STAT(txcollisionframes) }, 438 { "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) }, 439 { "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) }, 440 { "Excessive Collisions", CPSW_STAT(txexcessivecollisions) }, 441 { "Late Collisions", CPSW_STAT(txlatecollisions) }, 442 { "Tx Underrun", CPSW_STAT(txunderrun) }, 443 { "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) }, 444 { "Tx Octets", CPSW_STAT(txoctets) }, 445 { "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) }, 446 { "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) }, 447 { "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) }, 448 { "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) }, 449 { "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) }, 450 { "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) }, 451 { "Net Octets", CPSW_STAT(netoctets) }, 452 { "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) }, 453 { "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) }, 454 { "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) }, 455 { "Rx DMA chan: head_enqueue", CPDMA_RX_STAT(head_enqueue) }, 456 { "Rx DMA chan: tail_enqueue", CPDMA_RX_STAT(tail_enqueue) }, 457 { "Rx DMA chan: pad_enqueue", CPDMA_RX_STAT(pad_enqueue) }, 458 { "Rx DMA chan: misqueued", CPDMA_RX_STAT(misqueued) }, 459 { "Rx DMA chan: desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) }, 460 { "Rx DMA chan: pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) }, 461 { "Rx DMA chan: runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) }, 462 { "Rx DMA chan: runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) }, 463 { "Rx DMA chan: empty_dequeue", CPDMA_RX_STAT(empty_dequeue) }, 464 { "Rx DMA chan: busy_dequeue", CPDMA_RX_STAT(busy_dequeue) }, 465 { "Rx DMA chan: good_dequeue", CPDMA_RX_STAT(good_dequeue) }, 466 { "Rx DMA chan: requeue", CPDMA_RX_STAT(requeue) }, 467 { "Rx DMA chan: teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) }, 468 { "Tx DMA chan: head_enqueue", CPDMA_TX_STAT(head_enqueue) }, 469 { "Tx DMA chan: tail_enqueue", CPDMA_TX_STAT(tail_enqueue) }, 470 { "Tx DMA chan: pad_enqueue", CPDMA_TX_STAT(pad_enqueue) }, 471 { "Tx DMA chan: misqueued", CPDMA_TX_STAT(misqueued) }, 472 { "Tx DMA chan: desc_alloc_fail", CPDMA_TX_STAT(desc_alloc_fail) }, 473 { "Tx DMA chan: pad_alloc_fail", CPDMA_TX_STAT(pad_alloc_fail) }, 474 { "Tx DMA chan: runt_receive_buf", CPDMA_TX_STAT(runt_receive_buff) }, 475 { "Tx DMA chan: runt_transmit_buf", CPDMA_TX_STAT(runt_transmit_buff) }, 476 { "Tx DMA chan: empty_dequeue", CPDMA_TX_STAT(empty_dequeue) }, 477 { "Tx DMA chan: busy_dequeue", CPDMA_TX_STAT(busy_dequeue) }, 478 { "Tx DMA chan: good_dequeue", CPDMA_TX_STAT(good_dequeue) }, 479 { "Tx DMA chan: requeue", CPDMA_TX_STAT(requeue) }, 480 { "Tx DMA chan: teardown_dequeue", CPDMA_TX_STAT(teardown_dequeue) }, 481 }; 482 483 #define CPSW_STATS_LEN ARRAY_SIZE(cpsw_gstrings_stats) 484 485 #define napi_to_priv(napi) container_of(napi, struct cpsw_priv, napi) 486 #define for_each_slave(priv, func, arg...) \ 487 do { \ 488 struct cpsw_slave *slave; \ 489 int n; \ 490 if (priv->data.dual_emac) \ 491 (func)((priv)->slaves + priv->emac_port, ##arg);\ 492 else \ 493 for (n = (priv)->data.slaves, \ 494 slave = (priv)->slaves; \ 495 n; n--) \ 496 (func)(slave++, ##arg); \ 497 } while (0) 498 #define cpsw_get_slave_ndev(priv, __slave_no__) \ 499 ((__slave_no__ < priv->data.slaves) ? \ 500 priv->slaves[__slave_no__].ndev : NULL) 501 #define cpsw_get_slave_priv(priv, __slave_no__) \ 502 (((__slave_no__ < priv->data.slaves) && \ 503 (priv->slaves[__slave_no__].ndev)) ? \ 504 netdev_priv(priv->slaves[__slave_no__].ndev) : NULL) \ 505 506 #define cpsw_dual_emac_src_port_detect(status, priv, ndev, skb) \ 507 do { \ 508 if (!priv->data.dual_emac) \ 509 break; \ 510 if (CPDMA_RX_SOURCE_PORT(status) == 1) { \ 511 ndev = cpsw_get_slave_ndev(priv, 0); \ 512 priv = netdev_priv(ndev); \ 513 skb->dev = ndev; \ 514 } else if (CPDMA_RX_SOURCE_PORT(status) == 2) { \ 515 ndev = cpsw_get_slave_ndev(priv, 1); \ 516 priv = netdev_priv(ndev); \ 517 skb->dev = ndev; \ 518 } \ 519 } while (0) 520 #define cpsw_add_mcast(priv, addr) \ 521 do { \ 522 if (priv->data.dual_emac) { \ 523 struct cpsw_slave *slave = priv->slaves + \ 524 priv->emac_port; \ 525 int slave_port = cpsw_get_slave_port(priv, \ 526 slave->slave_num); \ 527 cpsw_ale_add_mcast(priv->ale, addr, \ 528 1 << slave_port | 1 << priv->host_port, \ 529 ALE_VLAN, slave->port_vlan, 0); \ 530 } else { \ 531 cpsw_ale_add_mcast(priv->ale, addr, \ 532 ALE_ALL_PORTS << priv->host_port, \ 533 0, 0, 0); \ 534 } \ 535 } while (0) 536 537 static inline int cpsw_get_slave_port(struct cpsw_priv *priv, u32 slave_num) 538 { 539 if (priv->host_port == 0) 540 return slave_num + 1; 541 else 542 return slave_num; 543 } 544 545 static void cpsw_set_promiscious(struct net_device *ndev, bool enable) 546 { 547 struct cpsw_priv *priv = netdev_priv(ndev); 548 struct cpsw_ale *ale = priv->ale; 549 int i; 550 551 if (priv->data.dual_emac) { 552 bool flag = false; 553 554 /* Enabling promiscuous mode for one interface will be 555 * common for both the interface as the interface shares 556 * the same hardware resource. 557 */ 558 for (i = 0; i < priv->data.slaves; i++) 559 if (priv->slaves[i].ndev->flags & IFF_PROMISC) 560 flag = true; 561 562 if (!enable && flag) { 563 enable = true; 564 dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n"); 565 } 566 567 if (enable) { 568 /* Enable Bypass */ 569 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1); 570 571 dev_dbg(&ndev->dev, "promiscuity enabled\n"); 572 } else { 573 /* Disable Bypass */ 574 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0); 575 dev_dbg(&ndev->dev, "promiscuity disabled\n"); 576 } 577 } else { 578 if (enable) { 579 unsigned long timeout = jiffies + HZ; 580 581 /* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */ 582 for (i = 0; i <= priv->data.slaves; i++) { 583 cpsw_ale_control_set(ale, i, 584 ALE_PORT_NOLEARN, 1); 585 cpsw_ale_control_set(ale, i, 586 ALE_PORT_NO_SA_UPDATE, 1); 587 } 588 589 /* Clear All Untouched entries */ 590 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1); 591 do { 592 cpu_relax(); 593 if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT)) 594 break; 595 } while (time_after(timeout, jiffies)); 596 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1); 597 598 /* Clear all mcast from ALE */ 599 cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS << 600 priv->host_port, -1); 601 602 /* Flood All Unicast Packets to Host port */ 603 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1); 604 dev_dbg(&ndev->dev, "promiscuity enabled\n"); 605 } else { 606 /* Don't Flood All Unicast Packets to Host port */ 607 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0); 608 609 /* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */ 610 for (i = 0; i <= priv->data.slaves; i++) { 611 cpsw_ale_control_set(ale, i, 612 ALE_PORT_NOLEARN, 0); 613 cpsw_ale_control_set(ale, i, 614 ALE_PORT_NO_SA_UPDATE, 0); 615 } 616 dev_dbg(&ndev->dev, "promiscuity disabled\n"); 617 } 618 } 619 } 620 621 static void cpsw_ndo_set_rx_mode(struct net_device *ndev) 622 { 623 struct cpsw_priv *priv = netdev_priv(ndev); 624 int vid; 625 626 if (priv->data.dual_emac) 627 vid = priv->slaves[priv->emac_port].port_vlan; 628 else 629 vid = priv->data.default_vlan; 630 631 if (ndev->flags & IFF_PROMISC) { 632 /* Enable promiscuous mode */ 633 cpsw_set_promiscious(ndev, true); 634 cpsw_ale_set_allmulti(priv->ale, IFF_ALLMULTI); 635 return; 636 } else { 637 /* Disable promiscuous mode */ 638 cpsw_set_promiscious(ndev, false); 639 } 640 641 /* Restore allmulti on vlans if necessary */ 642 cpsw_ale_set_allmulti(priv->ale, priv->ndev->flags & IFF_ALLMULTI); 643 644 /* Clear all mcast from ALE */ 645 cpsw_ale_flush_multicast(priv->ale, ALE_ALL_PORTS << priv->host_port, 646 vid); 647 648 if (!netdev_mc_empty(ndev)) { 649 struct netdev_hw_addr *ha; 650 651 /* program multicast address list into ALE register */ 652 netdev_for_each_mc_addr(ha, ndev) { 653 cpsw_add_mcast(priv, (u8 *)ha->addr); 654 } 655 } 656 } 657 658 static void cpsw_intr_enable(struct cpsw_priv *priv) 659 { 660 __raw_writel(0xFF, &priv->wr_regs->tx_en); 661 __raw_writel(0xFF, &priv->wr_regs->rx_en); 662 663 cpdma_ctlr_int_ctrl(priv->dma, true); 664 return; 665 } 666 667 static void cpsw_intr_disable(struct cpsw_priv *priv) 668 { 669 __raw_writel(0, &priv->wr_regs->tx_en); 670 __raw_writel(0, &priv->wr_regs->rx_en); 671 672 cpdma_ctlr_int_ctrl(priv->dma, false); 673 return; 674 } 675 676 static void cpsw_tx_handler(void *token, int len, int status) 677 { 678 struct sk_buff *skb = token; 679 struct net_device *ndev = skb->dev; 680 struct cpsw_priv *priv = netdev_priv(ndev); 681 682 /* Check whether the queue is stopped due to stalled tx dma, if the 683 * queue is stopped then start the queue as we have free desc for tx 684 */ 685 if (unlikely(netif_queue_stopped(ndev))) 686 netif_wake_queue(ndev); 687 cpts_tx_timestamp(priv->cpts, skb); 688 ndev->stats.tx_packets++; 689 ndev->stats.tx_bytes += len; 690 dev_kfree_skb_any(skb); 691 } 692 693 static void cpsw_rx_handler(void *token, int len, int status) 694 { 695 struct sk_buff *skb = token; 696 struct sk_buff *new_skb; 697 struct net_device *ndev = skb->dev; 698 struct cpsw_priv *priv = netdev_priv(ndev); 699 int ret = 0; 700 701 cpsw_dual_emac_src_port_detect(status, priv, ndev, skb); 702 703 if (unlikely(status < 0) || unlikely(!netif_running(ndev))) { 704 bool ndev_status = false; 705 struct cpsw_slave *slave = priv->slaves; 706 int n; 707 708 if (priv->data.dual_emac) { 709 /* In dual emac mode check for all interfaces */ 710 for (n = priv->data.slaves; n; n--, slave++) 711 if (netif_running(slave->ndev)) 712 ndev_status = true; 713 } 714 715 if (ndev_status && (status >= 0)) { 716 /* The packet received is for the interface which 717 * is already down and the other interface is up 718 * and running, instead of freeing which results 719 * in reducing of the number of rx descriptor in 720 * DMA engine, requeue skb back to cpdma. 721 */ 722 new_skb = skb; 723 goto requeue; 724 } 725 726 /* the interface is going down, skbs are purged */ 727 dev_kfree_skb_any(skb); 728 return; 729 } 730 731 new_skb = netdev_alloc_skb_ip_align(ndev, priv->rx_packet_max); 732 if (new_skb) { 733 skb_put(skb, len); 734 cpts_rx_timestamp(priv->cpts, skb); 735 skb->protocol = eth_type_trans(skb, ndev); 736 netif_receive_skb(skb); 737 ndev->stats.rx_bytes += len; 738 ndev->stats.rx_packets++; 739 } else { 740 ndev->stats.rx_dropped++; 741 new_skb = skb; 742 } 743 744 requeue: 745 ret = cpdma_chan_submit(priv->rxch, new_skb, new_skb->data, 746 skb_tailroom(new_skb), 0); 747 if (WARN_ON(ret < 0)) 748 dev_kfree_skb_any(new_skb); 749 } 750 751 static irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id) 752 { 753 struct cpsw_priv *priv = dev_id; 754 755 cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_TX); 756 cpdma_chan_process(priv->txch, 128); 757 758 priv = cpsw_get_slave_priv(priv, 1); 759 if (priv) 760 cpdma_chan_process(priv->txch, 128); 761 762 return IRQ_HANDLED; 763 } 764 765 static irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id) 766 { 767 struct cpsw_priv *priv = dev_id; 768 769 cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_RX); 770 771 cpsw_intr_disable(priv); 772 if (priv->irq_enabled == true) { 773 disable_irq_nosync(priv->irqs_table[0]); 774 priv->irq_enabled = false; 775 } 776 777 if (netif_running(priv->ndev)) { 778 napi_schedule(&priv->napi); 779 return IRQ_HANDLED; 780 } 781 782 priv = cpsw_get_slave_priv(priv, 1); 783 if (!priv) 784 return IRQ_NONE; 785 786 if (netif_running(priv->ndev)) { 787 napi_schedule(&priv->napi); 788 return IRQ_HANDLED; 789 } 790 return IRQ_NONE; 791 } 792 793 static int cpsw_poll(struct napi_struct *napi, int budget) 794 { 795 struct cpsw_priv *priv = napi_to_priv(napi); 796 int num_rx; 797 798 num_rx = cpdma_chan_process(priv->rxch, budget); 799 if (num_rx < budget) { 800 struct cpsw_priv *prim_cpsw; 801 802 napi_complete(napi); 803 cpsw_intr_enable(priv); 804 prim_cpsw = cpsw_get_slave_priv(priv, 0); 805 if (prim_cpsw->irq_enabled == false) { 806 prim_cpsw->irq_enabled = true; 807 enable_irq(priv->irqs_table[0]); 808 } 809 } 810 811 if (num_rx) 812 cpsw_dbg(priv, intr, "poll %d rx pkts\n", num_rx); 813 814 return num_rx; 815 } 816 817 static inline void soft_reset(const char *module, void __iomem *reg) 818 { 819 unsigned long timeout = jiffies + HZ; 820 821 __raw_writel(1, reg); 822 do { 823 cpu_relax(); 824 } while ((__raw_readl(reg) & 1) && time_after(timeout, jiffies)); 825 826 WARN(__raw_readl(reg) & 1, "failed to soft-reset %s\n", module); 827 } 828 829 #define mac_hi(mac) (((mac)[0] << 0) | ((mac)[1] << 8) | \ 830 ((mac)[2] << 16) | ((mac)[3] << 24)) 831 #define mac_lo(mac) (((mac)[4] << 0) | ((mac)[5] << 8)) 832 833 static void cpsw_set_slave_mac(struct cpsw_slave *slave, 834 struct cpsw_priv *priv) 835 { 836 slave_write(slave, mac_hi(priv->mac_addr), SA_HI); 837 slave_write(slave, mac_lo(priv->mac_addr), SA_LO); 838 } 839 840 static void _cpsw_adjust_link(struct cpsw_slave *slave, 841 struct cpsw_priv *priv, bool *link) 842 { 843 struct phy_device *phy = slave->phy; 844 u32 mac_control = 0; 845 u32 slave_port; 846 847 if (!phy) 848 return; 849 850 slave_port = cpsw_get_slave_port(priv, slave->slave_num); 851 852 if (phy->link) { 853 mac_control = priv->data.mac_control; 854 855 /* enable forwarding */ 856 cpsw_ale_control_set(priv->ale, slave_port, 857 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD); 858 859 if (phy->speed == 1000) 860 mac_control |= BIT(7); /* GIGABITEN */ 861 if (phy->duplex) 862 mac_control |= BIT(0); /* FULLDUPLEXEN */ 863 864 /* set speed_in input in case RMII mode is used in 100Mbps */ 865 if (phy->speed == 100) 866 mac_control |= BIT(15); 867 else if (phy->speed == 10) 868 mac_control |= BIT(18); /* In Band mode */ 869 870 if (priv->rx_pause) 871 mac_control |= BIT(3); 872 873 if (priv->tx_pause) 874 mac_control |= BIT(4); 875 876 *link = true; 877 } else { 878 mac_control = 0; 879 /* disable forwarding */ 880 cpsw_ale_control_set(priv->ale, slave_port, 881 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE); 882 } 883 884 if (mac_control != slave->mac_control) { 885 phy_print_status(phy); 886 __raw_writel(mac_control, &slave->sliver->mac_control); 887 } 888 889 slave->mac_control = mac_control; 890 } 891 892 static void cpsw_adjust_link(struct net_device *ndev) 893 { 894 struct cpsw_priv *priv = netdev_priv(ndev); 895 bool link = false; 896 897 for_each_slave(priv, _cpsw_adjust_link, priv, &link); 898 899 if (link) { 900 netif_carrier_on(ndev); 901 if (netif_running(ndev)) 902 netif_wake_queue(ndev); 903 } else { 904 netif_carrier_off(ndev); 905 netif_stop_queue(ndev); 906 } 907 } 908 909 static int cpsw_get_coalesce(struct net_device *ndev, 910 struct ethtool_coalesce *coal) 911 { 912 struct cpsw_priv *priv = netdev_priv(ndev); 913 914 coal->rx_coalesce_usecs = priv->coal_intvl; 915 return 0; 916 } 917 918 static int cpsw_set_coalesce(struct net_device *ndev, 919 struct ethtool_coalesce *coal) 920 { 921 struct cpsw_priv *priv = netdev_priv(ndev); 922 u32 int_ctrl; 923 u32 num_interrupts = 0; 924 u32 prescale = 0; 925 u32 addnl_dvdr = 1; 926 u32 coal_intvl = 0; 927 928 coal_intvl = coal->rx_coalesce_usecs; 929 930 int_ctrl = readl(&priv->wr_regs->int_control); 931 prescale = priv->bus_freq_mhz * 4; 932 933 if (!coal->rx_coalesce_usecs) { 934 int_ctrl &= ~(CPSW_INTPRESCALE_MASK | CPSW_INTPACEEN); 935 goto update_return; 936 } 937 938 if (coal_intvl < CPSW_CMINTMIN_INTVL) 939 coal_intvl = CPSW_CMINTMIN_INTVL; 940 941 if (coal_intvl > CPSW_CMINTMAX_INTVL) { 942 /* Interrupt pacer works with 4us Pulse, we can 943 * throttle further by dilating the 4us pulse. 944 */ 945 addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale; 946 947 if (addnl_dvdr > 1) { 948 prescale *= addnl_dvdr; 949 if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr)) 950 coal_intvl = (CPSW_CMINTMAX_INTVL 951 * addnl_dvdr); 952 } else { 953 addnl_dvdr = 1; 954 coal_intvl = CPSW_CMINTMAX_INTVL; 955 } 956 } 957 958 num_interrupts = (1000 * addnl_dvdr) / coal_intvl; 959 writel(num_interrupts, &priv->wr_regs->rx_imax); 960 writel(num_interrupts, &priv->wr_regs->tx_imax); 961 962 int_ctrl |= CPSW_INTPACEEN; 963 int_ctrl &= (~CPSW_INTPRESCALE_MASK); 964 int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK); 965 966 update_return: 967 writel(int_ctrl, &priv->wr_regs->int_control); 968 969 cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl); 970 if (priv->data.dual_emac) { 971 int i; 972 973 for (i = 0; i < priv->data.slaves; i++) { 974 priv = netdev_priv(priv->slaves[i].ndev); 975 priv->coal_intvl = coal_intvl; 976 } 977 } else { 978 priv->coal_intvl = coal_intvl; 979 } 980 981 return 0; 982 } 983 984 static int cpsw_get_sset_count(struct net_device *ndev, int sset) 985 { 986 switch (sset) { 987 case ETH_SS_STATS: 988 return CPSW_STATS_LEN; 989 default: 990 return -EOPNOTSUPP; 991 } 992 } 993 994 static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data) 995 { 996 u8 *p = data; 997 int i; 998 999 switch (stringset) { 1000 case ETH_SS_STATS: 1001 for (i = 0; i < CPSW_STATS_LEN; i++) { 1002 memcpy(p, cpsw_gstrings_stats[i].stat_string, 1003 ETH_GSTRING_LEN); 1004 p += ETH_GSTRING_LEN; 1005 } 1006 break; 1007 } 1008 } 1009 1010 static void cpsw_get_ethtool_stats(struct net_device *ndev, 1011 struct ethtool_stats *stats, u64 *data) 1012 { 1013 struct cpsw_priv *priv = netdev_priv(ndev); 1014 struct cpdma_chan_stats rx_stats; 1015 struct cpdma_chan_stats tx_stats; 1016 u32 val; 1017 u8 *p; 1018 int i; 1019 1020 /* Collect Davinci CPDMA stats for Rx and Tx Channel */ 1021 cpdma_chan_get_stats(priv->rxch, &rx_stats); 1022 cpdma_chan_get_stats(priv->txch, &tx_stats); 1023 1024 for (i = 0; i < CPSW_STATS_LEN; i++) { 1025 switch (cpsw_gstrings_stats[i].type) { 1026 case CPSW_STATS: 1027 val = readl(priv->hw_stats + 1028 cpsw_gstrings_stats[i].stat_offset); 1029 data[i] = val; 1030 break; 1031 1032 case CPDMA_RX_STATS: 1033 p = (u8 *)&rx_stats + 1034 cpsw_gstrings_stats[i].stat_offset; 1035 data[i] = *(u32 *)p; 1036 break; 1037 1038 case CPDMA_TX_STATS: 1039 p = (u8 *)&tx_stats + 1040 cpsw_gstrings_stats[i].stat_offset; 1041 data[i] = *(u32 *)p; 1042 break; 1043 } 1044 } 1045 } 1046 1047 static int cpsw_common_res_usage_state(struct cpsw_priv *priv) 1048 { 1049 u32 i; 1050 u32 usage_count = 0; 1051 1052 if (!priv->data.dual_emac) 1053 return 0; 1054 1055 for (i = 0; i < priv->data.slaves; i++) 1056 if (priv->slaves[i].open_stat) 1057 usage_count++; 1058 1059 return usage_count; 1060 } 1061 1062 static inline int cpsw_tx_packet_submit(struct net_device *ndev, 1063 struct cpsw_priv *priv, struct sk_buff *skb) 1064 { 1065 if (!priv->data.dual_emac) 1066 return cpdma_chan_submit(priv->txch, skb, skb->data, 1067 skb->len, 0); 1068 1069 if (ndev == cpsw_get_slave_ndev(priv, 0)) 1070 return cpdma_chan_submit(priv->txch, skb, skb->data, 1071 skb->len, 1); 1072 else 1073 return cpdma_chan_submit(priv->txch, skb, skb->data, 1074 skb->len, 2); 1075 } 1076 1077 static inline void cpsw_add_dual_emac_def_ale_entries( 1078 struct cpsw_priv *priv, struct cpsw_slave *slave, 1079 u32 slave_port) 1080 { 1081 u32 port_mask = 1 << slave_port | 1 << priv->host_port; 1082 1083 if (priv->version == CPSW_VERSION_1) 1084 slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN); 1085 else 1086 slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN); 1087 cpsw_ale_add_vlan(priv->ale, slave->port_vlan, port_mask, 1088 port_mask, port_mask, 0); 1089 cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast, 1090 port_mask, ALE_VLAN, slave->port_vlan, 0); 1091 cpsw_ale_add_ucast(priv->ale, priv->mac_addr, 1092 priv->host_port, ALE_VLAN | ALE_SECURE, slave->port_vlan); 1093 } 1094 1095 static void soft_reset_slave(struct cpsw_slave *slave) 1096 { 1097 char name[32]; 1098 1099 snprintf(name, sizeof(name), "slave-%d", slave->slave_num); 1100 soft_reset(name, &slave->sliver->soft_reset); 1101 } 1102 1103 static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv) 1104 { 1105 u32 slave_port; 1106 1107 soft_reset_slave(slave); 1108 1109 /* setup priority mapping */ 1110 __raw_writel(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map); 1111 1112 switch (priv->version) { 1113 case CPSW_VERSION_1: 1114 slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP); 1115 break; 1116 case CPSW_VERSION_2: 1117 case CPSW_VERSION_3: 1118 case CPSW_VERSION_4: 1119 slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP); 1120 break; 1121 } 1122 1123 /* setup max packet size, and mac address */ 1124 __raw_writel(priv->rx_packet_max, &slave->sliver->rx_maxlen); 1125 cpsw_set_slave_mac(slave, priv); 1126 1127 slave->mac_control = 0; /* no link yet */ 1128 1129 slave_port = cpsw_get_slave_port(priv, slave->slave_num); 1130 1131 if (priv->data.dual_emac) 1132 cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port); 1133 else 1134 cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast, 1135 1 << slave_port, 0, 0, ALE_MCAST_FWD_2); 1136 1137 slave->phy = phy_connect(priv->ndev, slave->data->phy_id, 1138 &cpsw_adjust_link, slave->data->phy_if); 1139 if (IS_ERR(slave->phy)) { 1140 dev_err(priv->dev, "phy %s not found on slave %d\n", 1141 slave->data->phy_id, slave->slave_num); 1142 slave->phy = NULL; 1143 } else { 1144 dev_info(priv->dev, "phy found : id is : 0x%x\n", 1145 slave->phy->phy_id); 1146 phy_start(slave->phy); 1147 1148 /* Configure GMII_SEL register */ 1149 cpsw_phy_sel(&priv->pdev->dev, slave->phy->interface, 1150 slave->slave_num); 1151 } 1152 } 1153 1154 static inline void cpsw_add_default_vlan(struct cpsw_priv *priv) 1155 { 1156 const int vlan = priv->data.default_vlan; 1157 const int port = priv->host_port; 1158 u32 reg; 1159 int i; 1160 int unreg_mcast_mask; 1161 1162 reg = (priv->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN : 1163 CPSW2_PORT_VLAN; 1164 1165 writel(vlan, &priv->host_port_regs->port_vlan); 1166 1167 for (i = 0; i < priv->data.slaves; i++) 1168 slave_write(priv->slaves + i, vlan, reg); 1169 1170 if (priv->ndev->flags & IFF_ALLMULTI) 1171 unreg_mcast_mask = ALE_ALL_PORTS; 1172 else 1173 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2; 1174 1175 cpsw_ale_add_vlan(priv->ale, vlan, ALE_ALL_PORTS << port, 1176 ALE_ALL_PORTS << port, ALE_ALL_PORTS << port, 1177 unreg_mcast_mask << port); 1178 } 1179 1180 static void cpsw_init_host_port(struct cpsw_priv *priv) 1181 { 1182 u32 control_reg; 1183 u32 fifo_mode; 1184 1185 /* soft reset the controller and initialize ale */ 1186 soft_reset("cpsw", &priv->regs->soft_reset); 1187 cpsw_ale_start(priv->ale); 1188 1189 /* switch to vlan unaware mode */ 1190 cpsw_ale_control_set(priv->ale, priv->host_port, ALE_VLAN_AWARE, 1191 CPSW_ALE_VLAN_AWARE); 1192 control_reg = readl(&priv->regs->control); 1193 control_reg |= CPSW_VLAN_AWARE; 1194 writel(control_reg, &priv->regs->control); 1195 fifo_mode = (priv->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE : 1196 CPSW_FIFO_NORMAL_MODE; 1197 writel(fifo_mode, &priv->host_port_regs->tx_in_ctl); 1198 1199 /* setup host port priority mapping */ 1200 __raw_writel(CPDMA_TX_PRIORITY_MAP, 1201 &priv->host_port_regs->cpdma_tx_pri_map); 1202 __raw_writel(0, &priv->host_port_regs->cpdma_rx_chan_map); 1203 1204 cpsw_ale_control_set(priv->ale, priv->host_port, 1205 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD); 1206 1207 if (!priv->data.dual_emac) { 1208 cpsw_ale_add_ucast(priv->ale, priv->mac_addr, priv->host_port, 1209 0, 0); 1210 cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast, 1211 1 << priv->host_port, 0, 0, ALE_MCAST_FWD_2); 1212 } 1213 } 1214 1215 static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_priv *priv) 1216 { 1217 u32 slave_port; 1218 1219 slave_port = cpsw_get_slave_port(priv, slave->slave_num); 1220 1221 if (!slave->phy) 1222 return; 1223 phy_stop(slave->phy); 1224 phy_disconnect(slave->phy); 1225 slave->phy = NULL; 1226 cpsw_ale_control_set(priv->ale, slave_port, 1227 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE); 1228 } 1229 1230 static int cpsw_ndo_open(struct net_device *ndev) 1231 { 1232 struct cpsw_priv *priv = netdev_priv(ndev); 1233 struct cpsw_priv *prim_cpsw; 1234 int i, ret; 1235 u32 reg; 1236 1237 if (!cpsw_common_res_usage_state(priv)) 1238 cpsw_intr_disable(priv); 1239 netif_carrier_off(ndev); 1240 1241 pm_runtime_get_sync(&priv->pdev->dev); 1242 1243 reg = priv->version; 1244 1245 dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n", 1246 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg), 1247 CPSW_RTL_VERSION(reg)); 1248 1249 /* initialize host and slave ports */ 1250 if (!cpsw_common_res_usage_state(priv)) 1251 cpsw_init_host_port(priv); 1252 for_each_slave(priv, cpsw_slave_open, priv); 1253 1254 /* Add default VLAN */ 1255 if (!priv->data.dual_emac) 1256 cpsw_add_default_vlan(priv); 1257 else 1258 cpsw_ale_add_vlan(priv->ale, priv->data.default_vlan, 1259 ALE_ALL_PORTS << priv->host_port, 1260 ALE_ALL_PORTS << priv->host_port, 0, 0); 1261 1262 if (!cpsw_common_res_usage_state(priv)) { 1263 /* setup tx dma to fixed prio and zero offset */ 1264 cpdma_control_set(priv->dma, CPDMA_TX_PRIO_FIXED, 1); 1265 cpdma_control_set(priv->dma, CPDMA_RX_BUFFER_OFFSET, 0); 1266 1267 /* disable priority elevation */ 1268 __raw_writel(0, &priv->regs->ptype); 1269 1270 /* enable statistics collection only on all ports */ 1271 __raw_writel(0x7, &priv->regs->stat_port_en); 1272 1273 /* Enable internal fifo flow control */ 1274 writel(0x7, &priv->regs->flow_control); 1275 1276 if (WARN_ON(!priv->data.rx_descs)) 1277 priv->data.rx_descs = 128; 1278 1279 for (i = 0; i < priv->data.rx_descs; i++) { 1280 struct sk_buff *skb; 1281 1282 ret = -ENOMEM; 1283 skb = __netdev_alloc_skb_ip_align(priv->ndev, 1284 priv->rx_packet_max, GFP_KERNEL); 1285 if (!skb) 1286 goto err_cleanup; 1287 ret = cpdma_chan_submit(priv->rxch, skb, skb->data, 1288 skb_tailroom(skb), 0); 1289 if (ret < 0) { 1290 kfree_skb(skb); 1291 goto err_cleanup; 1292 } 1293 } 1294 /* continue even if we didn't manage to submit all 1295 * receive descs 1296 */ 1297 cpsw_info(priv, ifup, "submitted %d rx descriptors\n", i); 1298 1299 if (cpts_register(&priv->pdev->dev, priv->cpts, 1300 priv->data.cpts_clock_mult, 1301 priv->data.cpts_clock_shift)) 1302 dev_err(priv->dev, "error registering cpts device\n"); 1303 1304 } 1305 1306 /* Enable Interrupt pacing if configured */ 1307 if (priv->coal_intvl != 0) { 1308 struct ethtool_coalesce coal; 1309 1310 coal.rx_coalesce_usecs = (priv->coal_intvl << 4); 1311 cpsw_set_coalesce(ndev, &coal); 1312 } 1313 1314 napi_enable(&priv->napi); 1315 cpdma_ctlr_start(priv->dma); 1316 cpsw_intr_enable(priv); 1317 1318 prim_cpsw = cpsw_get_slave_priv(priv, 0); 1319 if (prim_cpsw->irq_enabled == false) { 1320 if ((priv == prim_cpsw) || !netif_running(prim_cpsw->ndev)) { 1321 prim_cpsw->irq_enabled = true; 1322 enable_irq(prim_cpsw->irqs_table[0]); 1323 } 1324 } 1325 1326 if (priv->data.dual_emac) 1327 priv->slaves[priv->emac_port].open_stat = true; 1328 return 0; 1329 1330 err_cleanup: 1331 cpdma_ctlr_stop(priv->dma); 1332 for_each_slave(priv, cpsw_slave_stop, priv); 1333 pm_runtime_put_sync(&priv->pdev->dev); 1334 netif_carrier_off(priv->ndev); 1335 return ret; 1336 } 1337 1338 static int cpsw_ndo_stop(struct net_device *ndev) 1339 { 1340 struct cpsw_priv *priv = netdev_priv(ndev); 1341 1342 cpsw_info(priv, ifdown, "shutting down cpsw device\n"); 1343 netif_stop_queue(priv->ndev); 1344 napi_disable(&priv->napi); 1345 netif_carrier_off(priv->ndev); 1346 1347 if (cpsw_common_res_usage_state(priv) <= 1) { 1348 cpts_unregister(priv->cpts); 1349 cpsw_intr_disable(priv); 1350 cpdma_ctlr_stop(priv->dma); 1351 cpsw_ale_stop(priv->ale); 1352 } 1353 for_each_slave(priv, cpsw_slave_stop, priv); 1354 pm_runtime_put_sync(&priv->pdev->dev); 1355 if (priv->data.dual_emac) 1356 priv->slaves[priv->emac_port].open_stat = false; 1357 return 0; 1358 } 1359 1360 static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb, 1361 struct net_device *ndev) 1362 { 1363 struct cpsw_priv *priv = netdev_priv(ndev); 1364 int ret; 1365 1366 ndev->trans_start = jiffies; 1367 1368 if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) { 1369 cpsw_err(priv, tx_err, "packet pad failed\n"); 1370 ndev->stats.tx_dropped++; 1371 return NETDEV_TX_OK; 1372 } 1373 1374 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && 1375 priv->cpts->tx_enable) 1376 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1377 1378 skb_tx_timestamp(skb); 1379 1380 ret = cpsw_tx_packet_submit(ndev, priv, skb); 1381 if (unlikely(ret != 0)) { 1382 cpsw_err(priv, tx_err, "desc submit failed\n"); 1383 goto fail; 1384 } 1385 1386 /* If there is no more tx desc left free then we need to 1387 * tell the kernel to stop sending us tx frames. 1388 */ 1389 if (unlikely(!cpdma_check_free_tx_desc(priv->txch))) 1390 netif_stop_queue(ndev); 1391 1392 return NETDEV_TX_OK; 1393 fail: 1394 ndev->stats.tx_dropped++; 1395 netif_stop_queue(ndev); 1396 return NETDEV_TX_BUSY; 1397 } 1398 1399 #ifdef CONFIG_TI_CPTS 1400 1401 static void cpsw_hwtstamp_v1(struct cpsw_priv *priv) 1402 { 1403 struct cpsw_slave *slave = &priv->slaves[priv->data.active_slave]; 1404 u32 ts_en, seq_id; 1405 1406 if (!priv->cpts->tx_enable && !priv->cpts->rx_enable) { 1407 slave_write(slave, 0, CPSW1_TS_CTL); 1408 return; 1409 } 1410 1411 seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588; 1412 ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS; 1413 1414 if (priv->cpts->tx_enable) 1415 ts_en |= CPSW_V1_TS_TX_EN; 1416 1417 if (priv->cpts->rx_enable) 1418 ts_en |= CPSW_V1_TS_RX_EN; 1419 1420 slave_write(slave, ts_en, CPSW1_TS_CTL); 1421 slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE); 1422 } 1423 1424 static void cpsw_hwtstamp_v2(struct cpsw_priv *priv) 1425 { 1426 struct cpsw_slave *slave; 1427 u32 ctrl, mtype; 1428 1429 if (priv->data.dual_emac) 1430 slave = &priv->slaves[priv->emac_port]; 1431 else 1432 slave = &priv->slaves[priv->data.active_slave]; 1433 1434 ctrl = slave_read(slave, CPSW2_CONTROL); 1435 switch (priv->version) { 1436 case CPSW_VERSION_2: 1437 ctrl &= ~CTRL_V2_ALL_TS_MASK; 1438 1439 if (priv->cpts->tx_enable) 1440 ctrl |= CTRL_V2_TX_TS_BITS; 1441 1442 if (priv->cpts->rx_enable) 1443 ctrl |= CTRL_V2_RX_TS_BITS; 1444 break; 1445 case CPSW_VERSION_3: 1446 default: 1447 ctrl &= ~CTRL_V3_ALL_TS_MASK; 1448 1449 if (priv->cpts->tx_enable) 1450 ctrl |= CTRL_V3_TX_TS_BITS; 1451 1452 if (priv->cpts->rx_enable) 1453 ctrl |= CTRL_V3_RX_TS_BITS; 1454 break; 1455 } 1456 1457 mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS; 1458 1459 slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE); 1460 slave_write(slave, ctrl, CPSW2_CONTROL); 1461 __raw_writel(ETH_P_1588, &priv->regs->ts_ltype); 1462 } 1463 1464 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr) 1465 { 1466 struct cpsw_priv *priv = netdev_priv(dev); 1467 struct cpts *cpts = priv->cpts; 1468 struct hwtstamp_config cfg; 1469 1470 if (priv->version != CPSW_VERSION_1 && 1471 priv->version != CPSW_VERSION_2 && 1472 priv->version != CPSW_VERSION_3) 1473 return -EOPNOTSUPP; 1474 1475 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg))) 1476 return -EFAULT; 1477 1478 /* reserved for future extensions */ 1479 if (cfg.flags) 1480 return -EINVAL; 1481 1482 if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON) 1483 return -ERANGE; 1484 1485 switch (cfg.rx_filter) { 1486 case HWTSTAMP_FILTER_NONE: 1487 cpts->rx_enable = 0; 1488 break; 1489 case HWTSTAMP_FILTER_ALL: 1490 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 1491 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 1492 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 1493 return -ERANGE; 1494 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 1495 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 1496 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 1497 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 1498 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 1499 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 1500 case HWTSTAMP_FILTER_PTP_V2_EVENT: 1501 case HWTSTAMP_FILTER_PTP_V2_SYNC: 1502 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 1503 cpts->rx_enable = 1; 1504 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 1505 break; 1506 default: 1507 return -ERANGE; 1508 } 1509 1510 cpts->tx_enable = cfg.tx_type == HWTSTAMP_TX_ON; 1511 1512 switch (priv->version) { 1513 case CPSW_VERSION_1: 1514 cpsw_hwtstamp_v1(priv); 1515 break; 1516 case CPSW_VERSION_2: 1517 case CPSW_VERSION_3: 1518 cpsw_hwtstamp_v2(priv); 1519 break; 1520 default: 1521 WARN_ON(1); 1522 } 1523 1524 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; 1525 } 1526 1527 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr) 1528 { 1529 struct cpsw_priv *priv = netdev_priv(dev); 1530 struct cpts *cpts = priv->cpts; 1531 struct hwtstamp_config cfg; 1532 1533 if (priv->version != CPSW_VERSION_1 && 1534 priv->version != CPSW_VERSION_2 && 1535 priv->version != CPSW_VERSION_3) 1536 return -EOPNOTSUPP; 1537 1538 cfg.flags = 0; 1539 cfg.tx_type = cpts->tx_enable ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF; 1540 cfg.rx_filter = (cpts->rx_enable ? 1541 HWTSTAMP_FILTER_PTP_V2_EVENT : HWTSTAMP_FILTER_NONE); 1542 1543 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; 1544 } 1545 1546 #endif /*CONFIG_TI_CPTS*/ 1547 1548 static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 1549 { 1550 struct cpsw_priv *priv = netdev_priv(dev); 1551 int slave_no = cpsw_slave_index(priv); 1552 1553 if (!netif_running(dev)) 1554 return -EINVAL; 1555 1556 switch (cmd) { 1557 #ifdef CONFIG_TI_CPTS 1558 case SIOCSHWTSTAMP: 1559 return cpsw_hwtstamp_set(dev, req); 1560 case SIOCGHWTSTAMP: 1561 return cpsw_hwtstamp_get(dev, req); 1562 #endif 1563 } 1564 1565 if (!priv->slaves[slave_no].phy) 1566 return -EOPNOTSUPP; 1567 return phy_mii_ioctl(priv->slaves[slave_no].phy, req, cmd); 1568 } 1569 1570 static void cpsw_ndo_tx_timeout(struct net_device *ndev) 1571 { 1572 struct cpsw_priv *priv = netdev_priv(ndev); 1573 1574 cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n"); 1575 ndev->stats.tx_errors++; 1576 cpsw_intr_disable(priv); 1577 cpdma_chan_stop(priv->txch); 1578 cpdma_chan_start(priv->txch); 1579 cpsw_intr_enable(priv); 1580 } 1581 1582 static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p) 1583 { 1584 struct cpsw_priv *priv = netdev_priv(ndev); 1585 struct sockaddr *addr = (struct sockaddr *)p; 1586 int flags = 0; 1587 u16 vid = 0; 1588 1589 if (!is_valid_ether_addr(addr->sa_data)) 1590 return -EADDRNOTAVAIL; 1591 1592 if (priv->data.dual_emac) { 1593 vid = priv->slaves[priv->emac_port].port_vlan; 1594 flags = ALE_VLAN; 1595 } 1596 1597 cpsw_ale_del_ucast(priv->ale, priv->mac_addr, priv->host_port, 1598 flags, vid); 1599 cpsw_ale_add_ucast(priv->ale, addr->sa_data, priv->host_port, 1600 flags, vid); 1601 1602 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN); 1603 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN); 1604 for_each_slave(priv, cpsw_set_slave_mac, priv); 1605 1606 return 0; 1607 } 1608 1609 #ifdef CONFIG_NET_POLL_CONTROLLER 1610 static void cpsw_ndo_poll_controller(struct net_device *ndev) 1611 { 1612 struct cpsw_priv *priv = netdev_priv(ndev); 1613 1614 cpsw_intr_disable(priv); 1615 cpsw_rx_interrupt(priv->irqs_table[0], priv); 1616 cpsw_tx_interrupt(priv->irqs_table[1], priv); 1617 cpsw_intr_enable(priv); 1618 } 1619 #endif 1620 1621 static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv, 1622 unsigned short vid) 1623 { 1624 int ret; 1625 int unreg_mcast_mask = 0; 1626 u32 port_mask; 1627 1628 if (priv->data.dual_emac) { 1629 port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST; 1630 1631 if (priv->ndev->flags & IFF_ALLMULTI) 1632 unreg_mcast_mask = port_mask; 1633 } else { 1634 port_mask = ALE_ALL_PORTS; 1635 1636 if (priv->ndev->flags & IFF_ALLMULTI) 1637 unreg_mcast_mask = ALE_ALL_PORTS; 1638 else 1639 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2; 1640 } 1641 1642 ret = cpsw_ale_add_vlan(priv->ale, vid, port_mask, 0, port_mask, 1643 unreg_mcast_mask << priv->host_port); 1644 if (ret != 0) 1645 return ret; 1646 1647 ret = cpsw_ale_add_ucast(priv->ale, priv->mac_addr, 1648 priv->host_port, ALE_VLAN, vid); 1649 if (ret != 0) 1650 goto clean_vid; 1651 1652 ret = cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast, 1653 port_mask, ALE_VLAN, vid, 0); 1654 if (ret != 0) 1655 goto clean_vlan_ucast; 1656 return 0; 1657 1658 clean_vlan_ucast: 1659 cpsw_ale_del_ucast(priv->ale, priv->mac_addr, 1660 priv->host_port, ALE_VLAN, vid); 1661 clean_vid: 1662 cpsw_ale_del_vlan(priv->ale, vid, 0); 1663 return ret; 1664 } 1665 1666 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev, 1667 __be16 proto, u16 vid) 1668 { 1669 struct cpsw_priv *priv = netdev_priv(ndev); 1670 1671 if (vid == priv->data.default_vlan) 1672 return 0; 1673 1674 if (priv->data.dual_emac) { 1675 /* In dual EMAC, reserved VLAN id should not be used for 1676 * creating VLAN interfaces as this can break the dual 1677 * EMAC port separation 1678 */ 1679 int i; 1680 1681 for (i = 0; i < priv->data.slaves; i++) { 1682 if (vid == priv->slaves[i].port_vlan) 1683 return -EINVAL; 1684 } 1685 } 1686 1687 dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid); 1688 return cpsw_add_vlan_ale_entry(priv, vid); 1689 } 1690 1691 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev, 1692 __be16 proto, u16 vid) 1693 { 1694 struct cpsw_priv *priv = netdev_priv(ndev); 1695 int ret; 1696 1697 if (vid == priv->data.default_vlan) 1698 return 0; 1699 1700 if (priv->data.dual_emac) { 1701 int i; 1702 1703 for (i = 0; i < priv->data.slaves; i++) { 1704 if (vid == priv->slaves[i].port_vlan) 1705 return -EINVAL; 1706 } 1707 } 1708 1709 dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid); 1710 ret = cpsw_ale_del_vlan(priv->ale, vid, 0); 1711 if (ret != 0) 1712 return ret; 1713 1714 ret = cpsw_ale_del_ucast(priv->ale, priv->mac_addr, 1715 priv->host_port, ALE_VLAN, vid); 1716 if (ret != 0) 1717 return ret; 1718 1719 return cpsw_ale_del_mcast(priv->ale, priv->ndev->broadcast, 1720 0, ALE_VLAN, vid); 1721 } 1722 1723 static const struct net_device_ops cpsw_netdev_ops = { 1724 .ndo_open = cpsw_ndo_open, 1725 .ndo_stop = cpsw_ndo_stop, 1726 .ndo_start_xmit = cpsw_ndo_start_xmit, 1727 .ndo_set_mac_address = cpsw_ndo_set_mac_address, 1728 .ndo_do_ioctl = cpsw_ndo_ioctl, 1729 .ndo_validate_addr = eth_validate_addr, 1730 .ndo_change_mtu = eth_change_mtu, 1731 .ndo_tx_timeout = cpsw_ndo_tx_timeout, 1732 .ndo_set_rx_mode = cpsw_ndo_set_rx_mode, 1733 #ifdef CONFIG_NET_POLL_CONTROLLER 1734 .ndo_poll_controller = cpsw_ndo_poll_controller, 1735 #endif 1736 .ndo_vlan_rx_add_vid = cpsw_ndo_vlan_rx_add_vid, 1737 .ndo_vlan_rx_kill_vid = cpsw_ndo_vlan_rx_kill_vid, 1738 }; 1739 1740 static int cpsw_get_regs_len(struct net_device *ndev) 1741 { 1742 struct cpsw_priv *priv = netdev_priv(ndev); 1743 1744 return priv->data.ale_entries * ALE_ENTRY_WORDS * sizeof(u32); 1745 } 1746 1747 static void cpsw_get_regs(struct net_device *ndev, 1748 struct ethtool_regs *regs, void *p) 1749 { 1750 struct cpsw_priv *priv = netdev_priv(ndev); 1751 u32 *reg = p; 1752 1753 /* update CPSW IP version */ 1754 regs->version = priv->version; 1755 1756 cpsw_ale_dump(priv->ale, reg); 1757 } 1758 1759 static void cpsw_get_drvinfo(struct net_device *ndev, 1760 struct ethtool_drvinfo *info) 1761 { 1762 struct cpsw_priv *priv = netdev_priv(ndev); 1763 1764 strlcpy(info->driver, "cpsw", sizeof(info->driver)); 1765 strlcpy(info->version, "1.0", sizeof(info->version)); 1766 strlcpy(info->bus_info, priv->pdev->name, sizeof(info->bus_info)); 1767 info->regdump_len = cpsw_get_regs_len(ndev); 1768 } 1769 1770 static u32 cpsw_get_msglevel(struct net_device *ndev) 1771 { 1772 struct cpsw_priv *priv = netdev_priv(ndev); 1773 return priv->msg_enable; 1774 } 1775 1776 static void cpsw_set_msglevel(struct net_device *ndev, u32 value) 1777 { 1778 struct cpsw_priv *priv = netdev_priv(ndev); 1779 priv->msg_enable = value; 1780 } 1781 1782 static int cpsw_get_ts_info(struct net_device *ndev, 1783 struct ethtool_ts_info *info) 1784 { 1785 #ifdef CONFIG_TI_CPTS 1786 struct cpsw_priv *priv = netdev_priv(ndev); 1787 1788 info->so_timestamping = 1789 SOF_TIMESTAMPING_TX_HARDWARE | 1790 SOF_TIMESTAMPING_TX_SOFTWARE | 1791 SOF_TIMESTAMPING_RX_HARDWARE | 1792 SOF_TIMESTAMPING_RX_SOFTWARE | 1793 SOF_TIMESTAMPING_SOFTWARE | 1794 SOF_TIMESTAMPING_RAW_HARDWARE; 1795 info->phc_index = priv->cpts->phc_index; 1796 info->tx_types = 1797 (1 << HWTSTAMP_TX_OFF) | 1798 (1 << HWTSTAMP_TX_ON); 1799 info->rx_filters = 1800 (1 << HWTSTAMP_FILTER_NONE) | 1801 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 1802 #else 1803 info->so_timestamping = 1804 SOF_TIMESTAMPING_TX_SOFTWARE | 1805 SOF_TIMESTAMPING_RX_SOFTWARE | 1806 SOF_TIMESTAMPING_SOFTWARE; 1807 info->phc_index = -1; 1808 info->tx_types = 0; 1809 info->rx_filters = 0; 1810 #endif 1811 return 0; 1812 } 1813 1814 static int cpsw_get_settings(struct net_device *ndev, 1815 struct ethtool_cmd *ecmd) 1816 { 1817 struct cpsw_priv *priv = netdev_priv(ndev); 1818 int slave_no = cpsw_slave_index(priv); 1819 1820 if (priv->slaves[slave_no].phy) 1821 return phy_ethtool_gset(priv->slaves[slave_no].phy, ecmd); 1822 else 1823 return -EOPNOTSUPP; 1824 } 1825 1826 static int cpsw_set_settings(struct net_device *ndev, struct ethtool_cmd *ecmd) 1827 { 1828 struct cpsw_priv *priv = netdev_priv(ndev); 1829 int slave_no = cpsw_slave_index(priv); 1830 1831 if (priv->slaves[slave_no].phy) 1832 return phy_ethtool_sset(priv->slaves[slave_no].phy, ecmd); 1833 else 1834 return -EOPNOTSUPP; 1835 } 1836 1837 static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 1838 { 1839 struct cpsw_priv *priv = netdev_priv(ndev); 1840 int slave_no = cpsw_slave_index(priv); 1841 1842 wol->supported = 0; 1843 wol->wolopts = 0; 1844 1845 if (priv->slaves[slave_no].phy) 1846 phy_ethtool_get_wol(priv->slaves[slave_no].phy, wol); 1847 } 1848 1849 static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 1850 { 1851 struct cpsw_priv *priv = netdev_priv(ndev); 1852 int slave_no = cpsw_slave_index(priv); 1853 1854 if (priv->slaves[slave_no].phy) 1855 return phy_ethtool_set_wol(priv->slaves[slave_no].phy, wol); 1856 else 1857 return -EOPNOTSUPP; 1858 } 1859 1860 static void cpsw_get_pauseparam(struct net_device *ndev, 1861 struct ethtool_pauseparam *pause) 1862 { 1863 struct cpsw_priv *priv = netdev_priv(ndev); 1864 1865 pause->autoneg = AUTONEG_DISABLE; 1866 pause->rx_pause = priv->rx_pause ? true : false; 1867 pause->tx_pause = priv->tx_pause ? true : false; 1868 } 1869 1870 static int cpsw_set_pauseparam(struct net_device *ndev, 1871 struct ethtool_pauseparam *pause) 1872 { 1873 struct cpsw_priv *priv = netdev_priv(ndev); 1874 bool link; 1875 1876 priv->rx_pause = pause->rx_pause ? true : false; 1877 priv->tx_pause = pause->tx_pause ? true : false; 1878 1879 for_each_slave(priv, _cpsw_adjust_link, priv, &link); 1880 1881 return 0; 1882 } 1883 1884 static const struct ethtool_ops cpsw_ethtool_ops = { 1885 .get_drvinfo = cpsw_get_drvinfo, 1886 .get_msglevel = cpsw_get_msglevel, 1887 .set_msglevel = cpsw_set_msglevel, 1888 .get_link = ethtool_op_get_link, 1889 .get_ts_info = cpsw_get_ts_info, 1890 .get_settings = cpsw_get_settings, 1891 .set_settings = cpsw_set_settings, 1892 .get_coalesce = cpsw_get_coalesce, 1893 .set_coalesce = cpsw_set_coalesce, 1894 .get_sset_count = cpsw_get_sset_count, 1895 .get_strings = cpsw_get_strings, 1896 .get_ethtool_stats = cpsw_get_ethtool_stats, 1897 .get_pauseparam = cpsw_get_pauseparam, 1898 .set_pauseparam = cpsw_set_pauseparam, 1899 .get_wol = cpsw_get_wol, 1900 .set_wol = cpsw_set_wol, 1901 .get_regs_len = cpsw_get_regs_len, 1902 .get_regs = cpsw_get_regs, 1903 }; 1904 1905 static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_priv *priv, 1906 u32 slave_reg_ofs, u32 sliver_reg_ofs) 1907 { 1908 void __iomem *regs = priv->regs; 1909 int slave_num = slave->slave_num; 1910 struct cpsw_slave_data *data = priv->data.slave_data + slave_num; 1911 1912 slave->data = data; 1913 slave->regs = regs + slave_reg_ofs; 1914 slave->sliver = regs + sliver_reg_ofs; 1915 slave->port_vlan = data->dual_emac_res_vlan; 1916 } 1917 1918 static int cpsw_probe_dt(struct cpsw_platform_data *data, 1919 struct platform_device *pdev) 1920 { 1921 struct device_node *node = pdev->dev.of_node; 1922 struct device_node *slave_node; 1923 int i = 0, ret; 1924 u32 prop; 1925 1926 if (!node) 1927 return -EINVAL; 1928 1929 if (of_property_read_u32(node, "slaves", &prop)) { 1930 dev_err(&pdev->dev, "Missing slaves property in the DT.\n"); 1931 return -EINVAL; 1932 } 1933 data->slaves = prop; 1934 1935 if (of_property_read_u32(node, "active_slave", &prop)) { 1936 dev_err(&pdev->dev, "Missing active_slave property in the DT.\n"); 1937 return -EINVAL; 1938 } 1939 data->active_slave = prop; 1940 1941 if (of_property_read_u32(node, "cpts_clock_mult", &prop)) { 1942 dev_err(&pdev->dev, "Missing cpts_clock_mult property in the DT.\n"); 1943 return -EINVAL; 1944 } 1945 data->cpts_clock_mult = prop; 1946 1947 if (of_property_read_u32(node, "cpts_clock_shift", &prop)) { 1948 dev_err(&pdev->dev, "Missing cpts_clock_shift property in the DT.\n"); 1949 return -EINVAL; 1950 } 1951 data->cpts_clock_shift = prop; 1952 1953 data->slave_data = devm_kzalloc(&pdev->dev, data->slaves 1954 * sizeof(struct cpsw_slave_data), 1955 GFP_KERNEL); 1956 if (!data->slave_data) 1957 return -ENOMEM; 1958 1959 if (of_property_read_u32(node, "cpdma_channels", &prop)) { 1960 dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n"); 1961 return -EINVAL; 1962 } 1963 data->channels = prop; 1964 1965 if (of_property_read_u32(node, "ale_entries", &prop)) { 1966 dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n"); 1967 return -EINVAL; 1968 } 1969 data->ale_entries = prop; 1970 1971 if (of_property_read_u32(node, "bd_ram_size", &prop)) { 1972 dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n"); 1973 return -EINVAL; 1974 } 1975 data->bd_ram_size = prop; 1976 1977 if (of_property_read_u32(node, "rx_descs", &prop)) { 1978 dev_err(&pdev->dev, "Missing rx_descs property in the DT.\n"); 1979 return -EINVAL; 1980 } 1981 data->rx_descs = prop; 1982 1983 if (of_property_read_u32(node, "mac_control", &prop)) { 1984 dev_err(&pdev->dev, "Missing mac_control property in the DT.\n"); 1985 return -EINVAL; 1986 } 1987 data->mac_control = prop; 1988 1989 if (of_property_read_bool(node, "dual_emac")) 1990 data->dual_emac = 1; 1991 1992 /* 1993 * Populate all the child nodes here... 1994 */ 1995 ret = of_platform_populate(node, NULL, NULL, &pdev->dev); 1996 /* We do not want to force this, as in some cases may not have child */ 1997 if (ret) 1998 dev_warn(&pdev->dev, "Doesn't have any child node\n"); 1999 2000 for_each_child_of_node(node, slave_node) { 2001 struct cpsw_slave_data *slave_data = data->slave_data + i; 2002 const void *mac_addr = NULL; 2003 u32 phyid; 2004 int lenp; 2005 const __be32 *parp; 2006 struct device_node *mdio_node; 2007 struct platform_device *mdio; 2008 2009 /* This is no slave child node, continue */ 2010 if (strcmp(slave_node->name, "slave")) 2011 continue; 2012 2013 parp = of_get_property(slave_node, "phy_id", &lenp); 2014 if ((parp == NULL) || (lenp != (sizeof(void *) * 2))) { 2015 dev_err(&pdev->dev, "Missing slave[%d] phy_id property\n", i); 2016 goto no_phy_slave; 2017 } 2018 mdio_node = of_find_node_by_phandle(be32_to_cpup(parp)); 2019 phyid = be32_to_cpup(parp+1); 2020 mdio = of_find_device_by_node(mdio_node); 2021 of_node_put(mdio_node); 2022 if (!mdio) { 2023 dev_err(&pdev->dev, "Missing mdio platform device\n"); 2024 return -EINVAL; 2025 } 2026 snprintf(slave_data->phy_id, sizeof(slave_data->phy_id), 2027 PHY_ID_FMT, mdio->name, phyid); 2028 2029 slave_data->phy_if = of_get_phy_mode(slave_node); 2030 if (slave_data->phy_if < 0) { 2031 dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n", 2032 i); 2033 return slave_data->phy_if; 2034 } 2035 2036 no_phy_slave: 2037 mac_addr = of_get_mac_address(slave_node); 2038 if (mac_addr) { 2039 memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN); 2040 } else { 2041 if (of_machine_is_compatible("ti,am33xx")) { 2042 ret = cpsw_am33xx_cm_get_macid(&pdev->dev, 2043 0x630, i, 2044 slave_data->mac_addr); 2045 if (ret) 2046 return ret; 2047 } 2048 } 2049 if (data->dual_emac) { 2050 if (of_property_read_u32(slave_node, "dual_emac_res_vlan", 2051 &prop)) { 2052 dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n"); 2053 slave_data->dual_emac_res_vlan = i+1; 2054 dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n", 2055 slave_data->dual_emac_res_vlan, i); 2056 } else { 2057 slave_data->dual_emac_res_vlan = prop; 2058 } 2059 } 2060 2061 i++; 2062 if (i == data->slaves) 2063 break; 2064 } 2065 2066 return 0; 2067 } 2068 2069 static int cpsw_probe_dual_emac(struct platform_device *pdev, 2070 struct cpsw_priv *priv) 2071 { 2072 struct cpsw_platform_data *data = &priv->data; 2073 struct net_device *ndev; 2074 struct cpsw_priv *priv_sl2; 2075 int ret = 0, i; 2076 2077 ndev = alloc_etherdev(sizeof(struct cpsw_priv)); 2078 if (!ndev) { 2079 dev_err(&pdev->dev, "cpsw: error allocating net_device\n"); 2080 return -ENOMEM; 2081 } 2082 2083 priv_sl2 = netdev_priv(ndev); 2084 spin_lock_init(&priv_sl2->lock); 2085 priv_sl2->data = *data; 2086 priv_sl2->pdev = pdev; 2087 priv_sl2->ndev = ndev; 2088 priv_sl2->dev = &ndev->dev; 2089 priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG); 2090 priv_sl2->rx_packet_max = max(rx_packet_max, 128); 2091 2092 if (is_valid_ether_addr(data->slave_data[1].mac_addr)) { 2093 memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr, 2094 ETH_ALEN); 2095 dev_info(&pdev->dev, "cpsw: Detected MACID = %pM\n", priv_sl2->mac_addr); 2096 } else { 2097 random_ether_addr(priv_sl2->mac_addr); 2098 dev_info(&pdev->dev, "cpsw: Random MACID = %pM\n", priv_sl2->mac_addr); 2099 } 2100 memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN); 2101 2102 priv_sl2->slaves = priv->slaves; 2103 priv_sl2->clk = priv->clk; 2104 2105 priv_sl2->coal_intvl = 0; 2106 priv_sl2->bus_freq_mhz = priv->bus_freq_mhz; 2107 2108 priv_sl2->regs = priv->regs; 2109 priv_sl2->host_port = priv->host_port; 2110 priv_sl2->host_port_regs = priv->host_port_regs; 2111 priv_sl2->wr_regs = priv->wr_regs; 2112 priv_sl2->hw_stats = priv->hw_stats; 2113 priv_sl2->dma = priv->dma; 2114 priv_sl2->txch = priv->txch; 2115 priv_sl2->rxch = priv->rxch; 2116 priv_sl2->ale = priv->ale; 2117 priv_sl2->emac_port = 1; 2118 priv->slaves[1].ndev = ndev; 2119 priv_sl2->cpts = priv->cpts; 2120 priv_sl2->version = priv->version; 2121 2122 for (i = 0; i < priv->num_irqs; i++) { 2123 priv_sl2->irqs_table[i] = priv->irqs_table[i]; 2124 priv_sl2->num_irqs = priv->num_irqs; 2125 } 2126 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 2127 2128 ndev->netdev_ops = &cpsw_netdev_ops; 2129 ndev->ethtool_ops = &cpsw_ethtool_ops; 2130 netif_napi_add(ndev, &priv_sl2->napi, cpsw_poll, CPSW_POLL_WEIGHT); 2131 2132 /* register the network device */ 2133 SET_NETDEV_DEV(ndev, &pdev->dev); 2134 ret = register_netdev(ndev); 2135 if (ret) { 2136 dev_err(&pdev->dev, "cpsw: error registering net device\n"); 2137 free_netdev(ndev); 2138 ret = -ENODEV; 2139 } 2140 2141 return ret; 2142 } 2143 2144 static int cpsw_probe(struct platform_device *pdev) 2145 { 2146 struct cpsw_platform_data *data; 2147 struct net_device *ndev; 2148 struct cpsw_priv *priv; 2149 struct cpdma_params dma_params; 2150 struct cpsw_ale_params ale_params; 2151 void __iomem *ss_regs; 2152 struct resource *res, *ss_res; 2153 u32 slave_offset, sliver_offset, slave_size; 2154 int ret = 0, i; 2155 int irq; 2156 2157 ndev = alloc_etherdev(sizeof(struct cpsw_priv)); 2158 if (!ndev) { 2159 dev_err(&pdev->dev, "error allocating net_device\n"); 2160 return -ENOMEM; 2161 } 2162 2163 platform_set_drvdata(pdev, ndev); 2164 priv = netdev_priv(ndev); 2165 spin_lock_init(&priv->lock); 2166 priv->pdev = pdev; 2167 priv->ndev = ndev; 2168 priv->dev = &ndev->dev; 2169 priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG); 2170 priv->rx_packet_max = max(rx_packet_max, 128); 2171 priv->cpts = devm_kzalloc(&pdev->dev, sizeof(struct cpts), GFP_KERNEL); 2172 priv->irq_enabled = true; 2173 if (!priv->cpts) { 2174 dev_err(&pdev->dev, "error allocating cpts\n"); 2175 ret = -ENOMEM; 2176 goto clean_ndev_ret; 2177 } 2178 2179 /* 2180 * This may be required here for child devices. 2181 */ 2182 pm_runtime_enable(&pdev->dev); 2183 2184 /* Select default pin state */ 2185 pinctrl_pm_select_default_state(&pdev->dev); 2186 2187 if (cpsw_probe_dt(&priv->data, pdev)) { 2188 dev_err(&pdev->dev, "cpsw: platform data missing\n"); 2189 ret = -ENODEV; 2190 goto clean_runtime_disable_ret; 2191 } 2192 data = &priv->data; 2193 2194 if (is_valid_ether_addr(data->slave_data[0].mac_addr)) { 2195 memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN); 2196 dev_info(&pdev->dev, "Detected MACID = %pM\n", priv->mac_addr); 2197 } else { 2198 eth_random_addr(priv->mac_addr); 2199 dev_info(&pdev->dev, "Random MACID = %pM\n", priv->mac_addr); 2200 } 2201 2202 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN); 2203 2204 priv->slaves = devm_kzalloc(&pdev->dev, 2205 sizeof(struct cpsw_slave) * data->slaves, 2206 GFP_KERNEL); 2207 if (!priv->slaves) { 2208 ret = -ENOMEM; 2209 goto clean_runtime_disable_ret; 2210 } 2211 for (i = 0; i < data->slaves; i++) 2212 priv->slaves[i].slave_num = i; 2213 2214 priv->slaves[0].ndev = ndev; 2215 priv->emac_port = 0; 2216 2217 priv->clk = devm_clk_get(&pdev->dev, "fck"); 2218 if (IS_ERR(priv->clk)) { 2219 dev_err(priv->dev, "fck is not found\n"); 2220 ret = -ENODEV; 2221 goto clean_runtime_disable_ret; 2222 } 2223 priv->coal_intvl = 0; 2224 priv->bus_freq_mhz = clk_get_rate(priv->clk) / 1000000; 2225 2226 ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2227 ss_regs = devm_ioremap_resource(&pdev->dev, ss_res); 2228 if (IS_ERR(ss_regs)) { 2229 ret = PTR_ERR(ss_regs); 2230 goto clean_runtime_disable_ret; 2231 } 2232 priv->regs = ss_regs; 2233 priv->host_port = HOST_PORT_NUM; 2234 2235 /* Need to enable clocks with runtime PM api to access module 2236 * registers 2237 */ 2238 pm_runtime_get_sync(&pdev->dev); 2239 priv->version = readl(&priv->regs->id_ver); 2240 pm_runtime_put_sync(&pdev->dev); 2241 2242 res = platform_get_resource(pdev, IORESOURCE_MEM, 1); 2243 priv->wr_regs = devm_ioremap_resource(&pdev->dev, res); 2244 if (IS_ERR(priv->wr_regs)) { 2245 ret = PTR_ERR(priv->wr_regs); 2246 goto clean_runtime_disable_ret; 2247 } 2248 2249 memset(&dma_params, 0, sizeof(dma_params)); 2250 memset(&ale_params, 0, sizeof(ale_params)); 2251 2252 switch (priv->version) { 2253 case CPSW_VERSION_1: 2254 priv->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET; 2255 priv->cpts->reg = ss_regs + CPSW1_CPTS_OFFSET; 2256 priv->hw_stats = ss_regs + CPSW1_HW_STATS; 2257 dma_params.dmaregs = ss_regs + CPSW1_CPDMA_OFFSET; 2258 dma_params.txhdp = ss_regs + CPSW1_STATERAM_OFFSET; 2259 ale_params.ale_regs = ss_regs + CPSW1_ALE_OFFSET; 2260 slave_offset = CPSW1_SLAVE_OFFSET; 2261 slave_size = CPSW1_SLAVE_SIZE; 2262 sliver_offset = CPSW1_SLIVER_OFFSET; 2263 dma_params.desc_mem_phys = 0; 2264 break; 2265 case CPSW_VERSION_2: 2266 case CPSW_VERSION_3: 2267 case CPSW_VERSION_4: 2268 priv->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET; 2269 priv->cpts->reg = ss_regs + CPSW2_CPTS_OFFSET; 2270 priv->hw_stats = ss_regs + CPSW2_HW_STATS; 2271 dma_params.dmaregs = ss_regs + CPSW2_CPDMA_OFFSET; 2272 dma_params.txhdp = ss_regs + CPSW2_STATERAM_OFFSET; 2273 ale_params.ale_regs = ss_regs + CPSW2_ALE_OFFSET; 2274 slave_offset = CPSW2_SLAVE_OFFSET; 2275 slave_size = CPSW2_SLAVE_SIZE; 2276 sliver_offset = CPSW2_SLIVER_OFFSET; 2277 dma_params.desc_mem_phys = 2278 (u32 __force) ss_res->start + CPSW2_BD_OFFSET; 2279 break; 2280 default: 2281 dev_err(priv->dev, "unknown version 0x%08x\n", priv->version); 2282 ret = -ENODEV; 2283 goto clean_runtime_disable_ret; 2284 } 2285 for (i = 0; i < priv->data.slaves; i++) { 2286 struct cpsw_slave *slave = &priv->slaves[i]; 2287 cpsw_slave_init(slave, priv, slave_offset, sliver_offset); 2288 slave_offset += slave_size; 2289 sliver_offset += SLIVER_SIZE; 2290 } 2291 2292 dma_params.dev = &pdev->dev; 2293 dma_params.rxthresh = dma_params.dmaregs + CPDMA_RXTHRESH; 2294 dma_params.rxfree = dma_params.dmaregs + CPDMA_RXFREE; 2295 dma_params.rxhdp = dma_params.txhdp + CPDMA_RXHDP; 2296 dma_params.txcp = dma_params.txhdp + CPDMA_TXCP; 2297 dma_params.rxcp = dma_params.txhdp + CPDMA_RXCP; 2298 2299 dma_params.num_chan = data->channels; 2300 dma_params.has_soft_reset = true; 2301 dma_params.min_packet_size = CPSW_MIN_PACKET_SIZE; 2302 dma_params.desc_mem_size = data->bd_ram_size; 2303 dma_params.desc_align = 16; 2304 dma_params.has_ext_regs = true; 2305 dma_params.desc_hw_addr = dma_params.desc_mem_phys; 2306 2307 priv->dma = cpdma_ctlr_create(&dma_params); 2308 if (!priv->dma) { 2309 dev_err(priv->dev, "error initializing dma\n"); 2310 ret = -ENOMEM; 2311 goto clean_runtime_disable_ret; 2312 } 2313 2314 priv->txch = cpdma_chan_create(priv->dma, tx_chan_num(0), 2315 cpsw_tx_handler); 2316 priv->rxch = cpdma_chan_create(priv->dma, rx_chan_num(0), 2317 cpsw_rx_handler); 2318 2319 if (WARN_ON(!priv->txch || !priv->rxch)) { 2320 dev_err(priv->dev, "error initializing dma channels\n"); 2321 ret = -ENOMEM; 2322 goto clean_dma_ret; 2323 } 2324 2325 ale_params.dev = &ndev->dev; 2326 ale_params.ale_ageout = ale_ageout; 2327 ale_params.ale_entries = data->ale_entries; 2328 ale_params.ale_ports = data->slaves; 2329 2330 priv->ale = cpsw_ale_create(&ale_params); 2331 if (!priv->ale) { 2332 dev_err(priv->dev, "error initializing ale engine\n"); 2333 ret = -ENODEV; 2334 goto clean_dma_ret; 2335 } 2336 2337 ndev->irq = platform_get_irq(pdev, 1); 2338 if (ndev->irq < 0) { 2339 dev_err(priv->dev, "error getting irq resource\n"); 2340 ret = -ENOENT; 2341 goto clean_ale_ret; 2342 } 2343 2344 /* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and 2345 * MISC IRQs which are always kept disabled with this driver so 2346 * we will not request them. 2347 * 2348 * If anyone wants to implement support for those, make sure to 2349 * first request and append them to irqs_table array. 2350 */ 2351 2352 /* RX IRQ */ 2353 irq = platform_get_irq(pdev, 1); 2354 if (irq < 0) 2355 goto clean_ale_ret; 2356 2357 priv->irqs_table[0] = irq; 2358 ret = devm_request_irq(&pdev->dev, irq, cpsw_rx_interrupt, 2359 0, dev_name(&pdev->dev), priv); 2360 if (ret < 0) { 2361 dev_err(priv->dev, "error attaching irq (%d)\n", ret); 2362 goto clean_ale_ret; 2363 } 2364 2365 /* TX IRQ */ 2366 irq = platform_get_irq(pdev, 2); 2367 if (irq < 0) 2368 goto clean_ale_ret; 2369 2370 priv->irqs_table[1] = irq; 2371 ret = devm_request_irq(&pdev->dev, irq, cpsw_tx_interrupt, 2372 0, dev_name(&pdev->dev), priv); 2373 if (ret < 0) { 2374 dev_err(priv->dev, "error attaching irq (%d)\n", ret); 2375 goto clean_ale_ret; 2376 } 2377 priv->num_irqs = 2; 2378 2379 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 2380 2381 ndev->netdev_ops = &cpsw_netdev_ops; 2382 ndev->ethtool_ops = &cpsw_ethtool_ops; 2383 netif_napi_add(ndev, &priv->napi, cpsw_poll, CPSW_POLL_WEIGHT); 2384 2385 /* register the network device */ 2386 SET_NETDEV_DEV(ndev, &pdev->dev); 2387 ret = register_netdev(ndev); 2388 if (ret) { 2389 dev_err(priv->dev, "error registering net device\n"); 2390 ret = -ENODEV; 2391 goto clean_ale_ret; 2392 } 2393 2394 cpsw_notice(priv, probe, "initialized device (regs %pa, irq %d)\n", 2395 &ss_res->start, ndev->irq); 2396 2397 if (priv->data.dual_emac) { 2398 ret = cpsw_probe_dual_emac(pdev, priv); 2399 if (ret) { 2400 cpsw_err(priv, probe, "error probe slave 2 emac interface\n"); 2401 goto clean_ale_ret; 2402 } 2403 } 2404 2405 return 0; 2406 2407 clean_ale_ret: 2408 cpsw_ale_destroy(priv->ale); 2409 clean_dma_ret: 2410 cpdma_chan_destroy(priv->txch); 2411 cpdma_chan_destroy(priv->rxch); 2412 cpdma_ctlr_destroy(priv->dma); 2413 clean_runtime_disable_ret: 2414 pm_runtime_disable(&pdev->dev); 2415 clean_ndev_ret: 2416 free_netdev(priv->ndev); 2417 return ret; 2418 } 2419 2420 static int cpsw_remove_child_device(struct device *dev, void *c) 2421 { 2422 struct platform_device *pdev = to_platform_device(dev); 2423 2424 of_device_unregister(pdev); 2425 2426 return 0; 2427 } 2428 2429 static int cpsw_remove(struct platform_device *pdev) 2430 { 2431 struct net_device *ndev = platform_get_drvdata(pdev); 2432 struct cpsw_priv *priv = netdev_priv(ndev); 2433 2434 if (priv->data.dual_emac) 2435 unregister_netdev(cpsw_get_slave_ndev(priv, 1)); 2436 unregister_netdev(ndev); 2437 2438 cpsw_ale_destroy(priv->ale); 2439 cpdma_chan_destroy(priv->txch); 2440 cpdma_chan_destroy(priv->rxch); 2441 cpdma_ctlr_destroy(priv->dma); 2442 pm_runtime_disable(&pdev->dev); 2443 device_for_each_child(&pdev->dev, NULL, cpsw_remove_child_device); 2444 if (priv->data.dual_emac) 2445 free_netdev(cpsw_get_slave_ndev(priv, 1)); 2446 free_netdev(ndev); 2447 return 0; 2448 } 2449 2450 #ifdef CONFIG_PM_SLEEP 2451 static int cpsw_suspend(struct device *dev) 2452 { 2453 struct platform_device *pdev = to_platform_device(dev); 2454 struct net_device *ndev = platform_get_drvdata(pdev); 2455 struct cpsw_priv *priv = netdev_priv(ndev); 2456 2457 if (priv->data.dual_emac) { 2458 int i; 2459 2460 for (i = 0; i < priv->data.slaves; i++) { 2461 if (netif_running(priv->slaves[i].ndev)) 2462 cpsw_ndo_stop(priv->slaves[i].ndev); 2463 soft_reset_slave(priv->slaves + i); 2464 } 2465 } else { 2466 if (netif_running(ndev)) 2467 cpsw_ndo_stop(ndev); 2468 for_each_slave(priv, soft_reset_slave); 2469 } 2470 2471 pm_runtime_put_sync(&pdev->dev); 2472 2473 /* Select sleep pin state */ 2474 pinctrl_pm_select_sleep_state(&pdev->dev); 2475 2476 return 0; 2477 } 2478 2479 static int cpsw_resume(struct device *dev) 2480 { 2481 struct platform_device *pdev = to_platform_device(dev); 2482 struct net_device *ndev = platform_get_drvdata(pdev); 2483 struct cpsw_priv *priv = netdev_priv(ndev); 2484 2485 pm_runtime_get_sync(&pdev->dev); 2486 2487 /* Select default pin state */ 2488 pinctrl_pm_select_default_state(&pdev->dev); 2489 2490 if (priv->data.dual_emac) { 2491 int i; 2492 2493 for (i = 0; i < priv->data.slaves; i++) { 2494 if (netif_running(priv->slaves[i].ndev)) 2495 cpsw_ndo_open(priv->slaves[i].ndev); 2496 } 2497 } else { 2498 if (netif_running(ndev)) 2499 cpsw_ndo_open(ndev); 2500 } 2501 return 0; 2502 } 2503 #endif 2504 2505 static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume); 2506 2507 static const struct of_device_id cpsw_of_mtable[] = { 2508 { .compatible = "ti,cpsw", }, 2509 { /* sentinel */ }, 2510 }; 2511 MODULE_DEVICE_TABLE(of, cpsw_of_mtable); 2512 2513 static struct platform_driver cpsw_driver = { 2514 .driver = { 2515 .name = "cpsw", 2516 .pm = &cpsw_pm_ops, 2517 .of_match_table = cpsw_of_mtable, 2518 }, 2519 .probe = cpsw_probe, 2520 .remove = cpsw_remove, 2521 }; 2522 2523 static int __init cpsw_init(void) 2524 { 2525 return platform_driver_register(&cpsw_driver); 2526 } 2527 late_initcall(cpsw_init); 2528 2529 static void __exit cpsw_exit(void) 2530 { 2531 platform_driver_unregister(&cpsw_driver); 2532 } 2533 module_exit(cpsw_exit); 2534 2535 MODULE_LICENSE("GPL"); 2536 MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>"); 2537 MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>"); 2538 MODULE_DESCRIPTION("TI CPSW Ethernet driver"); 2539