xref: /openbmc/linux/drivers/net/ethernet/ti/cpsw.c (revision 92b19ff5)
1 /*
2  * Texas Instruments Ethernet Switch Driver
3  *
4  * Copyright (C) 2012 Texas Instruments
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation version 2.
9  *
10  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11  * kind, whether express or implied; without even the implied warranty
12  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/io.h>
18 #include <linux/clk.h>
19 #include <linux/timer.h>
20 #include <linux/module.h>
21 #include <linux/platform_device.h>
22 #include <linux/irqreturn.h>
23 #include <linux/interrupt.h>
24 #include <linux/if_ether.h>
25 #include <linux/etherdevice.h>
26 #include <linux/netdevice.h>
27 #include <linux/net_tstamp.h>
28 #include <linux/phy.h>
29 #include <linux/workqueue.h>
30 #include <linux/delay.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/of.h>
33 #include <linux/of_net.h>
34 #include <linux/of_device.h>
35 #include <linux/if_vlan.h>
36 
37 #include <linux/pinctrl/consumer.h>
38 
39 #include "cpsw.h"
40 #include "cpsw_ale.h"
41 #include "cpts.h"
42 #include "davinci_cpdma.h"
43 
44 #define CPSW_DEBUG	(NETIF_MSG_HW		| NETIF_MSG_WOL		| \
45 			 NETIF_MSG_DRV		| NETIF_MSG_LINK	| \
46 			 NETIF_MSG_IFUP		| NETIF_MSG_INTR	| \
47 			 NETIF_MSG_PROBE	| NETIF_MSG_TIMER	| \
48 			 NETIF_MSG_IFDOWN	| NETIF_MSG_RX_ERR	| \
49 			 NETIF_MSG_TX_ERR	| NETIF_MSG_TX_DONE	| \
50 			 NETIF_MSG_PKTDATA	| NETIF_MSG_TX_QUEUED	| \
51 			 NETIF_MSG_RX_STATUS)
52 
53 #define cpsw_info(priv, type, format, ...)		\
54 do {								\
55 	if (netif_msg_##type(priv) && net_ratelimit())		\
56 		dev_info(priv->dev, format, ## __VA_ARGS__);	\
57 } while (0)
58 
59 #define cpsw_err(priv, type, format, ...)		\
60 do {								\
61 	if (netif_msg_##type(priv) && net_ratelimit())		\
62 		dev_err(priv->dev, format, ## __VA_ARGS__);	\
63 } while (0)
64 
65 #define cpsw_dbg(priv, type, format, ...)		\
66 do {								\
67 	if (netif_msg_##type(priv) && net_ratelimit())		\
68 		dev_dbg(priv->dev, format, ## __VA_ARGS__);	\
69 } while (0)
70 
71 #define cpsw_notice(priv, type, format, ...)		\
72 do {								\
73 	if (netif_msg_##type(priv) && net_ratelimit())		\
74 		dev_notice(priv->dev, format, ## __VA_ARGS__);	\
75 } while (0)
76 
77 #define ALE_ALL_PORTS		0x7
78 
79 #define CPSW_MAJOR_VERSION(reg)		(reg >> 8 & 0x7)
80 #define CPSW_MINOR_VERSION(reg)		(reg & 0xff)
81 #define CPSW_RTL_VERSION(reg)		((reg >> 11) & 0x1f)
82 
83 #define CPSW_VERSION_1		0x19010a
84 #define CPSW_VERSION_2		0x19010c
85 #define CPSW_VERSION_3		0x19010f
86 #define CPSW_VERSION_4		0x190112
87 
88 #define HOST_PORT_NUM		0
89 #define SLIVER_SIZE		0x40
90 
91 #define CPSW1_HOST_PORT_OFFSET	0x028
92 #define CPSW1_SLAVE_OFFSET	0x050
93 #define CPSW1_SLAVE_SIZE	0x040
94 #define CPSW1_CPDMA_OFFSET	0x100
95 #define CPSW1_STATERAM_OFFSET	0x200
96 #define CPSW1_HW_STATS		0x400
97 #define CPSW1_CPTS_OFFSET	0x500
98 #define CPSW1_ALE_OFFSET	0x600
99 #define CPSW1_SLIVER_OFFSET	0x700
100 
101 #define CPSW2_HOST_PORT_OFFSET	0x108
102 #define CPSW2_SLAVE_OFFSET	0x200
103 #define CPSW2_SLAVE_SIZE	0x100
104 #define CPSW2_CPDMA_OFFSET	0x800
105 #define CPSW2_HW_STATS		0x900
106 #define CPSW2_STATERAM_OFFSET	0xa00
107 #define CPSW2_CPTS_OFFSET	0xc00
108 #define CPSW2_ALE_OFFSET	0xd00
109 #define CPSW2_SLIVER_OFFSET	0xd80
110 #define CPSW2_BD_OFFSET		0x2000
111 
112 #define CPDMA_RXTHRESH		0x0c0
113 #define CPDMA_RXFREE		0x0e0
114 #define CPDMA_TXHDP		0x00
115 #define CPDMA_RXHDP		0x20
116 #define CPDMA_TXCP		0x40
117 #define CPDMA_RXCP		0x60
118 
119 #define CPSW_POLL_WEIGHT	64
120 #define CPSW_MIN_PACKET_SIZE	60
121 #define CPSW_MAX_PACKET_SIZE	(1500 + 14 + 4 + 4)
122 
123 #define RX_PRIORITY_MAPPING	0x76543210
124 #define TX_PRIORITY_MAPPING	0x33221100
125 #define CPDMA_TX_PRIORITY_MAP	0x76543210
126 
127 #define CPSW_VLAN_AWARE		BIT(1)
128 #define CPSW_ALE_VLAN_AWARE	1
129 
130 #define CPSW_FIFO_NORMAL_MODE		(0 << 16)
131 #define CPSW_FIFO_DUAL_MAC_MODE		(1 << 16)
132 #define CPSW_FIFO_RATE_LIMIT_MODE	(2 << 16)
133 
134 #define CPSW_INTPACEEN		(0x3f << 16)
135 #define CPSW_INTPRESCALE_MASK	(0x7FF << 0)
136 #define CPSW_CMINTMAX_CNT	63
137 #define CPSW_CMINTMIN_CNT	2
138 #define CPSW_CMINTMAX_INTVL	(1000 / CPSW_CMINTMIN_CNT)
139 #define CPSW_CMINTMIN_INTVL	((1000 / CPSW_CMINTMAX_CNT) + 1)
140 
141 #define cpsw_slave_index(priv)				\
142 		((priv->data.dual_emac) ? priv->emac_port :	\
143 		priv->data.active_slave)
144 
145 static int debug_level;
146 module_param(debug_level, int, 0);
147 MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)");
148 
149 static int ale_ageout = 10;
150 module_param(ale_ageout, int, 0);
151 MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)");
152 
153 static int rx_packet_max = CPSW_MAX_PACKET_SIZE;
154 module_param(rx_packet_max, int, 0);
155 MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)");
156 
157 struct cpsw_wr_regs {
158 	u32	id_ver;
159 	u32	soft_reset;
160 	u32	control;
161 	u32	int_control;
162 	u32	rx_thresh_en;
163 	u32	rx_en;
164 	u32	tx_en;
165 	u32	misc_en;
166 	u32	mem_allign1[8];
167 	u32	rx_thresh_stat;
168 	u32	rx_stat;
169 	u32	tx_stat;
170 	u32	misc_stat;
171 	u32	mem_allign2[8];
172 	u32	rx_imax;
173 	u32	tx_imax;
174 
175 };
176 
177 struct cpsw_ss_regs {
178 	u32	id_ver;
179 	u32	control;
180 	u32	soft_reset;
181 	u32	stat_port_en;
182 	u32	ptype;
183 	u32	soft_idle;
184 	u32	thru_rate;
185 	u32	gap_thresh;
186 	u32	tx_start_wds;
187 	u32	flow_control;
188 	u32	vlan_ltype;
189 	u32	ts_ltype;
190 	u32	dlr_ltype;
191 };
192 
193 /* CPSW_PORT_V1 */
194 #define CPSW1_MAX_BLKS      0x00 /* Maximum FIFO Blocks */
195 #define CPSW1_BLK_CNT       0x04 /* FIFO Block Usage Count (Read Only) */
196 #define CPSW1_TX_IN_CTL     0x08 /* Transmit FIFO Control */
197 #define CPSW1_PORT_VLAN     0x0c /* VLAN Register */
198 #define CPSW1_TX_PRI_MAP    0x10 /* Tx Header Priority to Switch Pri Mapping */
199 #define CPSW1_TS_CTL        0x14 /* Time Sync Control */
200 #define CPSW1_TS_SEQ_LTYPE  0x18 /* Time Sync Sequence ID Offset and Msg Type */
201 #define CPSW1_TS_VLAN       0x1c /* Time Sync VLAN1 and VLAN2 */
202 
203 /* CPSW_PORT_V2 */
204 #define CPSW2_CONTROL       0x00 /* Control Register */
205 #define CPSW2_MAX_BLKS      0x08 /* Maximum FIFO Blocks */
206 #define CPSW2_BLK_CNT       0x0c /* FIFO Block Usage Count (Read Only) */
207 #define CPSW2_TX_IN_CTL     0x10 /* Transmit FIFO Control */
208 #define CPSW2_PORT_VLAN     0x14 /* VLAN Register */
209 #define CPSW2_TX_PRI_MAP    0x18 /* Tx Header Priority to Switch Pri Mapping */
210 #define CPSW2_TS_SEQ_MTYPE  0x1c /* Time Sync Sequence ID Offset and Msg Type */
211 
212 /* CPSW_PORT_V1 and V2 */
213 #define SA_LO               0x20 /* CPGMAC_SL Source Address Low */
214 #define SA_HI               0x24 /* CPGMAC_SL Source Address High */
215 #define SEND_PERCENT        0x28 /* Transmit Queue Send Percentages */
216 
217 /* CPSW_PORT_V2 only */
218 #define RX_DSCP_PRI_MAP0    0x30 /* Rx DSCP Priority to Rx Packet Mapping */
219 #define RX_DSCP_PRI_MAP1    0x34 /* Rx DSCP Priority to Rx Packet Mapping */
220 #define RX_DSCP_PRI_MAP2    0x38 /* Rx DSCP Priority to Rx Packet Mapping */
221 #define RX_DSCP_PRI_MAP3    0x3c /* Rx DSCP Priority to Rx Packet Mapping */
222 #define RX_DSCP_PRI_MAP4    0x40 /* Rx DSCP Priority to Rx Packet Mapping */
223 #define RX_DSCP_PRI_MAP5    0x44 /* Rx DSCP Priority to Rx Packet Mapping */
224 #define RX_DSCP_PRI_MAP6    0x48 /* Rx DSCP Priority to Rx Packet Mapping */
225 #define RX_DSCP_PRI_MAP7    0x4c /* Rx DSCP Priority to Rx Packet Mapping */
226 
227 /* Bit definitions for the CPSW2_CONTROL register */
228 #define PASS_PRI_TAGGED     (1<<24) /* Pass Priority Tagged */
229 #define VLAN_LTYPE2_EN      (1<<21) /* VLAN LTYPE 2 enable */
230 #define VLAN_LTYPE1_EN      (1<<20) /* VLAN LTYPE 1 enable */
231 #define DSCP_PRI_EN         (1<<16) /* DSCP Priority Enable */
232 #define TS_320              (1<<14) /* Time Sync Dest Port 320 enable */
233 #define TS_319              (1<<13) /* Time Sync Dest Port 319 enable */
234 #define TS_132              (1<<12) /* Time Sync Dest IP Addr 132 enable */
235 #define TS_131              (1<<11) /* Time Sync Dest IP Addr 131 enable */
236 #define TS_130              (1<<10) /* Time Sync Dest IP Addr 130 enable */
237 #define TS_129              (1<<9)  /* Time Sync Dest IP Addr 129 enable */
238 #define TS_TTL_NONZERO      (1<<8)  /* Time Sync Time To Live Non-zero enable */
239 #define TS_ANNEX_F_EN       (1<<6)  /* Time Sync Annex F enable */
240 #define TS_ANNEX_D_EN       (1<<4)  /* Time Sync Annex D enable */
241 #define TS_LTYPE2_EN        (1<<3)  /* Time Sync LTYPE 2 enable */
242 #define TS_LTYPE1_EN        (1<<2)  /* Time Sync LTYPE 1 enable */
243 #define TS_TX_EN            (1<<1)  /* Time Sync Transmit Enable */
244 #define TS_RX_EN            (1<<0)  /* Time Sync Receive Enable */
245 
246 #define CTRL_V2_TS_BITS \
247 	(TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
248 	 TS_TTL_NONZERO  | TS_ANNEX_D_EN | TS_LTYPE1_EN)
249 
250 #define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN)
251 #define CTRL_V2_TX_TS_BITS  (CTRL_V2_TS_BITS | TS_TX_EN)
252 #define CTRL_V2_RX_TS_BITS  (CTRL_V2_TS_BITS | TS_RX_EN)
253 
254 
255 #define CTRL_V3_TS_BITS \
256 	(TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
257 	 TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\
258 	 TS_LTYPE1_EN)
259 
260 #define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN)
261 #define CTRL_V3_TX_TS_BITS  (CTRL_V3_TS_BITS | TS_TX_EN)
262 #define CTRL_V3_RX_TS_BITS  (CTRL_V3_TS_BITS | TS_RX_EN)
263 
264 /* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */
265 #define TS_SEQ_ID_OFFSET_SHIFT   (16)    /* Time Sync Sequence ID Offset */
266 #define TS_SEQ_ID_OFFSET_MASK    (0x3f)
267 #define TS_MSG_TYPE_EN_SHIFT     (0)     /* Time Sync Message Type Enable */
268 #define TS_MSG_TYPE_EN_MASK      (0xffff)
269 
270 /* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */
271 #define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3))
272 
273 /* Bit definitions for the CPSW1_TS_CTL register */
274 #define CPSW_V1_TS_RX_EN		BIT(0)
275 #define CPSW_V1_TS_TX_EN		BIT(4)
276 #define CPSW_V1_MSG_TYPE_OFS		16
277 
278 /* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */
279 #define CPSW_V1_SEQ_ID_OFS_SHIFT	16
280 
281 struct cpsw_host_regs {
282 	u32	max_blks;
283 	u32	blk_cnt;
284 	u32	tx_in_ctl;
285 	u32	port_vlan;
286 	u32	tx_pri_map;
287 	u32	cpdma_tx_pri_map;
288 	u32	cpdma_rx_chan_map;
289 };
290 
291 struct cpsw_sliver_regs {
292 	u32	id_ver;
293 	u32	mac_control;
294 	u32	mac_status;
295 	u32	soft_reset;
296 	u32	rx_maxlen;
297 	u32	__reserved_0;
298 	u32	rx_pause;
299 	u32	tx_pause;
300 	u32	__reserved_1;
301 	u32	rx_pri_map;
302 };
303 
304 struct cpsw_hw_stats {
305 	u32	rxgoodframes;
306 	u32	rxbroadcastframes;
307 	u32	rxmulticastframes;
308 	u32	rxpauseframes;
309 	u32	rxcrcerrors;
310 	u32	rxaligncodeerrors;
311 	u32	rxoversizedframes;
312 	u32	rxjabberframes;
313 	u32	rxundersizedframes;
314 	u32	rxfragments;
315 	u32	__pad_0[2];
316 	u32	rxoctets;
317 	u32	txgoodframes;
318 	u32	txbroadcastframes;
319 	u32	txmulticastframes;
320 	u32	txpauseframes;
321 	u32	txdeferredframes;
322 	u32	txcollisionframes;
323 	u32	txsinglecollframes;
324 	u32	txmultcollframes;
325 	u32	txexcessivecollisions;
326 	u32	txlatecollisions;
327 	u32	txunderrun;
328 	u32	txcarriersenseerrors;
329 	u32	txoctets;
330 	u32	octetframes64;
331 	u32	octetframes65t127;
332 	u32	octetframes128t255;
333 	u32	octetframes256t511;
334 	u32	octetframes512t1023;
335 	u32	octetframes1024tup;
336 	u32	netoctets;
337 	u32	rxsofoverruns;
338 	u32	rxmofoverruns;
339 	u32	rxdmaoverruns;
340 };
341 
342 struct cpsw_slave {
343 	void __iomem			*regs;
344 	struct cpsw_sliver_regs __iomem	*sliver;
345 	int				slave_num;
346 	u32				mac_control;
347 	struct cpsw_slave_data		*data;
348 	struct phy_device		*phy;
349 	struct net_device		*ndev;
350 	u32				port_vlan;
351 	u32				open_stat;
352 };
353 
354 static inline u32 slave_read(struct cpsw_slave *slave, u32 offset)
355 {
356 	return __raw_readl(slave->regs + offset);
357 }
358 
359 static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset)
360 {
361 	__raw_writel(val, slave->regs + offset);
362 }
363 
364 struct cpsw_priv {
365 	spinlock_t			lock;
366 	struct platform_device		*pdev;
367 	struct net_device		*ndev;
368 	struct napi_struct		napi;
369 	struct device			*dev;
370 	struct cpsw_platform_data	data;
371 	struct cpsw_ss_regs __iomem	*regs;
372 	struct cpsw_wr_regs __iomem	*wr_regs;
373 	u8 __iomem			*hw_stats;
374 	struct cpsw_host_regs __iomem	*host_port_regs;
375 	u32				msg_enable;
376 	u32				version;
377 	u32				coal_intvl;
378 	u32				bus_freq_mhz;
379 	int				rx_packet_max;
380 	int				host_port;
381 	struct clk			*clk;
382 	u8				mac_addr[ETH_ALEN];
383 	struct cpsw_slave		*slaves;
384 	struct cpdma_ctlr		*dma;
385 	struct cpdma_chan		*txch, *rxch;
386 	struct cpsw_ale			*ale;
387 	bool				rx_pause;
388 	bool				tx_pause;
389 	/* snapshot of IRQ numbers */
390 	u32 irqs_table[4];
391 	u32 num_irqs;
392 	bool irq_enabled;
393 	struct cpts *cpts;
394 	u32 emac_port;
395 };
396 
397 struct cpsw_stats {
398 	char stat_string[ETH_GSTRING_LEN];
399 	int type;
400 	int sizeof_stat;
401 	int stat_offset;
402 };
403 
404 enum {
405 	CPSW_STATS,
406 	CPDMA_RX_STATS,
407 	CPDMA_TX_STATS,
408 };
409 
410 #define CPSW_STAT(m)		CPSW_STATS,				\
411 				sizeof(((struct cpsw_hw_stats *)0)->m), \
412 				offsetof(struct cpsw_hw_stats, m)
413 #define CPDMA_RX_STAT(m)	CPDMA_RX_STATS,				   \
414 				sizeof(((struct cpdma_chan_stats *)0)->m), \
415 				offsetof(struct cpdma_chan_stats, m)
416 #define CPDMA_TX_STAT(m)	CPDMA_TX_STATS,				   \
417 				sizeof(((struct cpdma_chan_stats *)0)->m), \
418 				offsetof(struct cpdma_chan_stats, m)
419 
420 static const struct cpsw_stats cpsw_gstrings_stats[] = {
421 	{ "Good Rx Frames", CPSW_STAT(rxgoodframes) },
422 	{ "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) },
423 	{ "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) },
424 	{ "Pause Rx Frames", CPSW_STAT(rxpauseframes) },
425 	{ "Rx CRC Errors", CPSW_STAT(rxcrcerrors) },
426 	{ "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) },
427 	{ "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) },
428 	{ "Rx Jabbers", CPSW_STAT(rxjabberframes) },
429 	{ "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) },
430 	{ "Rx Fragments", CPSW_STAT(rxfragments) },
431 	{ "Rx Octets", CPSW_STAT(rxoctets) },
432 	{ "Good Tx Frames", CPSW_STAT(txgoodframes) },
433 	{ "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) },
434 	{ "Multicast Tx Frames", CPSW_STAT(txmulticastframes) },
435 	{ "Pause Tx Frames", CPSW_STAT(txpauseframes) },
436 	{ "Deferred Tx Frames", CPSW_STAT(txdeferredframes) },
437 	{ "Collisions", CPSW_STAT(txcollisionframes) },
438 	{ "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) },
439 	{ "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) },
440 	{ "Excessive Collisions", CPSW_STAT(txexcessivecollisions) },
441 	{ "Late Collisions", CPSW_STAT(txlatecollisions) },
442 	{ "Tx Underrun", CPSW_STAT(txunderrun) },
443 	{ "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) },
444 	{ "Tx Octets", CPSW_STAT(txoctets) },
445 	{ "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) },
446 	{ "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) },
447 	{ "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) },
448 	{ "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) },
449 	{ "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) },
450 	{ "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) },
451 	{ "Net Octets", CPSW_STAT(netoctets) },
452 	{ "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) },
453 	{ "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) },
454 	{ "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) },
455 	{ "Rx DMA chan: head_enqueue", CPDMA_RX_STAT(head_enqueue) },
456 	{ "Rx DMA chan: tail_enqueue", CPDMA_RX_STAT(tail_enqueue) },
457 	{ "Rx DMA chan: pad_enqueue", CPDMA_RX_STAT(pad_enqueue) },
458 	{ "Rx DMA chan: misqueued", CPDMA_RX_STAT(misqueued) },
459 	{ "Rx DMA chan: desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) },
460 	{ "Rx DMA chan: pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) },
461 	{ "Rx DMA chan: runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) },
462 	{ "Rx DMA chan: runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) },
463 	{ "Rx DMA chan: empty_dequeue", CPDMA_RX_STAT(empty_dequeue) },
464 	{ "Rx DMA chan: busy_dequeue", CPDMA_RX_STAT(busy_dequeue) },
465 	{ "Rx DMA chan: good_dequeue", CPDMA_RX_STAT(good_dequeue) },
466 	{ "Rx DMA chan: requeue", CPDMA_RX_STAT(requeue) },
467 	{ "Rx DMA chan: teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) },
468 	{ "Tx DMA chan: head_enqueue", CPDMA_TX_STAT(head_enqueue) },
469 	{ "Tx DMA chan: tail_enqueue", CPDMA_TX_STAT(tail_enqueue) },
470 	{ "Tx DMA chan: pad_enqueue", CPDMA_TX_STAT(pad_enqueue) },
471 	{ "Tx DMA chan: misqueued", CPDMA_TX_STAT(misqueued) },
472 	{ "Tx DMA chan: desc_alloc_fail", CPDMA_TX_STAT(desc_alloc_fail) },
473 	{ "Tx DMA chan: pad_alloc_fail", CPDMA_TX_STAT(pad_alloc_fail) },
474 	{ "Tx DMA chan: runt_receive_buf", CPDMA_TX_STAT(runt_receive_buff) },
475 	{ "Tx DMA chan: runt_transmit_buf", CPDMA_TX_STAT(runt_transmit_buff) },
476 	{ "Tx DMA chan: empty_dequeue", CPDMA_TX_STAT(empty_dequeue) },
477 	{ "Tx DMA chan: busy_dequeue", CPDMA_TX_STAT(busy_dequeue) },
478 	{ "Tx DMA chan: good_dequeue", CPDMA_TX_STAT(good_dequeue) },
479 	{ "Tx DMA chan: requeue", CPDMA_TX_STAT(requeue) },
480 	{ "Tx DMA chan: teardown_dequeue", CPDMA_TX_STAT(teardown_dequeue) },
481 };
482 
483 #define CPSW_STATS_LEN	ARRAY_SIZE(cpsw_gstrings_stats)
484 
485 #define napi_to_priv(napi)	container_of(napi, struct cpsw_priv, napi)
486 #define for_each_slave(priv, func, arg...)				\
487 	do {								\
488 		struct cpsw_slave *slave;				\
489 		int n;							\
490 		if (priv->data.dual_emac)				\
491 			(func)((priv)->slaves + priv->emac_port, ##arg);\
492 		else							\
493 			for (n = (priv)->data.slaves,			\
494 					slave = (priv)->slaves;		\
495 					n; n--)				\
496 				(func)(slave++, ##arg);			\
497 	} while (0)
498 #define cpsw_get_slave_ndev(priv, __slave_no__)				\
499 	((__slave_no__ < priv->data.slaves) ?				\
500 		priv->slaves[__slave_no__].ndev : NULL)
501 #define cpsw_get_slave_priv(priv, __slave_no__)				\
502 	(((__slave_no__ < priv->data.slaves) &&				\
503 		(priv->slaves[__slave_no__].ndev)) ?			\
504 		netdev_priv(priv->slaves[__slave_no__].ndev) : NULL)	\
505 
506 #define cpsw_dual_emac_src_port_detect(status, priv, ndev, skb)		\
507 	do {								\
508 		if (!priv->data.dual_emac)				\
509 			break;						\
510 		if (CPDMA_RX_SOURCE_PORT(status) == 1) {		\
511 			ndev = cpsw_get_slave_ndev(priv, 0);		\
512 			priv = netdev_priv(ndev);			\
513 			skb->dev = ndev;				\
514 		} else if (CPDMA_RX_SOURCE_PORT(status) == 2) {		\
515 			ndev = cpsw_get_slave_ndev(priv, 1);		\
516 			priv = netdev_priv(ndev);			\
517 			skb->dev = ndev;				\
518 		}							\
519 	} while (0)
520 #define cpsw_add_mcast(priv, addr)					\
521 	do {								\
522 		if (priv->data.dual_emac) {				\
523 			struct cpsw_slave *slave = priv->slaves +	\
524 						priv->emac_port;	\
525 			int slave_port = cpsw_get_slave_port(priv,	\
526 						slave->slave_num);	\
527 			cpsw_ale_add_mcast(priv->ale, addr,		\
528 				1 << slave_port | 1 << priv->host_port,	\
529 				ALE_VLAN, slave->port_vlan, 0);		\
530 		} else {						\
531 			cpsw_ale_add_mcast(priv->ale, addr,		\
532 				ALE_ALL_PORTS << priv->host_port,	\
533 				0, 0, 0);				\
534 		}							\
535 	} while (0)
536 
537 static inline int cpsw_get_slave_port(struct cpsw_priv *priv, u32 slave_num)
538 {
539 	if (priv->host_port == 0)
540 		return slave_num + 1;
541 	else
542 		return slave_num;
543 }
544 
545 static void cpsw_set_promiscious(struct net_device *ndev, bool enable)
546 {
547 	struct cpsw_priv *priv = netdev_priv(ndev);
548 	struct cpsw_ale *ale = priv->ale;
549 	int i;
550 
551 	if (priv->data.dual_emac) {
552 		bool flag = false;
553 
554 		/* Enabling promiscuous mode for one interface will be
555 		 * common for both the interface as the interface shares
556 		 * the same hardware resource.
557 		 */
558 		for (i = 0; i < priv->data.slaves; i++)
559 			if (priv->slaves[i].ndev->flags & IFF_PROMISC)
560 				flag = true;
561 
562 		if (!enable && flag) {
563 			enable = true;
564 			dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n");
565 		}
566 
567 		if (enable) {
568 			/* Enable Bypass */
569 			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1);
570 
571 			dev_dbg(&ndev->dev, "promiscuity enabled\n");
572 		} else {
573 			/* Disable Bypass */
574 			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0);
575 			dev_dbg(&ndev->dev, "promiscuity disabled\n");
576 		}
577 	} else {
578 		if (enable) {
579 			unsigned long timeout = jiffies + HZ;
580 
581 			/* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */
582 			for (i = 0; i <= priv->data.slaves; i++) {
583 				cpsw_ale_control_set(ale, i,
584 						     ALE_PORT_NOLEARN, 1);
585 				cpsw_ale_control_set(ale, i,
586 						     ALE_PORT_NO_SA_UPDATE, 1);
587 			}
588 
589 			/* Clear All Untouched entries */
590 			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
591 			do {
592 				cpu_relax();
593 				if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT))
594 					break;
595 			} while (time_after(timeout, jiffies));
596 			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
597 
598 			/* Clear all mcast from ALE */
599 			cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS <<
600 						 priv->host_port, -1);
601 
602 			/* Flood All Unicast Packets to Host port */
603 			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1);
604 			dev_dbg(&ndev->dev, "promiscuity enabled\n");
605 		} else {
606 			/* Don't Flood All Unicast Packets to Host port */
607 			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0);
608 
609 			/* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */
610 			for (i = 0; i <= priv->data.slaves; i++) {
611 				cpsw_ale_control_set(ale, i,
612 						     ALE_PORT_NOLEARN, 0);
613 				cpsw_ale_control_set(ale, i,
614 						     ALE_PORT_NO_SA_UPDATE, 0);
615 			}
616 			dev_dbg(&ndev->dev, "promiscuity disabled\n");
617 		}
618 	}
619 }
620 
621 static void cpsw_ndo_set_rx_mode(struct net_device *ndev)
622 {
623 	struct cpsw_priv *priv = netdev_priv(ndev);
624 	int vid;
625 
626 	if (priv->data.dual_emac)
627 		vid = priv->slaves[priv->emac_port].port_vlan;
628 	else
629 		vid = priv->data.default_vlan;
630 
631 	if (ndev->flags & IFF_PROMISC) {
632 		/* Enable promiscuous mode */
633 		cpsw_set_promiscious(ndev, true);
634 		cpsw_ale_set_allmulti(priv->ale, IFF_ALLMULTI);
635 		return;
636 	} else {
637 		/* Disable promiscuous mode */
638 		cpsw_set_promiscious(ndev, false);
639 	}
640 
641 	/* Restore allmulti on vlans if necessary */
642 	cpsw_ale_set_allmulti(priv->ale, priv->ndev->flags & IFF_ALLMULTI);
643 
644 	/* Clear all mcast from ALE */
645 	cpsw_ale_flush_multicast(priv->ale, ALE_ALL_PORTS << priv->host_port,
646 				 vid);
647 
648 	if (!netdev_mc_empty(ndev)) {
649 		struct netdev_hw_addr *ha;
650 
651 		/* program multicast address list into ALE register */
652 		netdev_for_each_mc_addr(ha, ndev) {
653 			cpsw_add_mcast(priv, (u8 *)ha->addr);
654 		}
655 	}
656 }
657 
658 static void cpsw_intr_enable(struct cpsw_priv *priv)
659 {
660 	__raw_writel(0xFF, &priv->wr_regs->tx_en);
661 	__raw_writel(0xFF, &priv->wr_regs->rx_en);
662 
663 	cpdma_ctlr_int_ctrl(priv->dma, true);
664 	return;
665 }
666 
667 static void cpsw_intr_disable(struct cpsw_priv *priv)
668 {
669 	__raw_writel(0, &priv->wr_regs->tx_en);
670 	__raw_writel(0, &priv->wr_regs->rx_en);
671 
672 	cpdma_ctlr_int_ctrl(priv->dma, false);
673 	return;
674 }
675 
676 static void cpsw_tx_handler(void *token, int len, int status)
677 {
678 	struct sk_buff		*skb = token;
679 	struct net_device	*ndev = skb->dev;
680 	struct cpsw_priv	*priv = netdev_priv(ndev);
681 
682 	/* Check whether the queue is stopped due to stalled tx dma, if the
683 	 * queue is stopped then start the queue as we have free desc for tx
684 	 */
685 	if (unlikely(netif_queue_stopped(ndev)))
686 		netif_wake_queue(ndev);
687 	cpts_tx_timestamp(priv->cpts, skb);
688 	ndev->stats.tx_packets++;
689 	ndev->stats.tx_bytes += len;
690 	dev_kfree_skb_any(skb);
691 }
692 
693 static void cpsw_rx_handler(void *token, int len, int status)
694 {
695 	struct sk_buff		*skb = token;
696 	struct sk_buff		*new_skb;
697 	struct net_device	*ndev = skb->dev;
698 	struct cpsw_priv	*priv = netdev_priv(ndev);
699 	int			ret = 0;
700 
701 	cpsw_dual_emac_src_port_detect(status, priv, ndev, skb);
702 
703 	if (unlikely(status < 0) || unlikely(!netif_running(ndev))) {
704 		bool ndev_status = false;
705 		struct cpsw_slave *slave = priv->slaves;
706 		int n;
707 
708 		if (priv->data.dual_emac) {
709 			/* In dual emac mode check for all interfaces */
710 			for (n = priv->data.slaves; n; n--, slave++)
711 				if (netif_running(slave->ndev))
712 					ndev_status = true;
713 		}
714 
715 		if (ndev_status && (status >= 0)) {
716 			/* The packet received is for the interface which
717 			 * is already down and the other interface is up
718 			 * and running, instead of freeing which results
719 			 * in reducing of the number of rx descriptor in
720 			 * DMA engine, requeue skb back to cpdma.
721 			 */
722 			new_skb = skb;
723 			goto requeue;
724 		}
725 
726 		/* the interface is going down, skbs are purged */
727 		dev_kfree_skb_any(skb);
728 		return;
729 	}
730 
731 	new_skb = netdev_alloc_skb_ip_align(ndev, priv->rx_packet_max);
732 	if (new_skb) {
733 		skb_put(skb, len);
734 		cpts_rx_timestamp(priv->cpts, skb);
735 		skb->protocol = eth_type_trans(skb, ndev);
736 		netif_receive_skb(skb);
737 		ndev->stats.rx_bytes += len;
738 		ndev->stats.rx_packets++;
739 	} else {
740 		ndev->stats.rx_dropped++;
741 		new_skb = skb;
742 	}
743 
744 requeue:
745 	ret = cpdma_chan_submit(priv->rxch, new_skb, new_skb->data,
746 			skb_tailroom(new_skb), 0);
747 	if (WARN_ON(ret < 0))
748 		dev_kfree_skb_any(new_skb);
749 }
750 
751 static irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id)
752 {
753 	struct cpsw_priv *priv = dev_id;
754 
755 	cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_TX);
756 	cpdma_chan_process(priv->txch, 128);
757 
758 	priv = cpsw_get_slave_priv(priv, 1);
759 	if (priv)
760 		cpdma_chan_process(priv->txch, 128);
761 
762 	return IRQ_HANDLED;
763 }
764 
765 static irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id)
766 {
767 	struct cpsw_priv *priv = dev_id;
768 
769 	cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_RX);
770 
771 	cpsw_intr_disable(priv);
772 	if (priv->irq_enabled == true) {
773 		disable_irq_nosync(priv->irqs_table[0]);
774 		priv->irq_enabled = false;
775 	}
776 
777 	if (netif_running(priv->ndev)) {
778 		napi_schedule(&priv->napi);
779 		return IRQ_HANDLED;
780 	}
781 
782 	priv = cpsw_get_slave_priv(priv, 1);
783 	if (!priv)
784 		return IRQ_NONE;
785 
786 	if (netif_running(priv->ndev)) {
787 		napi_schedule(&priv->napi);
788 		return IRQ_HANDLED;
789 	}
790 	return IRQ_NONE;
791 }
792 
793 static int cpsw_poll(struct napi_struct *napi, int budget)
794 {
795 	struct cpsw_priv	*priv = napi_to_priv(napi);
796 	int			num_rx;
797 
798 	num_rx = cpdma_chan_process(priv->rxch, budget);
799 	if (num_rx < budget) {
800 		struct cpsw_priv *prim_cpsw;
801 
802 		napi_complete(napi);
803 		cpsw_intr_enable(priv);
804 		prim_cpsw = cpsw_get_slave_priv(priv, 0);
805 		if (prim_cpsw->irq_enabled == false) {
806 			prim_cpsw->irq_enabled = true;
807 			enable_irq(priv->irqs_table[0]);
808 		}
809 	}
810 
811 	if (num_rx)
812 		cpsw_dbg(priv, intr, "poll %d rx pkts\n", num_rx);
813 
814 	return num_rx;
815 }
816 
817 static inline void soft_reset(const char *module, void __iomem *reg)
818 {
819 	unsigned long timeout = jiffies + HZ;
820 
821 	__raw_writel(1, reg);
822 	do {
823 		cpu_relax();
824 	} while ((__raw_readl(reg) & 1) && time_after(timeout, jiffies));
825 
826 	WARN(__raw_readl(reg) & 1, "failed to soft-reset %s\n", module);
827 }
828 
829 #define mac_hi(mac)	(((mac)[0] << 0) | ((mac)[1] << 8) |	\
830 			 ((mac)[2] << 16) | ((mac)[3] << 24))
831 #define mac_lo(mac)	(((mac)[4] << 0) | ((mac)[5] << 8))
832 
833 static void cpsw_set_slave_mac(struct cpsw_slave *slave,
834 			       struct cpsw_priv *priv)
835 {
836 	slave_write(slave, mac_hi(priv->mac_addr), SA_HI);
837 	slave_write(slave, mac_lo(priv->mac_addr), SA_LO);
838 }
839 
840 static void _cpsw_adjust_link(struct cpsw_slave *slave,
841 			      struct cpsw_priv *priv, bool *link)
842 {
843 	struct phy_device	*phy = slave->phy;
844 	u32			mac_control = 0;
845 	u32			slave_port;
846 
847 	if (!phy)
848 		return;
849 
850 	slave_port = cpsw_get_slave_port(priv, slave->slave_num);
851 
852 	if (phy->link) {
853 		mac_control = priv->data.mac_control;
854 
855 		/* enable forwarding */
856 		cpsw_ale_control_set(priv->ale, slave_port,
857 				     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
858 
859 		if (phy->speed == 1000)
860 			mac_control |= BIT(7);	/* GIGABITEN	*/
861 		if (phy->duplex)
862 			mac_control |= BIT(0);	/* FULLDUPLEXEN	*/
863 
864 		/* set speed_in input in case RMII mode is used in 100Mbps */
865 		if (phy->speed == 100)
866 			mac_control |= BIT(15);
867 		else if (phy->speed == 10)
868 			mac_control |= BIT(18); /* In Band mode */
869 
870 		if (priv->rx_pause)
871 			mac_control |= BIT(3);
872 
873 		if (priv->tx_pause)
874 			mac_control |= BIT(4);
875 
876 		*link = true;
877 	} else {
878 		mac_control = 0;
879 		/* disable forwarding */
880 		cpsw_ale_control_set(priv->ale, slave_port,
881 				     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
882 	}
883 
884 	if (mac_control != slave->mac_control) {
885 		phy_print_status(phy);
886 		__raw_writel(mac_control, &slave->sliver->mac_control);
887 	}
888 
889 	slave->mac_control = mac_control;
890 }
891 
892 static void cpsw_adjust_link(struct net_device *ndev)
893 {
894 	struct cpsw_priv	*priv = netdev_priv(ndev);
895 	bool			link = false;
896 
897 	for_each_slave(priv, _cpsw_adjust_link, priv, &link);
898 
899 	if (link) {
900 		netif_carrier_on(ndev);
901 		if (netif_running(ndev))
902 			netif_wake_queue(ndev);
903 	} else {
904 		netif_carrier_off(ndev);
905 		netif_stop_queue(ndev);
906 	}
907 }
908 
909 static int cpsw_get_coalesce(struct net_device *ndev,
910 				struct ethtool_coalesce *coal)
911 {
912 	struct cpsw_priv *priv = netdev_priv(ndev);
913 
914 	coal->rx_coalesce_usecs = priv->coal_intvl;
915 	return 0;
916 }
917 
918 static int cpsw_set_coalesce(struct net_device *ndev,
919 				struct ethtool_coalesce *coal)
920 {
921 	struct cpsw_priv *priv = netdev_priv(ndev);
922 	u32 int_ctrl;
923 	u32 num_interrupts = 0;
924 	u32 prescale = 0;
925 	u32 addnl_dvdr = 1;
926 	u32 coal_intvl = 0;
927 
928 	coal_intvl = coal->rx_coalesce_usecs;
929 
930 	int_ctrl =  readl(&priv->wr_regs->int_control);
931 	prescale = priv->bus_freq_mhz * 4;
932 
933 	if (!coal->rx_coalesce_usecs) {
934 		int_ctrl &= ~(CPSW_INTPRESCALE_MASK | CPSW_INTPACEEN);
935 		goto update_return;
936 	}
937 
938 	if (coal_intvl < CPSW_CMINTMIN_INTVL)
939 		coal_intvl = CPSW_CMINTMIN_INTVL;
940 
941 	if (coal_intvl > CPSW_CMINTMAX_INTVL) {
942 		/* Interrupt pacer works with 4us Pulse, we can
943 		 * throttle further by dilating the 4us pulse.
944 		 */
945 		addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale;
946 
947 		if (addnl_dvdr > 1) {
948 			prescale *= addnl_dvdr;
949 			if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr))
950 				coal_intvl = (CPSW_CMINTMAX_INTVL
951 						* addnl_dvdr);
952 		} else {
953 			addnl_dvdr = 1;
954 			coal_intvl = CPSW_CMINTMAX_INTVL;
955 		}
956 	}
957 
958 	num_interrupts = (1000 * addnl_dvdr) / coal_intvl;
959 	writel(num_interrupts, &priv->wr_regs->rx_imax);
960 	writel(num_interrupts, &priv->wr_regs->tx_imax);
961 
962 	int_ctrl |= CPSW_INTPACEEN;
963 	int_ctrl &= (~CPSW_INTPRESCALE_MASK);
964 	int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK);
965 
966 update_return:
967 	writel(int_ctrl, &priv->wr_regs->int_control);
968 
969 	cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl);
970 	if (priv->data.dual_emac) {
971 		int i;
972 
973 		for (i = 0; i < priv->data.slaves; i++) {
974 			priv = netdev_priv(priv->slaves[i].ndev);
975 			priv->coal_intvl = coal_intvl;
976 		}
977 	} else {
978 		priv->coal_intvl = coal_intvl;
979 	}
980 
981 	return 0;
982 }
983 
984 static int cpsw_get_sset_count(struct net_device *ndev, int sset)
985 {
986 	switch (sset) {
987 	case ETH_SS_STATS:
988 		return CPSW_STATS_LEN;
989 	default:
990 		return -EOPNOTSUPP;
991 	}
992 }
993 
994 static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
995 {
996 	u8 *p = data;
997 	int i;
998 
999 	switch (stringset) {
1000 	case ETH_SS_STATS:
1001 		for (i = 0; i < CPSW_STATS_LEN; i++) {
1002 			memcpy(p, cpsw_gstrings_stats[i].stat_string,
1003 			       ETH_GSTRING_LEN);
1004 			p += ETH_GSTRING_LEN;
1005 		}
1006 		break;
1007 	}
1008 }
1009 
1010 static void cpsw_get_ethtool_stats(struct net_device *ndev,
1011 				    struct ethtool_stats *stats, u64 *data)
1012 {
1013 	struct cpsw_priv *priv = netdev_priv(ndev);
1014 	struct cpdma_chan_stats rx_stats;
1015 	struct cpdma_chan_stats tx_stats;
1016 	u32 val;
1017 	u8 *p;
1018 	int i;
1019 
1020 	/* Collect Davinci CPDMA stats for Rx and Tx Channel */
1021 	cpdma_chan_get_stats(priv->rxch, &rx_stats);
1022 	cpdma_chan_get_stats(priv->txch, &tx_stats);
1023 
1024 	for (i = 0; i < CPSW_STATS_LEN; i++) {
1025 		switch (cpsw_gstrings_stats[i].type) {
1026 		case CPSW_STATS:
1027 			val = readl(priv->hw_stats +
1028 				    cpsw_gstrings_stats[i].stat_offset);
1029 			data[i] = val;
1030 			break;
1031 
1032 		case CPDMA_RX_STATS:
1033 			p = (u8 *)&rx_stats +
1034 				cpsw_gstrings_stats[i].stat_offset;
1035 			data[i] = *(u32 *)p;
1036 			break;
1037 
1038 		case CPDMA_TX_STATS:
1039 			p = (u8 *)&tx_stats +
1040 				cpsw_gstrings_stats[i].stat_offset;
1041 			data[i] = *(u32 *)p;
1042 			break;
1043 		}
1044 	}
1045 }
1046 
1047 static int cpsw_common_res_usage_state(struct cpsw_priv *priv)
1048 {
1049 	u32 i;
1050 	u32 usage_count = 0;
1051 
1052 	if (!priv->data.dual_emac)
1053 		return 0;
1054 
1055 	for (i = 0; i < priv->data.slaves; i++)
1056 		if (priv->slaves[i].open_stat)
1057 			usage_count++;
1058 
1059 	return usage_count;
1060 }
1061 
1062 static inline int cpsw_tx_packet_submit(struct net_device *ndev,
1063 			struct cpsw_priv *priv, struct sk_buff *skb)
1064 {
1065 	if (!priv->data.dual_emac)
1066 		return cpdma_chan_submit(priv->txch, skb, skb->data,
1067 				  skb->len, 0);
1068 
1069 	if (ndev == cpsw_get_slave_ndev(priv, 0))
1070 		return cpdma_chan_submit(priv->txch, skb, skb->data,
1071 				  skb->len, 1);
1072 	else
1073 		return cpdma_chan_submit(priv->txch, skb, skb->data,
1074 				  skb->len, 2);
1075 }
1076 
1077 static inline void cpsw_add_dual_emac_def_ale_entries(
1078 		struct cpsw_priv *priv, struct cpsw_slave *slave,
1079 		u32 slave_port)
1080 {
1081 	u32 port_mask = 1 << slave_port | 1 << priv->host_port;
1082 
1083 	if (priv->version == CPSW_VERSION_1)
1084 		slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN);
1085 	else
1086 		slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN);
1087 	cpsw_ale_add_vlan(priv->ale, slave->port_vlan, port_mask,
1088 			  port_mask, port_mask, 0);
1089 	cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast,
1090 			   port_mask, ALE_VLAN, slave->port_vlan, 0);
1091 	cpsw_ale_add_ucast(priv->ale, priv->mac_addr,
1092 		priv->host_port, ALE_VLAN | ALE_SECURE, slave->port_vlan);
1093 }
1094 
1095 static void soft_reset_slave(struct cpsw_slave *slave)
1096 {
1097 	char name[32];
1098 
1099 	snprintf(name, sizeof(name), "slave-%d", slave->slave_num);
1100 	soft_reset(name, &slave->sliver->soft_reset);
1101 }
1102 
1103 static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv)
1104 {
1105 	u32 slave_port;
1106 
1107 	soft_reset_slave(slave);
1108 
1109 	/* setup priority mapping */
1110 	__raw_writel(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map);
1111 
1112 	switch (priv->version) {
1113 	case CPSW_VERSION_1:
1114 		slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP);
1115 		break;
1116 	case CPSW_VERSION_2:
1117 	case CPSW_VERSION_3:
1118 	case CPSW_VERSION_4:
1119 		slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP);
1120 		break;
1121 	}
1122 
1123 	/* setup max packet size, and mac address */
1124 	__raw_writel(priv->rx_packet_max, &slave->sliver->rx_maxlen);
1125 	cpsw_set_slave_mac(slave, priv);
1126 
1127 	slave->mac_control = 0;	/* no link yet */
1128 
1129 	slave_port = cpsw_get_slave_port(priv, slave->slave_num);
1130 
1131 	if (priv->data.dual_emac)
1132 		cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port);
1133 	else
1134 		cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast,
1135 				   1 << slave_port, 0, 0, ALE_MCAST_FWD_2);
1136 
1137 	slave->phy = phy_connect(priv->ndev, slave->data->phy_id,
1138 				 &cpsw_adjust_link, slave->data->phy_if);
1139 	if (IS_ERR(slave->phy)) {
1140 		dev_err(priv->dev, "phy %s not found on slave %d\n",
1141 			slave->data->phy_id, slave->slave_num);
1142 		slave->phy = NULL;
1143 	} else {
1144 		dev_info(priv->dev, "phy found : id is : 0x%x\n",
1145 			 slave->phy->phy_id);
1146 		phy_start(slave->phy);
1147 
1148 		/* Configure GMII_SEL register */
1149 		cpsw_phy_sel(&priv->pdev->dev, slave->phy->interface,
1150 			     slave->slave_num);
1151 	}
1152 }
1153 
1154 static inline void cpsw_add_default_vlan(struct cpsw_priv *priv)
1155 {
1156 	const int vlan = priv->data.default_vlan;
1157 	const int port = priv->host_port;
1158 	u32 reg;
1159 	int i;
1160 	int unreg_mcast_mask;
1161 
1162 	reg = (priv->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN :
1163 	       CPSW2_PORT_VLAN;
1164 
1165 	writel(vlan, &priv->host_port_regs->port_vlan);
1166 
1167 	for (i = 0; i < priv->data.slaves; i++)
1168 		slave_write(priv->slaves + i, vlan, reg);
1169 
1170 	if (priv->ndev->flags & IFF_ALLMULTI)
1171 		unreg_mcast_mask = ALE_ALL_PORTS;
1172 	else
1173 		unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
1174 
1175 	cpsw_ale_add_vlan(priv->ale, vlan, ALE_ALL_PORTS << port,
1176 			  ALE_ALL_PORTS << port, ALE_ALL_PORTS << port,
1177 			  unreg_mcast_mask << port);
1178 }
1179 
1180 static void cpsw_init_host_port(struct cpsw_priv *priv)
1181 {
1182 	u32 control_reg;
1183 	u32 fifo_mode;
1184 
1185 	/* soft reset the controller and initialize ale */
1186 	soft_reset("cpsw", &priv->regs->soft_reset);
1187 	cpsw_ale_start(priv->ale);
1188 
1189 	/* switch to vlan unaware mode */
1190 	cpsw_ale_control_set(priv->ale, priv->host_port, ALE_VLAN_AWARE,
1191 			     CPSW_ALE_VLAN_AWARE);
1192 	control_reg = readl(&priv->regs->control);
1193 	control_reg |= CPSW_VLAN_AWARE;
1194 	writel(control_reg, &priv->regs->control);
1195 	fifo_mode = (priv->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE :
1196 		     CPSW_FIFO_NORMAL_MODE;
1197 	writel(fifo_mode, &priv->host_port_regs->tx_in_ctl);
1198 
1199 	/* setup host port priority mapping */
1200 	__raw_writel(CPDMA_TX_PRIORITY_MAP,
1201 		     &priv->host_port_regs->cpdma_tx_pri_map);
1202 	__raw_writel(0, &priv->host_port_regs->cpdma_rx_chan_map);
1203 
1204 	cpsw_ale_control_set(priv->ale, priv->host_port,
1205 			     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
1206 
1207 	if (!priv->data.dual_emac) {
1208 		cpsw_ale_add_ucast(priv->ale, priv->mac_addr, priv->host_port,
1209 				   0, 0);
1210 		cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast,
1211 				   1 << priv->host_port, 0, 0, ALE_MCAST_FWD_2);
1212 	}
1213 }
1214 
1215 static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_priv *priv)
1216 {
1217 	u32 slave_port;
1218 
1219 	slave_port = cpsw_get_slave_port(priv, slave->slave_num);
1220 
1221 	if (!slave->phy)
1222 		return;
1223 	phy_stop(slave->phy);
1224 	phy_disconnect(slave->phy);
1225 	slave->phy = NULL;
1226 	cpsw_ale_control_set(priv->ale, slave_port,
1227 			     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1228 }
1229 
1230 static int cpsw_ndo_open(struct net_device *ndev)
1231 {
1232 	struct cpsw_priv *priv = netdev_priv(ndev);
1233 	struct cpsw_priv *prim_cpsw;
1234 	int i, ret;
1235 	u32 reg;
1236 
1237 	if (!cpsw_common_res_usage_state(priv))
1238 		cpsw_intr_disable(priv);
1239 	netif_carrier_off(ndev);
1240 
1241 	pm_runtime_get_sync(&priv->pdev->dev);
1242 
1243 	reg = priv->version;
1244 
1245 	dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n",
1246 		 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg),
1247 		 CPSW_RTL_VERSION(reg));
1248 
1249 	/* initialize host and slave ports */
1250 	if (!cpsw_common_res_usage_state(priv))
1251 		cpsw_init_host_port(priv);
1252 	for_each_slave(priv, cpsw_slave_open, priv);
1253 
1254 	/* Add default VLAN */
1255 	if (!priv->data.dual_emac)
1256 		cpsw_add_default_vlan(priv);
1257 	else
1258 		cpsw_ale_add_vlan(priv->ale, priv->data.default_vlan,
1259 				  ALE_ALL_PORTS << priv->host_port,
1260 				  ALE_ALL_PORTS << priv->host_port, 0, 0);
1261 
1262 	if (!cpsw_common_res_usage_state(priv)) {
1263 		/* setup tx dma to fixed prio and zero offset */
1264 		cpdma_control_set(priv->dma, CPDMA_TX_PRIO_FIXED, 1);
1265 		cpdma_control_set(priv->dma, CPDMA_RX_BUFFER_OFFSET, 0);
1266 
1267 		/* disable priority elevation */
1268 		__raw_writel(0, &priv->regs->ptype);
1269 
1270 		/* enable statistics collection only on all ports */
1271 		__raw_writel(0x7, &priv->regs->stat_port_en);
1272 
1273 		/* Enable internal fifo flow control */
1274 		writel(0x7, &priv->regs->flow_control);
1275 
1276 		if (WARN_ON(!priv->data.rx_descs))
1277 			priv->data.rx_descs = 128;
1278 
1279 		for (i = 0; i < priv->data.rx_descs; i++) {
1280 			struct sk_buff *skb;
1281 
1282 			ret = -ENOMEM;
1283 			skb = __netdev_alloc_skb_ip_align(priv->ndev,
1284 					priv->rx_packet_max, GFP_KERNEL);
1285 			if (!skb)
1286 				goto err_cleanup;
1287 			ret = cpdma_chan_submit(priv->rxch, skb, skb->data,
1288 					skb_tailroom(skb), 0);
1289 			if (ret < 0) {
1290 				kfree_skb(skb);
1291 				goto err_cleanup;
1292 			}
1293 		}
1294 		/* continue even if we didn't manage to submit all
1295 		 * receive descs
1296 		 */
1297 		cpsw_info(priv, ifup, "submitted %d rx descriptors\n", i);
1298 
1299 		if (cpts_register(&priv->pdev->dev, priv->cpts,
1300 				  priv->data.cpts_clock_mult,
1301 				  priv->data.cpts_clock_shift))
1302 			dev_err(priv->dev, "error registering cpts device\n");
1303 
1304 	}
1305 
1306 	/* Enable Interrupt pacing if configured */
1307 	if (priv->coal_intvl != 0) {
1308 		struct ethtool_coalesce coal;
1309 
1310 		coal.rx_coalesce_usecs = (priv->coal_intvl << 4);
1311 		cpsw_set_coalesce(ndev, &coal);
1312 	}
1313 
1314 	napi_enable(&priv->napi);
1315 	cpdma_ctlr_start(priv->dma);
1316 	cpsw_intr_enable(priv);
1317 
1318 	prim_cpsw = cpsw_get_slave_priv(priv, 0);
1319 	if (prim_cpsw->irq_enabled == false) {
1320 		if ((priv == prim_cpsw) || !netif_running(prim_cpsw->ndev)) {
1321 			prim_cpsw->irq_enabled = true;
1322 			enable_irq(prim_cpsw->irqs_table[0]);
1323 		}
1324 	}
1325 
1326 	if (priv->data.dual_emac)
1327 		priv->slaves[priv->emac_port].open_stat = true;
1328 	return 0;
1329 
1330 err_cleanup:
1331 	cpdma_ctlr_stop(priv->dma);
1332 	for_each_slave(priv, cpsw_slave_stop, priv);
1333 	pm_runtime_put_sync(&priv->pdev->dev);
1334 	netif_carrier_off(priv->ndev);
1335 	return ret;
1336 }
1337 
1338 static int cpsw_ndo_stop(struct net_device *ndev)
1339 {
1340 	struct cpsw_priv *priv = netdev_priv(ndev);
1341 
1342 	cpsw_info(priv, ifdown, "shutting down cpsw device\n");
1343 	netif_stop_queue(priv->ndev);
1344 	napi_disable(&priv->napi);
1345 	netif_carrier_off(priv->ndev);
1346 
1347 	if (cpsw_common_res_usage_state(priv) <= 1) {
1348 		cpts_unregister(priv->cpts);
1349 		cpsw_intr_disable(priv);
1350 		cpdma_ctlr_stop(priv->dma);
1351 		cpsw_ale_stop(priv->ale);
1352 	}
1353 	for_each_slave(priv, cpsw_slave_stop, priv);
1354 	pm_runtime_put_sync(&priv->pdev->dev);
1355 	if (priv->data.dual_emac)
1356 		priv->slaves[priv->emac_port].open_stat = false;
1357 	return 0;
1358 }
1359 
1360 static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb,
1361 				       struct net_device *ndev)
1362 {
1363 	struct cpsw_priv *priv = netdev_priv(ndev);
1364 	int ret;
1365 
1366 	ndev->trans_start = jiffies;
1367 
1368 	if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) {
1369 		cpsw_err(priv, tx_err, "packet pad failed\n");
1370 		ndev->stats.tx_dropped++;
1371 		return NETDEV_TX_OK;
1372 	}
1373 
1374 	if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
1375 				priv->cpts->tx_enable)
1376 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1377 
1378 	skb_tx_timestamp(skb);
1379 
1380 	ret = cpsw_tx_packet_submit(ndev, priv, skb);
1381 	if (unlikely(ret != 0)) {
1382 		cpsw_err(priv, tx_err, "desc submit failed\n");
1383 		goto fail;
1384 	}
1385 
1386 	/* If there is no more tx desc left free then we need to
1387 	 * tell the kernel to stop sending us tx frames.
1388 	 */
1389 	if (unlikely(!cpdma_check_free_tx_desc(priv->txch)))
1390 		netif_stop_queue(ndev);
1391 
1392 	return NETDEV_TX_OK;
1393 fail:
1394 	ndev->stats.tx_dropped++;
1395 	netif_stop_queue(ndev);
1396 	return NETDEV_TX_BUSY;
1397 }
1398 
1399 #ifdef CONFIG_TI_CPTS
1400 
1401 static void cpsw_hwtstamp_v1(struct cpsw_priv *priv)
1402 {
1403 	struct cpsw_slave *slave = &priv->slaves[priv->data.active_slave];
1404 	u32 ts_en, seq_id;
1405 
1406 	if (!priv->cpts->tx_enable && !priv->cpts->rx_enable) {
1407 		slave_write(slave, 0, CPSW1_TS_CTL);
1408 		return;
1409 	}
1410 
1411 	seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588;
1412 	ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS;
1413 
1414 	if (priv->cpts->tx_enable)
1415 		ts_en |= CPSW_V1_TS_TX_EN;
1416 
1417 	if (priv->cpts->rx_enable)
1418 		ts_en |= CPSW_V1_TS_RX_EN;
1419 
1420 	slave_write(slave, ts_en, CPSW1_TS_CTL);
1421 	slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE);
1422 }
1423 
1424 static void cpsw_hwtstamp_v2(struct cpsw_priv *priv)
1425 {
1426 	struct cpsw_slave *slave;
1427 	u32 ctrl, mtype;
1428 
1429 	if (priv->data.dual_emac)
1430 		slave = &priv->slaves[priv->emac_port];
1431 	else
1432 		slave = &priv->slaves[priv->data.active_slave];
1433 
1434 	ctrl = slave_read(slave, CPSW2_CONTROL);
1435 	switch (priv->version) {
1436 	case CPSW_VERSION_2:
1437 		ctrl &= ~CTRL_V2_ALL_TS_MASK;
1438 
1439 		if (priv->cpts->tx_enable)
1440 			ctrl |= CTRL_V2_TX_TS_BITS;
1441 
1442 		if (priv->cpts->rx_enable)
1443 			ctrl |= CTRL_V2_RX_TS_BITS;
1444 		break;
1445 	case CPSW_VERSION_3:
1446 	default:
1447 		ctrl &= ~CTRL_V3_ALL_TS_MASK;
1448 
1449 		if (priv->cpts->tx_enable)
1450 			ctrl |= CTRL_V3_TX_TS_BITS;
1451 
1452 		if (priv->cpts->rx_enable)
1453 			ctrl |= CTRL_V3_RX_TS_BITS;
1454 		break;
1455 	}
1456 
1457 	mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS;
1458 
1459 	slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE);
1460 	slave_write(slave, ctrl, CPSW2_CONTROL);
1461 	__raw_writel(ETH_P_1588, &priv->regs->ts_ltype);
1462 }
1463 
1464 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
1465 {
1466 	struct cpsw_priv *priv = netdev_priv(dev);
1467 	struct cpts *cpts = priv->cpts;
1468 	struct hwtstamp_config cfg;
1469 
1470 	if (priv->version != CPSW_VERSION_1 &&
1471 	    priv->version != CPSW_VERSION_2 &&
1472 	    priv->version != CPSW_VERSION_3)
1473 		return -EOPNOTSUPP;
1474 
1475 	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1476 		return -EFAULT;
1477 
1478 	/* reserved for future extensions */
1479 	if (cfg.flags)
1480 		return -EINVAL;
1481 
1482 	if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON)
1483 		return -ERANGE;
1484 
1485 	switch (cfg.rx_filter) {
1486 	case HWTSTAMP_FILTER_NONE:
1487 		cpts->rx_enable = 0;
1488 		break;
1489 	case HWTSTAMP_FILTER_ALL:
1490 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1491 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1492 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1493 		return -ERANGE;
1494 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1495 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1496 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1497 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1498 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1499 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1500 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1501 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1502 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1503 		cpts->rx_enable = 1;
1504 		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1505 		break;
1506 	default:
1507 		return -ERANGE;
1508 	}
1509 
1510 	cpts->tx_enable = cfg.tx_type == HWTSTAMP_TX_ON;
1511 
1512 	switch (priv->version) {
1513 	case CPSW_VERSION_1:
1514 		cpsw_hwtstamp_v1(priv);
1515 		break;
1516 	case CPSW_VERSION_2:
1517 	case CPSW_VERSION_3:
1518 		cpsw_hwtstamp_v2(priv);
1519 		break;
1520 	default:
1521 		WARN_ON(1);
1522 	}
1523 
1524 	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1525 }
1526 
1527 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
1528 {
1529 	struct cpsw_priv *priv = netdev_priv(dev);
1530 	struct cpts *cpts = priv->cpts;
1531 	struct hwtstamp_config cfg;
1532 
1533 	if (priv->version != CPSW_VERSION_1 &&
1534 	    priv->version != CPSW_VERSION_2 &&
1535 	    priv->version != CPSW_VERSION_3)
1536 		return -EOPNOTSUPP;
1537 
1538 	cfg.flags = 0;
1539 	cfg.tx_type = cpts->tx_enable ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
1540 	cfg.rx_filter = (cpts->rx_enable ?
1541 			 HWTSTAMP_FILTER_PTP_V2_EVENT : HWTSTAMP_FILTER_NONE);
1542 
1543 	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1544 }
1545 
1546 #endif /*CONFIG_TI_CPTS*/
1547 
1548 static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
1549 {
1550 	struct cpsw_priv *priv = netdev_priv(dev);
1551 	int slave_no = cpsw_slave_index(priv);
1552 
1553 	if (!netif_running(dev))
1554 		return -EINVAL;
1555 
1556 	switch (cmd) {
1557 #ifdef CONFIG_TI_CPTS
1558 	case SIOCSHWTSTAMP:
1559 		return cpsw_hwtstamp_set(dev, req);
1560 	case SIOCGHWTSTAMP:
1561 		return cpsw_hwtstamp_get(dev, req);
1562 #endif
1563 	}
1564 
1565 	if (!priv->slaves[slave_no].phy)
1566 		return -EOPNOTSUPP;
1567 	return phy_mii_ioctl(priv->slaves[slave_no].phy, req, cmd);
1568 }
1569 
1570 static void cpsw_ndo_tx_timeout(struct net_device *ndev)
1571 {
1572 	struct cpsw_priv *priv = netdev_priv(ndev);
1573 
1574 	cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n");
1575 	ndev->stats.tx_errors++;
1576 	cpsw_intr_disable(priv);
1577 	cpdma_chan_stop(priv->txch);
1578 	cpdma_chan_start(priv->txch);
1579 	cpsw_intr_enable(priv);
1580 }
1581 
1582 static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p)
1583 {
1584 	struct cpsw_priv *priv = netdev_priv(ndev);
1585 	struct sockaddr *addr = (struct sockaddr *)p;
1586 	int flags = 0;
1587 	u16 vid = 0;
1588 
1589 	if (!is_valid_ether_addr(addr->sa_data))
1590 		return -EADDRNOTAVAIL;
1591 
1592 	if (priv->data.dual_emac) {
1593 		vid = priv->slaves[priv->emac_port].port_vlan;
1594 		flags = ALE_VLAN;
1595 	}
1596 
1597 	cpsw_ale_del_ucast(priv->ale, priv->mac_addr, priv->host_port,
1598 			   flags, vid);
1599 	cpsw_ale_add_ucast(priv->ale, addr->sa_data, priv->host_port,
1600 			   flags, vid);
1601 
1602 	memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
1603 	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
1604 	for_each_slave(priv, cpsw_set_slave_mac, priv);
1605 
1606 	return 0;
1607 }
1608 
1609 #ifdef CONFIG_NET_POLL_CONTROLLER
1610 static void cpsw_ndo_poll_controller(struct net_device *ndev)
1611 {
1612 	struct cpsw_priv *priv = netdev_priv(ndev);
1613 
1614 	cpsw_intr_disable(priv);
1615 	cpsw_rx_interrupt(priv->irqs_table[0], priv);
1616 	cpsw_tx_interrupt(priv->irqs_table[1], priv);
1617 	cpsw_intr_enable(priv);
1618 }
1619 #endif
1620 
1621 static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv,
1622 				unsigned short vid)
1623 {
1624 	int ret;
1625 	int unreg_mcast_mask = 0;
1626 	u32 port_mask;
1627 
1628 	if (priv->data.dual_emac) {
1629 		port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST;
1630 
1631 		if (priv->ndev->flags & IFF_ALLMULTI)
1632 			unreg_mcast_mask = port_mask;
1633 	} else {
1634 		port_mask = ALE_ALL_PORTS;
1635 
1636 		if (priv->ndev->flags & IFF_ALLMULTI)
1637 			unreg_mcast_mask = ALE_ALL_PORTS;
1638 		else
1639 			unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
1640 	}
1641 
1642 	ret = cpsw_ale_add_vlan(priv->ale, vid, port_mask, 0, port_mask,
1643 				unreg_mcast_mask << priv->host_port);
1644 	if (ret != 0)
1645 		return ret;
1646 
1647 	ret = cpsw_ale_add_ucast(priv->ale, priv->mac_addr,
1648 				 priv->host_port, ALE_VLAN, vid);
1649 	if (ret != 0)
1650 		goto clean_vid;
1651 
1652 	ret = cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast,
1653 				 port_mask, ALE_VLAN, vid, 0);
1654 	if (ret != 0)
1655 		goto clean_vlan_ucast;
1656 	return 0;
1657 
1658 clean_vlan_ucast:
1659 	cpsw_ale_del_ucast(priv->ale, priv->mac_addr,
1660 			    priv->host_port, ALE_VLAN, vid);
1661 clean_vid:
1662 	cpsw_ale_del_vlan(priv->ale, vid, 0);
1663 	return ret;
1664 }
1665 
1666 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
1667 				    __be16 proto, u16 vid)
1668 {
1669 	struct cpsw_priv *priv = netdev_priv(ndev);
1670 
1671 	if (vid == priv->data.default_vlan)
1672 		return 0;
1673 
1674 	if (priv->data.dual_emac) {
1675 		/* In dual EMAC, reserved VLAN id should not be used for
1676 		 * creating VLAN interfaces as this can break the dual
1677 		 * EMAC port separation
1678 		 */
1679 		int i;
1680 
1681 		for (i = 0; i < priv->data.slaves; i++) {
1682 			if (vid == priv->slaves[i].port_vlan)
1683 				return -EINVAL;
1684 		}
1685 	}
1686 
1687 	dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid);
1688 	return cpsw_add_vlan_ale_entry(priv, vid);
1689 }
1690 
1691 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev,
1692 				     __be16 proto, u16 vid)
1693 {
1694 	struct cpsw_priv *priv = netdev_priv(ndev);
1695 	int ret;
1696 
1697 	if (vid == priv->data.default_vlan)
1698 		return 0;
1699 
1700 	if (priv->data.dual_emac) {
1701 		int i;
1702 
1703 		for (i = 0; i < priv->data.slaves; i++) {
1704 			if (vid == priv->slaves[i].port_vlan)
1705 				return -EINVAL;
1706 		}
1707 	}
1708 
1709 	dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid);
1710 	ret = cpsw_ale_del_vlan(priv->ale, vid, 0);
1711 	if (ret != 0)
1712 		return ret;
1713 
1714 	ret = cpsw_ale_del_ucast(priv->ale, priv->mac_addr,
1715 				 priv->host_port, ALE_VLAN, vid);
1716 	if (ret != 0)
1717 		return ret;
1718 
1719 	return cpsw_ale_del_mcast(priv->ale, priv->ndev->broadcast,
1720 				  0, ALE_VLAN, vid);
1721 }
1722 
1723 static const struct net_device_ops cpsw_netdev_ops = {
1724 	.ndo_open		= cpsw_ndo_open,
1725 	.ndo_stop		= cpsw_ndo_stop,
1726 	.ndo_start_xmit		= cpsw_ndo_start_xmit,
1727 	.ndo_set_mac_address	= cpsw_ndo_set_mac_address,
1728 	.ndo_do_ioctl		= cpsw_ndo_ioctl,
1729 	.ndo_validate_addr	= eth_validate_addr,
1730 	.ndo_change_mtu		= eth_change_mtu,
1731 	.ndo_tx_timeout		= cpsw_ndo_tx_timeout,
1732 	.ndo_set_rx_mode	= cpsw_ndo_set_rx_mode,
1733 #ifdef CONFIG_NET_POLL_CONTROLLER
1734 	.ndo_poll_controller	= cpsw_ndo_poll_controller,
1735 #endif
1736 	.ndo_vlan_rx_add_vid	= cpsw_ndo_vlan_rx_add_vid,
1737 	.ndo_vlan_rx_kill_vid	= cpsw_ndo_vlan_rx_kill_vid,
1738 };
1739 
1740 static int cpsw_get_regs_len(struct net_device *ndev)
1741 {
1742 	struct cpsw_priv *priv = netdev_priv(ndev);
1743 
1744 	return priv->data.ale_entries * ALE_ENTRY_WORDS * sizeof(u32);
1745 }
1746 
1747 static void cpsw_get_regs(struct net_device *ndev,
1748 			  struct ethtool_regs *regs, void *p)
1749 {
1750 	struct cpsw_priv *priv = netdev_priv(ndev);
1751 	u32 *reg = p;
1752 
1753 	/* update CPSW IP version */
1754 	regs->version = priv->version;
1755 
1756 	cpsw_ale_dump(priv->ale, reg);
1757 }
1758 
1759 static void cpsw_get_drvinfo(struct net_device *ndev,
1760 			     struct ethtool_drvinfo *info)
1761 {
1762 	struct cpsw_priv *priv = netdev_priv(ndev);
1763 
1764 	strlcpy(info->driver, "cpsw", sizeof(info->driver));
1765 	strlcpy(info->version, "1.0", sizeof(info->version));
1766 	strlcpy(info->bus_info, priv->pdev->name, sizeof(info->bus_info));
1767 	info->regdump_len = cpsw_get_regs_len(ndev);
1768 }
1769 
1770 static u32 cpsw_get_msglevel(struct net_device *ndev)
1771 {
1772 	struct cpsw_priv *priv = netdev_priv(ndev);
1773 	return priv->msg_enable;
1774 }
1775 
1776 static void cpsw_set_msglevel(struct net_device *ndev, u32 value)
1777 {
1778 	struct cpsw_priv *priv = netdev_priv(ndev);
1779 	priv->msg_enable = value;
1780 }
1781 
1782 static int cpsw_get_ts_info(struct net_device *ndev,
1783 			    struct ethtool_ts_info *info)
1784 {
1785 #ifdef CONFIG_TI_CPTS
1786 	struct cpsw_priv *priv = netdev_priv(ndev);
1787 
1788 	info->so_timestamping =
1789 		SOF_TIMESTAMPING_TX_HARDWARE |
1790 		SOF_TIMESTAMPING_TX_SOFTWARE |
1791 		SOF_TIMESTAMPING_RX_HARDWARE |
1792 		SOF_TIMESTAMPING_RX_SOFTWARE |
1793 		SOF_TIMESTAMPING_SOFTWARE |
1794 		SOF_TIMESTAMPING_RAW_HARDWARE;
1795 	info->phc_index = priv->cpts->phc_index;
1796 	info->tx_types =
1797 		(1 << HWTSTAMP_TX_OFF) |
1798 		(1 << HWTSTAMP_TX_ON);
1799 	info->rx_filters =
1800 		(1 << HWTSTAMP_FILTER_NONE) |
1801 		(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
1802 #else
1803 	info->so_timestamping =
1804 		SOF_TIMESTAMPING_TX_SOFTWARE |
1805 		SOF_TIMESTAMPING_RX_SOFTWARE |
1806 		SOF_TIMESTAMPING_SOFTWARE;
1807 	info->phc_index = -1;
1808 	info->tx_types = 0;
1809 	info->rx_filters = 0;
1810 #endif
1811 	return 0;
1812 }
1813 
1814 static int cpsw_get_settings(struct net_device *ndev,
1815 			     struct ethtool_cmd *ecmd)
1816 {
1817 	struct cpsw_priv *priv = netdev_priv(ndev);
1818 	int slave_no = cpsw_slave_index(priv);
1819 
1820 	if (priv->slaves[slave_no].phy)
1821 		return phy_ethtool_gset(priv->slaves[slave_no].phy, ecmd);
1822 	else
1823 		return -EOPNOTSUPP;
1824 }
1825 
1826 static int cpsw_set_settings(struct net_device *ndev, struct ethtool_cmd *ecmd)
1827 {
1828 	struct cpsw_priv *priv = netdev_priv(ndev);
1829 	int slave_no = cpsw_slave_index(priv);
1830 
1831 	if (priv->slaves[slave_no].phy)
1832 		return phy_ethtool_sset(priv->slaves[slave_no].phy, ecmd);
1833 	else
1834 		return -EOPNOTSUPP;
1835 }
1836 
1837 static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1838 {
1839 	struct cpsw_priv *priv = netdev_priv(ndev);
1840 	int slave_no = cpsw_slave_index(priv);
1841 
1842 	wol->supported = 0;
1843 	wol->wolopts = 0;
1844 
1845 	if (priv->slaves[slave_no].phy)
1846 		phy_ethtool_get_wol(priv->slaves[slave_no].phy, wol);
1847 }
1848 
1849 static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1850 {
1851 	struct cpsw_priv *priv = netdev_priv(ndev);
1852 	int slave_no = cpsw_slave_index(priv);
1853 
1854 	if (priv->slaves[slave_no].phy)
1855 		return phy_ethtool_set_wol(priv->slaves[slave_no].phy, wol);
1856 	else
1857 		return -EOPNOTSUPP;
1858 }
1859 
1860 static void cpsw_get_pauseparam(struct net_device *ndev,
1861 				struct ethtool_pauseparam *pause)
1862 {
1863 	struct cpsw_priv *priv = netdev_priv(ndev);
1864 
1865 	pause->autoneg = AUTONEG_DISABLE;
1866 	pause->rx_pause = priv->rx_pause ? true : false;
1867 	pause->tx_pause = priv->tx_pause ? true : false;
1868 }
1869 
1870 static int cpsw_set_pauseparam(struct net_device *ndev,
1871 			       struct ethtool_pauseparam *pause)
1872 {
1873 	struct cpsw_priv *priv = netdev_priv(ndev);
1874 	bool link;
1875 
1876 	priv->rx_pause = pause->rx_pause ? true : false;
1877 	priv->tx_pause = pause->tx_pause ? true : false;
1878 
1879 	for_each_slave(priv, _cpsw_adjust_link, priv, &link);
1880 
1881 	return 0;
1882 }
1883 
1884 static const struct ethtool_ops cpsw_ethtool_ops = {
1885 	.get_drvinfo	= cpsw_get_drvinfo,
1886 	.get_msglevel	= cpsw_get_msglevel,
1887 	.set_msglevel	= cpsw_set_msglevel,
1888 	.get_link	= ethtool_op_get_link,
1889 	.get_ts_info	= cpsw_get_ts_info,
1890 	.get_settings	= cpsw_get_settings,
1891 	.set_settings	= cpsw_set_settings,
1892 	.get_coalesce	= cpsw_get_coalesce,
1893 	.set_coalesce	= cpsw_set_coalesce,
1894 	.get_sset_count		= cpsw_get_sset_count,
1895 	.get_strings		= cpsw_get_strings,
1896 	.get_ethtool_stats	= cpsw_get_ethtool_stats,
1897 	.get_pauseparam		= cpsw_get_pauseparam,
1898 	.set_pauseparam		= cpsw_set_pauseparam,
1899 	.get_wol	= cpsw_get_wol,
1900 	.set_wol	= cpsw_set_wol,
1901 	.get_regs_len	= cpsw_get_regs_len,
1902 	.get_regs	= cpsw_get_regs,
1903 };
1904 
1905 static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_priv *priv,
1906 			    u32 slave_reg_ofs, u32 sliver_reg_ofs)
1907 {
1908 	void __iomem		*regs = priv->regs;
1909 	int			slave_num = slave->slave_num;
1910 	struct cpsw_slave_data	*data = priv->data.slave_data + slave_num;
1911 
1912 	slave->data	= data;
1913 	slave->regs	= regs + slave_reg_ofs;
1914 	slave->sliver	= regs + sliver_reg_ofs;
1915 	slave->port_vlan = data->dual_emac_res_vlan;
1916 }
1917 
1918 static int cpsw_probe_dt(struct cpsw_platform_data *data,
1919 			 struct platform_device *pdev)
1920 {
1921 	struct device_node *node = pdev->dev.of_node;
1922 	struct device_node *slave_node;
1923 	int i = 0, ret;
1924 	u32 prop;
1925 
1926 	if (!node)
1927 		return -EINVAL;
1928 
1929 	if (of_property_read_u32(node, "slaves", &prop)) {
1930 		dev_err(&pdev->dev, "Missing slaves property in the DT.\n");
1931 		return -EINVAL;
1932 	}
1933 	data->slaves = prop;
1934 
1935 	if (of_property_read_u32(node, "active_slave", &prop)) {
1936 		dev_err(&pdev->dev, "Missing active_slave property in the DT.\n");
1937 		return -EINVAL;
1938 	}
1939 	data->active_slave = prop;
1940 
1941 	if (of_property_read_u32(node, "cpts_clock_mult", &prop)) {
1942 		dev_err(&pdev->dev, "Missing cpts_clock_mult property in the DT.\n");
1943 		return -EINVAL;
1944 	}
1945 	data->cpts_clock_mult = prop;
1946 
1947 	if (of_property_read_u32(node, "cpts_clock_shift", &prop)) {
1948 		dev_err(&pdev->dev, "Missing cpts_clock_shift property in the DT.\n");
1949 		return -EINVAL;
1950 	}
1951 	data->cpts_clock_shift = prop;
1952 
1953 	data->slave_data = devm_kzalloc(&pdev->dev, data->slaves
1954 					* sizeof(struct cpsw_slave_data),
1955 					GFP_KERNEL);
1956 	if (!data->slave_data)
1957 		return -ENOMEM;
1958 
1959 	if (of_property_read_u32(node, "cpdma_channels", &prop)) {
1960 		dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n");
1961 		return -EINVAL;
1962 	}
1963 	data->channels = prop;
1964 
1965 	if (of_property_read_u32(node, "ale_entries", &prop)) {
1966 		dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n");
1967 		return -EINVAL;
1968 	}
1969 	data->ale_entries = prop;
1970 
1971 	if (of_property_read_u32(node, "bd_ram_size", &prop)) {
1972 		dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n");
1973 		return -EINVAL;
1974 	}
1975 	data->bd_ram_size = prop;
1976 
1977 	if (of_property_read_u32(node, "rx_descs", &prop)) {
1978 		dev_err(&pdev->dev, "Missing rx_descs property in the DT.\n");
1979 		return -EINVAL;
1980 	}
1981 	data->rx_descs = prop;
1982 
1983 	if (of_property_read_u32(node, "mac_control", &prop)) {
1984 		dev_err(&pdev->dev, "Missing mac_control property in the DT.\n");
1985 		return -EINVAL;
1986 	}
1987 	data->mac_control = prop;
1988 
1989 	if (of_property_read_bool(node, "dual_emac"))
1990 		data->dual_emac = 1;
1991 
1992 	/*
1993 	 * Populate all the child nodes here...
1994 	 */
1995 	ret = of_platform_populate(node, NULL, NULL, &pdev->dev);
1996 	/* We do not want to force this, as in some cases may not have child */
1997 	if (ret)
1998 		dev_warn(&pdev->dev, "Doesn't have any child node\n");
1999 
2000 	for_each_child_of_node(node, slave_node) {
2001 		struct cpsw_slave_data *slave_data = data->slave_data + i;
2002 		const void *mac_addr = NULL;
2003 		u32 phyid;
2004 		int lenp;
2005 		const __be32 *parp;
2006 		struct device_node *mdio_node;
2007 		struct platform_device *mdio;
2008 
2009 		/* This is no slave child node, continue */
2010 		if (strcmp(slave_node->name, "slave"))
2011 			continue;
2012 
2013 		parp = of_get_property(slave_node, "phy_id", &lenp);
2014 		if ((parp == NULL) || (lenp != (sizeof(void *) * 2))) {
2015 			dev_err(&pdev->dev, "Missing slave[%d] phy_id property\n", i);
2016 			goto no_phy_slave;
2017 		}
2018 		mdio_node = of_find_node_by_phandle(be32_to_cpup(parp));
2019 		phyid = be32_to_cpup(parp+1);
2020 		mdio = of_find_device_by_node(mdio_node);
2021 		of_node_put(mdio_node);
2022 		if (!mdio) {
2023 			dev_err(&pdev->dev, "Missing mdio platform device\n");
2024 			return -EINVAL;
2025 		}
2026 		snprintf(slave_data->phy_id, sizeof(slave_data->phy_id),
2027 			 PHY_ID_FMT, mdio->name, phyid);
2028 
2029 		slave_data->phy_if = of_get_phy_mode(slave_node);
2030 		if (slave_data->phy_if < 0) {
2031 			dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n",
2032 				i);
2033 			return slave_data->phy_if;
2034 		}
2035 
2036 no_phy_slave:
2037 		mac_addr = of_get_mac_address(slave_node);
2038 		if (mac_addr) {
2039 			memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN);
2040 		} else {
2041 			if (of_machine_is_compatible("ti,am33xx")) {
2042 				ret = cpsw_am33xx_cm_get_macid(&pdev->dev,
2043 							0x630, i,
2044 							slave_data->mac_addr);
2045 				if (ret)
2046 					return ret;
2047 			}
2048 		}
2049 		if (data->dual_emac) {
2050 			if (of_property_read_u32(slave_node, "dual_emac_res_vlan",
2051 						 &prop)) {
2052 				dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n");
2053 				slave_data->dual_emac_res_vlan = i+1;
2054 				dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n",
2055 					slave_data->dual_emac_res_vlan, i);
2056 			} else {
2057 				slave_data->dual_emac_res_vlan = prop;
2058 			}
2059 		}
2060 
2061 		i++;
2062 		if (i == data->slaves)
2063 			break;
2064 	}
2065 
2066 	return 0;
2067 }
2068 
2069 static int cpsw_probe_dual_emac(struct platform_device *pdev,
2070 				struct cpsw_priv *priv)
2071 {
2072 	struct cpsw_platform_data	*data = &priv->data;
2073 	struct net_device		*ndev;
2074 	struct cpsw_priv		*priv_sl2;
2075 	int ret = 0, i;
2076 
2077 	ndev = alloc_etherdev(sizeof(struct cpsw_priv));
2078 	if (!ndev) {
2079 		dev_err(&pdev->dev, "cpsw: error allocating net_device\n");
2080 		return -ENOMEM;
2081 	}
2082 
2083 	priv_sl2 = netdev_priv(ndev);
2084 	spin_lock_init(&priv_sl2->lock);
2085 	priv_sl2->data = *data;
2086 	priv_sl2->pdev = pdev;
2087 	priv_sl2->ndev = ndev;
2088 	priv_sl2->dev  = &ndev->dev;
2089 	priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
2090 	priv_sl2->rx_packet_max = max(rx_packet_max, 128);
2091 
2092 	if (is_valid_ether_addr(data->slave_data[1].mac_addr)) {
2093 		memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr,
2094 			ETH_ALEN);
2095 		dev_info(&pdev->dev, "cpsw: Detected MACID = %pM\n", priv_sl2->mac_addr);
2096 	} else {
2097 		random_ether_addr(priv_sl2->mac_addr);
2098 		dev_info(&pdev->dev, "cpsw: Random MACID = %pM\n", priv_sl2->mac_addr);
2099 	}
2100 	memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN);
2101 
2102 	priv_sl2->slaves = priv->slaves;
2103 	priv_sl2->clk = priv->clk;
2104 
2105 	priv_sl2->coal_intvl = 0;
2106 	priv_sl2->bus_freq_mhz = priv->bus_freq_mhz;
2107 
2108 	priv_sl2->regs = priv->regs;
2109 	priv_sl2->host_port = priv->host_port;
2110 	priv_sl2->host_port_regs = priv->host_port_regs;
2111 	priv_sl2->wr_regs = priv->wr_regs;
2112 	priv_sl2->hw_stats = priv->hw_stats;
2113 	priv_sl2->dma = priv->dma;
2114 	priv_sl2->txch = priv->txch;
2115 	priv_sl2->rxch = priv->rxch;
2116 	priv_sl2->ale = priv->ale;
2117 	priv_sl2->emac_port = 1;
2118 	priv->slaves[1].ndev = ndev;
2119 	priv_sl2->cpts = priv->cpts;
2120 	priv_sl2->version = priv->version;
2121 
2122 	for (i = 0; i < priv->num_irqs; i++) {
2123 		priv_sl2->irqs_table[i] = priv->irqs_table[i];
2124 		priv_sl2->num_irqs = priv->num_irqs;
2125 	}
2126 	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2127 
2128 	ndev->netdev_ops = &cpsw_netdev_ops;
2129 	ndev->ethtool_ops = &cpsw_ethtool_ops;
2130 	netif_napi_add(ndev, &priv_sl2->napi, cpsw_poll, CPSW_POLL_WEIGHT);
2131 
2132 	/* register the network device */
2133 	SET_NETDEV_DEV(ndev, &pdev->dev);
2134 	ret = register_netdev(ndev);
2135 	if (ret) {
2136 		dev_err(&pdev->dev, "cpsw: error registering net device\n");
2137 		free_netdev(ndev);
2138 		ret = -ENODEV;
2139 	}
2140 
2141 	return ret;
2142 }
2143 
2144 static int cpsw_probe(struct platform_device *pdev)
2145 {
2146 	struct cpsw_platform_data	*data;
2147 	struct net_device		*ndev;
2148 	struct cpsw_priv		*priv;
2149 	struct cpdma_params		dma_params;
2150 	struct cpsw_ale_params		ale_params;
2151 	void __iomem			*ss_regs;
2152 	struct resource			*res, *ss_res;
2153 	u32 slave_offset, sliver_offset, slave_size;
2154 	int ret = 0, i;
2155 	int irq;
2156 
2157 	ndev = alloc_etherdev(sizeof(struct cpsw_priv));
2158 	if (!ndev) {
2159 		dev_err(&pdev->dev, "error allocating net_device\n");
2160 		return -ENOMEM;
2161 	}
2162 
2163 	platform_set_drvdata(pdev, ndev);
2164 	priv = netdev_priv(ndev);
2165 	spin_lock_init(&priv->lock);
2166 	priv->pdev = pdev;
2167 	priv->ndev = ndev;
2168 	priv->dev  = &ndev->dev;
2169 	priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
2170 	priv->rx_packet_max = max(rx_packet_max, 128);
2171 	priv->cpts = devm_kzalloc(&pdev->dev, sizeof(struct cpts), GFP_KERNEL);
2172 	priv->irq_enabled = true;
2173 	if (!priv->cpts) {
2174 		dev_err(&pdev->dev, "error allocating cpts\n");
2175 		ret = -ENOMEM;
2176 		goto clean_ndev_ret;
2177 	}
2178 
2179 	/*
2180 	 * This may be required here for child devices.
2181 	 */
2182 	pm_runtime_enable(&pdev->dev);
2183 
2184 	/* Select default pin state */
2185 	pinctrl_pm_select_default_state(&pdev->dev);
2186 
2187 	if (cpsw_probe_dt(&priv->data, pdev)) {
2188 		dev_err(&pdev->dev, "cpsw: platform data missing\n");
2189 		ret = -ENODEV;
2190 		goto clean_runtime_disable_ret;
2191 	}
2192 	data = &priv->data;
2193 
2194 	if (is_valid_ether_addr(data->slave_data[0].mac_addr)) {
2195 		memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN);
2196 		dev_info(&pdev->dev, "Detected MACID = %pM\n", priv->mac_addr);
2197 	} else {
2198 		eth_random_addr(priv->mac_addr);
2199 		dev_info(&pdev->dev, "Random MACID = %pM\n", priv->mac_addr);
2200 	}
2201 
2202 	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
2203 
2204 	priv->slaves = devm_kzalloc(&pdev->dev,
2205 				    sizeof(struct cpsw_slave) * data->slaves,
2206 				    GFP_KERNEL);
2207 	if (!priv->slaves) {
2208 		ret = -ENOMEM;
2209 		goto clean_runtime_disable_ret;
2210 	}
2211 	for (i = 0; i < data->slaves; i++)
2212 		priv->slaves[i].slave_num = i;
2213 
2214 	priv->slaves[0].ndev = ndev;
2215 	priv->emac_port = 0;
2216 
2217 	priv->clk = devm_clk_get(&pdev->dev, "fck");
2218 	if (IS_ERR(priv->clk)) {
2219 		dev_err(priv->dev, "fck is not found\n");
2220 		ret = -ENODEV;
2221 		goto clean_runtime_disable_ret;
2222 	}
2223 	priv->coal_intvl = 0;
2224 	priv->bus_freq_mhz = clk_get_rate(priv->clk) / 1000000;
2225 
2226 	ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2227 	ss_regs = devm_ioremap_resource(&pdev->dev, ss_res);
2228 	if (IS_ERR(ss_regs)) {
2229 		ret = PTR_ERR(ss_regs);
2230 		goto clean_runtime_disable_ret;
2231 	}
2232 	priv->regs = ss_regs;
2233 	priv->host_port = HOST_PORT_NUM;
2234 
2235 	/* Need to enable clocks with runtime PM api to access module
2236 	 * registers
2237 	 */
2238 	pm_runtime_get_sync(&pdev->dev);
2239 	priv->version = readl(&priv->regs->id_ver);
2240 	pm_runtime_put_sync(&pdev->dev);
2241 
2242 	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2243 	priv->wr_regs = devm_ioremap_resource(&pdev->dev, res);
2244 	if (IS_ERR(priv->wr_regs)) {
2245 		ret = PTR_ERR(priv->wr_regs);
2246 		goto clean_runtime_disable_ret;
2247 	}
2248 
2249 	memset(&dma_params, 0, sizeof(dma_params));
2250 	memset(&ale_params, 0, sizeof(ale_params));
2251 
2252 	switch (priv->version) {
2253 	case CPSW_VERSION_1:
2254 		priv->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET;
2255 		priv->cpts->reg      = ss_regs + CPSW1_CPTS_OFFSET;
2256 		priv->hw_stats	     = ss_regs + CPSW1_HW_STATS;
2257 		dma_params.dmaregs   = ss_regs + CPSW1_CPDMA_OFFSET;
2258 		dma_params.txhdp     = ss_regs + CPSW1_STATERAM_OFFSET;
2259 		ale_params.ale_regs  = ss_regs + CPSW1_ALE_OFFSET;
2260 		slave_offset         = CPSW1_SLAVE_OFFSET;
2261 		slave_size           = CPSW1_SLAVE_SIZE;
2262 		sliver_offset        = CPSW1_SLIVER_OFFSET;
2263 		dma_params.desc_mem_phys = 0;
2264 		break;
2265 	case CPSW_VERSION_2:
2266 	case CPSW_VERSION_3:
2267 	case CPSW_VERSION_4:
2268 		priv->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET;
2269 		priv->cpts->reg      = ss_regs + CPSW2_CPTS_OFFSET;
2270 		priv->hw_stats	     = ss_regs + CPSW2_HW_STATS;
2271 		dma_params.dmaregs   = ss_regs + CPSW2_CPDMA_OFFSET;
2272 		dma_params.txhdp     = ss_regs + CPSW2_STATERAM_OFFSET;
2273 		ale_params.ale_regs  = ss_regs + CPSW2_ALE_OFFSET;
2274 		slave_offset         = CPSW2_SLAVE_OFFSET;
2275 		slave_size           = CPSW2_SLAVE_SIZE;
2276 		sliver_offset        = CPSW2_SLIVER_OFFSET;
2277 		dma_params.desc_mem_phys =
2278 			(u32 __force) ss_res->start + CPSW2_BD_OFFSET;
2279 		break;
2280 	default:
2281 		dev_err(priv->dev, "unknown version 0x%08x\n", priv->version);
2282 		ret = -ENODEV;
2283 		goto clean_runtime_disable_ret;
2284 	}
2285 	for (i = 0; i < priv->data.slaves; i++) {
2286 		struct cpsw_slave *slave = &priv->slaves[i];
2287 		cpsw_slave_init(slave, priv, slave_offset, sliver_offset);
2288 		slave_offset  += slave_size;
2289 		sliver_offset += SLIVER_SIZE;
2290 	}
2291 
2292 	dma_params.dev		= &pdev->dev;
2293 	dma_params.rxthresh	= dma_params.dmaregs + CPDMA_RXTHRESH;
2294 	dma_params.rxfree	= dma_params.dmaregs + CPDMA_RXFREE;
2295 	dma_params.rxhdp	= dma_params.txhdp + CPDMA_RXHDP;
2296 	dma_params.txcp		= dma_params.txhdp + CPDMA_TXCP;
2297 	dma_params.rxcp		= dma_params.txhdp + CPDMA_RXCP;
2298 
2299 	dma_params.num_chan		= data->channels;
2300 	dma_params.has_soft_reset	= true;
2301 	dma_params.min_packet_size	= CPSW_MIN_PACKET_SIZE;
2302 	dma_params.desc_mem_size	= data->bd_ram_size;
2303 	dma_params.desc_align		= 16;
2304 	dma_params.has_ext_regs		= true;
2305 	dma_params.desc_hw_addr         = dma_params.desc_mem_phys;
2306 
2307 	priv->dma = cpdma_ctlr_create(&dma_params);
2308 	if (!priv->dma) {
2309 		dev_err(priv->dev, "error initializing dma\n");
2310 		ret = -ENOMEM;
2311 		goto clean_runtime_disable_ret;
2312 	}
2313 
2314 	priv->txch = cpdma_chan_create(priv->dma, tx_chan_num(0),
2315 				       cpsw_tx_handler);
2316 	priv->rxch = cpdma_chan_create(priv->dma, rx_chan_num(0),
2317 				       cpsw_rx_handler);
2318 
2319 	if (WARN_ON(!priv->txch || !priv->rxch)) {
2320 		dev_err(priv->dev, "error initializing dma channels\n");
2321 		ret = -ENOMEM;
2322 		goto clean_dma_ret;
2323 	}
2324 
2325 	ale_params.dev			= &ndev->dev;
2326 	ale_params.ale_ageout		= ale_ageout;
2327 	ale_params.ale_entries		= data->ale_entries;
2328 	ale_params.ale_ports		= data->slaves;
2329 
2330 	priv->ale = cpsw_ale_create(&ale_params);
2331 	if (!priv->ale) {
2332 		dev_err(priv->dev, "error initializing ale engine\n");
2333 		ret = -ENODEV;
2334 		goto clean_dma_ret;
2335 	}
2336 
2337 	ndev->irq = platform_get_irq(pdev, 1);
2338 	if (ndev->irq < 0) {
2339 		dev_err(priv->dev, "error getting irq resource\n");
2340 		ret = -ENOENT;
2341 		goto clean_ale_ret;
2342 	}
2343 
2344 	/* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and
2345 	 * MISC IRQs which are always kept disabled with this driver so
2346 	 * we will not request them.
2347 	 *
2348 	 * If anyone wants to implement support for those, make sure to
2349 	 * first request and append them to irqs_table array.
2350 	 */
2351 
2352 	/* RX IRQ */
2353 	irq = platform_get_irq(pdev, 1);
2354 	if (irq < 0)
2355 		goto clean_ale_ret;
2356 
2357 	priv->irqs_table[0] = irq;
2358 	ret = devm_request_irq(&pdev->dev, irq, cpsw_rx_interrupt,
2359 			       0, dev_name(&pdev->dev), priv);
2360 	if (ret < 0) {
2361 		dev_err(priv->dev, "error attaching irq (%d)\n", ret);
2362 		goto clean_ale_ret;
2363 	}
2364 
2365 	/* TX IRQ */
2366 	irq = platform_get_irq(pdev, 2);
2367 	if (irq < 0)
2368 		goto clean_ale_ret;
2369 
2370 	priv->irqs_table[1] = irq;
2371 	ret = devm_request_irq(&pdev->dev, irq, cpsw_tx_interrupt,
2372 			       0, dev_name(&pdev->dev), priv);
2373 	if (ret < 0) {
2374 		dev_err(priv->dev, "error attaching irq (%d)\n", ret);
2375 		goto clean_ale_ret;
2376 	}
2377 	priv->num_irqs = 2;
2378 
2379 	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2380 
2381 	ndev->netdev_ops = &cpsw_netdev_ops;
2382 	ndev->ethtool_ops = &cpsw_ethtool_ops;
2383 	netif_napi_add(ndev, &priv->napi, cpsw_poll, CPSW_POLL_WEIGHT);
2384 
2385 	/* register the network device */
2386 	SET_NETDEV_DEV(ndev, &pdev->dev);
2387 	ret = register_netdev(ndev);
2388 	if (ret) {
2389 		dev_err(priv->dev, "error registering net device\n");
2390 		ret = -ENODEV;
2391 		goto clean_ale_ret;
2392 	}
2393 
2394 	cpsw_notice(priv, probe, "initialized device (regs %pa, irq %d)\n",
2395 		    &ss_res->start, ndev->irq);
2396 
2397 	if (priv->data.dual_emac) {
2398 		ret = cpsw_probe_dual_emac(pdev, priv);
2399 		if (ret) {
2400 			cpsw_err(priv, probe, "error probe slave 2 emac interface\n");
2401 			goto clean_ale_ret;
2402 		}
2403 	}
2404 
2405 	return 0;
2406 
2407 clean_ale_ret:
2408 	cpsw_ale_destroy(priv->ale);
2409 clean_dma_ret:
2410 	cpdma_chan_destroy(priv->txch);
2411 	cpdma_chan_destroy(priv->rxch);
2412 	cpdma_ctlr_destroy(priv->dma);
2413 clean_runtime_disable_ret:
2414 	pm_runtime_disable(&pdev->dev);
2415 clean_ndev_ret:
2416 	free_netdev(priv->ndev);
2417 	return ret;
2418 }
2419 
2420 static int cpsw_remove_child_device(struct device *dev, void *c)
2421 {
2422 	struct platform_device *pdev = to_platform_device(dev);
2423 
2424 	of_device_unregister(pdev);
2425 
2426 	return 0;
2427 }
2428 
2429 static int cpsw_remove(struct platform_device *pdev)
2430 {
2431 	struct net_device *ndev = platform_get_drvdata(pdev);
2432 	struct cpsw_priv *priv = netdev_priv(ndev);
2433 
2434 	if (priv->data.dual_emac)
2435 		unregister_netdev(cpsw_get_slave_ndev(priv, 1));
2436 	unregister_netdev(ndev);
2437 
2438 	cpsw_ale_destroy(priv->ale);
2439 	cpdma_chan_destroy(priv->txch);
2440 	cpdma_chan_destroy(priv->rxch);
2441 	cpdma_ctlr_destroy(priv->dma);
2442 	pm_runtime_disable(&pdev->dev);
2443 	device_for_each_child(&pdev->dev, NULL, cpsw_remove_child_device);
2444 	if (priv->data.dual_emac)
2445 		free_netdev(cpsw_get_slave_ndev(priv, 1));
2446 	free_netdev(ndev);
2447 	return 0;
2448 }
2449 
2450 #ifdef CONFIG_PM_SLEEP
2451 static int cpsw_suspend(struct device *dev)
2452 {
2453 	struct platform_device	*pdev = to_platform_device(dev);
2454 	struct net_device	*ndev = platform_get_drvdata(pdev);
2455 	struct cpsw_priv	*priv = netdev_priv(ndev);
2456 
2457 	if (priv->data.dual_emac) {
2458 		int i;
2459 
2460 		for (i = 0; i < priv->data.slaves; i++) {
2461 			if (netif_running(priv->slaves[i].ndev))
2462 				cpsw_ndo_stop(priv->slaves[i].ndev);
2463 			soft_reset_slave(priv->slaves + i);
2464 		}
2465 	} else {
2466 		if (netif_running(ndev))
2467 			cpsw_ndo_stop(ndev);
2468 		for_each_slave(priv, soft_reset_slave);
2469 	}
2470 
2471 	pm_runtime_put_sync(&pdev->dev);
2472 
2473 	/* Select sleep pin state */
2474 	pinctrl_pm_select_sleep_state(&pdev->dev);
2475 
2476 	return 0;
2477 }
2478 
2479 static int cpsw_resume(struct device *dev)
2480 {
2481 	struct platform_device	*pdev = to_platform_device(dev);
2482 	struct net_device	*ndev = platform_get_drvdata(pdev);
2483 	struct cpsw_priv	*priv = netdev_priv(ndev);
2484 
2485 	pm_runtime_get_sync(&pdev->dev);
2486 
2487 	/* Select default pin state */
2488 	pinctrl_pm_select_default_state(&pdev->dev);
2489 
2490 	if (priv->data.dual_emac) {
2491 		int i;
2492 
2493 		for (i = 0; i < priv->data.slaves; i++) {
2494 			if (netif_running(priv->slaves[i].ndev))
2495 				cpsw_ndo_open(priv->slaves[i].ndev);
2496 		}
2497 	} else {
2498 		if (netif_running(ndev))
2499 			cpsw_ndo_open(ndev);
2500 	}
2501 	return 0;
2502 }
2503 #endif
2504 
2505 static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume);
2506 
2507 static const struct of_device_id cpsw_of_mtable[] = {
2508 	{ .compatible = "ti,cpsw", },
2509 	{ /* sentinel */ },
2510 };
2511 MODULE_DEVICE_TABLE(of, cpsw_of_mtable);
2512 
2513 static struct platform_driver cpsw_driver = {
2514 	.driver = {
2515 		.name	 = "cpsw",
2516 		.pm	 = &cpsw_pm_ops,
2517 		.of_match_table = cpsw_of_mtable,
2518 	},
2519 	.probe = cpsw_probe,
2520 	.remove = cpsw_remove,
2521 };
2522 
2523 static int __init cpsw_init(void)
2524 {
2525 	return platform_driver_register(&cpsw_driver);
2526 }
2527 late_initcall(cpsw_init);
2528 
2529 static void __exit cpsw_exit(void)
2530 {
2531 	platform_driver_unregister(&cpsw_driver);
2532 }
2533 module_exit(cpsw_exit);
2534 
2535 MODULE_LICENSE("GPL");
2536 MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>");
2537 MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>");
2538 MODULE_DESCRIPTION("TI CPSW Ethernet driver");
2539