1 /* 2 * Texas Instruments Ethernet Switch Driver 3 * 4 * Copyright (C) 2012 Texas Instruments 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License as 8 * published by the Free Software Foundation version 2. 9 * 10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any 11 * kind, whether express or implied; without even the implied warranty 12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/io.h> 18 #include <linux/clk.h> 19 #include <linux/timer.h> 20 #include <linux/module.h> 21 #include <linux/platform_device.h> 22 #include <linux/irqreturn.h> 23 #include <linux/interrupt.h> 24 #include <linux/if_ether.h> 25 #include <linux/etherdevice.h> 26 #include <linux/netdevice.h> 27 #include <linux/net_tstamp.h> 28 #include <linux/phy.h> 29 #include <linux/workqueue.h> 30 #include <linux/delay.h> 31 #include <linux/pm_runtime.h> 32 #include <linux/of.h> 33 #include <linux/of_net.h> 34 #include <linux/of_device.h> 35 #include <linux/if_vlan.h> 36 37 #include <linux/pinctrl/consumer.h> 38 39 #include "cpsw.h" 40 #include "cpsw_ale.h" 41 #include "cpts.h" 42 #include "davinci_cpdma.h" 43 44 #define CPSW_DEBUG (NETIF_MSG_HW | NETIF_MSG_WOL | \ 45 NETIF_MSG_DRV | NETIF_MSG_LINK | \ 46 NETIF_MSG_IFUP | NETIF_MSG_INTR | \ 47 NETIF_MSG_PROBE | NETIF_MSG_TIMER | \ 48 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | \ 49 NETIF_MSG_TX_ERR | NETIF_MSG_TX_DONE | \ 50 NETIF_MSG_PKTDATA | NETIF_MSG_TX_QUEUED | \ 51 NETIF_MSG_RX_STATUS) 52 53 #define cpsw_info(priv, type, format, ...) \ 54 do { \ 55 if (netif_msg_##type(priv) && net_ratelimit()) \ 56 dev_info(priv->dev, format, ## __VA_ARGS__); \ 57 } while (0) 58 59 #define cpsw_err(priv, type, format, ...) \ 60 do { \ 61 if (netif_msg_##type(priv) && net_ratelimit()) \ 62 dev_err(priv->dev, format, ## __VA_ARGS__); \ 63 } while (0) 64 65 #define cpsw_dbg(priv, type, format, ...) \ 66 do { \ 67 if (netif_msg_##type(priv) && net_ratelimit()) \ 68 dev_dbg(priv->dev, format, ## __VA_ARGS__); \ 69 } while (0) 70 71 #define cpsw_notice(priv, type, format, ...) \ 72 do { \ 73 if (netif_msg_##type(priv) && net_ratelimit()) \ 74 dev_notice(priv->dev, format, ## __VA_ARGS__); \ 75 } while (0) 76 77 #define ALE_ALL_PORTS 0x7 78 79 #define CPSW_MAJOR_VERSION(reg) (reg >> 8 & 0x7) 80 #define CPSW_MINOR_VERSION(reg) (reg & 0xff) 81 #define CPSW_RTL_VERSION(reg) ((reg >> 11) & 0x1f) 82 83 #define CPSW_VERSION_1 0x19010a 84 #define CPSW_VERSION_2 0x19010c 85 #define CPSW_VERSION_3 0x19010f 86 #define CPSW_VERSION_4 0x190112 87 88 #define HOST_PORT_NUM 0 89 #define SLIVER_SIZE 0x40 90 91 #define CPSW1_HOST_PORT_OFFSET 0x028 92 #define CPSW1_SLAVE_OFFSET 0x050 93 #define CPSW1_SLAVE_SIZE 0x040 94 #define CPSW1_CPDMA_OFFSET 0x100 95 #define CPSW1_STATERAM_OFFSET 0x200 96 #define CPSW1_HW_STATS 0x400 97 #define CPSW1_CPTS_OFFSET 0x500 98 #define CPSW1_ALE_OFFSET 0x600 99 #define CPSW1_SLIVER_OFFSET 0x700 100 101 #define CPSW2_HOST_PORT_OFFSET 0x108 102 #define CPSW2_SLAVE_OFFSET 0x200 103 #define CPSW2_SLAVE_SIZE 0x100 104 #define CPSW2_CPDMA_OFFSET 0x800 105 #define CPSW2_HW_STATS 0x900 106 #define CPSW2_STATERAM_OFFSET 0xa00 107 #define CPSW2_CPTS_OFFSET 0xc00 108 #define CPSW2_ALE_OFFSET 0xd00 109 #define CPSW2_SLIVER_OFFSET 0xd80 110 #define CPSW2_BD_OFFSET 0x2000 111 112 #define CPDMA_RXTHRESH 0x0c0 113 #define CPDMA_RXFREE 0x0e0 114 #define CPDMA_TXHDP 0x00 115 #define CPDMA_RXHDP 0x20 116 #define CPDMA_TXCP 0x40 117 #define CPDMA_RXCP 0x60 118 119 #define CPSW_POLL_WEIGHT 64 120 #define CPSW_MIN_PACKET_SIZE 60 121 #define CPSW_MAX_PACKET_SIZE (1500 + 14 + 4 + 4) 122 123 #define RX_PRIORITY_MAPPING 0x76543210 124 #define TX_PRIORITY_MAPPING 0x33221100 125 #define CPDMA_TX_PRIORITY_MAP 0x76543210 126 127 #define CPSW_VLAN_AWARE BIT(1) 128 #define CPSW_ALE_VLAN_AWARE 1 129 130 #define CPSW_FIFO_NORMAL_MODE (0 << 16) 131 #define CPSW_FIFO_DUAL_MAC_MODE (1 << 16) 132 #define CPSW_FIFO_RATE_LIMIT_MODE (2 << 16) 133 134 #define CPSW_INTPACEEN (0x3f << 16) 135 #define CPSW_INTPRESCALE_MASK (0x7FF << 0) 136 #define CPSW_CMINTMAX_CNT 63 137 #define CPSW_CMINTMIN_CNT 2 138 #define CPSW_CMINTMAX_INTVL (1000 / CPSW_CMINTMIN_CNT) 139 #define CPSW_CMINTMIN_INTVL ((1000 / CPSW_CMINTMAX_CNT) + 1) 140 141 #define cpsw_enable_irq(priv) \ 142 do { \ 143 u32 i; \ 144 for (i = 0; i < priv->num_irqs; i++) \ 145 enable_irq(priv->irqs_table[i]); \ 146 } while (0) 147 #define cpsw_disable_irq(priv) \ 148 do { \ 149 u32 i; \ 150 for (i = 0; i < priv->num_irqs; i++) \ 151 disable_irq_nosync(priv->irqs_table[i]); \ 152 } while (0) 153 154 #define cpsw_slave_index(priv) \ 155 ((priv->data.dual_emac) ? priv->emac_port : \ 156 priv->data.active_slave) 157 158 static int debug_level; 159 module_param(debug_level, int, 0); 160 MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)"); 161 162 static int ale_ageout = 10; 163 module_param(ale_ageout, int, 0); 164 MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)"); 165 166 static int rx_packet_max = CPSW_MAX_PACKET_SIZE; 167 module_param(rx_packet_max, int, 0); 168 MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)"); 169 170 struct cpsw_wr_regs { 171 u32 id_ver; 172 u32 soft_reset; 173 u32 control; 174 u32 int_control; 175 u32 rx_thresh_en; 176 u32 rx_en; 177 u32 tx_en; 178 u32 misc_en; 179 u32 mem_allign1[8]; 180 u32 rx_thresh_stat; 181 u32 rx_stat; 182 u32 tx_stat; 183 u32 misc_stat; 184 u32 mem_allign2[8]; 185 u32 rx_imax; 186 u32 tx_imax; 187 188 }; 189 190 struct cpsw_ss_regs { 191 u32 id_ver; 192 u32 control; 193 u32 soft_reset; 194 u32 stat_port_en; 195 u32 ptype; 196 u32 soft_idle; 197 u32 thru_rate; 198 u32 gap_thresh; 199 u32 tx_start_wds; 200 u32 flow_control; 201 u32 vlan_ltype; 202 u32 ts_ltype; 203 u32 dlr_ltype; 204 }; 205 206 /* CPSW_PORT_V1 */ 207 #define CPSW1_MAX_BLKS 0x00 /* Maximum FIFO Blocks */ 208 #define CPSW1_BLK_CNT 0x04 /* FIFO Block Usage Count (Read Only) */ 209 #define CPSW1_TX_IN_CTL 0x08 /* Transmit FIFO Control */ 210 #define CPSW1_PORT_VLAN 0x0c /* VLAN Register */ 211 #define CPSW1_TX_PRI_MAP 0x10 /* Tx Header Priority to Switch Pri Mapping */ 212 #define CPSW1_TS_CTL 0x14 /* Time Sync Control */ 213 #define CPSW1_TS_SEQ_LTYPE 0x18 /* Time Sync Sequence ID Offset and Msg Type */ 214 #define CPSW1_TS_VLAN 0x1c /* Time Sync VLAN1 and VLAN2 */ 215 216 /* CPSW_PORT_V2 */ 217 #define CPSW2_CONTROL 0x00 /* Control Register */ 218 #define CPSW2_MAX_BLKS 0x08 /* Maximum FIFO Blocks */ 219 #define CPSW2_BLK_CNT 0x0c /* FIFO Block Usage Count (Read Only) */ 220 #define CPSW2_TX_IN_CTL 0x10 /* Transmit FIFO Control */ 221 #define CPSW2_PORT_VLAN 0x14 /* VLAN Register */ 222 #define CPSW2_TX_PRI_MAP 0x18 /* Tx Header Priority to Switch Pri Mapping */ 223 #define CPSW2_TS_SEQ_MTYPE 0x1c /* Time Sync Sequence ID Offset and Msg Type */ 224 225 /* CPSW_PORT_V1 and V2 */ 226 #define SA_LO 0x20 /* CPGMAC_SL Source Address Low */ 227 #define SA_HI 0x24 /* CPGMAC_SL Source Address High */ 228 #define SEND_PERCENT 0x28 /* Transmit Queue Send Percentages */ 229 230 /* CPSW_PORT_V2 only */ 231 #define RX_DSCP_PRI_MAP0 0x30 /* Rx DSCP Priority to Rx Packet Mapping */ 232 #define RX_DSCP_PRI_MAP1 0x34 /* Rx DSCP Priority to Rx Packet Mapping */ 233 #define RX_DSCP_PRI_MAP2 0x38 /* Rx DSCP Priority to Rx Packet Mapping */ 234 #define RX_DSCP_PRI_MAP3 0x3c /* Rx DSCP Priority to Rx Packet Mapping */ 235 #define RX_DSCP_PRI_MAP4 0x40 /* Rx DSCP Priority to Rx Packet Mapping */ 236 #define RX_DSCP_PRI_MAP5 0x44 /* Rx DSCP Priority to Rx Packet Mapping */ 237 #define RX_DSCP_PRI_MAP6 0x48 /* Rx DSCP Priority to Rx Packet Mapping */ 238 #define RX_DSCP_PRI_MAP7 0x4c /* Rx DSCP Priority to Rx Packet Mapping */ 239 240 /* Bit definitions for the CPSW2_CONTROL register */ 241 #define PASS_PRI_TAGGED (1<<24) /* Pass Priority Tagged */ 242 #define VLAN_LTYPE2_EN (1<<21) /* VLAN LTYPE 2 enable */ 243 #define VLAN_LTYPE1_EN (1<<20) /* VLAN LTYPE 1 enable */ 244 #define DSCP_PRI_EN (1<<16) /* DSCP Priority Enable */ 245 #define TS_320 (1<<14) /* Time Sync Dest Port 320 enable */ 246 #define TS_319 (1<<13) /* Time Sync Dest Port 319 enable */ 247 #define TS_132 (1<<12) /* Time Sync Dest IP Addr 132 enable */ 248 #define TS_131 (1<<11) /* Time Sync Dest IP Addr 131 enable */ 249 #define TS_130 (1<<10) /* Time Sync Dest IP Addr 130 enable */ 250 #define TS_129 (1<<9) /* Time Sync Dest IP Addr 129 enable */ 251 #define TS_TTL_NONZERO (1<<8) /* Time Sync Time To Live Non-zero enable */ 252 #define TS_ANNEX_F_EN (1<<6) /* Time Sync Annex F enable */ 253 #define TS_ANNEX_D_EN (1<<4) /* Time Sync Annex D enable */ 254 #define TS_LTYPE2_EN (1<<3) /* Time Sync LTYPE 2 enable */ 255 #define TS_LTYPE1_EN (1<<2) /* Time Sync LTYPE 1 enable */ 256 #define TS_TX_EN (1<<1) /* Time Sync Transmit Enable */ 257 #define TS_RX_EN (1<<0) /* Time Sync Receive Enable */ 258 259 #define CTRL_V2_TS_BITS \ 260 (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\ 261 TS_TTL_NONZERO | TS_ANNEX_D_EN | TS_LTYPE1_EN) 262 263 #define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN) 264 #define CTRL_V2_TX_TS_BITS (CTRL_V2_TS_BITS | TS_TX_EN) 265 #define CTRL_V2_RX_TS_BITS (CTRL_V2_TS_BITS | TS_RX_EN) 266 267 268 #define CTRL_V3_TS_BITS \ 269 (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\ 270 TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\ 271 TS_LTYPE1_EN) 272 273 #define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN) 274 #define CTRL_V3_TX_TS_BITS (CTRL_V3_TS_BITS | TS_TX_EN) 275 #define CTRL_V3_RX_TS_BITS (CTRL_V3_TS_BITS | TS_RX_EN) 276 277 /* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */ 278 #define TS_SEQ_ID_OFFSET_SHIFT (16) /* Time Sync Sequence ID Offset */ 279 #define TS_SEQ_ID_OFFSET_MASK (0x3f) 280 #define TS_MSG_TYPE_EN_SHIFT (0) /* Time Sync Message Type Enable */ 281 #define TS_MSG_TYPE_EN_MASK (0xffff) 282 283 /* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */ 284 #define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3)) 285 286 /* Bit definitions for the CPSW1_TS_CTL register */ 287 #define CPSW_V1_TS_RX_EN BIT(0) 288 #define CPSW_V1_TS_TX_EN BIT(4) 289 #define CPSW_V1_MSG_TYPE_OFS 16 290 291 /* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */ 292 #define CPSW_V1_SEQ_ID_OFS_SHIFT 16 293 294 struct cpsw_host_regs { 295 u32 max_blks; 296 u32 blk_cnt; 297 u32 tx_in_ctl; 298 u32 port_vlan; 299 u32 tx_pri_map; 300 u32 cpdma_tx_pri_map; 301 u32 cpdma_rx_chan_map; 302 }; 303 304 struct cpsw_sliver_regs { 305 u32 id_ver; 306 u32 mac_control; 307 u32 mac_status; 308 u32 soft_reset; 309 u32 rx_maxlen; 310 u32 __reserved_0; 311 u32 rx_pause; 312 u32 tx_pause; 313 u32 __reserved_1; 314 u32 rx_pri_map; 315 }; 316 317 struct cpsw_hw_stats { 318 u32 rxgoodframes; 319 u32 rxbroadcastframes; 320 u32 rxmulticastframes; 321 u32 rxpauseframes; 322 u32 rxcrcerrors; 323 u32 rxaligncodeerrors; 324 u32 rxoversizedframes; 325 u32 rxjabberframes; 326 u32 rxundersizedframes; 327 u32 rxfragments; 328 u32 __pad_0[2]; 329 u32 rxoctets; 330 u32 txgoodframes; 331 u32 txbroadcastframes; 332 u32 txmulticastframes; 333 u32 txpauseframes; 334 u32 txdeferredframes; 335 u32 txcollisionframes; 336 u32 txsinglecollframes; 337 u32 txmultcollframes; 338 u32 txexcessivecollisions; 339 u32 txlatecollisions; 340 u32 txunderrun; 341 u32 txcarriersenseerrors; 342 u32 txoctets; 343 u32 octetframes64; 344 u32 octetframes65t127; 345 u32 octetframes128t255; 346 u32 octetframes256t511; 347 u32 octetframes512t1023; 348 u32 octetframes1024tup; 349 u32 netoctets; 350 u32 rxsofoverruns; 351 u32 rxmofoverruns; 352 u32 rxdmaoverruns; 353 }; 354 355 struct cpsw_slave { 356 void __iomem *regs; 357 struct cpsw_sliver_regs __iomem *sliver; 358 int slave_num; 359 u32 mac_control; 360 struct cpsw_slave_data *data; 361 struct phy_device *phy; 362 struct net_device *ndev; 363 u32 port_vlan; 364 u32 open_stat; 365 }; 366 367 static inline u32 slave_read(struct cpsw_slave *slave, u32 offset) 368 { 369 return __raw_readl(slave->regs + offset); 370 } 371 372 static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset) 373 { 374 __raw_writel(val, slave->regs + offset); 375 } 376 377 struct cpsw_priv { 378 spinlock_t lock; 379 struct platform_device *pdev; 380 struct net_device *ndev; 381 struct napi_struct napi; 382 struct device *dev; 383 struct cpsw_platform_data data; 384 struct cpsw_ss_regs __iomem *regs; 385 struct cpsw_wr_regs __iomem *wr_regs; 386 u8 __iomem *hw_stats; 387 struct cpsw_host_regs __iomem *host_port_regs; 388 u32 msg_enable; 389 u32 version; 390 u32 coal_intvl; 391 u32 bus_freq_mhz; 392 int rx_packet_max; 393 int host_port; 394 struct clk *clk; 395 u8 mac_addr[ETH_ALEN]; 396 struct cpsw_slave *slaves; 397 struct cpdma_ctlr *dma; 398 struct cpdma_chan *txch, *rxch; 399 struct cpsw_ale *ale; 400 bool rx_pause; 401 bool tx_pause; 402 /* snapshot of IRQ numbers */ 403 u32 irqs_table[4]; 404 u32 num_irqs; 405 bool irq_enabled; 406 struct cpts *cpts; 407 u32 emac_port; 408 }; 409 410 struct cpsw_stats { 411 char stat_string[ETH_GSTRING_LEN]; 412 int type; 413 int sizeof_stat; 414 int stat_offset; 415 }; 416 417 enum { 418 CPSW_STATS, 419 CPDMA_RX_STATS, 420 CPDMA_TX_STATS, 421 }; 422 423 #define CPSW_STAT(m) CPSW_STATS, \ 424 sizeof(((struct cpsw_hw_stats *)0)->m), \ 425 offsetof(struct cpsw_hw_stats, m) 426 #define CPDMA_RX_STAT(m) CPDMA_RX_STATS, \ 427 sizeof(((struct cpdma_chan_stats *)0)->m), \ 428 offsetof(struct cpdma_chan_stats, m) 429 #define CPDMA_TX_STAT(m) CPDMA_TX_STATS, \ 430 sizeof(((struct cpdma_chan_stats *)0)->m), \ 431 offsetof(struct cpdma_chan_stats, m) 432 433 static const struct cpsw_stats cpsw_gstrings_stats[] = { 434 { "Good Rx Frames", CPSW_STAT(rxgoodframes) }, 435 { "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) }, 436 { "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) }, 437 { "Pause Rx Frames", CPSW_STAT(rxpauseframes) }, 438 { "Rx CRC Errors", CPSW_STAT(rxcrcerrors) }, 439 { "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) }, 440 { "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) }, 441 { "Rx Jabbers", CPSW_STAT(rxjabberframes) }, 442 { "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) }, 443 { "Rx Fragments", CPSW_STAT(rxfragments) }, 444 { "Rx Octets", CPSW_STAT(rxoctets) }, 445 { "Good Tx Frames", CPSW_STAT(txgoodframes) }, 446 { "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) }, 447 { "Multicast Tx Frames", CPSW_STAT(txmulticastframes) }, 448 { "Pause Tx Frames", CPSW_STAT(txpauseframes) }, 449 { "Deferred Tx Frames", CPSW_STAT(txdeferredframes) }, 450 { "Collisions", CPSW_STAT(txcollisionframes) }, 451 { "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) }, 452 { "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) }, 453 { "Excessive Collisions", CPSW_STAT(txexcessivecollisions) }, 454 { "Late Collisions", CPSW_STAT(txlatecollisions) }, 455 { "Tx Underrun", CPSW_STAT(txunderrun) }, 456 { "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) }, 457 { "Tx Octets", CPSW_STAT(txoctets) }, 458 { "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) }, 459 { "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) }, 460 { "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) }, 461 { "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) }, 462 { "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) }, 463 { "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) }, 464 { "Net Octets", CPSW_STAT(netoctets) }, 465 { "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) }, 466 { "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) }, 467 { "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) }, 468 { "Rx DMA chan: head_enqueue", CPDMA_RX_STAT(head_enqueue) }, 469 { "Rx DMA chan: tail_enqueue", CPDMA_RX_STAT(tail_enqueue) }, 470 { "Rx DMA chan: pad_enqueue", CPDMA_RX_STAT(pad_enqueue) }, 471 { "Rx DMA chan: misqueued", CPDMA_RX_STAT(misqueued) }, 472 { "Rx DMA chan: desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) }, 473 { "Rx DMA chan: pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) }, 474 { "Rx DMA chan: runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) }, 475 { "Rx DMA chan: runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) }, 476 { "Rx DMA chan: empty_dequeue", CPDMA_RX_STAT(empty_dequeue) }, 477 { "Rx DMA chan: busy_dequeue", CPDMA_RX_STAT(busy_dequeue) }, 478 { "Rx DMA chan: good_dequeue", CPDMA_RX_STAT(good_dequeue) }, 479 { "Rx DMA chan: requeue", CPDMA_RX_STAT(requeue) }, 480 { "Rx DMA chan: teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) }, 481 { "Tx DMA chan: head_enqueue", CPDMA_TX_STAT(head_enqueue) }, 482 { "Tx DMA chan: tail_enqueue", CPDMA_TX_STAT(tail_enqueue) }, 483 { "Tx DMA chan: pad_enqueue", CPDMA_TX_STAT(pad_enqueue) }, 484 { "Tx DMA chan: misqueued", CPDMA_TX_STAT(misqueued) }, 485 { "Tx DMA chan: desc_alloc_fail", CPDMA_TX_STAT(desc_alloc_fail) }, 486 { "Tx DMA chan: pad_alloc_fail", CPDMA_TX_STAT(pad_alloc_fail) }, 487 { "Tx DMA chan: runt_receive_buf", CPDMA_TX_STAT(runt_receive_buff) }, 488 { "Tx DMA chan: runt_transmit_buf", CPDMA_TX_STAT(runt_transmit_buff) }, 489 { "Tx DMA chan: empty_dequeue", CPDMA_TX_STAT(empty_dequeue) }, 490 { "Tx DMA chan: busy_dequeue", CPDMA_TX_STAT(busy_dequeue) }, 491 { "Tx DMA chan: good_dequeue", CPDMA_TX_STAT(good_dequeue) }, 492 { "Tx DMA chan: requeue", CPDMA_TX_STAT(requeue) }, 493 { "Tx DMA chan: teardown_dequeue", CPDMA_TX_STAT(teardown_dequeue) }, 494 }; 495 496 #define CPSW_STATS_LEN ARRAY_SIZE(cpsw_gstrings_stats) 497 498 #define napi_to_priv(napi) container_of(napi, struct cpsw_priv, napi) 499 #define for_each_slave(priv, func, arg...) \ 500 do { \ 501 struct cpsw_slave *slave; \ 502 int n; \ 503 if (priv->data.dual_emac) \ 504 (func)((priv)->slaves + priv->emac_port, ##arg);\ 505 else \ 506 for (n = (priv)->data.slaves, \ 507 slave = (priv)->slaves; \ 508 n; n--) \ 509 (func)(slave++, ##arg); \ 510 } while (0) 511 #define cpsw_get_slave_ndev(priv, __slave_no__) \ 512 (priv->slaves[__slave_no__].ndev) 513 #define cpsw_get_slave_priv(priv, __slave_no__) \ 514 ((priv->slaves[__slave_no__].ndev) ? \ 515 netdev_priv(priv->slaves[__slave_no__].ndev) : NULL) \ 516 517 #define cpsw_dual_emac_src_port_detect(status, priv, ndev, skb) \ 518 do { \ 519 if (!priv->data.dual_emac) \ 520 break; \ 521 if (CPDMA_RX_SOURCE_PORT(status) == 1) { \ 522 ndev = cpsw_get_slave_ndev(priv, 0); \ 523 priv = netdev_priv(ndev); \ 524 skb->dev = ndev; \ 525 } else if (CPDMA_RX_SOURCE_PORT(status) == 2) { \ 526 ndev = cpsw_get_slave_ndev(priv, 1); \ 527 priv = netdev_priv(ndev); \ 528 skb->dev = ndev; \ 529 } \ 530 } while (0) 531 #define cpsw_add_mcast(priv, addr) \ 532 do { \ 533 if (priv->data.dual_emac) { \ 534 struct cpsw_slave *slave = priv->slaves + \ 535 priv->emac_port; \ 536 int slave_port = cpsw_get_slave_port(priv, \ 537 slave->slave_num); \ 538 cpsw_ale_add_mcast(priv->ale, addr, \ 539 1 << slave_port | 1 << priv->host_port, \ 540 ALE_VLAN, slave->port_vlan, 0); \ 541 } else { \ 542 cpsw_ale_add_mcast(priv->ale, addr, \ 543 ALE_ALL_PORTS << priv->host_port, \ 544 0, 0, 0); \ 545 } \ 546 } while (0) 547 548 static inline int cpsw_get_slave_port(struct cpsw_priv *priv, u32 slave_num) 549 { 550 if (priv->host_port == 0) 551 return slave_num + 1; 552 else 553 return slave_num; 554 } 555 556 static void cpsw_set_promiscious(struct net_device *ndev, bool enable) 557 { 558 struct cpsw_priv *priv = netdev_priv(ndev); 559 struct cpsw_ale *ale = priv->ale; 560 int i; 561 562 if (priv->data.dual_emac) { 563 bool flag = false; 564 565 /* Enabling promiscuous mode for one interface will be 566 * common for both the interface as the interface shares 567 * the same hardware resource. 568 */ 569 for (i = 0; i < priv->data.slaves; i++) 570 if (priv->slaves[i].ndev->flags & IFF_PROMISC) 571 flag = true; 572 573 if (!enable && flag) { 574 enable = true; 575 dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n"); 576 } 577 578 if (enable) { 579 /* Enable Bypass */ 580 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1); 581 582 dev_dbg(&ndev->dev, "promiscuity enabled\n"); 583 } else { 584 /* Disable Bypass */ 585 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0); 586 dev_dbg(&ndev->dev, "promiscuity disabled\n"); 587 } 588 } else { 589 if (enable) { 590 unsigned long timeout = jiffies + HZ; 591 592 /* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */ 593 for (i = 0; i <= priv->data.slaves; i++) { 594 cpsw_ale_control_set(ale, i, 595 ALE_PORT_NOLEARN, 1); 596 cpsw_ale_control_set(ale, i, 597 ALE_PORT_NO_SA_UPDATE, 1); 598 } 599 600 /* Clear All Untouched entries */ 601 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1); 602 do { 603 cpu_relax(); 604 if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT)) 605 break; 606 } while (time_after(timeout, jiffies)); 607 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1); 608 609 /* Clear all mcast from ALE */ 610 cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS << 611 priv->host_port, -1); 612 613 /* Flood All Unicast Packets to Host port */ 614 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1); 615 dev_dbg(&ndev->dev, "promiscuity enabled\n"); 616 } else { 617 /* Don't Flood All Unicast Packets to Host port */ 618 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0); 619 620 /* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */ 621 for (i = 0; i <= priv->data.slaves; i++) { 622 cpsw_ale_control_set(ale, i, 623 ALE_PORT_NOLEARN, 0); 624 cpsw_ale_control_set(ale, i, 625 ALE_PORT_NO_SA_UPDATE, 0); 626 } 627 dev_dbg(&ndev->dev, "promiscuity disabled\n"); 628 } 629 } 630 } 631 632 static void cpsw_ndo_set_rx_mode(struct net_device *ndev) 633 { 634 struct cpsw_priv *priv = netdev_priv(ndev); 635 int vid; 636 637 if (priv->data.dual_emac) 638 vid = priv->slaves[priv->emac_port].port_vlan; 639 else 640 vid = priv->data.default_vlan; 641 642 if (ndev->flags & IFF_PROMISC) { 643 /* Enable promiscuous mode */ 644 cpsw_set_promiscious(ndev, true); 645 cpsw_ale_set_allmulti(priv->ale, IFF_ALLMULTI); 646 return; 647 } else { 648 /* Disable promiscuous mode */ 649 cpsw_set_promiscious(ndev, false); 650 } 651 652 /* Restore allmulti on vlans if necessary */ 653 cpsw_ale_set_allmulti(priv->ale, priv->ndev->flags & IFF_ALLMULTI); 654 655 /* Clear all mcast from ALE */ 656 cpsw_ale_flush_multicast(priv->ale, ALE_ALL_PORTS << priv->host_port, 657 vid); 658 659 if (!netdev_mc_empty(ndev)) { 660 struct netdev_hw_addr *ha; 661 662 /* program multicast address list into ALE register */ 663 netdev_for_each_mc_addr(ha, ndev) { 664 cpsw_add_mcast(priv, (u8 *)ha->addr); 665 } 666 } 667 } 668 669 static void cpsw_intr_enable(struct cpsw_priv *priv) 670 { 671 __raw_writel(0xFF, &priv->wr_regs->tx_en); 672 __raw_writel(0xFF, &priv->wr_regs->rx_en); 673 674 cpdma_ctlr_int_ctrl(priv->dma, true); 675 return; 676 } 677 678 static void cpsw_intr_disable(struct cpsw_priv *priv) 679 { 680 __raw_writel(0, &priv->wr_regs->tx_en); 681 __raw_writel(0, &priv->wr_regs->rx_en); 682 683 cpdma_ctlr_int_ctrl(priv->dma, false); 684 return; 685 } 686 687 static void cpsw_tx_handler(void *token, int len, int status) 688 { 689 struct sk_buff *skb = token; 690 struct net_device *ndev = skb->dev; 691 struct cpsw_priv *priv = netdev_priv(ndev); 692 693 /* Check whether the queue is stopped due to stalled tx dma, if the 694 * queue is stopped then start the queue as we have free desc for tx 695 */ 696 if (unlikely(netif_queue_stopped(ndev))) 697 netif_wake_queue(ndev); 698 cpts_tx_timestamp(priv->cpts, skb); 699 ndev->stats.tx_packets++; 700 ndev->stats.tx_bytes += len; 701 dev_kfree_skb_any(skb); 702 } 703 704 static void cpsw_rx_handler(void *token, int len, int status) 705 { 706 struct sk_buff *skb = token; 707 struct sk_buff *new_skb; 708 struct net_device *ndev = skb->dev; 709 struct cpsw_priv *priv = netdev_priv(ndev); 710 int ret = 0; 711 712 cpsw_dual_emac_src_port_detect(status, priv, ndev, skb); 713 714 if (unlikely(status < 0) || unlikely(!netif_running(ndev))) { 715 bool ndev_status = false; 716 struct cpsw_slave *slave = priv->slaves; 717 int n; 718 719 if (priv->data.dual_emac) { 720 /* In dual emac mode check for all interfaces */ 721 for (n = priv->data.slaves; n; n--, slave++) 722 if (netif_running(slave->ndev)) 723 ndev_status = true; 724 } 725 726 if (ndev_status && (status >= 0)) { 727 /* The packet received is for the interface which 728 * is already down and the other interface is up 729 * and running, intead of freeing which results 730 * in reducing of the number of rx descriptor in 731 * DMA engine, requeue skb back to cpdma. 732 */ 733 new_skb = skb; 734 goto requeue; 735 } 736 737 /* the interface is going down, skbs are purged */ 738 dev_kfree_skb_any(skb); 739 return; 740 } 741 742 new_skb = netdev_alloc_skb_ip_align(ndev, priv->rx_packet_max); 743 if (new_skb) { 744 skb_put(skb, len); 745 cpts_rx_timestamp(priv->cpts, skb); 746 skb->protocol = eth_type_trans(skb, ndev); 747 netif_receive_skb(skb); 748 ndev->stats.rx_bytes += len; 749 ndev->stats.rx_packets++; 750 } else { 751 ndev->stats.rx_dropped++; 752 new_skb = skb; 753 } 754 755 requeue: 756 ret = cpdma_chan_submit(priv->rxch, new_skb, new_skb->data, 757 skb_tailroom(new_skb), 0); 758 if (WARN_ON(ret < 0)) 759 dev_kfree_skb_any(new_skb); 760 } 761 762 static irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id) 763 { 764 struct cpsw_priv *priv = dev_id; 765 766 cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_TX); 767 cpdma_chan_process(priv->txch, 128); 768 769 priv = cpsw_get_slave_priv(priv, 1); 770 if (priv) 771 cpdma_chan_process(priv->txch, 128); 772 773 return IRQ_HANDLED; 774 } 775 776 static irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id) 777 { 778 struct cpsw_priv *priv = dev_id; 779 780 cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_RX); 781 782 cpsw_intr_disable(priv); 783 if (priv->irq_enabled == true) { 784 cpsw_disable_irq(priv); 785 priv->irq_enabled = false; 786 } 787 788 if (netif_running(priv->ndev)) { 789 napi_schedule(&priv->napi); 790 return IRQ_HANDLED; 791 } 792 793 priv = cpsw_get_slave_priv(priv, 1); 794 if (!priv) 795 return IRQ_NONE; 796 797 if (netif_running(priv->ndev)) { 798 napi_schedule(&priv->napi); 799 return IRQ_HANDLED; 800 } 801 return IRQ_NONE; 802 } 803 804 static int cpsw_poll(struct napi_struct *napi, int budget) 805 { 806 struct cpsw_priv *priv = napi_to_priv(napi); 807 int num_tx, num_rx; 808 809 num_tx = cpdma_chan_process(priv->txch, 128); 810 811 num_rx = cpdma_chan_process(priv->rxch, budget); 812 if (num_rx < budget) { 813 struct cpsw_priv *prim_cpsw; 814 815 napi_complete(napi); 816 cpsw_intr_enable(priv); 817 prim_cpsw = cpsw_get_slave_priv(priv, 0); 818 if (prim_cpsw->irq_enabled == false) { 819 prim_cpsw->irq_enabled = true; 820 cpsw_enable_irq(priv); 821 } 822 } 823 824 if (num_rx || num_tx) 825 cpsw_dbg(priv, intr, "poll %d rx, %d tx pkts\n", 826 num_rx, num_tx); 827 828 return num_rx; 829 } 830 831 static inline void soft_reset(const char *module, void __iomem *reg) 832 { 833 unsigned long timeout = jiffies + HZ; 834 835 __raw_writel(1, reg); 836 do { 837 cpu_relax(); 838 } while ((__raw_readl(reg) & 1) && time_after(timeout, jiffies)); 839 840 WARN(__raw_readl(reg) & 1, "failed to soft-reset %s\n", module); 841 } 842 843 #define mac_hi(mac) (((mac)[0] << 0) | ((mac)[1] << 8) | \ 844 ((mac)[2] << 16) | ((mac)[3] << 24)) 845 #define mac_lo(mac) (((mac)[4] << 0) | ((mac)[5] << 8)) 846 847 static void cpsw_set_slave_mac(struct cpsw_slave *slave, 848 struct cpsw_priv *priv) 849 { 850 slave_write(slave, mac_hi(priv->mac_addr), SA_HI); 851 slave_write(slave, mac_lo(priv->mac_addr), SA_LO); 852 } 853 854 static void _cpsw_adjust_link(struct cpsw_slave *slave, 855 struct cpsw_priv *priv, bool *link) 856 { 857 struct phy_device *phy = slave->phy; 858 u32 mac_control = 0; 859 u32 slave_port; 860 861 if (!phy) 862 return; 863 864 slave_port = cpsw_get_slave_port(priv, slave->slave_num); 865 866 if (phy->link) { 867 mac_control = priv->data.mac_control; 868 869 /* enable forwarding */ 870 cpsw_ale_control_set(priv->ale, slave_port, 871 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD); 872 873 if (phy->speed == 1000) 874 mac_control |= BIT(7); /* GIGABITEN */ 875 if (phy->duplex) 876 mac_control |= BIT(0); /* FULLDUPLEXEN */ 877 878 /* set speed_in input in case RMII mode is used in 100Mbps */ 879 if (phy->speed == 100) 880 mac_control |= BIT(15); 881 else if (phy->speed == 10) 882 mac_control |= BIT(18); /* In Band mode */ 883 884 if (priv->rx_pause) 885 mac_control |= BIT(3); 886 887 if (priv->tx_pause) 888 mac_control |= BIT(4); 889 890 *link = true; 891 } else { 892 mac_control = 0; 893 /* disable forwarding */ 894 cpsw_ale_control_set(priv->ale, slave_port, 895 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE); 896 } 897 898 if (mac_control != slave->mac_control) { 899 phy_print_status(phy); 900 __raw_writel(mac_control, &slave->sliver->mac_control); 901 } 902 903 slave->mac_control = mac_control; 904 } 905 906 static void cpsw_adjust_link(struct net_device *ndev) 907 { 908 struct cpsw_priv *priv = netdev_priv(ndev); 909 bool link = false; 910 911 for_each_slave(priv, _cpsw_adjust_link, priv, &link); 912 913 if (link) { 914 netif_carrier_on(ndev); 915 if (netif_running(ndev)) 916 netif_wake_queue(ndev); 917 } else { 918 netif_carrier_off(ndev); 919 netif_stop_queue(ndev); 920 } 921 } 922 923 static int cpsw_get_coalesce(struct net_device *ndev, 924 struct ethtool_coalesce *coal) 925 { 926 struct cpsw_priv *priv = netdev_priv(ndev); 927 928 coal->rx_coalesce_usecs = priv->coal_intvl; 929 return 0; 930 } 931 932 static int cpsw_set_coalesce(struct net_device *ndev, 933 struct ethtool_coalesce *coal) 934 { 935 struct cpsw_priv *priv = netdev_priv(ndev); 936 u32 int_ctrl; 937 u32 num_interrupts = 0; 938 u32 prescale = 0; 939 u32 addnl_dvdr = 1; 940 u32 coal_intvl = 0; 941 942 coal_intvl = coal->rx_coalesce_usecs; 943 944 int_ctrl = readl(&priv->wr_regs->int_control); 945 prescale = priv->bus_freq_mhz * 4; 946 947 if (!coal->rx_coalesce_usecs) { 948 int_ctrl &= ~(CPSW_INTPRESCALE_MASK | CPSW_INTPACEEN); 949 goto update_return; 950 } 951 952 if (coal_intvl < CPSW_CMINTMIN_INTVL) 953 coal_intvl = CPSW_CMINTMIN_INTVL; 954 955 if (coal_intvl > CPSW_CMINTMAX_INTVL) { 956 /* Interrupt pacer works with 4us Pulse, we can 957 * throttle further by dilating the 4us pulse. 958 */ 959 addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale; 960 961 if (addnl_dvdr > 1) { 962 prescale *= addnl_dvdr; 963 if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr)) 964 coal_intvl = (CPSW_CMINTMAX_INTVL 965 * addnl_dvdr); 966 } else { 967 addnl_dvdr = 1; 968 coal_intvl = CPSW_CMINTMAX_INTVL; 969 } 970 } 971 972 num_interrupts = (1000 * addnl_dvdr) / coal_intvl; 973 writel(num_interrupts, &priv->wr_regs->rx_imax); 974 writel(num_interrupts, &priv->wr_regs->tx_imax); 975 976 int_ctrl |= CPSW_INTPACEEN; 977 int_ctrl &= (~CPSW_INTPRESCALE_MASK); 978 int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK); 979 980 update_return: 981 writel(int_ctrl, &priv->wr_regs->int_control); 982 983 cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl); 984 if (priv->data.dual_emac) { 985 int i; 986 987 for (i = 0; i < priv->data.slaves; i++) { 988 priv = netdev_priv(priv->slaves[i].ndev); 989 priv->coal_intvl = coal_intvl; 990 } 991 } else { 992 priv->coal_intvl = coal_intvl; 993 } 994 995 return 0; 996 } 997 998 static int cpsw_get_sset_count(struct net_device *ndev, int sset) 999 { 1000 switch (sset) { 1001 case ETH_SS_STATS: 1002 return CPSW_STATS_LEN; 1003 default: 1004 return -EOPNOTSUPP; 1005 } 1006 } 1007 1008 static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data) 1009 { 1010 u8 *p = data; 1011 int i; 1012 1013 switch (stringset) { 1014 case ETH_SS_STATS: 1015 for (i = 0; i < CPSW_STATS_LEN; i++) { 1016 memcpy(p, cpsw_gstrings_stats[i].stat_string, 1017 ETH_GSTRING_LEN); 1018 p += ETH_GSTRING_LEN; 1019 } 1020 break; 1021 } 1022 } 1023 1024 static void cpsw_get_ethtool_stats(struct net_device *ndev, 1025 struct ethtool_stats *stats, u64 *data) 1026 { 1027 struct cpsw_priv *priv = netdev_priv(ndev); 1028 struct cpdma_chan_stats rx_stats; 1029 struct cpdma_chan_stats tx_stats; 1030 u32 val; 1031 u8 *p; 1032 int i; 1033 1034 /* Collect Davinci CPDMA stats for Rx and Tx Channel */ 1035 cpdma_chan_get_stats(priv->rxch, &rx_stats); 1036 cpdma_chan_get_stats(priv->txch, &tx_stats); 1037 1038 for (i = 0; i < CPSW_STATS_LEN; i++) { 1039 switch (cpsw_gstrings_stats[i].type) { 1040 case CPSW_STATS: 1041 val = readl(priv->hw_stats + 1042 cpsw_gstrings_stats[i].stat_offset); 1043 data[i] = val; 1044 break; 1045 1046 case CPDMA_RX_STATS: 1047 p = (u8 *)&rx_stats + 1048 cpsw_gstrings_stats[i].stat_offset; 1049 data[i] = *(u32 *)p; 1050 break; 1051 1052 case CPDMA_TX_STATS: 1053 p = (u8 *)&tx_stats + 1054 cpsw_gstrings_stats[i].stat_offset; 1055 data[i] = *(u32 *)p; 1056 break; 1057 } 1058 } 1059 } 1060 1061 static int cpsw_common_res_usage_state(struct cpsw_priv *priv) 1062 { 1063 u32 i; 1064 u32 usage_count = 0; 1065 1066 if (!priv->data.dual_emac) 1067 return 0; 1068 1069 for (i = 0; i < priv->data.slaves; i++) 1070 if (priv->slaves[i].open_stat) 1071 usage_count++; 1072 1073 return usage_count; 1074 } 1075 1076 static inline int cpsw_tx_packet_submit(struct net_device *ndev, 1077 struct cpsw_priv *priv, struct sk_buff *skb) 1078 { 1079 if (!priv->data.dual_emac) 1080 return cpdma_chan_submit(priv->txch, skb, skb->data, 1081 skb->len, 0); 1082 1083 if (ndev == cpsw_get_slave_ndev(priv, 0)) 1084 return cpdma_chan_submit(priv->txch, skb, skb->data, 1085 skb->len, 1); 1086 else 1087 return cpdma_chan_submit(priv->txch, skb, skb->data, 1088 skb->len, 2); 1089 } 1090 1091 static inline void cpsw_add_dual_emac_def_ale_entries( 1092 struct cpsw_priv *priv, struct cpsw_slave *slave, 1093 u32 slave_port) 1094 { 1095 u32 port_mask = 1 << slave_port | 1 << priv->host_port; 1096 1097 if (priv->version == CPSW_VERSION_1) 1098 slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN); 1099 else 1100 slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN); 1101 cpsw_ale_add_vlan(priv->ale, slave->port_vlan, port_mask, 1102 port_mask, port_mask, 0); 1103 cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast, 1104 port_mask, ALE_VLAN, slave->port_vlan, 0); 1105 cpsw_ale_add_ucast(priv->ale, priv->mac_addr, 1106 priv->host_port, ALE_VLAN, slave->port_vlan); 1107 } 1108 1109 static void soft_reset_slave(struct cpsw_slave *slave) 1110 { 1111 char name[32]; 1112 1113 snprintf(name, sizeof(name), "slave-%d", slave->slave_num); 1114 soft_reset(name, &slave->sliver->soft_reset); 1115 } 1116 1117 static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv) 1118 { 1119 u32 slave_port; 1120 1121 soft_reset_slave(slave); 1122 1123 /* setup priority mapping */ 1124 __raw_writel(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map); 1125 1126 switch (priv->version) { 1127 case CPSW_VERSION_1: 1128 slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP); 1129 break; 1130 case CPSW_VERSION_2: 1131 case CPSW_VERSION_3: 1132 case CPSW_VERSION_4: 1133 slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP); 1134 break; 1135 } 1136 1137 /* setup max packet size, and mac address */ 1138 __raw_writel(priv->rx_packet_max, &slave->sliver->rx_maxlen); 1139 cpsw_set_slave_mac(slave, priv); 1140 1141 slave->mac_control = 0; /* no link yet */ 1142 1143 slave_port = cpsw_get_slave_port(priv, slave->slave_num); 1144 1145 if (priv->data.dual_emac) 1146 cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port); 1147 else 1148 cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast, 1149 1 << slave_port, 0, 0, ALE_MCAST_FWD_2); 1150 1151 slave->phy = phy_connect(priv->ndev, slave->data->phy_id, 1152 &cpsw_adjust_link, slave->data->phy_if); 1153 if (IS_ERR(slave->phy)) { 1154 dev_err(priv->dev, "phy %s not found on slave %d\n", 1155 slave->data->phy_id, slave->slave_num); 1156 slave->phy = NULL; 1157 } else { 1158 dev_info(priv->dev, "phy found : id is : 0x%x\n", 1159 slave->phy->phy_id); 1160 phy_start(slave->phy); 1161 1162 /* Configure GMII_SEL register */ 1163 cpsw_phy_sel(&priv->pdev->dev, slave->phy->interface, 1164 slave->slave_num); 1165 } 1166 } 1167 1168 static inline void cpsw_add_default_vlan(struct cpsw_priv *priv) 1169 { 1170 const int vlan = priv->data.default_vlan; 1171 const int port = priv->host_port; 1172 u32 reg; 1173 int i; 1174 int unreg_mcast_mask; 1175 1176 reg = (priv->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN : 1177 CPSW2_PORT_VLAN; 1178 1179 writel(vlan, &priv->host_port_regs->port_vlan); 1180 1181 for (i = 0; i < priv->data.slaves; i++) 1182 slave_write(priv->slaves + i, vlan, reg); 1183 1184 if (priv->ndev->flags & IFF_ALLMULTI) 1185 unreg_mcast_mask = ALE_ALL_PORTS; 1186 else 1187 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2; 1188 1189 cpsw_ale_add_vlan(priv->ale, vlan, ALE_ALL_PORTS << port, 1190 ALE_ALL_PORTS << port, ALE_ALL_PORTS << port, 1191 unreg_mcast_mask << port); 1192 } 1193 1194 static void cpsw_init_host_port(struct cpsw_priv *priv) 1195 { 1196 u32 control_reg; 1197 u32 fifo_mode; 1198 1199 /* soft reset the controller and initialize ale */ 1200 soft_reset("cpsw", &priv->regs->soft_reset); 1201 cpsw_ale_start(priv->ale); 1202 1203 /* switch to vlan unaware mode */ 1204 cpsw_ale_control_set(priv->ale, priv->host_port, ALE_VLAN_AWARE, 1205 CPSW_ALE_VLAN_AWARE); 1206 control_reg = readl(&priv->regs->control); 1207 control_reg |= CPSW_VLAN_AWARE; 1208 writel(control_reg, &priv->regs->control); 1209 fifo_mode = (priv->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE : 1210 CPSW_FIFO_NORMAL_MODE; 1211 writel(fifo_mode, &priv->host_port_regs->tx_in_ctl); 1212 1213 /* setup host port priority mapping */ 1214 __raw_writel(CPDMA_TX_PRIORITY_MAP, 1215 &priv->host_port_regs->cpdma_tx_pri_map); 1216 __raw_writel(0, &priv->host_port_regs->cpdma_rx_chan_map); 1217 1218 cpsw_ale_control_set(priv->ale, priv->host_port, 1219 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD); 1220 1221 if (!priv->data.dual_emac) { 1222 cpsw_ale_add_ucast(priv->ale, priv->mac_addr, priv->host_port, 1223 0, 0); 1224 cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast, 1225 1 << priv->host_port, 0, 0, ALE_MCAST_FWD_2); 1226 } 1227 } 1228 1229 static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_priv *priv) 1230 { 1231 u32 slave_port; 1232 1233 slave_port = cpsw_get_slave_port(priv, slave->slave_num); 1234 1235 if (!slave->phy) 1236 return; 1237 phy_stop(slave->phy); 1238 phy_disconnect(slave->phy); 1239 slave->phy = NULL; 1240 cpsw_ale_control_set(priv->ale, slave_port, 1241 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE); 1242 } 1243 1244 static int cpsw_ndo_open(struct net_device *ndev) 1245 { 1246 struct cpsw_priv *priv = netdev_priv(ndev); 1247 struct cpsw_priv *prim_cpsw; 1248 int i, ret; 1249 u32 reg; 1250 1251 if (!cpsw_common_res_usage_state(priv)) 1252 cpsw_intr_disable(priv); 1253 netif_carrier_off(ndev); 1254 1255 pm_runtime_get_sync(&priv->pdev->dev); 1256 1257 reg = priv->version; 1258 1259 dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n", 1260 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg), 1261 CPSW_RTL_VERSION(reg)); 1262 1263 /* initialize host and slave ports */ 1264 if (!cpsw_common_res_usage_state(priv)) 1265 cpsw_init_host_port(priv); 1266 for_each_slave(priv, cpsw_slave_open, priv); 1267 1268 /* Add default VLAN */ 1269 if (!priv->data.dual_emac) 1270 cpsw_add_default_vlan(priv); 1271 else 1272 cpsw_ale_add_vlan(priv->ale, priv->data.default_vlan, 1273 ALE_ALL_PORTS << priv->host_port, 1274 ALE_ALL_PORTS << priv->host_port, 0, 0); 1275 1276 if (!cpsw_common_res_usage_state(priv)) { 1277 /* setup tx dma to fixed prio and zero offset */ 1278 cpdma_control_set(priv->dma, CPDMA_TX_PRIO_FIXED, 1); 1279 cpdma_control_set(priv->dma, CPDMA_RX_BUFFER_OFFSET, 0); 1280 1281 /* disable priority elevation */ 1282 __raw_writel(0, &priv->regs->ptype); 1283 1284 /* enable statistics collection only on all ports */ 1285 __raw_writel(0x7, &priv->regs->stat_port_en); 1286 1287 /* Enable internal fifo flow control */ 1288 writel(0x7, &priv->regs->flow_control); 1289 1290 if (WARN_ON(!priv->data.rx_descs)) 1291 priv->data.rx_descs = 128; 1292 1293 for (i = 0; i < priv->data.rx_descs; i++) { 1294 struct sk_buff *skb; 1295 1296 ret = -ENOMEM; 1297 skb = __netdev_alloc_skb_ip_align(priv->ndev, 1298 priv->rx_packet_max, GFP_KERNEL); 1299 if (!skb) 1300 goto err_cleanup; 1301 ret = cpdma_chan_submit(priv->rxch, skb, skb->data, 1302 skb_tailroom(skb), 0); 1303 if (ret < 0) { 1304 kfree_skb(skb); 1305 goto err_cleanup; 1306 } 1307 } 1308 /* continue even if we didn't manage to submit all 1309 * receive descs 1310 */ 1311 cpsw_info(priv, ifup, "submitted %d rx descriptors\n", i); 1312 1313 if (cpts_register(&priv->pdev->dev, priv->cpts, 1314 priv->data.cpts_clock_mult, 1315 priv->data.cpts_clock_shift)) 1316 dev_err(priv->dev, "error registering cpts device\n"); 1317 1318 } 1319 1320 /* Enable Interrupt pacing if configured */ 1321 if (priv->coal_intvl != 0) { 1322 struct ethtool_coalesce coal; 1323 1324 coal.rx_coalesce_usecs = (priv->coal_intvl << 4); 1325 cpsw_set_coalesce(ndev, &coal); 1326 } 1327 1328 napi_enable(&priv->napi); 1329 cpdma_ctlr_start(priv->dma); 1330 cpsw_intr_enable(priv); 1331 1332 prim_cpsw = cpsw_get_slave_priv(priv, 0); 1333 if (prim_cpsw->irq_enabled == false) { 1334 if ((priv == prim_cpsw) || !netif_running(prim_cpsw->ndev)) { 1335 prim_cpsw->irq_enabled = true; 1336 cpsw_enable_irq(prim_cpsw); 1337 } 1338 } 1339 1340 if (priv->data.dual_emac) 1341 priv->slaves[priv->emac_port].open_stat = true; 1342 return 0; 1343 1344 err_cleanup: 1345 cpdma_ctlr_stop(priv->dma); 1346 for_each_slave(priv, cpsw_slave_stop, priv); 1347 pm_runtime_put_sync(&priv->pdev->dev); 1348 netif_carrier_off(priv->ndev); 1349 return ret; 1350 } 1351 1352 static int cpsw_ndo_stop(struct net_device *ndev) 1353 { 1354 struct cpsw_priv *priv = netdev_priv(ndev); 1355 1356 cpsw_info(priv, ifdown, "shutting down cpsw device\n"); 1357 netif_stop_queue(priv->ndev); 1358 napi_disable(&priv->napi); 1359 netif_carrier_off(priv->ndev); 1360 1361 if (cpsw_common_res_usage_state(priv) <= 1) { 1362 cpts_unregister(priv->cpts); 1363 cpsw_intr_disable(priv); 1364 cpdma_ctlr_int_ctrl(priv->dma, false); 1365 cpdma_ctlr_stop(priv->dma); 1366 cpsw_ale_stop(priv->ale); 1367 } 1368 for_each_slave(priv, cpsw_slave_stop, priv); 1369 pm_runtime_put_sync(&priv->pdev->dev); 1370 if (priv->data.dual_emac) 1371 priv->slaves[priv->emac_port].open_stat = false; 1372 return 0; 1373 } 1374 1375 static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb, 1376 struct net_device *ndev) 1377 { 1378 struct cpsw_priv *priv = netdev_priv(ndev); 1379 int ret; 1380 1381 ndev->trans_start = jiffies; 1382 1383 if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) { 1384 cpsw_err(priv, tx_err, "packet pad failed\n"); 1385 ndev->stats.tx_dropped++; 1386 return NETDEV_TX_OK; 1387 } 1388 1389 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && 1390 priv->cpts->tx_enable) 1391 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1392 1393 skb_tx_timestamp(skb); 1394 1395 ret = cpsw_tx_packet_submit(ndev, priv, skb); 1396 if (unlikely(ret != 0)) { 1397 cpsw_err(priv, tx_err, "desc submit failed\n"); 1398 goto fail; 1399 } 1400 1401 /* If there is no more tx desc left free then we need to 1402 * tell the kernel to stop sending us tx frames. 1403 */ 1404 if (unlikely(!cpdma_check_free_tx_desc(priv->txch))) 1405 netif_stop_queue(ndev); 1406 1407 return NETDEV_TX_OK; 1408 fail: 1409 ndev->stats.tx_dropped++; 1410 netif_stop_queue(ndev); 1411 return NETDEV_TX_BUSY; 1412 } 1413 1414 #ifdef CONFIG_TI_CPTS 1415 1416 static void cpsw_hwtstamp_v1(struct cpsw_priv *priv) 1417 { 1418 struct cpsw_slave *slave = &priv->slaves[priv->data.active_slave]; 1419 u32 ts_en, seq_id; 1420 1421 if (!priv->cpts->tx_enable && !priv->cpts->rx_enable) { 1422 slave_write(slave, 0, CPSW1_TS_CTL); 1423 return; 1424 } 1425 1426 seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588; 1427 ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS; 1428 1429 if (priv->cpts->tx_enable) 1430 ts_en |= CPSW_V1_TS_TX_EN; 1431 1432 if (priv->cpts->rx_enable) 1433 ts_en |= CPSW_V1_TS_RX_EN; 1434 1435 slave_write(slave, ts_en, CPSW1_TS_CTL); 1436 slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE); 1437 } 1438 1439 static void cpsw_hwtstamp_v2(struct cpsw_priv *priv) 1440 { 1441 struct cpsw_slave *slave; 1442 u32 ctrl, mtype; 1443 1444 if (priv->data.dual_emac) 1445 slave = &priv->slaves[priv->emac_port]; 1446 else 1447 slave = &priv->slaves[priv->data.active_slave]; 1448 1449 ctrl = slave_read(slave, CPSW2_CONTROL); 1450 switch (priv->version) { 1451 case CPSW_VERSION_2: 1452 ctrl &= ~CTRL_V2_ALL_TS_MASK; 1453 1454 if (priv->cpts->tx_enable) 1455 ctrl |= CTRL_V2_TX_TS_BITS; 1456 1457 if (priv->cpts->rx_enable) 1458 ctrl |= CTRL_V2_RX_TS_BITS; 1459 break; 1460 case CPSW_VERSION_3: 1461 default: 1462 ctrl &= ~CTRL_V3_ALL_TS_MASK; 1463 1464 if (priv->cpts->tx_enable) 1465 ctrl |= CTRL_V3_TX_TS_BITS; 1466 1467 if (priv->cpts->rx_enable) 1468 ctrl |= CTRL_V3_RX_TS_BITS; 1469 break; 1470 } 1471 1472 mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS; 1473 1474 slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE); 1475 slave_write(slave, ctrl, CPSW2_CONTROL); 1476 __raw_writel(ETH_P_1588, &priv->regs->ts_ltype); 1477 } 1478 1479 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr) 1480 { 1481 struct cpsw_priv *priv = netdev_priv(dev); 1482 struct cpts *cpts = priv->cpts; 1483 struct hwtstamp_config cfg; 1484 1485 if (priv->version != CPSW_VERSION_1 && 1486 priv->version != CPSW_VERSION_2 && 1487 priv->version != CPSW_VERSION_3) 1488 return -EOPNOTSUPP; 1489 1490 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg))) 1491 return -EFAULT; 1492 1493 /* reserved for future extensions */ 1494 if (cfg.flags) 1495 return -EINVAL; 1496 1497 if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON) 1498 return -ERANGE; 1499 1500 switch (cfg.rx_filter) { 1501 case HWTSTAMP_FILTER_NONE: 1502 cpts->rx_enable = 0; 1503 break; 1504 case HWTSTAMP_FILTER_ALL: 1505 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 1506 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 1507 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 1508 return -ERANGE; 1509 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 1510 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 1511 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 1512 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 1513 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 1514 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 1515 case HWTSTAMP_FILTER_PTP_V2_EVENT: 1516 case HWTSTAMP_FILTER_PTP_V2_SYNC: 1517 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 1518 cpts->rx_enable = 1; 1519 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 1520 break; 1521 default: 1522 return -ERANGE; 1523 } 1524 1525 cpts->tx_enable = cfg.tx_type == HWTSTAMP_TX_ON; 1526 1527 switch (priv->version) { 1528 case CPSW_VERSION_1: 1529 cpsw_hwtstamp_v1(priv); 1530 break; 1531 case CPSW_VERSION_2: 1532 case CPSW_VERSION_3: 1533 cpsw_hwtstamp_v2(priv); 1534 break; 1535 default: 1536 WARN_ON(1); 1537 } 1538 1539 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; 1540 } 1541 1542 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr) 1543 { 1544 struct cpsw_priv *priv = netdev_priv(dev); 1545 struct cpts *cpts = priv->cpts; 1546 struct hwtstamp_config cfg; 1547 1548 if (priv->version != CPSW_VERSION_1 && 1549 priv->version != CPSW_VERSION_2 && 1550 priv->version != CPSW_VERSION_3) 1551 return -EOPNOTSUPP; 1552 1553 cfg.flags = 0; 1554 cfg.tx_type = cpts->tx_enable ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF; 1555 cfg.rx_filter = (cpts->rx_enable ? 1556 HWTSTAMP_FILTER_PTP_V2_EVENT : HWTSTAMP_FILTER_NONE); 1557 1558 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; 1559 } 1560 1561 #endif /*CONFIG_TI_CPTS*/ 1562 1563 static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 1564 { 1565 struct cpsw_priv *priv = netdev_priv(dev); 1566 int slave_no = cpsw_slave_index(priv); 1567 1568 if (!netif_running(dev)) 1569 return -EINVAL; 1570 1571 switch (cmd) { 1572 #ifdef CONFIG_TI_CPTS 1573 case SIOCSHWTSTAMP: 1574 return cpsw_hwtstamp_set(dev, req); 1575 case SIOCGHWTSTAMP: 1576 return cpsw_hwtstamp_get(dev, req); 1577 #endif 1578 } 1579 1580 if (!priv->slaves[slave_no].phy) 1581 return -EOPNOTSUPP; 1582 return phy_mii_ioctl(priv->slaves[slave_no].phy, req, cmd); 1583 } 1584 1585 static void cpsw_ndo_tx_timeout(struct net_device *ndev) 1586 { 1587 struct cpsw_priv *priv = netdev_priv(ndev); 1588 1589 cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n"); 1590 ndev->stats.tx_errors++; 1591 cpsw_intr_disable(priv); 1592 cpdma_ctlr_int_ctrl(priv->dma, false); 1593 cpdma_chan_stop(priv->txch); 1594 cpdma_chan_start(priv->txch); 1595 cpdma_ctlr_int_ctrl(priv->dma, true); 1596 cpsw_intr_enable(priv); 1597 } 1598 1599 static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p) 1600 { 1601 struct cpsw_priv *priv = netdev_priv(ndev); 1602 struct sockaddr *addr = (struct sockaddr *)p; 1603 int flags = 0; 1604 u16 vid = 0; 1605 1606 if (!is_valid_ether_addr(addr->sa_data)) 1607 return -EADDRNOTAVAIL; 1608 1609 if (priv->data.dual_emac) { 1610 vid = priv->slaves[priv->emac_port].port_vlan; 1611 flags = ALE_VLAN; 1612 } 1613 1614 cpsw_ale_del_ucast(priv->ale, priv->mac_addr, priv->host_port, 1615 flags, vid); 1616 cpsw_ale_add_ucast(priv->ale, addr->sa_data, priv->host_port, 1617 flags, vid); 1618 1619 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN); 1620 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN); 1621 for_each_slave(priv, cpsw_set_slave_mac, priv); 1622 1623 return 0; 1624 } 1625 1626 #ifdef CONFIG_NET_POLL_CONTROLLER 1627 static void cpsw_ndo_poll_controller(struct net_device *ndev) 1628 { 1629 struct cpsw_priv *priv = netdev_priv(ndev); 1630 1631 cpsw_intr_disable(priv); 1632 cpdma_ctlr_int_ctrl(priv->dma, false); 1633 cpsw_rx_interrupt(priv->irqs_table[0], priv); 1634 cpsw_tx_interrupt(priv->irqs_table[1], priv); 1635 cpdma_ctlr_int_ctrl(priv->dma, true); 1636 cpsw_intr_enable(priv); 1637 } 1638 #endif 1639 1640 static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv, 1641 unsigned short vid) 1642 { 1643 int ret; 1644 int unreg_mcast_mask = 0; 1645 u32 port_mask; 1646 1647 if (priv->data.dual_emac) { 1648 port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST; 1649 1650 if (priv->ndev->flags & IFF_ALLMULTI) 1651 unreg_mcast_mask = port_mask; 1652 } else { 1653 port_mask = ALE_ALL_PORTS; 1654 1655 if (priv->ndev->flags & IFF_ALLMULTI) 1656 unreg_mcast_mask = ALE_ALL_PORTS; 1657 else 1658 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2; 1659 } 1660 1661 ret = cpsw_ale_add_vlan(priv->ale, vid, port_mask, 0, port_mask, 1662 unreg_mcast_mask << priv->host_port); 1663 if (ret != 0) 1664 return ret; 1665 1666 ret = cpsw_ale_add_ucast(priv->ale, priv->mac_addr, 1667 priv->host_port, ALE_VLAN, vid); 1668 if (ret != 0) 1669 goto clean_vid; 1670 1671 ret = cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast, 1672 port_mask, ALE_VLAN, vid, 0); 1673 if (ret != 0) 1674 goto clean_vlan_ucast; 1675 return 0; 1676 1677 clean_vlan_ucast: 1678 cpsw_ale_del_ucast(priv->ale, priv->mac_addr, 1679 priv->host_port, ALE_VLAN, vid); 1680 clean_vid: 1681 cpsw_ale_del_vlan(priv->ale, vid, 0); 1682 return ret; 1683 } 1684 1685 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev, 1686 __be16 proto, u16 vid) 1687 { 1688 struct cpsw_priv *priv = netdev_priv(ndev); 1689 1690 if (vid == priv->data.default_vlan) 1691 return 0; 1692 1693 if (priv->data.dual_emac) { 1694 /* In dual EMAC, reserved VLAN id should not be used for 1695 * creating VLAN interfaces as this can break the dual 1696 * EMAC port separation 1697 */ 1698 int i; 1699 1700 for (i = 0; i < priv->data.slaves; i++) { 1701 if (vid == priv->slaves[i].port_vlan) 1702 return -EINVAL; 1703 } 1704 } 1705 1706 dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid); 1707 return cpsw_add_vlan_ale_entry(priv, vid); 1708 } 1709 1710 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev, 1711 __be16 proto, u16 vid) 1712 { 1713 struct cpsw_priv *priv = netdev_priv(ndev); 1714 int ret; 1715 1716 if (vid == priv->data.default_vlan) 1717 return 0; 1718 1719 if (priv->data.dual_emac) { 1720 int i; 1721 1722 for (i = 0; i < priv->data.slaves; i++) { 1723 if (vid == priv->slaves[i].port_vlan) 1724 return -EINVAL; 1725 } 1726 } 1727 1728 dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid); 1729 ret = cpsw_ale_del_vlan(priv->ale, vid, 0); 1730 if (ret != 0) 1731 return ret; 1732 1733 ret = cpsw_ale_del_ucast(priv->ale, priv->mac_addr, 1734 priv->host_port, ALE_VLAN, vid); 1735 if (ret != 0) 1736 return ret; 1737 1738 return cpsw_ale_del_mcast(priv->ale, priv->ndev->broadcast, 1739 0, ALE_VLAN, vid); 1740 } 1741 1742 static const struct net_device_ops cpsw_netdev_ops = { 1743 .ndo_open = cpsw_ndo_open, 1744 .ndo_stop = cpsw_ndo_stop, 1745 .ndo_start_xmit = cpsw_ndo_start_xmit, 1746 .ndo_set_mac_address = cpsw_ndo_set_mac_address, 1747 .ndo_do_ioctl = cpsw_ndo_ioctl, 1748 .ndo_validate_addr = eth_validate_addr, 1749 .ndo_change_mtu = eth_change_mtu, 1750 .ndo_tx_timeout = cpsw_ndo_tx_timeout, 1751 .ndo_set_rx_mode = cpsw_ndo_set_rx_mode, 1752 #ifdef CONFIG_NET_POLL_CONTROLLER 1753 .ndo_poll_controller = cpsw_ndo_poll_controller, 1754 #endif 1755 .ndo_vlan_rx_add_vid = cpsw_ndo_vlan_rx_add_vid, 1756 .ndo_vlan_rx_kill_vid = cpsw_ndo_vlan_rx_kill_vid, 1757 }; 1758 1759 static int cpsw_get_regs_len(struct net_device *ndev) 1760 { 1761 struct cpsw_priv *priv = netdev_priv(ndev); 1762 1763 return priv->data.ale_entries * ALE_ENTRY_WORDS * sizeof(u32); 1764 } 1765 1766 static void cpsw_get_regs(struct net_device *ndev, 1767 struct ethtool_regs *regs, void *p) 1768 { 1769 struct cpsw_priv *priv = netdev_priv(ndev); 1770 u32 *reg = p; 1771 1772 /* update CPSW IP version */ 1773 regs->version = priv->version; 1774 1775 cpsw_ale_dump(priv->ale, reg); 1776 } 1777 1778 static void cpsw_get_drvinfo(struct net_device *ndev, 1779 struct ethtool_drvinfo *info) 1780 { 1781 struct cpsw_priv *priv = netdev_priv(ndev); 1782 1783 strlcpy(info->driver, "cpsw", sizeof(info->driver)); 1784 strlcpy(info->version, "1.0", sizeof(info->version)); 1785 strlcpy(info->bus_info, priv->pdev->name, sizeof(info->bus_info)); 1786 info->regdump_len = cpsw_get_regs_len(ndev); 1787 } 1788 1789 static u32 cpsw_get_msglevel(struct net_device *ndev) 1790 { 1791 struct cpsw_priv *priv = netdev_priv(ndev); 1792 return priv->msg_enable; 1793 } 1794 1795 static void cpsw_set_msglevel(struct net_device *ndev, u32 value) 1796 { 1797 struct cpsw_priv *priv = netdev_priv(ndev); 1798 priv->msg_enable = value; 1799 } 1800 1801 static int cpsw_get_ts_info(struct net_device *ndev, 1802 struct ethtool_ts_info *info) 1803 { 1804 #ifdef CONFIG_TI_CPTS 1805 struct cpsw_priv *priv = netdev_priv(ndev); 1806 1807 info->so_timestamping = 1808 SOF_TIMESTAMPING_TX_HARDWARE | 1809 SOF_TIMESTAMPING_TX_SOFTWARE | 1810 SOF_TIMESTAMPING_RX_HARDWARE | 1811 SOF_TIMESTAMPING_RX_SOFTWARE | 1812 SOF_TIMESTAMPING_SOFTWARE | 1813 SOF_TIMESTAMPING_RAW_HARDWARE; 1814 info->phc_index = priv->cpts->phc_index; 1815 info->tx_types = 1816 (1 << HWTSTAMP_TX_OFF) | 1817 (1 << HWTSTAMP_TX_ON); 1818 info->rx_filters = 1819 (1 << HWTSTAMP_FILTER_NONE) | 1820 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 1821 #else 1822 info->so_timestamping = 1823 SOF_TIMESTAMPING_TX_SOFTWARE | 1824 SOF_TIMESTAMPING_RX_SOFTWARE | 1825 SOF_TIMESTAMPING_SOFTWARE; 1826 info->phc_index = -1; 1827 info->tx_types = 0; 1828 info->rx_filters = 0; 1829 #endif 1830 return 0; 1831 } 1832 1833 static int cpsw_get_settings(struct net_device *ndev, 1834 struct ethtool_cmd *ecmd) 1835 { 1836 struct cpsw_priv *priv = netdev_priv(ndev); 1837 int slave_no = cpsw_slave_index(priv); 1838 1839 if (priv->slaves[slave_no].phy) 1840 return phy_ethtool_gset(priv->slaves[slave_no].phy, ecmd); 1841 else 1842 return -EOPNOTSUPP; 1843 } 1844 1845 static int cpsw_set_settings(struct net_device *ndev, struct ethtool_cmd *ecmd) 1846 { 1847 struct cpsw_priv *priv = netdev_priv(ndev); 1848 int slave_no = cpsw_slave_index(priv); 1849 1850 if (priv->slaves[slave_no].phy) 1851 return phy_ethtool_sset(priv->slaves[slave_no].phy, ecmd); 1852 else 1853 return -EOPNOTSUPP; 1854 } 1855 1856 static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 1857 { 1858 struct cpsw_priv *priv = netdev_priv(ndev); 1859 int slave_no = cpsw_slave_index(priv); 1860 1861 wol->supported = 0; 1862 wol->wolopts = 0; 1863 1864 if (priv->slaves[slave_no].phy) 1865 phy_ethtool_get_wol(priv->slaves[slave_no].phy, wol); 1866 } 1867 1868 static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 1869 { 1870 struct cpsw_priv *priv = netdev_priv(ndev); 1871 int slave_no = cpsw_slave_index(priv); 1872 1873 if (priv->slaves[slave_no].phy) 1874 return phy_ethtool_set_wol(priv->slaves[slave_no].phy, wol); 1875 else 1876 return -EOPNOTSUPP; 1877 } 1878 1879 static void cpsw_get_pauseparam(struct net_device *ndev, 1880 struct ethtool_pauseparam *pause) 1881 { 1882 struct cpsw_priv *priv = netdev_priv(ndev); 1883 1884 pause->autoneg = AUTONEG_DISABLE; 1885 pause->rx_pause = priv->rx_pause ? true : false; 1886 pause->tx_pause = priv->tx_pause ? true : false; 1887 } 1888 1889 static int cpsw_set_pauseparam(struct net_device *ndev, 1890 struct ethtool_pauseparam *pause) 1891 { 1892 struct cpsw_priv *priv = netdev_priv(ndev); 1893 bool link; 1894 1895 priv->rx_pause = pause->rx_pause ? true : false; 1896 priv->tx_pause = pause->tx_pause ? true : false; 1897 1898 for_each_slave(priv, _cpsw_adjust_link, priv, &link); 1899 1900 return 0; 1901 } 1902 1903 static const struct ethtool_ops cpsw_ethtool_ops = { 1904 .get_drvinfo = cpsw_get_drvinfo, 1905 .get_msglevel = cpsw_get_msglevel, 1906 .set_msglevel = cpsw_set_msglevel, 1907 .get_link = ethtool_op_get_link, 1908 .get_ts_info = cpsw_get_ts_info, 1909 .get_settings = cpsw_get_settings, 1910 .set_settings = cpsw_set_settings, 1911 .get_coalesce = cpsw_get_coalesce, 1912 .set_coalesce = cpsw_set_coalesce, 1913 .get_sset_count = cpsw_get_sset_count, 1914 .get_strings = cpsw_get_strings, 1915 .get_ethtool_stats = cpsw_get_ethtool_stats, 1916 .get_pauseparam = cpsw_get_pauseparam, 1917 .set_pauseparam = cpsw_set_pauseparam, 1918 .get_wol = cpsw_get_wol, 1919 .set_wol = cpsw_set_wol, 1920 .get_regs_len = cpsw_get_regs_len, 1921 .get_regs = cpsw_get_regs, 1922 }; 1923 1924 static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_priv *priv, 1925 u32 slave_reg_ofs, u32 sliver_reg_ofs) 1926 { 1927 void __iomem *regs = priv->regs; 1928 int slave_num = slave->slave_num; 1929 struct cpsw_slave_data *data = priv->data.slave_data + slave_num; 1930 1931 slave->data = data; 1932 slave->regs = regs + slave_reg_ofs; 1933 slave->sliver = regs + sliver_reg_ofs; 1934 slave->port_vlan = data->dual_emac_res_vlan; 1935 } 1936 1937 static int cpsw_probe_dt(struct cpsw_platform_data *data, 1938 struct platform_device *pdev) 1939 { 1940 struct device_node *node = pdev->dev.of_node; 1941 struct device_node *slave_node; 1942 int i = 0, ret; 1943 u32 prop; 1944 1945 if (!node) 1946 return -EINVAL; 1947 1948 if (of_property_read_u32(node, "slaves", &prop)) { 1949 dev_err(&pdev->dev, "Missing slaves property in the DT.\n"); 1950 return -EINVAL; 1951 } 1952 data->slaves = prop; 1953 1954 if (of_property_read_u32(node, "active_slave", &prop)) { 1955 dev_err(&pdev->dev, "Missing active_slave property in the DT.\n"); 1956 return -EINVAL; 1957 } 1958 data->active_slave = prop; 1959 1960 if (of_property_read_u32(node, "cpts_clock_mult", &prop)) { 1961 dev_err(&pdev->dev, "Missing cpts_clock_mult property in the DT.\n"); 1962 return -EINVAL; 1963 } 1964 data->cpts_clock_mult = prop; 1965 1966 if (of_property_read_u32(node, "cpts_clock_shift", &prop)) { 1967 dev_err(&pdev->dev, "Missing cpts_clock_shift property in the DT.\n"); 1968 return -EINVAL; 1969 } 1970 data->cpts_clock_shift = prop; 1971 1972 data->slave_data = devm_kzalloc(&pdev->dev, data->slaves 1973 * sizeof(struct cpsw_slave_data), 1974 GFP_KERNEL); 1975 if (!data->slave_data) 1976 return -ENOMEM; 1977 1978 if (of_property_read_u32(node, "cpdma_channels", &prop)) { 1979 dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n"); 1980 return -EINVAL; 1981 } 1982 data->channels = prop; 1983 1984 if (of_property_read_u32(node, "ale_entries", &prop)) { 1985 dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n"); 1986 return -EINVAL; 1987 } 1988 data->ale_entries = prop; 1989 1990 if (of_property_read_u32(node, "bd_ram_size", &prop)) { 1991 dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n"); 1992 return -EINVAL; 1993 } 1994 data->bd_ram_size = prop; 1995 1996 if (of_property_read_u32(node, "rx_descs", &prop)) { 1997 dev_err(&pdev->dev, "Missing rx_descs property in the DT.\n"); 1998 return -EINVAL; 1999 } 2000 data->rx_descs = prop; 2001 2002 if (of_property_read_u32(node, "mac_control", &prop)) { 2003 dev_err(&pdev->dev, "Missing mac_control property in the DT.\n"); 2004 return -EINVAL; 2005 } 2006 data->mac_control = prop; 2007 2008 if (of_property_read_bool(node, "dual_emac")) 2009 data->dual_emac = 1; 2010 2011 /* 2012 * Populate all the child nodes here... 2013 */ 2014 ret = of_platform_populate(node, NULL, NULL, &pdev->dev); 2015 /* We do not want to force this, as in some cases may not have child */ 2016 if (ret) 2017 dev_warn(&pdev->dev, "Doesn't have any child node\n"); 2018 2019 for_each_child_of_node(node, slave_node) { 2020 struct cpsw_slave_data *slave_data = data->slave_data + i; 2021 const void *mac_addr = NULL; 2022 u32 phyid; 2023 int lenp; 2024 const __be32 *parp; 2025 struct device_node *mdio_node; 2026 struct platform_device *mdio; 2027 2028 /* This is no slave child node, continue */ 2029 if (strcmp(slave_node->name, "slave")) 2030 continue; 2031 2032 parp = of_get_property(slave_node, "phy_id", &lenp); 2033 if ((parp == NULL) || (lenp != (sizeof(void *) * 2))) { 2034 dev_err(&pdev->dev, "Missing slave[%d] phy_id property\n", i); 2035 goto no_phy_slave; 2036 } 2037 mdio_node = of_find_node_by_phandle(be32_to_cpup(parp)); 2038 phyid = be32_to_cpup(parp+1); 2039 mdio = of_find_device_by_node(mdio_node); 2040 of_node_put(mdio_node); 2041 if (!mdio) { 2042 dev_err(&pdev->dev, "Missing mdio platform device\n"); 2043 return -EINVAL; 2044 } 2045 snprintf(slave_data->phy_id, sizeof(slave_data->phy_id), 2046 PHY_ID_FMT, mdio->name, phyid); 2047 2048 slave_data->phy_if = of_get_phy_mode(slave_node); 2049 if (slave_data->phy_if < 0) { 2050 dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n", 2051 i); 2052 return slave_data->phy_if; 2053 } 2054 2055 no_phy_slave: 2056 mac_addr = of_get_mac_address(slave_node); 2057 if (mac_addr) { 2058 memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN); 2059 } else { 2060 if (of_machine_is_compatible("ti,am33xx")) { 2061 ret = cpsw_am33xx_cm_get_macid(&pdev->dev, 2062 0x630, i, 2063 slave_data->mac_addr); 2064 if (ret) 2065 return ret; 2066 } 2067 } 2068 if (data->dual_emac) { 2069 if (of_property_read_u32(slave_node, "dual_emac_res_vlan", 2070 &prop)) { 2071 dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n"); 2072 slave_data->dual_emac_res_vlan = i+1; 2073 dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n", 2074 slave_data->dual_emac_res_vlan, i); 2075 } else { 2076 slave_data->dual_emac_res_vlan = prop; 2077 } 2078 } 2079 2080 i++; 2081 if (i == data->slaves) 2082 break; 2083 } 2084 2085 return 0; 2086 } 2087 2088 static int cpsw_probe_dual_emac(struct platform_device *pdev, 2089 struct cpsw_priv *priv) 2090 { 2091 struct cpsw_platform_data *data = &priv->data; 2092 struct net_device *ndev; 2093 struct cpsw_priv *priv_sl2; 2094 int ret = 0, i; 2095 2096 ndev = alloc_etherdev(sizeof(struct cpsw_priv)); 2097 if (!ndev) { 2098 dev_err(&pdev->dev, "cpsw: error allocating net_device\n"); 2099 return -ENOMEM; 2100 } 2101 2102 priv_sl2 = netdev_priv(ndev); 2103 spin_lock_init(&priv_sl2->lock); 2104 priv_sl2->data = *data; 2105 priv_sl2->pdev = pdev; 2106 priv_sl2->ndev = ndev; 2107 priv_sl2->dev = &ndev->dev; 2108 priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG); 2109 priv_sl2->rx_packet_max = max(rx_packet_max, 128); 2110 2111 if (is_valid_ether_addr(data->slave_data[1].mac_addr)) { 2112 memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr, 2113 ETH_ALEN); 2114 dev_info(&pdev->dev, "cpsw: Detected MACID = %pM\n", priv_sl2->mac_addr); 2115 } else { 2116 random_ether_addr(priv_sl2->mac_addr); 2117 dev_info(&pdev->dev, "cpsw: Random MACID = %pM\n", priv_sl2->mac_addr); 2118 } 2119 memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN); 2120 2121 priv_sl2->slaves = priv->slaves; 2122 priv_sl2->clk = priv->clk; 2123 2124 priv_sl2->coal_intvl = 0; 2125 priv_sl2->bus_freq_mhz = priv->bus_freq_mhz; 2126 2127 priv_sl2->regs = priv->regs; 2128 priv_sl2->host_port = priv->host_port; 2129 priv_sl2->host_port_regs = priv->host_port_regs; 2130 priv_sl2->wr_regs = priv->wr_regs; 2131 priv_sl2->hw_stats = priv->hw_stats; 2132 priv_sl2->dma = priv->dma; 2133 priv_sl2->txch = priv->txch; 2134 priv_sl2->rxch = priv->rxch; 2135 priv_sl2->ale = priv->ale; 2136 priv_sl2->emac_port = 1; 2137 priv->slaves[1].ndev = ndev; 2138 priv_sl2->cpts = priv->cpts; 2139 priv_sl2->version = priv->version; 2140 2141 for (i = 0; i < priv->num_irqs; i++) { 2142 priv_sl2->irqs_table[i] = priv->irqs_table[i]; 2143 priv_sl2->num_irqs = priv->num_irqs; 2144 } 2145 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 2146 2147 ndev->netdev_ops = &cpsw_netdev_ops; 2148 ndev->ethtool_ops = &cpsw_ethtool_ops; 2149 netif_napi_add(ndev, &priv_sl2->napi, cpsw_poll, CPSW_POLL_WEIGHT); 2150 2151 /* register the network device */ 2152 SET_NETDEV_DEV(ndev, &pdev->dev); 2153 ret = register_netdev(ndev); 2154 if (ret) { 2155 dev_err(&pdev->dev, "cpsw: error registering net device\n"); 2156 free_netdev(ndev); 2157 ret = -ENODEV; 2158 } 2159 2160 return ret; 2161 } 2162 2163 static int cpsw_probe(struct platform_device *pdev) 2164 { 2165 struct cpsw_platform_data *data; 2166 struct net_device *ndev; 2167 struct cpsw_priv *priv; 2168 struct cpdma_params dma_params; 2169 struct cpsw_ale_params ale_params; 2170 void __iomem *ss_regs; 2171 struct resource *res, *ss_res; 2172 u32 slave_offset, sliver_offset, slave_size; 2173 int ret = 0, i; 2174 int irq; 2175 2176 ndev = alloc_etherdev(sizeof(struct cpsw_priv)); 2177 if (!ndev) { 2178 dev_err(&pdev->dev, "error allocating net_device\n"); 2179 return -ENOMEM; 2180 } 2181 2182 platform_set_drvdata(pdev, ndev); 2183 priv = netdev_priv(ndev); 2184 spin_lock_init(&priv->lock); 2185 priv->pdev = pdev; 2186 priv->ndev = ndev; 2187 priv->dev = &ndev->dev; 2188 priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG); 2189 priv->rx_packet_max = max(rx_packet_max, 128); 2190 priv->cpts = devm_kzalloc(&pdev->dev, sizeof(struct cpts), GFP_KERNEL); 2191 priv->irq_enabled = true; 2192 if (!priv->cpts) { 2193 dev_err(&pdev->dev, "error allocating cpts\n"); 2194 ret = -ENOMEM; 2195 goto clean_ndev_ret; 2196 } 2197 2198 /* 2199 * This may be required here for child devices. 2200 */ 2201 pm_runtime_enable(&pdev->dev); 2202 2203 /* Select default pin state */ 2204 pinctrl_pm_select_default_state(&pdev->dev); 2205 2206 if (cpsw_probe_dt(&priv->data, pdev)) { 2207 dev_err(&pdev->dev, "cpsw: platform data missing\n"); 2208 ret = -ENODEV; 2209 goto clean_runtime_disable_ret; 2210 } 2211 data = &priv->data; 2212 2213 if (is_valid_ether_addr(data->slave_data[0].mac_addr)) { 2214 memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN); 2215 dev_info(&pdev->dev, "Detected MACID = %pM\n", priv->mac_addr); 2216 } else { 2217 eth_random_addr(priv->mac_addr); 2218 dev_info(&pdev->dev, "Random MACID = %pM\n", priv->mac_addr); 2219 } 2220 2221 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN); 2222 2223 priv->slaves = devm_kzalloc(&pdev->dev, 2224 sizeof(struct cpsw_slave) * data->slaves, 2225 GFP_KERNEL); 2226 if (!priv->slaves) { 2227 ret = -ENOMEM; 2228 goto clean_runtime_disable_ret; 2229 } 2230 for (i = 0; i < data->slaves; i++) 2231 priv->slaves[i].slave_num = i; 2232 2233 priv->slaves[0].ndev = ndev; 2234 priv->emac_port = 0; 2235 2236 priv->clk = devm_clk_get(&pdev->dev, "fck"); 2237 if (IS_ERR(priv->clk)) { 2238 dev_err(priv->dev, "fck is not found\n"); 2239 ret = -ENODEV; 2240 goto clean_runtime_disable_ret; 2241 } 2242 priv->coal_intvl = 0; 2243 priv->bus_freq_mhz = clk_get_rate(priv->clk) / 1000000; 2244 2245 ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2246 ss_regs = devm_ioremap_resource(&pdev->dev, ss_res); 2247 if (IS_ERR(ss_regs)) { 2248 ret = PTR_ERR(ss_regs); 2249 goto clean_runtime_disable_ret; 2250 } 2251 priv->regs = ss_regs; 2252 priv->host_port = HOST_PORT_NUM; 2253 2254 /* Need to enable clocks with runtime PM api to access module 2255 * registers 2256 */ 2257 pm_runtime_get_sync(&pdev->dev); 2258 priv->version = readl(&priv->regs->id_ver); 2259 pm_runtime_put_sync(&pdev->dev); 2260 2261 res = platform_get_resource(pdev, IORESOURCE_MEM, 1); 2262 priv->wr_regs = devm_ioremap_resource(&pdev->dev, res); 2263 if (IS_ERR(priv->wr_regs)) { 2264 ret = PTR_ERR(priv->wr_regs); 2265 goto clean_runtime_disable_ret; 2266 } 2267 2268 memset(&dma_params, 0, sizeof(dma_params)); 2269 memset(&ale_params, 0, sizeof(ale_params)); 2270 2271 switch (priv->version) { 2272 case CPSW_VERSION_1: 2273 priv->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET; 2274 priv->cpts->reg = ss_regs + CPSW1_CPTS_OFFSET; 2275 priv->hw_stats = ss_regs + CPSW1_HW_STATS; 2276 dma_params.dmaregs = ss_regs + CPSW1_CPDMA_OFFSET; 2277 dma_params.txhdp = ss_regs + CPSW1_STATERAM_OFFSET; 2278 ale_params.ale_regs = ss_regs + CPSW1_ALE_OFFSET; 2279 slave_offset = CPSW1_SLAVE_OFFSET; 2280 slave_size = CPSW1_SLAVE_SIZE; 2281 sliver_offset = CPSW1_SLIVER_OFFSET; 2282 dma_params.desc_mem_phys = 0; 2283 break; 2284 case CPSW_VERSION_2: 2285 case CPSW_VERSION_3: 2286 case CPSW_VERSION_4: 2287 priv->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET; 2288 priv->cpts->reg = ss_regs + CPSW2_CPTS_OFFSET; 2289 priv->hw_stats = ss_regs + CPSW2_HW_STATS; 2290 dma_params.dmaregs = ss_regs + CPSW2_CPDMA_OFFSET; 2291 dma_params.txhdp = ss_regs + CPSW2_STATERAM_OFFSET; 2292 ale_params.ale_regs = ss_regs + CPSW2_ALE_OFFSET; 2293 slave_offset = CPSW2_SLAVE_OFFSET; 2294 slave_size = CPSW2_SLAVE_SIZE; 2295 sliver_offset = CPSW2_SLIVER_OFFSET; 2296 dma_params.desc_mem_phys = 2297 (u32 __force) ss_res->start + CPSW2_BD_OFFSET; 2298 break; 2299 default: 2300 dev_err(priv->dev, "unknown version 0x%08x\n", priv->version); 2301 ret = -ENODEV; 2302 goto clean_runtime_disable_ret; 2303 } 2304 for (i = 0; i < priv->data.slaves; i++) { 2305 struct cpsw_slave *slave = &priv->slaves[i]; 2306 cpsw_slave_init(slave, priv, slave_offset, sliver_offset); 2307 slave_offset += slave_size; 2308 sliver_offset += SLIVER_SIZE; 2309 } 2310 2311 dma_params.dev = &pdev->dev; 2312 dma_params.rxthresh = dma_params.dmaregs + CPDMA_RXTHRESH; 2313 dma_params.rxfree = dma_params.dmaregs + CPDMA_RXFREE; 2314 dma_params.rxhdp = dma_params.txhdp + CPDMA_RXHDP; 2315 dma_params.txcp = dma_params.txhdp + CPDMA_TXCP; 2316 dma_params.rxcp = dma_params.txhdp + CPDMA_RXCP; 2317 2318 dma_params.num_chan = data->channels; 2319 dma_params.has_soft_reset = true; 2320 dma_params.min_packet_size = CPSW_MIN_PACKET_SIZE; 2321 dma_params.desc_mem_size = data->bd_ram_size; 2322 dma_params.desc_align = 16; 2323 dma_params.has_ext_regs = true; 2324 dma_params.desc_hw_addr = dma_params.desc_mem_phys; 2325 2326 priv->dma = cpdma_ctlr_create(&dma_params); 2327 if (!priv->dma) { 2328 dev_err(priv->dev, "error initializing dma\n"); 2329 ret = -ENOMEM; 2330 goto clean_runtime_disable_ret; 2331 } 2332 2333 priv->txch = cpdma_chan_create(priv->dma, tx_chan_num(0), 2334 cpsw_tx_handler); 2335 priv->rxch = cpdma_chan_create(priv->dma, rx_chan_num(0), 2336 cpsw_rx_handler); 2337 2338 if (WARN_ON(!priv->txch || !priv->rxch)) { 2339 dev_err(priv->dev, "error initializing dma channels\n"); 2340 ret = -ENOMEM; 2341 goto clean_dma_ret; 2342 } 2343 2344 ale_params.dev = &ndev->dev; 2345 ale_params.ale_ageout = ale_ageout; 2346 ale_params.ale_entries = data->ale_entries; 2347 ale_params.ale_ports = data->slaves; 2348 2349 priv->ale = cpsw_ale_create(&ale_params); 2350 if (!priv->ale) { 2351 dev_err(priv->dev, "error initializing ale engine\n"); 2352 ret = -ENODEV; 2353 goto clean_dma_ret; 2354 } 2355 2356 ndev->irq = platform_get_irq(pdev, 1); 2357 if (ndev->irq < 0) { 2358 dev_err(priv->dev, "error getting irq resource\n"); 2359 ret = -ENOENT; 2360 goto clean_ale_ret; 2361 } 2362 2363 /* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and 2364 * MISC IRQs which are always kept disabled with this driver so 2365 * we will not request them. 2366 * 2367 * If anyone wants to implement support for those, make sure to 2368 * first request and append them to irqs_table array. 2369 */ 2370 2371 /* RX IRQ */ 2372 irq = platform_get_irq(pdev, 1); 2373 if (irq < 0) 2374 goto clean_ale_ret; 2375 2376 priv->irqs_table[0] = irq; 2377 ret = devm_request_irq(&pdev->dev, irq, cpsw_rx_interrupt, 2378 0, dev_name(&pdev->dev), priv); 2379 if (ret < 0) { 2380 dev_err(priv->dev, "error attaching irq (%d)\n", ret); 2381 goto clean_ale_ret; 2382 } 2383 2384 /* TX IRQ */ 2385 irq = platform_get_irq(pdev, 2); 2386 if (irq < 0) 2387 goto clean_ale_ret; 2388 2389 priv->irqs_table[1] = irq; 2390 ret = devm_request_irq(&pdev->dev, irq, cpsw_tx_interrupt, 2391 0, dev_name(&pdev->dev), priv); 2392 if (ret < 0) { 2393 dev_err(priv->dev, "error attaching irq (%d)\n", ret); 2394 goto clean_ale_ret; 2395 } 2396 priv->num_irqs = 2; 2397 2398 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 2399 2400 ndev->netdev_ops = &cpsw_netdev_ops; 2401 ndev->ethtool_ops = &cpsw_ethtool_ops; 2402 netif_napi_add(ndev, &priv->napi, cpsw_poll, CPSW_POLL_WEIGHT); 2403 2404 /* register the network device */ 2405 SET_NETDEV_DEV(ndev, &pdev->dev); 2406 ret = register_netdev(ndev); 2407 if (ret) { 2408 dev_err(priv->dev, "error registering net device\n"); 2409 ret = -ENODEV; 2410 goto clean_ale_ret; 2411 } 2412 2413 cpsw_notice(priv, probe, "initialized device (regs %pa, irq %d)\n", 2414 &ss_res->start, ndev->irq); 2415 2416 if (priv->data.dual_emac) { 2417 ret = cpsw_probe_dual_emac(pdev, priv); 2418 if (ret) { 2419 cpsw_err(priv, probe, "error probe slave 2 emac interface\n"); 2420 goto clean_ale_ret; 2421 } 2422 } 2423 2424 return 0; 2425 2426 clean_ale_ret: 2427 cpsw_ale_destroy(priv->ale); 2428 clean_dma_ret: 2429 cpdma_chan_destroy(priv->txch); 2430 cpdma_chan_destroy(priv->rxch); 2431 cpdma_ctlr_destroy(priv->dma); 2432 clean_runtime_disable_ret: 2433 pm_runtime_disable(&pdev->dev); 2434 clean_ndev_ret: 2435 free_netdev(priv->ndev); 2436 return ret; 2437 } 2438 2439 static int cpsw_remove_child_device(struct device *dev, void *c) 2440 { 2441 struct platform_device *pdev = to_platform_device(dev); 2442 2443 of_device_unregister(pdev); 2444 2445 return 0; 2446 } 2447 2448 static int cpsw_remove(struct platform_device *pdev) 2449 { 2450 struct net_device *ndev = platform_get_drvdata(pdev); 2451 struct cpsw_priv *priv = netdev_priv(ndev); 2452 2453 if (priv->data.dual_emac) 2454 unregister_netdev(cpsw_get_slave_ndev(priv, 1)); 2455 unregister_netdev(ndev); 2456 2457 cpsw_ale_destroy(priv->ale); 2458 cpdma_chan_destroy(priv->txch); 2459 cpdma_chan_destroy(priv->rxch); 2460 cpdma_ctlr_destroy(priv->dma); 2461 pm_runtime_disable(&pdev->dev); 2462 device_for_each_child(&pdev->dev, NULL, cpsw_remove_child_device); 2463 if (priv->data.dual_emac) 2464 free_netdev(cpsw_get_slave_ndev(priv, 1)); 2465 free_netdev(ndev); 2466 return 0; 2467 } 2468 2469 static int cpsw_suspend(struct device *dev) 2470 { 2471 struct platform_device *pdev = to_platform_device(dev); 2472 struct net_device *ndev = platform_get_drvdata(pdev); 2473 struct cpsw_priv *priv = netdev_priv(ndev); 2474 2475 if (priv->data.dual_emac) { 2476 int i; 2477 2478 for (i = 0; i < priv->data.slaves; i++) { 2479 if (netif_running(priv->slaves[i].ndev)) 2480 cpsw_ndo_stop(priv->slaves[i].ndev); 2481 soft_reset_slave(priv->slaves + i); 2482 } 2483 } else { 2484 if (netif_running(ndev)) 2485 cpsw_ndo_stop(ndev); 2486 for_each_slave(priv, soft_reset_slave); 2487 } 2488 2489 pm_runtime_put_sync(&pdev->dev); 2490 2491 /* Select sleep pin state */ 2492 pinctrl_pm_select_sleep_state(&pdev->dev); 2493 2494 return 0; 2495 } 2496 2497 static int cpsw_resume(struct device *dev) 2498 { 2499 struct platform_device *pdev = to_platform_device(dev); 2500 struct net_device *ndev = platform_get_drvdata(pdev); 2501 struct cpsw_priv *priv = netdev_priv(ndev); 2502 2503 pm_runtime_get_sync(&pdev->dev); 2504 2505 /* Select default pin state */ 2506 pinctrl_pm_select_default_state(&pdev->dev); 2507 2508 if (priv->data.dual_emac) { 2509 int i; 2510 2511 for (i = 0; i < priv->data.slaves; i++) { 2512 if (netif_running(priv->slaves[i].ndev)) 2513 cpsw_ndo_open(priv->slaves[i].ndev); 2514 } 2515 } else { 2516 if (netif_running(ndev)) 2517 cpsw_ndo_open(ndev); 2518 } 2519 return 0; 2520 } 2521 2522 static const struct dev_pm_ops cpsw_pm_ops = { 2523 .suspend = cpsw_suspend, 2524 .resume = cpsw_resume, 2525 }; 2526 2527 static const struct of_device_id cpsw_of_mtable[] = { 2528 { .compatible = "ti,cpsw", }, 2529 { /* sentinel */ }, 2530 }; 2531 MODULE_DEVICE_TABLE(of, cpsw_of_mtable); 2532 2533 static struct platform_driver cpsw_driver = { 2534 .driver = { 2535 .name = "cpsw", 2536 .pm = &cpsw_pm_ops, 2537 .of_match_table = cpsw_of_mtable, 2538 }, 2539 .probe = cpsw_probe, 2540 .remove = cpsw_remove, 2541 }; 2542 2543 static int __init cpsw_init(void) 2544 { 2545 return platform_driver_register(&cpsw_driver); 2546 } 2547 late_initcall(cpsw_init); 2548 2549 static void __exit cpsw_exit(void) 2550 { 2551 platform_driver_unregister(&cpsw_driver); 2552 } 2553 module_exit(cpsw_exit); 2554 2555 MODULE_LICENSE("GPL"); 2556 MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>"); 2557 MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>"); 2558 MODULE_DESCRIPTION("TI CPSW Ethernet driver"); 2559