xref: /openbmc/linux/drivers/net/ethernet/ti/cpsw.c (revision 867a0e05)
1 /*
2  * Texas Instruments Ethernet Switch Driver
3  *
4  * Copyright (C) 2012 Texas Instruments
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation version 2.
9  *
10  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11  * kind, whether express or implied; without even the implied warranty
12  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/io.h>
18 #include <linux/clk.h>
19 #include <linux/timer.h>
20 #include <linux/module.h>
21 #include <linux/platform_device.h>
22 #include <linux/irqreturn.h>
23 #include <linux/interrupt.h>
24 #include <linux/if_ether.h>
25 #include <linux/etherdevice.h>
26 #include <linux/netdevice.h>
27 #include <linux/net_tstamp.h>
28 #include <linux/phy.h>
29 #include <linux/workqueue.h>
30 #include <linux/delay.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/of.h>
33 #include <linux/of_net.h>
34 #include <linux/of_device.h>
35 #include <linux/if_vlan.h>
36 #include <linux/mfd/syscon.h>
37 #include <linux/regmap.h>
38 
39 #include <linux/pinctrl/consumer.h>
40 
41 #include "cpsw.h"
42 #include "cpsw_ale.h"
43 #include "cpts.h"
44 #include "davinci_cpdma.h"
45 
46 #define CPSW_DEBUG	(NETIF_MSG_HW		| NETIF_MSG_WOL		| \
47 			 NETIF_MSG_DRV		| NETIF_MSG_LINK	| \
48 			 NETIF_MSG_IFUP		| NETIF_MSG_INTR	| \
49 			 NETIF_MSG_PROBE	| NETIF_MSG_TIMER	| \
50 			 NETIF_MSG_IFDOWN	| NETIF_MSG_RX_ERR	| \
51 			 NETIF_MSG_TX_ERR	| NETIF_MSG_TX_DONE	| \
52 			 NETIF_MSG_PKTDATA	| NETIF_MSG_TX_QUEUED	| \
53 			 NETIF_MSG_RX_STATUS)
54 
55 #define cpsw_info(priv, type, format, ...)		\
56 do {								\
57 	if (netif_msg_##type(priv) && net_ratelimit())		\
58 		dev_info(priv->dev, format, ## __VA_ARGS__);	\
59 } while (0)
60 
61 #define cpsw_err(priv, type, format, ...)		\
62 do {								\
63 	if (netif_msg_##type(priv) && net_ratelimit())		\
64 		dev_err(priv->dev, format, ## __VA_ARGS__);	\
65 } while (0)
66 
67 #define cpsw_dbg(priv, type, format, ...)		\
68 do {								\
69 	if (netif_msg_##type(priv) && net_ratelimit())		\
70 		dev_dbg(priv->dev, format, ## __VA_ARGS__);	\
71 } while (0)
72 
73 #define cpsw_notice(priv, type, format, ...)		\
74 do {								\
75 	if (netif_msg_##type(priv) && net_ratelimit())		\
76 		dev_notice(priv->dev, format, ## __VA_ARGS__);	\
77 } while (0)
78 
79 #define ALE_ALL_PORTS		0x7
80 
81 #define CPSW_MAJOR_VERSION(reg)		(reg >> 8 & 0x7)
82 #define CPSW_MINOR_VERSION(reg)		(reg & 0xff)
83 #define CPSW_RTL_VERSION(reg)		((reg >> 11) & 0x1f)
84 
85 #define CPSW_VERSION_1		0x19010a
86 #define CPSW_VERSION_2		0x19010c
87 #define CPSW_VERSION_3		0x19010f
88 #define CPSW_VERSION_4		0x190112
89 
90 #define HOST_PORT_NUM		0
91 #define SLIVER_SIZE		0x40
92 
93 #define CPSW1_HOST_PORT_OFFSET	0x028
94 #define CPSW1_SLAVE_OFFSET	0x050
95 #define CPSW1_SLAVE_SIZE	0x040
96 #define CPSW1_CPDMA_OFFSET	0x100
97 #define CPSW1_STATERAM_OFFSET	0x200
98 #define CPSW1_HW_STATS		0x400
99 #define CPSW1_CPTS_OFFSET	0x500
100 #define CPSW1_ALE_OFFSET	0x600
101 #define CPSW1_SLIVER_OFFSET	0x700
102 
103 #define CPSW2_HOST_PORT_OFFSET	0x108
104 #define CPSW2_SLAVE_OFFSET	0x200
105 #define CPSW2_SLAVE_SIZE	0x100
106 #define CPSW2_CPDMA_OFFSET	0x800
107 #define CPSW2_HW_STATS		0x900
108 #define CPSW2_STATERAM_OFFSET	0xa00
109 #define CPSW2_CPTS_OFFSET	0xc00
110 #define CPSW2_ALE_OFFSET	0xd00
111 #define CPSW2_SLIVER_OFFSET	0xd80
112 #define CPSW2_BD_OFFSET		0x2000
113 
114 #define CPDMA_RXTHRESH		0x0c0
115 #define CPDMA_RXFREE		0x0e0
116 #define CPDMA_TXHDP		0x00
117 #define CPDMA_RXHDP		0x20
118 #define CPDMA_TXCP		0x40
119 #define CPDMA_RXCP		0x60
120 
121 #define CPSW_POLL_WEIGHT	64
122 #define CPSW_MIN_PACKET_SIZE	60
123 #define CPSW_MAX_PACKET_SIZE	(1500 + 14 + 4 + 4)
124 
125 #define RX_PRIORITY_MAPPING	0x76543210
126 #define TX_PRIORITY_MAPPING	0x33221100
127 #define CPDMA_TX_PRIORITY_MAP	0x76543210
128 
129 #define CPSW_VLAN_AWARE		BIT(1)
130 #define CPSW_ALE_VLAN_AWARE	1
131 
132 #define CPSW_FIFO_NORMAL_MODE		(0 << 16)
133 #define CPSW_FIFO_DUAL_MAC_MODE		(1 << 16)
134 #define CPSW_FIFO_RATE_LIMIT_MODE	(2 << 16)
135 
136 #define CPSW_INTPACEEN		(0x3f << 16)
137 #define CPSW_INTPRESCALE_MASK	(0x7FF << 0)
138 #define CPSW_CMINTMAX_CNT	63
139 #define CPSW_CMINTMIN_CNT	2
140 #define CPSW_CMINTMAX_INTVL	(1000 / CPSW_CMINTMIN_CNT)
141 #define CPSW_CMINTMIN_INTVL	((1000 / CPSW_CMINTMAX_CNT) + 1)
142 
143 #define cpsw_enable_irq(priv)	\
144 	do {			\
145 		u32 i;		\
146 		for (i = 0; i < priv->num_irqs; i++) \
147 			enable_irq(priv->irqs_table[i]); \
148 	} while (0)
149 #define cpsw_disable_irq(priv)	\
150 	do {			\
151 		u32 i;		\
152 		for (i = 0; i < priv->num_irqs; i++) \
153 			disable_irq_nosync(priv->irqs_table[i]); \
154 	} while (0)
155 
156 #define cpsw_slave_index(priv)				\
157 		((priv->data.dual_emac) ? priv->emac_port :	\
158 		priv->data.active_slave)
159 
160 static int debug_level;
161 module_param(debug_level, int, 0);
162 MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)");
163 
164 static int ale_ageout = 10;
165 module_param(ale_ageout, int, 0);
166 MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)");
167 
168 static int rx_packet_max = CPSW_MAX_PACKET_SIZE;
169 module_param(rx_packet_max, int, 0);
170 MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)");
171 
172 struct cpsw_wr_regs {
173 	u32	id_ver;
174 	u32	soft_reset;
175 	u32	control;
176 	u32	int_control;
177 	u32	rx_thresh_en;
178 	u32	rx_en;
179 	u32	tx_en;
180 	u32	misc_en;
181 	u32	mem_allign1[8];
182 	u32	rx_thresh_stat;
183 	u32	rx_stat;
184 	u32	tx_stat;
185 	u32	misc_stat;
186 	u32	mem_allign2[8];
187 	u32	rx_imax;
188 	u32	tx_imax;
189 
190 };
191 
192 struct cpsw_ss_regs {
193 	u32	id_ver;
194 	u32	control;
195 	u32	soft_reset;
196 	u32	stat_port_en;
197 	u32	ptype;
198 	u32	soft_idle;
199 	u32	thru_rate;
200 	u32	gap_thresh;
201 	u32	tx_start_wds;
202 	u32	flow_control;
203 	u32	vlan_ltype;
204 	u32	ts_ltype;
205 	u32	dlr_ltype;
206 };
207 
208 /* CPSW_PORT_V1 */
209 #define CPSW1_MAX_BLKS      0x00 /* Maximum FIFO Blocks */
210 #define CPSW1_BLK_CNT       0x04 /* FIFO Block Usage Count (Read Only) */
211 #define CPSW1_TX_IN_CTL     0x08 /* Transmit FIFO Control */
212 #define CPSW1_PORT_VLAN     0x0c /* VLAN Register */
213 #define CPSW1_TX_PRI_MAP    0x10 /* Tx Header Priority to Switch Pri Mapping */
214 #define CPSW1_TS_CTL        0x14 /* Time Sync Control */
215 #define CPSW1_TS_SEQ_LTYPE  0x18 /* Time Sync Sequence ID Offset and Msg Type */
216 #define CPSW1_TS_VLAN       0x1c /* Time Sync VLAN1 and VLAN2 */
217 
218 /* CPSW_PORT_V2 */
219 #define CPSW2_CONTROL       0x00 /* Control Register */
220 #define CPSW2_MAX_BLKS      0x08 /* Maximum FIFO Blocks */
221 #define CPSW2_BLK_CNT       0x0c /* FIFO Block Usage Count (Read Only) */
222 #define CPSW2_TX_IN_CTL     0x10 /* Transmit FIFO Control */
223 #define CPSW2_PORT_VLAN     0x14 /* VLAN Register */
224 #define CPSW2_TX_PRI_MAP    0x18 /* Tx Header Priority to Switch Pri Mapping */
225 #define CPSW2_TS_SEQ_MTYPE  0x1c /* Time Sync Sequence ID Offset and Msg Type */
226 
227 /* CPSW_PORT_V1 and V2 */
228 #define SA_LO               0x20 /* CPGMAC_SL Source Address Low */
229 #define SA_HI               0x24 /* CPGMAC_SL Source Address High */
230 #define SEND_PERCENT        0x28 /* Transmit Queue Send Percentages */
231 
232 /* CPSW_PORT_V2 only */
233 #define RX_DSCP_PRI_MAP0    0x30 /* Rx DSCP Priority to Rx Packet Mapping */
234 #define RX_DSCP_PRI_MAP1    0x34 /* Rx DSCP Priority to Rx Packet Mapping */
235 #define RX_DSCP_PRI_MAP2    0x38 /* Rx DSCP Priority to Rx Packet Mapping */
236 #define RX_DSCP_PRI_MAP3    0x3c /* Rx DSCP Priority to Rx Packet Mapping */
237 #define RX_DSCP_PRI_MAP4    0x40 /* Rx DSCP Priority to Rx Packet Mapping */
238 #define RX_DSCP_PRI_MAP5    0x44 /* Rx DSCP Priority to Rx Packet Mapping */
239 #define RX_DSCP_PRI_MAP6    0x48 /* Rx DSCP Priority to Rx Packet Mapping */
240 #define RX_DSCP_PRI_MAP7    0x4c /* Rx DSCP Priority to Rx Packet Mapping */
241 
242 /* Bit definitions for the CPSW2_CONTROL register */
243 #define PASS_PRI_TAGGED     (1<<24) /* Pass Priority Tagged */
244 #define VLAN_LTYPE2_EN      (1<<21) /* VLAN LTYPE 2 enable */
245 #define VLAN_LTYPE1_EN      (1<<20) /* VLAN LTYPE 1 enable */
246 #define DSCP_PRI_EN         (1<<16) /* DSCP Priority Enable */
247 #define TS_320              (1<<14) /* Time Sync Dest Port 320 enable */
248 #define TS_319              (1<<13) /* Time Sync Dest Port 319 enable */
249 #define TS_132              (1<<12) /* Time Sync Dest IP Addr 132 enable */
250 #define TS_131              (1<<11) /* Time Sync Dest IP Addr 131 enable */
251 #define TS_130              (1<<10) /* Time Sync Dest IP Addr 130 enable */
252 #define TS_129              (1<<9)  /* Time Sync Dest IP Addr 129 enable */
253 #define TS_TTL_NONZERO      (1<<8)  /* Time Sync Time To Live Non-zero enable */
254 #define TS_ANNEX_F_EN       (1<<6)  /* Time Sync Annex F enable */
255 #define TS_ANNEX_D_EN       (1<<4)  /* Time Sync Annex D enable */
256 #define TS_LTYPE2_EN        (1<<3)  /* Time Sync LTYPE 2 enable */
257 #define TS_LTYPE1_EN        (1<<2)  /* Time Sync LTYPE 1 enable */
258 #define TS_TX_EN            (1<<1)  /* Time Sync Transmit Enable */
259 #define TS_RX_EN            (1<<0)  /* Time Sync Receive Enable */
260 
261 #define CTRL_V2_TS_BITS \
262 	(TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
263 	 TS_TTL_NONZERO  | TS_ANNEX_D_EN | TS_LTYPE1_EN)
264 
265 #define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN)
266 #define CTRL_V2_TX_TS_BITS  (CTRL_V2_TS_BITS | TS_TX_EN)
267 #define CTRL_V2_RX_TS_BITS  (CTRL_V2_TS_BITS | TS_RX_EN)
268 
269 
270 #define CTRL_V3_TS_BITS \
271 	(TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
272 	 TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\
273 	 TS_LTYPE1_EN)
274 
275 #define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN)
276 #define CTRL_V3_TX_TS_BITS  (CTRL_V3_TS_BITS | TS_TX_EN)
277 #define CTRL_V3_RX_TS_BITS  (CTRL_V3_TS_BITS | TS_RX_EN)
278 
279 /* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */
280 #define TS_SEQ_ID_OFFSET_SHIFT   (16)    /* Time Sync Sequence ID Offset */
281 #define TS_SEQ_ID_OFFSET_MASK    (0x3f)
282 #define TS_MSG_TYPE_EN_SHIFT     (0)     /* Time Sync Message Type Enable */
283 #define TS_MSG_TYPE_EN_MASK      (0xffff)
284 
285 /* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */
286 #define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3))
287 
288 /* Bit definitions for the CPSW1_TS_CTL register */
289 #define CPSW_V1_TS_RX_EN		BIT(0)
290 #define CPSW_V1_TS_TX_EN		BIT(4)
291 #define CPSW_V1_MSG_TYPE_OFS		16
292 
293 /* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */
294 #define CPSW_V1_SEQ_ID_OFS_SHIFT	16
295 
296 struct cpsw_host_regs {
297 	u32	max_blks;
298 	u32	blk_cnt;
299 	u32	tx_in_ctl;
300 	u32	port_vlan;
301 	u32	tx_pri_map;
302 	u32	cpdma_tx_pri_map;
303 	u32	cpdma_rx_chan_map;
304 };
305 
306 struct cpsw_sliver_regs {
307 	u32	id_ver;
308 	u32	mac_control;
309 	u32	mac_status;
310 	u32	soft_reset;
311 	u32	rx_maxlen;
312 	u32	__reserved_0;
313 	u32	rx_pause;
314 	u32	tx_pause;
315 	u32	__reserved_1;
316 	u32	rx_pri_map;
317 };
318 
319 struct cpsw_hw_stats {
320 	u32	rxgoodframes;
321 	u32	rxbroadcastframes;
322 	u32	rxmulticastframes;
323 	u32	rxpauseframes;
324 	u32	rxcrcerrors;
325 	u32	rxaligncodeerrors;
326 	u32	rxoversizedframes;
327 	u32	rxjabberframes;
328 	u32	rxundersizedframes;
329 	u32	rxfragments;
330 	u32	__pad_0[2];
331 	u32	rxoctets;
332 	u32	txgoodframes;
333 	u32	txbroadcastframes;
334 	u32	txmulticastframes;
335 	u32	txpauseframes;
336 	u32	txdeferredframes;
337 	u32	txcollisionframes;
338 	u32	txsinglecollframes;
339 	u32	txmultcollframes;
340 	u32	txexcessivecollisions;
341 	u32	txlatecollisions;
342 	u32	txunderrun;
343 	u32	txcarriersenseerrors;
344 	u32	txoctets;
345 	u32	octetframes64;
346 	u32	octetframes65t127;
347 	u32	octetframes128t255;
348 	u32	octetframes256t511;
349 	u32	octetframes512t1023;
350 	u32	octetframes1024tup;
351 	u32	netoctets;
352 	u32	rxsofoverruns;
353 	u32	rxmofoverruns;
354 	u32	rxdmaoverruns;
355 };
356 
357 struct cpsw_slave {
358 	void __iomem			*regs;
359 	struct cpsw_sliver_regs __iomem	*sliver;
360 	int				slave_num;
361 	u32				mac_control;
362 	struct cpsw_slave_data		*data;
363 	struct phy_device		*phy;
364 	struct net_device		*ndev;
365 	u32				port_vlan;
366 	u32				open_stat;
367 };
368 
369 static inline u32 slave_read(struct cpsw_slave *slave, u32 offset)
370 {
371 	return __raw_readl(slave->regs + offset);
372 }
373 
374 static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset)
375 {
376 	__raw_writel(val, slave->regs + offset);
377 }
378 
379 struct cpsw_priv {
380 	spinlock_t			lock;
381 	struct platform_device		*pdev;
382 	struct net_device		*ndev;
383 	struct napi_struct		napi;
384 	struct device			*dev;
385 	struct cpsw_platform_data	data;
386 	struct cpsw_ss_regs __iomem	*regs;
387 	struct cpsw_wr_regs __iomem	*wr_regs;
388 	u8 __iomem			*hw_stats;
389 	struct cpsw_host_regs __iomem	*host_port_regs;
390 	u32				msg_enable;
391 	u32				version;
392 	u32				coal_intvl;
393 	u32				bus_freq_mhz;
394 	int				rx_packet_max;
395 	int				host_port;
396 	struct clk			*clk;
397 	u8				mac_addr[ETH_ALEN];
398 	struct cpsw_slave		*slaves;
399 	struct cpdma_ctlr		*dma;
400 	struct cpdma_chan		*txch, *rxch;
401 	struct cpsw_ale			*ale;
402 	bool				rx_pause;
403 	bool				tx_pause;
404 	/* snapshot of IRQ numbers */
405 	u32 irqs_table[4];
406 	u32 num_irqs;
407 	bool irq_enabled;
408 	struct cpts *cpts;
409 	u32 emac_port;
410 };
411 
412 struct cpsw_stats {
413 	char stat_string[ETH_GSTRING_LEN];
414 	int type;
415 	int sizeof_stat;
416 	int stat_offset;
417 };
418 
419 enum {
420 	CPSW_STATS,
421 	CPDMA_RX_STATS,
422 	CPDMA_TX_STATS,
423 };
424 
425 #define CPSW_STAT(m)		CPSW_STATS,				\
426 				sizeof(((struct cpsw_hw_stats *)0)->m), \
427 				offsetof(struct cpsw_hw_stats, m)
428 #define CPDMA_RX_STAT(m)	CPDMA_RX_STATS,				   \
429 				sizeof(((struct cpdma_chan_stats *)0)->m), \
430 				offsetof(struct cpdma_chan_stats, m)
431 #define CPDMA_TX_STAT(m)	CPDMA_TX_STATS,				   \
432 				sizeof(((struct cpdma_chan_stats *)0)->m), \
433 				offsetof(struct cpdma_chan_stats, m)
434 
435 static const struct cpsw_stats cpsw_gstrings_stats[] = {
436 	{ "Good Rx Frames", CPSW_STAT(rxgoodframes) },
437 	{ "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) },
438 	{ "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) },
439 	{ "Pause Rx Frames", CPSW_STAT(rxpauseframes) },
440 	{ "Rx CRC Errors", CPSW_STAT(rxcrcerrors) },
441 	{ "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) },
442 	{ "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) },
443 	{ "Rx Jabbers", CPSW_STAT(rxjabberframes) },
444 	{ "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) },
445 	{ "Rx Fragments", CPSW_STAT(rxfragments) },
446 	{ "Rx Octets", CPSW_STAT(rxoctets) },
447 	{ "Good Tx Frames", CPSW_STAT(txgoodframes) },
448 	{ "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) },
449 	{ "Multicast Tx Frames", CPSW_STAT(txmulticastframes) },
450 	{ "Pause Tx Frames", CPSW_STAT(txpauseframes) },
451 	{ "Deferred Tx Frames", CPSW_STAT(txdeferredframes) },
452 	{ "Collisions", CPSW_STAT(txcollisionframes) },
453 	{ "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) },
454 	{ "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) },
455 	{ "Excessive Collisions", CPSW_STAT(txexcessivecollisions) },
456 	{ "Late Collisions", CPSW_STAT(txlatecollisions) },
457 	{ "Tx Underrun", CPSW_STAT(txunderrun) },
458 	{ "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) },
459 	{ "Tx Octets", CPSW_STAT(txoctets) },
460 	{ "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) },
461 	{ "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) },
462 	{ "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) },
463 	{ "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) },
464 	{ "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) },
465 	{ "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) },
466 	{ "Net Octets", CPSW_STAT(netoctets) },
467 	{ "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) },
468 	{ "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) },
469 	{ "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) },
470 	{ "Rx DMA chan: head_enqueue", CPDMA_RX_STAT(head_enqueue) },
471 	{ "Rx DMA chan: tail_enqueue", CPDMA_RX_STAT(tail_enqueue) },
472 	{ "Rx DMA chan: pad_enqueue", CPDMA_RX_STAT(pad_enqueue) },
473 	{ "Rx DMA chan: misqueued", CPDMA_RX_STAT(misqueued) },
474 	{ "Rx DMA chan: desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) },
475 	{ "Rx DMA chan: pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) },
476 	{ "Rx DMA chan: runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) },
477 	{ "Rx DMA chan: runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) },
478 	{ "Rx DMA chan: empty_dequeue", CPDMA_RX_STAT(empty_dequeue) },
479 	{ "Rx DMA chan: busy_dequeue", CPDMA_RX_STAT(busy_dequeue) },
480 	{ "Rx DMA chan: good_dequeue", CPDMA_RX_STAT(good_dequeue) },
481 	{ "Rx DMA chan: requeue", CPDMA_RX_STAT(requeue) },
482 	{ "Rx DMA chan: teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) },
483 	{ "Tx DMA chan: head_enqueue", CPDMA_TX_STAT(head_enqueue) },
484 	{ "Tx DMA chan: tail_enqueue", CPDMA_TX_STAT(tail_enqueue) },
485 	{ "Tx DMA chan: pad_enqueue", CPDMA_TX_STAT(pad_enqueue) },
486 	{ "Tx DMA chan: misqueued", CPDMA_TX_STAT(misqueued) },
487 	{ "Tx DMA chan: desc_alloc_fail", CPDMA_TX_STAT(desc_alloc_fail) },
488 	{ "Tx DMA chan: pad_alloc_fail", CPDMA_TX_STAT(pad_alloc_fail) },
489 	{ "Tx DMA chan: runt_receive_buf", CPDMA_TX_STAT(runt_receive_buff) },
490 	{ "Tx DMA chan: runt_transmit_buf", CPDMA_TX_STAT(runt_transmit_buff) },
491 	{ "Tx DMA chan: empty_dequeue", CPDMA_TX_STAT(empty_dequeue) },
492 	{ "Tx DMA chan: busy_dequeue", CPDMA_TX_STAT(busy_dequeue) },
493 	{ "Tx DMA chan: good_dequeue", CPDMA_TX_STAT(good_dequeue) },
494 	{ "Tx DMA chan: requeue", CPDMA_TX_STAT(requeue) },
495 	{ "Tx DMA chan: teardown_dequeue", CPDMA_TX_STAT(teardown_dequeue) },
496 };
497 
498 #define CPSW_STATS_LEN	ARRAY_SIZE(cpsw_gstrings_stats)
499 
500 #define napi_to_priv(napi)	container_of(napi, struct cpsw_priv, napi)
501 #define for_each_slave(priv, func, arg...)				\
502 	do {								\
503 		struct cpsw_slave *slave;				\
504 		int n;							\
505 		if (priv->data.dual_emac)				\
506 			(func)((priv)->slaves + priv->emac_port, ##arg);\
507 		else							\
508 			for (n = (priv)->data.slaves,			\
509 					slave = (priv)->slaves;		\
510 					n; n--)				\
511 				(func)(slave++, ##arg);			\
512 	} while (0)
513 #define cpsw_get_slave_ndev(priv, __slave_no__)				\
514 	(priv->slaves[__slave_no__].ndev)
515 #define cpsw_get_slave_priv(priv, __slave_no__)				\
516 	((priv->slaves[__slave_no__].ndev) ?				\
517 		netdev_priv(priv->slaves[__slave_no__].ndev) : NULL)	\
518 
519 #define cpsw_dual_emac_src_port_detect(status, priv, ndev, skb)		\
520 	do {								\
521 		if (!priv->data.dual_emac)				\
522 			break;						\
523 		if (CPDMA_RX_SOURCE_PORT(status) == 1) {		\
524 			ndev = cpsw_get_slave_ndev(priv, 0);		\
525 			priv = netdev_priv(ndev);			\
526 			skb->dev = ndev;				\
527 		} else if (CPDMA_RX_SOURCE_PORT(status) == 2) {		\
528 			ndev = cpsw_get_slave_ndev(priv, 1);		\
529 			priv = netdev_priv(ndev);			\
530 			skb->dev = ndev;				\
531 		}							\
532 	} while (0)
533 #define cpsw_add_mcast(priv, addr)					\
534 	do {								\
535 		if (priv->data.dual_emac) {				\
536 			struct cpsw_slave *slave = priv->slaves +	\
537 						priv->emac_port;	\
538 			int slave_port = cpsw_get_slave_port(priv,	\
539 						slave->slave_num);	\
540 			cpsw_ale_add_mcast(priv->ale, addr,		\
541 				1 << slave_port | 1 << priv->host_port,	\
542 				ALE_VLAN, slave->port_vlan, 0);		\
543 		} else {						\
544 			cpsw_ale_add_mcast(priv->ale, addr,		\
545 				ALE_ALL_PORTS << priv->host_port,	\
546 				0, 0, 0);				\
547 		}							\
548 	} while (0)
549 
550 static inline int cpsw_get_slave_port(struct cpsw_priv *priv, u32 slave_num)
551 {
552 	if (priv->host_port == 0)
553 		return slave_num + 1;
554 	else
555 		return slave_num;
556 }
557 
558 static void cpsw_set_promiscious(struct net_device *ndev, bool enable)
559 {
560 	struct cpsw_priv *priv = netdev_priv(ndev);
561 	struct cpsw_ale *ale = priv->ale;
562 	int i;
563 
564 	if (priv->data.dual_emac) {
565 		bool flag = false;
566 
567 		/* Enabling promiscuous mode for one interface will be
568 		 * common for both the interface as the interface shares
569 		 * the same hardware resource.
570 		 */
571 		for (i = 0; i < priv->data.slaves; i++)
572 			if (priv->slaves[i].ndev->flags & IFF_PROMISC)
573 				flag = true;
574 
575 		if (!enable && flag) {
576 			enable = true;
577 			dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n");
578 		}
579 
580 		if (enable) {
581 			/* Enable Bypass */
582 			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1);
583 
584 			dev_dbg(&ndev->dev, "promiscuity enabled\n");
585 		} else {
586 			/* Disable Bypass */
587 			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0);
588 			dev_dbg(&ndev->dev, "promiscuity disabled\n");
589 		}
590 	} else {
591 		if (enable) {
592 			unsigned long timeout = jiffies + HZ;
593 
594 			/* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */
595 			for (i = 0; i <= priv->data.slaves; i++) {
596 				cpsw_ale_control_set(ale, i,
597 						     ALE_PORT_NOLEARN, 1);
598 				cpsw_ale_control_set(ale, i,
599 						     ALE_PORT_NO_SA_UPDATE, 1);
600 			}
601 
602 			/* Clear All Untouched entries */
603 			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
604 			do {
605 				cpu_relax();
606 				if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT))
607 					break;
608 			} while (time_after(timeout, jiffies));
609 			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
610 
611 			/* Clear all mcast from ALE */
612 			cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS <<
613 						 priv->host_port);
614 
615 			/* Flood All Unicast Packets to Host port */
616 			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1);
617 			dev_dbg(&ndev->dev, "promiscuity enabled\n");
618 		} else {
619 			/* Don't Flood All Unicast Packets to Host port */
620 			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0);
621 
622 			/* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */
623 			for (i = 0; i <= priv->data.slaves; i++) {
624 				cpsw_ale_control_set(ale, i,
625 						     ALE_PORT_NOLEARN, 0);
626 				cpsw_ale_control_set(ale, i,
627 						     ALE_PORT_NO_SA_UPDATE, 0);
628 			}
629 			dev_dbg(&ndev->dev, "promiscuity disabled\n");
630 		}
631 	}
632 }
633 
634 static void cpsw_ndo_set_rx_mode(struct net_device *ndev)
635 {
636 	struct cpsw_priv *priv = netdev_priv(ndev);
637 
638 	if (ndev->flags & IFF_PROMISC) {
639 		/* Enable promiscuous mode */
640 		cpsw_set_promiscious(ndev, true);
641 		cpsw_ale_set_allmulti(priv->ale, IFF_ALLMULTI);
642 		return;
643 	} else {
644 		/* Disable promiscuous mode */
645 		cpsw_set_promiscious(ndev, false);
646 	}
647 
648 	/* Restore allmulti on vlans if necessary */
649 	cpsw_ale_set_allmulti(priv->ale, priv->ndev->flags & IFF_ALLMULTI);
650 
651 	/* Clear all mcast from ALE */
652 	cpsw_ale_flush_multicast(priv->ale, ALE_ALL_PORTS << priv->host_port);
653 
654 	if (!netdev_mc_empty(ndev)) {
655 		struct netdev_hw_addr *ha;
656 
657 		/* program multicast address list into ALE register */
658 		netdev_for_each_mc_addr(ha, ndev) {
659 			cpsw_add_mcast(priv, (u8 *)ha->addr);
660 		}
661 	}
662 }
663 
664 static void cpsw_intr_enable(struct cpsw_priv *priv)
665 {
666 	__raw_writel(0xFF, &priv->wr_regs->tx_en);
667 	__raw_writel(0xFF, &priv->wr_regs->rx_en);
668 
669 	cpdma_ctlr_int_ctrl(priv->dma, true);
670 	return;
671 }
672 
673 static void cpsw_intr_disable(struct cpsw_priv *priv)
674 {
675 	__raw_writel(0, &priv->wr_regs->tx_en);
676 	__raw_writel(0, &priv->wr_regs->rx_en);
677 
678 	cpdma_ctlr_int_ctrl(priv->dma, false);
679 	return;
680 }
681 
682 static void cpsw_tx_handler(void *token, int len, int status)
683 {
684 	struct sk_buff		*skb = token;
685 	struct net_device	*ndev = skb->dev;
686 	struct cpsw_priv	*priv = netdev_priv(ndev);
687 
688 	/* Check whether the queue is stopped due to stalled tx dma, if the
689 	 * queue is stopped then start the queue as we have free desc for tx
690 	 */
691 	if (unlikely(netif_queue_stopped(ndev)))
692 		netif_wake_queue(ndev);
693 	cpts_tx_timestamp(priv->cpts, skb);
694 	ndev->stats.tx_packets++;
695 	ndev->stats.tx_bytes += len;
696 	dev_kfree_skb_any(skb);
697 }
698 
699 static void cpsw_rx_handler(void *token, int len, int status)
700 {
701 	struct sk_buff		*skb = token;
702 	struct sk_buff		*new_skb;
703 	struct net_device	*ndev = skb->dev;
704 	struct cpsw_priv	*priv = netdev_priv(ndev);
705 	int			ret = 0;
706 
707 	cpsw_dual_emac_src_port_detect(status, priv, ndev, skb);
708 
709 	if (unlikely(status < 0) || unlikely(!netif_running(ndev))) {
710 		bool ndev_status = false;
711 		struct cpsw_slave *slave = priv->slaves;
712 		int n;
713 
714 		if (priv->data.dual_emac) {
715 			/* In dual emac mode check for all interfaces */
716 			for (n = priv->data.slaves; n; n--, slave++)
717 				if (netif_running(slave->ndev))
718 					ndev_status = true;
719 		}
720 
721 		if (ndev_status && (status >= 0)) {
722 			/* The packet received is for the interface which
723 			 * is already down and the other interface is up
724 			 * and running, intead of freeing which results
725 			 * in reducing of the number of rx descriptor in
726 			 * DMA engine, requeue skb back to cpdma.
727 			 */
728 			new_skb = skb;
729 			goto requeue;
730 		}
731 
732 		/* the interface is going down, skbs are purged */
733 		dev_kfree_skb_any(skb);
734 		return;
735 	}
736 
737 	new_skb = netdev_alloc_skb_ip_align(ndev, priv->rx_packet_max);
738 	if (new_skb) {
739 		skb_put(skb, len);
740 		cpts_rx_timestamp(priv->cpts, skb);
741 		skb->protocol = eth_type_trans(skb, ndev);
742 		netif_receive_skb(skb);
743 		ndev->stats.rx_bytes += len;
744 		ndev->stats.rx_packets++;
745 	} else {
746 		ndev->stats.rx_dropped++;
747 		new_skb = skb;
748 	}
749 
750 requeue:
751 	ret = cpdma_chan_submit(priv->rxch, new_skb, new_skb->data,
752 			skb_tailroom(new_skb), 0);
753 	if (WARN_ON(ret < 0))
754 		dev_kfree_skb_any(new_skb);
755 }
756 
757 static irqreturn_t cpsw_interrupt(int irq, void *dev_id)
758 {
759 	struct cpsw_priv *priv = dev_id;
760 	int value = irq - priv->irqs_table[0];
761 
762 	/* NOTICE: Ending IRQ here. The trick with the 'value' variable above
763 	 * is to make sure we will always write the correct value to the EOI
764 	 * register. Namely 0 for RX_THRESH Interrupt, 1 for RX Interrupt, 2
765 	 * for TX Interrupt and 3 for MISC Interrupt.
766 	 */
767 	cpdma_ctlr_eoi(priv->dma, value);
768 
769 	cpsw_intr_disable(priv);
770 	if (priv->irq_enabled == true) {
771 		cpsw_disable_irq(priv);
772 		priv->irq_enabled = false;
773 	}
774 
775 	if (netif_running(priv->ndev)) {
776 		napi_schedule(&priv->napi);
777 		return IRQ_HANDLED;
778 	}
779 
780 	priv = cpsw_get_slave_priv(priv, 1);
781 	if (!priv)
782 		return IRQ_NONE;
783 
784 	if (netif_running(priv->ndev)) {
785 		napi_schedule(&priv->napi);
786 		return IRQ_HANDLED;
787 	}
788 	return IRQ_NONE;
789 }
790 
791 static int cpsw_poll(struct napi_struct *napi, int budget)
792 {
793 	struct cpsw_priv	*priv = napi_to_priv(napi);
794 	int			num_tx, num_rx;
795 
796 	num_tx = cpdma_chan_process(priv->txch, 128);
797 
798 	num_rx = cpdma_chan_process(priv->rxch, budget);
799 	if (num_rx < budget) {
800 		struct cpsw_priv *prim_cpsw;
801 
802 		napi_complete(napi);
803 		cpsw_intr_enable(priv);
804 		prim_cpsw = cpsw_get_slave_priv(priv, 0);
805 		if (prim_cpsw->irq_enabled == false) {
806 			prim_cpsw->irq_enabled = true;
807 			cpsw_enable_irq(priv);
808 		}
809 	}
810 
811 	if (num_rx || num_tx)
812 		cpsw_dbg(priv, intr, "poll %d rx, %d tx pkts\n",
813 			 num_rx, num_tx);
814 
815 	return num_rx;
816 }
817 
818 static inline void soft_reset(const char *module, void __iomem *reg)
819 {
820 	unsigned long timeout = jiffies + HZ;
821 
822 	__raw_writel(1, reg);
823 	do {
824 		cpu_relax();
825 	} while ((__raw_readl(reg) & 1) && time_after(timeout, jiffies));
826 
827 	WARN(__raw_readl(reg) & 1, "failed to soft-reset %s\n", module);
828 }
829 
830 #define mac_hi(mac)	(((mac)[0] << 0) | ((mac)[1] << 8) |	\
831 			 ((mac)[2] << 16) | ((mac)[3] << 24))
832 #define mac_lo(mac)	(((mac)[4] << 0) | ((mac)[5] << 8))
833 
834 static void cpsw_set_slave_mac(struct cpsw_slave *slave,
835 			       struct cpsw_priv *priv)
836 {
837 	slave_write(slave, mac_hi(priv->mac_addr), SA_HI);
838 	slave_write(slave, mac_lo(priv->mac_addr), SA_LO);
839 }
840 
841 static void _cpsw_adjust_link(struct cpsw_slave *slave,
842 			      struct cpsw_priv *priv, bool *link)
843 {
844 	struct phy_device	*phy = slave->phy;
845 	u32			mac_control = 0;
846 	u32			slave_port;
847 
848 	if (!phy)
849 		return;
850 
851 	slave_port = cpsw_get_slave_port(priv, slave->slave_num);
852 
853 	if (phy->link) {
854 		mac_control = priv->data.mac_control;
855 
856 		/* enable forwarding */
857 		cpsw_ale_control_set(priv->ale, slave_port,
858 				     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
859 
860 		if (phy->speed == 1000)
861 			mac_control |= BIT(7);	/* GIGABITEN	*/
862 		if (phy->duplex)
863 			mac_control |= BIT(0);	/* FULLDUPLEXEN	*/
864 
865 		/* set speed_in input in case RMII mode is used in 100Mbps */
866 		if (phy->speed == 100)
867 			mac_control |= BIT(15);
868 		else if (phy->speed == 10)
869 			mac_control |= BIT(18); /* In Band mode */
870 
871 		if (priv->rx_pause)
872 			mac_control |= BIT(3);
873 
874 		if (priv->tx_pause)
875 			mac_control |= BIT(4);
876 
877 		*link = true;
878 	} else {
879 		mac_control = 0;
880 		/* disable forwarding */
881 		cpsw_ale_control_set(priv->ale, slave_port,
882 				     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
883 	}
884 
885 	if (mac_control != slave->mac_control) {
886 		phy_print_status(phy);
887 		__raw_writel(mac_control, &slave->sliver->mac_control);
888 	}
889 
890 	slave->mac_control = mac_control;
891 }
892 
893 static void cpsw_adjust_link(struct net_device *ndev)
894 {
895 	struct cpsw_priv	*priv = netdev_priv(ndev);
896 	bool			link = false;
897 
898 	for_each_slave(priv, _cpsw_adjust_link, priv, &link);
899 
900 	if (link) {
901 		netif_carrier_on(ndev);
902 		if (netif_running(ndev))
903 			netif_wake_queue(ndev);
904 	} else {
905 		netif_carrier_off(ndev);
906 		netif_stop_queue(ndev);
907 	}
908 }
909 
910 static int cpsw_get_coalesce(struct net_device *ndev,
911 				struct ethtool_coalesce *coal)
912 {
913 	struct cpsw_priv *priv = netdev_priv(ndev);
914 
915 	coal->rx_coalesce_usecs = priv->coal_intvl;
916 	return 0;
917 }
918 
919 static int cpsw_set_coalesce(struct net_device *ndev,
920 				struct ethtool_coalesce *coal)
921 {
922 	struct cpsw_priv *priv = netdev_priv(ndev);
923 	u32 int_ctrl;
924 	u32 num_interrupts = 0;
925 	u32 prescale = 0;
926 	u32 addnl_dvdr = 1;
927 	u32 coal_intvl = 0;
928 
929 	coal_intvl = coal->rx_coalesce_usecs;
930 
931 	int_ctrl =  readl(&priv->wr_regs->int_control);
932 	prescale = priv->bus_freq_mhz * 4;
933 
934 	if (!coal->rx_coalesce_usecs) {
935 		int_ctrl &= ~(CPSW_INTPRESCALE_MASK | CPSW_INTPACEEN);
936 		goto update_return;
937 	}
938 
939 	if (coal_intvl < CPSW_CMINTMIN_INTVL)
940 		coal_intvl = CPSW_CMINTMIN_INTVL;
941 
942 	if (coal_intvl > CPSW_CMINTMAX_INTVL) {
943 		/* Interrupt pacer works with 4us Pulse, we can
944 		 * throttle further by dilating the 4us pulse.
945 		 */
946 		addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale;
947 
948 		if (addnl_dvdr > 1) {
949 			prescale *= addnl_dvdr;
950 			if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr))
951 				coal_intvl = (CPSW_CMINTMAX_INTVL
952 						* addnl_dvdr);
953 		} else {
954 			addnl_dvdr = 1;
955 			coal_intvl = CPSW_CMINTMAX_INTVL;
956 		}
957 	}
958 
959 	num_interrupts = (1000 * addnl_dvdr) / coal_intvl;
960 	writel(num_interrupts, &priv->wr_regs->rx_imax);
961 	writel(num_interrupts, &priv->wr_regs->tx_imax);
962 
963 	int_ctrl |= CPSW_INTPACEEN;
964 	int_ctrl &= (~CPSW_INTPRESCALE_MASK);
965 	int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK);
966 
967 update_return:
968 	writel(int_ctrl, &priv->wr_regs->int_control);
969 
970 	cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl);
971 	if (priv->data.dual_emac) {
972 		int i;
973 
974 		for (i = 0; i < priv->data.slaves; i++) {
975 			priv = netdev_priv(priv->slaves[i].ndev);
976 			priv->coal_intvl = coal_intvl;
977 		}
978 	} else {
979 		priv->coal_intvl = coal_intvl;
980 	}
981 
982 	return 0;
983 }
984 
985 static int cpsw_get_sset_count(struct net_device *ndev, int sset)
986 {
987 	switch (sset) {
988 	case ETH_SS_STATS:
989 		return CPSW_STATS_LEN;
990 	default:
991 		return -EOPNOTSUPP;
992 	}
993 }
994 
995 static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
996 {
997 	u8 *p = data;
998 	int i;
999 
1000 	switch (stringset) {
1001 	case ETH_SS_STATS:
1002 		for (i = 0; i < CPSW_STATS_LEN; i++) {
1003 			memcpy(p, cpsw_gstrings_stats[i].stat_string,
1004 			       ETH_GSTRING_LEN);
1005 			p += ETH_GSTRING_LEN;
1006 		}
1007 		break;
1008 	}
1009 }
1010 
1011 static void cpsw_get_ethtool_stats(struct net_device *ndev,
1012 				    struct ethtool_stats *stats, u64 *data)
1013 {
1014 	struct cpsw_priv *priv = netdev_priv(ndev);
1015 	struct cpdma_chan_stats rx_stats;
1016 	struct cpdma_chan_stats tx_stats;
1017 	u32 val;
1018 	u8 *p;
1019 	int i;
1020 
1021 	/* Collect Davinci CPDMA stats for Rx and Tx Channel */
1022 	cpdma_chan_get_stats(priv->rxch, &rx_stats);
1023 	cpdma_chan_get_stats(priv->txch, &tx_stats);
1024 
1025 	for (i = 0; i < CPSW_STATS_LEN; i++) {
1026 		switch (cpsw_gstrings_stats[i].type) {
1027 		case CPSW_STATS:
1028 			val = readl(priv->hw_stats +
1029 				    cpsw_gstrings_stats[i].stat_offset);
1030 			data[i] = val;
1031 			break;
1032 
1033 		case CPDMA_RX_STATS:
1034 			p = (u8 *)&rx_stats +
1035 				cpsw_gstrings_stats[i].stat_offset;
1036 			data[i] = *(u32 *)p;
1037 			break;
1038 
1039 		case CPDMA_TX_STATS:
1040 			p = (u8 *)&tx_stats +
1041 				cpsw_gstrings_stats[i].stat_offset;
1042 			data[i] = *(u32 *)p;
1043 			break;
1044 		}
1045 	}
1046 }
1047 
1048 static int cpsw_common_res_usage_state(struct cpsw_priv *priv)
1049 {
1050 	u32 i;
1051 	u32 usage_count = 0;
1052 
1053 	if (!priv->data.dual_emac)
1054 		return 0;
1055 
1056 	for (i = 0; i < priv->data.slaves; i++)
1057 		if (priv->slaves[i].open_stat)
1058 			usage_count++;
1059 
1060 	return usage_count;
1061 }
1062 
1063 static inline int cpsw_tx_packet_submit(struct net_device *ndev,
1064 			struct cpsw_priv *priv, struct sk_buff *skb)
1065 {
1066 	if (!priv->data.dual_emac)
1067 		return cpdma_chan_submit(priv->txch, skb, skb->data,
1068 				  skb->len, 0);
1069 
1070 	if (ndev == cpsw_get_slave_ndev(priv, 0))
1071 		return cpdma_chan_submit(priv->txch, skb, skb->data,
1072 				  skb->len, 1);
1073 	else
1074 		return cpdma_chan_submit(priv->txch, skb, skb->data,
1075 				  skb->len, 2);
1076 }
1077 
1078 static inline void cpsw_add_dual_emac_def_ale_entries(
1079 		struct cpsw_priv *priv, struct cpsw_slave *slave,
1080 		u32 slave_port)
1081 {
1082 	u32 port_mask = 1 << slave_port | 1 << priv->host_port;
1083 
1084 	if (priv->version == CPSW_VERSION_1)
1085 		slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN);
1086 	else
1087 		slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN);
1088 	cpsw_ale_add_vlan(priv->ale, slave->port_vlan, port_mask,
1089 			  port_mask, port_mask, 0);
1090 	cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast,
1091 			   port_mask, ALE_VLAN, slave->port_vlan, 0);
1092 	cpsw_ale_add_ucast(priv->ale, priv->mac_addr,
1093 		priv->host_port, ALE_VLAN, slave->port_vlan);
1094 }
1095 
1096 static void soft_reset_slave(struct cpsw_slave *slave)
1097 {
1098 	char name[32];
1099 
1100 	snprintf(name, sizeof(name), "slave-%d", slave->slave_num);
1101 	soft_reset(name, &slave->sliver->soft_reset);
1102 }
1103 
1104 static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv)
1105 {
1106 	u32 slave_port;
1107 
1108 	soft_reset_slave(slave);
1109 
1110 	/* setup priority mapping */
1111 	__raw_writel(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map);
1112 
1113 	switch (priv->version) {
1114 	case CPSW_VERSION_1:
1115 		slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP);
1116 		break;
1117 	case CPSW_VERSION_2:
1118 	case CPSW_VERSION_3:
1119 	case CPSW_VERSION_4:
1120 		slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP);
1121 		break;
1122 	}
1123 
1124 	/* setup max packet size, and mac address */
1125 	__raw_writel(priv->rx_packet_max, &slave->sliver->rx_maxlen);
1126 	cpsw_set_slave_mac(slave, priv);
1127 
1128 	slave->mac_control = 0;	/* no link yet */
1129 
1130 	slave_port = cpsw_get_slave_port(priv, slave->slave_num);
1131 
1132 	if (priv->data.dual_emac)
1133 		cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port);
1134 	else
1135 		cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast,
1136 				   1 << slave_port, 0, 0, ALE_MCAST_FWD_2);
1137 
1138 	slave->phy = phy_connect(priv->ndev, slave->data->phy_id,
1139 				 &cpsw_adjust_link, slave->data->phy_if);
1140 	if (IS_ERR(slave->phy)) {
1141 		dev_err(priv->dev, "phy %s not found on slave %d\n",
1142 			slave->data->phy_id, slave->slave_num);
1143 		slave->phy = NULL;
1144 	} else {
1145 		dev_info(priv->dev, "phy found : id is : 0x%x\n",
1146 			 slave->phy->phy_id);
1147 		phy_start(slave->phy);
1148 
1149 		/* Configure GMII_SEL register */
1150 		cpsw_phy_sel(&priv->pdev->dev, slave->phy->interface,
1151 			     slave->slave_num);
1152 	}
1153 }
1154 
1155 static inline void cpsw_add_default_vlan(struct cpsw_priv *priv)
1156 {
1157 	const int vlan = priv->data.default_vlan;
1158 	const int port = priv->host_port;
1159 	u32 reg;
1160 	int i;
1161 	int unreg_mcast_mask;
1162 
1163 	reg = (priv->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN :
1164 	       CPSW2_PORT_VLAN;
1165 
1166 	writel(vlan, &priv->host_port_regs->port_vlan);
1167 
1168 	for (i = 0; i < priv->data.slaves; i++)
1169 		slave_write(priv->slaves + i, vlan, reg);
1170 
1171 	if (priv->ndev->flags & IFF_ALLMULTI)
1172 		unreg_mcast_mask = ALE_ALL_PORTS;
1173 	else
1174 		unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
1175 
1176 	cpsw_ale_add_vlan(priv->ale, vlan, ALE_ALL_PORTS << port,
1177 			  ALE_ALL_PORTS << port, ALE_ALL_PORTS << port,
1178 			  unreg_mcast_mask << port);
1179 }
1180 
1181 static void cpsw_init_host_port(struct cpsw_priv *priv)
1182 {
1183 	u32 control_reg;
1184 	u32 fifo_mode;
1185 
1186 	/* soft reset the controller and initialize ale */
1187 	soft_reset("cpsw", &priv->regs->soft_reset);
1188 	cpsw_ale_start(priv->ale);
1189 
1190 	/* switch to vlan unaware mode */
1191 	cpsw_ale_control_set(priv->ale, priv->host_port, ALE_VLAN_AWARE,
1192 			     CPSW_ALE_VLAN_AWARE);
1193 	control_reg = readl(&priv->regs->control);
1194 	control_reg |= CPSW_VLAN_AWARE;
1195 	writel(control_reg, &priv->regs->control);
1196 	fifo_mode = (priv->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE :
1197 		     CPSW_FIFO_NORMAL_MODE;
1198 	writel(fifo_mode, &priv->host_port_regs->tx_in_ctl);
1199 
1200 	/* setup host port priority mapping */
1201 	__raw_writel(CPDMA_TX_PRIORITY_MAP,
1202 		     &priv->host_port_regs->cpdma_tx_pri_map);
1203 	__raw_writel(0, &priv->host_port_regs->cpdma_rx_chan_map);
1204 
1205 	cpsw_ale_control_set(priv->ale, priv->host_port,
1206 			     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
1207 
1208 	if (!priv->data.dual_emac) {
1209 		cpsw_ale_add_ucast(priv->ale, priv->mac_addr, priv->host_port,
1210 				   0, 0);
1211 		cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast,
1212 				   1 << priv->host_port, 0, 0, ALE_MCAST_FWD_2);
1213 	}
1214 }
1215 
1216 static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_priv *priv)
1217 {
1218 	u32 slave_port;
1219 
1220 	slave_port = cpsw_get_slave_port(priv, slave->slave_num);
1221 
1222 	if (!slave->phy)
1223 		return;
1224 	phy_stop(slave->phy);
1225 	phy_disconnect(slave->phy);
1226 	slave->phy = NULL;
1227 	cpsw_ale_control_set(priv->ale, slave_port,
1228 			     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1229 }
1230 
1231 static int cpsw_ndo_open(struct net_device *ndev)
1232 {
1233 	struct cpsw_priv *priv = netdev_priv(ndev);
1234 	struct cpsw_priv *prim_cpsw;
1235 	int i, ret;
1236 	u32 reg;
1237 
1238 	if (!cpsw_common_res_usage_state(priv))
1239 		cpsw_intr_disable(priv);
1240 	netif_carrier_off(ndev);
1241 
1242 	pm_runtime_get_sync(&priv->pdev->dev);
1243 
1244 	reg = priv->version;
1245 
1246 	dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n",
1247 		 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg),
1248 		 CPSW_RTL_VERSION(reg));
1249 
1250 	/* initialize host and slave ports */
1251 	if (!cpsw_common_res_usage_state(priv))
1252 		cpsw_init_host_port(priv);
1253 	for_each_slave(priv, cpsw_slave_open, priv);
1254 
1255 	/* Add default VLAN */
1256 	if (!priv->data.dual_emac)
1257 		cpsw_add_default_vlan(priv);
1258 	else
1259 		cpsw_ale_add_vlan(priv->ale, priv->data.default_vlan,
1260 				  ALE_ALL_PORTS << priv->host_port,
1261 				  ALE_ALL_PORTS << priv->host_port, 0, 0);
1262 
1263 	if (!cpsw_common_res_usage_state(priv)) {
1264 		/* setup tx dma to fixed prio and zero offset */
1265 		cpdma_control_set(priv->dma, CPDMA_TX_PRIO_FIXED, 1);
1266 		cpdma_control_set(priv->dma, CPDMA_RX_BUFFER_OFFSET, 0);
1267 
1268 		/* disable priority elevation */
1269 		__raw_writel(0, &priv->regs->ptype);
1270 
1271 		/* enable statistics collection only on all ports */
1272 		__raw_writel(0x7, &priv->regs->stat_port_en);
1273 
1274 		/* Enable internal fifo flow control */
1275 		writel(0x7, &priv->regs->flow_control);
1276 
1277 		if (WARN_ON(!priv->data.rx_descs))
1278 			priv->data.rx_descs = 128;
1279 
1280 		for (i = 0; i < priv->data.rx_descs; i++) {
1281 			struct sk_buff *skb;
1282 
1283 			ret = -ENOMEM;
1284 			skb = __netdev_alloc_skb_ip_align(priv->ndev,
1285 					priv->rx_packet_max, GFP_KERNEL);
1286 			if (!skb)
1287 				goto err_cleanup;
1288 			ret = cpdma_chan_submit(priv->rxch, skb, skb->data,
1289 					skb_tailroom(skb), 0);
1290 			if (ret < 0) {
1291 				kfree_skb(skb);
1292 				goto err_cleanup;
1293 			}
1294 		}
1295 		/* continue even if we didn't manage to submit all
1296 		 * receive descs
1297 		 */
1298 		cpsw_info(priv, ifup, "submitted %d rx descriptors\n", i);
1299 
1300 		if (cpts_register(&priv->pdev->dev, priv->cpts,
1301 				  priv->data.cpts_clock_mult,
1302 				  priv->data.cpts_clock_shift))
1303 			dev_err(priv->dev, "error registering cpts device\n");
1304 
1305 	}
1306 
1307 	/* Enable Interrupt pacing if configured */
1308 	if (priv->coal_intvl != 0) {
1309 		struct ethtool_coalesce coal;
1310 
1311 		coal.rx_coalesce_usecs = (priv->coal_intvl << 4);
1312 		cpsw_set_coalesce(ndev, &coal);
1313 	}
1314 
1315 	napi_enable(&priv->napi);
1316 	cpdma_ctlr_start(priv->dma);
1317 	cpsw_intr_enable(priv);
1318 
1319 	prim_cpsw = cpsw_get_slave_priv(priv, 0);
1320 	if (prim_cpsw->irq_enabled == false) {
1321 		if ((priv == prim_cpsw) || !netif_running(prim_cpsw->ndev)) {
1322 			prim_cpsw->irq_enabled = true;
1323 			cpsw_enable_irq(prim_cpsw);
1324 		}
1325 	}
1326 
1327 	if (priv->data.dual_emac)
1328 		priv->slaves[priv->emac_port].open_stat = true;
1329 	return 0;
1330 
1331 err_cleanup:
1332 	cpdma_ctlr_stop(priv->dma);
1333 	for_each_slave(priv, cpsw_slave_stop, priv);
1334 	pm_runtime_put_sync(&priv->pdev->dev);
1335 	netif_carrier_off(priv->ndev);
1336 	return ret;
1337 }
1338 
1339 static int cpsw_ndo_stop(struct net_device *ndev)
1340 {
1341 	struct cpsw_priv *priv = netdev_priv(ndev);
1342 
1343 	cpsw_info(priv, ifdown, "shutting down cpsw device\n");
1344 	netif_stop_queue(priv->ndev);
1345 	napi_disable(&priv->napi);
1346 	netif_carrier_off(priv->ndev);
1347 
1348 	if (cpsw_common_res_usage_state(priv) <= 1) {
1349 		cpts_unregister(priv->cpts);
1350 		cpsw_intr_disable(priv);
1351 		cpdma_ctlr_int_ctrl(priv->dma, false);
1352 		cpdma_ctlr_stop(priv->dma);
1353 		cpsw_ale_stop(priv->ale);
1354 	}
1355 	for_each_slave(priv, cpsw_slave_stop, priv);
1356 	pm_runtime_put_sync(&priv->pdev->dev);
1357 	if (priv->data.dual_emac)
1358 		priv->slaves[priv->emac_port].open_stat = false;
1359 	return 0;
1360 }
1361 
1362 static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb,
1363 				       struct net_device *ndev)
1364 {
1365 	struct cpsw_priv *priv = netdev_priv(ndev);
1366 	int ret;
1367 
1368 	ndev->trans_start = jiffies;
1369 
1370 	if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) {
1371 		cpsw_err(priv, tx_err, "packet pad failed\n");
1372 		ndev->stats.tx_dropped++;
1373 		return NETDEV_TX_OK;
1374 	}
1375 
1376 	if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
1377 				priv->cpts->tx_enable)
1378 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1379 
1380 	skb_tx_timestamp(skb);
1381 
1382 	ret = cpsw_tx_packet_submit(ndev, priv, skb);
1383 	if (unlikely(ret != 0)) {
1384 		cpsw_err(priv, tx_err, "desc submit failed\n");
1385 		goto fail;
1386 	}
1387 
1388 	/* If there is no more tx desc left free then we need to
1389 	 * tell the kernel to stop sending us tx frames.
1390 	 */
1391 	if (unlikely(!cpdma_check_free_tx_desc(priv->txch)))
1392 		netif_stop_queue(ndev);
1393 
1394 	return NETDEV_TX_OK;
1395 fail:
1396 	ndev->stats.tx_dropped++;
1397 	netif_stop_queue(ndev);
1398 	return NETDEV_TX_BUSY;
1399 }
1400 
1401 #ifdef CONFIG_TI_CPTS
1402 
1403 static void cpsw_hwtstamp_v1(struct cpsw_priv *priv)
1404 {
1405 	struct cpsw_slave *slave = &priv->slaves[priv->data.active_slave];
1406 	u32 ts_en, seq_id;
1407 
1408 	if (!priv->cpts->tx_enable && !priv->cpts->rx_enable) {
1409 		slave_write(slave, 0, CPSW1_TS_CTL);
1410 		return;
1411 	}
1412 
1413 	seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588;
1414 	ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS;
1415 
1416 	if (priv->cpts->tx_enable)
1417 		ts_en |= CPSW_V1_TS_TX_EN;
1418 
1419 	if (priv->cpts->rx_enable)
1420 		ts_en |= CPSW_V1_TS_RX_EN;
1421 
1422 	slave_write(slave, ts_en, CPSW1_TS_CTL);
1423 	slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE);
1424 }
1425 
1426 static void cpsw_hwtstamp_v2(struct cpsw_priv *priv)
1427 {
1428 	struct cpsw_slave *slave;
1429 	u32 ctrl, mtype;
1430 
1431 	if (priv->data.dual_emac)
1432 		slave = &priv->slaves[priv->emac_port];
1433 	else
1434 		slave = &priv->slaves[priv->data.active_slave];
1435 
1436 	ctrl = slave_read(slave, CPSW2_CONTROL);
1437 	switch (priv->version) {
1438 	case CPSW_VERSION_2:
1439 		ctrl &= ~CTRL_V2_ALL_TS_MASK;
1440 
1441 		if (priv->cpts->tx_enable)
1442 			ctrl |= CTRL_V2_TX_TS_BITS;
1443 
1444 		if (priv->cpts->rx_enable)
1445 			ctrl |= CTRL_V2_RX_TS_BITS;
1446 	break;
1447 	case CPSW_VERSION_3:
1448 	default:
1449 		ctrl &= ~CTRL_V3_ALL_TS_MASK;
1450 
1451 		if (priv->cpts->tx_enable)
1452 			ctrl |= CTRL_V3_TX_TS_BITS;
1453 
1454 		if (priv->cpts->rx_enable)
1455 			ctrl |= CTRL_V3_RX_TS_BITS;
1456 	break;
1457 	}
1458 
1459 	mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS;
1460 
1461 	slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE);
1462 	slave_write(slave, ctrl, CPSW2_CONTROL);
1463 	__raw_writel(ETH_P_1588, &priv->regs->ts_ltype);
1464 }
1465 
1466 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
1467 {
1468 	struct cpsw_priv *priv = netdev_priv(dev);
1469 	struct cpts *cpts = priv->cpts;
1470 	struct hwtstamp_config cfg;
1471 
1472 	if (priv->version != CPSW_VERSION_1 &&
1473 	    priv->version != CPSW_VERSION_2 &&
1474 	    priv->version != CPSW_VERSION_3)
1475 		return -EOPNOTSUPP;
1476 
1477 	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1478 		return -EFAULT;
1479 
1480 	/* reserved for future extensions */
1481 	if (cfg.flags)
1482 		return -EINVAL;
1483 
1484 	if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON)
1485 		return -ERANGE;
1486 
1487 	switch (cfg.rx_filter) {
1488 	case HWTSTAMP_FILTER_NONE:
1489 		cpts->rx_enable = 0;
1490 		break;
1491 	case HWTSTAMP_FILTER_ALL:
1492 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1493 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1494 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1495 		return -ERANGE;
1496 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1497 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1498 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1499 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1500 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1501 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1502 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1503 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1504 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1505 		cpts->rx_enable = 1;
1506 		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1507 		break;
1508 	default:
1509 		return -ERANGE;
1510 	}
1511 
1512 	cpts->tx_enable = cfg.tx_type == HWTSTAMP_TX_ON;
1513 
1514 	switch (priv->version) {
1515 	case CPSW_VERSION_1:
1516 		cpsw_hwtstamp_v1(priv);
1517 		break;
1518 	case CPSW_VERSION_2:
1519 	case CPSW_VERSION_3:
1520 		cpsw_hwtstamp_v2(priv);
1521 		break;
1522 	default:
1523 		WARN_ON(1);
1524 	}
1525 
1526 	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1527 }
1528 
1529 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
1530 {
1531 	struct cpsw_priv *priv = netdev_priv(dev);
1532 	struct cpts *cpts = priv->cpts;
1533 	struct hwtstamp_config cfg;
1534 
1535 	if (priv->version != CPSW_VERSION_1 &&
1536 	    priv->version != CPSW_VERSION_2 &&
1537 	    priv->version != CPSW_VERSION_3)
1538 		return -EOPNOTSUPP;
1539 
1540 	cfg.flags = 0;
1541 	cfg.tx_type = cpts->tx_enable ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
1542 	cfg.rx_filter = (cpts->rx_enable ?
1543 			 HWTSTAMP_FILTER_PTP_V2_EVENT : HWTSTAMP_FILTER_NONE);
1544 
1545 	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1546 }
1547 
1548 #endif /*CONFIG_TI_CPTS*/
1549 
1550 static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
1551 {
1552 	struct cpsw_priv *priv = netdev_priv(dev);
1553 	int slave_no = cpsw_slave_index(priv);
1554 
1555 	if (!netif_running(dev))
1556 		return -EINVAL;
1557 
1558 	switch (cmd) {
1559 #ifdef CONFIG_TI_CPTS
1560 	case SIOCSHWTSTAMP:
1561 		return cpsw_hwtstamp_set(dev, req);
1562 	case SIOCGHWTSTAMP:
1563 		return cpsw_hwtstamp_get(dev, req);
1564 #endif
1565 	}
1566 
1567 	if (!priv->slaves[slave_no].phy)
1568 		return -EOPNOTSUPP;
1569 	return phy_mii_ioctl(priv->slaves[slave_no].phy, req, cmd);
1570 }
1571 
1572 static void cpsw_ndo_tx_timeout(struct net_device *ndev)
1573 {
1574 	struct cpsw_priv *priv = netdev_priv(ndev);
1575 
1576 	cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n");
1577 	ndev->stats.tx_errors++;
1578 	cpsw_intr_disable(priv);
1579 	cpdma_ctlr_int_ctrl(priv->dma, false);
1580 	cpdma_chan_stop(priv->txch);
1581 	cpdma_chan_start(priv->txch);
1582 	cpdma_ctlr_int_ctrl(priv->dma, true);
1583 	cpsw_intr_enable(priv);
1584 }
1585 
1586 static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p)
1587 {
1588 	struct cpsw_priv *priv = netdev_priv(ndev);
1589 	struct sockaddr *addr = (struct sockaddr *)p;
1590 	int flags = 0;
1591 	u16 vid = 0;
1592 
1593 	if (!is_valid_ether_addr(addr->sa_data))
1594 		return -EADDRNOTAVAIL;
1595 
1596 	if (priv->data.dual_emac) {
1597 		vid = priv->slaves[priv->emac_port].port_vlan;
1598 		flags = ALE_VLAN;
1599 	}
1600 
1601 	cpsw_ale_del_ucast(priv->ale, priv->mac_addr, priv->host_port,
1602 			   flags, vid);
1603 	cpsw_ale_add_ucast(priv->ale, addr->sa_data, priv->host_port,
1604 			   flags, vid);
1605 
1606 	memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
1607 	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
1608 	for_each_slave(priv, cpsw_set_slave_mac, priv);
1609 
1610 	return 0;
1611 }
1612 
1613 #ifdef CONFIG_NET_POLL_CONTROLLER
1614 static void cpsw_ndo_poll_controller(struct net_device *ndev)
1615 {
1616 	struct cpsw_priv *priv = netdev_priv(ndev);
1617 
1618 	cpsw_intr_disable(priv);
1619 	cpdma_ctlr_int_ctrl(priv->dma, false);
1620 	cpsw_interrupt(ndev->irq, priv);
1621 	cpdma_ctlr_int_ctrl(priv->dma, true);
1622 	cpsw_intr_enable(priv);
1623 }
1624 #endif
1625 
1626 static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv,
1627 				unsigned short vid)
1628 {
1629 	int ret;
1630 	int unreg_mcast_mask;
1631 
1632 	if (priv->ndev->flags & IFF_ALLMULTI)
1633 		unreg_mcast_mask = ALE_ALL_PORTS;
1634 	else
1635 		unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
1636 
1637 	ret = cpsw_ale_add_vlan(priv->ale, vid,
1638 				ALE_ALL_PORTS << priv->host_port,
1639 				0, ALE_ALL_PORTS << priv->host_port,
1640 				unreg_mcast_mask << priv->host_port);
1641 	if (ret != 0)
1642 		return ret;
1643 
1644 	ret = cpsw_ale_add_ucast(priv->ale, priv->mac_addr,
1645 				 priv->host_port, ALE_VLAN, vid);
1646 	if (ret != 0)
1647 		goto clean_vid;
1648 
1649 	ret = cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast,
1650 				 ALE_ALL_PORTS << priv->host_port,
1651 				 ALE_VLAN, vid, 0);
1652 	if (ret != 0)
1653 		goto clean_vlan_ucast;
1654 	return 0;
1655 
1656 clean_vlan_ucast:
1657 	cpsw_ale_del_ucast(priv->ale, priv->mac_addr,
1658 			    priv->host_port, ALE_VLAN, vid);
1659 clean_vid:
1660 	cpsw_ale_del_vlan(priv->ale, vid, 0);
1661 	return ret;
1662 }
1663 
1664 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
1665 				    __be16 proto, u16 vid)
1666 {
1667 	struct cpsw_priv *priv = netdev_priv(ndev);
1668 
1669 	if (vid == priv->data.default_vlan)
1670 		return 0;
1671 
1672 	dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid);
1673 	return cpsw_add_vlan_ale_entry(priv, vid);
1674 }
1675 
1676 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev,
1677 				     __be16 proto, u16 vid)
1678 {
1679 	struct cpsw_priv *priv = netdev_priv(ndev);
1680 	int ret;
1681 
1682 	if (vid == priv->data.default_vlan)
1683 		return 0;
1684 
1685 	dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid);
1686 	ret = cpsw_ale_del_vlan(priv->ale, vid, 0);
1687 	if (ret != 0)
1688 		return ret;
1689 
1690 	ret = cpsw_ale_del_ucast(priv->ale, priv->mac_addr,
1691 				 priv->host_port, ALE_VLAN, vid);
1692 	if (ret != 0)
1693 		return ret;
1694 
1695 	return cpsw_ale_del_mcast(priv->ale, priv->ndev->broadcast,
1696 				  0, ALE_VLAN, vid);
1697 }
1698 
1699 static const struct net_device_ops cpsw_netdev_ops = {
1700 	.ndo_open		= cpsw_ndo_open,
1701 	.ndo_stop		= cpsw_ndo_stop,
1702 	.ndo_start_xmit		= cpsw_ndo_start_xmit,
1703 	.ndo_set_mac_address	= cpsw_ndo_set_mac_address,
1704 	.ndo_do_ioctl		= cpsw_ndo_ioctl,
1705 	.ndo_validate_addr	= eth_validate_addr,
1706 	.ndo_change_mtu		= eth_change_mtu,
1707 	.ndo_tx_timeout		= cpsw_ndo_tx_timeout,
1708 	.ndo_set_rx_mode	= cpsw_ndo_set_rx_mode,
1709 #ifdef CONFIG_NET_POLL_CONTROLLER
1710 	.ndo_poll_controller	= cpsw_ndo_poll_controller,
1711 #endif
1712 	.ndo_vlan_rx_add_vid	= cpsw_ndo_vlan_rx_add_vid,
1713 	.ndo_vlan_rx_kill_vid	= cpsw_ndo_vlan_rx_kill_vid,
1714 };
1715 
1716 static int cpsw_get_regs_len(struct net_device *ndev)
1717 {
1718 	struct cpsw_priv *priv = netdev_priv(ndev);
1719 
1720 	return priv->data.ale_entries * ALE_ENTRY_WORDS * sizeof(u32);
1721 }
1722 
1723 static void cpsw_get_regs(struct net_device *ndev,
1724 			  struct ethtool_regs *regs, void *p)
1725 {
1726 	struct cpsw_priv *priv = netdev_priv(ndev);
1727 	u32 *reg = p;
1728 
1729 	/* update CPSW IP version */
1730 	regs->version = priv->version;
1731 
1732 	cpsw_ale_dump(priv->ale, reg);
1733 }
1734 
1735 static void cpsw_get_drvinfo(struct net_device *ndev,
1736 			     struct ethtool_drvinfo *info)
1737 {
1738 	struct cpsw_priv *priv = netdev_priv(ndev);
1739 
1740 	strlcpy(info->driver, "cpsw", sizeof(info->driver));
1741 	strlcpy(info->version, "1.0", sizeof(info->version));
1742 	strlcpy(info->bus_info, priv->pdev->name, sizeof(info->bus_info));
1743 	info->regdump_len = cpsw_get_regs_len(ndev);
1744 }
1745 
1746 static u32 cpsw_get_msglevel(struct net_device *ndev)
1747 {
1748 	struct cpsw_priv *priv = netdev_priv(ndev);
1749 	return priv->msg_enable;
1750 }
1751 
1752 static void cpsw_set_msglevel(struct net_device *ndev, u32 value)
1753 {
1754 	struct cpsw_priv *priv = netdev_priv(ndev);
1755 	priv->msg_enable = value;
1756 }
1757 
1758 static int cpsw_get_ts_info(struct net_device *ndev,
1759 			    struct ethtool_ts_info *info)
1760 {
1761 #ifdef CONFIG_TI_CPTS
1762 	struct cpsw_priv *priv = netdev_priv(ndev);
1763 
1764 	info->so_timestamping =
1765 		SOF_TIMESTAMPING_TX_HARDWARE |
1766 		SOF_TIMESTAMPING_TX_SOFTWARE |
1767 		SOF_TIMESTAMPING_RX_HARDWARE |
1768 		SOF_TIMESTAMPING_RX_SOFTWARE |
1769 		SOF_TIMESTAMPING_SOFTWARE |
1770 		SOF_TIMESTAMPING_RAW_HARDWARE;
1771 	info->phc_index = priv->cpts->phc_index;
1772 	info->tx_types =
1773 		(1 << HWTSTAMP_TX_OFF) |
1774 		(1 << HWTSTAMP_TX_ON);
1775 	info->rx_filters =
1776 		(1 << HWTSTAMP_FILTER_NONE) |
1777 		(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
1778 #else
1779 	info->so_timestamping =
1780 		SOF_TIMESTAMPING_TX_SOFTWARE |
1781 		SOF_TIMESTAMPING_RX_SOFTWARE |
1782 		SOF_TIMESTAMPING_SOFTWARE;
1783 	info->phc_index = -1;
1784 	info->tx_types = 0;
1785 	info->rx_filters = 0;
1786 #endif
1787 	return 0;
1788 }
1789 
1790 static int cpsw_get_settings(struct net_device *ndev,
1791 			     struct ethtool_cmd *ecmd)
1792 {
1793 	struct cpsw_priv *priv = netdev_priv(ndev);
1794 	int slave_no = cpsw_slave_index(priv);
1795 
1796 	if (priv->slaves[slave_no].phy)
1797 		return phy_ethtool_gset(priv->slaves[slave_no].phy, ecmd);
1798 	else
1799 		return -EOPNOTSUPP;
1800 }
1801 
1802 static int cpsw_set_settings(struct net_device *ndev, struct ethtool_cmd *ecmd)
1803 {
1804 	struct cpsw_priv *priv = netdev_priv(ndev);
1805 	int slave_no = cpsw_slave_index(priv);
1806 
1807 	if (priv->slaves[slave_no].phy)
1808 		return phy_ethtool_sset(priv->slaves[slave_no].phy, ecmd);
1809 	else
1810 		return -EOPNOTSUPP;
1811 }
1812 
1813 static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1814 {
1815 	struct cpsw_priv *priv = netdev_priv(ndev);
1816 	int slave_no = cpsw_slave_index(priv);
1817 
1818 	wol->supported = 0;
1819 	wol->wolopts = 0;
1820 
1821 	if (priv->slaves[slave_no].phy)
1822 		phy_ethtool_get_wol(priv->slaves[slave_no].phy, wol);
1823 }
1824 
1825 static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1826 {
1827 	struct cpsw_priv *priv = netdev_priv(ndev);
1828 	int slave_no = cpsw_slave_index(priv);
1829 
1830 	if (priv->slaves[slave_no].phy)
1831 		return phy_ethtool_set_wol(priv->slaves[slave_no].phy, wol);
1832 	else
1833 		return -EOPNOTSUPP;
1834 }
1835 
1836 static void cpsw_get_pauseparam(struct net_device *ndev,
1837 				struct ethtool_pauseparam *pause)
1838 {
1839 	struct cpsw_priv *priv = netdev_priv(ndev);
1840 
1841 	pause->autoneg = AUTONEG_DISABLE;
1842 	pause->rx_pause = priv->rx_pause ? true : false;
1843 	pause->tx_pause = priv->tx_pause ? true : false;
1844 }
1845 
1846 static int cpsw_set_pauseparam(struct net_device *ndev,
1847 			       struct ethtool_pauseparam *pause)
1848 {
1849 	struct cpsw_priv *priv = netdev_priv(ndev);
1850 	bool link;
1851 
1852 	priv->rx_pause = pause->rx_pause ? true : false;
1853 	priv->tx_pause = pause->tx_pause ? true : false;
1854 
1855 	for_each_slave(priv, _cpsw_adjust_link, priv, &link);
1856 
1857 	return 0;
1858 }
1859 
1860 static const struct ethtool_ops cpsw_ethtool_ops = {
1861 	.get_drvinfo	= cpsw_get_drvinfo,
1862 	.get_msglevel	= cpsw_get_msglevel,
1863 	.set_msglevel	= cpsw_set_msglevel,
1864 	.get_link	= ethtool_op_get_link,
1865 	.get_ts_info	= cpsw_get_ts_info,
1866 	.get_settings	= cpsw_get_settings,
1867 	.set_settings	= cpsw_set_settings,
1868 	.get_coalesce	= cpsw_get_coalesce,
1869 	.set_coalesce	= cpsw_set_coalesce,
1870 	.get_sset_count		= cpsw_get_sset_count,
1871 	.get_strings		= cpsw_get_strings,
1872 	.get_ethtool_stats	= cpsw_get_ethtool_stats,
1873 	.get_pauseparam		= cpsw_get_pauseparam,
1874 	.set_pauseparam		= cpsw_set_pauseparam,
1875 	.get_wol	= cpsw_get_wol,
1876 	.set_wol	= cpsw_set_wol,
1877 	.get_regs_len	= cpsw_get_regs_len,
1878 	.get_regs	= cpsw_get_regs,
1879 };
1880 
1881 static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_priv *priv,
1882 			    u32 slave_reg_ofs, u32 sliver_reg_ofs)
1883 {
1884 	void __iomem		*regs = priv->regs;
1885 	int			slave_num = slave->slave_num;
1886 	struct cpsw_slave_data	*data = priv->data.slave_data + slave_num;
1887 
1888 	slave->data	= data;
1889 	slave->regs	= regs + slave_reg_ofs;
1890 	slave->sliver	= regs + sliver_reg_ofs;
1891 	slave->port_vlan = data->dual_emac_res_vlan;
1892 }
1893 
1894 #define AM33XX_CTRL_MAC_LO_REG(id) (0x630 + 0x8 * id)
1895 #define AM33XX_CTRL_MAC_HI_REG(id) (0x630 + 0x8 * id + 0x4)
1896 
1897 static int cpsw_am33xx_cm_get_macid(struct device *dev, int slave,
1898 		u8 *mac_addr)
1899 {
1900 	u32 macid_lo;
1901 	u32 macid_hi;
1902 	struct regmap *syscon;
1903 
1904 	syscon = syscon_regmap_lookup_by_phandle(dev->of_node, "syscon");
1905 	if (IS_ERR(syscon)) {
1906 		if (PTR_ERR(syscon) == -ENODEV)
1907 			return 0;
1908 		return PTR_ERR(syscon);
1909 	}
1910 
1911 	regmap_read(syscon, AM33XX_CTRL_MAC_LO_REG(slave), &macid_lo);
1912 	regmap_read(syscon, AM33XX_CTRL_MAC_HI_REG(slave), &macid_hi);
1913 
1914 	mac_addr[5] = (macid_lo >> 8) & 0xff;
1915 	mac_addr[4] = macid_lo & 0xff;
1916 	mac_addr[3] = (macid_hi >> 24) & 0xff;
1917 	mac_addr[2] = (macid_hi >> 16) & 0xff;
1918 	mac_addr[1] = (macid_hi >> 8) & 0xff;
1919 	mac_addr[0] = macid_hi & 0xff;
1920 
1921 	return 0;
1922 }
1923 
1924 static int cpsw_probe_dt(struct cpsw_platform_data *data,
1925 			 struct platform_device *pdev)
1926 {
1927 	struct device_node *node = pdev->dev.of_node;
1928 	struct device_node *slave_node;
1929 	int i = 0, ret;
1930 	u32 prop;
1931 
1932 	if (!node)
1933 		return -EINVAL;
1934 
1935 	if (of_property_read_u32(node, "slaves", &prop)) {
1936 		dev_err(&pdev->dev, "Missing slaves property in the DT.\n");
1937 		return -EINVAL;
1938 	}
1939 	data->slaves = prop;
1940 
1941 	if (of_property_read_u32(node, "active_slave", &prop)) {
1942 		dev_err(&pdev->dev, "Missing active_slave property in the DT.\n");
1943 		return -EINVAL;
1944 	}
1945 	data->active_slave = prop;
1946 
1947 	if (of_property_read_u32(node, "cpts_clock_mult", &prop)) {
1948 		dev_err(&pdev->dev, "Missing cpts_clock_mult property in the DT.\n");
1949 		return -EINVAL;
1950 	}
1951 	data->cpts_clock_mult = prop;
1952 
1953 	if (of_property_read_u32(node, "cpts_clock_shift", &prop)) {
1954 		dev_err(&pdev->dev, "Missing cpts_clock_shift property in the DT.\n");
1955 		return -EINVAL;
1956 	}
1957 	data->cpts_clock_shift = prop;
1958 
1959 	data->slave_data = devm_kzalloc(&pdev->dev, data->slaves
1960 					* sizeof(struct cpsw_slave_data),
1961 					GFP_KERNEL);
1962 	if (!data->slave_data)
1963 		return -ENOMEM;
1964 
1965 	if (of_property_read_u32(node, "cpdma_channels", &prop)) {
1966 		dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n");
1967 		return -EINVAL;
1968 	}
1969 	data->channels = prop;
1970 
1971 	if (of_property_read_u32(node, "ale_entries", &prop)) {
1972 		dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n");
1973 		return -EINVAL;
1974 	}
1975 	data->ale_entries = prop;
1976 
1977 	if (of_property_read_u32(node, "bd_ram_size", &prop)) {
1978 		dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n");
1979 		return -EINVAL;
1980 	}
1981 	data->bd_ram_size = prop;
1982 
1983 	if (of_property_read_u32(node, "rx_descs", &prop)) {
1984 		dev_err(&pdev->dev, "Missing rx_descs property in the DT.\n");
1985 		return -EINVAL;
1986 	}
1987 	data->rx_descs = prop;
1988 
1989 	if (of_property_read_u32(node, "mac_control", &prop)) {
1990 		dev_err(&pdev->dev, "Missing mac_control property in the DT.\n");
1991 		return -EINVAL;
1992 	}
1993 	data->mac_control = prop;
1994 
1995 	if (of_property_read_bool(node, "dual_emac"))
1996 		data->dual_emac = 1;
1997 
1998 	/*
1999 	 * Populate all the child nodes here...
2000 	 */
2001 	ret = of_platform_populate(node, NULL, NULL, &pdev->dev);
2002 	/* We do not want to force this, as in some cases may not have child */
2003 	if (ret)
2004 		dev_warn(&pdev->dev, "Doesn't have any child node\n");
2005 
2006 	for_each_child_of_node(node, slave_node) {
2007 		struct cpsw_slave_data *slave_data = data->slave_data + i;
2008 		const void *mac_addr = NULL;
2009 		u32 phyid;
2010 		int lenp;
2011 		const __be32 *parp;
2012 		struct device_node *mdio_node;
2013 		struct platform_device *mdio;
2014 
2015 		/* This is no slave child node, continue */
2016 		if (strcmp(slave_node->name, "slave"))
2017 			continue;
2018 
2019 		parp = of_get_property(slave_node, "phy_id", &lenp);
2020 		if ((parp == NULL) || (lenp != (sizeof(void *) * 2))) {
2021 			dev_err(&pdev->dev, "Missing slave[%d] phy_id property\n", i);
2022 			goto no_phy_slave;
2023 		}
2024 		mdio_node = of_find_node_by_phandle(be32_to_cpup(parp));
2025 		phyid = be32_to_cpup(parp+1);
2026 		mdio = of_find_device_by_node(mdio_node);
2027 		of_node_put(mdio_node);
2028 		if (!mdio) {
2029 			dev_err(&pdev->dev, "Missing mdio platform device\n");
2030 			return -EINVAL;
2031 		}
2032 		snprintf(slave_data->phy_id, sizeof(slave_data->phy_id),
2033 			 PHY_ID_FMT, mdio->name, phyid);
2034 
2035 		slave_data->phy_if = of_get_phy_mode(slave_node);
2036 		if (slave_data->phy_if < 0) {
2037 			dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n",
2038 				i);
2039 			return slave_data->phy_if;
2040 		}
2041 
2042 no_phy_slave:
2043 		mac_addr = of_get_mac_address(slave_node);
2044 		if (mac_addr) {
2045 			memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN);
2046 		} else {
2047 			if (of_machine_is_compatible("ti,am33xx")) {
2048 				ret = cpsw_am33xx_cm_get_macid(&pdev->dev, i,
2049 							slave_data->mac_addr);
2050 				if (ret)
2051 					return ret;
2052 			}
2053 		}
2054 		if (data->dual_emac) {
2055 			if (of_property_read_u32(slave_node, "dual_emac_res_vlan",
2056 						 &prop)) {
2057 				dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n");
2058 				slave_data->dual_emac_res_vlan = i+1;
2059 				dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n",
2060 					slave_data->dual_emac_res_vlan, i);
2061 			} else {
2062 				slave_data->dual_emac_res_vlan = prop;
2063 			}
2064 		}
2065 
2066 		i++;
2067 		if (i == data->slaves)
2068 			break;
2069 	}
2070 
2071 	return 0;
2072 }
2073 
2074 static int cpsw_probe_dual_emac(struct platform_device *pdev,
2075 				struct cpsw_priv *priv)
2076 {
2077 	struct cpsw_platform_data	*data = &priv->data;
2078 	struct net_device		*ndev;
2079 	struct cpsw_priv		*priv_sl2;
2080 	int ret = 0, i;
2081 
2082 	ndev = alloc_etherdev(sizeof(struct cpsw_priv));
2083 	if (!ndev) {
2084 		dev_err(&pdev->dev, "cpsw: error allocating net_device\n");
2085 		return -ENOMEM;
2086 	}
2087 
2088 	priv_sl2 = netdev_priv(ndev);
2089 	spin_lock_init(&priv_sl2->lock);
2090 	priv_sl2->data = *data;
2091 	priv_sl2->pdev = pdev;
2092 	priv_sl2->ndev = ndev;
2093 	priv_sl2->dev  = &ndev->dev;
2094 	priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
2095 	priv_sl2->rx_packet_max = max(rx_packet_max, 128);
2096 
2097 	if (is_valid_ether_addr(data->slave_data[1].mac_addr)) {
2098 		memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr,
2099 			ETH_ALEN);
2100 		dev_info(&pdev->dev, "cpsw: Detected MACID = %pM\n", priv_sl2->mac_addr);
2101 	} else {
2102 		random_ether_addr(priv_sl2->mac_addr);
2103 		dev_info(&pdev->dev, "cpsw: Random MACID = %pM\n", priv_sl2->mac_addr);
2104 	}
2105 	memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN);
2106 
2107 	priv_sl2->slaves = priv->slaves;
2108 	priv_sl2->clk = priv->clk;
2109 
2110 	priv_sl2->coal_intvl = 0;
2111 	priv_sl2->bus_freq_mhz = priv->bus_freq_mhz;
2112 
2113 	priv_sl2->regs = priv->regs;
2114 	priv_sl2->host_port = priv->host_port;
2115 	priv_sl2->host_port_regs = priv->host_port_regs;
2116 	priv_sl2->wr_regs = priv->wr_regs;
2117 	priv_sl2->hw_stats = priv->hw_stats;
2118 	priv_sl2->dma = priv->dma;
2119 	priv_sl2->txch = priv->txch;
2120 	priv_sl2->rxch = priv->rxch;
2121 	priv_sl2->ale = priv->ale;
2122 	priv_sl2->emac_port = 1;
2123 	priv->slaves[1].ndev = ndev;
2124 	priv_sl2->cpts = priv->cpts;
2125 	priv_sl2->version = priv->version;
2126 
2127 	for (i = 0; i < priv->num_irqs; i++) {
2128 		priv_sl2->irqs_table[i] = priv->irqs_table[i];
2129 		priv_sl2->num_irqs = priv->num_irqs;
2130 	}
2131 	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2132 
2133 	ndev->netdev_ops = &cpsw_netdev_ops;
2134 	ndev->ethtool_ops = &cpsw_ethtool_ops;
2135 	netif_napi_add(ndev, &priv_sl2->napi, cpsw_poll, CPSW_POLL_WEIGHT);
2136 
2137 	/* register the network device */
2138 	SET_NETDEV_DEV(ndev, &pdev->dev);
2139 	ret = register_netdev(ndev);
2140 	if (ret) {
2141 		dev_err(&pdev->dev, "cpsw: error registering net device\n");
2142 		free_netdev(ndev);
2143 		ret = -ENODEV;
2144 	}
2145 
2146 	return ret;
2147 }
2148 
2149 static int cpsw_probe(struct platform_device *pdev)
2150 {
2151 	struct cpsw_platform_data	*data;
2152 	struct net_device		*ndev;
2153 	struct cpsw_priv		*priv;
2154 	struct cpdma_params		dma_params;
2155 	struct cpsw_ale_params		ale_params;
2156 	void __iomem			*ss_regs;
2157 	struct resource			*res, *ss_res;
2158 	u32 slave_offset, sliver_offset, slave_size;
2159 	int ret = 0, i, k = 0;
2160 
2161 	ndev = alloc_etherdev(sizeof(struct cpsw_priv));
2162 	if (!ndev) {
2163 		dev_err(&pdev->dev, "error allocating net_device\n");
2164 		return -ENOMEM;
2165 	}
2166 
2167 	platform_set_drvdata(pdev, ndev);
2168 	priv = netdev_priv(ndev);
2169 	spin_lock_init(&priv->lock);
2170 	priv->pdev = pdev;
2171 	priv->ndev = ndev;
2172 	priv->dev  = &ndev->dev;
2173 	priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
2174 	priv->rx_packet_max = max(rx_packet_max, 128);
2175 	priv->cpts = devm_kzalloc(&pdev->dev, sizeof(struct cpts), GFP_KERNEL);
2176 	priv->irq_enabled = true;
2177 	if (!priv->cpts) {
2178 		dev_err(&pdev->dev, "error allocating cpts\n");
2179 		ret = -ENOMEM;
2180 		goto clean_ndev_ret;
2181 	}
2182 
2183 	/*
2184 	 * This may be required here for child devices.
2185 	 */
2186 	pm_runtime_enable(&pdev->dev);
2187 
2188 	/* Select default pin state */
2189 	pinctrl_pm_select_default_state(&pdev->dev);
2190 
2191 	if (cpsw_probe_dt(&priv->data, pdev)) {
2192 		dev_err(&pdev->dev, "cpsw: platform data missing\n");
2193 		ret = -ENODEV;
2194 		goto clean_runtime_disable_ret;
2195 	}
2196 	data = &priv->data;
2197 
2198 	if (is_valid_ether_addr(data->slave_data[0].mac_addr)) {
2199 		memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN);
2200 		dev_info(&pdev->dev, "Detected MACID = %pM\n", priv->mac_addr);
2201 	} else {
2202 		eth_random_addr(priv->mac_addr);
2203 		dev_info(&pdev->dev, "Random MACID = %pM\n", priv->mac_addr);
2204 	}
2205 
2206 	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
2207 
2208 	priv->slaves = devm_kzalloc(&pdev->dev,
2209 				    sizeof(struct cpsw_slave) * data->slaves,
2210 				    GFP_KERNEL);
2211 	if (!priv->slaves) {
2212 		ret = -ENOMEM;
2213 		goto clean_runtime_disable_ret;
2214 	}
2215 	for (i = 0; i < data->slaves; i++)
2216 		priv->slaves[i].slave_num = i;
2217 
2218 	priv->slaves[0].ndev = ndev;
2219 	priv->emac_port = 0;
2220 
2221 	priv->clk = devm_clk_get(&pdev->dev, "fck");
2222 	if (IS_ERR(priv->clk)) {
2223 		dev_err(priv->dev, "fck is not found\n");
2224 		ret = -ENODEV;
2225 		goto clean_runtime_disable_ret;
2226 	}
2227 	priv->coal_intvl = 0;
2228 	priv->bus_freq_mhz = clk_get_rate(priv->clk) / 1000000;
2229 
2230 	ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2231 	ss_regs = devm_ioremap_resource(&pdev->dev, ss_res);
2232 	if (IS_ERR(ss_regs)) {
2233 		ret = PTR_ERR(ss_regs);
2234 		goto clean_runtime_disable_ret;
2235 	}
2236 	priv->regs = ss_regs;
2237 	priv->host_port = HOST_PORT_NUM;
2238 
2239 	/* Need to enable clocks with runtime PM api to access module
2240 	 * registers
2241 	 */
2242 	pm_runtime_get_sync(&pdev->dev);
2243 	priv->version = readl(&priv->regs->id_ver);
2244 	pm_runtime_put_sync(&pdev->dev);
2245 
2246 	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2247 	priv->wr_regs = devm_ioremap_resource(&pdev->dev, res);
2248 	if (IS_ERR(priv->wr_regs)) {
2249 		ret = PTR_ERR(priv->wr_regs);
2250 		goto clean_runtime_disable_ret;
2251 	}
2252 
2253 	memset(&dma_params, 0, sizeof(dma_params));
2254 	memset(&ale_params, 0, sizeof(ale_params));
2255 
2256 	switch (priv->version) {
2257 	case CPSW_VERSION_1:
2258 		priv->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET;
2259 		priv->cpts->reg      = ss_regs + CPSW1_CPTS_OFFSET;
2260 		priv->hw_stats	     = ss_regs + CPSW1_HW_STATS;
2261 		dma_params.dmaregs   = ss_regs + CPSW1_CPDMA_OFFSET;
2262 		dma_params.txhdp     = ss_regs + CPSW1_STATERAM_OFFSET;
2263 		ale_params.ale_regs  = ss_regs + CPSW1_ALE_OFFSET;
2264 		slave_offset         = CPSW1_SLAVE_OFFSET;
2265 		slave_size           = CPSW1_SLAVE_SIZE;
2266 		sliver_offset        = CPSW1_SLIVER_OFFSET;
2267 		dma_params.desc_mem_phys = 0;
2268 		break;
2269 	case CPSW_VERSION_2:
2270 	case CPSW_VERSION_3:
2271 	case CPSW_VERSION_4:
2272 		priv->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET;
2273 		priv->cpts->reg      = ss_regs + CPSW2_CPTS_OFFSET;
2274 		priv->hw_stats	     = ss_regs + CPSW2_HW_STATS;
2275 		dma_params.dmaregs   = ss_regs + CPSW2_CPDMA_OFFSET;
2276 		dma_params.txhdp     = ss_regs + CPSW2_STATERAM_OFFSET;
2277 		ale_params.ale_regs  = ss_regs + CPSW2_ALE_OFFSET;
2278 		slave_offset         = CPSW2_SLAVE_OFFSET;
2279 		slave_size           = CPSW2_SLAVE_SIZE;
2280 		sliver_offset        = CPSW2_SLIVER_OFFSET;
2281 		dma_params.desc_mem_phys =
2282 			(u32 __force) ss_res->start + CPSW2_BD_OFFSET;
2283 		break;
2284 	default:
2285 		dev_err(priv->dev, "unknown version 0x%08x\n", priv->version);
2286 		ret = -ENODEV;
2287 		goto clean_runtime_disable_ret;
2288 	}
2289 	for (i = 0; i < priv->data.slaves; i++) {
2290 		struct cpsw_slave *slave = &priv->slaves[i];
2291 		cpsw_slave_init(slave, priv, slave_offset, sliver_offset);
2292 		slave_offset  += slave_size;
2293 		sliver_offset += SLIVER_SIZE;
2294 	}
2295 
2296 	dma_params.dev		= &pdev->dev;
2297 	dma_params.rxthresh	= dma_params.dmaregs + CPDMA_RXTHRESH;
2298 	dma_params.rxfree	= dma_params.dmaregs + CPDMA_RXFREE;
2299 	dma_params.rxhdp	= dma_params.txhdp + CPDMA_RXHDP;
2300 	dma_params.txcp		= dma_params.txhdp + CPDMA_TXCP;
2301 	dma_params.rxcp		= dma_params.txhdp + CPDMA_RXCP;
2302 
2303 	dma_params.num_chan		= data->channels;
2304 	dma_params.has_soft_reset	= true;
2305 	dma_params.min_packet_size	= CPSW_MIN_PACKET_SIZE;
2306 	dma_params.desc_mem_size	= data->bd_ram_size;
2307 	dma_params.desc_align		= 16;
2308 	dma_params.has_ext_regs		= true;
2309 	dma_params.desc_hw_addr         = dma_params.desc_mem_phys;
2310 
2311 	priv->dma = cpdma_ctlr_create(&dma_params);
2312 	if (!priv->dma) {
2313 		dev_err(priv->dev, "error initializing dma\n");
2314 		ret = -ENOMEM;
2315 		goto clean_runtime_disable_ret;
2316 	}
2317 
2318 	priv->txch = cpdma_chan_create(priv->dma, tx_chan_num(0),
2319 				       cpsw_tx_handler);
2320 	priv->rxch = cpdma_chan_create(priv->dma, rx_chan_num(0),
2321 				       cpsw_rx_handler);
2322 
2323 	if (WARN_ON(!priv->txch || !priv->rxch)) {
2324 		dev_err(priv->dev, "error initializing dma channels\n");
2325 		ret = -ENOMEM;
2326 		goto clean_dma_ret;
2327 	}
2328 
2329 	ale_params.dev			= &ndev->dev;
2330 	ale_params.ale_ageout		= ale_ageout;
2331 	ale_params.ale_entries		= data->ale_entries;
2332 	ale_params.ale_ports		= data->slaves;
2333 
2334 	priv->ale = cpsw_ale_create(&ale_params);
2335 	if (!priv->ale) {
2336 		dev_err(priv->dev, "error initializing ale engine\n");
2337 		ret = -ENODEV;
2338 		goto clean_dma_ret;
2339 	}
2340 
2341 	ndev->irq = platform_get_irq(pdev, 0);
2342 	if (ndev->irq < 0) {
2343 		dev_err(priv->dev, "error getting irq resource\n");
2344 		ret = -ENOENT;
2345 		goto clean_ale_ret;
2346 	}
2347 
2348 	while ((res = platform_get_resource(priv->pdev, IORESOURCE_IRQ, k))) {
2349 		if (k >= ARRAY_SIZE(priv->irqs_table)) {
2350 			ret = -EINVAL;
2351 			goto clean_ale_ret;
2352 		}
2353 
2354 		ret = devm_request_irq(&pdev->dev, res->start, cpsw_interrupt,
2355 				       0, dev_name(&pdev->dev), priv);
2356 		if (ret < 0) {
2357 			dev_err(priv->dev, "error attaching irq (%d)\n", ret);
2358 			goto clean_ale_ret;
2359 		}
2360 
2361 		priv->irqs_table[k] = res->start;
2362 		k++;
2363 	}
2364 
2365 	priv->num_irqs = k;
2366 
2367 	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2368 
2369 	ndev->netdev_ops = &cpsw_netdev_ops;
2370 	ndev->ethtool_ops = &cpsw_ethtool_ops;
2371 	netif_napi_add(ndev, &priv->napi, cpsw_poll, CPSW_POLL_WEIGHT);
2372 
2373 	/* register the network device */
2374 	SET_NETDEV_DEV(ndev, &pdev->dev);
2375 	ret = register_netdev(ndev);
2376 	if (ret) {
2377 		dev_err(priv->dev, "error registering net device\n");
2378 		ret = -ENODEV;
2379 		goto clean_ale_ret;
2380 	}
2381 
2382 	cpsw_notice(priv, probe, "initialized device (regs %pa, irq %d)\n",
2383 		    &ss_res->start, ndev->irq);
2384 
2385 	if (priv->data.dual_emac) {
2386 		ret = cpsw_probe_dual_emac(pdev, priv);
2387 		if (ret) {
2388 			cpsw_err(priv, probe, "error probe slave 2 emac interface\n");
2389 			goto clean_ale_ret;
2390 		}
2391 	}
2392 
2393 	return 0;
2394 
2395 clean_ale_ret:
2396 	cpsw_ale_destroy(priv->ale);
2397 clean_dma_ret:
2398 	cpdma_chan_destroy(priv->txch);
2399 	cpdma_chan_destroy(priv->rxch);
2400 	cpdma_ctlr_destroy(priv->dma);
2401 clean_runtime_disable_ret:
2402 	pm_runtime_disable(&pdev->dev);
2403 clean_ndev_ret:
2404 	free_netdev(priv->ndev);
2405 	return ret;
2406 }
2407 
2408 static int cpsw_remove_child_device(struct device *dev, void *c)
2409 {
2410 	struct platform_device *pdev = to_platform_device(dev);
2411 
2412 	of_device_unregister(pdev);
2413 
2414 	return 0;
2415 }
2416 
2417 static int cpsw_remove(struct platform_device *pdev)
2418 {
2419 	struct net_device *ndev = platform_get_drvdata(pdev);
2420 	struct cpsw_priv *priv = netdev_priv(ndev);
2421 
2422 	if (priv->data.dual_emac)
2423 		unregister_netdev(cpsw_get_slave_ndev(priv, 1));
2424 	unregister_netdev(ndev);
2425 
2426 	cpsw_ale_destroy(priv->ale);
2427 	cpdma_chan_destroy(priv->txch);
2428 	cpdma_chan_destroy(priv->rxch);
2429 	cpdma_ctlr_destroy(priv->dma);
2430 	pm_runtime_disable(&pdev->dev);
2431 	device_for_each_child(&pdev->dev, NULL, cpsw_remove_child_device);
2432 	if (priv->data.dual_emac)
2433 		free_netdev(cpsw_get_slave_ndev(priv, 1));
2434 	free_netdev(ndev);
2435 	return 0;
2436 }
2437 
2438 static int cpsw_suspend(struct device *dev)
2439 {
2440 	struct platform_device	*pdev = to_platform_device(dev);
2441 	struct net_device	*ndev = platform_get_drvdata(pdev);
2442 	struct cpsw_priv	*priv = netdev_priv(ndev);
2443 
2444 	if (priv->data.dual_emac) {
2445 		int i;
2446 
2447 		for (i = 0; i < priv->data.slaves; i++) {
2448 			if (netif_running(priv->slaves[i].ndev))
2449 				cpsw_ndo_stop(priv->slaves[i].ndev);
2450 			soft_reset_slave(priv->slaves + i);
2451 		}
2452 	} else {
2453 		if (netif_running(ndev))
2454 			cpsw_ndo_stop(ndev);
2455 		for_each_slave(priv, soft_reset_slave);
2456 	}
2457 
2458 	pm_runtime_put_sync(&pdev->dev);
2459 
2460 	/* Select sleep pin state */
2461 	pinctrl_pm_select_sleep_state(&pdev->dev);
2462 
2463 	return 0;
2464 }
2465 
2466 static int cpsw_resume(struct device *dev)
2467 {
2468 	struct platform_device	*pdev = to_platform_device(dev);
2469 	struct net_device	*ndev = platform_get_drvdata(pdev);
2470 	struct cpsw_priv	*priv = netdev_priv(ndev);
2471 
2472 	pm_runtime_get_sync(&pdev->dev);
2473 
2474 	/* Select default pin state */
2475 	pinctrl_pm_select_default_state(&pdev->dev);
2476 
2477 	if (priv->data.dual_emac) {
2478 		int i;
2479 
2480 		for (i = 0; i < priv->data.slaves; i++) {
2481 			if (netif_running(priv->slaves[i].ndev))
2482 				cpsw_ndo_open(priv->slaves[i].ndev);
2483 		}
2484 	} else {
2485 		if (netif_running(ndev))
2486 			cpsw_ndo_open(ndev);
2487 	}
2488 	return 0;
2489 }
2490 
2491 static const struct dev_pm_ops cpsw_pm_ops = {
2492 	.suspend	= cpsw_suspend,
2493 	.resume		= cpsw_resume,
2494 };
2495 
2496 static const struct of_device_id cpsw_of_mtable[] = {
2497 	{ .compatible = "ti,cpsw", },
2498 	{ /* sentinel */ },
2499 };
2500 MODULE_DEVICE_TABLE(of, cpsw_of_mtable);
2501 
2502 static struct platform_driver cpsw_driver = {
2503 	.driver = {
2504 		.name	 = "cpsw",
2505 		.pm	 = &cpsw_pm_ops,
2506 		.of_match_table = cpsw_of_mtable,
2507 	},
2508 	.probe = cpsw_probe,
2509 	.remove = cpsw_remove,
2510 };
2511 
2512 static int __init cpsw_init(void)
2513 {
2514 	return platform_driver_register(&cpsw_driver);
2515 }
2516 late_initcall(cpsw_init);
2517 
2518 static void __exit cpsw_exit(void)
2519 {
2520 	platform_driver_unregister(&cpsw_driver);
2521 }
2522 module_exit(cpsw_exit);
2523 
2524 MODULE_LICENSE("GPL");
2525 MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>");
2526 MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>");
2527 MODULE_DESCRIPTION("TI CPSW Ethernet driver");
2528