1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Texas Instruments Ethernet Switch Driver 4 * 5 * Copyright (C) 2012 Texas Instruments 6 * 7 */ 8 9 #include <linux/kernel.h> 10 #include <linux/io.h> 11 #include <linux/clk.h> 12 #include <linux/timer.h> 13 #include <linux/module.h> 14 #include <linux/platform_device.h> 15 #include <linux/irqreturn.h> 16 #include <linux/interrupt.h> 17 #include <linux/if_ether.h> 18 #include <linux/etherdevice.h> 19 #include <linux/netdevice.h> 20 #include <linux/net_tstamp.h> 21 #include <linux/phy.h> 22 #include <linux/phy/phy.h> 23 #include <linux/workqueue.h> 24 #include <linux/delay.h> 25 #include <linux/pm_runtime.h> 26 #include <linux/gpio/consumer.h> 27 #include <linux/of.h> 28 #include <linux/of_mdio.h> 29 #include <linux/of_net.h> 30 #include <linux/of_device.h> 31 #include <linux/if_vlan.h> 32 #include <linux/kmemleak.h> 33 #include <linux/sys_soc.h> 34 #include <net/page_pool.h> 35 #include <linux/bpf.h> 36 #include <linux/bpf_trace.h> 37 38 #include <linux/pinctrl/consumer.h> 39 #include <net/pkt_cls.h> 40 41 #include "cpsw.h" 42 #include "cpsw_ale.h" 43 #include "cpsw_priv.h" 44 #include "cpsw_sl.h" 45 #include "cpts.h" 46 #include "davinci_cpdma.h" 47 48 #include <net/pkt_sched.h> 49 50 static int debug_level; 51 module_param(debug_level, int, 0); 52 MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)"); 53 54 static int ale_ageout = 10; 55 module_param(ale_ageout, int, 0); 56 MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)"); 57 58 static int rx_packet_max = CPSW_MAX_PACKET_SIZE; 59 module_param(rx_packet_max, int, 0); 60 MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)"); 61 62 static int descs_pool_size = CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT; 63 module_param(descs_pool_size, int, 0444); 64 MODULE_PARM_DESC(descs_pool_size, "Number of CPDMA CPPI descriptors in pool"); 65 66 #define for_each_slave(priv, func, arg...) \ 67 do { \ 68 struct cpsw_slave *slave; \ 69 struct cpsw_common *cpsw = (priv)->cpsw; \ 70 int n; \ 71 if (cpsw->data.dual_emac) \ 72 (func)((cpsw)->slaves + priv->emac_port, ##arg);\ 73 else \ 74 for (n = cpsw->data.slaves, \ 75 slave = cpsw->slaves; \ 76 n; n--) \ 77 (func)(slave++, ##arg); \ 78 } while (0) 79 80 static int cpsw_slave_index_priv(struct cpsw_common *cpsw, 81 struct cpsw_priv *priv) 82 { 83 return cpsw->data.dual_emac ? priv->emac_port : cpsw->data.active_slave; 84 } 85 86 static int cpsw_get_slave_port(u32 slave_num) 87 { 88 return slave_num + 1; 89 } 90 91 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev, 92 __be16 proto, u16 vid); 93 94 static void cpsw_set_promiscious(struct net_device *ndev, bool enable) 95 { 96 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 97 struct cpsw_ale *ale = cpsw->ale; 98 int i; 99 100 if (cpsw->data.dual_emac) { 101 bool flag = false; 102 103 /* Enabling promiscuous mode for one interface will be 104 * common for both the interface as the interface shares 105 * the same hardware resource. 106 */ 107 for (i = 0; i < cpsw->data.slaves; i++) 108 if (cpsw->slaves[i].ndev->flags & IFF_PROMISC) 109 flag = true; 110 111 if (!enable && flag) { 112 enable = true; 113 dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n"); 114 } 115 116 if (enable) { 117 /* Enable Bypass */ 118 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1); 119 120 dev_dbg(&ndev->dev, "promiscuity enabled\n"); 121 } else { 122 /* Disable Bypass */ 123 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0); 124 dev_dbg(&ndev->dev, "promiscuity disabled\n"); 125 } 126 } else { 127 if (enable) { 128 unsigned long timeout = jiffies + HZ; 129 130 /* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */ 131 for (i = 0; i <= cpsw->data.slaves; i++) { 132 cpsw_ale_control_set(ale, i, 133 ALE_PORT_NOLEARN, 1); 134 cpsw_ale_control_set(ale, i, 135 ALE_PORT_NO_SA_UPDATE, 1); 136 } 137 138 /* Clear All Untouched entries */ 139 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1); 140 do { 141 cpu_relax(); 142 if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT)) 143 break; 144 } while (time_after(timeout, jiffies)); 145 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1); 146 147 /* Clear all mcast from ALE */ 148 cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS, -1); 149 __hw_addr_ref_unsync_dev(&ndev->mc, ndev, NULL); 150 151 /* Flood All Unicast Packets to Host port */ 152 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1); 153 dev_dbg(&ndev->dev, "promiscuity enabled\n"); 154 } else { 155 /* Don't Flood All Unicast Packets to Host port */ 156 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0); 157 158 /* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */ 159 for (i = 0; i <= cpsw->data.slaves; i++) { 160 cpsw_ale_control_set(ale, i, 161 ALE_PORT_NOLEARN, 0); 162 cpsw_ale_control_set(ale, i, 163 ALE_PORT_NO_SA_UPDATE, 0); 164 } 165 dev_dbg(&ndev->dev, "promiscuity disabled\n"); 166 } 167 } 168 } 169 170 /** 171 * cpsw_set_mc - adds multicast entry to the table if it's not added or deletes 172 * if it's not deleted 173 * @ndev: device to sync 174 * @addr: address to be added or deleted 175 * @vid: vlan id, if vid < 0 set/unset address for real device 176 * @add: add address if the flag is set or remove otherwise 177 */ 178 static int cpsw_set_mc(struct net_device *ndev, const u8 *addr, 179 int vid, int add) 180 { 181 struct cpsw_priv *priv = netdev_priv(ndev); 182 struct cpsw_common *cpsw = priv->cpsw; 183 int mask, flags, ret; 184 185 if (vid < 0) { 186 if (cpsw->data.dual_emac) 187 vid = cpsw->slaves[priv->emac_port].port_vlan; 188 else 189 vid = 0; 190 } 191 192 mask = cpsw->data.dual_emac ? ALE_PORT_HOST : ALE_ALL_PORTS; 193 flags = vid ? ALE_VLAN : 0; 194 195 if (add) 196 ret = cpsw_ale_add_mcast(cpsw->ale, addr, mask, flags, vid, 0); 197 else 198 ret = cpsw_ale_del_mcast(cpsw->ale, addr, 0, flags, vid); 199 200 return ret; 201 } 202 203 static int cpsw_update_vlan_mc(struct net_device *vdev, int vid, void *ctx) 204 { 205 struct addr_sync_ctx *sync_ctx = ctx; 206 struct netdev_hw_addr *ha; 207 int found = 0, ret = 0; 208 209 if (!vdev || !(vdev->flags & IFF_UP)) 210 return 0; 211 212 /* vlan address is relevant if its sync_cnt != 0 */ 213 netdev_for_each_mc_addr(ha, vdev) { 214 if (ether_addr_equal(ha->addr, sync_ctx->addr)) { 215 found = ha->sync_cnt; 216 break; 217 } 218 } 219 220 if (found) 221 sync_ctx->consumed++; 222 223 if (sync_ctx->flush) { 224 if (!found) 225 cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 0); 226 return 0; 227 } 228 229 if (found) 230 ret = cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 1); 231 232 return ret; 233 } 234 235 static int cpsw_add_mc_addr(struct net_device *ndev, const u8 *addr, int num) 236 { 237 struct addr_sync_ctx sync_ctx; 238 int ret; 239 240 sync_ctx.consumed = 0; 241 sync_ctx.addr = addr; 242 sync_ctx.ndev = ndev; 243 sync_ctx.flush = 0; 244 245 ret = vlan_for_each(ndev, cpsw_update_vlan_mc, &sync_ctx); 246 if (sync_ctx.consumed < num && !ret) 247 ret = cpsw_set_mc(ndev, addr, -1, 1); 248 249 return ret; 250 } 251 252 static int cpsw_del_mc_addr(struct net_device *ndev, const u8 *addr, int num) 253 { 254 struct addr_sync_ctx sync_ctx; 255 256 sync_ctx.consumed = 0; 257 sync_ctx.addr = addr; 258 sync_ctx.ndev = ndev; 259 sync_ctx.flush = 1; 260 261 vlan_for_each(ndev, cpsw_update_vlan_mc, &sync_ctx); 262 if (sync_ctx.consumed == num) 263 cpsw_set_mc(ndev, addr, -1, 0); 264 265 return 0; 266 } 267 268 static int cpsw_purge_vlan_mc(struct net_device *vdev, int vid, void *ctx) 269 { 270 struct addr_sync_ctx *sync_ctx = ctx; 271 struct netdev_hw_addr *ha; 272 int found = 0; 273 274 if (!vdev || !(vdev->flags & IFF_UP)) 275 return 0; 276 277 /* vlan address is relevant if its sync_cnt != 0 */ 278 netdev_for_each_mc_addr(ha, vdev) { 279 if (ether_addr_equal(ha->addr, sync_ctx->addr)) { 280 found = ha->sync_cnt; 281 break; 282 } 283 } 284 285 if (!found) 286 return 0; 287 288 sync_ctx->consumed++; 289 cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 0); 290 return 0; 291 } 292 293 static int cpsw_purge_all_mc(struct net_device *ndev, const u8 *addr, int num) 294 { 295 struct addr_sync_ctx sync_ctx; 296 297 sync_ctx.addr = addr; 298 sync_ctx.ndev = ndev; 299 sync_ctx.consumed = 0; 300 301 vlan_for_each(ndev, cpsw_purge_vlan_mc, &sync_ctx); 302 if (sync_ctx.consumed < num) 303 cpsw_set_mc(ndev, addr, -1, 0); 304 305 return 0; 306 } 307 308 static void cpsw_ndo_set_rx_mode(struct net_device *ndev) 309 { 310 struct cpsw_priv *priv = netdev_priv(ndev); 311 struct cpsw_common *cpsw = priv->cpsw; 312 int slave_port = -1; 313 314 if (cpsw->data.dual_emac) 315 slave_port = priv->emac_port + 1; 316 317 if (ndev->flags & IFF_PROMISC) { 318 /* Enable promiscuous mode */ 319 cpsw_set_promiscious(ndev, true); 320 cpsw_ale_set_allmulti(cpsw->ale, IFF_ALLMULTI, slave_port); 321 return; 322 } else { 323 /* Disable promiscuous mode */ 324 cpsw_set_promiscious(ndev, false); 325 } 326 327 /* Restore allmulti on vlans if necessary */ 328 cpsw_ale_set_allmulti(cpsw->ale, 329 ndev->flags & IFF_ALLMULTI, slave_port); 330 331 /* add/remove mcast address either for real netdev or for vlan */ 332 __hw_addr_ref_sync_dev(&ndev->mc, ndev, cpsw_add_mc_addr, 333 cpsw_del_mc_addr); 334 } 335 336 static unsigned int cpsw_rxbuf_total_len(unsigned int len) 337 { 338 len += CPSW_HEADROOM; 339 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 340 341 return SKB_DATA_ALIGN(len); 342 } 343 344 static void cpsw_rx_handler(void *token, int len, int status) 345 { 346 struct page *new_page, *page = token; 347 void *pa = page_address(page); 348 struct cpsw_meta_xdp *xmeta = pa + CPSW_XMETA_OFFSET; 349 struct cpsw_common *cpsw = ndev_to_cpsw(xmeta->ndev); 350 int pkt_size = cpsw->rx_packet_max; 351 int ret = 0, port, ch = xmeta->ch; 352 int headroom = CPSW_HEADROOM; 353 struct net_device *ndev = xmeta->ndev; 354 struct cpsw_priv *priv; 355 struct page_pool *pool; 356 struct sk_buff *skb; 357 struct xdp_buff xdp; 358 dma_addr_t dma; 359 360 if (cpsw->data.dual_emac && status >= 0) { 361 port = CPDMA_RX_SOURCE_PORT(status); 362 if (port) 363 ndev = cpsw->slaves[--port].ndev; 364 } 365 366 priv = netdev_priv(ndev); 367 pool = cpsw->page_pool[ch]; 368 if (unlikely(status < 0) || unlikely(!netif_running(ndev))) { 369 /* In dual emac mode check for all interfaces */ 370 if (cpsw->data.dual_emac && cpsw->usage_count && 371 (status >= 0)) { 372 /* The packet received is for the interface which 373 * is already down and the other interface is up 374 * and running, instead of freeing which results 375 * in reducing of the number of rx descriptor in 376 * DMA engine, requeue page back to cpdma. 377 */ 378 new_page = page; 379 goto requeue; 380 } 381 382 /* the interface is going down, pages are purged */ 383 page_pool_recycle_direct(pool, page); 384 return; 385 } 386 387 new_page = page_pool_dev_alloc_pages(pool); 388 if (unlikely(!new_page)) { 389 new_page = page; 390 ndev->stats.rx_dropped++; 391 goto requeue; 392 } 393 394 if (priv->xdp_prog) { 395 if (status & CPDMA_RX_VLAN_ENCAP) { 396 xdp.data = pa + CPSW_HEADROOM + 397 CPSW_RX_VLAN_ENCAP_HDR_SIZE; 398 xdp.data_end = xdp.data + len - 399 CPSW_RX_VLAN_ENCAP_HDR_SIZE; 400 } else { 401 xdp.data = pa + CPSW_HEADROOM; 402 xdp.data_end = xdp.data + len; 403 } 404 405 xdp_set_data_meta_invalid(&xdp); 406 407 xdp.data_hard_start = pa; 408 xdp.rxq = &priv->xdp_rxq[ch]; 409 410 port = priv->emac_port + cpsw->data.dual_emac; 411 ret = cpsw_run_xdp(priv, ch, &xdp, page, port); 412 if (ret != CPSW_XDP_PASS) 413 goto requeue; 414 415 /* XDP prog might have changed packet data and boundaries */ 416 len = xdp.data_end - xdp.data; 417 headroom = xdp.data - xdp.data_hard_start; 418 419 /* XDP prog can modify vlan tag, so can't use encap header */ 420 status &= ~CPDMA_RX_VLAN_ENCAP; 421 } 422 423 /* pass skb to netstack if no XDP prog or returned XDP_PASS */ 424 skb = build_skb(pa, cpsw_rxbuf_total_len(pkt_size)); 425 if (!skb) { 426 ndev->stats.rx_dropped++; 427 page_pool_recycle_direct(pool, page); 428 goto requeue; 429 } 430 431 skb_reserve(skb, headroom); 432 skb_put(skb, len); 433 skb->dev = ndev; 434 if (status & CPDMA_RX_VLAN_ENCAP) 435 cpsw_rx_vlan_encap(skb); 436 if (priv->rx_ts_enabled) 437 cpts_rx_timestamp(cpsw->cpts, skb); 438 skb->protocol = eth_type_trans(skb, ndev); 439 440 /* unmap page as no netstack skb page recycling */ 441 page_pool_release_page(pool, page); 442 netif_receive_skb(skb); 443 444 ndev->stats.rx_bytes += len; 445 ndev->stats.rx_packets++; 446 447 requeue: 448 xmeta = page_address(new_page) + CPSW_XMETA_OFFSET; 449 xmeta->ndev = ndev; 450 xmeta->ch = ch; 451 452 dma = page_pool_get_dma_addr(new_page) + CPSW_HEADROOM; 453 ret = cpdma_chan_submit_mapped(cpsw->rxv[ch].ch, new_page, dma, 454 pkt_size, 0); 455 if (ret < 0) { 456 WARN_ON(ret == -ENOMEM); 457 page_pool_recycle_direct(pool, new_page); 458 } 459 } 460 461 static void _cpsw_adjust_link(struct cpsw_slave *slave, 462 struct cpsw_priv *priv, bool *link) 463 { 464 struct phy_device *phy = slave->phy; 465 u32 mac_control = 0; 466 u32 slave_port; 467 struct cpsw_common *cpsw = priv->cpsw; 468 469 if (!phy) 470 return; 471 472 slave_port = cpsw_get_slave_port(slave->slave_num); 473 474 if (phy->link) { 475 mac_control = CPSW_SL_CTL_GMII_EN; 476 477 if (phy->speed == 1000) 478 mac_control |= CPSW_SL_CTL_GIG; 479 if (phy->duplex) 480 mac_control |= CPSW_SL_CTL_FULLDUPLEX; 481 482 /* set speed_in input in case RMII mode is used in 100Mbps */ 483 if (phy->speed == 100) 484 mac_control |= CPSW_SL_CTL_IFCTL_A; 485 /* in band mode only works in 10Mbps RGMII mode */ 486 else if ((phy->speed == 10) && phy_interface_is_rgmii(phy)) 487 mac_control |= CPSW_SL_CTL_EXT_EN; /* In Band mode */ 488 489 if (priv->rx_pause) 490 mac_control |= CPSW_SL_CTL_RX_FLOW_EN; 491 492 if (priv->tx_pause) 493 mac_control |= CPSW_SL_CTL_TX_FLOW_EN; 494 495 if (mac_control != slave->mac_control) 496 cpsw_sl_ctl_set(slave->mac_sl, mac_control); 497 498 /* enable forwarding */ 499 cpsw_ale_control_set(cpsw->ale, slave_port, 500 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD); 501 502 *link = true; 503 504 if (priv->shp_cfg_speed && 505 priv->shp_cfg_speed != slave->phy->speed && 506 !cpsw_shp_is_off(priv)) 507 dev_warn(priv->dev, 508 "Speed was changed, CBS shaper speeds are changed!"); 509 } else { 510 mac_control = 0; 511 /* disable forwarding */ 512 cpsw_ale_control_set(cpsw->ale, slave_port, 513 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE); 514 515 cpsw_sl_wait_for_idle(slave->mac_sl, 100); 516 517 cpsw_sl_ctl_reset(slave->mac_sl); 518 } 519 520 if (mac_control != slave->mac_control) 521 phy_print_status(phy); 522 523 slave->mac_control = mac_control; 524 } 525 526 static void cpsw_adjust_link(struct net_device *ndev) 527 { 528 struct cpsw_priv *priv = netdev_priv(ndev); 529 struct cpsw_common *cpsw = priv->cpsw; 530 bool link = false; 531 532 for_each_slave(priv, _cpsw_adjust_link, priv, &link); 533 534 if (link) { 535 if (cpsw_need_resplit(cpsw)) 536 cpsw_split_res(cpsw); 537 538 netif_carrier_on(ndev); 539 if (netif_running(ndev)) 540 netif_tx_wake_all_queues(ndev); 541 } else { 542 netif_carrier_off(ndev); 543 netif_tx_stop_all_queues(ndev); 544 } 545 } 546 547 static inline void cpsw_add_dual_emac_def_ale_entries( 548 struct cpsw_priv *priv, struct cpsw_slave *slave, 549 u32 slave_port) 550 { 551 struct cpsw_common *cpsw = priv->cpsw; 552 u32 port_mask = 1 << slave_port | ALE_PORT_HOST; 553 554 if (cpsw->version == CPSW_VERSION_1) 555 slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN); 556 else 557 slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN); 558 cpsw_ale_add_vlan(cpsw->ale, slave->port_vlan, port_mask, 559 port_mask, port_mask, 0); 560 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, 561 ALE_PORT_HOST, ALE_VLAN, slave->port_vlan, 0); 562 cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, 563 HOST_PORT_NUM, ALE_VLAN | 564 ALE_SECURE, slave->port_vlan); 565 cpsw_ale_control_set(cpsw->ale, slave_port, 566 ALE_PORT_DROP_UNKNOWN_VLAN, 1); 567 } 568 569 static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv) 570 { 571 u32 slave_port; 572 struct phy_device *phy; 573 struct cpsw_common *cpsw = priv->cpsw; 574 575 cpsw_sl_reset(slave->mac_sl, 100); 576 cpsw_sl_ctl_reset(slave->mac_sl); 577 578 /* setup priority mapping */ 579 cpsw_sl_reg_write(slave->mac_sl, CPSW_SL_RX_PRI_MAP, 580 RX_PRIORITY_MAPPING); 581 582 switch (cpsw->version) { 583 case CPSW_VERSION_1: 584 slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP); 585 /* Increase RX FIFO size to 5 for supporting fullduplex 586 * flow control mode 587 */ 588 slave_write(slave, 589 (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) | 590 CPSW_MAX_BLKS_RX, CPSW1_MAX_BLKS); 591 break; 592 case CPSW_VERSION_2: 593 case CPSW_VERSION_3: 594 case CPSW_VERSION_4: 595 slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP); 596 /* Increase RX FIFO size to 5 for supporting fullduplex 597 * flow control mode 598 */ 599 slave_write(slave, 600 (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) | 601 CPSW_MAX_BLKS_RX, CPSW2_MAX_BLKS); 602 break; 603 } 604 605 /* setup max packet size, and mac address */ 606 cpsw_sl_reg_write(slave->mac_sl, CPSW_SL_RX_MAXLEN, 607 cpsw->rx_packet_max); 608 cpsw_set_slave_mac(slave, priv); 609 610 slave->mac_control = 0; /* no link yet */ 611 612 slave_port = cpsw_get_slave_port(slave->slave_num); 613 614 if (cpsw->data.dual_emac) 615 cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port); 616 else 617 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, 618 1 << slave_port, 0, 0, ALE_MCAST_FWD_2); 619 620 if (slave->data->phy_node) { 621 phy = of_phy_connect(priv->ndev, slave->data->phy_node, 622 &cpsw_adjust_link, 0, slave->data->phy_if); 623 if (!phy) { 624 dev_err(priv->dev, "phy \"%pOF\" not found on slave %d\n", 625 slave->data->phy_node, 626 slave->slave_num); 627 return; 628 } 629 } else { 630 phy = phy_connect(priv->ndev, slave->data->phy_id, 631 &cpsw_adjust_link, slave->data->phy_if); 632 if (IS_ERR(phy)) { 633 dev_err(priv->dev, 634 "phy \"%s\" not found on slave %d, err %ld\n", 635 slave->data->phy_id, slave->slave_num, 636 PTR_ERR(phy)); 637 return; 638 } 639 } 640 641 slave->phy = phy; 642 643 phy_attached_info(slave->phy); 644 645 phy_start(slave->phy); 646 647 /* Configure GMII_SEL register */ 648 if (!IS_ERR(slave->data->ifphy)) 649 phy_set_mode_ext(slave->data->ifphy, PHY_MODE_ETHERNET, 650 slave->data->phy_if); 651 else 652 cpsw_phy_sel(cpsw->dev, slave->phy->interface, 653 slave->slave_num); 654 } 655 656 static inline void cpsw_add_default_vlan(struct cpsw_priv *priv) 657 { 658 struct cpsw_common *cpsw = priv->cpsw; 659 const int vlan = cpsw->data.default_vlan; 660 u32 reg; 661 int i; 662 int unreg_mcast_mask; 663 664 reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN : 665 CPSW2_PORT_VLAN; 666 667 writel(vlan, &cpsw->host_port_regs->port_vlan); 668 669 for (i = 0; i < cpsw->data.slaves; i++) 670 slave_write(cpsw->slaves + i, vlan, reg); 671 672 if (priv->ndev->flags & IFF_ALLMULTI) 673 unreg_mcast_mask = ALE_ALL_PORTS; 674 else 675 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2; 676 677 cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS, 678 ALE_ALL_PORTS, ALE_ALL_PORTS, 679 unreg_mcast_mask); 680 } 681 682 static void cpsw_init_host_port(struct cpsw_priv *priv) 683 { 684 u32 fifo_mode; 685 u32 control_reg; 686 struct cpsw_common *cpsw = priv->cpsw; 687 688 /* soft reset the controller and initialize ale */ 689 soft_reset("cpsw", &cpsw->regs->soft_reset); 690 cpsw_ale_start(cpsw->ale); 691 692 /* switch to vlan unaware mode */ 693 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_VLAN_AWARE, 694 CPSW_ALE_VLAN_AWARE); 695 control_reg = readl(&cpsw->regs->control); 696 control_reg |= CPSW_VLAN_AWARE | CPSW_RX_VLAN_ENCAP; 697 writel(control_reg, &cpsw->regs->control); 698 fifo_mode = (cpsw->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE : 699 CPSW_FIFO_NORMAL_MODE; 700 writel(fifo_mode, &cpsw->host_port_regs->tx_in_ctl); 701 702 /* setup host port priority mapping */ 703 writel_relaxed(CPDMA_TX_PRIORITY_MAP, 704 &cpsw->host_port_regs->cpdma_tx_pri_map); 705 writel_relaxed(0, &cpsw->host_port_regs->cpdma_rx_chan_map); 706 707 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, 708 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD); 709 710 if (!cpsw->data.dual_emac) { 711 cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM, 712 0, 0); 713 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, 714 ALE_PORT_HOST, 0, 0, ALE_MCAST_FWD_2); 715 } 716 } 717 718 static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_common *cpsw) 719 { 720 u32 slave_port; 721 722 slave_port = cpsw_get_slave_port(slave->slave_num); 723 724 if (!slave->phy) 725 return; 726 phy_stop(slave->phy); 727 phy_disconnect(slave->phy); 728 slave->phy = NULL; 729 cpsw_ale_control_set(cpsw->ale, slave_port, 730 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE); 731 cpsw_sl_reset(slave->mac_sl, 100); 732 cpsw_sl_ctl_reset(slave->mac_sl); 733 } 734 735 static int cpsw_restore_vlans(struct net_device *vdev, int vid, void *arg) 736 { 737 struct cpsw_priv *priv = arg; 738 739 if (!vdev) 740 return 0; 741 742 cpsw_ndo_vlan_rx_add_vid(priv->ndev, 0, vid); 743 return 0; 744 } 745 746 /* restore resources after port reset */ 747 static void cpsw_restore(struct cpsw_priv *priv) 748 { 749 /* restore vlan configurations */ 750 vlan_for_each(priv->ndev, cpsw_restore_vlans, priv); 751 752 /* restore MQPRIO offload */ 753 for_each_slave(priv, cpsw_mqprio_resume, priv); 754 755 /* restore CBS offload */ 756 for_each_slave(priv, cpsw_cbs_resume, priv); 757 } 758 759 static int cpsw_ndo_open(struct net_device *ndev) 760 { 761 struct cpsw_priv *priv = netdev_priv(ndev); 762 struct cpsw_common *cpsw = priv->cpsw; 763 int ret; 764 u32 reg; 765 766 ret = pm_runtime_get_sync(cpsw->dev); 767 if (ret < 0) { 768 pm_runtime_put_noidle(cpsw->dev); 769 return ret; 770 } 771 772 netif_carrier_off(ndev); 773 774 /* Notify the stack of the actual queue counts. */ 775 ret = netif_set_real_num_tx_queues(ndev, cpsw->tx_ch_num); 776 if (ret) { 777 dev_err(priv->dev, "cannot set real number of tx queues\n"); 778 goto err_cleanup; 779 } 780 781 ret = netif_set_real_num_rx_queues(ndev, cpsw->rx_ch_num); 782 if (ret) { 783 dev_err(priv->dev, "cannot set real number of rx queues\n"); 784 goto err_cleanup; 785 } 786 787 reg = cpsw->version; 788 789 dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n", 790 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg), 791 CPSW_RTL_VERSION(reg)); 792 793 /* Initialize host and slave ports */ 794 if (!cpsw->usage_count) 795 cpsw_init_host_port(priv); 796 for_each_slave(priv, cpsw_slave_open, priv); 797 798 /* Add default VLAN */ 799 if (!cpsw->data.dual_emac) 800 cpsw_add_default_vlan(priv); 801 else 802 cpsw_ale_add_vlan(cpsw->ale, cpsw->data.default_vlan, 803 ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0); 804 805 /* initialize shared resources for every ndev */ 806 if (!cpsw->usage_count) { 807 /* disable priority elevation */ 808 writel_relaxed(0, &cpsw->regs->ptype); 809 810 /* enable statistics collection only on all ports */ 811 writel_relaxed(0x7, &cpsw->regs->stat_port_en); 812 813 /* Enable internal fifo flow control */ 814 writel(0x7, &cpsw->regs->flow_control); 815 816 napi_enable(&cpsw->napi_rx); 817 napi_enable(&cpsw->napi_tx); 818 819 if (cpsw->tx_irq_disabled) { 820 cpsw->tx_irq_disabled = false; 821 enable_irq(cpsw->irqs_table[1]); 822 } 823 824 if (cpsw->rx_irq_disabled) { 825 cpsw->rx_irq_disabled = false; 826 enable_irq(cpsw->irqs_table[0]); 827 } 828 829 /* create rxqs for both infs in dual mac as they use same pool 830 * and must be destroyed together when no users. 831 */ 832 ret = cpsw_create_xdp_rxqs(cpsw); 833 if (ret < 0) 834 goto err_cleanup; 835 836 ret = cpsw_fill_rx_channels(priv); 837 if (ret < 0) 838 goto err_cleanup; 839 840 if (cpts_register(cpsw->cpts)) 841 dev_err(priv->dev, "error registering cpts device\n"); 842 843 } 844 845 cpsw_restore(priv); 846 847 /* Enable Interrupt pacing if configured */ 848 if (cpsw->coal_intvl != 0) { 849 struct ethtool_coalesce coal; 850 851 coal.rx_coalesce_usecs = cpsw->coal_intvl; 852 cpsw_set_coalesce(ndev, &coal); 853 } 854 855 cpdma_ctlr_start(cpsw->dma); 856 cpsw_intr_enable(cpsw); 857 cpsw->usage_count++; 858 859 return 0; 860 861 err_cleanup: 862 if (!cpsw->usage_count) { 863 cpdma_ctlr_stop(cpsw->dma); 864 cpsw_destroy_xdp_rxqs(cpsw); 865 } 866 867 for_each_slave(priv, cpsw_slave_stop, cpsw); 868 pm_runtime_put_sync(cpsw->dev); 869 netif_carrier_off(priv->ndev); 870 return ret; 871 } 872 873 static int cpsw_ndo_stop(struct net_device *ndev) 874 { 875 struct cpsw_priv *priv = netdev_priv(ndev); 876 struct cpsw_common *cpsw = priv->cpsw; 877 878 cpsw_info(priv, ifdown, "shutting down cpsw device\n"); 879 __hw_addr_ref_unsync_dev(&ndev->mc, ndev, cpsw_purge_all_mc); 880 netif_tx_stop_all_queues(priv->ndev); 881 netif_carrier_off(priv->ndev); 882 883 if (cpsw->usage_count <= 1) { 884 napi_disable(&cpsw->napi_rx); 885 napi_disable(&cpsw->napi_tx); 886 cpts_unregister(cpsw->cpts); 887 cpsw_intr_disable(cpsw); 888 cpdma_ctlr_stop(cpsw->dma); 889 cpsw_ale_stop(cpsw->ale); 890 cpsw_destroy_xdp_rxqs(cpsw); 891 } 892 for_each_slave(priv, cpsw_slave_stop, cpsw); 893 894 if (cpsw_need_resplit(cpsw)) 895 cpsw_split_res(cpsw); 896 897 cpsw->usage_count--; 898 pm_runtime_put_sync(cpsw->dev); 899 return 0; 900 } 901 902 static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb, 903 struct net_device *ndev) 904 { 905 struct cpsw_priv *priv = netdev_priv(ndev); 906 struct cpsw_common *cpsw = priv->cpsw; 907 struct cpts *cpts = cpsw->cpts; 908 struct netdev_queue *txq; 909 struct cpdma_chan *txch; 910 int ret, q_idx; 911 912 if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) { 913 cpsw_err(priv, tx_err, "packet pad failed\n"); 914 ndev->stats.tx_dropped++; 915 return NET_XMIT_DROP; 916 } 917 918 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && 919 priv->tx_ts_enabled && cpts_can_timestamp(cpts, skb)) 920 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 921 922 q_idx = skb_get_queue_mapping(skb); 923 if (q_idx >= cpsw->tx_ch_num) 924 q_idx = q_idx % cpsw->tx_ch_num; 925 926 txch = cpsw->txv[q_idx].ch; 927 txq = netdev_get_tx_queue(ndev, q_idx); 928 skb_tx_timestamp(skb); 929 ret = cpdma_chan_submit(txch, skb, skb->data, skb->len, 930 priv->emac_port + cpsw->data.dual_emac); 931 if (unlikely(ret != 0)) { 932 cpsw_err(priv, tx_err, "desc submit failed\n"); 933 goto fail; 934 } 935 936 /* If there is no more tx desc left free then we need to 937 * tell the kernel to stop sending us tx frames. 938 */ 939 if (unlikely(!cpdma_check_free_tx_desc(txch))) { 940 netif_tx_stop_queue(txq); 941 942 /* Barrier, so that stop_queue visible to other cpus */ 943 smp_mb__after_atomic(); 944 945 if (cpdma_check_free_tx_desc(txch)) 946 netif_tx_wake_queue(txq); 947 } 948 949 return NETDEV_TX_OK; 950 fail: 951 ndev->stats.tx_dropped++; 952 netif_tx_stop_queue(txq); 953 954 /* Barrier, so that stop_queue visible to other cpus */ 955 smp_mb__after_atomic(); 956 957 if (cpdma_check_free_tx_desc(txch)) 958 netif_tx_wake_queue(txq); 959 960 return NETDEV_TX_BUSY; 961 } 962 963 static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p) 964 { 965 struct cpsw_priv *priv = netdev_priv(ndev); 966 struct sockaddr *addr = (struct sockaddr *)p; 967 struct cpsw_common *cpsw = priv->cpsw; 968 int flags = 0; 969 u16 vid = 0; 970 int ret; 971 972 if (!is_valid_ether_addr(addr->sa_data)) 973 return -EADDRNOTAVAIL; 974 975 ret = pm_runtime_get_sync(cpsw->dev); 976 if (ret < 0) { 977 pm_runtime_put_noidle(cpsw->dev); 978 return ret; 979 } 980 981 if (cpsw->data.dual_emac) { 982 vid = cpsw->slaves[priv->emac_port].port_vlan; 983 flags = ALE_VLAN; 984 } 985 986 cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM, 987 flags, vid); 988 cpsw_ale_add_ucast(cpsw->ale, addr->sa_data, HOST_PORT_NUM, 989 flags, vid); 990 991 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN); 992 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN); 993 for_each_slave(priv, cpsw_set_slave_mac, priv); 994 995 pm_runtime_put(cpsw->dev); 996 997 return 0; 998 } 999 1000 static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv, 1001 unsigned short vid) 1002 { 1003 int ret; 1004 int unreg_mcast_mask = 0; 1005 int mcast_mask; 1006 u32 port_mask; 1007 struct cpsw_common *cpsw = priv->cpsw; 1008 1009 if (cpsw->data.dual_emac) { 1010 port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST; 1011 1012 mcast_mask = ALE_PORT_HOST; 1013 if (priv->ndev->flags & IFF_ALLMULTI) 1014 unreg_mcast_mask = mcast_mask; 1015 } else { 1016 port_mask = ALE_ALL_PORTS; 1017 mcast_mask = port_mask; 1018 1019 if (priv->ndev->flags & IFF_ALLMULTI) 1020 unreg_mcast_mask = ALE_ALL_PORTS; 1021 else 1022 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2; 1023 } 1024 1025 ret = cpsw_ale_add_vlan(cpsw->ale, vid, port_mask, 0, port_mask, 1026 unreg_mcast_mask); 1027 if (ret != 0) 1028 return ret; 1029 1030 ret = cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, 1031 HOST_PORT_NUM, ALE_VLAN, vid); 1032 if (ret != 0) 1033 goto clean_vid; 1034 1035 ret = cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, 1036 mcast_mask, ALE_VLAN, vid, 0); 1037 if (ret != 0) 1038 goto clean_vlan_ucast; 1039 return 0; 1040 1041 clean_vlan_ucast: 1042 cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, 1043 HOST_PORT_NUM, ALE_VLAN, vid); 1044 clean_vid: 1045 cpsw_ale_del_vlan(cpsw->ale, vid, 0); 1046 return ret; 1047 } 1048 1049 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev, 1050 __be16 proto, u16 vid) 1051 { 1052 struct cpsw_priv *priv = netdev_priv(ndev); 1053 struct cpsw_common *cpsw = priv->cpsw; 1054 int ret; 1055 1056 if (vid == cpsw->data.default_vlan) 1057 return 0; 1058 1059 ret = pm_runtime_get_sync(cpsw->dev); 1060 if (ret < 0) { 1061 pm_runtime_put_noidle(cpsw->dev); 1062 return ret; 1063 } 1064 1065 if (cpsw->data.dual_emac) { 1066 /* In dual EMAC, reserved VLAN id should not be used for 1067 * creating VLAN interfaces as this can break the dual 1068 * EMAC port separation 1069 */ 1070 int i; 1071 1072 for (i = 0; i < cpsw->data.slaves; i++) { 1073 if (vid == cpsw->slaves[i].port_vlan) { 1074 ret = -EINVAL; 1075 goto err; 1076 } 1077 } 1078 } 1079 1080 dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid); 1081 ret = cpsw_add_vlan_ale_entry(priv, vid); 1082 err: 1083 pm_runtime_put(cpsw->dev); 1084 return ret; 1085 } 1086 1087 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev, 1088 __be16 proto, u16 vid) 1089 { 1090 struct cpsw_priv *priv = netdev_priv(ndev); 1091 struct cpsw_common *cpsw = priv->cpsw; 1092 int ret; 1093 1094 if (vid == cpsw->data.default_vlan) 1095 return 0; 1096 1097 ret = pm_runtime_get_sync(cpsw->dev); 1098 if (ret < 0) { 1099 pm_runtime_put_noidle(cpsw->dev); 1100 return ret; 1101 } 1102 1103 if (cpsw->data.dual_emac) { 1104 int i; 1105 1106 for (i = 0; i < cpsw->data.slaves; i++) { 1107 if (vid == cpsw->slaves[i].port_vlan) 1108 goto err; 1109 } 1110 } 1111 1112 dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid); 1113 ret = cpsw_ale_del_vlan(cpsw->ale, vid, 0); 1114 ret |= cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, 1115 HOST_PORT_NUM, ALE_VLAN, vid); 1116 ret |= cpsw_ale_del_mcast(cpsw->ale, priv->ndev->broadcast, 1117 0, ALE_VLAN, vid); 1118 ret |= cpsw_ale_flush_multicast(cpsw->ale, 0, vid); 1119 err: 1120 pm_runtime_put(cpsw->dev); 1121 return ret; 1122 } 1123 1124 static int cpsw_ndo_xdp_xmit(struct net_device *ndev, int n, 1125 struct xdp_frame **frames, u32 flags) 1126 { 1127 struct cpsw_priv *priv = netdev_priv(ndev); 1128 struct cpsw_common *cpsw = priv->cpsw; 1129 struct xdp_frame *xdpf; 1130 int i, drops = 0, port; 1131 1132 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 1133 return -EINVAL; 1134 1135 for (i = 0; i < n; i++) { 1136 xdpf = frames[i]; 1137 if (xdpf->len < CPSW_MIN_PACKET_SIZE) { 1138 xdp_return_frame_rx_napi(xdpf); 1139 drops++; 1140 continue; 1141 } 1142 1143 port = priv->emac_port + cpsw->data.dual_emac; 1144 if (cpsw_xdp_tx_frame(priv, xdpf, NULL, port)) 1145 drops++; 1146 } 1147 1148 return n - drops; 1149 } 1150 1151 #ifdef CONFIG_NET_POLL_CONTROLLER 1152 static void cpsw_ndo_poll_controller(struct net_device *ndev) 1153 { 1154 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1155 1156 cpsw_intr_disable(cpsw); 1157 cpsw_rx_interrupt(cpsw->irqs_table[0], cpsw); 1158 cpsw_tx_interrupt(cpsw->irqs_table[1], cpsw); 1159 cpsw_intr_enable(cpsw); 1160 } 1161 #endif 1162 1163 static const struct net_device_ops cpsw_netdev_ops = { 1164 .ndo_open = cpsw_ndo_open, 1165 .ndo_stop = cpsw_ndo_stop, 1166 .ndo_start_xmit = cpsw_ndo_start_xmit, 1167 .ndo_set_mac_address = cpsw_ndo_set_mac_address, 1168 .ndo_do_ioctl = cpsw_ndo_ioctl, 1169 .ndo_validate_addr = eth_validate_addr, 1170 .ndo_tx_timeout = cpsw_ndo_tx_timeout, 1171 .ndo_set_rx_mode = cpsw_ndo_set_rx_mode, 1172 .ndo_set_tx_maxrate = cpsw_ndo_set_tx_maxrate, 1173 #ifdef CONFIG_NET_POLL_CONTROLLER 1174 .ndo_poll_controller = cpsw_ndo_poll_controller, 1175 #endif 1176 .ndo_vlan_rx_add_vid = cpsw_ndo_vlan_rx_add_vid, 1177 .ndo_vlan_rx_kill_vid = cpsw_ndo_vlan_rx_kill_vid, 1178 .ndo_setup_tc = cpsw_ndo_setup_tc, 1179 .ndo_bpf = cpsw_ndo_bpf, 1180 .ndo_xdp_xmit = cpsw_ndo_xdp_xmit, 1181 }; 1182 1183 static void cpsw_get_drvinfo(struct net_device *ndev, 1184 struct ethtool_drvinfo *info) 1185 { 1186 struct cpsw_common *cpsw = ndev_to_cpsw(ndev); 1187 struct platform_device *pdev = to_platform_device(cpsw->dev); 1188 1189 strlcpy(info->driver, "cpsw", sizeof(info->driver)); 1190 strlcpy(info->version, "1.0", sizeof(info->version)); 1191 strlcpy(info->bus_info, pdev->name, sizeof(info->bus_info)); 1192 } 1193 1194 static int cpsw_set_pauseparam(struct net_device *ndev, 1195 struct ethtool_pauseparam *pause) 1196 { 1197 struct cpsw_priv *priv = netdev_priv(ndev); 1198 bool link; 1199 1200 priv->rx_pause = pause->rx_pause ? true : false; 1201 priv->tx_pause = pause->tx_pause ? true : false; 1202 1203 for_each_slave(priv, _cpsw_adjust_link, priv, &link); 1204 return 0; 1205 } 1206 1207 static int cpsw_set_channels(struct net_device *ndev, 1208 struct ethtool_channels *chs) 1209 { 1210 return cpsw_set_channels_common(ndev, chs, cpsw_rx_handler); 1211 } 1212 1213 static const struct ethtool_ops cpsw_ethtool_ops = { 1214 .get_drvinfo = cpsw_get_drvinfo, 1215 .get_msglevel = cpsw_get_msglevel, 1216 .set_msglevel = cpsw_set_msglevel, 1217 .get_link = ethtool_op_get_link, 1218 .get_ts_info = cpsw_get_ts_info, 1219 .get_coalesce = cpsw_get_coalesce, 1220 .set_coalesce = cpsw_set_coalesce, 1221 .get_sset_count = cpsw_get_sset_count, 1222 .get_strings = cpsw_get_strings, 1223 .get_ethtool_stats = cpsw_get_ethtool_stats, 1224 .get_pauseparam = cpsw_get_pauseparam, 1225 .set_pauseparam = cpsw_set_pauseparam, 1226 .get_wol = cpsw_get_wol, 1227 .set_wol = cpsw_set_wol, 1228 .get_regs_len = cpsw_get_regs_len, 1229 .get_regs = cpsw_get_regs, 1230 .begin = cpsw_ethtool_op_begin, 1231 .complete = cpsw_ethtool_op_complete, 1232 .get_channels = cpsw_get_channels, 1233 .set_channels = cpsw_set_channels, 1234 .get_link_ksettings = cpsw_get_link_ksettings, 1235 .set_link_ksettings = cpsw_set_link_ksettings, 1236 .get_eee = cpsw_get_eee, 1237 .set_eee = cpsw_set_eee, 1238 .nway_reset = cpsw_nway_reset, 1239 .get_ringparam = cpsw_get_ringparam, 1240 .set_ringparam = cpsw_set_ringparam, 1241 }; 1242 1243 static int cpsw_probe_dt(struct cpsw_platform_data *data, 1244 struct platform_device *pdev) 1245 { 1246 struct device_node *node = pdev->dev.of_node; 1247 struct device_node *slave_node; 1248 int i = 0, ret; 1249 u32 prop; 1250 1251 if (!node) 1252 return -EINVAL; 1253 1254 if (of_property_read_u32(node, "slaves", &prop)) { 1255 dev_err(&pdev->dev, "Missing slaves property in the DT.\n"); 1256 return -EINVAL; 1257 } 1258 data->slaves = prop; 1259 1260 if (of_property_read_u32(node, "active_slave", &prop)) { 1261 dev_err(&pdev->dev, "Missing active_slave property in the DT.\n"); 1262 return -EINVAL; 1263 } 1264 data->active_slave = prop; 1265 1266 data->slave_data = devm_kcalloc(&pdev->dev, 1267 data->slaves, 1268 sizeof(struct cpsw_slave_data), 1269 GFP_KERNEL); 1270 if (!data->slave_data) 1271 return -ENOMEM; 1272 1273 if (of_property_read_u32(node, "cpdma_channels", &prop)) { 1274 dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n"); 1275 return -EINVAL; 1276 } 1277 data->channels = prop; 1278 1279 if (of_property_read_u32(node, "ale_entries", &prop)) { 1280 dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n"); 1281 return -EINVAL; 1282 } 1283 data->ale_entries = prop; 1284 1285 if (of_property_read_u32(node, "bd_ram_size", &prop)) { 1286 dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n"); 1287 return -EINVAL; 1288 } 1289 data->bd_ram_size = prop; 1290 1291 if (of_property_read_u32(node, "mac_control", &prop)) { 1292 dev_err(&pdev->dev, "Missing mac_control property in the DT.\n"); 1293 return -EINVAL; 1294 } 1295 data->mac_control = prop; 1296 1297 if (of_property_read_bool(node, "dual_emac")) 1298 data->dual_emac = 1; 1299 1300 /* 1301 * Populate all the child nodes here... 1302 */ 1303 ret = of_platform_populate(node, NULL, NULL, &pdev->dev); 1304 /* We do not want to force this, as in some cases may not have child */ 1305 if (ret) 1306 dev_warn(&pdev->dev, "Doesn't have any child node\n"); 1307 1308 for_each_available_child_of_node(node, slave_node) { 1309 struct cpsw_slave_data *slave_data = data->slave_data + i; 1310 const void *mac_addr = NULL; 1311 int lenp; 1312 const __be32 *parp; 1313 1314 /* This is no slave child node, continue */ 1315 if (!of_node_name_eq(slave_node, "slave")) 1316 continue; 1317 1318 slave_data->ifphy = devm_of_phy_get(&pdev->dev, slave_node, 1319 NULL); 1320 if (!IS_ENABLED(CONFIG_TI_CPSW_PHY_SEL) && 1321 IS_ERR(slave_data->ifphy)) { 1322 ret = PTR_ERR(slave_data->ifphy); 1323 dev_err(&pdev->dev, 1324 "%d: Error retrieving port phy: %d\n", i, ret); 1325 goto err_node_put; 1326 } 1327 1328 slave_data->slave_node = slave_node; 1329 slave_data->phy_node = of_parse_phandle(slave_node, 1330 "phy-handle", 0); 1331 parp = of_get_property(slave_node, "phy_id", &lenp); 1332 if (slave_data->phy_node) { 1333 dev_dbg(&pdev->dev, 1334 "slave[%d] using phy-handle=\"%pOF\"\n", 1335 i, slave_data->phy_node); 1336 } else if (of_phy_is_fixed_link(slave_node)) { 1337 /* In the case of a fixed PHY, the DT node associated 1338 * to the PHY is the Ethernet MAC DT node. 1339 */ 1340 ret = of_phy_register_fixed_link(slave_node); 1341 if (ret) { 1342 if (ret != -EPROBE_DEFER) 1343 dev_err(&pdev->dev, "failed to register fixed-link phy: %d\n", ret); 1344 goto err_node_put; 1345 } 1346 slave_data->phy_node = of_node_get(slave_node); 1347 } else if (parp) { 1348 u32 phyid; 1349 struct device_node *mdio_node; 1350 struct platform_device *mdio; 1351 1352 if (lenp != (sizeof(__be32) * 2)) { 1353 dev_err(&pdev->dev, "Invalid slave[%d] phy_id property\n", i); 1354 goto no_phy_slave; 1355 } 1356 mdio_node = of_find_node_by_phandle(be32_to_cpup(parp)); 1357 phyid = be32_to_cpup(parp+1); 1358 mdio = of_find_device_by_node(mdio_node); 1359 of_node_put(mdio_node); 1360 if (!mdio) { 1361 dev_err(&pdev->dev, "Missing mdio platform device\n"); 1362 ret = -EINVAL; 1363 goto err_node_put; 1364 } 1365 snprintf(slave_data->phy_id, sizeof(slave_data->phy_id), 1366 PHY_ID_FMT, mdio->name, phyid); 1367 put_device(&mdio->dev); 1368 } else { 1369 dev_err(&pdev->dev, 1370 "No slave[%d] phy_id, phy-handle, or fixed-link property\n", 1371 i); 1372 goto no_phy_slave; 1373 } 1374 ret = of_get_phy_mode(slave_node, &slave_data->phy_if); 1375 if (ret) { 1376 dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n", 1377 i); 1378 goto err_node_put; 1379 } 1380 1381 no_phy_slave: 1382 mac_addr = of_get_mac_address(slave_node); 1383 if (!IS_ERR(mac_addr)) { 1384 ether_addr_copy(slave_data->mac_addr, mac_addr); 1385 } else { 1386 ret = ti_cm_get_macid(&pdev->dev, i, 1387 slave_data->mac_addr); 1388 if (ret) 1389 goto err_node_put; 1390 } 1391 if (data->dual_emac) { 1392 if (of_property_read_u32(slave_node, "dual_emac_res_vlan", 1393 &prop)) { 1394 dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n"); 1395 slave_data->dual_emac_res_vlan = i+1; 1396 dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n", 1397 slave_data->dual_emac_res_vlan, i); 1398 } else { 1399 slave_data->dual_emac_res_vlan = prop; 1400 } 1401 } 1402 1403 i++; 1404 if (i == data->slaves) { 1405 ret = 0; 1406 goto err_node_put; 1407 } 1408 } 1409 1410 return 0; 1411 1412 err_node_put: 1413 of_node_put(slave_node); 1414 return ret; 1415 } 1416 1417 static void cpsw_remove_dt(struct platform_device *pdev) 1418 { 1419 struct cpsw_common *cpsw = platform_get_drvdata(pdev); 1420 struct cpsw_platform_data *data = &cpsw->data; 1421 struct device_node *node = pdev->dev.of_node; 1422 struct device_node *slave_node; 1423 int i = 0; 1424 1425 for_each_available_child_of_node(node, slave_node) { 1426 struct cpsw_slave_data *slave_data = &data->slave_data[i]; 1427 1428 if (!of_node_name_eq(slave_node, "slave")) 1429 continue; 1430 1431 if (of_phy_is_fixed_link(slave_node)) 1432 of_phy_deregister_fixed_link(slave_node); 1433 1434 of_node_put(slave_data->phy_node); 1435 1436 i++; 1437 if (i == data->slaves) { 1438 of_node_put(slave_node); 1439 break; 1440 } 1441 } 1442 1443 of_platform_depopulate(&pdev->dev); 1444 } 1445 1446 static int cpsw_probe_dual_emac(struct cpsw_priv *priv) 1447 { 1448 struct cpsw_common *cpsw = priv->cpsw; 1449 struct cpsw_platform_data *data = &cpsw->data; 1450 struct net_device *ndev; 1451 struct cpsw_priv *priv_sl2; 1452 int ret = 0; 1453 1454 ndev = devm_alloc_etherdev_mqs(cpsw->dev, sizeof(struct cpsw_priv), 1455 CPSW_MAX_QUEUES, CPSW_MAX_QUEUES); 1456 if (!ndev) { 1457 dev_err(cpsw->dev, "cpsw: error allocating net_device\n"); 1458 return -ENOMEM; 1459 } 1460 1461 priv_sl2 = netdev_priv(ndev); 1462 priv_sl2->cpsw = cpsw; 1463 priv_sl2->ndev = ndev; 1464 priv_sl2->dev = &ndev->dev; 1465 priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG); 1466 1467 if (is_valid_ether_addr(data->slave_data[1].mac_addr)) { 1468 memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr, 1469 ETH_ALEN); 1470 dev_info(cpsw->dev, "cpsw: Detected MACID = %pM\n", 1471 priv_sl2->mac_addr); 1472 } else { 1473 eth_random_addr(priv_sl2->mac_addr); 1474 dev_info(cpsw->dev, "cpsw: Random MACID = %pM\n", 1475 priv_sl2->mac_addr); 1476 } 1477 memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN); 1478 1479 priv_sl2->emac_port = 1; 1480 cpsw->slaves[1].ndev = ndev; 1481 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX; 1482 1483 ndev->netdev_ops = &cpsw_netdev_ops; 1484 ndev->ethtool_ops = &cpsw_ethtool_ops; 1485 1486 /* register the network device */ 1487 SET_NETDEV_DEV(ndev, cpsw->dev); 1488 ndev->dev.of_node = cpsw->slaves[1].data->slave_node; 1489 ret = register_netdev(ndev); 1490 if (ret) 1491 dev_err(cpsw->dev, "cpsw: error registering net device\n"); 1492 1493 return ret; 1494 } 1495 1496 static const struct of_device_id cpsw_of_mtable[] = { 1497 { .compatible = "ti,cpsw"}, 1498 { .compatible = "ti,am335x-cpsw"}, 1499 { .compatible = "ti,am4372-cpsw"}, 1500 { .compatible = "ti,dra7-cpsw"}, 1501 { /* sentinel */ }, 1502 }; 1503 MODULE_DEVICE_TABLE(of, cpsw_of_mtable); 1504 1505 static const struct soc_device_attribute cpsw_soc_devices[] = { 1506 { .family = "AM33xx", .revision = "ES1.0"}, 1507 { /* sentinel */ } 1508 }; 1509 1510 static int cpsw_probe(struct platform_device *pdev) 1511 { 1512 struct device *dev = &pdev->dev; 1513 struct clk *clk; 1514 struct cpsw_platform_data *data; 1515 struct net_device *ndev; 1516 struct cpsw_priv *priv; 1517 void __iomem *ss_regs; 1518 struct resource *ss_res; 1519 struct gpio_descs *mode; 1520 const struct soc_device_attribute *soc; 1521 struct cpsw_common *cpsw; 1522 int ret = 0, ch; 1523 int irq; 1524 1525 cpsw = devm_kzalloc(dev, sizeof(struct cpsw_common), GFP_KERNEL); 1526 if (!cpsw) 1527 return -ENOMEM; 1528 1529 platform_set_drvdata(pdev, cpsw); 1530 cpsw_slave_index = cpsw_slave_index_priv; 1531 1532 cpsw->dev = dev; 1533 1534 mode = devm_gpiod_get_array_optional(dev, "mode", GPIOD_OUT_LOW); 1535 if (IS_ERR(mode)) { 1536 ret = PTR_ERR(mode); 1537 dev_err(dev, "gpio request failed, ret %d\n", ret); 1538 return ret; 1539 } 1540 1541 clk = devm_clk_get(dev, "fck"); 1542 if (IS_ERR(clk)) { 1543 ret = PTR_ERR(clk); 1544 dev_err(dev, "fck is not found %d\n", ret); 1545 return ret; 1546 } 1547 cpsw->bus_freq_mhz = clk_get_rate(clk) / 1000000; 1548 1549 ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1550 ss_regs = devm_ioremap_resource(dev, ss_res); 1551 if (IS_ERR(ss_regs)) 1552 return PTR_ERR(ss_regs); 1553 cpsw->regs = ss_regs; 1554 1555 cpsw->wr_regs = devm_platform_ioremap_resource(pdev, 1); 1556 if (IS_ERR(cpsw->wr_regs)) 1557 return PTR_ERR(cpsw->wr_regs); 1558 1559 /* RX IRQ */ 1560 irq = platform_get_irq(pdev, 1); 1561 if (irq < 0) 1562 return irq; 1563 cpsw->irqs_table[0] = irq; 1564 1565 /* TX IRQ */ 1566 irq = platform_get_irq(pdev, 2); 1567 if (irq < 0) 1568 return irq; 1569 cpsw->irqs_table[1] = irq; 1570 1571 /* 1572 * This may be required here for child devices. 1573 */ 1574 pm_runtime_enable(dev); 1575 1576 /* Need to enable clocks with runtime PM api to access module 1577 * registers 1578 */ 1579 ret = pm_runtime_get_sync(dev); 1580 if (ret < 0) { 1581 pm_runtime_put_noidle(dev); 1582 goto clean_runtime_disable_ret; 1583 } 1584 1585 ret = cpsw_probe_dt(&cpsw->data, pdev); 1586 if (ret) 1587 goto clean_dt_ret; 1588 1589 soc = soc_device_match(cpsw_soc_devices); 1590 if (soc) 1591 cpsw->quirk_irq = 1; 1592 1593 data = &cpsw->data; 1594 cpsw->slaves = devm_kcalloc(dev, 1595 data->slaves, sizeof(struct cpsw_slave), 1596 GFP_KERNEL); 1597 if (!cpsw->slaves) { 1598 ret = -ENOMEM; 1599 goto clean_dt_ret; 1600 } 1601 1602 cpsw->rx_packet_max = max(rx_packet_max, CPSW_MAX_PACKET_SIZE); 1603 cpsw->descs_pool_size = descs_pool_size; 1604 1605 ret = cpsw_init_common(cpsw, ss_regs, ale_ageout, 1606 ss_res->start + CPSW2_BD_OFFSET, 1607 descs_pool_size); 1608 if (ret) 1609 goto clean_dt_ret; 1610 1611 ch = cpsw->quirk_irq ? 0 : 7; 1612 cpsw->txv[0].ch = cpdma_chan_create(cpsw->dma, ch, cpsw_tx_handler, 0); 1613 if (IS_ERR(cpsw->txv[0].ch)) { 1614 dev_err(dev, "error initializing tx dma channel\n"); 1615 ret = PTR_ERR(cpsw->txv[0].ch); 1616 goto clean_cpts; 1617 } 1618 1619 cpsw->rxv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_rx_handler, 1); 1620 if (IS_ERR(cpsw->rxv[0].ch)) { 1621 dev_err(dev, "error initializing rx dma channel\n"); 1622 ret = PTR_ERR(cpsw->rxv[0].ch); 1623 goto clean_cpts; 1624 } 1625 cpsw_split_res(cpsw); 1626 1627 /* setup netdev */ 1628 ndev = devm_alloc_etherdev_mqs(dev, sizeof(struct cpsw_priv), 1629 CPSW_MAX_QUEUES, CPSW_MAX_QUEUES); 1630 if (!ndev) { 1631 dev_err(dev, "error allocating net_device\n"); 1632 goto clean_cpts; 1633 } 1634 1635 priv = netdev_priv(ndev); 1636 priv->cpsw = cpsw; 1637 priv->ndev = ndev; 1638 priv->dev = dev; 1639 priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG); 1640 priv->emac_port = 0; 1641 1642 if (is_valid_ether_addr(data->slave_data[0].mac_addr)) { 1643 memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN); 1644 dev_info(dev, "Detected MACID = %pM\n", priv->mac_addr); 1645 } else { 1646 eth_random_addr(priv->mac_addr); 1647 dev_info(dev, "Random MACID = %pM\n", priv->mac_addr); 1648 } 1649 1650 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN); 1651 1652 cpsw->slaves[0].ndev = ndev; 1653 1654 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX; 1655 1656 ndev->netdev_ops = &cpsw_netdev_ops; 1657 ndev->ethtool_ops = &cpsw_ethtool_ops; 1658 netif_napi_add(ndev, &cpsw->napi_rx, 1659 cpsw->quirk_irq ? cpsw_rx_poll : cpsw_rx_mq_poll, 1660 CPSW_POLL_WEIGHT); 1661 netif_tx_napi_add(ndev, &cpsw->napi_tx, 1662 cpsw->quirk_irq ? cpsw_tx_poll : cpsw_tx_mq_poll, 1663 CPSW_POLL_WEIGHT); 1664 1665 /* register the network device */ 1666 SET_NETDEV_DEV(ndev, dev); 1667 ndev->dev.of_node = cpsw->slaves[0].data->slave_node; 1668 ret = register_netdev(ndev); 1669 if (ret) { 1670 dev_err(dev, "error registering net device\n"); 1671 ret = -ENODEV; 1672 goto clean_cpts; 1673 } 1674 1675 if (cpsw->data.dual_emac) { 1676 ret = cpsw_probe_dual_emac(priv); 1677 if (ret) { 1678 cpsw_err(priv, probe, "error probe slave 2 emac interface\n"); 1679 goto clean_unregister_netdev_ret; 1680 } 1681 } 1682 1683 /* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and 1684 * MISC IRQs which are always kept disabled with this driver so 1685 * we will not request them. 1686 * 1687 * If anyone wants to implement support for those, make sure to 1688 * first request and append them to irqs_table array. 1689 */ 1690 ret = devm_request_irq(dev, cpsw->irqs_table[0], cpsw_rx_interrupt, 1691 0, dev_name(dev), cpsw); 1692 if (ret < 0) { 1693 dev_err(dev, "error attaching irq (%d)\n", ret); 1694 goto clean_unregister_netdev_ret; 1695 } 1696 1697 1698 ret = devm_request_irq(dev, cpsw->irqs_table[1], cpsw_tx_interrupt, 1699 0, dev_name(&pdev->dev), cpsw); 1700 if (ret < 0) { 1701 dev_err(dev, "error attaching irq (%d)\n", ret); 1702 goto clean_unregister_netdev_ret; 1703 } 1704 1705 cpsw_notice(priv, probe, 1706 "initialized device (regs %pa, irq %d, pool size %d)\n", 1707 &ss_res->start, cpsw->irqs_table[0], descs_pool_size); 1708 1709 pm_runtime_put(&pdev->dev); 1710 1711 return 0; 1712 1713 clean_unregister_netdev_ret: 1714 unregister_netdev(ndev); 1715 clean_cpts: 1716 cpts_release(cpsw->cpts); 1717 cpdma_ctlr_destroy(cpsw->dma); 1718 clean_dt_ret: 1719 cpsw_remove_dt(pdev); 1720 pm_runtime_put_sync(&pdev->dev); 1721 clean_runtime_disable_ret: 1722 pm_runtime_disable(&pdev->dev); 1723 return ret; 1724 } 1725 1726 static int cpsw_remove(struct platform_device *pdev) 1727 { 1728 struct cpsw_common *cpsw = platform_get_drvdata(pdev); 1729 int i, ret; 1730 1731 ret = pm_runtime_get_sync(&pdev->dev); 1732 if (ret < 0) { 1733 pm_runtime_put_noidle(&pdev->dev); 1734 return ret; 1735 } 1736 1737 for (i = 0; i < cpsw->data.slaves; i++) 1738 if (cpsw->slaves[i].ndev) 1739 unregister_netdev(cpsw->slaves[i].ndev); 1740 1741 cpts_release(cpsw->cpts); 1742 cpdma_ctlr_destroy(cpsw->dma); 1743 cpsw_remove_dt(pdev); 1744 pm_runtime_put_sync(&pdev->dev); 1745 pm_runtime_disable(&pdev->dev); 1746 return 0; 1747 } 1748 1749 #ifdef CONFIG_PM_SLEEP 1750 static int cpsw_suspend(struct device *dev) 1751 { 1752 struct cpsw_common *cpsw = dev_get_drvdata(dev); 1753 int i; 1754 1755 for (i = 0; i < cpsw->data.slaves; i++) 1756 if (cpsw->slaves[i].ndev) 1757 if (netif_running(cpsw->slaves[i].ndev)) 1758 cpsw_ndo_stop(cpsw->slaves[i].ndev); 1759 1760 /* Select sleep pin state */ 1761 pinctrl_pm_select_sleep_state(dev); 1762 1763 return 0; 1764 } 1765 1766 static int cpsw_resume(struct device *dev) 1767 { 1768 struct cpsw_common *cpsw = dev_get_drvdata(dev); 1769 int i; 1770 1771 /* Select default pin state */ 1772 pinctrl_pm_select_default_state(dev); 1773 1774 /* shut up ASSERT_RTNL() warning in netif_set_real_num_tx/rx_queues */ 1775 rtnl_lock(); 1776 1777 for (i = 0; i < cpsw->data.slaves; i++) 1778 if (cpsw->slaves[i].ndev) 1779 if (netif_running(cpsw->slaves[i].ndev)) 1780 cpsw_ndo_open(cpsw->slaves[i].ndev); 1781 1782 rtnl_unlock(); 1783 1784 return 0; 1785 } 1786 #endif 1787 1788 static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume); 1789 1790 static struct platform_driver cpsw_driver = { 1791 .driver = { 1792 .name = "cpsw", 1793 .pm = &cpsw_pm_ops, 1794 .of_match_table = cpsw_of_mtable, 1795 }, 1796 .probe = cpsw_probe, 1797 .remove = cpsw_remove, 1798 }; 1799 1800 module_platform_driver(cpsw_driver); 1801 1802 MODULE_LICENSE("GPL"); 1803 MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>"); 1804 MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>"); 1805 MODULE_DESCRIPTION("TI CPSW Ethernet driver"); 1806