1 /* 2 * Texas Instruments Ethernet Switch Driver 3 * 4 * Copyright (C) 2012 Texas Instruments 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License as 8 * published by the Free Software Foundation version 2. 9 * 10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any 11 * kind, whether express or implied; without even the implied warranty 12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/io.h> 18 #include <linux/clk.h> 19 #include <linux/timer.h> 20 #include <linux/module.h> 21 #include <linux/platform_device.h> 22 #include <linux/irqreturn.h> 23 #include <linux/interrupt.h> 24 #include <linux/if_ether.h> 25 #include <linux/etherdevice.h> 26 #include <linux/netdevice.h> 27 #include <linux/net_tstamp.h> 28 #include <linux/phy.h> 29 #include <linux/workqueue.h> 30 #include <linux/delay.h> 31 #include <linux/pm_runtime.h> 32 #include <linux/of.h> 33 #include <linux/of_net.h> 34 #include <linux/of_device.h> 35 #include <linux/if_vlan.h> 36 37 #include <linux/pinctrl/consumer.h> 38 39 #include "cpsw.h" 40 #include "cpsw_ale.h" 41 #include "cpts.h" 42 #include "davinci_cpdma.h" 43 44 #define CPSW_DEBUG (NETIF_MSG_HW | NETIF_MSG_WOL | \ 45 NETIF_MSG_DRV | NETIF_MSG_LINK | \ 46 NETIF_MSG_IFUP | NETIF_MSG_INTR | \ 47 NETIF_MSG_PROBE | NETIF_MSG_TIMER | \ 48 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | \ 49 NETIF_MSG_TX_ERR | NETIF_MSG_TX_DONE | \ 50 NETIF_MSG_PKTDATA | NETIF_MSG_TX_QUEUED | \ 51 NETIF_MSG_RX_STATUS) 52 53 #define cpsw_info(priv, type, format, ...) \ 54 do { \ 55 if (netif_msg_##type(priv) && net_ratelimit()) \ 56 dev_info(priv->dev, format, ## __VA_ARGS__); \ 57 } while (0) 58 59 #define cpsw_err(priv, type, format, ...) \ 60 do { \ 61 if (netif_msg_##type(priv) && net_ratelimit()) \ 62 dev_err(priv->dev, format, ## __VA_ARGS__); \ 63 } while (0) 64 65 #define cpsw_dbg(priv, type, format, ...) \ 66 do { \ 67 if (netif_msg_##type(priv) && net_ratelimit()) \ 68 dev_dbg(priv->dev, format, ## __VA_ARGS__); \ 69 } while (0) 70 71 #define cpsw_notice(priv, type, format, ...) \ 72 do { \ 73 if (netif_msg_##type(priv) && net_ratelimit()) \ 74 dev_notice(priv->dev, format, ## __VA_ARGS__); \ 75 } while (0) 76 77 #define ALE_ALL_PORTS 0x7 78 79 #define CPSW_MAJOR_VERSION(reg) (reg >> 8 & 0x7) 80 #define CPSW_MINOR_VERSION(reg) (reg & 0xff) 81 #define CPSW_RTL_VERSION(reg) ((reg >> 11) & 0x1f) 82 83 #define CPSW_VERSION_1 0x19010a 84 #define CPSW_VERSION_2 0x19010c 85 #define CPSW_VERSION_3 0x19010f 86 #define CPSW_VERSION_4 0x190112 87 88 #define HOST_PORT_NUM 0 89 #define SLIVER_SIZE 0x40 90 91 #define CPSW1_HOST_PORT_OFFSET 0x028 92 #define CPSW1_SLAVE_OFFSET 0x050 93 #define CPSW1_SLAVE_SIZE 0x040 94 #define CPSW1_CPDMA_OFFSET 0x100 95 #define CPSW1_STATERAM_OFFSET 0x200 96 #define CPSW1_HW_STATS 0x400 97 #define CPSW1_CPTS_OFFSET 0x500 98 #define CPSW1_ALE_OFFSET 0x600 99 #define CPSW1_SLIVER_OFFSET 0x700 100 101 #define CPSW2_HOST_PORT_OFFSET 0x108 102 #define CPSW2_SLAVE_OFFSET 0x200 103 #define CPSW2_SLAVE_SIZE 0x100 104 #define CPSW2_CPDMA_OFFSET 0x800 105 #define CPSW2_HW_STATS 0x900 106 #define CPSW2_STATERAM_OFFSET 0xa00 107 #define CPSW2_CPTS_OFFSET 0xc00 108 #define CPSW2_ALE_OFFSET 0xd00 109 #define CPSW2_SLIVER_OFFSET 0xd80 110 #define CPSW2_BD_OFFSET 0x2000 111 112 #define CPDMA_RXTHRESH 0x0c0 113 #define CPDMA_RXFREE 0x0e0 114 #define CPDMA_TXHDP 0x00 115 #define CPDMA_RXHDP 0x20 116 #define CPDMA_TXCP 0x40 117 #define CPDMA_RXCP 0x60 118 119 #define CPSW_POLL_WEIGHT 64 120 #define CPSW_MIN_PACKET_SIZE 60 121 #define CPSW_MAX_PACKET_SIZE (1500 + 14 + 4 + 4) 122 123 #define RX_PRIORITY_MAPPING 0x76543210 124 #define TX_PRIORITY_MAPPING 0x33221100 125 #define CPDMA_TX_PRIORITY_MAP 0x76543210 126 127 #define CPSW_VLAN_AWARE BIT(1) 128 #define CPSW_ALE_VLAN_AWARE 1 129 130 #define CPSW_FIFO_NORMAL_MODE (0 << 15) 131 #define CPSW_FIFO_DUAL_MAC_MODE (1 << 15) 132 #define CPSW_FIFO_RATE_LIMIT_MODE (2 << 15) 133 134 #define CPSW_INTPACEEN (0x3f << 16) 135 #define CPSW_INTPRESCALE_MASK (0x7FF << 0) 136 #define CPSW_CMINTMAX_CNT 63 137 #define CPSW_CMINTMIN_CNT 2 138 #define CPSW_CMINTMAX_INTVL (1000 / CPSW_CMINTMIN_CNT) 139 #define CPSW_CMINTMIN_INTVL ((1000 / CPSW_CMINTMAX_CNT) + 1) 140 141 #define cpsw_enable_irq(priv) \ 142 do { \ 143 u32 i; \ 144 for (i = 0; i < priv->num_irqs; i++) \ 145 enable_irq(priv->irqs_table[i]); \ 146 } while (0) 147 #define cpsw_disable_irq(priv) \ 148 do { \ 149 u32 i; \ 150 for (i = 0; i < priv->num_irqs; i++) \ 151 disable_irq_nosync(priv->irqs_table[i]); \ 152 } while (0) 153 154 #define cpsw_slave_index(priv) \ 155 ((priv->data.dual_emac) ? priv->emac_port : \ 156 priv->data.active_slave) 157 158 static int debug_level; 159 module_param(debug_level, int, 0); 160 MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)"); 161 162 static int ale_ageout = 10; 163 module_param(ale_ageout, int, 0); 164 MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)"); 165 166 static int rx_packet_max = CPSW_MAX_PACKET_SIZE; 167 module_param(rx_packet_max, int, 0); 168 MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)"); 169 170 struct cpsw_wr_regs { 171 u32 id_ver; 172 u32 soft_reset; 173 u32 control; 174 u32 int_control; 175 u32 rx_thresh_en; 176 u32 rx_en; 177 u32 tx_en; 178 u32 misc_en; 179 u32 mem_allign1[8]; 180 u32 rx_thresh_stat; 181 u32 rx_stat; 182 u32 tx_stat; 183 u32 misc_stat; 184 u32 mem_allign2[8]; 185 u32 rx_imax; 186 u32 tx_imax; 187 188 }; 189 190 struct cpsw_ss_regs { 191 u32 id_ver; 192 u32 control; 193 u32 soft_reset; 194 u32 stat_port_en; 195 u32 ptype; 196 u32 soft_idle; 197 u32 thru_rate; 198 u32 gap_thresh; 199 u32 tx_start_wds; 200 u32 flow_control; 201 u32 vlan_ltype; 202 u32 ts_ltype; 203 u32 dlr_ltype; 204 }; 205 206 /* CPSW_PORT_V1 */ 207 #define CPSW1_MAX_BLKS 0x00 /* Maximum FIFO Blocks */ 208 #define CPSW1_BLK_CNT 0x04 /* FIFO Block Usage Count (Read Only) */ 209 #define CPSW1_TX_IN_CTL 0x08 /* Transmit FIFO Control */ 210 #define CPSW1_PORT_VLAN 0x0c /* VLAN Register */ 211 #define CPSW1_TX_PRI_MAP 0x10 /* Tx Header Priority to Switch Pri Mapping */ 212 #define CPSW1_TS_CTL 0x14 /* Time Sync Control */ 213 #define CPSW1_TS_SEQ_LTYPE 0x18 /* Time Sync Sequence ID Offset and Msg Type */ 214 #define CPSW1_TS_VLAN 0x1c /* Time Sync VLAN1 and VLAN2 */ 215 216 /* CPSW_PORT_V2 */ 217 #define CPSW2_CONTROL 0x00 /* Control Register */ 218 #define CPSW2_MAX_BLKS 0x08 /* Maximum FIFO Blocks */ 219 #define CPSW2_BLK_CNT 0x0c /* FIFO Block Usage Count (Read Only) */ 220 #define CPSW2_TX_IN_CTL 0x10 /* Transmit FIFO Control */ 221 #define CPSW2_PORT_VLAN 0x14 /* VLAN Register */ 222 #define CPSW2_TX_PRI_MAP 0x18 /* Tx Header Priority to Switch Pri Mapping */ 223 #define CPSW2_TS_SEQ_MTYPE 0x1c /* Time Sync Sequence ID Offset and Msg Type */ 224 225 /* CPSW_PORT_V1 and V2 */ 226 #define SA_LO 0x20 /* CPGMAC_SL Source Address Low */ 227 #define SA_HI 0x24 /* CPGMAC_SL Source Address High */ 228 #define SEND_PERCENT 0x28 /* Transmit Queue Send Percentages */ 229 230 /* CPSW_PORT_V2 only */ 231 #define RX_DSCP_PRI_MAP0 0x30 /* Rx DSCP Priority to Rx Packet Mapping */ 232 #define RX_DSCP_PRI_MAP1 0x34 /* Rx DSCP Priority to Rx Packet Mapping */ 233 #define RX_DSCP_PRI_MAP2 0x38 /* Rx DSCP Priority to Rx Packet Mapping */ 234 #define RX_DSCP_PRI_MAP3 0x3c /* Rx DSCP Priority to Rx Packet Mapping */ 235 #define RX_DSCP_PRI_MAP4 0x40 /* Rx DSCP Priority to Rx Packet Mapping */ 236 #define RX_DSCP_PRI_MAP5 0x44 /* Rx DSCP Priority to Rx Packet Mapping */ 237 #define RX_DSCP_PRI_MAP6 0x48 /* Rx DSCP Priority to Rx Packet Mapping */ 238 #define RX_DSCP_PRI_MAP7 0x4c /* Rx DSCP Priority to Rx Packet Mapping */ 239 240 /* Bit definitions for the CPSW2_CONTROL register */ 241 #define PASS_PRI_TAGGED (1<<24) /* Pass Priority Tagged */ 242 #define VLAN_LTYPE2_EN (1<<21) /* VLAN LTYPE 2 enable */ 243 #define VLAN_LTYPE1_EN (1<<20) /* VLAN LTYPE 1 enable */ 244 #define DSCP_PRI_EN (1<<16) /* DSCP Priority Enable */ 245 #define TS_320 (1<<14) /* Time Sync Dest Port 320 enable */ 246 #define TS_319 (1<<13) /* Time Sync Dest Port 319 enable */ 247 #define TS_132 (1<<12) /* Time Sync Dest IP Addr 132 enable */ 248 #define TS_131 (1<<11) /* Time Sync Dest IP Addr 131 enable */ 249 #define TS_130 (1<<10) /* Time Sync Dest IP Addr 130 enable */ 250 #define TS_129 (1<<9) /* Time Sync Dest IP Addr 129 enable */ 251 #define TS_TTL_NONZERO (1<<8) /* Time Sync Time To Live Non-zero enable */ 252 #define TS_ANNEX_F_EN (1<<6) /* Time Sync Annex F enable */ 253 #define TS_ANNEX_D_EN (1<<4) /* Time Sync Annex D enable */ 254 #define TS_LTYPE2_EN (1<<3) /* Time Sync LTYPE 2 enable */ 255 #define TS_LTYPE1_EN (1<<2) /* Time Sync LTYPE 1 enable */ 256 #define TS_TX_EN (1<<1) /* Time Sync Transmit Enable */ 257 #define TS_RX_EN (1<<0) /* Time Sync Receive Enable */ 258 259 #define CTRL_V2_TS_BITS \ 260 (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\ 261 TS_TTL_NONZERO | TS_ANNEX_D_EN | TS_LTYPE1_EN) 262 263 #define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN) 264 #define CTRL_V2_TX_TS_BITS (CTRL_V2_TS_BITS | TS_TX_EN) 265 #define CTRL_V2_RX_TS_BITS (CTRL_V2_TS_BITS | TS_RX_EN) 266 267 268 #define CTRL_V3_TS_BITS \ 269 (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\ 270 TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\ 271 TS_LTYPE1_EN) 272 273 #define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN) 274 #define CTRL_V3_TX_TS_BITS (CTRL_V3_TS_BITS | TS_TX_EN) 275 #define CTRL_V3_RX_TS_BITS (CTRL_V3_TS_BITS | TS_RX_EN) 276 277 /* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */ 278 #define TS_SEQ_ID_OFFSET_SHIFT (16) /* Time Sync Sequence ID Offset */ 279 #define TS_SEQ_ID_OFFSET_MASK (0x3f) 280 #define TS_MSG_TYPE_EN_SHIFT (0) /* Time Sync Message Type Enable */ 281 #define TS_MSG_TYPE_EN_MASK (0xffff) 282 283 /* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */ 284 #define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3)) 285 286 /* Bit definitions for the CPSW1_TS_CTL register */ 287 #define CPSW_V1_TS_RX_EN BIT(0) 288 #define CPSW_V1_TS_TX_EN BIT(4) 289 #define CPSW_V1_MSG_TYPE_OFS 16 290 291 /* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */ 292 #define CPSW_V1_SEQ_ID_OFS_SHIFT 16 293 294 struct cpsw_host_regs { 295 u32 max_blks; 296 u32 blk_cnt; 297 u32 tx_in_ctl; 298 u32 port_vlan; 299 u32 tx_pri_map; 300 u32 cpdma_tx_pri_map; 301 u32 cpdma_rx_chan_map; 302 }; 303 304 struct cpsw_sliver_regs { 305 u32 id_ver; 306 u32 mac_control; 307 u32 mac_status; 308 u32 soft_reset; 309 u32 rx_maxlen; 310 u32 __reserved_0; 311 u32 rx_pause; 312 u32 tx_pause; 313 u32 __reserved_1; 314 u32 rx_pri_map; 315 }; 316 317 struct cpsw_hw_stats { 318 u32 rxgoodframes; 319 u32 rxbroadcastframes; 320 u32 rxmulticastframes; 321 u32 rxpauseframes; 322 u32 rxcrcerrors; 323 u32 rxaligncodeerrors; 324 u32 rxoversizedframes; 325 u32 rxjabberframes; 326 u32 rxundersizedframes; 327 u32 rxfragments; 328 u32 __pad_0[2]; 329 u32 rxoctets; 330 u32 txgoodframes; 331 u32 txbroadcastframes; 332 u32 txmulticastframes; 333 u32 txpauseframes; 334 u32 txdeferredframes; 335 u32 txcollisionframes; 336 u32 txsinglecollframes; 337 u32 txmultcollframes; 338 u32 txexcessivecollisions; 339 u32 txlatecollisions; 340 u32 txunderrun; 341 u32 txcarriersenseerrors; 342 u32 txoctets; 343 u32 octetframes64; 344 u32 octetframes65t127; 345 u32 octetframes128t255; 346 u32 octetframes256t511; 347 u32 octetframes512t1023; 348 u32 octetframes1024tup; 349 u32 netoctets; 350 u32 rxsofoverruns; 351 u32 rxmofoverruns; 352 u32 rxdmaoverruns; 353 }; 354 355 struct cpsw_slave { 356 void __iomem *regs; 357 struct cpsw_sliver_regs __iomem *sliver; 358 int slave_num; 359 u32 mac_control; 360 struct cpsw_slave_data *data; 361 struct phy_device *phy; 362 struct net_device *ndev; 363 u32 port_vlan; 364 u32 open_stat; 365 }; 366 367 static inline u32 slave_read(struct cpsw_slave *slave, u32 offset) 368 { 369 return __raw_readl(slave->regs + offset); 370 } 371 372 static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset) 373 { 374 __raw_writel(val, slave->regs + offset); 375 } 376 377 struct cpsw_priv { 378 spinlock_t lock; 379 struct platform_device *pdev; 380 struct net_device *ndev; 381 struct napi_struct napi; 382 struct device *dev; 383 struct cpsw_platform_data data; 384 struct cpsw_ss_regs __iomem *regs; 385 struct cpsw_wr_regs __iomem *wr_regs; 386 u8 __iomem *hw_stats; 387 struct cpsw_host_regs __iomem *host_port_regs; 388 u32 msg_enable; 389 u32 version; 390 u32 coal_intvl; 391 u32 bus_freq_mhz; 392 int rx_packet_max; 393 int host_port; 394 struct clk *clk; 395 u8 mac_addr[ETH_ALEN]; 396 struct cpsw_slave *slaves; 397 struct cpdma_ctlr *dma; 398 struct cpdma_chan *txch, *rxch; 399 struct cpsw_ale *ale; 400 /* snapshot of IRQ numbers */ 401 u32 irqs_table[4]; 402 u32 num_irqs; 403 bool irq_enabled; 404 struct cpts *cpts; 405 u32 emac_port; 406 }; 407 408 struct cpsw_stats { 409 char stat_string[ETH_GSTRING_LEN]; 410 int type; 411 int sizeof_stat; 412 int stat_offset; 413 }; 414 415 enum { 416 CPSW_STATS, 417 CPDMA_RX_STATS, 418 CPDMA_TX_STATS, 419 }; 420 421 #define CPSW_STAT(m) CPSW_STATS, \ 422 sizeof(((struct cpsw_hw_stats *)0)->m), \ 423 offsetof(struct cpsw_hw_stats, m) 424 #define CPDMA_RX_STAT(m) CPDMA_RX_STATS, \ 425 sizeof(((struct cpdma_chan_stats *)0)->m), \ 426 offsetof(struct cpdma_chan_stats, m) 427 #define CPDMA_TX_STAT(m) CPDMA_TX_STATS, \ 428 sizeof(((struct cpdma_chan_stats *)0)->m), \ 429 offsetof(struct cpdma_chan_stats, m) 430 431 static const struct cpsw_stats cpsw_gstrings_stats[] = { 432 { "Good Rx Frames", CPSW_STAT(rxgoodframes) }, 433 { "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) }, 434 { "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) }, 435 { "Pause Rx Frames", CPSW_STAT(rxpauseframes) }, 436 { "Rx CRC Errors", CPSW_STAT(rxcrcerrors) }, 437 { "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) }, 438 { "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) }, 439 { "Rx Jabbers", CPSW_STAT(rxjabberframes) }, 440 { "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) }, 441 { "Rx Fragments", CPSW_STAT(rxfragments) }, 442 { "Rx Octets", CPSW_STAT(rxoctets) }, 443 { "Good Tx Frames", CPSW_STAT(txgoodframes) }, 444 { "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) }, 445 { "Multicast Tx Frames", CPSW_STAT(txmulticastframes) }, 446 { "Pause Tx Frames", CPSW_STAT(txpauseframes) }, 447 { "Deferred Tx Frames", CPSW_STAT(txdeferredframes) }, 448 { "Collisions", CPSW_STAT(txcollisionframes) }, 449 { "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) }, 450 { "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) }, 451 { "Excessive Collisions", CPSW_STAT(txexcessivecollisions) }, 452 { "Late Collisions", CPSW_STAT(txlatecollisions) }, 453 { "Tx Underrun", CPSW_STAT(txunderrun) }, 454 { "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) }, 455 { "Tx Octets", CPSW_STAT(txoctets) }, 456 { "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) }, 457 { "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) }, 458 { "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) }, 459 { "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) }, 460 { "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) }, 461 { "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) }, 462 { "Net Octets", CPSW_STAT(netoctets) }, 463 { "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) }, 464 { "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) }, 465 { "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) }, 466 { "Rx DMA chan: head_enqueue", CPDMA_RX_STAT(head_enqueue) }, 467 { "Rx DMA chan: tail_enqueue", CPDMA_RX_STAT(tail_enqueue) }, 468 { "Rx DMA chan: pad_enqueue", CPDMA_RX_STAT(pad_enqueue) }, 469 { "Rx DMA chan: misqueued", CPDMA_RX_STAT(misqueued) }, 470 { "Rx DMA chan: desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) }, 471 { "Rx DMA chan: pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) }, 472 { "Rx DMA chan: runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) }, 473 { "Rx DMA chan: runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) }, 474 { "Rx DMA chan: empty_dequeue", CPDMA_RX_STAT(empty_dequeue) }, 475 { "Rx DMA chan: busy_dequeue", CPDMA_RX_STAT(busy_dequeue) }, 476 { "Rx DMA chan: good_dequeue", CPDMA_RX_STAT(good_dequeue) }, 477 { "Rx DMA chan: requeue", CPDMA_RX_STAT(requeue) }, 478 { "Rx DMA chan: teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) }, 479 { "Tx DMA chan: head_enqueue", CPDMA_TX_STAT(head_enqueue) }, 480 { "Tx DMA chan: tail_enqueue", CPDMA_TX_STAT(tail_enqueue) }, 481 { "Tx DMA chan: pad_enqueue", CPDMA_TX_STAT(pad_enqueue) }, 482 { "Tx DMA chan: misqueued", CPDMA_TX_STAT(misqueued) }, 483 { "Tx DMA chan: desc_alloc_fail", CPDMA_TX_STAT(desc_alloc_fail) }, 484 { "Tx DMA chan: pad_alloc_fail", CPDMA_TX_STAT(pad_alloc_fail) }, 485 { "Tx DMA chan: runt_receive_buf", CPDMA_TX_STAT(runt_receive_buff) }, 486 { "Tx DMA chan: runt_transmit_buf", CPDMA_TX_STAT(runt_transmit_buff) }, 487 { "Tx DMA chan: empty_dequeue", CPDMA_TX_STAT(empty_dequeue) }, 488 { "Tx DMA chan: busy_dequeue", CPDMA_TX_STAT(busy_dequeue) }, 489 { "Tx DMA chan: good_dequeue", CPDMA_TX_STAT(good_dequeue) }, 490 { "Tx DMA chan: requeue", CPDMA_TX_STAT(requeue) }, 491 { "Tx DMA chan: teardown_dequeue", CPDMA_TX_STAT(teardown_dequeue) }, 492 }; 493 494 #define CPSW_STATS_LEN ARRAY_SIZE(cpsw_gstrings_stats) 495 496 #define napi_to_priv(napi) container_of(napi, struct cpsw_priv, napi) 497 #define for_each_slave(priv, func, arg...) \ 498 do { \ 499 struct cpsw_slave *slave; \ 500 int n; \ 501 if (priv->data.dual_emac) \ 502 (func)((priv)->slaves + priv->emac_port, ##arg);\ 503 else \ 504 for (n = (priv)->data.slaves, \ 505 slave = (priv)->slaves; \ 506 n; n--) \ 507 (func)(slave++, ##arg); \ 508 } while (0) 509 #define cpsw_get_slave_ndev(priv, __slave_no__) \ 510 (priv->slaves[__slave_no__].ndev) 511 #define cpsw_get_slave_priv(priv, __slave_no__) \ 512 ((priv->slaves[__slave_no__].ndev) ? \ 513 netdev_priv(priv->slaves[__slave_no__].ndev) : NULL) \ 514 515 #define cpsw_dual_emac_src_port_detect(status, priv, ndev, skb) \ 516 do { \ 517 if (!priv->data.dual_emac) \ 518 break; \ 519 if (CPDMA_RX_SOURCE_PORT(status) == 1) { \ 520 ndev = cpsw_get_slave_ndev(priv, 0); \ 521 priv = netdev_priv(ndev); \ 522 skb->dev = ndev; \ 523 } else if (CPDMA_RX_SOURCE_PORT(status) == 2) { \ 524 ndev = cpsw_get_slave_ndev(priv, 1); \ 525 priv = netdev_priv(ndev); \ 526 skb->dev = ndev; \ 527 } \ 528 } while (0) 529 #define cpsw_add_mcast(priv, addr) \ 530 do { \ 531 if (priv->data.dual_emac) { \ 532 struct cpsw_slave *slave = priv->slaves + \ 533 priv->emac_port; \ 534 int slave_port = cpsw_get_slave_port(priv, \ 535 slave->slave_num); \ 536 cpsw_ale_add_mcast(priv->ale, addr, \ 537 1 << slave_port | 1 << priv->host_port, \ 538 ALE_VLAN, slave->port_vlan, 0); \ 539 } else { \ 540 cpsw_ale_add_mcast(priv->ale, addr, \ 541 ALE_ALL_PORTS << priv->host_port, \ 542 0, 0, 0); \ 543 } \ 544 } while (0) 545 546 static inline int cpsw_get_slave_port(struct cpsw_priv *priv, u32 slave_num) 547 { 548 if (priv->host_port == 0) 549 return slave_num + 1; 550 else 551 return slave_num; 552 } 553 554 static void cpsw_set_promiscious(struct net_device *ndev, bool enable) 555 { 556 struct cpsw_priv *priv = netdev_priv(ndev); 557 struct cpsw_ale *ale = priv->ale; 558 int i; 559 560 if (priv->data.dual_emac) { 561 bool flag = false; 562 563 /* Enabling promiscuous mode for one interface will be 564 * common for both the interface as the interface shares 565 * the same hardware resource. 566 */ 567 for (i = 0; i < priv->data.slaves; i++) 568 if (priv->slaves[i].ndev->flags & IFF_PROMISC) 569 flag = true; 570 571 if (!enable && flag) { 572 enable = true; 573 dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n"); 574 } 575 576 if (enable) { 577 /* Enable Bypass */ 578 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1); 579 580 dev_dbg(&ndev->dev, "promiscuity enabled\n"); 581 } else { 582 /* Disable Bypass */ 583 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0); 584 dev_dbg(&ndev->dev, "promiscuity disabled\n"); 585 } 586 } else { 587 if (enable) { 588 unsigned long timeout = jiffies + HZ; 589 590 /* Disable Learn for all ports */ 591 for (i = 0; i < priv->data.slaves; i++) { 592 cpsw_ale_control_set(ale, i, 593 ALE_PORT_NOLEARN, 1); 594 cpsw_ale_control_set(ale, i, 595 ALE_PORT_NO_SA_UPDATE, 1); 596 } 597 598 /* Clear All Untouched entries */ 599 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1); 600 do { 601 cpu_relax(); 602 if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT)) 603 break; 604 } while (time_after(timeout, jiffies)); 605 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1); 606 607 /* Clear all mcast from ALE */ 608 cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS << 609 priv->host_port); 610 611 /* Flood All Unicast Packets to Host port */ 612 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1); 613 dev_dbg(&ndev->dev, "promiscuity enabled\n"); 614 } else { 615 /* Flood All Unicast Packets to Host port */ 616 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0); 617 618 /* Enable Learn for all ports */ 619 for (i = 0; i < priv->data.slaves; i++) { 620 cpsw_ale_control_set(ale, i, 621 ALE_PORT_NOLEARN, 0); 622 cpsw_ale_control_set(ale, i, 623 ALE_PORT_NO_SA_UPDATE, 0); 624 } 625 dev_dbg(&ndev->dev, "promiscuity disabled\n"); 626 } 627 } 628 } 629 630 static void cpsw_ndo_set_rx_mode(struct net_device *ndev) 631 { 632 struct cpsw_priv *priv = netdev_priv(ndev); 633 634 if (ndev->flags & IFF_PROMISC) { 635 /* Enable promiscuous mode */ 636 cpsw_set_promiscious(ndev, true); 637 return; 638 } else { 639 /* Disable promiscuous mode */ 640 cpsw_set_promiscious(ndev, false); 641 } 642 643 /* Clear all mcast from ALE */ 644 cpsw_ale_flush_multicast(priv->ale, ALE_ALL_PORTS << priv->host_port); 645 646 if (!netdev_mc_empty(ndev)) { 647 struct netdev_hw_addr *ha; 648 649 /* program multicast address list into ALE register */ 650 netdev_for_each_mc_addr(ha, ndev) { 651 cpsw_add_mcast(priv, (u8 *)ha->addr); 652 } 653 } 654 } 655 656 static void cpsw_intr_enable(struct cpsw_priv *priv) 657 { 658 __raw_writel(0xFF, &priv->wr_regs->tx_en); 659 __raw_writel(0xFF, &priv->wr_regs->rx_en); 660 661 cpdma_ctlr_int_ctrl(priv->dma, true); 662 return; 663 } 664 665 static void cpsw_intr_disable(struct cpsw_priv *priv) 666 { 667 __raw_writel(0, &priv->wr_regs->tx_en); 668 __raw_writel(0, &priv->wr_regs->rx_en); 669 670 cpdma_ctlr_int_ctrl(priv->dma, false); 671 return; 672 } 673 674 static void cpsw_tx_handler(void *token, int len, int status) 675 { 676 struct sk_buff *skb = token; 677 struct net_device *ndev = skb->dev; 678 struct cpsw_priv *priv = netdev_priv(ndev); 679 680 /* Check whether the queue is stopped due to stalled tx dma, if the 681 * queue is stopped then start the queue as we have free desc for tx 682 */ 683 if (unlikely(netif_queue_stopped(ndev))) 684 netif_wake_queue(ndev); 685 cpts_tx_timestamp(priv->cpts, skb); 686 ndev->stats.tx_packets++; 687 ndev->stats.tx_bytes += len; 688 dev_kfree_skb_any(skb); 689 } 690 691 static void cpsw_rx_handler(void *token, int len, int status) 692 { 693 struct sk_buff *skb = token; 694 struct sk_buff *new_skb; 695 struct net_device *ndev = skb->dev; 696 struct cpsw_priv *priv = netdev_priv(ndev); 697 int ret = 0; 698 699 cpsw_dual_emac_src_port_detect(status, priv, ndev, skb); 700 701 if (unlikely(status < 0) || unlikely(!netif_running(ndev))) { 702 /* the interface is going down, skbs are purged */ 703 dev_kfree_skb_any(skb); 704 return; 705 } 706 707 new_skb = netdev_alloc_skb_ip_align(ndev, priv->rx_packet_max); 708 if (new_skb) { 709 skb_put(skb, len); 710 cpts_rx_timestamp(priv->cpts, skb); 711 skb->protocol = eth_type_trans(skb, ndev); 712 netif_receive_skb(skb); 713 ndev->stats.rx_bytes += len; 714 ndev->stats.rx_packets++; 715 } else { 716 ndev->stats.rx_dropped++; 717 new_skb = skb; 718 } 719 720 ret = cpdma_chan_submit(priv->rxch, new_skb, new_skb->data, 721 skb_tailroom(new_skb), 0); 722 if (WARN_ON(ret < 0)) 723 dev_kfree_skb_any(new_skb); 724 } 725 726 static irqreturn_t cpsw_interrupt(int irq, void *dev_id) 727 { 728 struct cpsw_priv *priv = dev_id; 729 730 cpsw_intr_disable(priv); 731 if (priv->irq_enabled == true) { 732 cpsw_disable_irq(priv); 733 priv->irq_enabled = false; 734 } 735 736 if (netif_running(priv->ndev)) { 737 napi_schedule(&priv->napi); 738 return IRQ_HANDLED; 739 } 740 741 priv = cpsw_get_slave_priv(priv, 1); 742 if (!priv) 743 return IRQ_NONE; 744 745 if (netif_running(priv->ndev)) { 746 napi_schedule(&priv->napi); 747 return IRQ_HANDLED; 748 } 749 return IRQ_NONE; 750 } 751 752 static int cpsw_poll(struct napi_struct *napi, int budget) 753 { 754 struct cpsw_priv *priv = napi_to_priv(napi); 755 int num_tx, num_rx; 756 757 num_tx = cpdma_chan_process(priv->txch, 128); 758 if (num_tx) 759 cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_TX); 760 761 num_rx = cpdma_chan_process(priv->rxch, budget); 762 if (num_rx < budget) { 763 struct cpsw_priv *prim_cpsw; 764 765 napi_complete(napi); 766 cpsw_intr_enable(priv); 767 cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_RX); 768 prim_cpsw = cpsw_get_slave_priv(priv, 0); 769 if (prim_cpsw->irq_enabled == false) { 770 prim_cpsw->irq_enabled = true; 771 cpsw_enable_irq(priv); 772 } 773 } 774 775 if (num_rx || num_tx) 776 cpsw_dbg(priv, intr, "poll %d rx, %d tx pkts\n", 777 num_rx, num_tx); 778 779 return num_rx; 780 } 781 782 static inline void soft_reset(const char *module, void __iomem *reg) 783 { 784 unsigned long timeout = jiffies + HZ; 785 786 __raw_writel(1, reg); 787 do { 788 cpu_relax(); 789 } while ((__raw_readl(reg) & 1) && time_after(timeout, jiffies)); 790 791 WARN(__raw_readl(reg) & 1, "failed to soft-reset %s\n", module); 792 } 793 794 #define mac_hi(mac) (((mac)[0] << 0) | ((mac)[1] << 8) | \ 795 ((mac)[2] << 16) | ((mac)[3] << 24)) 796 #define mac_lo(mac) (((mac)[4] << 0) | ((mac)[5] << 8)) 797 798 static void cpsw_set_slave_mac(struct cpsw_slave *slave, 799 struct cpsw_priv *priv) 800 { 801 slave_write(slave, mac_hi(priv->mac_addr), SA_HI); 802 slave_write(slave, mac_lo(priv->mac_addr), SA_LO); 803 } 804 805 static void _cpsw_adjust_link(struct cpsw_slave *slave, 806 struct cpsw_priv *priv, bool *link) 807 { 808 struct phy_device *phy = slave->phy; 809 u32 mac_control = 0; 810 u32 slave_port; 811 812 if (!phy) 813 return; 814 815 slave_port = cpsw_get_slave_port(priv, slave->slave_num); 816 817 if (phy->link) { 818 mac_control = priv->data.mac_control; 819 820 /* enable forwarding */ 821 cpsw_ale_control_set(priv->ale, slave_port, 822 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD); 823 824 if (phy->speed == 1000) 825 mac_control |= BIT(7); /* GIGABITEN */ 826 if (phy->duplex) 827 mac_control |= BIT(0); /* FULLDUPLEXEN */ 828 829 /* set speed_in input in case RMII mode is used in 100Mbps */ 830 if (phy->speed == 100) 831 mac_control |= BIT(15); 832 else if (phy->speed == 10) 833 mac_control |= BIT(18); /* In Band mode */ 834 835 *link = true; 836 } else { 837 mac_control = 0; 838 /* disable forwarding */ 839 cpsw_ale_control_set(priv->ale, slave_port, 840 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE); 841 } 842 843 if (mac_control != slave->mac_control) { 844 phy_print_status(phy); 845 __raw_writel(mac_control, &slave->sliver->mac_control); 846 } 847 848 slave->mac_control = mac_control; 849 } 850 851 static void cpsw_adjust_link(struct net_device *ndev) 852 { 853 struct cpsw_priv *priv = netdev_priv(ndev); 854 bool link = false; 855 856 for_each_slave(priv, _cpsw_adjust_link, priv, &link); 857 858 if (link) { 859 netif_carrier_on(ndev); 860 if (netif_running(ndev)) 861 netif_wake_queue(ndev); 862 } else { 863 netif_carrier_off(ndev); 864 netif_stop_queue(ndev); 865 } 866 } 867 868 static int cpsw_get_coalesce(struct net_device *ndev, 869 struct ethtool_coalesce *coal) 870 { 871 struct cpsw_priv *priv = netdev_priv(ndev); 872 873 coal->rx_coalesce_usecs = priv->coal_intvl; 874 return 0; 875 } 876 877 static int cpsw_set_coalesce(struct net_device *ndev, 878 struct ethtool_coalesce *coal) 879 { 880 struct cpsw_priv *priv = netdev_priv(ndev); 881 u32 int_ctrl; 882 u32 num_interrupts = 0; 883 u32 prescale = 0; 884 u32 addnl_dvdr = 1; 885 u32 coal_intvl = 0; 886 887 coal_intvl = coal->rx_coalesce_usecs; 888 889 int_ctrl = readl(&priv->wr_regs->int_control); 890 prescale = priv->bus_freq_mhz * 4; 891 892 if (!coal->rx_coalesce_usecs) { 893 int_ctrl &= ~(CPSW_INTPRESCALE_MASK | CPSW_INTPACEEN); 894 goto update_return; 895 } 896 897 if (coal_intvl < CPSW_CMINTMIN_INTVL) 898 coal_intvl = CPSW_CMINTMIN_INTVL; 899 900 if (coal_intvl > CPSW_CMINTMAX_INTVL) { 901 /* Interrupt pacer works with 4us Pulse, we can 902 * throttle further by dilating the 4us pulse. 903 */ 904 addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale; 905 906 if (addnl_dvdr > 1) { 907 prescale *= addnl_dvdr; 908 if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr)) 909 coal_intvl = (CPSW_CMINTMAX_INTVL 910 * addnl_dvdr); 911 } else { 912 addnl_dvdr = 1; 913 coal_intvl = CPSW_CMINTMAX_INTVL; 914 } 915 } 916 917 num_interrupts = (1000 * addnl_dvdr) / coal_intvl; 918 writel(num_interrupts, &priv->wr_regs->rx_imax); 919 writel(num_interrupts, &priv->wr_regs->tx_imax); 920 921 int_ctrl |= CPSW_INTPACEEN; 922 int_ctrl &= (~CPSW_INTPRESCALE_MASK); 923 int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK); 924 925 update_return: 926 writel(int_ctrl, &priv->wr_regs->int_control); 927 928 cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl); 929 if (priv->data.dual_emac) { 930 int i; 931 932 for (i = 0; i < priv->data.slaves; i++) { 933 priv = netdev_priv(priv->slaves[i].ndev); 934 priv->coal_intvl = coal_intvl; 935 } 936 } else { 937 priv->coal_intvl = coal_intvl; 938 } 939 940 return 0; 941 } 942 943 static int cpsw_get_sset_count(struct net_device *ndev, int sset) 944 { 945 switch (sset) { 946 case ETH_SS_STATS: 947 return CPSW_STATS_LEN; 948 default: 949 return -EOPNOTSUPP; 950 } 951 } 952 953 static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data) 954 { 955 u8 *p = data; 956 int i; 957 958 switch (stringset) { 959 case ETH_SS_STATS: 960 for (i = 0; i < CPSW_STATS_LEN; i++) { 961 memcpy(p, cpsw_gstrings_stats[i].stat_string, 962 ETH_GSTRING_LEN); 963 p += ETH_GSTRING_LEN; 964 } 965 break; 966 } 967 } 968 969 static void cpsw_get_ethtool_stats(struct net_device *ndev, 970 struct ethtool_stats *stats, u64 *data) 971 { 972 struct cpsw_priv *priv = netdev_priv(ndev); 973 struct cpdma_chan_stats rx_stats; 974 struct cpdma_chan_stats tx_stats; 975 u32 val; 976 u8 *p; 977 int i; 978 979 /* Collect Davinci CPDMA stats for Rx and Tx Channel */ 980 cpdma_chan_get_stats(priv->rxch, &rx_stats); 981 cpdma_chan_get_stats(priv->txch, &tx_stats); 982 983 for (i = 0; i < CPSW_STATS_LEN; i++) { 984 switch (cpsw_gstrings_stats[i].type) { 985 case CPSW_STATS: 986 val = readl(priv->hw_stats + 987 cpsw_gstrings_stats[i].stat_offset); 988 data[i] = val; 989 break; 990 991 case CPDMA_RX_STATS: 992 p = (u8 *)&rx_stats + 993 cpsw_gstrings_stats[i].stat_offset; 994 data[i] = *(u32 *)p; 995 break; 996 997 case CPDMA_TX_STATS: 998 p = (u8 *)&tx_stats + 999 cpsw_gstrings_stats[i].stat_offset; 1000 data[i] = *(u32 *)p; 1001 break; 1002 } 1003 } 1004 } 1005 1006 static int cpsw_common_res_usage_state(struct cpsw_priv *priv) 1007 { 1008 u32 i; 1009 u32 usage_count = 0; 1010 1011 if (!priv->data.dual_emac) 1012 return 0; 1013 1014 for (i = 0; i < priv->data.slaves; i++) 1015 if (priv->slaves[i].open_stat) 1016 usage_count++; 1017 1018 return usage_count; 1019 } 1020 1021 static inline int cpsw_tx_packet_submit(struct net_device *ndev, 1022 struct cpsw_priv *priv, struct sk_buff *skb) 1023 { 1024 if (!priv->data.dual_emac) 1025 return cpdma_chan_submit(priv->txch, skb, skb->data, 1026 skb->len, 0); 1027 1028 if (ndev == cpsw_get_slave_ndev(priv, 0)) 1029 return cpdma_chan_submit(priv->txch, skb, skb->data, 1030 skb->len, 1); 1031 else 1032 return cpdma_chan_submit(priv->txch, skb, skb->data, 1033 skb->len, 2); 1034 } 1035 1036 static inline void cpsw_add_dual_emac_def_ale_entries( 1037 struct cpsw_priv *priv, struct cpsw_slave *slave, 1038 u32 slave_port) 1039 { 1040 u32 port_mask = 1 << slave_port | 1 << priv->host_port; 1041 1042 if (priv->version == CPSW_VERSION_1) 1043 slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN); 1044 else 1045 slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN); 1046 cpsw_ale_add_vlan(priv->ale, slave->port_vlan, port_mask, 1047 port_mask, port_mask, 0); 1048 cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast, 1049 port_mask, ALE_VLAN, slave->port_vlan, 0); 1050 cpsw_ale_add_ucast(priv->ale, priv->mac_addr, 1051 priv->host_port, ALE_VLAN, slave->port_vlan); 1052 } 1053 1054 static void soft_reset_slave(struct cpsw_slave *slave) 1055 { 1056 char name[32]; 1057 1058 snprintf(name, sizeof(name), "slave-%d", slave->slave_num); 1059 soft_reset(name, &slave->sliver->soft_reset); 1060 } 1061 1062 static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv) 1063 { 1064 u32 slave_port; 1065 1066 soft_reset_slave(slave); 1067 1068 /* setup priority mapping */ 1069 __raw_writel(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map); 1070 1071 switch (priv->version) { 1072 case CPSW_VERSION_1: 1073 slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP); 1074 break; 1075 case CPSW_VERSION_2: 1076 case CPSW_VERSION_3: 1077 case CPSW_VERSION_4: 1078 slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP); 1079 break; 1080 } 1081 1082 /* setup max packet size, and mac address */ 1083 __raw_writel(priv->rx_packet_max, &slave->sliver->rx_maxlen); 1084 cpsw_set_slave_mac(slave, priv); 1085 1086 slave->mac_control = 0; /* no link yet */ 1087 1088 slave_port = cpsw_get_slave_port(priv, slave->slave_num); 1089 1090 if (priv->data.dual_emac) 1091 cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port); 1092 else 1093 cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast, 1094 1 << slave_port, 0, 0, ALE_MCAST_FWD_2); 1095 1096 slave->phy = phy_connect(priv->ndev, slave->data->phy_id, 1097 &cpsw_adjust_link, slave->data->phy_if); 1098 if (IS_ERR(slave->phy)) { 1099 dev_err(priv->dev, "phy %s not found on slave %d\n", 1100 slave->data->phy_id, slave->slave_num); 1101 slave->phy = NULL; 1102 } else { 1103 dev_info(priv->dev, "phy found : id is : 0x%x\n", 1104 slave->phy->phy_id); 1105 phy_start(slave->phy); 1106 1107 /* Configure GMII_SEL register */ 1108 cpsw_phy_sel(&priv->pdev->dev, slave->phy->interface, 1109 slave->slave_num); 1110 } 1111 } 1112 1113 static inline void cpsw_add_default_vlan(struct cpsw_priv *priv) 1114 { 1115 const int vlan = priv->data.default_vlan; 1116 const int port = priv->host_port; 1117 u32 reg; 1118 int i; 1119 1120 reg = (priv->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN : 1121 CPSW2_PORT_VLAN; 1122 1123 writel(vlan, &priv->host_port_regs->port_vlan); 1124 1125 for (i = 0; i < priv->data.slaves; i++) 1126 slave_write(priv->slaves + i, vlan, reg); 1127 1128 cpsw_ale_add_vlan(priv->ale, vlan, ALE_ALL_PORTS << port, 1129 ALE_ALL_PORTS << port, ALE_ALL_PORTS << port, 1130 (ALE_PORT_1 | ALE_PORT_2) << port); 1131 } 1132 1133 static void cpsw_init_host_port(struct cpsw_priv *priv) 1134 { 1135 u32 control_reg; 1136 u32 fifo_mode; 1137 1138 /* soft reset the controller and initialize ale */ 1139 soft_reset("cpsw", &priv->regs->soft_reset); 1140 cpsw_ale_start(priv->ale); 1141 1142 /* switch to vlan unaware mode */ 1143 cpsw_ale_control_set(priv->ale, priv->host_port, ALE_VLAN_AWARE, 1144 CPSW_ALE_VLAN_AWARE); 1145 control_reg = readl(&priv->regs->control); 1146 control_reg |= CPSW_VLAN_AWARE; 1147 writel(control_reg, &priv->regs->control); 1148 fifo_mode = (priv->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE : 1149 CPSW_FIFO_NORMAL_MODE; 1150 writel(fifo_mode, &priv->host_port_regs->tx_in_ctl); 1151 1152 /* setup host port priority mapping */ 1153 __raw_writel(CPDMA_TX_PRIORITY_MAP, 1154 &priv->host_port_regs->cpdma_tx_pri_map); 1155 __raw_writel(0, &priv->host_port_regs->cpdma_rx_chan_map); 1156 1157 cpsw_ale_control_set(priv->ale, priv->host_port, 1158 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD); 1159 1160 if (!priv->data.dual_emac) { 1161 cpsw_ale_add_ucast(priv->ale, priv->mac_addr, priv->host_port, 1162 0, 0); 1163 cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast, 1164 1 << priv->host_port, 0, 0, ALE_MCAST_FWD_2); 1165 } 1166 } 1167 1168 static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_priv *priv) 1169 { 1170 u32 slave_port; 1171 1172 slave_port = cpsw_get_slave_port(priv, slave->slave_num); 1173 1174 if (!slave->phy) 1175 return; 1176 phy_stop(slave->phy); 1177 phy_disconnect(slave->phy); 1178 slave->phy = NULL; 1179 cpsw_ale_control_set(priv->ale, slave_port, 1180 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE); 1181 } 1182 1183 static int cpsw_ndo_open(struct net_device *ndev) 1184 { 1185 struct cpsw_priv *priv = netdev_priv(ndev); 1186 struct cpsw_priv *prim_cpsw; 1187 int i, ret; 1188 u32 reg; 1189 1190 if (!cpsw_common_res_usage_state(priv)) 1191 cpsw_intr_disable(priv); 1192 netif_carrier_off(ndev); 1193 1194 pm_runtime_get_sync(&priv->pdev->dev); 1195 1196 reg = priv->version; 1197 1198 dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n", 1199 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg), 1200 CPSW_RTL_VERSION(reg)); 1201 1202 /* initialize host and slave ports */ 1203 if (!cpsw_common_res_usage_state(priv)) 1204 cpsw_init_host_port(priv); 1205 for_each_slave(priv, cpsw_slave_open, priv); 1206 1207 /* Add default VLAN */ 1208 if (!priv->data.dual_emac) 1209 cpsw_add_default_vlan(priv); 1210 else 1211 cpsw_ale_add_vlan(priv->ale, priv->data.default_vlan, 1212 ALE_ALL_PORTS << priv->host_port, 1213 ALE_ALL_PORTS << priv->host_port, 0, 0); 1214 1215 if (!cpsw_common_res_usage_state(priv)) { 1216 /* setup tx dma to fixed prio and zero offset */ 1217 cpdma_control_set(priv->dma, CPDMA_TX_PRIO_FIXED, 1); 1218 cpdma_control_set(priv->dma, CPDMA_RX_BUFFER_OFFSET, 0); 1219 1220 /* disable priority elevation */ 1221 __raw_writel(0, &priv->regs->ptype); 1222 1223 /* enable statistics collection only on all ports */ 1224 __raw_writel(0x7, &priv->regs->stat_port_en); 1225 1226 if (WARN_ON(!priv->data.rx_descs)) 1227 priv->data.rx_descs = 128; 1228 1229 for (i = 0; i < priv->data.rx_descs; i++) { 1230 struct sk_buff *skb; 1231 1232 ret = -ENOMEM; 1233 skb = __netdev_alloc_skb_ip_align(priv->ndev, 1234 priv->rx_packet_max, GFP_KERNEL); 1235 if (!skb) 1236 goto err_cleanup; 1237 ret = cpdma_chan_submit(priv->rxch, skb, skb->data, 1238 skb_tailroom(skb), 0); 1239 if (ret < 0) { 1240 kfree_skb(skb); 1241 goto err_cleanup; 1242 } 1243 } 1244 /* continue even if we didn't manage to submit all 1245 * receive descs 1246 */ 1247 cpsw_info(priv, ifup, "submitted %d rx descriptors\n", i); 1248 1249 if (cpts_register(&priv->pdev->dev, priv->cpts, 1250 priv->data.cpts_clock_mult, 1251 priv->data.cpts_clock_shift)) 1252 dev_err(priv->dev, "error registering cpts device\n"); 1253 1254 } 1255 1256 /* Enable Interrupt pacing if configured */ 1257 if (priv->coal_intvl != 0) { 1258 struct ethtool_coalesce coal; 1259 1260 coal.rx_coalesce_usecs = (priv->coal_intvl << 4); 1261 cpsw_set_coalesce(ndev, &coal); 1262 } 1263 1264 napi_enable(&priv->napi); 1265 cpdma_ctlr_start(priv->dma); 1266 cpsw_intr_enable(priv); 1267 cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_RX); 1268 cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_TX); 1269 1270 prim_cpsw = cpsw_get_slave_priv(priv, 0); 1271 if (prim_cpsw->irq_enabled == false) { 1272 if ((priv == prim_cpsw) || !netif_running(prim_cpsw->ndev)) { 1273 prim_cpsw->irq_enabled = true; 1274 cpsw_enable_irq(prim_cpsw); 1275 } 1276 } 1277 1278 if (priv->data.dual_emac) 1279 priv->slaves[priv->emac_port].open_stat = true; 1280 return 0; 1281 1282 err_cleanup: 1283 cpdma_ctlr_stop(priv->dma); 1284 for_each_slave(priv, cpsw_slave_stop, priv); 1285 pm_runtime_put_sync(&priv->pdev->dev); 1286 netif_carrier_off(priv->ndev); 1287 return ret; 1288 } 1289 1290 static int cpsw_ndo_stop(struct net_device *ndev) 1291 { 1292 struct cpsw_priv *priv = netdev_priv(ndev); 1293 1294 cpsw_info(priv, ifdown, "shutting down cpsw device\n"); 1295 netif_stop_queue(priv->ndev); 1296 napi_disable(&priv->napi); 1297 netif_carrier_off(priv->ndev); 1298 1299 if (cpsw_common_res_usage_state(priv) <= 1) { 1300 cpts_unregister(priv->cpts); 1301 cpsw_intr_disable(priv); 1302 cpdma_ctlr_int_ctrl(priv->dma, false); 1303 cpdma_ctlr_stop(priv->dma); 1304 cpsw_ale_stop(priv->ale); 1305 } 1306 for_each_slave(priv, cpsw_slave_stop, priv); 1307 pm_runtime_put_sync(&priv->pdev->dev); 1308 if (priv->data.dual_emac) 1309 priv->slaves[priv->emac_port].open_stat = false; 1310 return 0; 1311 } 1312 1313 static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb, 1314 struct net_device *ndev) 1315 { 1316 struct cpsw_priv *priv = netdev_priv(ndev); 1317 int ret; 1318 1319 ndev->trans_start = jiffies; 1320 1321 if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) { 1322 cpsw_err(priv, tx_err, "packet pad failed\n"); 1323 ndev->stats.tx_dropped++; 1324 return NETDEV_TX_OK; 1325 } 1326 1327 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && 1328 priv->cpts->tx_enable) 1329 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1330 1331 skb_tx_timestamp(skb); 1332 1333 ret = cpsw_tx_packet_submit(ndev, priv, skb); 1334 if (unlikely(ret != 0)) { 1335 cpsw_err(priv, tx_err, "desc submit failed\n"); 1336 goto fail; 1337 } 1338 1339 /* If there is no more tx desc left free then we need to 1340 * tell the kernel to stop sending us tx frames. 1341 */ 1342 if (unlikely(!cpdma_check_free_tx_desc(priv->txch))) 1343 netif_stop_queue(ndev); 1344 1345 return NETDEV_TX_OK; 1346 fail: 1347 ndev->stats.tx_dropped++; 1348 netif_stop_queue(ndev); 1349 return NETDEV_TX_BUSY; 1350 } 1351 1352 #ifdef CONFIG_TI_CPTS 1353 1354 static void cpsw_hwtstamp_v1(struct cpsw_priv *priv) 1355 { 1356 struct cpsw_slave *slave = &priv->slaves[priv->data.active_slave]; 1357 u32 ts_en, seq_id; 1358 1359 if (!priv->cpts->tx_enable && !priv->cpts->rx_enable) { 1360 slave_write(slave, 0, CPSW1_TS_CTL); 1361 return; 1362 } 1363 1364 seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588; 1365 ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS; 1366 1367 if (priv->cpts->tx_enable) 1368 ts_en |= CPSW_V1_TS_TX_EN; 1369 1370 if (priv->cpts->rx_enable) 1371 ts_en |= CPSW_V1_TS_RX_EN; 1372 1373 slave_write(slave, ts_en, CPSW1_TS_CTL); 1374 slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE); 1375 } 1376 1377 static void cpsw_hwtstamp_v2(struct cpsw_priv *priv) 1378 { 1379 struct cpsw_slave *slave; 1380 u32 ctrl, mtype; 1381 1382 if (priv->data.dual_emac) 1383 slave = &priv->slaves[priv->emac_port]; 1384 else 1385 slave = &priv->slaves[priv->data.active_slave]; 1386 1387 ctrl = slave_read(slave, CPSW2_CONTROL); 1388 switch (priv->version) { 1389 case CPSW_VERSION_2: 1390 ctrl &= ~CTRL_V2_ALL_TS_MASK; 1391 1392 if (priv->cpts->tx_enable) 1393 ctrl |= CTRL_V2_TX_TS_BITS; 1394 1395 if (priv->cpts->rx_enable) 1396 ctrl |= CTRL_V2_RX_TS_BITS; 1397 break; 1398 case CPSW_VERSION_3: 1399 default: 1400 ctrl &= ~CTRL_V3_ALL_TS_MASK; 1401 1402 if (priv->cpts->tx_enable) 1403 ctrl |= CTRL_V3_TX_TS_BITS; 1404 1405 if (priv->cpts->rx_enable) 1406 ctrl |= CTRL_V3_RX_TS_BITS; 1407 break; 1408 } 1409 1410 mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS; 1411 1412 slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE); 1413 slave_write(slave, ctrl, CPSW2_CONTROL); 1414 __raw_writel(ETH_P_1588, &priv->regs->ts_ltype); 1415 } 1416 1417 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr) 1418 { 1419 struct cpsw_priv *priv = netdev_priv(dev); 1420 struct cpts *cpts = priv->cpts; 1421 struct hwtstamp_config cfg; 1422 1423 if (priv->version != CPSW_VERSION_1 && 1424 priv->version != CPSW_VERSION_2 && 1425 priv->version != CPSW_VERSION_3) 1426 return -EOPNOTSUPP; 1427 1428 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg))) 1429 return -EFAULT; 1430 1431 /* reserved for future extensions */ 1432 if (cfg.flags) 1433 return -EINVAL; 1434 1435 if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON) 1436 return -ERANGE; 1437 1438 switch (cfg.rx_filter) { 1439 case HWTSTAMP_FILTER_NONE: 1440 cpts->rx_enable = 0; 1441 break; 1442 case HWTSTAMP_FILTER_ALL: 1443 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 1444 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 1445 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 1446 return -ERANGE; 1447 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 1448 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 1449 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 1450 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 1451 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 1452 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 1453 case HWTSTAMP_FILTER_PTP_V2_EVENT: 1454 case HWTSTAMP_FILTER_PTP_V2_SYNC: 1455 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 1456 cpts->rx_enable = 1; 1457 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 1458 break; 1459 default: 1460 return -ERANGE; 1461 } 1462 1463 cpts->tx_enable = cfg.tx_type == HWTSTAMP_TX_ON; 1464 1465 switch (priv->version) { 1466 case CPSW_VERSION_1: 1467 cpsw_hwtstamp_v1(priv); 1468 break; 1469 case CPSW_VERSION_2: 1470 case CPSW_VERSION_3: 1471 cpsw_hwtstamp_v2(priv); 1472 break; 1473 default: 1474 WARN_ON(1); 1475 } 1476 1477 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; 1478 } 1479 1480 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr) 1481 { 1482 struct cpsw_priv *priv = netdev_priv(dev); 1483 struct cpts *cpts = priv->cpts; 1484 struct hwtstamp_config cfg; 1485 1486 if (priv->version != CPSW_VERSION_1 && 1487 priv->version != CPSW_VERSION_2 && 1488 priv->version != CPSW_VERSION_3) 1489 return -EOPNOTSUPP; 1490 1491 cfg.flags = 0; 1492 cfg.tx_type = cpts->tx_enable ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF; 1493 cfg.rx_filter = (cpts->rx_enable ? 1494 HWTSTAMP_FILTER_PTP_V2_EVENT : HWTSTAMP_FILTER_NONE); 1495 1496 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; 1497 } 1498 1499 #endif /*CONFIG_TI_CPTS*/ 1500 1501 static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 1502 { 1503 struct cpsw_priv *priv = netdev_priv(dev); 1504 int slave_no = cpsw_slave_index(priv); 1505 1506 if (!netif_running(dev)) 1507 return -EINVAL; 1508 1509 switch (cmd) { 1510 #ifdef CONFIG_TI_CPTS 1511 case SIOCSHWTSTAMP: 1512 return cpsw_hwtstamp_set(dev, req); 1513 case SIOCGHWTSTAMP: 1514 return cpsw_hwtstamp_get(dev, req); 1515 #endif 1516 } 1517 1518 if (!priv->slaves[slave_no].phy) 1519 return -EOPNOTSUPP; 1520 return phy_mii_ioctl(priv->slaves[slave_no].phy, req, cmd); 1521 } 1522 1523 static void cpsw_ndo_tx_timeout(struct net_device *ndev) 1524 { 1525 struct cpsw_priv *priv = netdev_priv(ndev); 1526 1527 cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n"); 1528 ndev->stats.tx_errors++; 1529 cpsw_intr_disable(priv); 1530 cpdma_ctlr_int_ctrl(priv->dma, false); 1531 cpdma_chan_stop(priv->txch); 1532 cpdma_chan_start(priv->txch); 1533 cpdma_ctlr_int_ctrl(priv->dma, true); 1534 cpsw_intr_enable(priv); 1535 cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_RX); 1536 cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_TX); 1537 1538 } 1539 1540 static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p) 1541 { 1542 struct cpsw_priv *priv = netdev_priv(ndev); 1543 struct sockaddr *addr = (struct sockaddr *)p; 1544 int flags = 0; 1545 u16 vid = 0; 1546 1547 if (!is_valid_ether_addr(addr->sa_data)) 1548 return -EADDRNOTAVAIL; 1549 1550 if (priv->data.dual_emac) { 1551 vid = priv->slaves[priv->emac_port].port_vlan; 1552 flags = ALE_VLAN; 1553 } 1554 1555 cpsw_ale_del_ucast(priv->ale, priv->mac_addr, priv->host_port, 1556 flags, vid); 1557 cpsw_ale_add_ucast(priv->ale, addr->sa_data, priv->host_port, 1558 flags, vid); 1559 1560 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN); 1561 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN); 1562 for_each_slave(priv, cpsw_set_slave_mac, priv); 1563 1564 return 0; 1565 } 1566 1567 #ifdef CONFIG_NET_POLL_CONTROLLER 1568 static void cpsw_ndo_poll_controller(struct net_device *ndev) 1569 { 1570 struct cpsw_priv *priv = netdev_priv(ndev); 1571 1572 cpsw_intr_disable(priv); 1573 cpdma_ctlr_int_ctrl(priv->dma, false); 1574 cpsw_interrupt(ndev->irq, priv); 1575 cpdma_ctlr_int_ctrl(priv->dma, true); 1576 cpsw_intr_enable(priv); 1577 cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_RX); 1578 cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_TX); 1579 1580 } 1581 #endif 1582 1583 static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv, 1584 unsigned short vid) 1585 { 1586 int ret; 1587 1588 ret = cpsw_ale_add_vlan(priv->ale, vid, 1589 ALE_ALL_PORTS << priv->host_port, 1590 0, ALE_ALL_PORTS << priv->host_port, 1591 (ALE_PORT_1 | ALE_PORT_2) << priv->host_port); 1592 if (ret != 0) 1593 return ret; 1594 1595 ret = cpsw_ale_add_ucast(priv->ale, priv->mac_addr, 1596 priv->host_port, ALE_VLAN, vid); 1597 if (ret != 0) 1598 goto clean_vid; 1599 1600 ret = cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast, 1601 ALE_ALL_PORTS << priv->host_port, 1602 ALE_VLAN, vid, 0); 1603 if (ret != 0) 1604 goto clean_vlan_ucast; 1605 return 0; 1606 1607 clean_vlan_ucast: 1608 cpsw_ale_del_ucast(priv->ale, priv->mac_addr, 1609 priv->host_port, ALE_VLAN, vid); 1610 clean_vid: 1611 cpsw_ale_del_vlan(priv->ale, vid, 0); 1612 return ret; 1613 } 1614 1615 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev, 1616 __be16 proto, u16 vid) 1617 { 1618 struct cpsw_priv *priv = netdev_priv(ndev); 1619 1620 if (vid == priv->data.default_vlan) 1621 return 0; 1622 1623 dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid); 1624 return cpsw_add_vlan_ale_entry(priv, vid); 1625 } 1626 1627 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev, 1628 __be16 proto, u16 vid) 1629 { 1630 struct cpsw_priv *priv = netdev_priv(ndev); 1631 int ret; 1632 1633 if (vid == priv->data.default_vlan) 1634 return 0; 1635 1636 dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid); 1637 ret = cpsw_ale_del_vlan(priv->ale, vid, 0); 1638 if (ret != 0) 1639 return ret; 1640 1641 ret = cpsw_ale_del_ucast(priv->ale, priv->mac_addr, 1642 priv->host_port, ALE_VLAN, vid); 1643 if (ret != 0) 1644 return ret; 1645 1646 return cpsw_ale_del_mcast(priv->ale, priv->ndev->broadcast, 1647 0, ALE_VLAN, vid); 1648 } 1649 1650 static const struct net_device_ops cpsw_netdev_ops = { 1651 .ndo_open = cpsw_ndo_open, 1652 .ndo_stop = cpsw_ndo_stop, 1653 .ndo_start_xmit = cpsw_ndo_start_xmit, 1654 .ndo_set_mac_address = cpsw_ndo_set_mac_address, 1655 .ndo_do_ioctl = cpsw_ndo_ioctl, 1656 .ndo_validate_addr = eth_validate_addr, 1657 .ndo_change_mtu = eth_change_mtu, 1658 .ndo_tx_timeout = cpsw_ndo_tx_timeout, 1659 .ndo_set_rx_mode = cpsw_ndo_set_rx_mode, 1660 #ifdef CONFIG_NET_POLL_CONTROLLER 1661 .ndo_poll_controller = cpsw_ndo_poll_controller, 1662 #endif 1663 .ndo_vlan_rx_add_vid = cpsw_ndo_vlan_rx_add_vid, 1664 .ndo_vlan_rx_kill_vid = cpsw_ndo_vlan_rx_kill_vid, 1665 }; 1666 1667 static int cpsw_get_regs_len(struct net_device *ndev) 1668 { 1669 struct cpsw_priv *priv = netdev_priv(ndev); 1670 1671 return priv->data.ale_entries * ALE_ENTRY_WORDS * sizeof(u32); 1672 } 1673 1674 static void cpsw_get_regs(struct net_device *ndev, 1675 struct ethtool_regs *regs, void *p) 1676 { 1677 struct cpsw_priv *priv = netdev_priv(ndev); 1678 u32 *reg = p; 1679 1680 /* update CPSW IP version */ 1681 regs->version = priv->version; 1682 1683 cpsw_ale_dump(priv->ale, reg); 1684 } 1685 1686 static void cpsw_get_drvinfo(struct net_device *ndev, 1687 struct ethtool_drvinfo *info) 1688 { 1689 struct cpsw_priv *priv = netdev_priv(ndev); 1690 1691 strlcpy(info->driver, "cpsw", sizeof(info->driver)); 1692 strlcpy(info->version, "1.0", sizeof(info->version)); 1693 strlcpy(info->bus_info, priv->pdev->name, sizeof(info->bus_info)); 1694 info->regdump_len = cpsw_get_regs_len(ndev); 1695 } 1696 1697 static u32 cpsw_get_msglevel(struct net_device *ndev) 1698 { 1699 struct cpsw_priv *priv = netdev_priv(ndev); 1700 return priv->msg_enable; 1701 } 1702 1703 static void cpsw_set_msglevel(struct net_device *ndev, u32 value) 1704 { 1705 struct cpsw_priv *priv = netdev_priv(ndev); 1706 priv->msg_enable = value; 1707 } 1708 1709 static int cpsw_get_ts_info(struct net_device *ndev, 1710 struct ethtool_ts_info *info) 1711 { 1712 #ifdef CONFIG_TI_CPTS 1713 struct cpsw_priv *priv = netdev_priv(ndev); 1714 1715 info->so_timestamping = 1716 SOF_TIMESTAMPING_TX_HARDWARE | 1717 SOF_TIMESTAMPING_TX_SOFTWARE | 1718 SOF_TIMESTAMPING_RX_HARDWARE | 1719 SOF_TIMESTAMPING_RX_SOFTWARE | 1720 SOF_TIMESTAMPING_SOFTWARE | 1721 SOF_TIMESTAMPING_RAW_HARDWARE; 1722 info->phc_index = priv->cpts->phc_index; 1723 info->tx_types = 1724 (1 << HWTSTAMP_TX_OFF) | 1725 (1 << HWTSTAMP_TX_ON); 1726 info->rx_filters = 1727 (1 << HWTSTAMP_FILTER_NONE) | 1728 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 1729 #else 1730 info->so_timestamping = 1731 SOF_TIMESTAMPING_TX_SOFTWARE | 1732 SOF_TIMESTAMPING_RX_SOFTWARE | 1733 SOF_TIMESTAMPING_SOFTWARE; 1734 info->phc_index = -1; 1735 info->tx_types = 0; 1736 info->rx_filters = 0; 1737 #endif 1738 return 0; 1739 } 1740 1741 static int cpsw_get_settings(struct net_device *ndev, 1742 struct ethtool_cmd *ecmd) 1743 { 1744 struct cpsw_priv *priv = netdev_priv(ndev); 1745 int slave_no = cpsw_slave_index(priv); 1746 1747 if (priv->slaves[slave_no].phy) 1748 return phy_ethtool_gset(priv->slaves[slave_no].phy, ecmd); 1749 else 1750 return -EOPNOTSUPP; 1751 } 1752 1753 static int cpsw_set_settings(struct net_device *ndev, struct ethtool_cmd *ecmd) 1754 { 1755 struct cpsw_priv *priv = netdev_priv(ndev); 1756 int slave_no = cpsw_slave_index(priv); 1757 1758 if (priv->slaves[slave_no].phy) 1759 return phy_ethtool_sset(priv->slaves[slave_no].phy, ecmd); 1760 else 1761 return -EOPNOTSUPP; 1762 } 1763 1764 static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 1765 { 1766 struct cpsw_priv *priv = netdev_priv(ndev); 1767 int slave_no = cpsw_slave_index(priv); 1768 1769 wol->supported = 0; 1770 wol->wolopts = 0; 1771 1772 if (priv->slaves[slave_no].phy) 1773 phy_ethtool_get_wol(priv->slaves[slave_no].phy, wol); 1774 } 1775 1776 static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 1777 { 1778 struct cpsw_priv *priv = netdev_priv(ndev); 1779 int slave_no = cpsw_slave_index(priv); 1780 1781 if (priv->slaves[slave_no].phy) 1782 return phy_ethtool_set_wol(priv->slaves[slave_no].phy, wol); 1783 else 1784 return -EOPNOTSUPP; 1785 } 1786 1787 static const struct ethtool_ops cpsw_ethtool_ops = { 1788 .get_drvinfo = cpsw_get_drvinfo, 1789 .get_msglevel = cpsw_get_msglevel, 1790 .set_msglevel = cpsw_set_msglevel, 1791 .get_link = ethtool_op_get_link, 1792 .get_ts_info = cpsw_get_ts_info, 1793 .get_settings = cpsw_get_settings, 1794 .set_settings = cpsw_set_settings, 1795 .get_coalesce = cpsw_get_coalesce, 1796 .set_coalesce = cpsw_set_coalesce, 1797 .get_sset_count = cpsw_get_sset_count, 1798 .get_strings = cpsw_get_strings, 1799 .get_ethtool_stats = cpsw_get_ethtool_stats, 1800 .get_wol = cpsw_get_wol, 1801 .set_wol = cpsw_set_wol, 1802 .get_regs_len = cpsw_get_regs_len, 1803 .get_regs = cpsw_get_regs, 1804 }; 1805 1806 static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_priv *priv, 1807 u32 slave_reg_ofs, u32 sliver_reg_ofs) 1808 { 1809 void __iomem *regs = priv->regs; 1810 int slave_num = slave->slave_num; 1811 struct cpsw_slave_data *data = priv->data.slave_data + slave_num; 1812 1813 slave->data = data; 1814 slave->regs = regs + slave_reg_ofs; 1815 slave->sliver = regs + sliver_reg_ofs; 1816 slave->port_vlan = data->dual_emac_res_vlan; 1817 } 1818 1819 static int cpsw_probe_dt(struct cpsw_platform_data *data, 1820 struct platform_device *pdev) 1821 { 1822 struct device_node *node = pdev->dev.of_node; 1823 struct device_node *slave_node; 1824 int i = 0, ret; 1825 u32 prop; 1826 1827 if (!node) 1828 return -EINVAL; 1829 1830 if (of_property_read_u32(node, "slaves", &prop)) { 1831 dev_err(&pdev->dev, "Missing slaves property in the DT.\n"); 1832 return -EINVAL; 1833 } 1834 data->slaves = prop; 1835 1836 if (of_property_read_u32(node, "active_slave", &prop)) { 1837 dev_err(&pdev->dev, "Missing active_slave property in the DT.\n"); 1838 return -EINVAL; 1839 } 1840 data->active_slave = prop; 1841 1842 if (of_property_read_u32(node, "cpts_clock_mult", &prop)) { 1843 dev_err(&pdev->dev, "Missing cpts_clock_mult property in the DT.\n"); 1844 return -EINVAL; 1845 } 1846 data->cpts_clock_mult = prop; 1847 1848 if (of_property_read_u32(node, "cpts_clock_shift", &prop)) { 1849 dev_err(&pdev->dev, "Missing cpts_clock_shift property in the DT.\n"); 1850 return -EINVAL; 1851 } 1852 data->cpts_clock_shift = prop; 1853 1854 data->slave_data = devm_kzalloc(&pdev->dev, data->slaves 1855 * sizeof(struct cpsw_slave_data), 1856 GFP_KERNEL); 1857 if (!data->slave_data) 1858 return -ENOMEM; 1859 1860 if (of_property_read_u32(node, "cpdma_channels", &prop)) { 1861 dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n"); 1862 return -EINVAL; 1863 } 1864 data->channels = prop; 1865 1866 if (of_property_read_u32(node, "ale_entries", &prop)) { 1867 dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n"); 1868 return -EINVAL; 1869 } 1870 data->ale_entries = prop; 1871 1872 if (of_property_read_u32(node, "bd_ram_size", &prop)) { 1873 dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n"); 1874 return -EINVAL; 1875 } 1876 data->bd_ram_size = prop; 1877 1878 if (of_property_read_u32(node, "rx_descs", &prop)) { 1879 dev_err(&pdev->dev, "Missing rx_descs property in the DT.\n"); 1880 return -EINVAL; 1881 } 1882 data->rx_descs = prop; 1883 1884 if (of_property_read_u32(node, "mac_control", &prop)) { 1885 dev_err(&pdev->dev, "Missing mac_control property in the DT.\n"); 1886 return -EINVAL; 1887 } 1888 data->mac_control = prop; 1889 1890 if (of_property_read_bool(node, "dual_emac")) 1891 data->dual_emac = 1; 1892 1893 /* 1894 * Populate all the child nodes here... 1895 */ 1896 ret = of_platform_populate(node, NULL, NULL, &pdev->dev); 1897 /* We do not want to force this, as in some cases may not have child */ 1898 if (ret) 1899 dev_warn(&pdev->dev, "Doesn't have any child node\n"); 1900 1901 for_each_child_of_node(node, slave_node) { 1902 struct cpsw_slave_data *slave_data = data->slave_data + i; 1903 const void *mac_addr = NULL; 1904 u32 phyid; 1905 int lenp; 1906 const __be32 *parp; 1907 struct device_node *mdio_node; 1908 struct platform_device *mdio; 1909 1910 /* This is no slave child node, continue */ 1911 if (strcmp(slave_node->name, "slave")) 1912 continue; 1913 1914 parp = of_get_property(slave_node, "phy_id", &lenp); 1915 if ((parp == NULL) || (lenp != (sizeof(void *) * 2))) { 1916 dev_err(&pdev->dev, "Missing slave[%d] phy_id property\n", i); 1917 return -EINVAL; 1918 } 1919 mdio_node = of_find_node_by_phandle(be32_to_cpup(parp)); 1920 phyid = be32_to_cpup(parp+1); 1921 mdio = of_find_device_by_node(mdio_node); 1922 of_node_put(mdio_node); 1923 if (!mdio) { 1924 pr_err("Missing mdio platform device\n"); 1925 return -EINVAL; 1926 } 1927 snprintf(slave_data->phy_id, sizeof(slave_data->phy_id), 1928 PHY_ID_FMT, mdio->name, phyid); 1929 1930 mac_addr = of_get_mac_address(slave_node); 1931 if (mac_addr) 1932 memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN); 1933 1934 slave_data->phy_if = of_get_phy_mode(slave_node); 1935 if (slave_data->phy_if < 0) { 1936 dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n", 1937 i); 1938 return slave_data->phy_if; 1939 } 1940 1941 if (data->dual_emac) { 1942 if (of_property_read_u32(slave_node, "dual_emac_res_vlan", 1943 &prop)) { 1944 dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n"); 1945 slave_data->dual_emac_res_vlan = i+1; 1946 dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n", 1947 slave_data->dual_emac_res_vlan, i); 1948 } else { 1949 slave_data->dual_emac_res_vlan = prop; 1950 } 1951 } 1952 1953 i++; 1954 if (i == data->slaves) 1955 break; 1956 } 1957 1958 return 0; 1959 } 1960 1961 static int cpsw_probe_dual_emac(struct platform_device *pdev, 1962 struct cpsw_priv *priv) 1963 { 1964 struct cpsw_platform_data *data = &priv->data; 1965 struct net_device *ndev; 1966 struct cpsw_priv *priv_sl2; 1967 int ret = 0, i; 1968 1969 ndev = alloc_etherdev(sizeof(struct cpsw_priv)); 1970 if (!ndev) { 1971 dev_err(&pdev->dev, "cpsw: error allocating net_device\n"); 1972 return -ENOMEM; 1973 } 1974 1975 priv_sl2 = netdev_priv(ndev); 1976 spin_lock_init(&priv_sl2->lock); 1977 priv_sl2->data = *data; 1978 priv_sl2->pdev = pdev; 1979 priv_sl2->ndev = ndev; 1980 priv_sl2->dev = &ndev->dev; 1981 priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG); 1982 priv_sl2->rx_packet_max = max(rx_packet_max, 128); 1983 1984 if (is_valid_ether_addr(data->slave_data[1].mac_addr)) { 1985 memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr, 1986 ETH_ALEN); 1987 dev_info(&pdev->dev, "cpsw: Detected MACID = %pM\n", priv_sl2->mac_addr); 1988 } else { 1989 random_ether_addr(priv_sl2->mac_addr); 1990 dev_info(&pdev->dev, "cpsw: Random MACID = %pM\n", priv_sl2->mac_addr); 1991 } 1992 memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN); 1993 1994 priv_sl2->slaves = priv->slaves; 1995 priv_sl2->clk = priv->clk; 1996 1997 priv_sl2->coal_intvl = 0; 1998 priv_sl2->bus_freq_mhz = priv->bus_freq_mhz; 1999 2000 priv_sl2->regs = priv->regs; 2001 priv_sl2->host_port = priv->host_port; 2002 priv_sl2->host_port_regs = priv->host_port_regs; 2003 priv_sl2->wr_regs = priv->wr_regs; 2004 priv_sl2->hw_stats = priv->hw_stats; 2005 priv_sl2->dma = priv->dma; 2006 priv_sl2->txch = priv->txch; 2007 priv_sl2->rxch = priv->rxch; 2008 priv_sl2->ale = priv->ale; 2009 priv_sl2->emac_port = 1; 2010 priv->slaves[1].ndev = ndev; 2011 priv_sl2->cpts = priv->cpts; 2012 priv_sl2->version = priv->version; 2013 2014 for (i = 0; i < priv->num_irqs; i++) { 2015 priv_sl2->irqs_table[i] = priv->irqs_table[i]; 2016 priv_sl2->num_irqs = priv->num_irqs; 2017 } 2018 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 2019 2020 ndev->netdev_ops = &cpsw_netdev_ops; 2021 ndev->ethtool_ops = &cpsw_ethtool_ops; 2022 netif_napi_add(ndev, &priv_sl2->napi, cpsw_poll, CPSW_POLL_WEIGHT); 2023 2024 /* register the network device */ 2025 SET_NETDEV_DEV(ndev, &pdev->dev); 2026 ret = register_netdev(ndev); 2027 if (ret) { 2028 dev_err(&pdev->dev, "cpsw: error registering net device\n"); 2029 free_netdev(ndev); 2030 ret = -ENODEV; 2031 } 2032 2033 return ret; 2034 } 2035 2036 static int cpsw_probe(struct platform_device *pdev) 2037 { 2038 struct cpsw_platform_data *data; 2039 struct net_device *ndev; 2040 struct cpsw_priv *priv; 2041 struct cpdma_params dma_params; 2042 struct cpsw_ale_params ale_params; 2043 void __iomem *ss_regs; 2044 struct resource *res, *ss_res; 2045 u32 slave_offset, sliver_offset, slave_size; 2046 int ret = 0, i, k = 0; 2047 2048 ndev = alloc_etherdev(sizeof(struct cpsw_priv)); 2049 if (!ndev) { 2050 dev_err(&pdev->dev, "error allocating net_device\n"); 2051 return -ENOMEM; 2052 } 2053 2054 platform_set_drvdata(pdev, ndev); 2055 priv = netdev_priv(ndev); 2056 spin_lock_init(&priv->lock); 2057 priv->pdev = pdev; 2058 priv->ndev = ndev; 2059 priv->dev = &ndev->dev; 2060 priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG); 2061 priv->rx_packet_max = max(rx_packet_max, 128); 2062 priv->cpts = devm_kzalloc(&pdev->dev, sizeof(struct cpts), GFP_KERNEL); 2063 priv->irq_enabled = true; 2064 if (!priv->cpts) { 2065 dev_err(&pdev->dev, "error allocating cpts\n"); 2066 goto clean_ndev_ret; 2067 } 2068 2069 /* 2070 * This may be required here for child devices. 2071 */ 2072 pm_runtime_enable(&pdev->dev); 2073 2074 /* Select default pin state */ 2075 pinctrl_pm_select_default_state(&pdev->dev); 2076 2077 if (cpsw_probe_dt(&priv->data, pdev)) { 2078 dev_err(&pdev->dev, "cpsw: platform data missing\n"); 2079 ret = -ENODEV; 2080 goto clean_runtime_disable_ret; 2081 } 2082 data = &priv->data; 2083 2084 if (is_valid_ether_addr(data->slave_data[0].mac_addr)) { 2085 memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN); 2086 dev_info(&pdev->dev, "Detected MACID = %pM\n", priv->mac_addr); 2087 } else { 2088 eth_random_addr(priv->mac_addr); 2089 dev_info(&pdev->dev, "Random MACID = %pM\n", priv->mac_addr); 2090 } 2091 2092 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN); 2093 2094 priv->slaves = devm_kzalloc(&pdev->dev, 2095 sizeof(struct cpsw_slave) * data->slaves, 2096 GFP_KERNEL); 2097 if (!priv->slaves) { 2098 ret = -ENOMEM; 2099 goto clean_runtime_disable_ret; 2100 } 2101 for (i = 0; i < data->slaves; i++) 2102 priv->slaves[i].slave_num = i; 2103 2104 priv->slaves[0].ndev = ndev; 2105 priv->emac_port = 0; 2106 2107 priv->clk = devm_clk_get(&pdev->dev, "fck"); 2108 if (IS_ERR(priv->clk)) { 2109 dev_err(priv->dev, "fck is not found\n"); 2110 ret = -ENODEV; 2111 goto clean_runtime_disable_ret; 2112 } 2113 priv->coal_intvl = 0; 2114 priv->bus_freq_mhz = clk_get_rate(priv->clk) / 1000000; 2115 2116 ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2117 ss_regs = devm_ioremap_resource(&pdev->dev, ss_res); 2118 if (IS_ERR(ss_regs)) { 2119 ret = PTR_ERR(ss_regs); 2120 goto clean_runtime_disable_ret; 2121 } 2122 priv->regs = ss_regs; 2123 priv->host_port = HOST_PORT_NUM; 2124 2125 /* Need to enable clocks with runtime PM api to access module 2126 * registers 2127 */ 2128 pm_runtime_get_sync(&pdev->dev); 2129 priv->version = readl(&priv->regs->id_ver); 2130 pm_runtime_put_sync(&pdev->dev); 2131 2132 res = platform_get_resource(pdev, IORESOURCE_MEM, 1); 2133 priv->wr_regs = devm_ioremap_resource(&pdev->dev, res); 2134 if (IS_ERR(priv->wr_regs)) { 2135 ret = PTR_ERR(priv->wr_regs); 2136 goto clean_runtime_disable_ret; 2137 } 2138 2139 memset(&dma_params, 0, sizeof(dma_params)); 2140 memset(&ale_params, 0, sizeof(ale_params)); 2141 2142 switch (priv->version) { 2143 case CPSW_VERSION_1: 2144 priv->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET; 2145 priv->cpts->reg = ss_regs + CPSW1_CPTS_OFFSET; 2146 priv->hw_stats = ss_regs + CPSW1_HW_STATS; 2147 dma_params.dmaregs = ss_regs + CPSW1_CPDMA_OFFSET; 2148 dma_params.txhdp = ss_regs + CPSW1_STATERAM_OFFSET; 2149 ale_params.ale_regs = ss_regs + CPSW1_ALE_OFFSET; 2150 slave_offset = CPSW1_SLAVE_OFFSET; 2151 slave_size = CPSW1_SLAVE_SIZE; 2152 sliver_offset = CPSW1_SLIVER_OFFSET; 2153 dma_params.desc_mem_phys = 0; 2154 break; 2155 case CPSW_VERSION_2: 2156 case CPSW_VERSION_3: 2157 case CPSW_VERSION_4: 2158 priv->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET; 2159 priv->cpts->reg = ss_regs + CPSW2_CPTS_OFFSET; 2160 priv->hw_stats = ss_regs + CPSW2_HW_STATS; 2161 dma_params.dmaregs = ss_regs + CPSW2_CPDMA_OFFSET; 2162 dma_params.txhdp = ss_regs + CPSW2_STATERAM_OFFSET; 2163 ale_params.ale_regs = ss_regs + CPSW2_ALE_OFFSET; 2164 slave_offset = CPSW2_SLAVE_OFFSET; 2165 slave_size = CPSW2_SLAVE_SIZE; 2166 sliver_offset = CPSW2_SLIVER_OFFSET; 2167 dma_params.desc_mem_phys = 2168 (u32 __force) ss_res->start + CPSW2_BD_OFFSET; 2169 break; 2170 default: 2171 dev_err(priv->dev, "unknown version 0x%08x\n", priv->version); 2172 ret = -ENODEV; 2173 goto clean_runtime_disable_ret; 2174 } 2175 for (i = 0; i < priv->data.slaves; i++) { 2176 struct cpsw_slave *slave = &priv->slaves[i]; 2177 cpsw_slave_init(slave, priv, slave_offset, sliver_offset); 2178 slave_offset += slave_size; 2179 sliver_offset += SLIVER_SIZE; 2180 } 2181 2182 dma_params.dev = &pdev->dev; 2183 dma_params.rxthresh = dma_params.dmaregs + CPDMA_RXTHRESH; 2184 dma_params.rxfree = dma_params.dmaregs + CPDMA_RXFREE; 2185 dma_params.rxhdp = dma_params.txhdp + CPDMA_RXHDP; 2186 dma_params.txcp = dma_params.txhdp + CPDMA_TXCP; 2187 dma_params.rxcp = dma_params.txhdp + CPDMA_RXCP; 2188 2189 dma_params.num_chan = data->channels; 2190 dma_params.has_soft_reset = true; 2191 dma_params.min_packet_size = CPSW_MIN_PACKET_SIZE; 2192 dma_params.desc_mem_size = data->bd_ram_size; 2193 dma_params.desc_align = 16; 2194 dma_params.has_ext_regs = true; 2195 dma_params.desc_hw_addr = dma_params.desc_mem_phys; 2196 2197 priv->dma = cpdma_ctlr_create(&dma_params); 2198 if (!priv->dma) { 2199 dev_err(priv->dev, "error initializing dma\n"); 2200 ret = -ENOMEM; 2201 goto clean_runtime_disable_ret; 2202 } 2203 2204 priv->txch = cpdma_chan_create(priv->dma, tx_chan_num(0), 2205 cpsw_tx_handler); 2206 priv->rxch = cpdma_chan_create(priv->dma, rx_chan_num(0), 2207 cpsw_rx_handler); 2208 2209 if (WARN_ON(!priv->txch || !priv->rxch)) { 2210 dev_err(priv->dev, "error initializing dma channels\n"); 2211 ret = -ENOMEM; 2212 goto clean_dma_ret; 2213 } 2214 2215 ale_params.dev = &ndev->dev; 2216 ale_params.ale_ageout = ale_ageout; 2217 ale_params.ale_entries = data->ale_entries; 2218 ale_params.ale_ports = data->slaves; 2219 2220 priv->ale = cpsw_ale_create(&ale_params); 2221 if (!priv->ale) { 2222 dev_err(priv->dev, "error initializing ale engine\n"); 2223 ret = -ENODEV; 2224 goto clean_dma_ret; 2225 } 2226 2227 ndev->irq = platform_get_irq(pdev, 0); 2228 if (ndev->irq < 0) { 2229 dev_err(priv->dev, "error getting irq resource\n"); 2230 ret = -ENOENT; 2231 goto clean_ale_ret; 2232 } 2233 2234 while ((res = platform_get_resource(priv->pdev, IORESOURCE_IRQ, k))) { 2235 for (i = res->start; i <= res->end; i++) { 2236 if (devm_request_irq(&pdev->dev, i, cpsw_interrupt, 0, 2237 dev_name(&pdev->dev), priv)) { 2238 dev_err(priv->dev, "error attaching irq\n"); 2239 goto clean_ale_ret; 2240 } 2241 priv->irqs_table[k] = i; 2242 priv->num_irqs = k + 1; 2243 } 2244 k++; 2245 } 2246 2247 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 2248 2249 ndev->netdev_ops = &cpsw_netdev_ops; 2250 ndev->ethtool_ops = &cpsw_ethtool_ops; 2251 netif_napi_add(ndev, &priv->napi, cpsw_poll, CPSW_POLL_WEIGHT); 2252 2253 /* register the network device */ 2254 SET_NETDEV_DEV(ndev, &pdev->dev); 2255 ret = register_netdev(ndev); 2256 if (ret) { 2257 dev_err(priv->dev, "error registering net device\n"); 2258 ret = -ENODEV; 2259 goto clean_ale_ret; 2260 } 2261 2262 cpsw_notice(priv, probe, "initialized device (regs %pa, irq %d)\n", 2263 &ss_res->start, ndev->irq); 2264 2265 if (priv->data.dual_emac) { 2266 ret = cpsw_probe_dual_emac(pdev, priv); 2267 if (ret) { 2268 cpsw_err(priv, probe, "error probe slave 2 emac interface\n"); 2269 goto clean_ale_ret; 2270 } 2271 } 2272 2273 return 0; 2274 2275 clean_ale_ret: 2276 cpsw_ale_destroy(priv->ale); 2277 clean_dma_ret: 2278 cpdma_chan_destroy(priv->txch); 2279 cpdma_chan_destroy(priv->rxch); 2280 cpdma_ctlr_destroy(priv->dma); 2281 clean_runtime_disable_ret: 2282 pm_runtime_disable(&pdev->dev); 2283 clean_ndev_ret: 2284 free_netdev(priv->ndev); 2285 return ret; 2286 } 2287 2288 static int cpsw_remove(struct platform_device *pdev) 2289 { 2290 struct net_device *ndev = platform_get_drvdata(pdev); 2291 struct cpsw_priv *priv = netdev_priv(ndev); 2292 2293 if (priv->data.dual_emac) 2294 unregister_netdev(cpsw_get_slave_ndev(priv, 1)); 2295 unregister_netdev(ndev); 2296 2297 cpsw_ale_destroy(priv->ale); 2298 cpdma_chan_destroy(priv->txch); 2299 cpdma_chan_destroy(priv->rxch); 2300 cpdma_ctlr_destroy(priv->dma); 2301 pm_runtime_disable(&pdev->dev); 2302 if (priv->data.dual_emac) 2303 free_netdev(cpsw_get_slave_ndev(priv, 1)); 2304 free_netdev(ndev); 2305 return 0; 2306 } 2307 2308 static int cpsw_suspend(struct device *dev) 2309 { 2310 struct platform_device *pdev = to_platform_device(dev); 2311 struct net_device *ndev = platform_get_drvdata(pdev); 2312 struct cpsw_priv *priv = netdev_priv(ndev); 2313 2314 if (netif_running(ndev)) 2315 cpsw_ndo_stop(ndev); 2316 2317 for_each_slave(priv, soft_reset_slave); 2318 2319 pm_runtime_put_sync(&pdev->dev); 2320 2321 /* Select sleep pin state */ 2322 pinctrl_pm_select_sleep_state(&pdev->dev); 2323 2324 return 0; 2325 } 2326 2327 static int cpsw_resume(struct device *dev) 2328 { 2329 struct platform_device *pdev = to_platform_device(dev); 2330 struct net_device *ndev = platform_get_drvdata(pdev); 2331 2332 pm_runtime_get_sync(&pdev->dev); 2333 2334 /* Select default pin state */ 2335 pinctrl_pm_select_default_state(&pdev->dev); 2336 2337 if (netif_running(ndev)) 2338 cpsw_ndo_open(ndev); 2339 return 0; 2340 } 2341 2342 static const struct dev_pm_ops cpsw_pm_ops = { 2343 .suspend = cpsw_suspend, 2344 .resume = cpsw_resume, 2345 }; 2346 2347 static const struct of_device_id cpsw_of_mtable[] = { 2348 { .compatible = "ti,cpsw", }, 2349 { /* sentinel */ }, 2350 }; 2351 MODULE_DEVICE_TABLE(of, cpsw_of_mtable); 2352 2353 static struct platform_driver cpsw_driver = { 2354 .driver = { 2355 .name = "cpsw", 2356 .owner = THIS_MODULE, 2357 .pm = &cpsw_pm_ops, 2358 .of_match_table = cpsw_of_mtable, 2359 }, 2360 .probe = cpsw_probe, 2361 .remove = cpsw_remove, 2362 }; 2363 2364 static int __init cpsw_init(void) 2365 { 2366 return platform_driver_register(&cpsw_driver); 2367 } 2368 late_initcall(cpsw_init); 2369 2370 static void __exit cpsw_exit(void) 2371 { 2372 platform_driver_unregister(&cpsw_driver); 2373 } 2374 module_exit(cpsw_exit); 2375 2376 MODULE_LICENSE("GPL"); 2377 MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>"); 2378 MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>"); 2379 MODULE_DESCRIPTION("TI CPSW Ethernet driver"); 2380