xref: /openbmc/linux/drivers/net/ethernet/ti/cpsw.c (revision 5bd8e16d)
1 /*
2  * Texas Instruments Ethernet Switch Driver
3  *
4  * Copyright (C) 2012 Texas Instruments
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation version 2.
9  *
10  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11  * kind, whether express or implied; without even the implied warranty
12  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/io.h>
18 #include <linux/clk.h>
19 #include <linux/timer.h>
20 #include <linux/module.h>
21 #include <linux/platform_device.h>
22 #include <linux/irqreturn.h>
23 #include <linux/interrupt.h>
24 #include <linux/if_ether.h>
25 #include <linux/etherdevice.h>
26 #include <linux/netdevice.h>
27 #include <linux/net_tstamp.h>
28 #include <linux/phy.h>
29 #include <linux/workqueue.h>
30 #include <linux/delay.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/of.h>
33 #include <linux/of_net.h>
34 #include <linux/of_device.h>
35 #include <linux/if_vlan.h>
36 
37 #include <linux/pinctrl/consumer.h>
38 
39 #include "cpsw.h"
40 #include "cpsw_ale.h"
41 #include "cpts.h"
42 #include "davinci_cpdma.h"
43 
44 #define CPSW_DEBUG	(NETIF_MSG_HW		| NETIF_MSG_WOL		| \
45 			 NETIF_MSG_DRV		| NETIF_MSG_LINK	| \
46 			 NETIF_MSG_IFUP		| NETIF_MSG_INTR	| \
47 			 NETIF_MSG_PROBE	| NETIF_MSG_TIMER	| \
48 			 NETIF_MSG_IFDOWN	| NETIF_MSG_RX_ERR	| \
49 			 NETIF_MSG_TX_ERR	| NETIF_MSG_TX_DONE	| \
50 			 NETIF_MSG_PKTDATA	| NETIF_MSG_TX_QUEUED	| \
51 			 NETIF_MSG_RX_STATUS)
52 
53 #define cpsw_info(priv, type, format, ...)		\
54 do {								\
55 	if (netif_msg_##type(priv) && net_ratelimit())		\
56 		dev_info(priv->dev, format, ## __VA_ARGS__);	\
57 } while (0)
58 
59 #define cpsw_err(priv, type, format, ...)		\
60 do {								\
61 	if (netif_msg_##type(priv) && net_ratelimit())		\
62 		dev_err(priv->dev, format, ## __VA_ARGS__);	\
63 } while (0)
64 
65 #define cpsw_dbg(priv, type, format, ...)		\
66 do {								\
67 	if (netif_msg_##type(priv) && net_ratelimit())		\
68 		dev_dbg(priv->dev, format, ## __VA_ARGS__);	\
69 } while (0)
70 
71 #define cpsw_notice(priv, type, format, ...)		\
72 do {								\
73 	if (netif_msg_##type(priv) && net_ratelimit())		\
74 		dev_notice(priv->dev, format, ## __VA_ARGS__);	\
75 } while (0)
76 
77 #define ALE_ALL_PORTS		0x7
78 
79 #define CPSW_MAJOR_VERSION(reg)		(reg >> 8 & 0x7)
80 #define CPSW_MINOR_VERSION(reg)		(reg & 0xff)
81 #define CPSW_RTL_VERSION(reg)		((reg >> 11) & 0x1f)
82 
83 #define CPSW_VERSION_1		0x19010a
84 #define CPSW_VERSION_2		0x19010c
85 #define CPSW_VERSION_3		0x19010f
86 #define CPSW_VERSION_4		0x190112
87 
88 #define HOST_PORT_NUM		0
89 #define SLIVER_SIZE		0x40
90 
91 #define CPSW1_HOST_PORT_OFFSET	0x028
92 #define CPSW1_SLAVE_OFFSET	0x050
93 #define CPSW1_SLAVE_SIZE	0x040
94 #define CPSW1_CPDMA_OFFSET	0x100
95 #define CPSW1_STATERAM_OFFSET	0x200
96 #define CPSW1_HW_STATS		0x400
97 #define CPSW1_CPTS_OFFSET	0x500
98 #define CPSW1_ALE_OFFSET	0x600
99 #define CPSW1_SLIVER_OFFSET	0x700
100 
101 #define CPSW2_HOST_PORT_OFFSET	0x108
102 #define CPSW2_SLAVE_OFFSET	0x200
103 #define CPSW2_SLAVE_SIZE	0x100
104 #define CPSW2_CPDMA_OFFSET	0x800
105 #define CPSW2_HW_STATS		0x900
106 #define CPSW2_STATERAM_OFFSET	0xa00
107 #define CPSW2_CPTS_OFFSET	0xc00
108 #define CPSW2_ALE_OFFSET	0xd00
109 #define CPSW2_SLIVER_OFFSET	0xd80
110 #define CPSW2_BD_OFFSET		0x2000
111 
112 #define CPDMA_RXTHRESH		0x0c0
113 #define CPDMA_RXFREE		0x0e0
114 #define CPDMA_TXHDP		0x00
115 #define CPDMA_RXHDP		0x20
116 #define CPDMA_TXCP		0x40
117 #define CPDMA_RXCP		0x60
118 
119 #define CPSW_POLL_WEIGHT	64
120 #define CPSW_MIN_PACKET_SIZE	60
121 #define CPSW_MAX_PACKET_SIZE	(1500 + 14 + 4 + 4)
122 
123 #define RX_PRIORITY_MAPPING	0x76543210
124 #define TX_PRIORITY_MAPPING	0x33221100
125 #define CPDMA_TX_PRIORITY_MAP	0x76543210
126 
127 #define CPSW_VLAN_AWARE		BIT(1)
128 #define CPSW_ALE_VLAN_AWARE	1
129 
130 #define CPSW_FIFO_NORMAL_MODE		(0 << 15)
131 #define CPSW_FIFO_DUAL_MAC_MODE		(1 << 15)
132 #define CPSW_FIFO_RATE_LIMIT_MODE	(2 << 15)
133 
134 #define CPSW_INTPACEEN		(0x3f << 16)
135 #define CPSW_INTPRESCALE_MASK	(0x7FF << 0)
136 #define CPSW_CMINTMAX_CNT	63
137 #define CPSW_CMINTMIN_CNT	2
138 #define CPSW_CMINTMAX_INTVL	(1000 / CPSW_CMINTMIN_CNT)
139 #define CPSW_CMINTMIN_INTVL	((1000 / CPSW_CMINTMAX_CNT) + 1)
140 
141 #define cpsw_enable_irq(priv)	\
142 	do {			\
143 		u32 i;		\
144 		for (i = 0; i < priv->num_irqs; i++) \
145 			enable_irq(priv->irqs_table[i]); \
146 	} while (0);
147 #define cpsw_disable_irq(priv)	\
148 	do {			\
149 		u32 i;		\
150 		for (i = 0; i < priv->num_irqs; i++) \
151 			disable_irq_nosync(priv->irqs_table[i]); \
152 	} while (0);
153 
154 #define cpsw_slave_index(priv)				\
155 		((priv->data.dual_emac) ? priv->emac_port :	\
156 		priv->data.active_slave)
157 
158 static int debug_level;
159 module_param(debug_level, int, 0);
160 MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)");
161 
162 static int ale_ageout = 10;
163 module_param(ale_ageout, int, 0);
164 MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)");
165 
166 static int rx_packet_max = CPSW_MAX_PACKET_SIZE;
167 module_param(rx_packet_max, int, 0);
168 MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)");
169 
170 struct cpsw_wr_regs {
171 	u32	id_ver;
172 	u32	soft_reset;
173 	u32	control;
174 	u32	int_control;
175 	u32	rx_thresh_en;
176 	u32	rx_en;
177 	u32	tx_en;
178 	u32	misc_en;
179 	u32	mem_allign1[8];
180 	u32	rx_thresh_stat;
181 	u32	rx_stat;
182 	u32	tx_stat;
183 	u32	misc_stat;
184 	u32	mem_allign2[8];
185 	u32	rx_imax;
186 	u32	tx_imax;
187 
188 };
189 
190 struct cpsw_ss_regs {
191 	u32	id_ver;
192 	u32	control;
193 	u32	soft_reset;
194 	u32	stat_port_en;
195 	u32	ptype;
196 	u32	soft_idle;
197 	u32	thru_rate;
198 	u32	gap_thresh;
199 	u32	tx_start_wds;
200 	u32	flow_control;
201 	u32	vlan_ltype;
202 	u32	ts_ltype;
203 	u32	dlr_ltype;
204 };
205 
206 /* CPSW_PORT_V1 */
207 #define CPSW1_MAX_BLKS      0x00 /* Maximum FIFO Blocks */
208 #define CPSW1_BLK_CNT       0x04 /* FIFO Block Usage Count (Read Only) */
209 #define CPSW1_TX_IN_CTL     0x08 /* Transmit FIFO Control */
210 #define CPSW1_PORT_VLAN     0x0c /* VLAN Register */
211 #define CPSW1_TX_PRI_MAP    0x10 /* Tx Header Priority to Switch Pri Mapping */
212 #define CPSW1_TS_CTL        0x14 /* Time Sync Control */
213 #define CPSW1_TS_SEQ_LTYPE  0x18 /* Time Sync Sequence ID Offset and Msg Type */
214 #define CPSW1_TS_VLAN       0x1c /* Time Sync VLAN1 and VLAN2 */
215 
216 /* CPSW_PORT_V2 */
217 #define CPSW2_CONTROL       0x00 /* Control Register */
218 #define CPSW2_MAX_BLKS      0x08 /* Maximum FIFO Blocks */
219 #define CPSW2_BLK_CNT       0x0c /* FIFO Block Usage Count (Read Only) */
220 #define CPSW2_TX_IN_CTL     0x10 /* Transmit FIFO Control */
221 #define CPSW2_PORT_VLAN     0x14 /* VLAN Register */
222 #define CPSW2_TX_PRI_MAP    0x18 /* Tx Header Priority to Switch Pri Mapping */
223 #define CPSW2_TS_SEQ_MTYPE  0x1c /* Time Sync Sequence ID Offset and Msg Type */
224 
225 /* CPSW_PORT_V1 and V2 */
226 #define SA_LO               0x20 /* CPGMAC_SL Source Address Low */
227 #define SA_HI               0x24 /* CPGMAC_SL Source Address High */
228 #define SEND_PERCENT        0x28 /* Transmit Queue Send Percentages */
229 
230 /* CPSW_PORT_V2 only */
231 #define RX_DSCP_PRI_MAP0    0x30 /* Rx DSCP Priority to Rx Packet Mapping */
232 #define RX_DSCP_PRI_MAP1    0x34 /* Rx DSCP Priority to Rx Packet Mapping */
233 #define RX_DSCP_PRI_MAP2    0x38 /* Rx DSCP Priority to Rx Packet Mapping */
234 #define RX_DSCP_PRI_MAP3    0x3c /* Rx DSCP Priority to Rx Packet Mapping */
235 #define RX_DSCP_PRI_MAP4    0x40 /* Rx DSCP Priority to Rx Packet Mapping */
236 #define RX_DSCP_PRI_MAP5    0x44 /* Rx DSCP Priority to Rx Packet Mapping */
237 #define RX_DSCP_PRI_MAP6    0x48 /* Rx DSCP Priority to Rx Packet Mapping */
238 #define RX_DSCP_PRI_MAP7    0x4c /* Rx DSCP Priority to Rx Packet Mapping */
239 
240 /* Bit definitions for the CPSW2_CONTROL register */
241 #define PASS_PRI_TAGGED     (1<<24) /* Pass Priority Tagged */
242 #define VLAN_LTYPE2_EN      (1<<21) /* VLAN LTYPE 2 enable */
243 #define VLAN_LTYPE1_EN      (1<<20) /* VLAN LTYPE 1 enable */
244 #define DSCP_PRI_EN         (1<<16) /* DSCP Priority Enable */
245 #define TS_320              (1<<14) /* Time Sync Dest Port 320 enable */
246 #define TS_319              (1<<13) /* Time Sync Dest Port 319 enable */
247 #define TS_132              (1<<12) /* Time Sync Dest IP Addr 132 enable */
248 #define TS_131              (1<<11) /* Time Sync Dest IP Addr 131 enable */
249 #define TS_130              (1<<10) /* Time Sync Dest IP Addr 130 enable */
250 #define TS_129              (1<<9)  /* Time Sync Dest IP Addr 129 enable */
251 #define TS_BIT8             (1<<8)  /* ts_ttl_nonzero? */
252 #define TS_ANNEX_D_EN       (1<<4)  /* Time Sync Annex D enable */
253 #define TS_LTYPE2_EN        (1<<3)  /* Time Sync LTYPE 2 enable */
254 #define TS_LTYPE1_EN        (1<<2)  /* Time Sync LTYPE 1 enable */
255 #define TS_TX_EN            (1<<1)  /* Time Sync Transmit Enable */
256 #define TS_RX_EN            (1<<0)  /* Time Sync Receive Enable */
257 
258 #define CTRL_TS_BITS \
259 	(TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 | TS_BIT8 | \
260 	 TS_ANNEX_D_EN | TS_LTYPE1_EN)
261 
262 #define CTRL_ALL_TS_MASK (CTRL_TS_BITS | TS_TX_EN | TS_RX_EN)
263 #define CTRL_TX_TS_BITS  (CTRL_TS_BITS | TS_TX_EN)
264 #define CTRL_RX_TS_BITS  (CTRL_TS_BITS | TS_RX_EN)
265 
266 /* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */
267 #define TS_SEQ_ID_OFFSET_SHIFT   (16)    /* Time Sync Sequence ID Offset */
268 #define TS_SEQ_ID_OFFSET_MASK    (0x3f)
269 #define TS_MSG_TYPE_EN_SHIFT     (0)     /* Time Sync Message Type Enable */
270 #define TS_MSG_TYPE_EN_MASK      (0xffff)
271 
272 /* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */
273 #define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3))
274 
275 /* Bit definitions for the CPSW1_TS_CTL register */
276 #define CPSW_V1_TS_RX_EN		BIT(0)
277 #define CPSW_V1_TS_TX_EN		BIT(4)
278 #define CPSW_V1_MSG_TYPE_OFS		16
279 
280 /* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */
281 #define CPSW_V1_SEQ_ID_OFS_SHIFT	16
282 
283 struct cpsw_host_regs {
284 	u32	max_blks;
285 	u32	blk_cnt;
286 	u32	tx_in_ctl;
287 	u32	port_vlan;
288 	u32	tx_pri_map;
289 	u32	cpdma_tx_pri_map;
290 	u32	cpdma_rx_chan_map;
291 };
292 
293 struct cpsw_sliver_regs {
294 	u32	id_ver;
295 	u32	mac_control;
296 	u32	mac_status;
297 	u32	soft_reset;
298 	u32	rx_maxlen;
299 	u32	__reserved_0;
300 	u32	rx_pause;
301 	u32	tx_pause;
302 	u32	__reserved_1;
303 	u32	rx_pri_map;
304 };
305 
306 struct cpsw_hw_stats {
307 	u32	rxgoodframes;
308 	u32	rxbroadcastframes;
309 	u32	rxmulticastframes;
310 	u32	rxpauseframes;
311 	u32	rxcrcerrors;
312 	u32	rxaligncodeerrors;
313 	u32	rxoversizedframes;
314 	u32	rxjabberframes;
315 	u32	rxundersizedframes;
316 	u32	rxfragments;
317 	u32	__pad_0[2];
318 	u32	rxoctets;
319 	u32	txgoodframes;
320 	u32	txbroadcastframes;
321 	u32	txmulticastframes;
322 	u32	txpauseframes;
323 	u32	txdeferredframes;
324 	u32	txcollisionframes;
325 	u32	txsinglecollframes;
326 	u32	txmultcollframes;
327 	u32	txexcessivecollisions;
328 	u32	txlatecollisions;
329 	u32	txunderrun;
330 	u32	txcarriersenseerrors;
331 	u32	txoctets;
332 	u32	octetframes64;
333 	u32	octetframes65t127;
334 	u32	octetframes128t255;
335 	u32	octetframes256t511;
336 	u32	octetframes512t1023;
337 	u32	octetframes1024tup;
338 	u32	netoctets;
339 	u32	rxsofoverruns;
340 	u32	rxmofoverruns;
341 	u32	rxdmaoverruns;
342 };
343 
344 struct cpsw_slave {
345 	void __iomem			*regs;
346 	struct cpsw_sliver_regs __iomem	*sliver;
347 	int				slave_num;
348 	u32				mac_control;
349 	struct cpsw_slave_data		*data;
350 	struct phy_device		*phy;
351 	struct net_device		*ndev;
352 	u32				port_vlan;
353 	u32				open_stat;
354 };
355 
356 static inline u32 slave_read(struct cpsw_slave *slave, u32 offset)
357 {
358 	return __raw_readl(slave->regs + offset);
359 }
360 
361 static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset)
362 {
363 	__raw_writel(val, slave->regs + offset);
364 }
365 
366 struct cpsw_priv {
367 	spinlock_t			lock;
368 	struct platform_device		*pdev;
369 	struct net_device		*ndev;
370 	struct resource			*cpsw_res;
371 	struct resource			*cpsw_wr_res;
372 	struct napi_struct		napi;
373 	struct device			*dev;
374 	struct cpsw_platform_data	data;
375 	struct cpsw_ss_regs __iomem	*regs;
376 	struct cpsw_wr_regs __iomem	*wr_regs;
377 	u8 __iomem			*hw_stats;
378 	struct cpsw_host_regs __iomem	*host_port_regs;
379 	u32				msg_enable;
380 	u32				version;
381 	u32				coal_intvl;
382 	u32				bus_freq_mhz;
383 	struct net_device_stats		stats;
384 	int				rx_packet_max;
385 	int				host_port;
386 	struct clk			*clk;
387 	u8				mac_addr[ETH_ALEN];
388 	struct cpsw_slave		*slaves;
389 	struct cpdma_ctlr		*dma;
390 	struct cpdma_chan		*txch, *rxch;
391 	struct cpsw_ale			*ale;
392 	/* snapshot of IRQ numbers */
393 	u32 irqs_table[4];
394 	u32 num_irqs;
395 	bool irq_enabled;
396 	struct cpts *cpts;
397 	u32 emac_port;
398 };
399 
400 struct cpsw_stats {
401 	char stat_string[ETH_GSTRING_LEN];
402 	int type;
403 	int sizeof_stat;
404 	int stat_offset;
405 };
406 
407 enum {
408 	CPSW_STATS,
409 	CPDMA_RX_STATS,
410 	CPDMA_TX_STATS,
411 };
412 
413 #define CPSW_STAT(m)		CPSW_STATS,				\
414 				sizeof(((struct cpsw_hw_stats *)0)->m), \
415 				offsetof(struct cpsw_hw_stats, m)
416 #define CPDMA_RX_STAT(m)	CPDMA_RX_STATS,				   \
417 				sizeof(((struct cpdma_chan_stats *)0)->m), \
418 				offsetof(struct cpdma_chan_stats, m)
419 #define CPDMA_TX_STAT(m)	CPDMA_TX_STATS,				   \
420 				sizeof(((struct cpdma_chan_stats *)0)->m), \
421 				offsetof(struct cpdma_chan_stats, m)
422 
423 static const struct cpsw_stats cpsw_gstrings_stats[] = {
424 	{ "Good Rx Frames", CPSW_STAT(rxgoodframes) },
425 	{ "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) },
426 	{ "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) },
427 	{ "Pause Rx Frames", CPSW_STAT(rxpauseframes) },
428 	{ "Rx CRC Errors", CPSW_STAT(rxcrcerrors) },
429 	{ "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) },
430 	{ "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) },
431 	{ "Rx Jabbers", CPSW_STAT(rxjabberframes) },
432 	{ "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) },
433 	{ "Rx Fragments", CPSW_STAT(rxfragments) },
434 	{ "Rx Octets", CPSW_STAT(rxoctets) },
435 	{ "Good Tx Frames", CPSW_STAT(txgoodframes) },
436 	{ "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) },
437 	{ "Multicast Tx Frames", CPSW_STAT(txmulticastframes) },
438 	{ "Pause Tx Frames", CPSW_STAT(txpauseframes) },
439 	{ "Deferred Tx Frames", CPSW_STAT(txdeferredframes) },
440 	{ "Collisions", CPSW_STAT(txcollisionframes) },
441 	{ "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) },
442 	{ "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) },
443 	{ "Excessive Collisions", CPSW_STAT(txexcessivecollisions) },
444 	{ "Late Collisions", CPSW_STAT(txlatecollisions) },
445 	{ "Tx Underrun", CPSW_STAT(txunderrun) },
446 	{ "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) },
447 	{ "Tx Octets", CPSW_STAT(txoctets) },
448 	{ "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) },
449 	{ "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) },
450 	{ "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) },
451 	{ "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) },
452 	{ "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) },
453 	{ "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) },
454 	{ "Net Octets", CPSW_STAT(netoctets) },
455 	{ "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) },
456 	{ "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) },
457 	{ "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) },
458 	{ "Rx DMA chan: head_enqueue", CPDMA_RX_STAT(head_enqueue) },
459 	{ "Rx DMA chan: tail_enqueue", CPDMA_RX_STAT(tail_enqueue) },
460 	{ "Rx DMA chan: pad_enqueue", CPDMA_RX_STAT(pad_enqueue) },
461 	{ "Rx DMA chan: misqueued", CPDMA_RX_STAT(misqueued) },
462 	{ "Rx DMA chan: desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) },
463 	{ "Rx DMA chan: pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) },
464 	{ "Rx DMA chan: runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) },
465 	{ "Rx DMA chan: runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) },
466 	{ "Rx DMA chan: empty_dequeue", CPDMA_RX_STAT(empty_dequeue) },
467 	{ "Rx DMA chan: busy_dequeue", CPDMA_RX_STAT(busy_dequeue) },
468 	{ "Rx DMA chan: good_dequeue", CPDMA_RX_STAT(good_dequeue) },
469 	{ "Rx DMA chan: requeue", CPDMA_RX_STAT(requeue) },
470 	{ "Rx DMA chan: teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) },
471 	{ "Tx DMA chan: head_enqueue", CPDMA_TX_STAT(head_enqueue) },
472 	{ "Tx DMA chan: tail_enqueue", CPDMA_TX_STAT(tail_enqueue) },
473 	{ "Tx DMA chan: pad_enqueue", CPDMA_TX_STAT(pad_enqueue) },
474 	{ "Tx DMA chan: misqueued", CPDMA_TX_STAT(misqueued) },
475 	{ "Tx DMA chan: desc_alloc_fail", CPDMA_TX_STAT(desc_alloc_fail) },
476 	{ "Tx DMA chan: pad_alloc_fail", CPDMA_TX_STAT(pad_alloc_fail) },
477 	{ "Tx DMA chan: runt_receive_buf", CPDMA_TX_STAT(runt_receive_buff) },
478 	{ "Tx DMA chan: runt_transmit_buf", CPDMA_TX_STAT(runt_transmit_buff) },
479 	{ "Tx DMA chan: empty_dequeue", CPDMA_TX_STAT(empty_dequeue) },
480 	{ "Tx DMA chan: busy_dequeue", CPDMA_TX_STAT(busy_dequeue) },
481 	{ "Tx DMA chan: good_dequeue", CPDMA_TX_STAT(good_dequeue) },
482 	{ "Tx DMA chan: requeue", CPDMA_TX_STAT(requeue) },
483 	{ "Tx DMA chan: teardown_dequeue", CPDMA_TX_STAT(teardown_dequeue) },
484 };
485 
486 #define CPSW_STATS_LEN	ARRAY_SIZE(cpsw_gstrings_stats)
487 
488 #define napi_to_priv(napi)	container_of(napi, struct cpsw_priv, napi)
489 #define for_each_slave(priv, func, arg...)				\
490 	do {								\
491 		struct cpsw_slave *slave;				\
492 		int n;							\
493 		if (priv->data.dual_emac)				\
494 			(func)((priv)->slaves + priv->emac_port, ##arg);\
495 		else							\
496 			for (n = (priv)->data.slaves,			\
497 					slave = (priv)->slaves;		\
498 					n; n--)				\
499 				(func)(slave++, ##arg);			\
500 	} while (0)
501 #define cpsw_get_slave_ndev(priv, __slave_no__)				\
502 	(priv->slaves[__slave_no__].ndev)
503 #define cpsw_get_slave_priv(priv, __slave_no__)				\
504 	((priv->slaves[__slave_no__].ndev) ?				\
505 		netdev_priv(priv->slaves[__slave_no__].ndev) : NULL)	\
506 
507 #define cpsw_dual_emac_src_port_detect(status, priv, ndev, skb)		\
508 	do {								\
509 		if (!priv->data.dual_emac)				\
510 			break;						\
511 		if (CPDMA_RX_SOURCE_PORT(status) == 1) {		\
512 			ndev = cpsw_get_slave_ndev(priv, 0);		\
513 			priv = netdev_priv(ndev);			\
514 			skb->dev = ndev;				\
515 		} else if (CPDMA_RX_SOURCE_PORT(status) == 2) {		\
516 			ndev = cpsw_get_slave_ndev(priv, 1);		\
517 			priv = netdev_priv(ndev);			\
518 			skb->dev = ndev;				\
519 		}							\
520 	} while (0)
521 #define cpsw_add_mcast(priv, addr)					\
522 	do {								\
523 		if (priv->data.dual_emac) {				\
524 			struct cpsw_slave *slave = priv->slaves +	\
525 						priv->emac_port;	\
526 			int slave_port = cpsw_get_slave_port(priv,	\
527 						slave->slave_num);	\
528 			cpsw_ale_add_mcast(priv->ale, addr,		\
529 				1 << slave_port | 1 << priv->host_port,	\
530 				ALE_VLAN, slave->port_vlan, 0);		\
531 		} else {						\
532 			cpsw_ale_add_mcast(priv->ale, addr,		\
533 				ALE_ALL_PORTS << priv->host_port,	\
534 				0, 0, 0);				\
535 		}							\
536 	} while (0)
537 
538 static inline int cpsw_get_slave_port(struct cpsw_priv *priv, u32 slave_num)
539 {
540 	if (priv->host_port == 0)
541 		return slave_num + 1;
542 	else
543 		return slave_num;
544 }
545 
546 static void cpsw_ndo_set_rx_mode(struct net_device *ndev)
547 {
548 	struct cpsw_priv *priv = netdev_priv(ndev);
549 
550 	if (ndev->flags & IFF_PROMISC) {
551 		/* Enable promiscuous mode */
552 		dev_err(priv->dev, "Ignoring Promiscuous mode\n");
553 		return;
554 	}
555 
556 	/* Clear all mcast from ALE */
557 	cpsw_ale_flush_multicast(priv->ale, ALE_ALL_PORTS << priv->host_port);
558 
559 	if (!netdev_mc_empty(ndev)) {
560 		struct netdev_hw_addr *ha;
561 
562 		/* program multicast address list into ALE register */
563 		netdev_for_each_mc_addr(ha, ndev) {
564 			cpsw_add_mcast(priv, (u8 *)ha->addr);
565 		}
566 	}
567 }
568 
569 static void cpsw_intr_enable(struct cpsw_priv *priv)
570 {
571 	__raw_writel(0xFF, &priv->wr_regs->tx_en);
572 	__raw_writel(0xFF, &priv->wr_regs->rx_en);
573 
574 	cpdma_ctlr_int_ctrl(priv->dma, true);
575 	return;
576 }
577 
578 static void cpsw_intr_disable(struct cpsw_priv *priv)
579 {
580 	__raw_writel(0, &priv->wr_regs->tx_en);
581 	__raw_writel(0, &priv->wr_regs->rx_en);
582 
583 	cpdma_ctlr_int_ctrl(priv->dma, false);
584 	return;
585 }
586 
587 void cpsw_tx_handler(void *token, int len, int status)
588 {
589 	struct sk_buff		*skb = token;
590 	struct net_device	*ndev = skb->dev;
591 	struct cpsw_priv	*priv = netdev_priv(ndev);
592 
593 	/* Check whether the queue is stopped due to stalled tx dma, if the
594 	 * queue is stopped then start the queue as we have free desc for tx
595 	 */
596 	if (unlikely(netif_queue_stopped(ndev)))
597 		netif_wake_queue(ndev);
598 	cpts_tx_timestamp(priv->cpts, skb);
599 	priv->stats.tx_packets++;
600 	priv->stats.tx_bytes += len;
601 	dev_kfree_skb_any(skb);
602 }
603 
604 void cpsw_rx_handler(void *token, int len, int status)
605 {
606 	struct sk_buff		*skb = token;
607 	struct sk_buff		*new_skb;
608 	struct net_device	*ndev = skb->dev;
609 	struct cpsw_priv	*priv = netdev_priv(ndev);
610 	int			ret = 0;
611 
612 	cpsw_dual_emac_src_port_detect(status, priv, ndev, skb);
613 
614 	if (unlikely(status < 0)) {
615 		/* the interface is going down, skbs are purged */
616 		dev_kfree_skb_any(skb);
617 		return;
618 	}
619 
620 	new_skb = netdev_alloc_skb_ip_align(ndev, priv->rx_packet_max);
621 	if (new_skb) {
622 		skb_put(skb, len);
623 		cpts_rx_timestamp(priv->cpts, skb);
624 		skb->protocol = eth_type_trans(skb, ndev);
625 		netif_receive_skb(skb);
626 		priv->stats.rx_bytes += len;
627 		priv->stats.rx_packets++;
628 	} else {
629 		priv->stats.rx_dropped++;
630 		new_skb = skb;
631 	}
632 
633 	ret = cpdma_chan_submit(priv->rxch, new_skb, new_skb->data,
634 			skb_tailroom(new_skb), 0);
635 	if (WARN_ON(ret < 0))
636 		dev_kfree_skb_any(new_skb);
637 }
638 
639 static irqreturn_t cpsw_interrupt(int irq, void *dev_id)
640 {
641 	struct cpsw_priv *priv = dev_id;
642 	u32 rx, tx, rx_thresh;
643 
644 	rx_thresh = __raw_readl(&priv->wr_regs->rx_thresh_stat);
645 	rx = __raw_readl(&priv->wr_regs->rx_stat);
646 	tx = __raw_readl(&priv->wr_regs->tx_stat);
647 	if (!rx_thresh && !rx && !tx)
648 		return IRQ_NONE;
649 
650 	cpsw_intr_disable(priv);
651 	if (priv->irq_enabled == true) {
652 		cpsw_disable_irq(priv);
653 		priv->irq_enabled = false;
654 	}
655 
656 	if (netif_running(priv->ndev)) {
657 		napi_schedule(&priv->napi);
658 		return IRQ_HANDLED;
659 	}
660 
661 	priv = cpsw_get_slave_priv(priv, 1);
662 	if (!priv)
663 		return IRQ_NONE;
664 
665 	if (netif_running(priv->ndev)) {
666 		napi_schedule(&priv->napi);
667 		return IRQ_HANDLED;
668 	}
669 	return IRQ_NONE;
670 }
671 
672 static int cpsw_poll(struct napi_struct *napi, int budget)
673 {
674 	struct cpsw_priv	*priv = napi_to_priv(napi);
675 	int			num_tx, num_rx;
676 
677 	num_tx = cpdma_chan_process(priv->txch, 128);
678 	if (num_tx)
679 		cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_TX);
680 
681 	num_rx = cpdma_chan_process(priv->rxch, budget);
682 	if (num_rx < budget) {
683 		struct cpsw_priv *prim_cpsw;
684 
685 		napi_complete(napi);
686 		cpsw_intr_enable(priv);
687 		cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_RX);
688 		prim_cpsw = cpsw_get_slave_priv(priv, 0);
689 		if (prim_cpsw->irq_enabled == false) {
690 			prim_cpsw->irq_enabled = true;
691 			cpsw_enable_irq(priv);
692 		}
693 	}
694 
695 	if (num_rx || num_tx)
696 		cpsw_dbg(priv, intr, "poll %d rx, %d tx pkts\n",
697 			 num_rx, num_tx);
698 
699 	return num_rx;
700 }
701 
702 static inline void soft_reset(const char *module, void __iomem *reg)
703 {
704 	unsigned long timeout = jiffies + HZ;
705 
706 	__raw_writel(1, reg);
707 	do {
708 		cpu_relax();
709 	} while ((__raw_readl(reg) & 1) && time_after(timeout, jiffies));
710 
711 	WARN(__raw_readl(reg) & 1, "failed to soft-reset %s\n", module);
712 }
713 
714 #define mac_hi(mac)	(((mac)[0] << 0) | ((mac)[1] << 8) |	\
715 			 ((mac)[2] << 16) | ((mac)[3] << 24))
716 #define mac_lo(mac)	(((mac)[4] << 0) | ((mac)[5] << 8))
717 
718 static void cpsw_set_slave_mac(struct cpsw_slave *slave,
719 			       struct cpsw_priv *priv)
720 {
721 	slave_write(slave, mac_hi(priv->mac_addr), SA_HI);
722 	slave_write(slave, mac_lo(priv->mac_addr), SA_LO);
723 }
724 
725 static void _cpsw_adjust_link(struct cpsw_slave *slave,
726 			      struct cpsw_priv *priv, bool *link)
727 {
728 	struct phy_device	*phy = slave->phy;
729 	u32			mac_control = 0;
730 	u32			slave_port;
731 
732 	if (!phy)
733 		return;
734 
735 	slave_port = cpsw_get_slave_port(priv, slave->slave_num);
736 
737 	if (phy->link) {
738 		mac_control = priv->data.mac_control;
739 
740 		/* enable forwarding */
741 		cpsw_ale_control_set(priv->ale, slave_port,
742 				     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
743 
744 		if (phy->speed == 1000)
745 			mac_control |= BIT(7);	/* GIGABITEN	*/
746 		if (phy->duplex)
747 			mac_control |= BIT(0);	/* FULLDUPLEXEN	*/
748 
749 		/* set speed_in input in case RMII mode is used in 100Mbps */
750 		if (phy->speed == 100)
751 			mac_control |= BIT(15);
752 
753 		*link = true;
754 	} else {
755 		mac_control = 0;
756 		/* disable forwarding */
757 		cpsw_ale_control_set(priv->ale, slave_port,
758 				     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
759 	}
760 
761 	if (mac_control != slave->mac_control) {
762 		phy_print_status(phy);
763 		__raw_writel(mac_control, &slave->sliver->mac_control);
764 	}
765 
766 	slave->mac_control = mac_control;
767 }
768 
769 static void cpsw_adjust_link(struct net_device *ndev)
770 {
771 	struct cpsw_priv	*priv = netdev_priv(ndev);
772 	bool			link = false;
773 
774 	for_each_slave(priv, _cpsw_adjust_link, priv, &link);
775 
776 	if (link) {
777 		netif_carrier_on(ndev);
778 		if (netif_running(ndev))
779 			netif_wake_queue(ndev);
780 	} else {
781 		netif_carrier_off(ndev);
782 		netif_stop_queue(ndev);
783 	}
784 }
785 
786 static int cpsw_get_coalesce(struct net_device *ndev,
787 				struct ethtool_coalesce *coal)
788 {
789 	struct cpsw_priv *priv = netdev_priv(ndev);
790 
791 	coal->rx_coalesce_usecs = priv->coal_intvl;
792 	return 0;
793 }
794 
795 static int cpsw_set_coalesce(struct net_device *ndev,
796 				struct ethtool_coalesce *coal)
797 {
798 	struct cpsw_priv *priv = netdev_priv(ndev);
799 	u32 int_ctrl;
800 	u32 num_interrupts = 0;
801 	u32 prescale = 0;
802 	u32 addnl_dvdr = 1;
803 	u32 coal_intvl = 0;
804 
805 	if (!coal->rx_coalesce_usecs)
806 		return -EINVAL;
807 
808 	coal_intvl = coal->rx_coalesce_usecs;
809 
810 	int_ctrl =  readl(&priv->wr_regs->int_control);
811 	prescale = priv->bus_freq_mhz * 4;
812 
813 	if (coal_intvl < CPSW_CMINTMIN_INTVL)
814 		coal_intvl = CPSW_CMINTMIN_INTVL;
815 
816 	if (coal_intvl > CPSW_CMINTMAX_INTVL) {
817 		/* Interrupt pacer works with 4us Pulse, we can
818 		 * throttle further by dilating the 4us pulse.
819 		 */
820 		addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale;
821 
822 		if (addnl_dvdr > 1) {
823 			prescale *= addnl_dvdr;
824 			if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr))
825 				coal_intvl = (CPSW_CMINTMAX_INTVL
826 						* addnl_dvdr);
827 		} else {
828 			addnl_dvdr = 1;
829 			coal_intvl = CPSW_CMINTMAX_INTVL;
830 		}
831 	}
832 
833 	num_interrupts = (1000 * addnl_dvdr) / coal_intvl;
834 	writel(num_interrupts, &priv->wr_regs->rx_imax);
835 	writel(num_interrupts, &priv->wr_regs->tx_imax);
836 
837 	int_ctrl |= CPSW_INTPACEEN;
838 	int_ctrl &= (~CPSW_INTPRESCALE_MASK);
839 	int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK);
840 	writel(int_ctrl, &priv->wr_regs->int_control);
841 
842 	cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl);
843 	if (priv->data.dual_emac) {
844 		int i;
845 
846 		for (i = 0; i < priv->data.slaves; i++) {
847 			priv = netdev_priv(priv->slaves[i].ndev);
848 			priv->coal_intvl = coal_intvl;
849 		}
850 	} else {
851 		priv->coal_intvl = coal_intvl;
852 	}
853 
854 	return 0;
855 }
856 
857 static int cpsw_get_sset_count(struct net_device *ndev, int sset)
858 {
859 	switch (sset) {
860 	case ETH_SS_STATS:
861 		return CPSW_STATS_LEN;
862 	default:
863 		return -EOPNOTSUPP;
864 	}
865 }
866 
867 static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
868 {
869 	u8 *p = data;
870 	int i;
871 
872 	switch (stringset) {
873 	case ETH_SS_STATS:
874 		for (i = 0; i < CPSW_STATS_LEN; i++) {
875 			memcpy(p, cpsw_gstrings_stats[i].stat_string,
876 			       ETH_GSTRING_LEN);
877 			p += ETH_GSTRING_LEN;
878 		}
879 		break;
880 	}
881 }
882 
883 static void cpsw_get_ethtool_stats(struct net_device *ndev,
884 				    struct ethtool_stats *stats, u64 *data)
885 {
886 	struct cpsw_priv *priv = netdev_priv(ndev);
887 	struct cpdma_chan_stats rx_stats;
888 	struct cpdma_chan_stats tx_stats;
889 	u32 val;
890 	u8 *p;
891 	int i;
892 
893 	/* Collect Davinci CPDMA stats for Rx and Tx Channel */
894 	cpdma_chan_get_stats(priv->rxch, &rx_stats);
895 	cpdma_chan_get_stats(priv->txch, &tx_stats);
896 
897 	for (i = 0; i < CPSW_STATS_LEN; i++) {
898 		switch (cpsw_gstrings_stats[i].type) {
899 		case CPSW_STATS:
900 			val = readl(priv->hw_stats +
901 				    cpsw_gstrings_stats[i].stat_offset);
902 			data[i] = val;
903 			break;
904 
905 		case CPDMA_RX_STATS:
906 			p = (u8 *)&rx_stats +
907 				cpsw_gstrings_stats[i].stat_offset;
908 			data[i] = *(u32 *)p;
909 			break;
910 
911 		case CPDMA_TX_STATS:
912 			p = (u8 *)&tx_stats +
913 				cpsw_gstrings_stats[i].stat_offset;
914 			data[i] = *(u32 *)p;
915 			break;
916 		}
917 	}
918 }
919 
920 static inline int __show_stat(char *buf, int maxlen, const char *name, u32 val)
921 {
922 	static char *leader = "........................................";
923 
924 	if (!val)
925 		return 0;
926 	else
927 		return snprintf(buf, maxlen, "%s %s %10d\n", name,
928 				leader + strlen(name), val);
929 }
930 
931 static int cpsw_common_res_usage_state(struct cpsw_priv *priv)
932 {
933 	u32 i;
934 	u32 usage_count = 0;
935 
936 	if (!priv->data.dual_emac)
937 		return 0;
938 
939 	for (i = 0; i < priv->data.slaves; i++)
940 		if (priv->slaves[i].open_stat)
941 			usage_count++;
942 
943 	return usage_count;
944 }
945 
946 static inline int cpsw_tx_packet_submit(struct net_device *ndev,
947 			struct cpsw_priv *priv, struct sk_buff *skb)
948 {
949 	if (!priv->data.dual_emac)
950 		return cpdma_chan_submit(priv->txch, skb, skb->data,
951 				  skb->len, 0);
952 
953 	if (ndev == cpsw_get_slave_ndev(priv, 0))
954 		return cpdma_chan_submit(priv->txch, skb, skb->data,
955 				  skb->len, 1);
956 	else
957 		return cpdma_chan_submit(priv->txch, skb, skb->data,
958 				  skb->len, 2);
959 }
960 
961 static inline void cpsw_add_dual_emac_def_ale_entries(
962 		struct cpsw_priv *priv, struct cpsw_slave *slave,
963 		u32 slave_port)
964 {
965 	u32 port_mask = 1 << slave_port | 1 << priv->host_port;
966 
967 	if (priv->version == CPSW_VERSION_1)
968 		slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN);
969 	else
970 		slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN);
971 	cpsw_ale_add_vlan(priv->ale, slave->port_vlan, port_mask,
972 			  port_mask, port_mask, 0);
973 	cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast,
974 			   port_mask, ALE_VLAN, slave->port_vlan, 0);
975 	cpsw_ale_add_ucast(priv->ale, priv->mac_addr,
976 		priv->host_port, ALE_VLAN, slave->port_vlan);
977 }
978 
979 static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv)
980 {
981 	char name[32];
982 	u32 slave_port;
983 
984 	sprintf(name, "slave-%d", slave->slave_num);
985 
986 	soft_reset(name, &slave->sliver->soft_reset);
987 
988 	/* setup priority mapping */
989 	__raw_writel(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map);
990 
991 	switch (priv->version) {
992 	case CPSW_VERSION_1:
993 		slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP);
994 		break;
995 	case CPSW_VERSION_2:
996 	case CPSW_VERSION_3:
997 	case CPSW_VERSION_4:
998 		slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP);
999 		break;
1000 	}
1001 
1002 	/* setup max packet size, and mac address */
1003 	__raw_writel(priv->rx_packet_max, &slave->sliver->rx_maxlen);
1004 	cpsw_set_slave_mac(slave, priv);
1005 
1006 	slave->mac_control = 0;	/* no link yet */
1007 
1008 	slave_port = cpsw_get_slave_port(priv, slave->slave_num);
1009 
1010 	if (priv->data.dual_emac)
1011 		cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port);
1012 	else
1013 		cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast,
1014 				   1 << slave_port, 0, 0, ALE_MCAST_FWD_2);
1015 
1016 	slave->phy = phy_connect(priv->ndev, slave->data->phy_id,
1017 				 &cpsw_adjust_link, slave->data->phy_if);
1018 	if (IS_ERR(slave->phy)) {
1019 		dev_err(priv->dev, "phy %s not found on slave %d\n",
1020 			slave->data->phy_id, slave->slave_num);
1021 		slave->phy = NULL;
1022 	} else {
1023 		dev_info(priv->dev, "phy found : id is : 0x%x\n",
1024 			 slave->phy->phy_id);
1025 		phy_start(slave->phy);
1026 	}
1027 }
1028 
1029 static inline void cpsw_add_default_vlan(struct cpsw_priv *priv)
1030 {
1031 	const int vlan = priv->data.default_vlan;
1032 	const int port = priv->host_port;
1033 	u32 reg;
1034 	int i;
1035 
1036 	reg = (priv->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN :
1037 	       CPSW2_PORT_VLAN;
1038 
1039 	writel(vlan, &priv->host_port_regs->port_vlan);
1040 
1041 	for (i = 0; i < priv->data.slaves; i++)
1042 		slave_write(priv->slaves + i, vlan, reg);
1043 
1044 	cpsw_ale_add_vlan(priv->ale, vlan, ALE_ALL_PORTS << port,
1045 			  ALE_ALL_PORTS << port, ALE_ALL_PORTS << port,
1046 			  (ALE_PORT_1 | ALE_PORT_2) << port);
1047 }
1048 
1049 static void cpsw_init_host_port(struct cpsw_priv *priv)
1050 {
1051 	u32 control_reg;
1052 	u32 fifo_mode;
1053 
1054 	/* soft reset the controller and initialize ale */
1055 	soft_reset("cpsw", &priv->regs->soft_reset);
1056 	cpsw_ale_start(priv->ale);
1057 
1058 	/* switch to vlan unaware mode */
1059 	cpsw_ale_control_set(priv->ale, priv->host_port, ALE_VLAN_AWARE,
1060 			     CPSW_ALE_VLAN_AWARE);
1061 	control_reg = readl(&priv->regs->control);
1062 	control_reg |= CPSW_VLAN_AWARE;
1063 	writel(control_reg, &priv->regs->control);
1064 	fifo_mode = (priv->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE :
1065 		     CPSW_FIFO_NORMAL_MODE;
1066 	writel(fifo_mode, &priv->host_port_regs->tx_in_ctl);
1067 
1068 	/* setup host port priority mapping */
1069 	__raw_writel(CPDMA_TX_PRIORITY_MAP,
1070 		     &priv->host_port_regs->cpdma_tx_pri_map);
1071 	__raw_writel(0, &priv->host_port_regs->cpdma_rx_chan_map);
1072 
1073 	cpsw_ale_control_set(priv->ale, priv->host_port,
1074 			     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
1075 
1076 	if (!priv->data.dual_emac) {
1077 		cpsw_ale_add_ucast(priv->ale, priv->mac_addr, priv->host_port,
1078 				   0, 0);
1079 		cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast,
1080 				   1 << priv->host_port, 0, 0, ALE_MCAST_FWD_2);
1081 	}
1082 }
1083 
1084 static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_priv *priv)
1085 {
1086 	if (!slave->phy)
1087 		return;
1088 	phy_stop(slave->phy);
1089 	phy_disconnect(slave->phy);
1090 	slave->phy = NULL;
1091 }
1092 
1093 static int cpsw_ndo_open(struct net_device *ndev)
1094 {
1095 	struct cpsw_priv *priv = netdev_priv(ndev);
1096 	struct cpsw_priv *prim_cpsw;
1097 	int i, ret;
1098 	u32 reg;
1099 
1100 	if (!cpsw_common_res_usage_state(priv))
1101 		cpsw_intr_disable(priv);
1102 	netif_carrier_off(ndev);
1103 
1104 	pm_runtime_get_sync(&priv->pdev->dev);
1105 
1106 	reg = priv->version;
1107 
1108 	dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n",
1109 		 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg),
1110 		 CPSW_RTL_VERSION(reg));
1111 
1112 	/* initialize host and slave ports */
1113 	if (!cpsw_common_res_usage_state(priv))
1114 		cpsw_init_host_port(priv);
1115 	for_each_slave(priv, cpsw_slave_open, priv);
1116 
1117 	/* Add default VLAN */
1118 	if (!priv->data.dual_emac)
1119 		cpsw_add_default_vlan(priv);
1120 
1121 	if (!cpsw_common_res_usage_state(priv)) {
1122 		/* setup tx dma to fixed prio and zero offset */
1123 		cpdma_control_set(priv->dma, CPDMA_TX_PRIO_FIXED, 1);
1124 		cpdma_control_set(priv->dma, CPDMA_RX_BUFFER_OFFSET, 0);
1125 
1126 		/* disable priority elevation */
1127 		__raw_writel(0, &priv->regs->ptype);
1128 
1129 		/* enable statistics collection only on all ports */
1130 		__raw_writel(0x7, &priv->regs->stat_port_en);
1131 
1132 		if (WARN_ON(!priv->data.rx_descs))
1133 			priv->data.rx_descs = 128;
1134 
1135 		for (i = 0; i < priv->data.rx_descs; i++) {
1136 			struct sk_buff *skb;
1137 
1138 			ret = -ENOMEM;
1139 			skb = __netdev_alloc_skb_ip_align(priv->ndev,
1140 					priv->rx_packet_max, GFP_KERNEL);
1141 			if (!skb)
1142 				goto err_cleanup;
1143 			ret = cpdma_chan_submit(priv->rxch, skb, skb->data,
1144 					skb_tailroom(skb), 0);
1145 			if (ret < 0) {
1146 				kfree_skb(skb);
1147 				goto err_cleanup;
1148 			}
1149 		}
1150 		/* continue even if we didn't manage to submit all
1151 		 * receive descs
1152 		 */
1153 		cpsw_info(priv, ifup, "submitted %d rx descriptors\n", i);
1154 	}
1155 
1156 	/* Enable Interrupt pacing if configured */
1157 	if (priv->coal_intvl != 0) {
1158 		struct ethtool_coalesce coal;
1159 
1160 		coal.rx_coalesce_usecs = (priv->coal_intvl << 4);
1161 		cpsw_set_coalesce(ndev, &coal);
1162 	}
1163 
1164 	prim_cpsw = cpsw_get_slave_priv(priv, 0);
1165 	if (prim_cpsw->irq_enabled == false) {
1166 		if ((priv == prim_cpsw) || !netif_running(prim_cpsw->ndev)) {
1167 			prim_cpsw->irq_enabled = true;
1168 			cpsw_enable_irq(prim_cpsw);
1169 		}
1170 	}
1171 
1172 	cpdma_ctlr_start(priv->dma);
1173 	cpsw_intr_enable(priv);
1174 	napi_enable(&priv->napi);
1175 	cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_RX);
1176 	cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_TX);
1177 
1178 	if (priv->data.dual_emac)
1179 		priv->slaves[priv->emac_port].open_stat = true;
1180 	return 0;
1181 
1182 err_cleanup:
1183 	cpdma_ctlr_stop(priv->dma);
1184 	for_each_slave(priv, cpsw_slave_stop, priv);
1185 	pm_runtime_put_sync(&priv->pdev->dev);
1186 	netif_carrier_off(priv->ndev);
1187 	return ret;
1188 }
1189 
1190 static int cpsw_ndo_stop(struct net_device *ndev)
1191 {
1192 	struct cpsw_priv *priv = netdev_priv(ndev);
1193 
1194 	cpsw_info(priv, ifdown, "shutting down cpsw device\n");
1195 	netif_stop_queue(priv->ndev);
1196 	napi_disable(&priv->napi);
1197 	netif_carrier_off(priv->ndev);
1198 
1199 	if (cpsw_common_res_usage_state(priv) <= 1) {
1200 		cpsw_intr_disable(priv);
1201 		cpdma_ctlr_int_ctrl(priv->dma, false);
1202 		cpdma_ctlr_stop(priv->dma);
1203 		cpsw_ale_stop(priv->ale);
1204 	}
1205 	for_each_slave(priv, cpsw_slave_stop, priv);
1206 	pm_runtime_put_sync(&priv->pdev->dev);
1207 	if (priv->data.dual_emac)
1208 		priv->slaves[priv->emac_port].open_stat = false;
1209 	return 0;
1210 }
1211 
1212 static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb,
1213 				       struct net_device *ndev)
1214 {
1215 	struct cpsw_priv *priv = netdev_priv(ndev);
1216 	int ret;
1217 
1218 	ndev->trans_start = jiffies;
1219 
1220 	if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) {
1221 		cpsw_err(priv, tx_err, "packet pad failed\n");
1222 		priv->stats.tx_dropped++;
1223 		return NETDEV_TX_OK;
1224 	}
1225 
1226 	if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
1227 				priv->cpts->tx_enable)
1228 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1229 
1230 	skb_tx_timestamp(skb);
1231 
1232 	ret = cpsw_tx_packet_submit(ndev, priv, skb);
1233 	if (unlikely(ret != 0)) {
1234 		cpsw_err(priv, tx_err, "desc submit failed\n");
1235 		goto fail;
1236 	}
1237 
1238 	/* If there is no more tx desc left free then we need to
1239 	 * tell the kernel to stop sending us tx frames.
1240 	 */
1241 	if (unlikely(!cpdma_check_free_tx_desc(priv->txch)))
1242 		netif_stop_queue(ndev);
1243 
1244 	return NETDEV_TX_OK;
1245 fail:
1246 	priv->stats.tx_dropped++;
1247 	netif_stop_queue(ndev);
1248 	return NETDEV_TX_BUSY;
1249 }
1250 
1251 static void cpsw_ndo_change_rx_flags(struct net_device *ndev, int flags)
1252 {
1253 	/*
1254 	 * The switch cannot operate in promiscuous mode without substantial
1255 	 * headache.  For promiscuous mode to work, we would need to put the
1256 	 * ALE in bypass mode and route all traffic to the host port.
1257 	 * Subsequently, the host will need to operate as a "bridge", learn,
1258 	 * and flood as needed.  For now, we simply complain here and
1259 	 * do nothing about it :-)
1260 	 */
1261 	if ((flags & IFF_PROMISC) && (ndev->flags & IFF_PROMISC))
1262 		dev_err(&ndev->dev, "promiscuity ignored!\n");
1263 
1264 	/*
1265 	 * The switch cannot filter multicast traffic unless it is configured
1266 	 * in "VLAN Aware" mode.  Unfortunately, VLAN awareness requires a
1267 	 * whole bunch of additional logic that this driver does not implement
1268 	 * at present.
1269 	 */
1270 	if ((flags & IFF_ALLMULTI) && !(ndev->flags & IFF_ALLMULTI))
1271 		dev_err(&ndev->dev, "multicast traffic cannot be filtered!\n");
1272 }
1273 
1274 #ifdef CONFIG_TI_CPTS
1275 
1276 static void cpsw_hwtstamp_v1(struct cpsw_priv *priv)
1277 {
1278 	struct cpsw_slave *slave = &priv->slaves[priv->data.active_slave];
1279 	u32 ts_en, seq_id;
1280 
1281 	if (!priv->cpts->tx_enable && !priv->cpts->rx_enable) {
1282 		slave_write(slave, 0, CPSW1_TS_CTL);
1283 		return;
1284 	}
1285 
1286 	seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588;
1287 	ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS;
1288 
1289 	if (priv->cpts->tx_enable)
1290 		ts_en |= CPSW_V1_TS_TX_EN;
1291 
1292 	if (priv->cpts->rx_enable)
1293 		ts_en |= CPSW_V1_TS_RX_EN;
1294 
1295 	slave_write(slave, ts_en, CPSW1_TS_CTL);
1296 	slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE);
1297 }
1298 
1299 static void cpsw_hwtstamp_v2(struct cpsw_priv *priv)
1300 {
1301 	struct cpsw_slave *slave;
1302 	u32 ctrl, mtype;
1303 
1304 	if (priv->data.dual_emac)
1305 		slave = &priv->slaves[priv->emac_port];
1306 	else
1307 		slave = &priv->slaves[priv->data.active_slave];
1308 
1309 	ctrl = slave_read(slave, CPSW2_CONTROL);
1310 	ctrl &= ~CTRL_ALL_TS_MASK;
1311 
1312 	if (priv->cpts->tx_enable)
1313 		ctrl |= CTRL_TX_TS_BITS;
1314 
1315 	if (priv->cpts->rx_enable)
1316 		ctrl |= CTRL_RX_TS_BITS;
1317 
1318 	mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS;
1319 
1320 	slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE);
1321 	slave_write(slave, ctrl, CPSW2_CONTROL);
1322 	__raw_writel(ETH_P_1588, &priv->regs->ts_ltype);
1323 }
1324 
1325 static int cpsw_hwtstamp_ioctl(struct net_device *dev, struct ifreq *ifr)
1326 {
1327 	struct cpsw_priv *priv = netdev_priv(dev);
1328 	struct cpts *cpts = priv->cpts;
1329 	struct hwtstamp_config cfg;
1330 
1331 	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1332 		return -EFAULT;
1333 
1334 	/* reserved for future extensions */
1335 	if (cfg.flags)
1336 		return -EINVAL;
1337 
1338 	switch (cfg.tx_type) {
1339 	case HWTSTAMP_TX_OFF:
1340 		cpts->tx_enable = 0;
1341 		break;
1342 	case HWTSTAMP_TX_ON:
1343 		cpts->tx_enable = 1;
1344 		break;
1345 	default:
1346 		return -ERANGE;
1347 	}
1348 
1349 	switch (cfg.rx_filter) {
1350 	case HWTSTAMP_FILTER_NONE:
1351 		cpts->rx_enable = 0;
1352 		break;
1353 	case HWTSTAMP_FILTER_ALL:
1354 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1355 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1356 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1357 		return -ERANGE;
1358 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1359 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1360 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1361 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1362 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1363 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1364 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1365 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1366 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1367 		cpts->rx_enable = 1;
1368 		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1369 		break;
1370 	default:
1371 		return -ERANGE;
1372 	}
1373 
1374 	switch (priv->version) {
1375 	case CPSW_VERSION_1:
1376 		cpsw_hwtstamp_v1(priv);
1377 		break;
1378 	case CPSW_VERSION_2:
1379 		cpsw_hwtstamp_v2(priv);
1380 		break;
1381 	default:
1382 		return -ENOTSUPP;
1383 	}
1384 
1385 	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1386 }
1387 
1388 #endif /*CONFIG_TI_CPTS*/
1389 
1390 static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
1391 {
1392 	struct cpsw_priv *priv = netdev_priv(dev);
1393 	struct mii_ioctl_data *data = if_mii(req);
1394 	int slave_no = cpsw_slave_index(priv);
1395 
1396 	if (!netif_running(dev))
1397 		return -EINVAL;
1398 
1399 	switch (cmd) {
1400 #ifdef CONFIG_TI_CPTS
1401 	case SIOCSHWTSTAMP:
1402 		return cpsw_hwtstamp_ioctl(dev, req);
1403 #endif
1404 	case SIOCGMIIPHY:
1405 		data->phy_id = priv->slaves[slave_no].phy->addr;
1406 		break;
1407 	default:
1408 		return -ENOTSUPP;
1409 	}
1410 
1411 	return 0;
1412 }
1413 
1414 static void cpsw_ndo_tx_timeout(struct net_device *ndev)
1415 {
1416 	struct cpsw_priv *priv = netdev_priv(ndev);
1417 
1418 	cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n");
1419 	priv->stats.tx_errors++;
1420 	cpsw_intr_disable(priv);
1421 	cpdma_ctlr_int_ctrl(priv->dma, false);
1422 	cpdma_chan_stop(priv->txch);
1423 	cpdma_chan_start(priv->txch);
1424 	cpdma_ctlr_int_ctrl(priv->dma, true);
1425 	cpsw_intr_enable(priv);
1426 	cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_RX);
1427 	cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_TX);
1428 
1429 }
1430 
1431 static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p)
1432 {
1433 	struct cpsw_priv *priv = netdev_priv(ndev);
1434 	struct sockaddr *addr = (struct sockaddr *)p;
1435 	int flags = 0;
1436 	u16 vid = 0;
1437 
1438 	if (!is_valid_ether_addr(addr->sa_data))
1439 		return -EADDRNOTAVAIL;
1440 
1441 	if (priv->data.dual_emac) {
1442 		vid = priv->slaves[priv->emac_port].port_vlan;
1443 		flags = ALE_VLAN;
1444 	}
1445 
1446 	cpsw_ale_del_ucast(priv->ale, priv->mac_addr, priv->host_port,
1447 			   flags, vid);
1448 	cpsw_ale_add_ucast(priv->ale, addr->sa_data, priv->host_port,
1449 			   flags, vid);
1450 
1451 	memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
1452 	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
1453 	for_each_slave(priv, cpsw_set_slave_mac, priv);
1454 
1455 	return 0;
1456 }
1457 
1458 static struct net_device_stats *cpsw_ndo_get_stats(struct net_device *ndev)
1459 {
1460 	struct cpsw_priv *priv = netdev_priv(ndev);
1461 	return &priv->stats;
1462 }
1463 
1464 #ifdef CONFIG_NET_POLL_CONTROLLER
1465 static void cpsw_ndo_poll_controller(struct net_device *ndev)
1466 {
1467 	struct cpsw_priv *priv = netdev_priv(ndev);
1468 
1469 	cpsw_intr_disable(priv);
1470 	cpdma_ctlr_int_ctrl(priv->dma, false);
1471 	cpsw_interrupt(ndev->irq, priv);
1472 	cpdma_ctlr_int_ctrl(priv->dma, true);
1473 	cpsw_intr_enable(priv);
1474 	cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_RX);
1475 	cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_TX);
1476 
1477 }
1478 #endif
1479 
1480 static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv,
1481 				unsigned short vid)
1482 {
1483 	int ret;
1484 
1485 	ret = cpsw_ale_add_vlan(priv->ale, vid,
1486 				ALE_ALL_PORTS << priv->host_port,
1487 				0, ALE_ALL_PORTS << priv->host_port,
1488 				(ALE_PORT_1 | ALE_PORT_2) << priv->host_port);
1489 	if (ret != 0)
1490 		return ret;
1491 
1492 	ret = cpsw_ale_add_ucast(priv->ale, priv->mac_addr,
1493 				 priv->host_port, ALE_VLAN, vid);
1494 	if (ret != 0)
1495 		goto clean_vid;
1496 
1497 	ret = cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast,
1498 				 ALE_ALL_PORTS << priv->host_port,
1499 				 ALE_VLAN, vid, 0);
1500 	if (ret != 0)
1501 		goto clean_vlan_ucast;
1502 	return 0;
1503 
1504 clean_vlan_ucast:
1505 	cpsw_ale_del_ucast(priv->ale, priv->mac_addr,
1506 			    priv->host_port, ALE_VLAN, vid);
1507 clean_vid:
1508 	cpsw_ale_del_vlan(priv->ale, vid, 0);
1509 	return ret;
1510 }
1511 
1512 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
1513 				    __be16 proto, u16 vid)
1514 {
1515 	struct cpsw_priv *priv = netdev_priv(ndev);
1516 
1517 	if (vid == priv->data.default_vlan)
1518 		return 0;
1519 
1520 	dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid);
1521 	return cpsw_add_vlan_ale_entry(priv, vid);
1522 }
1523 
1524 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev,
1525 				     __be16 proto, u16 vid)
1526 {
1527 	struct cpsw_priv *priv = netdev_priv(ndev);
1528 	int ret;
1529 
1530 	if (vid == priv->data.default_vlan)
1531 		return 0;
1532 
1533 	dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid);
1534 	ret = cpsw_ale_del_vlan(priv->ale, vid, 0);
1535 	if (ret != 0)
1536 		return ret;
1537 
1538 	ret = cpsw_ale_del_ucast(priv->ale, priv->mac_addr,
1539 				 priv->host_port, ALE_VLAN, vid);
1540 	if (ret != 0)
1541 		return ret;
1542 
1543 	return cpsw_ale_del_mcast(priv->ale, priv->ndev->broadcast,
1544 				  0, ALE_VLAN, vid);
1545 }
1546 
1547 static const struct net_device_ops cpsw_netdev_ops = {
1548 	.ndo_open		= cpsw_ndo_open,
1549 	.ndo_stop		= cpsw_ndo_stop,
1550 	.ndo_start_xmit		= cpsw_ndo_start_xmit,
1551 	.ndo_change_rx_flags	= cpsw_ndo_change_rx_flags,
1552 	.ndo_set_mac_address	= cpsw_ndo_set_mac_address,
1553 	.ndo_do_ioctl		= cpsw_ndo_ioctl,
1554 	.ndo_validate_addr	= eth_validate_addr,
1555 	.ndo_change_mtu		= eth_change_mtu,
1556 	.ndo_tx_timeout		= cpsw_ndo_tx_timeout,
1557 	.ndo_get_stats		= cpsw_ndo_get_stats,
1558 	.ndo_set_rx_mode	= cpsw_ndo_set_rx_mode,
1559 #ifdef CONFIG_NET_POLL_CONTROLLER
1560 	.ndo_poll_controller	= cpsw_ndo_poll_controller,
1561 #endif
1562 	.ndo_vlan_rx_add_vid	= cpsw_ndo_vlan_rx_add_vid,
1563 	.ndo_vlan_rx_kill_vid	= cpsw_ndo_vlan_rx_kill_vid,
1564 };
1565 
1566 static void cpsw_get_drvinfo(struct net_device *ndev,
1567 			     struct ethtool_drvinfo *info)
1568 {
1569 	struct cpsw_priv *priv = netdev_priv(ndev);
1570 
1571 	strlcpy(info->driver, "TI CPSW Driver v1.0", sizeof(info->driver));
1572 	strlcpy(info->version, "1.0", sizeof(info->version));
1573 	strlcpy(info->bus_info, priv->pdev->name, sizeof(info->bus_info));
1574 }
1575 
1576 static u32 cpsw_get_msglevel(struct net_device *ndev)
1577 {
1578 	struct cpsw_priv *priv = netdev_priv(ndev);
1579 	return priv->msg_enable;
1580 }
1581 
1582 static void cpsw_set_msglevel(struct net_device *ndev, u32 value)
1583 {
1584 	struct cpsw_priv *priv = netdev_priv(ndev);
1585 	priv->msg_enable = value;
1586 }
1587 
1588 static int cpsw_get_ts_info(struct net_device *ndev,
1589 			    struct ethtool_ts_info *info)
1590 {
1591 #ifdef CONFIG_TI_CPTS
1592 	struct cpsw_priv *priv = netdev_priv(ndev);
1593 
1594 	info->so_timestamping =
1595 		SOF_TIMESTAMPING_TX_HARDWARE |
1596 		SOF_TIMESTAMPING_TX_SOFTWARE |
1597 		SOF_TIMESTAMPING_RX_HARDWARE |
1598 		SOF_TIMESTAMPING_RX_SOFTWARE |
1599 		SOF_TIMESTAMPING_SOFTWARE |
1600 		SOF_TIMESTAMPING_RAW_HARDWARE;
1601 	info->phc_index = priv->cpts->phc_index;
1602 	info->tx_types =
1603 		(1 << HWTSTAMP_TX_OFF) |
1604 		(1 << HWTSTAMP_TX_ON);
1605 	info->rx_filters =
1606 		(1 << HWTSTAMP_FILTER_NONE) |
1607 		(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
1608 #else
1609 	info->so_timestamping =
1610 		SOF_TIMESTAMPING_TX_SOFTWARE |
1611 		SOF_TIMESTAMPING_RX_SOFTWARE |
1612 		SOF_TIMESTAMPING_SOFTWARE;
1613 	info->phc_index = -1;
1614 	info->tx_types = 0;
1615 	info->rx_filters = 0;
1616 #endif
1617 	return 0;
1618 }
1619 
1620 static int cpsw_get_settings(struct net_device *ndev,
1621 			     struct ethtool_cmd *ecmd)
1622 {
1623 	struct cpsw_priv *priv = netdev_priv(ndev);
1624 	int slave_no = cpsw_slave_index(priv);
1625 
1626 	if (priv->slaves[slave_no].phy)
1627 		return phy_ethtool_gset(priv->slaves[slave_no].phy, ecmd);
1628 	else
1629 		return -EOPNOTSUPP;
1630 }
1631 
1632 static int cpsw_set_settings(struct net_device *ndev, struct ethtool_cmd *ecmd)
1633 {
1634 	struct cpsw_priv *priv = netdev_priv(ndev);
1635 	int slave_no = cpsw_slave_index(priv);
1636 
1637 	if (priv->slaves[slave_no].phy)
1638 		return phy_ethtool_sset(priv->slaves[slave_no].phy, ecmd);
1639 	else
1640 		return -EOPNOTSUPP;
1641 }
1642 
1643 static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1644 {
1645 	struct cpsw_priv *priv = netdev_priv(ndev);
1646 	int slave_no = cpsw_slave_index(priv);
1647 
1648 	wol->supported = 0;
1649 	wol->wolopts = 0;
1650 
1651 	if (priv->slaves[slave_no].phy)
1652 		phy_ethtool_get_wol(priv->slaves[slave_no].phy, wol);
1653 }
1654 
1655 static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1656 {
1657 	struct cpsw_priv *priv = netdev_priv(ndev);
1658 	int slave_no = cpsw_slave_index(priv);
1659 
1660 	if (priv->slaves[slave_no].phy)
1661 		return phy_ethtool_set_wol(priv->slaves[slave_no].phy, wol);
1662 	else
1663 		return -EOPNOTSUPP;
1664 }
1665 
1666 static const struct ethtool_ops cpsw_ethtool_ops = {
1667 	.get_drvinfo	= cpsw_get_drvinfo,
1668 	.get_msglevel	= cpsw_get_msglevel,
1669 	.set_msglevel	= cpsw_set_msglevel,
1670 	.get_link	= ethtool_op_get_link,
1671 	.get_ts_info	= cpsw_get_ts_info,
1672 	.get_settings	= cpsw_get_settings,
1673 	.set_settings	= cpsw_set_settings,
1674 	.get_coalesce	= cpsw_get_coalesce,
1675 	.set_coalesce	= cpsw_set_coalesce,
1676 	.get_sset_count		= cpsw_get_sset_count,
1677 	.get_strings		= cpsw_get_strings,
1678 	.get_ethtool_stats	= cpsw_get_ethtool_stats,
1679 	.get_wol	= cpsw_get_wol,
1680 	.set_wol	= cpsw_set_wol,
1681 };
1682 
1683 static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_priv *priv,
1684 			    u32 slave_reg_ofs, u32 sliver_reg_ofs)
1685 {
1686 	void __iomem		*regs = priv->regs;
1687 	int			slave_num = slave->slave_num;
1688 	struct cpsw_slave_data	*data = priv->data.slave_data + slave_num;
1689 
1690 	slave->data	= data;
1691 	slave->regs	= regs + slave_reg_ofs;
1692 	slave->sliver	= regs + sliver_reg_ofs;
1693 	slave->port_vlan = data->dual_emac_res_vlan;
1694 }
1695 
1696 static int cpsw_probe_dt(struct cpsw_platform_data *data,
1697 			 struct platform_device *pdev)
1698 {
1699 	struct device_node *node = pdev->dev.of_node;
1700 	struct device_node *slave_node;
1701 	int i = 0, ret;
1702 	u32 prop;
1703 
1704 	if (!node)
1705 		return -EINVAL;
1706 
1707 	if (of_property_read_u32(node, "slaves", &prop)) {
1708 		pr_err("Missing slaves property in the DT.\n");
1709 		return -EINVAL;
1710 	}
1711 	data->slaves = prop;
1712 
1713 	if (of_property_read_u32(node, "active_slave", &prop)) {
1714 		pr_err("Missing active_slave property in the DT.\n");
1715 		ret = -EINVAL;
1716 		goto error_ret;
1717 	}
1718 	data->active_slave = prop;
1719 
1720 	if (of_property_read_u32(node, "cpts_clock_mult", &prop)) {
1721 		pr_err("Missing cpts_clock_mult property in the DT.\n");
1722 		ret = -EINVAL;
1723 		goto error_ret;
1724 	}
1725 	data->cpts_clock_mult = prop;
1726 
1727 	if (of_property_read_u32(node, "cpts_clock_shift", &prop)) {
1728 		pr_err("Missing cpts_clock_shift property in the DT.\n");
1729 		ret = -EINVAL;
1730 		goto error_ret;
1731 	}
1732 	data->cpts_clock_shift = prop;
1733 
1734 	data->slave_data = kcalloc(data->slaves, sizeof(struct cpsw_slave_data),
1735 				   GFP_KERNEL);
1736 	if (!data->slave_data)
1737 		return -EINVAL;
1738 
1739 	if (of_property_read_u32(node, "cpdma_channels", &prop)) {
1740 		pr_err("Missing cpdma_channels property in the DT.\n");
1741 		ret = -EINVAL;
1742 		goto error_ret;
1743 	}
1744 	data->channels = prop;
1745 
1746 	if (of_property_read_u32(node, "ale_entries", &prop)) {
1747 		pr_err("Missing ale_entries property in the DT.\n");
1748 		ret = -EINVAL;
1749 		goto error_ret;
1750 	}
1751 	data->ale_entries = prop;
1752 
1753 	if (of_property_read_u32(node, "bd_ram_size", &prop)) {
1754 		pr_err("Missing bd_ram_size property in the DT.\n");
1755 		ret = -EINVAL;
1756 		goto error_ret;
1757 	}
1758 	data->bd_ram_size = prop;
1759 
1760 	if (of_property_read_u32(node, "rx_descs", &prop)) {
1761 		pr_err("Missing rx_descs property in the DT.\n");
1762 		ret = -EINVAL;
1763 		goto error_ret;
1764 	}
1765 	data->rx_descs = prop;
1766 
1767 	if (of_property_read_u32(node, "mac_control", &prop)) {
1768 		pr_err("Missing mac_control property in the DT.\n");
1769 		ret = -EINVAL;
1770 		goto error_ret;
1771 	}
1772 	data->mac_control = prop;
1773 
1774 	if (!of_property_read_u32(node, "dual_emac", &prop))
1775 		data->dual_emac = prop;
1776 
1777 	/*
1778 	 * Populate all the child nodes here...
1779 	 */
1780 	ret = of_platform_populate(node, NULL, NULL, &pdev->dev);
1781 	/* We do not want to force this, as in some cases may not have child */
1782 	if (ret)
1783 		pr_warn("Doesn't have any child node\n");
1784 
1785 	for_each_node_by_name(slave_node, "slave") {
1786 		struct cpsw_slave_data *slave_data = data->slave_data + i;
1787 		const void *mac_addr = NULL;
1788 		u32 phyid;
1789 		int lenp;
1790 		const __be32 *parp;
1791 		struct device_node *mdio_node;
1792 		struct platform_device *mdio;
1793 
1794 		parp = of_get_property(slave_node, "phy_id", &lenp);
1795 		if ((parp == NULL) || (lenp != (sizeof(void *) * 2))) {
1796 			pr_err("Missing slave[%d] phy_id property\n", i);
1797 			ret = -EINVAL;
1798 			goto error_ret;
1799 		}
1800 		mdio_node = of_find_node_by_phandle(be32_to_cpup(parp));
1801 		phyid = be32_to_cpup(parp+1);
1802 		mdio = of_find_device_by_node(mdio_node);
1803 		snprintf(slave_data->phy_id, sizeof(slave_data->phy_id),
1804 			 PHY_ID_FMT, mdio->name, phyid);
1805 
1806 		mac_addr = of_get_mac_address(slave_node);
1807 		if (mac_addr)
1808 			memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN);
1809 
1810 		slave_data->phy_if = of_get_phy_mode(slave_node);
1811 
1812 		if (data->dual_emac) {
1813 			if (of_property_read_u32(slave_node, "dual_emac_res_vlan",
1814 						 &prop)) {
1815 				pr_err("Missing dual_emac_res_vlan in DT.\n");
1816 				slave_data->dual_emac_res_vlan = i+1;
1817 				pr_err("Using %d as Reserved VLAN for %d slave\n",
1818 				       slave_data->dual_emac_res_vlan, i);
1819 			} else {
1820 				slave_data->dual_emac_res_vlan = prop;
1821 			}
1822 		}
1823 
1824 		i++;
1825 	}
1826 
1827 	return 0;
1828 
1829 error_ret:
1830 	kfree(data->slave_data);
1831 	return ret;
1832 }
1833 
1834 static int cpsw_probe_dual_emac(struct platform_device *pdev,
1835 				struct cpsw_priv *priv)
1836 {
1837 	struct cpsw_platform_data	*data = &priv->data;
1838 	struct net_device		*ndev;
1839 	struct cpsw_priv		*priv_sl2;
1840 	int ret = 0, i;
1841 
1842 	ndev = alloc_etherdev(sizeof(struct cpsw_priv));
1843 	if (!ndev) {
1844 		pr_err("cpsw: error allocating net_device\n");
1845 		return -ENOMEM;
1846 	}
1847 
1848 	priv_sl2 = netdev_priv(ndev);
1849 	spin_lock_init(&priv_sl2->lock);
1850 	priv_sl2->data = *data;
1851 	priv_sl2->pdev = pdev;
1852 	priv_sl2->ndev = ndev;
1853 	priv_sl2->dev  = &ndev->dev;
1854 	priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
1855 	priv_sl2->rx_packet_max = max(rx_packet_max, 128);
1856 
1857 	if (is_valid_ether_addr(data->slave_data[1].mac_addr)) {
1858 		memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr,
1859 			ETH_ALEN);
1860 		pr_info("cpsw: Detected MACID = %pM\n", priv_sl2->mac_addr);
1861 	} else {
1862 		random_ether_addr(priv_sl2->mac_addr);
1863 		pr_info("cpsw: Random MACID = %pM\n", priv_sl2->mac_addr);
1864 	}
1865 	memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN);
1866 
1867 	priv_sl2->slaves = priv->slaves;
1868 	priv_sl2->clk = priv->clk;
1869 
1870 	priv_sl2->coal_intvl = 0;
1871 	priv_sl2->bus_freq_mhz = priv->bus_freq_mhz;
1872 
1873 	priv_sl2->cpsw_res = priv->cpsw_res;
1874 	priv_sl2->regs = priv->regs;
1875 	priv_sl2->host_port = priv->host_port;
1876 	priv_sl2->host_port_regs = priv->host_port_regs;
1877 	priv_sl2->wr_regs = priv->wr_regs;
1878 	priv_sl2->hw_stats = priv->hw_stats;
1879 	priv_sl2->dma = priv->dma;
1880 	priv_sl2->txch = priv->txch;
1881 	priv_sl2->rxch = priv->rxch;
1882 	priv_sl2->ale = priv->ale;
1883 	priv_sl2->emac_port = 1;
1884 	priv->slaves[1].ndev = ndev;
1885 	priv_sl2->cpts = priv->cpts;
1886 	priv_sl2->version = priv->version;
1887 
1888 	for (i = 0; i < priv->num_irqs; i++) {
1889 		priv_sl2->irqs_table[i] = priv->irqs_table[i];
1890 		priv_sl2->num_irqs = priv->num_irqs;
1891 	}
1892 	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
1893 
1894 	ndev->netdev_ops = &cpsw_netdev_ops;
1895 	SET_ETHTOOL_OPS(ndev, &cpsw_ethtool_ops);
1896 	netif_napi_add(ndev, &priv_sl2->napi, cpsw_poll, CPSW_POLL_WEIGHT);
1897 
1898 	/* register the network device */
1899 	SET_NETDEV_DEV(ndev, &pdev->dev);
1900 	ret = register_netdev(ndev);
1901 	if (ret) {
1902 		pr_err("cpsw: error registering net device\n");
1903 		free_netdev(ndev);
1904 		ret = -ENODEV;
1905 	}
1906 
1907 	return ret;
1908 }
1909 
1910 static int cpsw_probe(struct platform_device *pdev)
1911 {
1912 	struct cpsw_platform_data	*data;
1913 	struct net_device		*ndev;
1914 	struct cpsw_priv		*priv;
1915 	struct cpdma_params		dma_params;
1916 	struct cpsw_ale_params		ale_params;
1917 	void __iomem			*ss_regs, *wr_regs;
1918 	struct resource			*res;
1919 	u32 slave_offset, sliver_offset, slave_size;
1920 	int ret = 0, i, k = 0;
1921 
1922 	ndev = alloc_etherdev(sizeof(struct cpsw_priv));
1923 	if (!ndev) {
1924 		pr_err("error allocating net_device\n");
1925 		return -ENOMEM;
1926 	}
1927 
1928 	platform_set_drvdata(pdev, ndev);
1929 	priv = netdev_priv(ndev);
1930 	spin_lock_init(&priv->lock);
1931 	priv->pdev = pdev;
1932 	priv->ndev = ndev;
1933 	priv->dev  = &ndev->dev;
1934 	priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
1935 	priv->rx_packet_max = max(rx_packet_max, 128);
1936 	priv->cpts = devm_kzalloc(&pdev->dev, sizeof(struct cpts), GFP_KERNEL);
1937 	priv->irq_enabled = true;
1938 	if (!priv->cpts) {
1939 		pr_err("error allocating cpts\n");
1940 		goto clean_ndev_ret;
1941 	}
1942 
1943 	/*
1944 	 * This may be required here for child devices.
1945 	 */
1946 	pm_runtime_enable(&pdev->dev);
1947 
1948 	/* Select default pin state */
1949 	pinctrl_pm_select_default_state(&pdev->dev);
1950 
1951 	if (cpsw_probe_dt(&priv->data, pdev)) {
1952 		pr_err("cpsw: platform data missing\n");
1953 		ret = -ENODEV;
1954 		goto clean_ndev_ret;
1955 	}
1956 	data = &priv->data;
1957 
1958 	if (is_valid_ether_addr(data->slave_data[0].mac_addr)) {
1959 		memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN);
1960 		pr_info("Detected MACID = %pM\n", priv->mac_addr);
1961 	} else {
1962 		eth_random_addr(priv->mac_addr);
1963 		pr_info("Random MACID = %pM\n", priv->mac_addr);
1964 	}
1965 
1966 	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
1967 
1968 	priv->slaves = kzalloc(sizeof(struct cpsw_slave) * data->slaves,
1969 			       GFP_KERNEL);
1970 	if (!priv->slaves) {
1971 		ret = -EBUSY;
1972 		goto clean_ndev_ret;
1973 	}
1974 	for (i = 0; i < data->slaves; i++)
1975 		priv->slaves[i].slave_num = i;
1976 
1977 	priv->slaves[0].ndev = ndev;
1978 	priv->emac_port = 0;
1979 
1980 	priv->clk = clk_get(&pdev->dev, "fck");
1981 	if (IS_ERR(priv->clk)) {
1982 		dev_err(&pdev->dev, "fck is not found\n");
1983 		ret = -ENODEV;
1984 		goto clean_slave_ret;
1985 	}
1986 	priv->coal_intvl = 0;
1987 	priv->bus_freq_mhz = clk_get_rate(priv->clk) / 1000000;
1988 
1989 	priv->cpsw_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1990 	if (!priv->cpsw_res) {
1991 		dev_err(priv->dev, "error getting i/o resource\n");
1992 		ret = -ENOENT;
1993 		goto clean_clk_ret;
1994 	}
1995 	if (!request_mem_region(priv->cpsw_res->start,
1996 				resource_size(priv->cpsw_res), ndev->name)) {
1997 		dev_err(priv->dev, "failed request i/o region\n");
1998 		ret = -ENXIO;
1999 		goto clean_clk_ret;
2000 	}
2001 	ss_regs = ioremap(priv->cpsw_res->start, resource_size(priv->cpsw_res));
2002 	if (!ss_regs) {
2003 		dev_err(priv->dev, "unable to map i/o region\n");
2004 		goto clean_cpsw_iores_ret;
2005 	}
2006 	priv->regs = ss_regs;
2007 	priv->version = __raw_readl(&priv->regs->id_ver);
2008 	priv->host_port = HOST_PORT_NUM;
2009 
2010 	priv->cpsw_wr_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2011 	if (!priv->cpsw_wr_res) {
2012 		dev_err(priv->dev, "error getting i/o resource\n");
2013 		ret = -ENOENT;
2014 		goto clean_iomap_ret;
2015 	}
2016 	if (!request_mem_region(priv->cpsw_wr_res->start,
2017 			resource_size(priv->cpsw_wr_res), ndev->name)) {
2018 		dev_err(priv->dev, "failed request i/o region\n");
2019 		ret = -ENXIO;
2020 		goto clean_iomap_ret;
2021 	}
2022 	wr_regs = ioremap(priv->cpsw_wr_res->start,
2023 				resource_size(priv->cpsw_wr_res));
2024 	if (!wr_regs) {
2025 		dev_err(priv->dev, "unable to map i/o region\n");
2026 		goto clean_cpsw_wr_iores_ret;
2027 	}
2028 	priv->wr_regs = wr_regs;
2029 
2030 	memset(&dma_params, 0, sizeof(dma_params));
2031 	memset(&ale_params, 0, sizeof(ale_params));
2032 
2033 	switch (priv->version) {
2034 	case CPSW_VERSION_1:
2035 		priv->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET;
2036 		priv->cpts->reg      = ss_regs + CPSW1_CPTS_OFFSET;
2037 		priv->hw_stats	     = ss_regs + CPSW1_HW_STATS;
2038 		dma_params.dmaregs   = ss_regs + CPSW1_CPDMA_OFFSET;
2039 		dma_params.txhdp     = ss_regs + CPSW1_STATERAM_OFFSET;
2040 		ale_params.ale_regs  = ss_regs + CPSW1_ALE_OFFSET;
2041 		slave_offset         = CPSW1_SLAVE_OFFSET;
2042 		slave_size           = CPSW1_SLAVE_SIZE;
2043 		sliver_offset        = CPSW1_SLIVER_OFFSET;
2044 		dma_params.desc_mem_phys = 0;
2045 		break;
2046 	case CPSW_VERSION_2:
2047 	case CPSW_VERSION_3:
2048 	case CPSW_VERSION_4:
2049 		priv->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET;
2050 		priv->cpts->reg      = ss_regs + CPSW2_CPTS_OFFSET;
2051 		priv->hw_stats	     = ss_regs + CPSW2_HW_STATS;
2052 		dma_params.dmaregs   = ss_regs + CPSW2_CPDMA_OFFSET;
2053 		dma_params.txhdp     = ss_regs + CPSW2_STATERAM_OFFSET;
2054 		ale_params.ale_regs  = ss_regs + CPSW2_ALE_OFFSET;
2055 		slave_offset         = CPSW2_SLAVE_OFFSET;
2056 		slave_size           = CPSW2_SLAVE_SIZE;
2057 		sliver_offset        = CPSW2_SLIVER_OFFSET;
2058 		dma_params.desc_mem_phys =
2059 			(u32 __force) priv->cpsw_res->start + CPSW2_BD_OFFSET;
2060 		break;
2061 	default:
2062 		dev_err(priv->dev, "unknown version 0x%08x\n", priv->version);
2063 		ret = -ENODEV;
2064 		goto clean_cpsw_wr_iores_ret;
2065 	}
2066 	for (i = 0; i < priv->data.slaves; i++) {
2067 		struct cpsw_slave *slave = &priv->slaves[i];
2068 		cpsw_slave_init(slave, priv, slave_offset, sliver_offset);
2069 		slave_offset  += slave_size;
2070 		sliver_offset += SLIVER_SIZE;
2071 	}
2072 
2073 	dma_params.dev		= &pdev->dev;
2074 	dma_params.rxthresh	= dma_params.dmaregs + CPDMA_RXTHRESH;
2075 	dma_params.rxfree	= dma_params.dmaregs + CPDMA_RXFREE;
2076 	dma_params.rxhdp	= dma_params.txhdp + CPDMA_RXHDP;
2077 	dma_params.txcp		= dma_params.txhdp + CPDMA_TXCP;
2078 	dma_params.rxcp		= dma_params.txhdp + CPDMA_RXCP;
2079 
2080 	dma_params.num_chan		= data->channels;
2081 	dma_params.has_soft_reset	= true;
2082 	dma_params.min_packet_size	= CPSW_MIN_PACKET_SIZE;
2083 	dma_params.desc_mem_size	= data->bd_ram_size;
2084 	dma_params.desc_align		= 16;
2085 	dma_params.has_ext_regs		= true;
2086 	dma_params.desc_hw_addr         = dma_params.desc_mem_phys;
2087 
2088 	priv->dma = cpdma_ctlr_create(&dma_params);
2089 	if (!priv->dma) {
2090 		dev_err(priv->dev, "error initializing dma\n");
2091 		ret = -ENOMEM;
2092 		goto clean_wr_iomap_ret;
2093 	}
2094 
2095 	priv->txch = cpdma_chan_create(priv->dma, tx_chan_num(0),
2096 				       cpsw_tx_handler);
2097 	priv->rxch = cpdma_chan_create(priv->dma, rx_chan_num(0),
2098 				       cpsw_rx_handler);
2099 
2100 	if (WARN_ON(!priv->txch || !priv->rxch)) {
2101 		dev_err(priv->dev, "error initializing dma channels\n");
2102 		ret = -ENOMEM;
2103 		goto clean_dma_ret;
2104 	}
2105 
2106 	ale_params.dev			= &ndev->dev;
2107 	ale_params.ale_ageout		= ale_ageout;
2108 	ale_params.ale_entries		= data->ale_entries;
2109 	ale_params.ale_ports		= data->slaves;
2110 
2111 	priv->ale = cpsw_ale_create(&ale_params);
2112 	if (!priv->ale) {
2113 		dev_err(priv->dev, "error initializing ale engine\n");
2114 		ret = -ENODEV;
2115 		goto clean_dma_ret;
2116 	}
2117 
2118 	ndev->irq = platform_get_irq(pdev, 0);
2119 	if (ndev->irq < 0) {
2120 		dev_err(priv->dev, "error getting irq resource\n");
2121 		ret = -ENOENT;
2122 		goto clean_ale_ret;
2123 	}
2124 
2125 	while ((res = platform_get_resource(priv->pdev, IORESOURCE_IRQ, k))) {
2126 		for (i = res->start; i <= res->end; i++) {
2127 			if (request_irq(i, cpsw_interrupt, 0,
2128 					dev_name(&pdev->dev), priv)) {
2129 				dev_err(priv->dev, "error attaching irq\n");
2130 				goto clean_ale_ret;
2131 			}
2132 			priv->irqs_table[k] = i;
2133 			priv->num_irqs = k + 1;
2134 		}
2135 		k++;
2136 	}
2137 
2138 	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2139 
2140 	ndev->netdev_ops = &cpsw_netdev_ops;
2141 	SET_ETHTOOL_OPS(ndev, &cpsw_ethtool_ops);
2142 	netif_napi_add(ndev, &priv->napi, cpsw_poll, CPSW_POLL_WEIGHT);
2143 
2144 	/* register the network device */
2145 	SET_NETDEV_DEV(ndev, &pdev->dev);
2146 	ret = register_netdev(ndev);
2147 	if (ret) {
2148 		dev_err(priv->dev, "error registering net device\n");
2149 		ret = -ENODEV;
2150 		goto clean_irq_ret;
2151 	}
2152 
2153 	if (cpts_register(&pdev->dev, priv->cpts,
2154 			  data->cpts_clock_mult, data->cpts_clock_shift))
2155 		dev_err(priv->dev, "error registering cpts device\n");
2156 
2157 	cpsw_notice(priv, probe, "initialized device (regs %x, irq %d)\n",
2158 		  priv->cpsw_res->start, ndev->irq);
2159 
2160 	if (priv->data.dual_emac) {
2161 		ret = cpsw_probe_dual_emac(pdev, priv);
2162 		if (ret) {
2163 			cpsw_err(priv, probe, "error probe slave 2 emac interface\n");
2164 			goto clean_irq_ret;
2165 		}
2166 	}
2167 
2168 	return 0;
2169 
2170 clean_irq_ret:
2171 	for (i = 0; i < priv->num_irqs; i++)
2172 		free_irq(priv->irqs_table[i], priv);
2173 clean_ale_ret:
2174 	cpsw_ale_destroy(priv->ale);
2175 clean_dma_ret:
2176 	cpdma_chan_destroy(priv->txch);
2177 	cpdma_chan_destroy(priv->rxch);
2178 	cpdma_ctlr_destroy(priv->dma);
2179 clean_wr_iomap_ret:
2180 	iounmap(priv->wr_regs);
2181 clean_cpsw_wr_iores_ret:
2182 	release_mem_region(priv->cpsw_wr_res->start,
2183 			   resource_size(priv->cpsw_wr_res));
2184 clean_iomap_ret:
2185 	iounmap(priv->regs);
2186 clean_cpsw_iores_ret:
2187 	release_mem_region(priv->cpsw_res->start,
2188 			   resource_size(priv->cpsw_res));
2189 clean_clk_ret:
2190 	clk_put(priv->clk);
2191 clean_slave_ret:
2192 	pm_runtime_disable(&pdev->dev);
2193 	kfree(priv->slaves);
2194 clean_ndev_ret:
2195 	kfree(priv->data.slave_data);
2196 	free_netdev(priv->ndev);
2197 	return ret;
2198 }
2199 
2200 static int cpsw_remove(struct platform_device *pdev)
2201 {
2202 	struct net_device *ndev = platform_get_drvdata(pdev);
2203 	struct cpsw_priv *priv = netdev_priv(ndev);
2204 	int i;
2205 
2206 	if (priv->data.dual_emac)
2207 		unregister_netdev(cpsw_get_slave_ndev(priv, 1));
2208 	unregister_netdev(ndev);
2209 
2210 	cpts_unregister(priv->cpts);
2211 	for (i = 0; i < priv->num_irqs; i++)
2212 		free_irq(priv->irqs_table[i], priv);
2213 
2214 	cpsw_ale_destroy(priv->ale);
2215 	cpdma_chan_destroy(priv->txch);
2216 	cpdma_chan_destroy(priv->rxch);
2217 	cpdma_ctlr_destroy(priv->dma);
2218 	iounmap(priv->regs);
2219 	release_mem_region(priv->cpsw_res->start,
2220 			   resource_size(priv->cpsw_res));
2221 	iounmap(priv->wr_regs);
2222 	release_mem_region(priv->cpsw_wr_res->start,
2223 			   resource_size(priv->cpsw_wr_res));
2224 	pm_runtime_disable(&pdev->dev);
2225 	clk_put(priv->clk);
2226 	kfree(priv->slaves);
2227 	kfree(priv->data.slave_data);
2228 	if (priv->data.dual_emac)
2229 		free_netdev(cpsw_get_slave_ndev(priv, 1));
2230 	free_netdev(ndev);
2231 	return 0;
2232 }
2233 
2234 static int cpsw_suspend(struct device *dev)
2235 {
2236 	struct platform_device	*pdev = to_platform_device(dev);
2237 	struct net_device	*ndev = platform_get_drvdata(pdev);
2238 	struct cpsw_priv	*priv = netdev_priv(ndev);
2239 
2240 	if (netif_running(ndev))
2241 		cpsw_ndo_stop(ndev);
2242 	soft_reset("sliver 0", &priv->slaves[0].sliver->soft_reset);
2243 	soft_reset("sliver 1", &priv->slaves[1].sliver->soft_reset);
2244 	pm_runtime_put_sync(&pdev->dev);
2245 
2246 	/* Select sleep pin state */
2247 	pinctrl_pm_select_sleep_state(&pdev->dev);
2248 
2249 	return 0;
2250 }
2251 
2252 static int cpsw_resume(struct device *dev)
2253 {
2254 	struct platform_device	*pdev = to_platform_device(dev);
2255 	struct net_device	*ndev = platform_get_drvdata(pdev);
2256 
2257 	pm_runtime_get_sync(&pdev->dev);
2258 
2259 	/* Select default pin state */
2260 	pinctrl_pm_select_default_state(&pdev->dev);
2261 
2262 	if (netif_running(ndev))
2263 		cpsw_ndo_open(ndev);
2264 	return 0;
2265 }
2266 
2267 static const struct dev_pm_ops cpsw_pm_ops = {
2268 	.suspend	= cpsw_suspend,
2269 	.resume		= cpsw_resume,
2270 };
2271 
2272 static const struct of_device_id cpsw_of_mtable[] = {
2273 	{ .compatible = "ti,cpsw", },
2274 	{ /* sentinel */ },
2275 };
2276 MODULE_DEVICE_TABLE(of, cpsw_of_mtable);
2277 
2278 static struct platform_driver cpsw_driver = {
2279 	.driver = {
2280 		.name	 = "cpsw",
2281 		.owner	 = THIS_MODULE,
2282 		.pm	 = &cpsw_pm_ops,
2283 		.of_match_table = of_match_ptr(cpsw_of_mtable),
2284 	},
2285 	.probe = cpsw_probe,
2286 	.remove = cpsw_remove,
2287 };
2288 
2289 static int __init cpsw_init(void)
2290 {
2291 	return platform_driver_register(&cpsw_driver);
2292 }
2293 late_initcall(cpsw_init);
2294 
2295 static void __exit cpsw_exit(void)
2296 {
2297 	platform_driver_unregister(&cpsw_driver);
2298 }
2299 module_exit(cpsw_exit);
2300 
2301 MODULE_LICENSE("GPL");
2302 MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>");
2303 MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>");
2304 MODULE_DESCRIPTION("TI CPSW Ethernet driver");
2305